N

HAL

open science

Faust 0.9.8 Quick Reference
Yann Orlarey

» To cite this version:

‘ Yann Orlarey. Faust 0.9.8 Quick Reference. manual, 2006. hal-02158934

HAL Id: hal-02158934
https://hal.science/hal-02158934

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02158934
https://hal.archives-ouvertes.fr

Faust Quick Reference

Yann Orlarey
Grame, Centre National de Creation Musicale

April 2006

1 Introduction

This document is a quick-reference to the Faust language (version 0.9.8), a
programming language for real-time signal processing and synthesis that targets
high-performance signal processing applications and audio plugins.

2 Faust program

A Faust program describes a signal processor that transforms input signals into
output signals. A Faust program is made of one or more source files. A source
file is essentially a list of definitions with the possibility to recursively import
definitions from other source files. Each definition associates an identifier (with
an optional list of parameters) with a block-diagram that it represents.

program

definition
l fileimport .

2.1 Definitions

A valid Faust program must contain at least one definition for the keyword
process (the equivalent of main in C) . Definitions can appear in any order. In
particular an identifier can be used before being defined. But recursive defini-
tions are not allowed and generate error messages. Multiple definitions of the
same identifier generate warning messages.



definition

process

2.2 File Imports

File imports allow to add the definitions of another source file to the definitions
of the current file. File imports can appear every where in a source file and in
any order. Mutual recursive imports are allowed and handled correctly.

filetimport

COFONITTIN OO

It is common for a Faust program to import the definitions of math.lib and mu-
sic.lib files by including the lines : import(’math.1ib”); and import("music.1lib”);.

2.3 Declarations

Declarations can be used to define some metadata documenting and describing
the project. The currently implemented metadata are the name, the author,
the version, the copyright and the license of the project. This information is
typically used when generating an xml description of the project (option -xml
of the compiler).

declaration

—»Cdeclar% property H string F@—»




property

name
author
copyright

license

version

i

Here is an example of declarations :

declare name "superFX";
declare author "Alonzo Church";
declare version "0.9.5c";

3 Block-Diagrams

Faust is a block-diagram language. Specific composition operations are used to
”connect” two block-diagrams together in order to form a new one. For exam-
ple the sequential composition operation (*:”) connect the outputs of the first
block-diagram to the corresponding inputs of the second block-diagram. Five
high-level composition operations are provided : recursive composition, parallel
composition, sequential composition, split composition and merge composition.
Moreover a block-diagram can have an associated set of local definitions.

Syntax Pri. | Description
blockdiagram ~ blockdiagram recursive composition
blockdiagram , blockdiagram parallel composition
blockdiagram : blockdiagram sequential composition
blockdiagram <: blockdiagram split composition
blockdiagram :> blockdiagram merge composition
blockdiagram with { definition ...} local definitions
eTpression block-diagrams are
made of expressions

O =N W

All these composition operations are left associative. Based on these associa-
tivity and priority rules the block-diagram : A : B,C ~ D, E :> F should be inter-
preted as: (A: ((B,(C~D)),E)):>F.



4 Expressions

Faust Ezpressions provide syntactic sugar allowing traditional infix notation
and function calls. For example instead of : 2,A: % ,B: + one can write the
infix expression : 2% A 4+ B. Or instead of : A : sin one can use the function call
notation : sin(A).

Syntax Pri. | Description
expression(arg, . ..) 10 function call
expression . ident 10 access to lexical environment
expression’ 9 one sample delay
expression @ exrpression 8 fixed delay
ETPression * exrpression 7 multiplication
expression / expression 7 division

eTpression % erpression 7 modulo

expression & expression 7 logical and
expression N expression | T logical xor
expression << expression | 7 arithmetic left shift
expression >> expression | T arithmetic right shift
erpression + exrpression 6 addition

eTpression — exrpression 6 substraction
expression | expression 6 logical or
expression < erpression 5 less than

erpression <= expression | b less or equal
expression > expression | b greater than
expression >= expression | b greater or equal
expression == expression | b equal

expression != expression | 5 not equal

primitive expressions are made of primitives

Binary operators can also be used in function call notation. For example +(2, A)
is equivalent to 2 + A. Moreover partial applications are allowed like in *(3).

5 Primitive Signal Processing Operations

The primitive signal processing operations represent the built-in functionalities
of Faust, that is the atomic operations provided by the language. All these
primitives (and the block-diagrams build on top of them) denote signal proces-
sors, functions transforming input signals into output signals. Let’s define more
precisely what a signal processor is.

A signal s is a discrete function of time s : N — R. The value of signal s at time
t is written s(¢). We denote by S the set of all possible signals : S=N — R. A
n-tuple of signals is written (s1,...,s,) € S™. The empty tuple, single element



of SY is notated (). A signal processors p is a function from n-tuples of signals
to m-tuples of signals p : S — S™. We notate P the set of all signal processors
:P=U,,,S" —8Sm

All primitives and block-diagram expressed in Faust are members of PP (i.e. sig-
nal processors) including numbers. For example number 3.14 doesn’t represent
neither a sample, nor a signal, but a signal processor : S° — S! that transforms
the empty tuple () into a 1-tuple of signals (s) such that Vt € N, s(t) = 3.14.

5.1 C-equivalent primitives

Most Faust primitives are analogue to their C counterpart but lifted to signal
processing. For example + is a function of type S — S! that transforms a pair of
signals (21, z2) into a 1-tuple of signals (y) such that V¢t € N, y(t) = z1(¢) +x2(t).

Syntax | Type Description

n SY — ST [ integer number: y(t) =n
n.m SY — S! | floating point number: y(t
- S — S! | identity function: y(t) = x(t
! St — S§° | cut function: Vz € S, (z) —

o
2
:

int St — St | cast into an int signal: y(t) = (int)z(t)
float S — S! | cast into an float signal: y(t) = (float)x(t)
+ S? — S | addition: y(t) = z1(t) + 22(t)

- S? — S! | substraction: y(t) = x1(t) — z2(t)

* S? — S! | multiplication: y(t) = x1(t) * x2(t)

/ S? — St | division: y(t) = z1(t)/z2(t)

% S? — St | modulo: y(t) = z1(t) %o (t)

& S? — St | logical AND: y(t) = z1(t)&z2(t)

| S? — St | logical OR: y(t) = x1(t)|z2(t)

A S? — St | logical XOR: y(t) = x1(t) A z2(t)

<< S? — St | arith. shift left: y(t) = x1(t) << @2(t)
>> S? — St | arith. shift right: y(t) = x1(t) >> x2(t)
< S? — St | less than: y(t) = z1(t) < 22(t)

<= S? — St | less or equal: y(t) = z1(t) <= xa(t)

> S? — St | greater than: y(t) = x1(t) > xa(t)

>= S? — St | greater or equal: y(t) = z1(t) >= x2(t)

S? — S | equal: y(t) = z1(t) == z2(t)
S? — St | different: y(t) = x1(¢)! = x2(t)

5.2 math.h-equivalent primitives

Most of the C math.h functions are also built-in as primitives (the others are
defined as external functions in file math.1lib).



Syntax Type Description

acos ST — St | arc cosine: y(t) = acosf(x(t))

asin St — S! | arc sine: y(t) = asinf(z(t))

atan St — S! | arc tangent: y(t) = atanf(x(t))

atan2 S? — St | arc tangent of 2 signals: y(t) = atan2f(z1(t), x2(t))

cos St — S | cosine: y(t) = cosf(x(t))

sin St — St | sine: y(¢) = sinf(z(t))

tan St — St | tangent: y(t) = tanf(x(t))

exp St — S! | base-e exponential: y(t) = expf(x(t))

log St — St | base-e logarithm: y(t) = logf(x(t))

logl0 St — S | base-10 logarithm: y(t) = log10f(z(t))

pow S? — St | power: y(t) = powf(z1(t), z2(t))

sqrt St — S | square root: y(t) = sqrtf(z(t))

abs S — S! | absolute value (int): y(t) = abs(x(t))
absolute value (float): y(t) = fabsf(z(t))

min S? — S! | minimum: y(t) = min(xq(t), z2(¢))

max S$? — S | maximum: y(t) = max(z1(t), z2(t))

fmod S? — St | float modulo: y(¢) = fmodf(xq(t), x2(t))

remainder | S? — S! | float remainder: y(t) = remainderf(z(t), x2(t))

floor St — S | largest int <: y(t) = floorf(z(t))

ceil St — S! | smallest int >: y(t) = ceilf(z(t))

rint St — S | closest int: y(t) = rintf(x(t))

5.3 Delay, Table, Selector primitives

The following primitives allow to define fixed delays, read-only and read-write

tables and 2 or 3-ways selectors (see figure 1).

Syntax | Type Description

mem St — S | 1-sample delay: y(t + 1) = 2(¢),y(0) = 0
prefix | S? — S! | 1-sample delay: y(t + 1) = z2(t),y(0) = 21(0)
¢ S? — S | fixed delay: y(t + x2(t)) = z1(¢ <xo(t)) =0

rdtable | S* — S! | read-only table: y(t) = T[r(t

]
rwtable | S°® — S | read-write table: T[w(t)] = c(t);y(

select2 | S® — S! | select between 2 signals: T[] =

select3 | S* — St | select between 3 signals: T[] = {zo(t), 71(t), z2(t)};y(t) =

5.4 User Interface Elements

Faust user interface widgets allow an abstract description of the user interface
from within the Faust code. This description is independent of any GUI toolk-




prefix (l-sample delay) rdtable (readonly table)
. n °
a
. s
prefix |—wv rdtable [—®v
b r
y(0)=a(0) t) = T(t,r(t
y(£)=b(t-1) AN
mem (l-sample delay)
rwtable (readwrite table)
n .
a mem —» Y s
w rwtable F—m»y
¥(0)=0
y(t)=a(t-1) ¢
@ (n-samples delay) *
. y(t) = T(t,r(t))
R T(0,i) = c(0) (i == w(0))
T(0,i) = s(i) (i != w(0))
€ =Y T(t,1) = c(t) (i == w(t))
b T(t,i) = T(t-1,i) (i !'= w(t))
t < b(0) : y(t)=0
t >=b(0) : y(t)=a(t-b(0))
select2 (two-ways selector)
s .
a[0] select2 —»v
afl]
y(t) = als(t)](t)
select3 (three-ways selector)
s .
a[o]
all] select3 =®v
a[2]
y(t) = a[s(t)](t)

Figure 1: Delays, tables and selectors primitives




its. It is based on buttons, checkboxes, sliders, etc. that are grouped together
vertically and horizontally using appropriate grouping schemes.

All these GUI elements produce signals. A button for example (see figure 2)
produces a signal which is 1 when the button is pressed and 0 otherwise. These
signals can be freely combined with other audio signals.

label
mouse mouse
down up
S
N i

Figure 2: User Interface Button

Syntax Example
button(str) button("play")
checkbox (str) checkbox ("mute")

vslider (str, cur,min, mazx, step)
hslider (str, cur,min, max, step)
nentry (str, cur, min, mazx , step)
vgroup (str, block-diagram)
hgroup (str, block-diagram)
tgroup (str, block-diagram)
vbargraph (str, min, max)
hbargraph (str, min, max)

vslider("vol",50,0,100,1)
hslider("vol",0.5,0,1,0.01)
nentry("freq",440,0,8000,1)

vgroup("reverb", ...)
hgroup ("mixer", ...)
vgroup ("parametric", ...)

vbargraph("input",0,100)
hbargraph("signal",0,1.0)

note : The str string used in widgets can contain variable parts. These
variable parts are indicated by the sign %’ followed by the name of a vari-
able. For example par(i,8,hslider("Voice %i", 0.9, 0, 1, 0.01)) cre-
ates 8 different sliders in parallel : hslider ("Voice 0", 0.9, 0, 1, 0.01),
hslider("Voice 1", 0.9, 0, 1, 0.01), ... ,hslider("Voice 7", 0.9, O,
1, 0.01).

An escape mechanism is provided. If the sign ’%’ is followed by itself, it will be
included in the resulting string. For example "feedback (%%)" will result in
"feedback (%)".

5.5 Foreign Functions and Constants

Any C function or constant can be introduced using the foreign function mech-
anism. It allows to declare an external C function by indicating its name and



signature as well as the required include file. The syntax of foreign function and
foreign constant declarations is the following :

foreign

signature

—ﬁ type H identifier @ )
S
O

type

o

The file math.1ib included in the Faust package defines most of the standard
mathematical function of <math.h> (that are not already builtins) using the
foreign function mechanism. Here is the list of these functions :



Name Definition

SR fconstant (int fSamplingFreq, <math.h>)

PI 3.1415926535897932385

cbrt ffunction(float cbrt (float), <math.h>,"")

hypot ffunction(float hypot (float, float), <math.h>,"")
ldexp ffunction(float ldexp (float, int), <math.h>,"")
scalb ffunction(float scalb (float, float), <math.h>,"")
loglp ffunction(float loglp (float), <math.h>,"")

logb ffunction(float logb (float), <math.h>,"")

ilogb ffunction(int ilogb (float), <math.h>,"")

expml ffunction(float expml (float), <math.h>,"")

acosh ffunction(float acosh (float), <math.h>, "")

asinh ffunction(float asinh (float), <math.h>, "")

atanh ffunction(float atanh (float), <math.h>, "")

sinh ffunction(float sinh (float), <math.h>, "")

cosh ffunction(float cosh (float), <math.h>, "")

tanh ffunction(float tanh (float), <math.h>,"")

erf ffunction(float erf(float), <math.h>,"")

erfc ffunction(float erfc(float), <math.h>,"")

gamma ffunction(float gamma(float), <math.h>,"")

JO ffunction(float jO(float), <math.h>,"")

J1 ffunction(float ji(float), <math.h>,"")

Jn ffunction(float jn(int, float), <math.h>,"")
lgamma ffunction(float lgamma(float), <math.h>,"")

YO ffunction(float yO(float), <math.h>,"")

Y1 ffunction(float y1(float), <math.h>,"")

Yn ffunction(float yn(int, float), <math.h>,"")

isnan ffunction(int isnan (float),<math.h>,"")

nextafter ffunction(float nextafter(float, float),<math.h>,"")

5.6 Special constructions

Additionally several ”special” constructions are provides.

Abstraction

blockdiagram

Abstractions allow to define anonymous functions like for example a square
function : \(x).(x * x).

10



Component

(empanase) (O { e (3

The component construction allows to include a whole Faust program as a single
expression in another program.

par

(O { e ) e o {Bokgran -0

seq

(2520 f 0t |- e | Bk (3
sum
()0 f it () e |- Bl |-

prod

The par, seq, sum and prod constructions allow algorithmic descriptions of
block-diagrams. For example :

par(i,8,E(1)) is equivalent to E(0),E(1),...,E(7)
seq(i,8,E(i)) is equivalent to E(0):E(1):...:E(7)
sum(i,8,E(i)) is equivalent to E(0)+E(1)+...+E(7)
prod(i,8,E(i)) is equivalent to E(0)*E(1)*...*xE(7)

6 Invoking the Faust compiler

The Faust compiler is invoked using the faust command. It translate Faust
programs into C++ code. The generated code can be wrapped into an optional
architecture file allowing to directly produce a fully operational program.

compiler

faust file
e =y

Compilation options are listed in the following table :

11



Short | long Description

-h —--help print the help message

-v --version print version information

-d --details print compilation details

-ps --postscript generate block-diagram postscript file

-svg --svg generate block-diagram svg files

-fn --fold n max complexity of svg diagrams before splitting
into several files (default 25 boxes)

-mns n | --max-name-size n | max character size used in svg diagram labels
(default max size : 40 chars)

-xml --xml generate an additional description file in xml format

-1b --left-balanced generate left-balanced expressions

-mb --mid-balanced generate mid-balanced expressions (default)

-rb —--right-balanced generate right-balanced expressions

-a file C++ wrapper file

-o file C++ output file

The main available architecture files are :

File name Description
max-msp.cpp Max/MSP plugin
vst.cpp VST plugin

jack-gtk.cpp
alsa-gtk.cpp
ladspa.cpp

q.cpp
supercollider.cpp
sndfile.cpp
bench.cpp

Jack GTK full application

Alsa GTK full application
LADSPA plugin

Q language plugin

SuperCollider Unit Generator
sound file transformation command
speed benchmark

Here is an example of compilation command that generates the C++ source
code of a Jack application using the GTK graphic toolkit:

faust -a jack-gtk.cpp -o freeverb.cpp freeverb.dsp.

12




