
HAL Id: hal-02158926
https://hal.science/hal-02158926

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Functional Languages
Stéphane Letz, Yann Orlarey, Dominique Fober

To cite this version:
Stéphane Letz, Yann Orlarey, Dominique Fober. Real Time Functional Languages. International
Computer Music Conference, 1995, Banff, Canada. pp.549-552. �hal-02158926�

https://hal.science/hal-02158926
https://hal.archives-ouvertes.fr

Real time functional languages
Stéphane Letz, Yann Orlarey, Dominique Fober
Grame 6, Quai Jean Moulin 69001 Lyon-France
letz@rd.grame.fr - orlarey@rd.grame.fr - fober@rd.grame.fr

Abstract: This paper introduces two real-time functional programming languages. The first one aims to
describe temporal trajectories. The second allows the manipulation of both real-time and deferred time streams.
We shall describe the architecture of the real-time reduction machine used for evaluation. We shall also review
the expected consequences of this approach.

1 Introduction
Functional programming is of growing interest for the definition of musical languages. Common approaches
are based on functional languages like Lisp [3] or Haskell [4] specialized by adding specific data structures and
functions to describe musical objects. These languages are particularly well adapted to deferred time
composition, where values of the language are temporal objects (MIDI File or a Csound file for example) time-
rendered later by a MIDI File sequencer for example). Using a functional language in a real-time context is more
problematic. There are indeed theoretical difficulties to describe reactive or real-time systems in a pure
functional manner when an imperative approach with states and side-effects is more suitable. Different methods
have been investigated in this domain like streams model (a stream is a lazily evaluated list which hold all
events and thus become a timeless entity)[5], data-flow models [10] and in the musical domain Artic [1] which
uses a concept of time-varying functions.
Current functional approaches in musical languages are either in the deferred time programming or in the real-
time programming domain and few work has been done to unify them. Indeed, in the classical approach, the
evaluation process transforms an expression in a normal form called the value. This value will be later
rendered, that is used by an output device and for example printed on a screen or saved as a file. There is thus a
gap between the time to produce the value and the time to consume it. When values are finite or timeless objects,
this gap does not have any consequences and is even necessary when the evaluation duration exceed the
rendering duration, or when calculating a real-time incompatible value like a time inversion for example. In
return, this separation is unsuitable when the language produces infinite values whose the output process can
represent only an approximation. In a functional language denoting possibly infinite, temporal or "reactive"
values, we suggest to remove this gap between the evaluation time and the rendering time by merging the
expression evaluation with its rendering. We call this method rendering-driven evaluation.
Our approach lies on two concepts:
¥ the stream notion which allows to describe real-time and deferred time objects in a unique paradigm.
¥ the use of a lazy functional language implemented by a real-time reduction interpreter.
The paper is organized as follows: we shall first present a real-time language which aim is the description and
manipulation of temporal trajectories. We shall then explain more precisely how the real-time interpreter works
and describe its implementation. Finally, we shall present the stream language which handle the real-time input.

2 The Turtle language
Referring to the Logo language, the "turtle language" allows to describe and manipulate temporal trajectories,
that is geometric shapes built of temporal rectilinear moves and instantaneous rotations. These trajectories will
be generated in real-time both as a graphic output and as a MIDI events stream holding the different position
coordinates. Following an approach based on Lambda Calculus used to design programming languages [7], we
shall build a complete language by adding a limited number of constructs to a specialized descriptive language.
This descriptive language uses two elementary move "instructions" and a seq operator to put instructions in
sequence.

<traj> :: (move <distance> <duration>) | (right <angle>) | (seq <traj 2> <traj 2>)

with duration in second, angle in degrees.

The temporal semantic of the language is described by the following equations where t0 ---> expression ---> t1
means that expression begins at time t0 and ends at time t1:

(move x d) instruction takes time to execute: (right α) instruction is instantaneous:

(1) t0
move l d() →  t0 + d (2) t0

right α() →  t0

Finally the sequence of two trajectories takes their cumulated duration:

 (3) t0
E0 → t1 t1

E1 → t2 ⇒ t0

seq E0 E1() →  t2

We define a rendering function R which associates a graphic output and a stream of events to any curve:

R[(seq (move 50 1) (right 120)
 (move 50 1) (right 120)
 (move 50 1) (right 120))]

t = 0, 3s t = 1s

t = 2s
Now we add Lambda Calculus abstraction and application constructs and a limited number of primitives:
(numbers, if and let constructs) to build the complete language with a Scheme-like syntax:

<expression> := <number> | <var> | (<op num> <exp 1> <exp 2>)
| (lambda (<var>*) <expression>) | (if <exp 1> <exp 2> <exp 3>)
| (<exp 1> <exp>*) | (<var> <exp>*)
| (let((<var> <expression>)*) <expression>)
| (move <exp 1> <exp 2>) | (right <exp 1>)
| (seq <exp>*)

<op num> := + | - | * | /
<definition > := (define (<var> <var>*) <expression>)

Square definition

(define (side v) (seq (move v 1)(right 90)))
(define (repeat exp n)
 (if (= n 1) exp (seq exp (repeat exp (- n 1)))))
(define (square v) (repeat (side v) 4))
(seq (square 40) (right 60) (square 20))

t = 0, 4s, 8s

t = 2s

t = 5s

t = 6s

t = 1s

t = 3s

t = 7s

The evaluation of an expression produces a "value", a trajectory, as a sequence of movements. Because of the
language lazy semantic, this sequence will be evaluated at the rendering function request. In order to implement
the previously described temporal semantic, a rotation instruction value is executed instantaneously as do a
move instruction value but then the current evaluation is suspended during its duration and later
resumed. We have a time-rendering-driven evaluation.
This language construction method leads to the interesting properties: elements of the descriptive language
become first-class objects for the complete language, so they can be used as function parameters, returned by
functions. Moreover, due to lazy evaluation semantic, one can build infinite objects.
Infinite recursive trajectory:

(define (mod x y) (- x (* (/ x y) y)))
(define (turbulence x a c)
 (seq(move x 0.5)
 (right a)
 (turbulence x (mod (+ a c) 360) c)))
 (turbulence 3 90 11)

t = 0s

This object can be used by the rendering function without being completely evaluated. For a practical use,
evaluation is stopped by the user.

3 The real-time interpreter
We have developed a particular evaluation strategy to implement the previous language. An interpreter is a
function taking a representation of the program, which reduces it to its value according to the language
semantic. The interpreter is implemented using a defining language with its particular features like eager or lazy
evaluation strategy. Because of the time-rendering-driven evaluation, we need a complete control on evaluation
states in order to control reductions in time. We use a stacked-based machine [9] which manipulates an
expression, an environment and an explicit continuation. Evaluation process is a sequence of simple reductions
which operates stack manipulations until the final value is reached. The stack hold the whole continuation, that
is all the remaining operations which should be executed to calculate the value. Each language term has a table
of methods to handle : memory allocation and destruction, evaluation, application, rendering depending of its
type. A basic reduction step does the following :
¥ pop the expression and the method index on the top of the stack
¥ retrieve the method associated with the expression using the method index
¥ execute the method.
For a real-time interpreter, memory management has to be regularly done during reduction process. The common
process to reclaim unwanted memory cells is called garbage collection and is done by reference-counting in our
implementation.

This low-level implementation allows to:
¥ suspend and resume evaluation just by controlling the reduction sequence.
¥ segment evaluation in small temporal steps because each reduction needs a small and finite number of stack
manipulations. Here is an example of a reduction step for an application term : (application e1 e2)

Eval

Ap e1 e2

p

one reduction
top of the stack

top of the stacke1

p : environment
Eval , Apply : reduction method index
Ap e1 e2 : expression to reduce

continuation

Eval

p

Apply

Susp e2 p

Time management
We use the time management capabilities of MidiShare musical operating system [8]. MidiShare is driven by an
interrupt each ms and allows to schedule tasks in the future. Reductions are completed at interrupt level: a fixed
amount of stack reductions is done at each interrupt. If the value is not reached, evaluation continues with the
next interrupt call. When representing a temporal value, reductions are suspended and a task is scheduled to
resume the evaluation.

Time

suspension
value
continuation

value representation

N reductions

expression
evaluation

N reductions

evaluation

value representation

Thus, during evaluation of a temporal expression we have:
¥ an evaluation period with n stack reductions until a value is reached. This value is then used by the rendering
function.
¥ a suspension period equal to the duration of the currently represented value.
As the whole continuation is kept on the stack, evaluation can be resumed with the expression on the top of the
stack.

4 The Stream language
The turtle language is a first example of a time-rendering-driven evaluation [11] fulfilling the need of evaluation
temporal control while representing temporal values. We shall now present the stream language. Its aims is to
provide a unique paradigm to manipulate both real-time events and deferred time objects. The method is to
handle real-time events in a unique object, a stream, holding all events thus becoming a timeless entity, which
can be manipulated exactly the same way as deferred time streams are. Temporal rendering is in charge of the
interpreter. A stream can be defined as follows:
¥ explicitly as the result of a language construct not involving real-time that is as a lazily evaluated list of
events, either MIDI event or "duration" events.
¥ as constructed from the real-time input.
¥ as a merge of two streams.
¥ as the empty stream.

<stream> := input | (cons <event> <stream>) | (merge <stream 1> <stream 2>) | nulls
<event> := (midievent) | (durevent n) where n is a duration in seconds

Time between two successive MIDI events is made explicit as "duration events", thus the merge operation is
perfectly deterministic. Input denotes the stream holding all events received in the real-time input. Streams are
manipulated using classical functions: (first str) returns the first element of a stream, (rest str) returns the
stream without its first element, nulls? is a predicate for empty streams.

(first str) ==> event (rest str) ==> str (nulls? s) ==> True or False

The rendering function for a stream has the following behavior:
¥ it sends a MIDI event when the value is a MIDI event.
¥ it suspends and resumes evaluation during a duration D when the value is an event with duration D

Expression ValueInput Output

String

Parser

Evaluation RepresentationParser

Real Time Real Time
Deferred Time

temporal control of evaluation

The real-time input, a sequence of MIDI events separated by time gaps is converted into the interpreter internal
representation. Thus the real-time stream is handled like any other stream. The evaluation of an expression
produces an output stream and is time-controlled by the rendering process that is the output stream is produced
on request in real-time. The evaluation can be suspended either by the output process when rendering a temporal
value or by the read process when no events are available. The implementation must guarantee that output
events are used as soon as they are available. The "past" of the input stream is kept in memory as long as some
expression has a reference on it, because the memory management is done by reference counting.
Here are some examples of expressions written in the stream language. The manipulation of real-time and
deferred time streams become completely homogeneous. Users can describe the output stream as the result of a
function taking equally real-time and deferred time streams as input.

thru input/ output: 1 second delay on real-time input
input (cons (durevent 1) input)

"mix" real-time, deferred time
(define s1 (cons (durevent 1) (cons (midievent) s1)))
(merge s1 (cons (durevent 1) input))

Streams become first-class objects. Because of the unique way to handle them, real-time transformations
functions can be expressed in a more natural way. But more important is the change of our view on the
relationship between real-time interactions and deferred time objects. We describe usually an interactive process
as a program which behavior is enslaved to the occurrence of external events, that is where we "separate" the
interaction and the program behavior. We are able now to describe objects containing both real-time and
deferred time aspects of their behavior, thus interactive entities become first-class objects.

5 Conclusion
We have presented two real-time functional languages. Using a stream model and a real-time interpreter, we have
showed a method to unify descriptions of real-time an deferred time musical objects. This approach is promising
because it remains in a purely functional paradigm thus profits of all associated advantages: formal analysis,
higher-order functions and lazy evaluation [6]. Moreover, it integrates well in the MidiShare collaborative
inter-applications communication model. Indeed, we can combine applications which behavior are described in
a pure functional way. For example, it will be possible to calculate the equivalent behavior of two applications
inter-connected in succession just by composing their functions.

References
[1] Dannergerg, McAvinney, Rubine 86: Artic: a functional language for Real-Time Systems Computer Music
Journal Vol 10, n¡4 1986
[2] Dannergerg 93: The Implementation of Nyquist, A sound Synthesis Language Proceeding ICMC 1993
[3] Desain, Honing Time Functions Best as Functions of Multiple Times CMJ Vol 16, Number 2 1992
[4] Hudak , Makucevich , Gadde, Whong : Haskore Music Notation - An Algebra of Music -
[5] Jones, Sinclair 89: Functional Programming and Operating Systems The Computer Journal Vol 32, n¡2 1989
[6] MacLennan 89: Functional Programming : Practice and Theory Addision-Wesley Publishing Compagny 89
[7] Orlarey, Fober, Letz, Bilton 94: Lambda Calculus and Musical Calculi Proceeding ICMC 1994
[8] Orlarey, Lequay 89: MidiShare: a real-time multi-tasks software module for MIDI applications Proceedings
of the ICMC 1989
[9] Peyton Jones, Lester 92: Implementing Functional Languages A Tutorial Prentice-Hall International series
in Computer Science 1992
[10] Skillicorn: Lucid: Stream langage and Data-Flow in Advanced Topics in Data-Flow Computing Prentice-
Hall 1991
[11] Wallace 95: Functional Programming and Embedded Systems PhD Thesis Departement of Computer Science
University of York January 1995

