N

N
N

HAL

open science

The Role of Lambda-Abstraction in Elody
Stéphane Letz, Dominique Fober, Yann Orlarey

» To cite this version:

Stéphane Letz, Dominique Fober, Yann Orlarey. The Role of Lambda-Abstraction in Elody. Inter-

national Computer Music Conference, 1998, Ann Arbor, United States. pp.377-384. hal-02158928

HAL Id: hal-02158928
https://hal.science/hal-02158928

Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02158928
https://hal.archives-ouvertes.fr

The Role of Lambda-Abstraction in Elody

Stéphane Letz, Dominique Fober, Yann Orlarey
{letz, fober, orlarey} @rd.grame.fr
Grame, 9 rue du Garet, BP 1185,
69202, Lyon Cedex 01, France

Abstract : The Elody music composition environment proposes lambda-abstraction on musical structures as a
fundamental mechanism to represent user-defined musical concepts and compositional processes. The user can
define new musical concepts either on top of concrete musical objects by generalizing them via an abstraction op-
eration, or by composing and transforming previously defined abstractions. As the paper will show through
several examples, this approach leads to a quite natural formalization as well as a convenient active notation for
many musical notions and compositional techniques.

1. Introduction

Elody is a music composition environment based on a visual functional programming language, a direct manipulation
user interface and Internet facilities [OFL 97]. One of its most singular aspect is that Elody doesn’t have a program-
ming language as such, separate from the music language it allows to manipulate. Conventional music composition
environments are generally organized around two languages : a programming language (for instance Lisp or Small-
talk, or even a specific one) enhanced with appropriate libraries to algorithmically generate and process musical
objects, and a music-data language used to describe and implement the musical objects. There usually is a strong
conceptual separation between these two languages. For example musical objects will have a time dimension and
structuring concepts like sequence and mix that are not applicable to user programs, while user programs may benefit
from powerful abstraction mechanisms not applicable to musical objects.

This “schizophrenic” design has several disadvantages. Not only the user will have to learn a whole set of new syn-
tactic and semantic aspects unrelated to its musical purpose, but it also implies a severe lack of modularity,
reusability and expressiveness. For example, as we will see later, it is very convenient and powerful to be able to
«reuse » the concept of score to time-organize programs in order to create new programs. This is only possible if
programs or functions can be seen as musical objects (in order to be placed in the score) and if musical objects (here
the resulting score) can be seen as a program and applied to some arguments.

Modern programming languages, especially functional languages, consider functions as first-class citizens. Functions,
like ordinary data, can be passed as argument and returned as result of other functions. This allows the expression of
very powerful programming concepts, like high-order functions. But the reverse is generally not true. High-order data
structures, i.e. data structures containing functions (like our example of a score of functions), can’t be used as ordi-
nary functions and applied to arguments. To our best knowledge this is only possible in some theoretical extensions
of the Lambda-Calculus like Gyorgy Révész “applicative lists” [Révész 88][Durfee 97].

The key idea of Elody is to avoid the separation between the music language and the programming language. Elody
programming language is grounded into the music domain. It can be seen as an active music notation, a slightly
extend music language with programming capabilities. This approach as several advantages for the user. The number
of new concepts to learn, external to the music domain, is very limited. Because user-defined programs are musical
objects, the same means of visual representation and edition can be reused, leading to a visual programming language
almost for free. High-order musical objects, for example scores of functions, can be easily defined. In particular user-
defined compositional processes can be applied to other functions to algorithmically generate high-order scores.
Moreover since the same language is used for programs and musical objects, it is easy to provide a (limited) form of
programming by example.

The rest of the paper is organized as follows. In the next section we will introduce the music language used by
Elody, in particular abstraction on musical structures and high-order scores. Then, to illustrate the role of these con-
cepts, we will present two models, one for a Jazz score and another for Steve Reich’s Music for Pieces of Wood.

2. The Programming Language

2.1 Basic elements and constructors

The basic elements of the language are numbers, notes and rests with several attributes : duration, pitch, color, inten-
sity, etc. The color attribute is used to distinguish related notes in the same object, for example the red notes of a
sequence. These elements can be assembled to form more complex objects (that in turn can be assembled to form even
more complex objects, etc.) using constructors.

The two main constructors are Seq and Mix. They allow to time-organize musical objects in sequence or in parallel
(figure 1). Other time constructors are Begin to take the beginning of an object according to the duration of another

object, Rem which allows to remove the beginning of an object, and Xpd to time-scale an object. The remaining con-
structors, like 77 (transpose), operate on the other musical attributes.

An Elody object is internally represented as a tree (actually a DAG because subtrees can be shared). The tree’s nodes
are the constructors used to build the object, and the leaves the basic elements. The operation a constructor represents
is only computed at the rendering stage (when the object is played or displayed) and never modifies the tree. This
means that an object always keeps its history. If you take, for example, the second note of a sequence, the note you
obtain keeps the fact that it is the second note of that sequence. This is particularly important for the abstraction
process. It allows, later on, to make variable in that note the original sequence in order to express concepts such as
take the second note of a sequence, or better, to express the concept of degree if the sequence was from a diatonic
scale.

Notes and Fests with attributes Seq and Mix Constructors

S
2 CJ
durabion : <
7

T

|

L)

pitch :
Mix
A N

~lrrer | g =l

Figure 1 : The basic elements and constructors of the language

L 10N
L 1N

To textually represent Elody objects we will use a syntax loosely based on GUIDO music notation [HHFK 98]. An
informal description of the syntax is given by the following rules (M and N are meta-variables representing any Elody
expression) :

1. Whole notes are represented by capital letters : C, D, E, ... with optional accidentals and octave specifications :
C#3, D&,.... Rests are represented by the underscore sign (_).

2. Sequence constructions are enclosed within square brackets : [C,D], while mix or chords are enclosed within
curly brackets : {C,E}. In order to simplify the notation we will write [C,D,E,F] as a shortcut for
[C,[D,[E,F]]]and {C,E,G,B} as a shortcut for {C, {E, {G,B}}}.

3. Chromatic transpositions are expressed with the (+) and (-) signs, time stretching operations are represented
by the (*) and (/) signs, and accentuation with the (>) and (<) signs. For instance a C quarter note trans-
posed by 7 semi tones and accentuated by 10 will be written this way : C/4+7>10.

4. The expression : Ax:M.N represents an abstraction where x is the formal parameter, M is an Elody expression x
stands for, and N is the body of the abstraction, an Elody expression where x may occur free.

5. The application of M to N is notated : M N

Thus the following expressions are equivalent :
C/4+7 =C+7/4 =G*1/4
[c, ,E,F1/8 = 1[c/8, /8,E/8,F/8]
{C,E,G}+2 = {D,F#,A}
Ax:M.{x, x+4, x+7, x+11}* 2 = Ax:M *2.{x, x+4, x+7, x+11}
Ax:M.{x, x+4, x+7, x+11} N = {N, N+4, N+7, N+11}

2.2 Abstractions

The word abstraction has two meanings depending of how we consider it, either as a process or as an entity. As a
process, abstraction is the operation through which we can form a concept by extracting (abs-trahere) the essential
parts (and neglecting the inessential details) of something. As an entity, an abstraction is the result of the abstraction
process. It can represent a concept, a class of objects, a predicate, a function, etc. . Programming languages provide
several means for the user to describe various kinds of abstractions, for instance functions, classes, types, etc. Moreo-
ver, abstractions play an essential part in the pure, type free Lambda-Calculus [Church 41] [Barendregt 84]. Numbers
for example are not primitive objects in the lambda-calculus, but they can be simulated by abstractions that convinc-

ingly behave (via application and reduction rules) like numbers. The same is true for recursion, booleans and all the
usual concepts of programming languages. They are not part of the lambda-calculus but can be simulated by abstrac-
tions. In fact, despite its very minimalist approach, the lambda-calculus is strong enough to represent any
mechanically computable function.

The Elody programming language is essentially a music language extended with lambda-calculus [OFLB 94]. Elody
abstractions can be defined informally as generalized musical structures with variable parts. These abstractions can
be used to describe musical operations and applied to arguments to produce a result. But because Elody abstractions
are also musical objects, they can also be used like regular ones. Abstractions can be listened to, placed in a score,
mixed, transposed, stretched, etc. as simple notes. Moreover Elody provides a simple (but quite convenient) mecha-
nism to help the user in the abstraction process. The system can compute abstractions by making variable any
element used in the composition of an object.

Figure 2 gives an example of musical abstraction. Suppose we want to describe the concept of Major Seventh chord.

CM7 - {CEGBS
M7 = wmeC dx, Trl,4), TG, 7D, Trla, 1D}

\R/ N

B
|

I = |2

Figure 2 : The Major Seventh abstraction

We can start from a concrete example, a prototype of M7 chord, let say CM7 : {Cc, E, G, B}. Then we can ask the
system to generalize this chord by making variable the tonic C. The result of this abstraction operation computed by
the system is an abstraction : Ax:C. {x, x+4, x+7, x+11} thatrepresents the structure of the chord.

We can listen to this abstraction. When the system plays an abstraction, it replaces the variables with what they stand
for. In our case we have :

PLAY(Ax:C.{x, x+4, x+7, x+11}) =PLAY({C, C+4, C+7, C+11})
=PLAY({Cc, E, G, B})

We can also transform our abstraction as we do with regular musical structures. For example if we transpose our
abstraction by two semi-tones, the C the variable x stands for will be thus transposed :

Ax:C.{x, x+4, x+7, x+11}+ 2 = Ax:C+2.{x, x+4, x+7, x+11}
= Ax:D.{x, x+4, x+7, x+11}
If we play the transposed abstraction we will hear : {D, F#, A, C#}.

2.3 Application

In a way the application operation is the reverse of the abstraction one. It allows to specialize, to instantiate some-
thing by fixing some of its variable parts. When an abstraction is applied to an argument, its variable parts are
replaced by this argument. If we apply our Major Seventh abstraction to another tonic, for example F as in figure 4,
all the free occurrences of the variable x in the body of the abstraction will be replaced by F, resulting in FM7 :

Ax:C.{ x, x+4, x+7, x+11} F =, {F, F+4, F+7, F+11)}
= {F, A, C, E}

M7 = m:C dx, Trx,4), Trlx, 7D, Trlx, 1D}

A==V,

/
25| ||

Figure 4 : application of the Major Seventh abstraction to F

7-{FACH

2.4 High-order scores

As we said earlier, abstractions can be time-organized in a score like regular musical objects. A high-order score can
contain sequences and chords of abstractions. If we play such a high-order score, the abstractions will be played ac-
cording to the rule defined in §2.2. But we can also apply a score of abstractions to some argument. In this case each
abstraction is applied to the corresponding part of the argument as illustrated figure 5.

T Degee TT Degree V Degree T Degree

—

¥ o I 1
y .S 3 L L } L
miwih ==
g [® U
f
y o [
VS > B [
N | |
N
D
b . P
Y o |

ARt

|

™~

%

F

Figure 5 : Application of a sequence of abstractions

High-order scores are useful to describe time variant musical concepts. A typical example is a metric structure which

can be define as a sequence alternating accentuation and identity functions. We can define a 4/4 metric as :

1/16 3/16 1/4 1/16 3/16 1/4

acc | id id acc’ | id id
that is

[[acc/16, id*3/16], id/4, [acc’/l6, id*3/16], id/4]
where

acc = Ax:C.x>20

acc’ = Ax:C.x>10

id := Ax:C.X

As we will see in the next two sections, the concept of high-order score is also a useful modeling technique allowing

to describe a piece as a set of independent layers.

3. Modeling of a Jazz score

Being able to manipulate abstractions like regular musical objects allows to elegantly model Jazz scores. Jazz scores
are a kind of abstract musical object just specifying some aspects of the music to be played: the chord sequence, the
melody, and usually an indication of tempo or style. The chord rhythmic structure is often not really expressed, and
the music style indicates the kind of rhythmic pattern the musicians can use. An example of notation for the first 8

bars of the Misty standard is:

EbM7 | Ebm7/Eb7 | AbM7

| Abm7/Db7 | EbM7/Cm7 |

Fm7/Bb7 |

Gm7/C7

Fm7/Bb7 |

One part of the musician’s work consists in analyzing the chord harmonic progression to detect well known harmonic
patterns like II/V/I (in major of minor) or VI/II/'V/A. The harmonic structure knowledge helps the musician to impro-
vise. It's quite natural for a musician to think in terms of a chord sequence with chords seen as degrees on a diatonic
scale (major or minor), separated from the tonality which is the scale itself.

Therefore the score can now be analyzed this way :

I] v [1

1\Y%

Eb | Ab

Gb

Eb

The separation between the harmonic layer, the tonality layer and the rhythmic layer can easily be defined using
Elody. The idea is to see the harmonic layer as the sequence of abstract chords, the rhythmic layer as a sequence of
abstract rhythmic patterns, and the tonality layer as a sequence of notes with one whole note per bar. The result will

be defined as the application of the rhythmic layer to the harmonic layer applied to the tonality layer. The three layers
are musical objects which can individually be played and transformed in different ways.

‘ Rhythmic Patterns ‘

\ I | wv I | v VI wv | mwvi v

\ Eb | Ab | Gb Eb |

3.1 The chord harmonic layer

We have seen that starting from a concrete CM7 chord: {C, E, G, B}, we can build a I degree chord by making the
C note become variable : Ax:C.{ x, x+4, x+7, x+11 }. When the system plays this abstraction, it plays its body
replacing the formal parameter with the musical object it stand for. Therefore we still hear the CM7 chord, a kind of
prototype for all M7 chords. The same process can be used to build all diatonic chords in C major to get the different
chords degrees. Abstractions can be put in sequence, and we can build the chord harmonic sequence:

\ I | v] I | owv] vt | v | mvi | v

This object can be played, and what we hear is the sequence of all prototype chords, in this case the sequence of
chord degrees related to the C major scale:

. em7 | pmwer | om7 | pmugr | cMwAm? | Dm7/G7 | Em7am7 | DmwGT |

Now this chord harmonic sequence can be enriched by a process of chord substitution, replacing a chord with another
chord or a group of chords which have the same harmonic function, a common operation made by jazz musicians.
Therefore we can obtain the following chord sequence where the I degree chords (M7) have been replaced by a se-
quence of M7/M6 chords and V degree have been replaced by V9 chords:

| cMm7ieMm6 | pm7/go | emzieMs | Dm7iG9 | cM7/Am7 | Dm7/G9 | Em7/Am7 | Dm7/G9 |

This score is still a sequence of prototype chords and what we hear is the sequence of all prototype chords related to
the C major scale. This sequence is waiting to be applied to the actual tonality.

3.2 The rhythmic layer

The same idea can be used to build the rhythmic sequence. Starting from a concrete rhythm of two eight notes :
[c/8, C/8], we can build a first function by making the c/4 note become variable: Ax:C/4.[x/2, x/2]. This
function applied on a quarter note gives a sequence of two eighth notes as a result. When the system plays this ab-
straction, it plays its body replacing the formal parameter with the musical object it stands for. Therefore we still hear
[c/8, C/81],aprototype for this rhythmic pattern. Using the same process, we can build a set of different rhythmic
patterns and use them to build a rhythmic sequence. This object can be played, and what we hear is the sequence of
all prototype rhythmic patterns played with the same pitch in this example C. Here are the first 4 bars:

[

[¥] (Y]
I I

¥}
I

! —* !
| 71] 7 | 7 | - T T 1
T T T T T T T

e e e o9 9 o9 ¢ 09 ¢ ¢¢ ¢ 0 o944 o9

[w

N>

3.3 The tonality layer
The tonality layer is simply defined as a sequence of one whole note per bar, where the pitch of each note defines the
tonic of the tonality. Here are the first 4 bars:

O |

\F] ¥

g |
i D p]] |
AL 3 = P
o) “

34 The final result
In order to get the final result, we have to apply the rhythmic layer to the sequence resulting from the application of
the harmonic layer to the tonality layer. An interesting point in this model is that, because each layer is actually a

musical score, it can be independently manipulated, transformed and composed as such. What is manipulated is a kind
of projection of the harmonic, tonality and rhythmic aspects of the piece on the time dimension. This is possible
because Elody abstractions have the same musical properties as concrete musical objects, especially a time dimension,
and because they behave at the same time as prototypes of musical concepts and as functions.

4. Music for Pieces of Wood

Steve Reich’s Music for Pieces of Wood is written for 5 pairs of claves, tuned using 4 different pitches. It includes 3
sections whose metrics are 6/4, 4/4 and 3/4. Their lengths are respectively 28, 18 and 12 measures. In each section an
ostinato is played by voices 1 and 2, while voices 3, 4 and 5 are organized in 2 periods : an exposition period during
which a rhythmic pattern is progressively unveiled note by note, followed by a rhythmic period during which the full
rhythmic pattern is repeated. The exposition period of a voice starts at the end of the exposition period of the preced-
ing voice. A section ends when all the rhythms are completed.

4.1 Analysis of the piece
All along the piece, the first voice (clave 1) alternates eighth notes and rests (figure 7). The other rhythmic patterns
are built on top of a common pattern (figure 8) using 3 kind of transformations:

e rotation : the first element of the pattern is moved to the end.

* notes filtering : some notes are transformed into rests.

e time cutting : at a given position several beats of a pattern are removed.

In section 1 (figure 6) for example, the voices 2 and 5 play the common pattern while the voices 3 and 4 play a ro-
tated version of it (figure 9).

voicel ostinato

voice2 common-pattern

voice3 exposition rotation 6 common-pattern

voice4 exposition rotation 6 common-pattern
voice5 exposition | com-patt

Figure 6 : Structure of section 1

A 0
V. L4
® o S S— " —
L/ L7 L7 L7 L7 L7
Py 4 4 4 r 4 4 P — — r rr
Figure 7: The voice 1 ostinato Figure 8 :The common pattern
Fal
Z] 1 i
) S—) -, L

Figure 9: The common pattern rotated 6 times to the left

During the exposition period of a voice, its final rhythm is progressively revealed, note by note at each new measure.
The order the notes are revealed can be expressed as a list of relative positions. The relative positions for the first
section are the following :

- voice 3 : (9,2, 3,6, 10, 11, 8)
- voice 4 : (11, 6, 4, 7, 10, 11, 7)
- voice 5 : (5, 6, 4, 7, 10, 11, 7)

4.2 Implementation
The piece can be described in a quite compact way as a high-order score applied to a very simple sequence of 12
eighth notes (figure 10).

A

D4
3

Figure 10: The basic sequence.

This high-order score is composed of a mix of 5 parallel sequences of filters that represent the various rhythmic pat-
terns of the piece. A filter is sequence based on two functions, an identity function that returns its argument

unchanged : id:= Ax:C/8.x, and arest function that transforms its argument into a rest : rest:= Ax:C/8._/8.

For example, the voice 1 ostinato and the common pattern are expressed as filters applied to the basic sequence :
ostinatoFilter := [id, rest, id, rest, id, rest, id, rest, id, rest, id, rest]
commonPatternFilter := [id, id, id, rest, id, id, rest, id, rest, id, id, rest]

Each exposition period is also defined by a filter. These exposition filters are algorithmically generated by function
genExpo from a list of rotation functions corresponding to the order the notes should be revealed. The algorithm is
very simple. Starting from a first filter : £0:=[id, rest, rest, rest, rest, rest, rest, rest, rest,
rest, rest, rest], and a sequence of rotation functions : [r0, rl, r2, ..],the function genExpo takes the
first rotation function r0, applies it to £0 to produce the filter £1. Then it takes the second rotation r1, apply it to
£1, to produce the filter £2, etc. Then, all these filters are assembled in a sequence to form the complete exposition
filter of the voice : [£1, {f1,f£2}, {f1,£2,£3}, {fl,£2,£3,£4},..]

Building a voice consists now in applying the exposition and rhythm filters to the basic sequence. For example for
voice 3 we have :

\ expo3Filter | rhythm3Filter |

U

\ basic sequence |

where expo3Filter := genExpo f0 [rot 9, rot 2, rot 3, rot 6, rot 10, rot 11, rot 8]
rhythm3Filter := Rot 6 basicPatternFilter

The full score of section 1 is :

voicel ostinatoFilter

voice2 commonPatternFilter

voice3 genExpo 0 [rot 9, rot 2,...] rot 6 commonPatternFilter

voice4 genExpo 0 [rot 11, rot 6,...] rot 6 commonPatternFilter

voice5 genExpo 0 [rot 5, rot 6,...] \ comPat.
U

\ basic sequence |

The interesting point is that now we can easily transform the piece. We can do simple things, replace the basic se-
quence, change the ostinato filter or the common pattern filter. We can even modify the rotation lists to change the
order the rhythmic patterns are exposed. But we can also do more complex transformations directly related to the fact
that the “program” that generates the piece is actually a high-order score with a time dimension. For example we can
replace the basic sequence with a rthythmic structure that evolves in time, or even recompose the abstract structure of
the piece by taking portions of the program score and recombining them.

5. Conclusion and related works

The design of a music composition programming language is a particularly challenging activity :

* Music composition is a complex application domain with important issues, for instance the connection between
real-time and non real-time, or between continuous and discrete time.

* A music programming language has also to face the difficult question of end users programming : how to give a
composer that is not a programmer access to the power, the flexibility and the expressiveness of a programming
language.

* A music programming language has to support an artistical activity, open to improvisations, made of trials and
errors, formal and experimental at the same time, a difficult target for traditional programming languages that usu-
ally require the programmer to carefully specify a problem before writing a single line of code.

A key question is : how adequate is a program as a notation for the musical object it describes ? As noted by
several authors, a music programming language has an important music notation role for the objects it describes. For
example, writing about the Canon language, Roger Dannenberg says : “Canon is something between of a cross
between a music notation and a programming language and a music data language”, “Canon scores are them-
selves programs” [Dannenberg 89].

Concerning Elody, we can reverse this last quotation, and say : “Elody programs are themselves scores”. Instead of
embedding musical data structures into a programming language, we have embedded programming capabilities into a
music language. As a result, an Elody program has all the attributes of a musical object. It is an active music notation
and the programming activity is a quite natural extension of the compositional activity.

As we have seen, Elody programs are either abstractions (generalized musical objects obtained by making variable
parts of a concrete musical object) or high order scores (time organized scores of programs). The idea of abstraction
on musical objects has also been considered by M. Balaban [Balaban 1994]. The concept of high-order score is close
to G. Assayag and C. Agon concept of maquette [AAFH 97] and to CyberBand Score Sheets + Modifiers [WOJPF
97], but Elody high-order scores have the great advantage to have an applicative semantic. This approach leads to
elegant models where a musical object can be seen as a explicit composition of different layers, each layer stands for a
prototype of the described concept but keeps it's functional property and where abstract concepts like chord degrees,
rhythmic patterns can be expressed and manipulated like concrete objects.

Being based on lambda-calculus, Elody benefits from the advantages of the functional paradigm [Hughes 1989].
R. Dannenberg proposed several functional music languages that demonstrate the advantages of features like lazy
evaluation and high-order functions [Dannenberg 84, 89, 91]. The functional approach is also central to the solution
proposed by P. Desain and H. Honing for the representation of control functions [DH 91]. Moreover, Haskore, an
elegant algebra of music developed by P. Hudak et al. with the functional language Haskell [HMGW 96], shows
clearly the advantages of the functional approach as an adequate notation to represent both abstract musical ideas and
their concrete implementations.

6. References

[AAFH 97] Assayag G., C. Agon, J. Fineberg, P. Hanappe, “An Object Oriented Visual Environment For Musical Composi-
tion”, Proc. ICMC 97, San Francisco: ICMA Publishing, 1997.

[Balaban 94], Balaban M., “Introducing Formal Processing into Music - The Music Structure Approach”, Technical Report
FC-94-07, Dept. of Math. and Comp. Science, Ben-Gurion University of the Negev, 1994.

[Barendregt 84] Barendregt H. P., The Lambda Calculus, Its Syntax and Semantics. North-Holland, Amsterdam, 1984.
[Church 41], Church A., The Calculi of Lambda Conversion, Princeton University Press, Princeton, N.J., 1941.

[Dannenberg 84], Dannenberg R. B., “Artic: A Functional Language for Real-Time Control”, in 1984 ACM Symposium on
LISP and Functional Programming, ACM, New-York, 1984.

[Dannenberg 89], Dannenberg R. B., “The Canon Score Language”, Computer Music Journal, 13 (1), pp. 47-56, 1989.

[DFV 91], Dannenberg R. B., C. L. Fraley and P. Velikonja, “Fugue : A Functional Language for Sound Synthesis”, Com-
puter, 24 (7), pp. 36-42, 1991.

[DH 91], P. Desain and H. Honing, “Time Functions Function Best as Functions of Multiple Times”, Computer Music Jour-
nal, 16 (2), pp. 17-34, 1991.

[Durfee 97] Durfee G., “A Model for a List-oriented Extension of the Lambda Calculus”, CMU technical report CMU-CS-97-
151, May 1997.

[HHFK 98] Hoos H., K. Hamel, K. Flade, J. Kilian, “GUIDO Music Notation - Towards an Adequate Representation of Score
Level Music”, Proc. JIM 98, LMA-CNRS, 1998.

[HMGW 96] Hudak P., T. Makucevich, S. Gadde, B. Whong, “Haskore Music Notation - An Algebra of Music”, Journal of
Functional Programming, Cambridge University Press, 6(3), June 1996.

[Hughes 1989] J. Hughes, Why Functional Programming Matters, The computer Journal 32 (2), pp. 98-107, 1989.

[OFL 97] Orlarey, Y., D. Fober, S. Letz. “Elody : a Java+MidiShare based Music Composition Environment”, Proc. ICMC
97, San Francisco: ICMA Publishing, 1997.

[OFLB 94] Orlarey, Y., D. Fober, S. Letz and M. Bilton. “Lambda-Calculus and Music Calculi”, Proc. ICMC 94, San Fran-
cisco: ICMA Publishing, 1994.

[Révész 88] Révész G., “Lambda-Calculus Combinators and Functional Programming”, Cambridge Tracts in Theoretical
Computer Science volume 4, Cambridge U. Press, 1988.

[WOIJPF 97] Wright J., D. Oppenheim, D. Jameson, D. Pazel, R. Fuhrer, “CyberBand : A “Hands-On” Music Composition
Program”, Proc. ICMC 97, San Francisco: ICMA Publishing, 1997.

7. Acknowledgments

This research was sponsored by the music research department of French Ministry of Culture.

