
HAL Id: hal-02158947
https://hal.science/hal-02158947

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lambda Calculus and Music Calculi
Yann Orlarey, Dominique Fober, Stéphane Letz, Mark Bilton

To cite this version:
Yann Orlarey, Dominique Fober, Stéphane Letz, Mark Bilton. Lambda Calculus and Music Calculi.
International Computer Music Conference, 1994, Aarhus, Denmark. pp.243-250. �hal-02158947�

https://hal.science/hal-02158947
https://hal.archives-ouvertes.fr

Lambda Calculus and Music Calculi
Yann Orlarey, Dominique Fober, St�phane Letz and Mark Bilton

GRAME
6 quai Jean Moulin

69001 Lyon - France
grame@applelink.apple.com

Abstract

This article presents an approach in the design of music programming languages based on Lambda Calculus. It
shows, through several examples, that a purely descriptive language, that is to say a language without any pro-
gramming capability, can be equipped with programming capabilities by the addition of a limited number of
simple constructs.

1. Introduction
In this paper we aim to show how a purely descrip-
tive music language can be transformed into a music
programming language by introducing the abstrac-
tion and application concepts from Lambda
Calculus [Church 1941].

Instead of building suitable music data structures
and functions on an actual programming language,
we suggest to build suitable programming lan-
guages on music data structures. This method gives
rise to specialized functional programming lan-
guages where the same structuring means (the same
ÒgluesÓ using Hughes [Hughes 1989] term) apply to
both data and programs.

The method is quite general and can be used for de-
scriptive languages of other domains. In fact our
first example will be a graphic calculus whose visual
aspect enables better understanding of the method.
In the second example we will develop a music cal-
culus based a textual music language and we will
end with a visual version of this music calculus.

2. The transformation process
The transformation process is based on two steps:

a) Extension of the descriptive language syntax by
introducing the abstraction and application of
Lambda Calculus

Understanding the notion of abstraction is essen-
tial. Abstraction is an operation which makes
some part of an object become variable. The re-
sulting object is a generalization of the previous
one. This generalization can be given different
interpretations: a predicate, a class, a concept, a
set, or a function. Here we are mainly concerned
by the last interpretation.

Application is in some ways the inverse of the
abstraction operation. It allows us to specialize
an abstraction by fixing some of its parts.

b) Extension of the Lambda Calculus reduction
rules in order to deal with the new specific de-
scriptive languages constructions

In Lambda Calculus, the b-reduction rule gives a
functional significance to abstractions. In the

same manner, we add new reduction rules to
give a functional significance to the other lan-
guage constructs. In this way, every construc-
tion in the language can be applied as a function.

For our examples we shall use the following struc-
ture:

- descriptive language presentation
- syntax
- examples

- programming language presentation
- extended syntax
- program examples which use b-reduction
- reduction rules extension
- program examples which use the new re-
duction rules.

Due to space restrictions we will not describe
Lambda Calculus. The interested reader can refer to
[Barendregt 1984]. Also we will not discuss the
formal properties of the presented calculi.

3. A Graphic Calculus
The aim of this section is to present a very simple 3-
D graphic calculus based on colored cubes.

3.1. The descriptive language
Our descriptive language uses basic coloured cubes and
operators to construct more complex cubes. The syntax
appears as follows :

cube ::= color

| cube1 cube2[]
| cube1

cube2

é

ë
ê

ù

û
ú

| cube1
cube2

é
ëê

ù
ûú

color ::= white | red | blue | green

| invisible |É
This states that a cube is either a basic coloured cube
or a construction of cubes following the three direc-
tions of space. So the construction operators respect
the rules:

Note : A construction of two cubes always remains
a cube, the operands are contracted following the
construction axis.

Some Examples

Here are several examples of simple expressions
followed by the corresponding graphic result:

a) green white[] white green[]

b)
white invisible

white
white

é

ë

ê
ê
ê

ù

û

ú
ú
ú

c)

white invisible

invisible white
invisible green

green invisible

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

3.2. The programming language
To transform our descriptive language into a graphic
calculus we must:

- Extend the language syntax with abstraction and
application.

- Extend the reduction rules to deal with the ap-
plication of colored cubes and constructions.

3.2.1. Syntax extensions
The extended syntax is described as follows :

cube ::= color

| cube1 cube2[]
| cube1

cube2

é

ë
ê

ù

û
ú

| cube1
cube2

é
ëê

ù
ûú

| lcolor.cube
| (cube 1 cube2)

color ::= white | red | blue | green

| invisible |É
This adds two new terms to the previous one,
lcolor.cube which represent an abstraction and (cube 1

cube 2) which represent the application of cube 1 to
cube 2.

In order to simplify the notation we will write
C1 C2 C3 C4() instead of C1 C2() C3() C4() by using

left to right associativity for application.

As stated earlier, an abstraction is an object general-
ization obtained by making some part of the object
variables. So the abstraction lwhite.[white |blue] is a
generalization of the cube [white|blue] obtained by
making the white part variable. The lwhite . part de-
clares that white is a bounded variable in the ab-
straction body [white|blue] .

If we apply lwhite .[white |blue] to a cube C, after b-re-
duction (that is to say the substitution of each occur-
rence of white by C in the abstraction body
[white |blue]), we obtain [C|blue]. Therefore, consider-
ing the b-reduction rule, lwhite .[white|blue] defines the
function "put a blue cube on the right of another
cube".

A b-reduction example

The following abstraction is the same as example (c)
where the colours white and green become variables.

lwhite.lgreen.

white invisible

invisible white
invisible green

green invisible

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

If we apply this abstraction to colour blue and then
colour red, we have the following b-reductions se-
quence : (we shall write arguments in bold in order
to better show the substitution process)

lwhite.lgreen.

white invisible

invisible white
invisible green

green invisible

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

blue red

Þb lgreen.

blue invisible

invisible blue
invisible green

green invisible

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

red

Þb

blue invisible

invisible blue
invisible red
red invisible

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Construction of a diagonally divided cube

We can now try to construct more complicated ob-
jects, for example this diagonally divided green and
white cube.

To understand this objects construction, lets look at
the following objects A and B:

A º
green red

red white

é

ë
ê

ù

û
ú B º

green
green red

red white

é

ë
ê

ù

û
ú

green red

red white

é

ë
ê

ù

û
ú white

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

The object B is obtained by replacing the red parts in
A by A itself. So we can see that if we could repeat
this process indefinitely, the red parts would disap-
pear completely and the result would be a diagonally
divided green and white cube.

In other words the problem is to find an object X
solution for the following equation :

X =
green X

X white

é

ë
ê

ù

û
ú

WeÊcan simply resolve this by considering the object
X as the application of an object V on itself.

X º V V()

So by rewriting the previous equation in this way we
have :

V V() =
green V V()
V V() white

é

ë
ê
ê

ù

û
ú
ú

The definition of V is now simply :

V º lred .
green red red()
red red() white

é

ë
ê
ê

ù

û
ú
ú

Therefore we have:

lred .
green red red()
red red() white

é

ë
ê
ê

ù

û
ú
ú

V
æ

è
ç

ö

ø
÷ Þb

green V V()
V V() white

é

ë
ê
ê

ù

û
ú
ú

= (V V)

Consequently, our diagonally divided green and
white cube X is defined by the following applica-
tion:

X º lred .
green red red()
red red() white

é

ë
ê
ê

ù

û
ú
ú

lred .
green red red()
red red() white

é

ë
ê
ê

ù

û
ú
ú

æ

è
ç

ö

ø
÷

Note : In our implementation we use Normal Order
Reduction. The evaluation stops automatically when
an expression is known to be too small to be dis-
played.

3.2.2. Reduction rules extensions
The previous example used only the application of
abstraction so only the b -reduction rule was re-
quired. But with our extended syntax, we can also
apply basic coloured cubes and constructions to
other expressions. Therefore we need to define cor-
responding reduction rules in order to give func-
tional significance to these elements.

Application of basic coloured cubes

The function of the basic coloured cubes will be to
colour their argument. So any object will be
whitened by having a white cube applied to it.
Consequently, a white cube applied on a red cube
will result in a pink cube.

white red() Þ pink

When a colour is applied to a construction, it "prop-
agates" following the construction axis.

white C1 C2[]() Þ white C1() white C2()[]
When a colour is applied to an abstraction, it "prop-
agates" into the abstraction body (renaming
bounded variables in case of name conflicts)

white lc.C() Þ lc. white C()

Application of constructions

The principle here is to distribute application on the
construction axis. For example :

C1 C2[] C3 C4[]() Þ C1 C3() C2 C4()[]
These new rules are described as follows

C1 C2 X() Þ C1 left(X)() C2 right(X)()
C1

C2

X
æ

è
ç

ö

ø
÷ Þ

C1 top(X)
C2 bot(X)

C1
C2

Xæ
è

ö
ø Þ

C1 front(X)()
C2 back(X)()

Where left, right, top , bot, front , back are cutting algo-
rithms based on the following model (c is for a ba-
sic colour , C, C1 and C2 are for any cubes) :

left
C1

C2

æ

è
ç

ö

ø
÷ Þ

left(C1)
left(C2)

left C1
C2

æ
è

ö
ø Þ left(C1)

left(C2)

left C1 C2() Þ C1

left c() Þ c

left lc.C() Þ lc.C

Remark: The two last rules indicate that basic
colours and abstractions are not affected by the
cutting operation. The consequence is that :
lx . E x() /Û E

These new reduction rules are very powerful. As the
following picture shows, they allow to describe
functions which have different behaviors in every
points in space (note that the numbers and arithmetic
are not part of our language, they are simply here to
aid understanding).

2 + 10
=

12
3

* 20 22
40

60

30
13

2 + 3 = 5

3.2.3. An example using extended
rules
The intersection and union operations on objects are
commonly used in graphics software. To reproduce
these operations we must first construct Boolean
functions and values. These enables us to "fill" the
interior and exterior parts of objects with Boolean
values and then using the Boolean functions AND
and OR we can perform the intersection and union
of objects.

Here is a definition of Boolean values T , F1 and
NOT, AND , OR. operators .

T º lblue.lgreen.blue

F º lblue.lgreen.green

NOT º lred.lblue.lgreen.(red green blue)

AND º lblue.lgreen.(blue green blue)

OR º lblue.lgreen.(blue blue green)

Now we can use these to construct a variant of
Spenger sponge:

a) We begin by constructing objects A, B and C:
(here displayed applied to white and invisible)

1Boolean values T and F must be understood as selectors : T
returns its first argument, F return its second argument.

The definition of object A is :

A º

T

T F F T

T F F T

T

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Objects B and C are based on the same model but on
complementary axes.

b) Then we construct an object X which takes two
arguments and applies them to the intersection of
objects A, B and C.

X = lwhite.linvisible. ANDA ANDBC()()white invisible()

c) Finally we can define our sponge by "colouring"
X with itself in two levels of depth:

SPONGE = X X F() X F() white invisible()

4. A Music Calculus
In this example we shall use a simplified textual mu-
sic language inspired by Cadenza [Field-Richards
1993].

4.1. The descriptive language
Our descriptive language is composed of notes with
pitch, velocity and duration, and two composition
operators which allow us to organize notes into se-
quences and chords. We deliberately omit other
kinds of musical information such as tempo and
timbre to avoid obscuring the explanation.

The syntax is as follows :

score ::= f | event | score1 ; score2[] | score1

score2

é

ë
ê

ù

û
ú

event ::= r | note | event tmodifier

note ::= pitch | pitch octave | note nmodifier

pitch ::= c | d | e | f | g | a | b

octave ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

tmodifier ::= . | * | t | / |

nmodifier ::= + | - | > | < |
This states that a score can be either an empty
score, a musical event, a sequence of two scores
s1 ; s2[] following the time axis, or a chord of two

scores s1

s2

é

ë
ê

ù

û
ú superposed on time axis.

A musical event can be either a rest (r) or a note.
The event duration is by default a quarter-note. This
duration can be divided by 2 (/), divided by 3 (t),
multiplied by 1.5 (.) or multiplied by 2 (*).

A note is defined by a pitch value which may be
followed by an octave number (octave 3 by default).
The note pitch can be modified by adding (+) or
subtracting (-) one semitone. In the same way, the
default velocity can be accentuated (>) or dimin-
ished (<).

Here are some examples of events descriptions :

c, c3 middle C quarter-note

d4> accentuated D4 quarter-note

f/// F3 32nd-note

a++ A3 double sharp quarter-note

r quarter-note rest

r** whole-note rest

In order to simplify the notation, we use associativ-
ity rules for the sequence and chord operators.

- Like this we can write S1 ; S2 ; S3 ; S4[] instead of

S1 ; S2 ; S3 ; S4[][][] by using right to left associativity
for the sequence operator.

- In the same way we can write

S1

S2

S3

S4

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 instead of

S1

S2

S3

S4

é

ë
ê

ù

û
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 by using bottom to top associativity for the

chord operator.

Here is a simple example :

c4;b / /;
d4 / /
f 4 / /

é

ëê
ù

ûú
; r /; r *

é

ë
ê

ù

û
ú

4.2. The programming language
To transform the descriptive language into a music
calculus, we first introduce abstraction and applica-
tion, and then extend the reduction rules.

Here follows an example to explain the role of ab-
straction and application. Using our descriptive lan-
guage we can explicitly describe repetition of notes,
like : [c;c], [f3//;f3//] or [b2+;b2+], but we can't describe
the underlying concept of repetition : the sequence
of two identical objects. Abstraction will allows us
to describe such concepts.

We can generalize a particular repetition, for exam-
ple [c;c], by making the note c become variable . In
this case the abstraction is written lc.[c;c], where the
lc part declares that c is an abstract note in the ab-
straction body [c ;c] (In other terms c is a bounded
variable, this will be written in italics to distinguish
it from a real note).

If we now apply this abstraction to note a4, written
(lc.[c;c] a4), after b-reduction (that is substitution of
each c occurrence with a4) we obtain the sequence
[a4;a4]. So the abstraction lc.[c;c] really defines an
operation that repeats the same object two times.

4.2.1. Syntax extension
The syntax of our musical calculus is described as
follows :

score ::= f | event | score1 ; score2[] | score1

score2

é

ë
ê

ù

û
ú

| levent.score | (score 1 score2)

It extends the descriptive language syntax with two
new forms : l event.score which is for abstraction,
and (score 1 score2) for application .

Again in order to simplify the notation, we assume
associativity rules to write the applications : like this
we can write S1 S2 S3 S4() instead of S1 S2() S3() S4()
by using left to right associativity for the applica-
tion.

b-reduction examples

Here are some examples of applications and their
sequence of corresponding b -reductions. (we shall
write arguments in bold in order to better show the
substitution process).

a) 3 time repetition :

lc. c; c; c[]

c4
e4
g4
b5

é

ë

ê
ê
ê

ù

û

ú
ú
ú

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Þb

c4
e4
g4
b5

é

ë

ê
ê
ê

ù

û

ú
ú
ú
;

c4
e4
g4
b5

é

ë

ê
ê
ê

ù

û

ú
ú
ú
;

c4
e4
g4
b5

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

b) ABBA form:

la.lb. a; b; b; a[] b5 c4;e4[]()

Þb lb. b5; b; b;b5[] c4;e4[]()

Þb b5; c4;e4[]; c4;e4[];b5[]

c) canon form :

lc.
c

r; c[]
é

ë
ê

ù

û
ú c4;e4;g4;c3[]

æ

è
ç

ö

ø
÷ Þb

c4;e4;g4;c3[]
r;c4;e4;g4;c3[]

é

ë
ê

ù

û
ú

Infinite sequences

As with Lambda Calculus we canÕt directly define
recursive functions, however they can be easily sim-

ulated. To understand this principle let's look at the
following abstraction :

V º lf . f f()

When we apply V on V, after b-reduction :

V V() = lf . f f() V() Þb V V()

This is V applied on V again, consequently the
evaluation on such a form never terminates (i.e. it
doesn't have a normal form). We shall use this prin-
ciple to define infinite sequences.

a) An infinite sequence

Let's start with an infinite sequence of c4 notes:

X = [c4;c4;c4;....]

A recursive definition of X would be : X º [c4;X]. To
obtain this result we shall modify the definition of
V º lf . f f() in :

 V©º lf . c4; f f()[]
By applying VÕ on VÕ we have :

V© V©() = lf . c4; f f()[] V©()
Þb c4; V© V©()[]
Þb* c4;c4;c4;¼[]

So, the required definition is:

X º lf . c4; f f()[] lf . c4; f f()[]()

b) A looping function

We can now generalize the preceding object X by
making the note c4 become variable :

Loop º lc4. lf . c4; f f()[] lf . c4; f f()[]()
So if we apply Loop to the [a2;a2//] sequence we ob-
tain :

Loop a2;a2 / /[]() Þb* a2;a2 / /[]; a2;a2 / /[]; a2;a2 / /[];... []

c) Infinite alternation

By slightly modifying the preceding definition, we
can define an infinite alternation of two objects :

Alt º lc.ld . lf . c;d; f f()[] lf . c;d; f f()[]()
If we apply Alt on c 3 and c3+ we obtain :
Alt c3 c3 +() Þb* c3;c3+;c3;c3+;c3;... []

Notice that this result is not equivalent to :

Loop c3;c3 +[]() Þb* c3;c3 +[]; c3;c3 +[]; c3;c3 +[];... []
(although the sound result would be the same)

4.2.2. Reduction rules extension

The preceding examples only used the usual b-re-
duction rule. By extending reduction rules we shall
give functional capabilities to each language con-
struction.

Let's take for example the application of sequence
[E;F;G] on sequence [H;I;J]. Following the intuitive
concepts of sequence we consider [E;F;G] as a time
ordering of functions. This means that when applied
to a sequence the time ordering is maintained, as we
show in the following example :

E;F;G[] H ; I ; J[]() Þ E H(); F I(); G J()[]

In the same way we can consider E
F

é
ëê

ù
ûú
 as time su-

perimposed functions, therefore :

E
F

é
ëê

ù
ûú

 Hæ
è
ç

ö
ø
÷ Þ

E H()
F H()

é

ë
ê

ù

û
ú

With these two rules, we are able to time-organize
functions in the same way as other musical objects.

We must also give functional significance to basic
objets likes notes and rests. The principle we choose
is to consider a note as a function which transforms
its argument according to the differences between
the note and a reference note (the c3 quarter-note in
our case). So if we represent a note as a tuple <pitch,
velocity, duration> then the application of a note to
another one h1 , i1 ,d1 h2 , i2 ,d2() gives a new note :

Þ h2 + h1 - href , i2 + i1 - iref , d2 * d1 / dref

To summarize, the new reductions rules are as fol-
lows (we give only the principal rules, E, F, G, H are
for any terms, N is for a note) :

a) Sequence application:

E;F[] G;H[]() Þ E G(); F H()[]

E;F[]
G
H

é
ëê

ù
ûú

æ
è
ç

ö
ø
÷ Þ

E;F[] G()
E;F[] H()

é

ë
ê
ê

ù

û
ú
ú

E;F[] N() Þ E N()

b) Chord application :

E
F

é
ëê

ù
ûú

 Gæ
è
ç

ö
ø
÷ Þ

E G()
F G()

é

ë
ê

ù

û
ú

c) Note application :

N G;H[]() Þ N G(); N H()[]

N
G
H

é
ëê

ù
ûú

æ
è
ç

ö
ø
÷ Þ

N G()
N H()

é

ë
ê

ù

û
ú

N1 N2() Þ h2 + h1 - href , i2 + i1 - iref , d2 * d1 / dref

d) Application of f :

f E() Þ f

Simples examples

The following examples use the reduction rules for
note application :

a) One semi-tone transposition

c3 + e4;f3;g4[]() Þ f 4; f3+;g4 +[]

b) Duration division by 4

c3 / / e4;f3;g4[]() Þ e4 / /; f3 / /;g4 / /[]

c) Transposition, expansion and accentuation

e3 > * e4;f3;g4[]() Þ g4+ > *;a3 > *;b4 > *[]

Treatment of sequences

The following examples take advantage of the new
rule for the application of sequences. Indeed, in or-
der to treat each element of a sequence, we now just
have to describe a sequence of treatments and apply
it to a sequence.

a) Repetition of each sequence element

We want here to apply the function lc.[c;c] on each
element of a sequence. For a specific sequence
[e;f;g] we can write :

lc. c;c[];lc. c;c[];lc. c;c[][] e;f;g[]() Þ e;e[]; f; f[]; g;g[][]
The problem is now how to make it work for se-
quences of any length. Note that our reduction
rules can treat expression as follows :

A;B;C;D;...[] U;V;W[]() Þ A U(); B V(); C W()[]
So the solution consist in creating an infinite se-
quence of lc.[c;c] functions (using the preceding
Loop function) and applying it on the argument se-
quence :

 Loop lc. c;c[] e;f;g[]() Þ e;e[]; f; f[]; g;g[][]
Here the treatment sequence could be more com-
plex. For example :

Alt lc. c;c[] lc. c;c;c[] e;f;g;a[]()

Þ e;e[]; f; f; f[]; g;g[]; a;a;a[][]

b) Sequences interlacing

Suppose we want a function Inter such that :

 Inter c;d;c[] e;f;g[]() Þ c;e[]; d; f[]; c;g[][]
Following the previous example the definition we
need is :

 Inter º Loop la.lb. a;b[]()
Indeed we have :

Loop la.lb. a;b[] c;d;c[] e;f;g[]()

Þ la.lb. a;b[]; la.lb. a;b[]; ¼[] c;d;c[] e; f;g[]()
Þ lb. c;b[]; lb. d;b[]; lb. c;b[][] e;f;g[]()

Þ c;e[]; d;e[]; c;e[][]

c) Sequence multiplication

Here we want to define a Mult function that takes
two sequences as arguments and applies each note
of the first sequence on the entire second sequence :

 Mult a;b;c[] S() Þ a S(); b S(); c S()[]
The definition we need is simple :

Mult º la.lb. Loop lc. c b() a()
Here is a example of multiplication and its result :

Mult c3;e3+;c3 -[] e/;

c / /

e / /

g / /

é

ë

ê
ê
ê

ù

û

ú
ú
ú

;a / /

é

ë

ê
ê
ê

ù

û

ú
ú
ú

By multiplying the same sequence with itself several
times we can define a sort of "fractal" structure.

 Fractalize º lc. Mult c Mult c Mult c c()()()

5. A Visual Music Calculus
Here we introduce a visual representation for our
musical calculus. Here our descriptive language can
be graphically represented using common musical
notation, then we only have to introduce a graphical
representation for abstraction and application to de-
fine a purely graphical musical calculus. We shall
also maintain the same reductions rules.

5.1. Abstraction
Abstractions are represented in a rectangle. The ab-
stract note is declared first and separated from the
abstraction body by a vertical line. Abstract notes
are coloured gray to be distinguishable from real
notes.

Here are some abstractions representations.

a) Two times repetition

,
la3.[a3; a3]

b) ABBA form

la.lb.[a; b; b; a]

c) Canon form

la.
a

r; a[]
é

ë
ê

ù

û
ú

5.1.1. Application
Compared to the textual representation, here the
application of a to b will be written using brackets
a[b].

Below are some application examples and their cor-
responding evaluation.

a) One semi-tone transposition

All notes are in effect transformation functions
who's transposition value is the difference between
their pitch and the reference pitch c3. Therefore by
applying c3+ to an argument we transpose it by one
semi-tone.

Þ

b) Three time repetition

Application of the "repeat three times" operation on
a sequence.

Þb

c) ABBA form

Application of the la.lb.[a ; b ; b; a] abstraction on
two sequences.

Þb

Þb

d) Infinite sequence

This example is the visual translation of the infinite
sequence of c4 defined in 1.2.1.2. :

X º lf . c4; f f()[] lf . c4; f f()[]()

Þb

Þb

e) Looping function

The loop function is defined by making the note c4
(from the preceding example) become variable.

Loop º lc4. lf . c4; f f()[] lf . c4; f f()[]()

6. Conclusion
We believe that the functional programming model
is of great interest for music languages. Since 1984
R. Dannenberg proposed several functional music
languages that demonstrate the advantages of
features like lazy evaluation and high-order func-

tions [Dannenberg 1984, 1989, 1991]. The
functional approach is also central to the solution
proposed by P. Desain and H. Honing for the
representation of control functions [Desain and
Honing 1991].

By returning to the root of functional programming,
Lambda calculus, we are able to propose a new
approach in designing music programming
languages. The central idea of our approach is to
start from the music data structures and to introduce
Lambda Calculus abstraction and application.
Abstract music objects lead to a ÒnaturalÓ expression
of music functions and operations. This has also
been proposed by M. Balaban in a recent paper
[Balaban 1994].

A very interesting consequence of our approach is
that, being music objects, functions can be
composed, processed and represented in the same
way as real music objects. Therefore, the
programming activity is naturally in keeping with
the composition activity which is more familiar to
the user.

References
[Balaban 1994], M. Balaban, ÒIntroducing Formal
Processing into Music - The Music Structure
ApproachÓ, Technical Report FC-94-07 , Dept. of
Math. and Comp. Science, Ben-Gurion University of
the Negev, 1994.

[Barendregt 1984] H. P. Barendregt, The Lambda
Calculus, Its Syntax and Semantics . North-Holland,
Amsterdam, 1984.

[Church 1941], A. Church, The Calculi of Lambda
Conversion, Princeton University Press, Princeton,
N.J., 1941.

[Dannenberg 1984], R. B. Dannenberg, ÒArtic: A
Functional Language for Real-Time ControlÓ, in
1984 ACM Symposium on LISP and Functional
Programming, ACM, New-York, 1984.

[Dannenberg 1989], R. B. Dannenberg, ÒThe Canon
Score LanguageÓ, Computer Music Journal , 13 (1),
pp. 47-56, 1989.

[Dannenberg et al. 1991], R. B. Dannenberg, C. L.
Fraley and P. Velikonja, ÒFugue : A Functional
Language for Sound SynthesisÓ, Computer , 24 (7),
pp. 36-42, 1991.

[Desain and Honing 1991], P. Desain and H.
Honing, ÒTime Functions Function Best as
Functions of Multiple TimesÓ, Computer Music
Journal, 16 (2), pp. 17-34, 1991.

[Field-Richards 1993] H. S. Field-Richards,
ÒCadenza : A Music Description LanguageÓ,
Computer Music Journal , 17 (4), pp. 60-72, 1993.

[Hughes 1989] J. Hughes, Why Functional
Programming Matters, The computer Journal 32 (2),
pp. 98-107, 1989.

Acknowledgment
This research was sponsored by the music research
department of French Ministry of Culture.

