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We propose an algebraic approach to block diagram construction as an alternative to the classical graph approach inspired by dataflow models. The proposed algebra is based on three binary operations of construction : sequential, parallel and recursive constructions. These operations can be seen as high level connection schemes that set several connections at once in order to combine two block diagrams to form a new one. Algebraic representations have interesting application for visual languages based on block diagrams and are useful to specify the formal semantic of this languages.

Introduction

The dataflow approach proposes several well known models of distributed computations (see [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF] and [START_REF] Dennis | A computer architecture for highly parallel signal processing[END_REF] for historical papers, and [START_REF] Stephens | A survey of stream processing[END_REF] and [START_REF] Lee | Dataflow process networks[END_REF] for surveys) and many block diagram languages are more or less directly inspired by these models. Due to their generality, dataflow have been used as a principal for computer architecture, as model of concurrency or as high level design models for hardware [START_REF] Najjar | Advances in the dataflow computational model[END_REF], the semantic of these various models can be quite complex and depends of many technical choices like, synchronous or asynchronous computations, deterministic or non-deterministic behavior, bounded or unbounded communication FIFOs, firing rules, etc.

Because of this complexities, the task of defining the formal semantic of block diagram languages based on dataflow models is not trivial and the vast majority of our dataflow inspired music languages don't have an explicit formal semantic. Provide a formal semantic is not just an academic question. Because of the great stabil-ity of the mathematical language, it is probably the best chance we have to preserve the meaning of our tools over a long period of time, and therefore the musics based on them, in a world of rapidly evolving technologies.

To solve the problem we propose a block diagram algebra (BDA), an algebraic approach to block diagram construction as an alternative to the classical graph approach inspired by dataflow models. The idea is to use high level construction operations to combine and connect together whole block diagrams, instead of individual connections between blocks. Having defined a set of construction operations general enough to build any block diagram, the formal semantic can be specified in a modular way by rules, associated to each construction operation, that relate the meaning of the resulting block diagram to the meaning of the block diagrams used in the construction.

There are several techniques to describe the semantic of a program. Since we are mostly interested by what is computed by a block diagram and not so much by how it is computed, we will adopt a denotational approach, which describes the meaning of a program by the mathematical object it denotes, typically a mathematical function. Moreover, in order to make things concrete and to simplify the presentation, we will restrict ourself to the domain of real time sound synthesis and processing.

Block diagram terms

Viewed as graphs, block diagrams are defined by a set of primitive blocks and a set of connections between these blocks. In the algebraic approach adopted here, block diagrams are viewed as terms of a language D 1 described by the following syntactic rule :

d ∈ D ::= b ∈ B | _ | ! | (d 1 : d 2 ) | (d 1 , d 2 ) | (d 1 ∼ d 2 )
We suppose elsewhere defined a set B of primitive blocks corresponding to the basic functionalities of the system, and such as for each b ∈ B we know the number of input ports ins(b) and output ports outs(b). Among these primitive blocks we consider two particular elements called identity "_" and cut "!".

Here is an informal description of these elements as well as the three binary operations of composition we propose.

Identity "_" and Cut "!"

As shown by figure 1 identity "_" is essentially a simple wire and cut "!" is used to terminate a connection. Another possible extension, but that we are not considering here, when the numbers of outputs and inputs are not related by an integer factor is described by figure 5. 
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Examples

We present two short examples of block diagram description.

Example 1

The example of figure 8 The diagram of figure 9 is a little bit more complex to describe. The first step is to rearrange the connections as in figure 10.

We see clearly now two places in the diagram where our wires have to cross. So the next thing to do is to describe an "X" block diagram allowing two wires to The diagram is made of two selectors in parallel. The first selector : !, _ selects the second of its two inputs and the second selector : _, ! selects the first of its inputs. This technique is easy to generalize to define any n × m matrix of connections by composing in parallel m selectors, each selector being a parallel composition of one _ and n -1 !.

Using X, the definition of the diagram of figure 10 is now straight forward :

((_, X, _) : (B,C)) ∼ X

Generality of the BDA

As we just said any n × m matrix of connection between two block diagrams of respectively n outputs and m inputs can be represented using m selectors of the form (!, . . . , !, _, !, . . . !) in parallel. Therefore any acyclic graph can be represented by using an appropriate matrix between each stage of the graph. In presence of cycles all the connections that create cycles can be handled with a ∼ operation and the remaining (acyclic) graph with connection matrix.

We give here an indirect proof that the BDA can represent any block diagram by giving its equivalence with the Algebra of Flownomials (AoF). Proposed by Gh. Stefanescu [START_REF] Stefanescu | The algebra of flownomials part 1: Binary flownomials; basic theory[END_REF] the AoF can represent any directed flowgraphs (blocks diagrams in general including flowcharts) and their behaviors. It is based on three operations and various constants used to describe the branching structure of the flowgraphs. They all have a direct translation into our BDA as shown table 1.

AoF BDA par. comp. A + +B A, B seq. comp A.B A : B feedback A ↑ (A ∼ _) : (!, _ outs(A)-1 ) identity I _ transposition X (_, _) : (!, _, _, !) ramification ∧ n k _ n : _ n * k ∧ 0 ! identification ∨ k n _ n * k : _ n
Table 1: Correspondences between the algebra of Flownomials and our block diagram algebra. Note : _ n is an abreviation that means the composition of n identity in parallel.

Well typed terms

As we have seen section 2, depending of the number of input and output ports of the blocks diagrams involved, not every operation is allowed. We can formalize these constraints as a small type system. We define the type of a block diagram d to be defined by its number of inputs n and outputs m. We will write d : n → m to specify that diagram d has type n → m. The type system is defined by the following inference rules :

(prim) b : n → m (id) _ : 1 → 1 (cut) ! : 1 → 0 (seq) B : n → m C : m * k → p k ≥ 1 (B : C) : n → p (seq ) B : n → m * k C : m → p k ≥ 1 (B : C) : n → p (par) B : n → m C : o → p (B,C) : n + o → m + p (rec) B : v + n → u + m C : u → v (B ∼ C) : n → u + m
For the rest of the paper we will assume well typed terms.

Number of inputs and outputs of a block diagram

We can now define precisely the outs() and ins() functions on well typed terms. For outs() we have :

outs(_) = 1 outs(!) = 0 outs(B : C) = outs(C) outs(B,C) = outs(B) + outs(C) outs(B ∼ C) = outs(B)
And for ins() :

ins(_) = 1 ins(!) = 1 ins(B : C) = ins(B) ins(B,C) = ins(B) + ins(C) ins(B ∼ C) = ins(B) -outs(C)

Semantic of block diagrams

In this section we will see how to compute the semantic of a block diagram from the semantic of its components. We will adopt a denotational approach and describe this semantic by a mathematical function that maps input signals to output signals.

Definitions and notations

Signals

A signal s is modeled as discrete function of time s : N → R For a signal s, we will write s(t) the value of s at time t.

We call S the set of all signals

S = N → R

Delayed signals

We will write x -1 the signal x delayed by one sample and such that :

x -1 (0) = 0 x -1 (t + 1) = x(t)

Tuple of signals

We will write : 

Signal Processors

We define a signal processor p as a function from a ntuple of signals to a m-tuple of signals :

p : S n → S m
We call P the set of all signal processors : 

P = n,m∈N S n → S m

The semantic function [[.]]

The semantic function [[.]] is defined by the following rules 

Identity

[[_]] x = x 6.2.2 Cut [[!]] x = () 6 
) = [[C]](∑ k-1 j=0 (s 1+ j.m ), . . . ∑ k-1 j=0 (s m+ j.m )) (s 1 , . . . , s m ) = [[B]] (x 1 , . . . , x n ) 6.2.4 Parallel composition [[B,C]] (x 1 , . . . , x n , s 1 , . . . , s o ) = (y 1 , . . . ,
) = [[B]](r 1 , . . . , r v , x 1 , . . . , x n ) (r 1 , . . . , r v ) = [[C]](y -1 1 , . . . , y -1 u≤m )

Conclusion

The contribution of the paper is a general block diagram algebra, based on two constants and three operations, and its denotational semantic. This algebra is powerful enough to represent any block diagram while allowing a compact representation in many situations. Algebraic representations of block diagrams have several interesting applications for visual programming languages. First of all they are useful to formally define the semantic of the language and, as stated in the introduction, there is a real need for such formalizations if we want our tools (and the musics based on them) to survive.

At a user interface level, algebraic block can be used in block diagram editor as an equivalent textual representation in addition to the graphic representation. They can be used also to simplify and enforce a structured representation of visual diagrams that is easier to follow and understand for the user.

Algebraic representations have also the advantage, compared to graph representations, to be easier to manipulate and analyze formally. They can be used as an adequate internal representation for compilers and optimizers that need to do smart things like abstract interpretation, specialization, partial evaluation, etc..
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 1 (x 1 , . . . , x n ) : a n-tuple of signals of S n , 2. () : the empty tuple, single element of S 0 , 3. (x 1 , . . . , x n ) k : the tuple (x 1 , . . . , x n ) repeated k times.

6. 1 . 5

 15 Semantic function The semantic function [[.]] : D → P associates to each well typed block diagram d ∈ D the signal processor p ∈ P it denotes. It is such that [[d]] = p : S ins(d) → S outs(d)

  (x 1 , . . . , x n ) = (y 1 , . . . , y p ) where (y 1 , . . . , y p ) = [[C]](s 1 , . . . , s m )

	.2.3 Sequential composition
	case outs(B) * k = ins(C)
	[[B : C]]

k (s 1 , . . . , s m ) = [[B]] (x 1 , . . . , x n ) case outs(B) = k * ins(C) [[B : C]](x 1 , . . . x n ) = (y 1 , . . . y m )

where (y 1 , . . . , y p

  y m ,t 1 , . . . ,t

p ) where (y 1 , . . . , y m ) = [[B]] (x 1 , . . . , x n ) (t 1 , . . . ,t p ) = [[C]] (s 1 , . . . , s o ) 6.2.5 Recursive composition [[B ∼ C]] (x 1 , . . . , x n ) = (y 1 , . . . , y m ) where (y 1 , . . . , y m