
HAL Id: hal-02158925
https://hal.science/hal-02158925

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAUST Domain Specific Audio DSP Language Compiled
to WebAssembly

Stéphane Letz, Yann Orlarey, Dominique Fober

To cite this version:
Stéphane Letz, Yann Orlarey, Dominique Fober. FAUST Domain Specific Audio DSP Lan-
guage Compiled to WebAssembly. The Web Conference, 2018, Lyon, France. pp.701-709,
�10.1145/3184558.3185970�. �hal-02158925�

https://hal.science/hal-02158925
https://hal.archives-ouvertes.fr


FAUST Domain Specific Audio DSP Language Compiled to
WebAssembly

Stéphane Letz
GRAME, France
letz@grame.fr

Yann Orlarey
GRAME, France
orlarey@grame.fr

Dominique Fober
GRAME, France
fober@grame.fr

ABSTRACT
This paper demonstrates how FAUST, a functional programming
language for sound synthesis and audio processing, can be used
to develop efficient audio code for the Web. After a brief overview
of the language, its compiler and the architecture system allowing
to deploy the same program as a variety of targets, the generation
of WebAssembly code and the deployment of specialized WebAu-
dio nodes will be explained. Several use cases will be presented.
Extensive benchmarks to compare the performance of native and
WebAssembly versions of the same set of DSP have be done and
will be commented.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • Soft-
ware and its engineering→ Functional languages;Data flow
languages; Compilers; Domain Specific Languages;

KEYWORDS
Signal processing; Domain Specific Language; audio; Faust; DSP;
compilation; WebAssembly; WebAudio

ACM Reference Format:
Stéphane Letz, Yann Orlarey, and Dominique Fober. 2018. FAUST Domain
Specific Audio DSP Language Compiled to WebAssembly. In WWW ’18
Companion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3184558.
3185970

1 INTRODUCTION
FAUST [7], [8], [9], is a Domain Specific Language for sound syn-
thesis and audio processing. It is used by audio DSP developers as
an alternative to C/C++ to design and implement efficient DSP code
as native applications or plugins. Built as a multi-languages code
generator, the FAUST compiler can be easily extended to target
new audio platforms (section 2 and 3).

With the advent of both HTML5 and the Web Audio API (a high-
level JavaScript API for audio processing and synthesis), complex
audio applications can now be developed for the Web. The Web
Audio API even offers developers the possibility to add specialized
and efficient audio nodes, to be used with the Web Audio API
natively defined ones (sections 4.1 to 4.3).

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3185970

1.1 Extending the Web Audio API
Various JavaScript DSP libraries or musical languages have been
developed over the years [2], [10], to extend, abstract and empower
the capabilities of the official API. They offer users a richer set
of audio DSP algorithms and sound models to be directly used in
JavaScript code. In this case, developments have to be restarted
from scratch, or by adapting already written code (often in more
real-time friendly languages like C/C++) into JavaScript.

An interesting alternative has been developed by the Csound
team [5]. Using the C/C++ to JavaScript Emscripten compiler, the
complete C written Csound runtime and DSP language is now
available in the context of the Web Audio API.

1.2 Extending the Web Audio API with FAUST
The paper shows how the FAUST compilation chain has beenmoved
to the Web. After a general introduction of the language and its
compiler organization, developments done to target the WebAudio
API and the recently defined WebAssembly low-level format will
be detailed (section 4.3 to 4.5). As a Domain Specific Language
targeting highly demanding mathematical code, generating We-
bAssembly code from the FAUST language shows specific code
generation issues that compiler writers in related domains could
be interested in.

Two main applications will be exposed: creating ready to use
Web Audio nodes and HTML pages using the FAUST compiler in
an offline manner, or even more interesting and flexible, embedding
and using the compiler itself in Web pages (section 5).

Several benchmarks to compare the performances of native and
WebAssembly versions of the same set of DSP, and the performance
of the different WebAssembly aware browsers will be presented
(section 6).

2 FAUST LANGUAGE OVERVIEW
FAUST is a functional programming language for sound synthesis
and audio processing with a strong focus on the design of synthe-
sizers, musical instruments, audio effects, etc. Its main sources of
inspiration are lambda-calculus, combinatory logic, John Backus’ FP
[1], and Stefanescu’s Algebra of Flownomials [11].

2.1 Introduction
FAUST is used on stage for concerts and artistic productions, in
education and research, in open-source projects as well as in com-
mercial applications. Typical users are musicians, sound engineers,
researchers, musical assistants, etc. They often have a background
in signal processing or at least a clear idea of how audio effects
and sound synthesis systems should work or sound. But users are
not necessarily computer scientists or professional developers. The

https://doi.org/10.1145/3184558.3185970
https://doi.org/10.1145/3184558.3185970
https://doi.org/10.1145/3184558.3185970


development of real-time audio software in C is usually out of
reach for most of them. The ambition of FAUST is to offer them a
viable and efficient high-level alternative. The FAUST compiler can
generate optimized code for a variety of languages: C++, C, Java,
JavaScript, asm.js, LLVM, and WebAssembly.

2.2 Syntax and semantic
As we will see through various examples, programming in FAUST
is essentially combining signal processors using a set of binary op-
erations that form the Block-Diagram Algebra. The functional pro-
gramming approach is particularly suited for this purpose. Sig-
nals are discrete-time functions. Signal processors are second-order
functions operating on signals. The block-diagram algebra used to
combine signal processors together is a set of third-order composi-
tion operations on signal processors. Finally, user-defined functions
are higher-order functions on block-diagram expressions. Power-
ful means, like pattern matching, are available to algorithmically
generate complex audio circuits.

1:+∼_

1
+

y (t < 0) = 0
y (t ≥ 0) = 1 + y (t − 1)

FAUST Code

SemanticsBlock Diagram

Figure 1: FAUST programs have a straightforward visual rep-
resentation as block-diagrams, as well as a simple and well
defined formal semantics. The block-diagram is a useful in-
termediate step to compute the semantics of a program.

FAUST is a textual language, but programs have straightforward
translations into visual block-diagrams as well as mathematical
descriptions. The relation between the FAUST code, and its trans-
lations is represented (Figure 1). The FAUST compiler is able to
automatically produce these diagrams and the mathematical seman-
tics of a program. This feature is used in particular for preservation
purposes, an important concern for music pieces relying on real
time programs. But these features are also very useful when learn-
ing FAUST to better understand the meaning of expressions and
programs.

2.3 DSP source code example
Here is a simple organ instrument coded in FAUST (Figure 2). An
oscillator signal is first defined using a phasor periodic signal con-
nected to the sin function. The organ timbre is defined as the summa-
tion of three oscillator signals at different frequencies and volumes.
An envelop is then defined to be applied on the continuous timbre
to build a voice. An finally control items to be displayed as buttons
or sliders to start the note, change its frequency and volume are
defined.

Figure 2: Example of a simple organ instrument coded in
FAUST

3 COMPILER INTERNALS
The FAUST compiler is organized in successive stages, from the DSP
block diagram to signals, and finally to the FIR (FAUST Imperative
Representation) which is then translated in several target languages.
The FIR language describes the computation performed on the
samples in a generic manner. It contains primitives to read and
write variables and arrays, do arithmetic operations, and defines
the necessary control structures (for and while loops, if structure
etc.).

Furthermore, the FAUST compiler itself has been packaged as an
embeddable library called libfaust, published with an associated API
[6] based on a factory/instance model. This model allows to develop
standalone IDE like the FaustLive [3] application for instance.

3.1 FIR backends
Several backends have been developed (Figure 3) to translate the
FIR in C, C++, Java, asm.js, WebAssembly and LLVM IR1.

A generated DSP object has a compiled time known memory
footprint and a bounded CPU usage. Its memory is statically allo-
cated by the architecture at initialization time. Memory zones 2

corresponding to the controller value (sliders, buttons, bargraph...)
are shared between the external control code and the DSP itself.

Depending of the target language, each backend has to adapt
its code generation strategy so that the resulting code can be de-
ployed and run in an execution context. For instancememory can be
accessed using variable names or just indexes. Some needed mathe-
matical functions will be available in the target langage, other will
have to be externally found and linked with the generated code.

1Low Level Virtual Machine Intermediate Representation.
2As float* or double* memory addresses



Figure 3: Compilation chain: fromDSP source code to output
language

Figure 4: The C++ compute function compiled from the or-
gan instrument

Their prototype may have to be generated in a so called import sec-
tion. Some primitives (likemin/max) functions are possibly available
in the execution context, or will have to be explicitly generated.

The C++ backend will typically generate a class, with named
fields (as integer or float scalar or arrays) to describe the DSP object
internal state (made up from delay lines and controller values), as
well as a set of methods to get/set the DSP state, initialize it, and
process samples at each cycle.

An extract of the C++ class generated from the previously de-
scribed organ instrument shows the compute method (Figure 4),
which will be called with input/output audio buffers at each cycle
to produce samples.

3.2 Deploying the code
The generated code is then combined with an architecture file de-
scribing how to relate the audio computation with the external
world.

Native audio drivers are developed as subclasses of a base audio
class, controllers as subclasses of a base UI class. Typical Graphical

User Interface 
Module

Audio Driver Module

DSP code

Figure 5: DSP code is generated by the compiler, audio and
UI codes are added from the generic architecture files.

User Interface architectures are based on well established frame-
works like QT or JUCE, and allow to display a ready to use window
with sliders, text zones and buttons. Audio and UI parts are finally
combined with the actual DSP computation to produce the final
audio application or plugin (Figure 5).

Thanks to this approach, the exact same source code can be used
to generate native applications and plugins for more than 20 differ-
ent targets, from VST and Unity plugins to Android applications,
from embedded systems to Web Audio applications.

4 WEB AUDIO API
The Web Audio API specification describes a high-level JavaScript
API for processing and synthesizing audio in Web applications. The
design model is based on an audio graph, where a set of AudioNode
objects are created and connected together to describe the desired
audio computation.

The actual processing is usually executed in the underlying im-
plementation (typically optimized Assembly/C++ code), and direct
JavaScript processing and synthesis is also supported using the
ScriptProcessorNode interface, in a non-real-time rendering context,
thus possibly causing annoying audio glitches.

The AudioWorklet specification3 aims at improving the situa-
tion, having the audio graph definition done in the main thread, but
rendering it (including user-defined nodes coded in pure JavaScript
or WebAssembly) in a separated real-time thread. This new specifi-
cation can now be tested in Chrome Canary development version.

4.1 From asm.js to WebAssembly
Mozilla developers have started in 2011 the Emscripten compiler
project [12], based on LLVM technology. From C/C++ sources, it
allows to generate a statically compilable and garbage-collection
free typed subset of JavaScript named asm.js. This approach has
been successful, demonstrating that near native code performance
could be achieved on the Web.

Starting from this asm.js experience, core developers of the
PNaCL4 and asm.js projects have designed WebAssembly5, a new
efficient low-level programming language for in-browser client-side
scripting. As a portable stack machine model, it aims to be faster
than JavaScript to parse and execute.

3https://webaudio.github.io/web-audio-api/#rendering-loop
4Google Portable Native Client (PNaCl) is a sandboxing technology for running a
subset of Intel x86, ARM, or MIPS native code in a sandbox.
5As asm.js model done correctly, see http://webassembly.org

https://webaudio.github.io/web-audio-api/#rendering-loop
http://webassembly.org


WebAssembly initial goal is to support compilation from C/C++
using specialized compilers like Emscripten, or as a compilation
target for other high level or Domain Specific Languages. The
minimum viable product (MVP) specification has been finalized
early 2017, with a binary format, as well as a textual format that
looks like traditional assembly languages.

WebAssembly is now officially supported in all major browsers.
Porting well established C/C++ codebase with Emscripten 6, like
the Csound 7 framework as an example, or using DSL languages
like FAUST, will then naturally benefit from improved and more
stable performances.

4.2 Compiling to WebAssembly
The WebAssembly specification precisely defines the semantic of
the language as well as the module format. With the previous
experience of the asm.js format, the designers decided to create a
binary encoding with a dense representation of module information,
that enables small files, fast decoding, and reduced memory usage,
aimed to be streamed and decoded on the fly.

Thus the binary format requires the module to be structured so
that relevant information is always available while decoding the
file. For developers, the textual format is simpler to deal with, can
be read, understood, and possibly manually written, while working
on the tools.

Two new wast and wasm FAUST backends have been developed
to generate these formats. The wast one has been done first and
generates the textual human-readable code, easier to test and debug.
The wasm one generates the binary format to be directly loaded
and executed in browsers or wasm aware standalone runtimes. The
equivalent of the C++ class (generated by the C++ backend), is
generated using the WebAssembly module model.

4.2.1 Module definition. A module is a distributable, loadable,
and executable unit of code inWebAssembly, instantiated at runtime
with a set of imported values (like JavaScript functions or memory
segments) to produce instances. The two WebAssembly backends
must translate the intermediate FIR code to comply to the required
module format.

Some WebAssembly focused projects like Binaryen 8 define and
implement their own abstract syntax tree model, and a client API
to build, manipulate it, and save if as textual or binary formats. To
avoid having to work on a new memory structure, and adding an
external library dependency to the FAUST compiler, it was chosen
not to use them, and directly work on the FIR format.

4.2.2 Memory management. Modules work on linear memory
blocks, contiguous, byte-addressable range of memory spanning
from offset 0 and extending up to a varying memory size. Memory
segments are either defined internally in the module, or imported
from the JavaScript context. Since the DSP memory size is known
at compile time, it is easy to define the proper memory layout to
represent the DSP state.

6http://kripken.github.io/emscripten-site/
7https://www.mansoft.nl/csound/
8https://github.com/WebAssembly/binaryen

Figure 6:Wasmmemory block layout for amonophonicDSP

Figure 7: Wasm memory block layout for a polyphonic DSP
(here with 4 voices)

The memory block of the generated DSP contains the main
DSP object, inlined sub-objects 9, as well as audio buffers and their
corresponding pointers 10. In C++, fields in the C++ object would
be accessed using their name. In WebAssembly, memory has to be
accessed using an index in the memory block. All fields indexes
are thus computed in a preliminary compilation pass, as offsets
from the DSP object base address, to be used later in the code for
load/store operations.

When a single monophonic DSP object is generated, the module
internal memory is used. In our own defined memory layout, we
can decide to locate the DSP object at address 0, thus simplifying
and speeding up access of the DSP fields, since they can simply be
defined as offsets in the DSP object, without having to generate the
code to add the DSP base address. Audio buffers and their pointers
are placed after the DSP (Figure 6).

If the DSP object is going to be used in a more complex memory
layout (like when allocating several DSP objects in a polyphonic
instrument for instance), a JavaScript created WebAssembly mem-
ory block is imported. Audio buffers and their pointers are placed
starting at address 0 followed by DSP objects. Since the base address
of each DSP will change, more complex field access code which
adds the DSP base address and the field offset will be generated
(Figure 7).

4.2.3 Functions generation. All FIR functions are compiled and
exported in the module export section. Prototypes of required
mathematical functions which are not part of the WebAssembly
9The FAUST backend for a more structured langage like C++ typically generates
sub-classes in this case.
10At each cycle, audio buffers will be copied with data coming from the audio wrapper

http://kripken.github.io/emscripten-site/
https://www.mansoft.nl/csound/
https://github.com/WebAssembly/binaryen


specification are generated in the module import section, to be
retrieved from the enclosing JavaScript environment at execution
time. Code for 32 or 64 bits float format can be generated, with
the adapted version of mathematical functions and memory access
code.

Some specific functions like integer version of min/max functions
(which are not yet part of WebAssembly specification) are inter-
nally generated and inlined in the resulting code. Specialized FIR
passes 11 must be written: to move all local variables definition at
the beginning of the functions, or to count local variables (stack-
/loop) with their types, etc., as required by the binary encoding
specification.

The code generation requires a first pass to compute all scalar
and array fields offset in memory, then possibly additional FIR
passes to transform the FIR, or compute needed informations. The
wast backend is easier to write since part of this information (like
for instance the number of local variables with their types) does not
need to be explicitly generated. On the contrary, the wasm backend
is much more demanding, and several preliminary passes have to
be done before the final code can be generated.

4.2.4 Additional code. In both cases, a full description of the
DSP object state as a JSON string is generated in the module data
segment 12 (including memory indexes of all controllers). Glue code
will get and decode this JSON description, and use whatever parts
of the description it needs to run the DSP code. In particular, control
memory zones (corresponding to the UI items like buttons, sliders,
bargraph...) can be directly read/written by the wrapper code.

4.2.5 Float denormals handling. A specific problem occurs when
audio computation produces denormal 13 float values, which is quite
common with recursive filters. Denormals are very small numbers,
close to zero, that doesn’t follow the format of normal floating point
numbers. The problem is that denormal computations take much
longer to calculate than normal computations on some processors,
like the Intel family for instance.

Since audio DSP algorithms can usually afford to approximate
computations with very small numbers and replace denormals
with 0, a Flush To Zero (FTZ) mode for denormals can usually be
set at hardware level, in order to completely avoid those costly
computations.

The hardware FTZ mode is not yet available in WebAssembly
MVP version, which strictly conforms to the IEEE 754 norm 14. An
automatic software strategy which consists in adding FTZ code
in all recursive loops has been implemented in the FAUST com-
piler. To activate it, the -ftz compilation parameter must be used at
compilation time:
• the -ftz 1 mode adds a test in each recursive loop which uses
the fabs function and a threshold to detect denormal samples
(slower).
• the -ftz 2 mode adds a test in each recursive loop which uses
a mask to detect denormal samples (faster).

11The FIR tree can be traversed using a visitor like pattern, possibly doing FIR to FIR
kind of transformations.
12http://webassembly.org/docs/modules/
13https://en.wikipedia.org/wiki/Denormal_number
14https://github.com/WebAssembly/design/issues/148

Figure 8: Compiling C++ libfaust to libfaust.js with Em-
scripten

Even if this strategy is not perfect, this additionally generated
code 15 will avoid the production of most of denormals values with
their associated CPU consumption peaks.

4.3 WebAssembly code in Web Audio nodes
JavaScript code is used to load the wasm file into a typed array,
compile it to a module with WebAssembly.compile, then instantiate
it using WebAssembly.Instance function, and finally get the callable
exported functions. The DSP memory is either allocated inside the
wasm module, or externally in the wrapping JavaScript code, and
given as parameter when creating the module.

An extended AudioNode object 16 with some additional methods
is created. As an AudioNode type it will be usable like a regular
AudioNode, possibly connected to other nodes, etc.

Starting from a karplus.dsp FAUST source file for example, the
following function has to be used, taking as parameters: the wasm
filename, the Web Audio context, the buffer size, and a callback to
use the extended WebAudio node:
faust.createkarplus(file, context, bs, cb);

Assuming a karplus variable finally contains the created object,
the user interface can be retrieved as a JSON description:
var jd = karplus.getJSON();

The WebAudio node can be controlled with the following kind
of code:
karplus.connect(context.destination);
karplus.setParamValue("/path/to/control", 0.5);

4.4 Embedding the JavaScript FAUST compiler
in the browser

Since the Emscripten compiler helps deploying any C++ code on the
Web, it becomes possible to compile the FAUST compiler itself with
its embedded wasm backend in pure JavaScript and WebAssembly
(Figure 8).

It has been done by compiling the C++ libfaust library in a lib-
faust.js library combined with a libfaust.wasm file. A unique low-
level createWasmCDSPFactoryFromString entry point has been
defined, compiling the DSP source code using the wasm backend,
and producing the module as an array of bytes and the helper
JavaScript function as a string (Figure 9).

Using WebAssembly API again and JavaScript eval function,
allows to deploy it in the JavaScript context. Some additional glue
code has beenwritten, so that from the JavaScript side, a DSP factory
will be created from the DSP source code with the following code:
faust.createDSPFactory(dsp_code, argv, cb);

15which is actually a bit more costly to compute
16https://webaudio.github.io/web-audio-api/#the-audionode-interface

http://webassembly.org/docs/modules/
https://en.wikipedia.org/wiki/Denormal_number
https://github.com/WebAssembly/design/issues/148
https://webaudio.github.io/web-audio-api/#the-audionode-interface


Figure 9: libfaust.js + wasm dynamic compilation chain

Here argv is a array of possible additional compilation arguments,
and cb a callback to use the created DSP factory.

A fully working DSP instance as an extended Web Audio node
is then created with the following code;
faust.createDSPInstance(fact, context, bs, cb);

and can be controlled with the API described in section 4.3.

5 USE CASES
Using the previously explained technologies, three different use
cases have been experimented:
• compiling self-contained ready to use Web Audio nodes
• using FAUST static compilation chain to produce HTML
pages with Web Audio nodes
• using the FAUST dynamic compilation chain to directly pro-
gram DSP on the Web.

5.1 Programming Web Audio nodes with
FAUST

Self contained ready to use Web Audio nodes can be produced from
a DSP source using the faust2wasm script, which basically calls
the FAUST compiler targeting the wasm backend, then wraps the
produced code with a generic JavaScript API to be usable in the
Web Audio context.

Audio nodes are created and activated. The full JSON description
of the control parameters and their layout is available and can
be used to create customized Graphical User Interfaces. Control
parameters can then be read and written. This model has to be used
when a custom control or Graphical User Interface is developed
later on.

5.2 Deploying FAUST DSP examples on the
Web

Using the faust2webaudiowasm script, a DSP source file can be
compiled to a self-contained ready to runHTMLpage, andwrapping
the wasm/JavaScript generated code in a HTML CSS/SVG based
Graphical User Interface (Figure 10).

5.3 Web embedded compiler
Having the FAUST compiler itself as a library in the browser opens
interesting capabilities, experimented in two different tools.

5.3.1 The FAUST Editor . The FAUST Editor application17 can
be used to edit, compile and run FAUST code from any recent
Web Browser with WebAssembly support (Figure 11). This editor

17http://faust.grame.fr/editor

Figure 10: Self-contained HTML page loading the wasm
module

Figure 11: FAUST Editor online tool

completely works on the client side and it is therefore very con-
venient for situations with many simultaneous users (workshops,
classrooms, etc.).

It embeds the latest version of the FAUST compiler with the
wasm backend and offers polyphonic MIDI support. The editor
engine is based on codemirror. It offers syntax highlighting, auto
completion and direct access to the online documentation.

5.3.2 The FaustPlayground . The FaustPlayground application18
lets the user develop an audio application by graphically connect-
ing high-level modules written in FAUST. The source code can be
dropped as a string, a file, or a Web URL, or loaded from a library
of predefined modules included in the platform (Figure 12).

Using libfaust.js, the DSP is compiled in the browser on the
client machine, to become a functional Web Audio node that can
be connected to others. At any time, the node source code can be
edited and recompiled.

The user can then export his work to all the platforms supported
by the online compilation service, from pure standalone applica-
tions, various plugins formats (VST, Max/MSP...), projects in source
code form (JUCE, iOS...) 19. In order to perform this export, the
graph must first be transformed into a single FAUST source code
obtained by collecting the FAUST implementations of each node of
the graph [4].

18http://faust.grame.fr/faustplayground
19http://faustservice.grame.fr

http://faust.grame.fr/editor
http://faust.grame.fr/faustplayground
http://faustservice.grame.fr


Figure 12: FaustPlayground dynamic compilation platform

6 BENCHMARKS
6.1 Comparing the FAUST C++, LLVM IR and

wast/wasm backends
The WebAssembly approach promises near native performances
for C/C++ written code compiled to WebAssembly using the Em-
scripten tool chain. Other languages like Rust (using the mir2wasm
20 tool) experiment with direct WebAssembly generation. It seems
clear that as the WebAssembly specification and its implementation
stabilizes, more and more languages will directly generate wasm
to be deployed in browsers. The question of the code generation
quality at each step of the compilation chain will rapidly emerge.

Since our compiler is generating code for the quite focused au-
dio domain, which is caracterized by a lot of memory access and
mathematical operations, we can possibly expect to generate high
quality code, even beating in some cases the generic Emscripten
compilation chain based generated code.

While WebAssembly is initially designed to run on the Web,
it may be deployed in non Web environnement like nodejs 21, or
even in standalone Virtual Machines like WAVM, developed in
C++, which JIT compile WebAssembly to native code using the
LLVM technology 22. ThusWebAssembly becomes a portable binary
format that can be used in a large variety of situations. This is
especially of interest for a DSL language like FAUST.

6.2 Benchmark of C++, LLVM IR and
wast/wasm generated code

Since FAUST already generates C++ or LLVM IR code, the perfor-
mances of those two backends can be compared with the new wasm
one. Using the WAVM C++ written machine allows to deploy the
same measuring code 23. The first benchmark compares the speed
of C++, LLVM IR and wasm backends, running a set of DSP on a
MacBook Pro 2,2 GHz Core I7 with OSX El capitan. The same 4.0
version of LLVM toolchain has been used with the three backends.

C++ and LLVM IR code has been compiled with the -Ofast op-
timization flag, the WAVM runtime is the standard version one
(without any specific audio optimization, see later) (Figure 13).

The diagram clearly shows that the wasm code is still slower
than C++ or LLVM IR code, but speed difference is not so high

20https://github.com/brson/mir2wasm
21http://webassembly.org/docs/non-web/
22https://github.com/AndrewScheidecker/WAVM
23http://faust.grame.fr/news/2017/04/26/optimizing-compilation-parameters.html

Figure 13: MBytes/sec for a test set of DSPs (higher is better)

in most cases. The poor performances of some DSP need to be
analyzed in more detail.

6.3 Optimizing the WAVM runtime for audio
code

The WAVM runtime strictly conforms to the WebAssembly specifi-
cation, thus behaving as an interesting base reference. In the audio
domain, the C/C++ generated code is usually compiled with specific
optimization flags 24. Since C++ WAVM runtime can be quite easily
modified, we did several changes into the reference implementation
to improve the generated code performances (Figure 14).

• removing the atomic flag in all load/store 25 that are added
to pass all spec WebAssembly tests
• adding the equivalent of -fast-math compilation flag that has
to be done at LLVM IR and JIT (= native) 26 generation steps
• and finally simplifying some mathematical operators, using
their standard definition 27 instead of the specific WAVM
coded ones that strictly implement the WebAssembly official
semantic 28 (see for instance the definition of f32.min/f32.max
operations with their handling of NaN values)

The diagram shows the difference between a runtime strictly
conforming to the WebAssembly specification, and the same run-
time optimized for audio code. This somewhat characterizes the
incompressible speed difference that will always exist between the
C++ or LLVM IR version of FAUST generated code, and the wasm
generated one.

Note that after generating the LLVM IR code, theWAVM runtime
runs a set of LLVM IR to IR optimizations passes. It remains to
be tested if adding more optimization passes (especially the auto-
vectorization ones) could help producing even better code.

24like -fast-mathwhich lets the compiler generate faster (but less precise) mathematical
operations
25https://github.com/sletz/WAVM/commit/cf6011026aa75dfd0f88e051da271ce0c0d525a9
26https://github.com/sletz/WAVM/commit/1aa96a2088ed1c6eb918b7f292f4571aecdfc6da
27https://github.com/sletz/WAVM/commit/a9e2a91c53e79168fb7e193beb36e99d81d0be21
28http://webassembly.org/docs/semantics/

https://github.com/brson/mir2wasm
http://webassembly.org/docs/non-web/
https://github.com/AndrewScheidecker/WAVM
http://faust.grame.fr/news/2017/04/26/optimizing-compilation-parameters.html
https://github.com/sletz/WAVM/commit/cf6011026aa75dfd0f88e051da271ce0c0d525a9
https://github.com/sletz/WAVM/commit/1aa96a2088ed1c6eb918b7f292f4571aecdfc6da
https://github.com/sletz/WAVM/commit/a9e2a91c53e79168fb7e193beb36e99d81d0be21
http://webassembly.org/docs/semantics/


Figure 14

Figure 15

6.4 Module optimization with Binaryen
Binaryen is a compiler and toolchain infrastructure library for
WebAssembly 29, written in C++. Its contains wasm to wasm opti-
misations passes, possibly allowing to even improve the speed of
the FAUST generated wasm code. We tested the wasm-opt tool at
-O3 level on FAUST generated wasm modules to estimate which
speedup we can expect. The diagram shows limited gains, with no
more than 5% in some of the tested cases (Figure 15).

6.5 Float denormal handling
The software float denormal code can be easily tested in the WAVM
machine 30. Here is the result of code generated with -ftz from 0 to
2 (Figure 16). The code is continuously a bit slower when software
FTZ is activated, the point being obviously to avoid pathological
cases where the CPU consumption would raise dramatically in the
presence of denormals values. The -ftz 2 mode appears to be the
most efficient one and will preferably be used.
29https://github.com/WebAssembly/binaryen
30by explicitly deactivating hardware FTZ mode on the CPU running in this native
runtime.

Figure 16

Figure 17

6.6 Emscripten versus FAUST direct
compilation

Wasm code directly generated by the FAUST wasm backend can be
compared to wasm code generated by compiling (with Emscripten)
the code generated by the FAUST C backend. All sophisticated opti-
mizations passes the LLVM based Emscripten compiler can possibly
be used on the C side, a simpler FIR to wasm generation model, but
coupled with some specific optimizations (for instance the opti-
mized memory layout one described in section 4.2.2) on the direct
wasm side. Compilation of FAUST generated C has been done using
-s SIDE_MODULE=1mode to produce a light wasm module, without
any runtime, to be loaded and activated by additional JavaScript
glue code.

Done under Firefox Nightly, the diagram shows that direct wasm
code generation can even beat Emscripten generated wasm code
(Figure 17).

6.7 Comparing three browsers
HTML test pages 31 were prepared to compare the performances
of the three main browsers. The DSP code is compiled with float
denormal protection on. The generated wasm module’s compute
31http://faust.grame.fr/bench/

https://github.com/WebAssembly/binaryen
http://faust.grame.fr/bench/


Figure 18

Figure 19

method is called repeatedly in a timed loop, using successive slices
of a big allocated circular audio buffer to avoid cache effects. Here
are the results (Figure 18).

The fasted one (Chrome for now) can be compared with C++,
LLVM IR, WAVM native engines, all compiled with float denormal
protection on (Figure 19).

7 COMMENTS ON BENCHMARKS
Testing wasm JIT machines across different browsers is not an easy
task. Thus being able to use a simpler standalone WebAssembly
aware runtime was a good starting point. The C++ WAVM runtime
revealed to be an excellent tool to compare the FAUST C++, LLVM
IR and wasm backends. Since its code can be easily adapted, what
can be expected deploying wasm DSP modules in pure native en-
vironments can also be estimated (that is outside of the browser,
where some audio specific optimizations may be considered).

Measurements done on a set of FAUST DSPs show that We-
bAssembly code still runs slower than C++ or LLVM IR generated
code in most cases, up to almost 66% slower in the less favorable
examples. This value will typically be a bit worse when deploying
in browsers, since float denormal protection code has to be used.

Comparing the Chrome, Firefox and WebKit browsers on the
tested machine shows that Chrome was the fastest engine in most
cases (at the time of testing), with Firefox and WebKit quite similar
(with a slight plus for WebKit).

Comparing the Chrome browser with native engines shows
results from 4,8 times slower (filterBank.dsp), 2,8 times slower
(sTunedBar6.dsp) up to much more favorable cases (karplus32.dsp).
Note that filterBank.dsp example is a bit of a pathological case,
since Chrome is significantly slower than Firefox and WebKit in
this case, and filterBank.dsp uses a lot of pow(10, x) code that is
rewritten and optimized as exp10(x) with the C++ backend path.

And finally it has to be said that all those benchmarks compare
the browsers and the WAVM standalone runtime at time t, in a fast
changing situation that hopefully will improve progressively.

8 CONCLUSION
The WebAssembly format promises to be an excellent compilation
target for Domain Specific Like languages like FAUST. Performance
in the different tested browsers is already quite good, and we can
expect improvements as the wasm implementation matures.

The float denormals handling remains a serious issue, since
adding software protection code cannot be considered a long terme
and satisfactory solution. We hope that future versions of the We-
bAssembly specification will properly address this question.

The WAVM project shows that non-Web embeddings are per-
fectly possible, even with audio code aware customized runtimes,
and opens interesting deployment possibilities.

In the context of the WebAudio API, the AudioWorklet imple-
mentation is still quite fresh and needs to be more thoroughly
tested.

REFERENCES
[1] John Backus. Can Programming Be Liberated from the von Neumann Style ?

ACM Turing Award lecture, pages 613–641, 1978.
[2] C. Clark and A. Tindale. Flocking: a framework for declarative music-making on

the Web. In Proceedings of the International Computer Music Conference, 2014.
[3] Sarah Denoux, Stéphane Letz, Yann Orlarey, and Dominique Fober. FAUSTLIVE,

Just-In-Time Faust Compiler... and much more. In Proceedings of the Linux Audio
Conference 2014, ZKM, Karlsruhe, Germany, 2014.

[4] Sarah Denoux, Yann Orlarey, Stéphane Letz, and Dominique Fober. Calcul d’une
expression Faust équivalente à partir d’un graphe d’applications. In Journées
d’Informatique Musicale, 2016.

[5] V. Lazzarini, E. Costello, S. Yi, and J. Fitch. Csound on the Web. In Proceedings of
the Linux Audio Conference, 2014.

[6] S. Letz, Y. Orlarey, and D. Fober. Comment embarquer le compilateur Faust dans
vos applications? In In Proceedings of the Journees d’Informatique Musicale, 2013.

[7] Yann Orlarey, Dominique Fober, and Stephane Letz. An algebra for block dia-
gram languages. In ICMA, editor, Proceedings of International Computer Music
Conference, pages 542–547, 2002.

[8] Yann Orlarey, Dominique Fober, and Stephane Letz. Syntactical and Semantical
Aspects of Faust. Soft Computing, 8(9):623–632, 2004.

[9] Yann Orlarey, Dominique Fober, and Stephane Letz. Parallelization of audio
applications with Faust. In Proc. of the 6th Sound and Music Computing Conference,
Porto, PT, pages 99–112, 2009.

[10] Charlie Roberts. Strategies for Per-Sample Processing of Audio Graphs in the
Browser. In Proceedings of the Web Audio Conference, 2017.

[11] Gheorghe Stefanescu. Algebra of flownomials. Institut für Informatik, Technical
University Munich, Report TUM- I9437, 1994.

[12] A. Zakai. Emscripten: an LLVM to JavaScript compiler. In In Proceedings of the
ACM international conference companion on Object oriented programming systems
languages and applications, 2011.


	Abstract
	1 Introduction
	1.1 Extending the Web Audio API
	1.2 Extending the Web Audio API with FAUST

	2 FAUST language overview
	2.1 Introduction
	2.2 Syntax and semantic
	2.3 DSP source code example

	3 Compiler internals
	3.1 FIR backends
	3.2 Deploying the code

	4 Web Audio API
	4.1 From asm.js to WebAssembly
	4.2 Compiling to WebAssembly
	4.3 WebAssembly code in Web Audio nodes
	4.4 Embedding the JavaScript FAUST compiler in the browser

	5 Use cases
	5.1 Programming Web Audio nodes with FAUST
	5.2 Deploying FAUST DSP examples on the Web
	5.3 Web embedded compiler

	6 Benchmarks
	6.1 Comparing the FAUST C++, LLVM IR and wast/wasm backends
	6.2 Benchmark of C++, LLVM IR and wast/wasm generated code
	6.3 Optimizing the WAVM runtime for audio code
	6.4 Module optimization with Binaryen
	6.5 Float denormal handling
	6.6 Emscripten versus FAUST direct compilation
	6.7 Comparing three browsers

	7 Comments on benchmarks
	8 Conclusion
	References

