
HAL Id: hal-02158932
https://hal.science/hal-02158932

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Algebra for Block Diagram Languages
Yann Orlarey, Dominique Fober, Stéphane Letz

To cite this version:
Yann Orlarey, Dominique Fober, Stéphane Letz. An Algebra for Block Diagram Languages. Interna-
tional Computer Music Conference, 2002, Gothenburg, Sweden. pp.542-547. �hal-02158932�

https://hal.science/hal-02158932
https://hal.archives-ouvertes.fr

An Algebra for Block Diagram Languages

Yann Orlarey, Dominique Fober, Stéphane Letz
Grame, Centre National de Création Musicale

9 rue du Garet, BP 1185
69202 Lyon Cedex, France

October 1, 2002

Abstract

We propose an algebraic approach to block diagram
construction as an alternative to the classical graph ap-
proach inspired by dataflow models. The proposed al-
gebra is based on three binary operations of construc-
tion : sequential, parallel and recursive constructions.
These operations can be seen as high level connection
schemes that set several connections at once in order to
combine two block diagrams to form a new one. Al-
gebraic representations have interesting application for
visual languages based on block diagrams and are use-
ful to specify the formal semantic of this languages.

1 Introduction

The dataflow approach proposes several well known
models of distributed computations (see [2] and[1] for
historical papers, and [6] and [3] for surveys) and
many block diagram languages are more or less di-
rectly inspired by these models. Due to their generality,
dataflow have been used as a principal for computer ar-
chitecture, as model of concurrency or as high level de-
sign models for hardware [4], the semantic of these var-
ious models can be quite complex and depends of many
technical choices like, synchronous or asynchronous
computations, deterministic or non-deterministic be-
havior, bounded or unbounded communication FIFOs,
firing rules, etc.

Because of this complexities, the task of defining the
formal semantic of block diagram languages based on
dataflow models is not trivial and the vast majority of
our dataflow inspired music languages don’t have an ex-
plicit formal semantic. Provide a formal semantic is not
just an academic question. Because of the great stabil-

ity of the mathematical language, it is probably the best
chance we have to preserve themeaningof our tools
over a long period of time, and therefore the musics
based on them, in a world of rapidly evolving technolo-
gies.

To solve the problem we propose a block diagram al-
gebra (BDA), an algebraic approach to block diagram
construction as an alternative to the classical graph ap-
proach inspired by dataflow models. The idea is to use
high level construction operations to combine and con-
nect together whole block diagrams, instead of individ-
ual connections between blocks. Having defined a set
of construction operations general enough to build any
block diagram, the formal semantic can be specified in
a modular way by rules, associated to each construction
operation, that relate the meaning of the resulting block
diagram to the meaning of the block diagrams used in
the construction.

There are several techniques to describe the semantic
of a program. Since we are mostly interested bywhat
is computed by a block diagram and not so much by
how it is computed, we will adopt adenotationalap-
proach, which describes the meaning of a program by
the mathematical object it denotes, typically a mathe-
matical function. Moreover, in order to make things
concrete and to simplify the presentation, we will re-
strict ourself to the domain of real time sound synthesis
and processing.

2 Block diagram terms

Viewed as graphs, block diagrams are defined by a set
of primitive blocks and a set of connections between
these blocks. In the algebraic approach adopted here,
block diagrams are viewed as terms of a languageD

1

described by the following syntactic rule :

d ∈ D ::= b∈ B
| _
| !
| (d1 : d2)
| (d1,d2)
| (d1∼ d2)

We suppose elsewhere defined a setB of primitive
blocks corresponding to the basic functionalities of the
system, and such as for eachb∈Bwe know the number
of input portsins(b) and output portsouts(b). Among
these primitive blocks we consider two particular ele-
ments calledidentity“_” and cut “!”.

Here is an informal description of these elements as
well as the three binary operations of composition we
propose.

2.1 Identity “_” and Cut “ !”

As shown by figure 1identity“_” is essentially a simple
wire andcut “!” is used to terminate a connection.

Identity : ’_’ Cut : ’!’

Figure 1: the_ and! primitive

2.2 Sequential composition “:”

The sequential composition ofB andC is obtained by
connecting the outputs ofB to the inputs ofC according
to the scheme of figure 2.

In its strict version, sequential connection is only al-
lowed if the number of inputs ofC is an exact multiple
of the number of outputs ofB : outs(B) ∗ k = ins(C)
wherek∈ N∗.

If k = 1 we can simplify the diagram as in figure 3.
It is convenient, but not essential in terms of gener-

ality of the algebra, to extend the sequential composi-
tion to the reverse case where the number of outputs of
B is an exact multiple of the number of inputs ofC :
outs(B) = k∗ ins(C). The inputs ofC act as output bus
for the outputs ofB as in figure 4.

 B C

Figure 2:(B:C) sequential composition ofB andC

 C B

Figure 3: sequential composition ofB andC whenk= 1

 C B

 +

 +

 +

 +

 +

 +

Figure 4: sequential composition whenouts(B) = k∗
ins(C)

2

Another possible extension, but that we are not con-
sidering here, when the numbers of outputs and inputs
are not related by an integer factor is described by figure
5.

 C B

 C B

Figure 5: A second extension to sequential composition

2.3 Parallel composition “,”

The parallel composition ofB andC is notated(B,C).
It is represented figure 6.

 C

 B

Figure 6:(B,C) parallel composition ofB andC

2.4 Recursive composition “∼”

Recursive composition, notatedB∼C, is essential for
building block diagrams with feedbacks capable of
computing signals defined by recursive equations. As
shown by figure 7, the outputs ofB are connected back
to the inputs ofC and the outputs ofC are connected
to the inputs ofB. The operation is only allowed if
outs(B) ≥ ins(C) and ins(B) ≥ outs(C). For practical
reasons we incorporate directly into the semantic of the
∼ operation the 1-sample delays (represented by small
yellow boxes on the diagrams) needed for the recursive
equations to have a solution.

 B

 C

Figure 7:(B~C) recursive composition ofB andC

2.5 Examples

We present two short examples of block diagram de-
scription.

2.5.1 Example 1

The example of figure 8 is typical of situation where
you have an input stage, several parallel transformations
combined together and an output stage. It is describe by
the following expression :

A : (B,C,D) : E

 A

 D

 C E

 B

 +

 +

 +

 +

 +

 +

Figure 8: Several transformations in parallel

2.5.2 Example 2

The diagram of figure 9 is a little bit more complex to
describe.

The first step is to rearrange the connections as in
figure 10.

We see clearly now two places in the diagram where
our wires have to cross. So the next thing to do is to
describe an “X” block diagram allowing two wires to

3

 C

 B

Figure 9: a typical block diagram with feedbacks

 C

 B

Figure 10: Same example after rearranging the connec-
tions

cross. The definition is given by the following formula
and correspond to figure 11:

X = (_,_) : (!,_,_, !)

Figure 11: The block diagramX = (_,_) : (!,_,_, !) al-
lows two wires to cross

The diagram is made of two selectors in parallel. The
first selector : !,_ selects the second of its two inputs
and the second selector : _, ! selects the first of its in-
puts. This technique is easy to generalize to define any
n×mmatrix of connections by composing in parallelm
selectors, each selector being a parallel composition of
one _ andn−1 !.

Using X, the definition of the diagram of figure 10 is
now straight forward :

((_,X,_) : (B,C))∼ X

3 Generality of the BDA

As we just said anyn×m matrix of connection be-
tween two block diagrams of respectivelyn outputs
and m inputs can be represented usingm selectors of
the form (!, . . . , !,_, !, . . . !) in parallel. Therefore any
acyclic graph can be represented by using an appropri-
ate matrix between each stage of the graph. In presence
of cycles all the connections that create cycles can be
handled with a∼ operation and the remaining (acyclic)
graph with connection matrix.

We give here an indirect proof that the BDA can
represent any block diagram by giving its equivalence
with the Algebra of Flownomials (AoF). Proposed by
Gh. Stefanescu [5] the AoF can represent any di-
rected flowgraphs (blocks diagrams in general includ-
ing flowcharts) and their behaviors. It is based on three
operations and various constants used to describe the
branching structure of the flowgraphs. They all have a
direct translation into our BDA as shown table 1.

AoF BDA

par. comp. A++B A,B
seq. comp A.B A : B
feedback A ↑ (A∼ _) : (!,_outs(A)−1)
identity I _

transposition X (_,_) : (!,_,_, !)
ramification ∧n

k _n : _n∗k

∧0 !
identification ∨k

n _n∗k : _n

Table 1: Correspondences between the algebra of
Flownomials and our block diagram algebra. Note : _n

is an abreviation that means the composition ofn iden-
tity in parallel.

4 Well typed terms

As we have seen section 2, depending of the number of
input and output ports of the blocks diagrams involved,
not every operation is allowed. We can formalize these
constraints as a small type system.

We define the type of a block diagramd to be defined
by its number of inputsn and outputsm. We will write
d : n→ m to specify that diagramd has typen→ m.
The type system is defined by the following inference
rules :

(prim)
b : n→m

4

(id)
_ : 1→ 1

(cut)
! : 1→ 0

(seq)
B : n→m C: m∗k→ p k≥ 1

(B : C) : n→ p

(seq′)
B : n→m∗k C : m→ p k≥ 1

(B : C) : n→ p

(par)
B : n→m C: o→ p
(B,C) : n+o→m+ p

(rec)
B : v+n→ u+m C: u→ v

(B∼C) : n→ u+m

For the rest of the paper we will assume well typed
terms.

5 Number of inputs and outputs of
a block diagram

We can now define precisely theouts() andins() func-
tions on well typed terms. Forouts() we have :

outs(_) = 1
outs(!) = 0

outs(B : C) = outs(C)
outs(B,C) = outs(B)+outs(C)

outs(B∼C) = outs(B)

And for ins() :

ins(_) = 1
ins(!) = 1

ins(B : C) = ins(B)
ins(B,C) = ins(B)+ ins(C)

ins(B∼C) = ins(B)−outs(C)

6 Semantic of block diagrams

In this section we will see how to compute the semantic
of a block diagram from the semantic of its components.
We will adopt adenotationalapproach and describe this
semantic by a mathematical function that maps input
signals to output signals.

6.1 Definitions and notations

6.1.1 Signals

A signals is modeled as discrete function of time

s : N→ R

For a signals, we will write s(t) the value ofsat timet.
We callS the set of allsignals

S= N→ R

6.1.2 Delayed signals

We will write x−1 the signalx delayed by one sample
and such that :

x−1(0) = 0
x−1(t +1) = x(t)

6.1.3 Tuple of signals

We will write :

1. (x1, . . . ,xn) : an-tuple of signals ofSn,

2. () : the empty tuple, single element ofS0,

3. (x1, . . . ,xn)k : the tuple (x1, . . . ,xn) repeatedk
times.

6.1.4 Signal Processors

We define a signal processorp as a function from an-
tuple of signals to am-tuple of signals :

p : Sn→ Sm

We callP the set of all signal processors :

P=
⋃

n,m∈N
S

n→ Sm

6.1.5 Semantic function

The semantic function[[.]] : D→ P associates to each
well typed block diagramd ∈ D the signal processor
p∈ P it denotes. It is such that

[[d]] = p : Sins(d)→ Souts(d)

6.2 The semantic function[[.]]

The semantic function[[.]] is defined by the following
rules

5

6.2.1 Identity

[[_]]x = x

6.2.2 Cut

[[!]]x = ()

6.2.3 Sequential composition

case outs(B)∗k = ins(C)

[[B : C]] (x1, . . . ,xn) = (y1, . . . ,yp)
where(y1, . . . ,yp) = [[C]](s1, . . . ,sm)k

(s1, . . . ,sm) = [[B]] (x1, . . . ,xn)

case outs(B) = k ∗ ins(C)

[[B : C]](x1, . . . xn) = (y1, . . . ym)
where(y1, . . . ,yp) = [[C]](∑k−1

j=0(s1+ j.m), . . . ∑k−1
j=0(sm+ j.m))

(s1, . . . ,sm) = [[B]] (x1, . . . ,xn)

6.2.4 Parallel composition

[[B,C]] (x1, . . . ,xn,s1, . . . ,so) = (y1, . . . ,ym, t1, . . . , tp)
where(y1, . . . ,ym) = [[B]] (x1, . . . ,xn)

(t1, . . . , tp) = [[C]] (s1, . . . ,so)

6.2.5 Recursive composition

[[B∼C]] (x1, . . . ,xn) = (y1, . . . ,ym)
where(y1, . . . ,ym) = [[B]](r1, . . . , rv,x1, . . . ,xn)

(r1, . . . , rv) = [[C]](y−1
1 , . . . ,y−1

u≤m)

7 Conclusion

The contribution of the paper is a generalblock diagram
algebra,based on two constants and three operations,
and its denotational semantic. This algebra is powerful
enough to represent any block diagram while allowing
a compact representation in many situations.

Algebraic representations of block diagrams have
several interesting applications for visual programming
languages. First of all they are useful to formally define
the semantic of the language and, as stated in the intro-
duction, there is a real need for such formalizations if
we want our tools (and the musics based on them) to
survive.

At a user interface level, algebraic block can be used
in block diagram editor as an equivalent textual repre-
sentation in addition to the graphic representation. They
can be used also to simplify and enforce a structured
representation of visual diagrams that is easier to fol-
low and understand for the user.

Algebraic representations have also the advantage,
compared to graph representations, to be easier to ma-
nipulate and analyze formally. They can be used as an
adequate internal representation for compilers and opti-
mizers that need to do smart things like abstract inter-
pretation, specialization, partial evaluation, etc..

References

[1] J. B. Dennis and D. P. Misunas. A computer archi-
tecture for highly parallel signal processing. InPro-
ceedings of the ACM 1974 National Conference,
pages 402–409. ACM, November 1974.

[2] G. Kahn. The semantics of a simple language for
parallel programming. InProceedings of the IFIP
Congress 74. North-Holland, 1974.

[3] E. A. Lee and T. M. Parks. Dataflow process net-
works. In Proceedings of the IEEE, volume 83,
pages 773–801, May 1995.

[4] Najjar, Lee, and Gao. Advances in the dataflow
computational model.PARCOMP: Parallel Com-
puting, 25, 1999.

[5] Gheorghe Stefanescu. The algebra of flownomials
part 1: Binary flownomials; basic theory. Report,
Technical University Munich, November 1994.

[6] Robert Stephens. A survey of stream processing.
Acta Informatica, 34(7):491–541, 1997.

6

