Orlarey Yann

Grame

Faust Quick Reference

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Faust 0.9.

Introduction

This document is a quick-reference to the Faust language (version 0.9.8), a programming language for real-time signal processing and synthesis that targets high-performance signal processing applications and audio plugins.

Definitions

A valid Faust program must contain at least one definition for the keyword process (the equivalent of main in C) . Definitions can appear in any order. In particular an identifier can be used before being defined. But recursive definitions are not allowed and generate error messages. Multiple definitions of the same identifier generate warning messages.

File Imports

File imports allow to add the definitions of another source file to the definitions of the current file. File imports can appear every where in a source file and in any order. Mutual recursive imports are allowed and handled correctly.

fileimport

-import -(-filename -) -; -
It is common for a Faust program to import the definitions of math.lib and music.lib files by including the lines : import("math.lib"); and import("music.lib");.

Declarations

Declarations can be used to define some metadata documenting and describing the project. The currently implemented metadata are the name, the author, the version, the copyright and the license of the project. This information is typically used when generating an xml description of the project (option -xml of the compiler).

declaration

-declare -property -string -; - property -name -author -copyright -license -version -
Here is an example of declarations :

declare name "superFX"; declare author "Alonzo Church"; declare version "0.9.5c";

3 Block-Diagrams

Primitive Signal Processing Operations

The primitive signal processing operations represent the built-in functionalities of Faust, that is the atomic operations provided by the language. All these primitives (and the block-diagrams build on top of them) denote signal proces-

P = n,m S n → S m .
All primitives and block-diagram expressed in Faust are members of P (i.e. signal processors) including numbers. For example number 3.14 doesn't represent neither a sample, nor a signal, but a signal processor : S 0 → S 1 that transforms the empty tuple () into a 1-tuple of signals (s) such that ∀t ∈ N, s(t) = 3.14.

C-equivalent primitives

Most Faust primitives are analogue to their C counterpart but lifted to signal processing. For example + is a function of type S 2 → S 1 that transforms a pair of signals (

x 1 , x 2) into a 1-tuple of signals (y) such that ∀t ∈ N, y(t) = x 1 (t)+x 2 (t).
Syntax Type Description n S 0 → S 1 integer number:

y(t) = n n.m S 0 → S 1 floating point number: y(t) = n.m S 1 → S 1 identity function: y(t) = x(t) ! S 1 → S 0 cut function: ∀x ∈ S, (x) → () int S 1 → S 1 cast into an int signal: y(t) = (int)x(t) float S 1 → S 1 cast into an float signal: y(t) = (f loat)x(t) + S 2 → S 1 addition: y(t) = x 1 (t) + x 2 (t) - S 2 → S 1 substraction: y(t) = x 1 (t) -x 2 (t) * S 2 → S 1 multiplication: y(t) = x 1 (t) * x 2 (t) / S 2 → S 1 division: y(t) = x 1 (t)/x 2 (t) % S 2 → S 1 modulo: y(t) = x 1 (t)%x 2 (t) & S 2 → S 1 logical AND: y(t) = x 1 (t)&x 2 (t) | S 2 → S 1 logical OR: y(t) = x 1 (t)|x 2 (t) ∧ S 2 → S 1 logical XOR: y(t) = x 1 (t) ∧ x 2 (t) << S 2 → S 1 arith. shift left: y(t) = x 1 (t) << x 2 (t) >> S 2 → S 1 arith. shift right: y(t) = x 1 (t) >> x 2 (t) < S 2 → S 1 less than: y(t) = x 1 (t) < x 2 (t) <= S 2 → S 1 less or equal: y(t) = x 1 (t) <= x 2 (t) > S 2 → S 1 greater than: y(t) = x 1 (t) > x 2 (t) >= S 2 → S 1 greater or equal: y(t) = x 1 (t) >= x 2 (t) == S 2 → S 1 equal: y(t) = x 1 (t) == x 2 (t) != S 2 → S 1 different: y(t) = x 1 (t)! = x 2 (t)

math.h-equivalent primitives

Most of the C math.h functions are also built-in as primitives (the others are defined as external functions in file math.lib).

Syntax

Type Description acos S 1 → S 1 arc cosine: y(t) = acosf(x(t)) asin S 1 → S 1 arc sine: y(t) = asinf(x(t)) atan S 1 → S 1 arc tangent: y(t) = atanf(x(t)) atan2

S 2 → S 1 arc tangent of 2 signals:

y(t) = atan2f(x 1 (t), x 2 (t)) cos S 1 → S 1 cosine: y(t) = cosf(x(t)) sin S 1 → S 1 sine: y(t) = sinf(x(t)) tan S 1 → S 1 tangent: y(t) = tanf(x(t)) exp S 1 → S 1 base-e exponential: y(t) = expf(x(t)) log S 1 → S 1 base-e logarithm: y(t) = logf(x(t)) log10 S 1 → S 1 base-10 logarithm: y(t) = log10f(x(t)) pow S 2 → S 1 power: y(t) = powf(x 1 (t), x 2 (t)) sqrt S 1 → S 1 square root: y(t) = sqrtf(x(t)) abs S 1 → S 1 absolute value (int): y(t) = abs(x(t)) absolute value (float): y(t) = fabsf(x(t)) min S 2 → S 1 minimum: y(t) = min(x 1 (t), x 2 (t)) max S 2 → S 1 maximum: y(t) = max(x 1 (t), x 2 (t)) fmod S 2 → S 1 float modulo: y(t) = fmodf(x 1 (t), x 2 (t)) remainder S 2 → S 1 float remainder: y(t) = remainderf(x 1 (t), x 2 (t)) floor S 1 → S 1 largest int ≤: y(t) = floorf(x(t)) ceil S 1 → S 1 smallest int ≥: y(t) = ceilf(x(t)) rint S 1 → S 1 closest int: y(t) = rintf(x(t))

Delay, Table, Selector primitives

The following primitives allow to define fixed delays, read-only and read-write tables and 2 or 3-ways selectors (see figure 1).

Syntax Type Description mem

S 1 → S 1 1-sample delay: y(t + 1) = x(t), y(0) = 0 prefix S 2 → S 1 1-sample delay:

y(t + 1) = x 2 (t), y(0) = x 1 (0) @ S 2 → S 1 fixed delay: y(t + x 2 (t)) = x 1 (t), y(t < x 2 (t)) = 0 rdtable S 3 → S 1 read-only table: y(t) = T [r(t)] rwtable S 5 → S 1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)] select2 S 3 → S 1 select between 2 signals: T [] = {x 0 (t), x 1 (t)}; y(t) = T [s(t)] select3 S 4 → S 1 select between 3 signals: T [] = {x 0 (t), x 1 (t), x 2 (t)}; y(t) = T [s(t)]

User Interface Elements

Faust user interface widgets allow an abstract description of the user interface from within the Faust code. This description is independent of any GUI toolk-

(t) = T(t,r(t)) T(t,i) = s(i) s rwtable (readwrite table) n w y y(t) = T(t,r(t)) T(0,i) = c(0) (i == w(0)) T(0,i) = s(i) (i != w(0)) T(t,i) = c(t) (i == w(t)) T(t,i) = T(t1,i) (i != w(t)) c r rwtable a[0] select2 select2 (twoways selector) s a[1] y y(t) = a[s(t)](t) a[0] select3 (threeways selector) s a[1] y a[2] select3 y(t) = a[s(t)](t)
Figure 1: Delays, tables and selectors primitives its. It is based on buttons, checkboxes, sliders, etc. that are grouped together vertically and horizontally using appropriate grouping schemes.

All these GUI elements produce signals. A button for example (see figure 2) produces a signal which is 1 when the button is pressed and 0 otherwise. These signals can be freely combined with other audio signals. button("play") checkbox(str) checkbox("mute") vslider(str ,cur ,min,max ,step) vslider("vol",50,0,100,1) hslider(str ,cur ,min,max ,step) hslider("vol",0.5,0,1,0.01) nentry (str ,cur ,min,max ,step) nentry("freq",440,0,8000,1) vgroup (str ,block-diagram) vgroup("reverb", ...) hgroup (str ,block-diagram) hgroup("mixer", ...) tgroup (str ,block-diagram) vgroup("parametric", ...) vbargraph (str ,min,max) vbargraph("input",0,100) hbargraph (str ,min,max) hbargraph("signal",0,1.0) note : The str string used in widgets can contain variable parts. These variable parts are indicated by the sign '%' followed by the name of a variable. For example par(i,8,hslider("Voice %i", 0.9, 0, 1, 0.01)) creates 8 different sliders in parallel : hslider("Voice 0", 0.9, 0, 1, 0.01), hslider("Voice 1", 0.9, 0, 1, 0.01), . . . ,hslider("Voice 7", 0.9, 0, 1, 0.01).

An escape mechanism is provided. If the sign '%' is followed by itself, it will be included in the resulting string. For example "feedback (%%)" will result in "feedback (%)".

Foreign Functions and Constants

Any C function or constant can be introduced using the foreign function mechanism. It allows to declare an external C function by indicating its name and signature as well as the required include file. The syntax of foreign function and foreign constant declarations is the following :

foreign -ffunction -(-signature -, -includefile -, -comment -) -fconstant -(-type -identifier -, -includefile -) - signature -type -identifier -(-type , -) - type -int -float -
The file math.lib included in the Faust package defines most of the standard mathematical function of <math.h> (that are not already builtins) using the foreign function mechanism. Here is the list of these functions : ffunction(float expm1 (float), <math.h>,"") acosh ffunction(float acosh (float), <math.h>, "") asinh ffunction(float asinh (float), <math.h>, "") atanh ffunction(float atanh (float), <math.h>, "") sinh ffunction(float sinh (float), <math.h>, "") cosh ffunction(float cosh (float), <math.h>, "") tanh ffunction(float tanh (float), <math.h>,"") erf ffunction(float erf(float), <math.h>,"") erfc ffunction(float erfc(float), <math.h>,"") gamma ffunction(float gamma(float), <math.h>,"") J0 ffunction(float j0(float), <math.h>,"") J1 ffunction(float j1(float), <math.h>,"") Jn ffunction(float jn(int, float), <math.h>,"") lgamma ffunction(float lgamma(float), <math.h>,"") Y0 ffunction(float y0(float), <math.h>,"") Y1 ffunction(float y1(float), <math.h>,"") Yn ffunction(float yn(int, float), <math.h>,"") isnan ffunction(int isnan (float),<math.h>,"") nextafter ffunction(float nextafter(float, float),<math.h>,"")

Special constructions

Additionally several "special" constructions are provides.

Abstraction

-\ -(-ident , -) -. -(-blockdiagram -) -
Abstractions allow to define anonymous functions like for example a square function : \(x).(x * x).

A

 Faust program describes a signal processor that transforms input signals into output signals. A Faust program is made of one or more source files. A source file is essentially a list of definitions with the possibility to recursively import definitions from other source files. Each definition associates an identifier (with an optional list of parameters) with a block-diagram that it represents.

Figure

 Figure 2: User Interface Button

 sors, functions transforming input signals into output signals. Let's define more precisely what a signal processor is.

A signal s is a discrete function of time s : N → R. The value of signal s at time t is written s(t). We denote by S the set of all possible signals : S = N → R. A n-tuple of signals is written (s 1 , . . . , s n) ∈ S n . The empty tuple, single element of S 0 is notated (). A signal processors p is a function from n-tuples of signals to m-tuples of signals p : S n → S m . We notate P the set of all signal processors :

Component

The component construction allows to include a whole Faust program as a single expression in another program.

par

The par, seq, sum and prod constructions allow algorithmic descriptions of block-diagrams. For example :

is equivalent to E(0),E(1),...,E(7) seq(i,8,E(i))

is equivalent to E(0):E(1):...:E(7) sum(i,8,E(i))

is equivalent to E(0)+E(1)+...+E(7) prod(i,8,E(i)) is equivalent to E(0)*E(1)*...*E(7)

Invoking the Faust compiler

The Faust compiler is invoked using the faust command. It translate Faust programs into C++ code. The generated code can be wrapped into an optional architecture file allowing to directly produce a fully operational program. Here is an example of compilation command that generates the C++ source code of a Jack application using the GTK graphic toolkit:

faust -a jack-gtk.cpp -o freeverb.cpp freeverb.dsp.