N
N

N

HAL

open science

Work Stealing Scheduler for Automatic Parallelization
in Faust

Stéphane Letz, Yann Orlarey, Dominique Fober

» To cite this version:

Stéphane Letz, Yann Orlarey, Dominique Fober. Work Stealing Scheduler for Automatic Paralleliza-
tion in Faust. Linux Audio Conference, 2010, Utrecht, Netherlands. hal-02158924

HAL Id: hal-02158924
https://hal.science/hal-02158924

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02158924
https://hal.archives-ouvertes.fr

Work Stealing Scheduler for Automatic Parallelization in Faust

Stephane Letz and Yann Orlarey and Dominique Fober
GRAME
9 rue du Garet, BP 1185
69202 Lyon Cedex 01,
France,
{letz, orlarey, fober }@grame.fr

Abstract

FAUST 0.9.10 ! introduces an alternative to OpenMP
based parallel code generation using a Work Steal-
ing Scheduler and explicit management of worker
threads. This paper explains the new option and
presents some benchmarks.

Keywords
FAUST, Work Stealing Scheduler, Parallelism

1 Introduction

Multi/many cores machines are becoming com-
mon. There is a challenge for the software com-
munity to develop adequate tools to take profit
of the new hardware platforms [3] [8]. Various
libraries like Intel Thread Building Blocks 2 or
"extended C like” Cilk [5] can possibly help but
still require the programmer to precisely define
sequential and parallel sub part of the compu-
tation and use the appropriate library call or
building blocks to implement the solution.

In the audio domain, work has been done to
parallelize well known algorithms [4], but very
few systems aim to help in automatic paral-
lelization. The problem is usually tricky with
stateful systems and imperative approaches
where data has to be shared between several
threads, and concurrent access have to be accu-
rately controlled.

On the contrary, the functional approach used
in high level specification languages generally
helps in this area. It basically allows the pro-
grammer to define the problem in an abstract
way completely unconnected of implementa-
tions details, and let the compiler and various
backends do the hard job.

By exactly controlling when and how state
is managed during the computation, the com-
piler can decide what multi-threading or par-
allel generation techniques can be used. More

lthis work was partially supported by the ANR
project ASTREE (ANR-08-CORD-003)
2http://www.threadingbuildingblocks.org/

sophisticated methods to reorganize the code to
fit specific architectures can then be tried and
analyzed.

1.1 The Faust approach

FAUST [2] is a programming language for real-
time signal processing and synthesis designed
from scratch to be a compiled language. Being
efficiently compiled allows FAUST to provide a
viable high-level alternative to C/C++ to de-
velop high-performance signal processing appli-
cations, libraries or audio plug-ins.

The FAUST compiler is built as a stack of code
generators. The scalar code generator produces
a single computation loop. The vector genera-
tor rearrange the C++ code in a way that fa-
cilitates the autovectorization job of the C+-+
compiler. Instead of generating a single sam-
ple computation loop, it splits the computation
into several simpler loops that communicates by
vectors. The result is a Direct Acyclic Graph
(DAG) in which each node is a computation
loop.

Starting from the DAG of computation loops
(called "tasks”), FAUST was already able to gen-
erate parallel code using OpenMP directives [1].
This model has been completed with a new
dynamic scheduler based on a Work Stealing
model.

2 Scheduling strategies for parallel
code

The role of scheduling is to decide how to or-
ganize the computation, in particular how to
assign tasks to processors.

2.1 Static versus dynamic scheduling

The scheduling problem exists in two forms:
static and dynamic. In static scheduling usu-
ally done at compile time, the characteristics
of a parallel program (such as task processing
times, communication, data dependencies, and
synchronization requirements) are known before

program execution. Temporal and spatial as-
signment of tasks to processors are done by the
scheduler to optimize the execution time. In
dynamic scheduling on the contrary, only a few
assumptions about the parallel program can be
made before execution, and thus, scheduling de-
cisions have to be realized on-the-fly, and as-
signment of tasks to processors are made at run
time.

2.2 DSP specific context

We can list several specific elements of the prob-
lem:

- the graph describes a DSP processor which
is going to read n input buffers containing p
frames to produce m output buffers containing
the same p number of frames

- the graph is completely known in advance,
but precise cost of each task and communication
times (memory access, cache effects...) is not
known

- the graph can be computed in a single step:
each task is going to process p frames in a single
step, or buffers can be cut in slices and the graph
can be executed several times on sub slices to
fill output buffers. (see ”"pipelining” section)

Step1

sync
Step2

sync + +

- <o

sync
Step4

sync

Figure 1: Tasks graph with forward activations

and explicit synchronization points

2.3 OpenMP mode

The OpenMP based parallel code generation is
activated by passing the ---openMP (or --omp) op-
tion to the FAUST compiler. It implies the --vec
option as the parallel code generation is built
on top of the vector code generation.

In OpenMP mode, a topological sort of the
graph is done. Starting from the inputs, tasks

are organized as a sequence of groups of par-
allel tasks. Then appropriate OpenMP direc-
tives are added to describe a fork/join model.
Each group of task is executed in parallel and
synchronization points are placed between the
groups (Figure 1). This model gives good re-
sults with the Intel icc compiler. Unfortunately
until recently, OpenMP implementation in g++
was quite weak and ineflicient, and even unus-
able in an real-time context on OSX.

Moreover the overall approach of organizing
tasks as a sequence of groups of parallel tasks is
not optimum in the sense that synchronization
points are required for all threads when part of
the graph could continue to run. In some sense
the synchronization strategy is too strict and a
data-flow model is more appropriate.

2.3.1 Activating Work Stealing

Scheduler mode

The scheduler based parallel code generation is
activated by passing the --scheduler (or --sch)
option to the FAUST compiler. It implies the
--vec option as the parallel code generation is
built on top of the vector code generation.

With the --scheduler option, the FAUST com-
piler uses a very different approach. A data-flow
model for graph execution is used, to be exe-
cuted by a dynamic scheduler. Parallel C++
code embedding a Work Stealing Scheduler and
using a pool of worker threads is generated.

Threads are created when the application
starts and all participate in the computation of
the graph of tasks. Since the graph topology is
known at compilation time, the generated C++
code can precisely describe the execution flow
(which tasks have to be executed when a given
task is finished...). Ready tasks are activated at
the beginning of the compute method and are
executed by available threads in the pool. The
control flow then circulate in the graph from
inputs task to output tasks in the form of acti-
vations (ready task index called tasknum) until
all output tasks have been executed.

2.4 Work Stealing Scheduler

In a Work Stealing Scheduler [7], idle threads
take the initiative: they attempt to steal tasks
from other threads. This is possible by having
each thread owns a Work Stealing Queue, a spe-
cial double-ended queue with a Push operation,
a private LIFO Pop operation ® and a public

3which does not need to be multi-thread aware

FIFO Pop operation 4. The basic idea of work
stealing is for each processor to place work when
it is discovered in its local WSQ, greedily per-
form that work from its local WSQ, and steal
work from the WSQ of other threads when the
local WSQ is empty.

Starting from a ready task, each thread exe-
cutes it and follows the data dependencies, pos-
sibly pushing ready output tasks into its own
local WSQ. When no more tasks can be exe-
cuted on a given computation path, the thread
pops a task from its local WSQ using its pri-
vate LIFO Pop operation. If the WSQ is empty,
the thread is allowed to steal tasks from other
threads WSQ using their public FIFO Pop op-
eration.

The local LIFO Pop operation allows better
cache locality and the FIFO steal Pop larger
chuck of work to be done. The reason for this is
that many work stealing workloads are divide-
and-conquer in nature, stealing one of the oldest
task implicitly also steals a (potentially) large
subtree of computations that will unfold once
that piece of work is stolen and run.

For a given cycle, the whole number of frames
is used in one graph execution cycle. So when
finished, a given task will (possibly) activate its
output task only, and activation goes forward.

2.4.1 Code generation

The compiler produces a computeThread method
called by all threads:

- tasks are numbered and compiled as a big
switch/case block

- a work stealing task which aim to find out
the next ready task is created

- an additional last task is created

2.5 Compilation of different type of
nodes

For a given task in the graph, the compiled code
will depend of the topology of the graph at this
stage.

2.5.1

If the task has one output only and this output
has one input only (so basically there is a single
link between the two tasks), then a direct acti-
vation is compiled, that is the tasknum of the
next task is the tasknum of the output task, and
there its no additional step required to find out
the next task to run.

One output and direct link

4which has to be multi-thread aware using lock-free
techniques and is thus more costly

2.5.2 Several outputs
If the task has several outputs, the code has to:

- init tasknum with the WORK_STEALING value

- if there is a direct link between the given
task and one of the output task, then this out-
put task will be the next to execute. All other
tasks with a direct link are pushed on current
thread WSQ °

- otherwise for output tasks with more than
one input, the activation counter is atomically
decremented (possibly returning the tasknum of
the next task to execute)

- after execution of the activation code,
tasknum will either contains the actual value
of the next task to run or WORK_STEALING, so that
the next ready task if found by running the work
stealing task.

2.5.3 Work Stealing task

The special work stealing task is executed when
the current thread has no more next task to
run in its computation path and its WSQ is
empty. The GetNextTask function aims to find
out a ready task by possibly stealing a task to
run from any of the other threads except the
current one. If no task is ready then GetNextTask
returns WORK_STEALING value and the thread loops
until it finally finds a task or the whole compu-
tation ends.

2.5.4 Last task

Output tasks of the DAG are connected and
activate the special last task which in turn quits
the thread.

void computeThread(int thread)
{

TaskQueue taskqueue;

int tasknum = -1;

int count = fFullCount;

// Intt input and output
FAUSTFLOAT* inputO

= &input [0] [fIndex];
FAUSTFLOAT* inputil

= &input [1] [fIndex];
FAUSTFLOAT* outputO

= &output [0] [fIndex];

// Intt graph

int task_list_size = 2;

int task_list[2] = {2,3};

taskqueue.InitTaskList (
task_list_size,
task_list,
fDynamicNumThreads,

5The chosen task here is the first in the task output
list, more sophisticated choice heuristics could be tested
at this stage.

cur_thread,
tasknum) ;

// Graph ezecution code

while (!fIsFinished) {
switch (tasknum) {
case WORK_STEALING: {

tasknum
= GetNextTask (thread);

break;

}

case LAST_TASK: {
fIsFinished = true;
break;

}

case 2: {
// DSP code
PushHead (4) ;
tasknum = 3;
break;

}

case 3: {
// DSP code
PushHead (5) ;
tasknum = 4;
break;

}

case 4: {
// DSP code
tasknum

= ActivateOutput (LAST_TASK)

break;

}

case 5: {
// DSP code
tasknum

= ActivateOutput (LAST_TASK)

break;

}

}
}
}

Listing 1: example of computeThread method

2.6 Activation at each cycle

The following steps are done at each cycle:

- n-1 threads are resumed and start the work

- the calling thread also participates

- ready tasks (tasks that depends of the input
audio buffers or tasks with no inputs) are dis-
patched between all threads, that is each thread
pushes sub-tasks in its private WS(Q and takes
one of them to be directly executed

- after having done its part of the work, the
main thread waits for all worker threads to fin-
ish

This is done in the following compute method
called by the master thread:

void compute (int fullcount,
FAUSTFLOAT** input,

FAUSTFLOAT **x output) {
this->input = input;
this->output = output;
for (fIndex = 0;
fIndex < fullcount;
fIndex += 1024) {
fFullCount
= min (1024, fullcount-fIndex);
TaskQueue::Init ();
// Initialize end task
fGraph.InitTask(1,1);
// Only initialize tasks with inputs
fGraph.InitTask (3,1);
// Activate worker threads
fIsFinished = false;
fThreadPool.
SignalAll (fDynamicNumThreads -1) ;
// Master thread participates
computeThread (0) ;
// Wait for end
while (!fThreadPool.IsFinished()) {}

Listing 2: master thread compute method

2.7 Start time

At start time, n worker threads are created and
put in sleep state, thread scheduling properties
and priorities are set according to calling thread
parameters.

3 Pipelining

Some graphs are sequential by nature. Pipelin-
ing techniques aim to create and exploit paral-
lelism in those kind of graph to better use multi-
cores machines. The general idea is that for a
sequence of two tasks A and B, instead of run-
ning A on the entire buffer size then run B, we
want to split the computation in n sub-buffers
and run A on the first sub-buffer, then B can be
run on A first sub-buffer output while A runs on
second sub-buffer and so on.

N frames N/4 frames N/4 frames N/4 frames N/4 frames

I
B> O L
Figure 2: Very simple graph rewritten to ex-

press pipelining, A is a recursive task, B is a
non recursive one

Different code generation techniques can be
used to obtain the desired result. We choose to
rewrite the initial graph of tasks, by duplicating
n times each task to be run on a sub part of the
buffer. This way the previously described code

generator can be directly used without major
changes.

3.1 Code generation

The pipelining parallel code generation is ac-
tivated by passing -sch option as well as the
--pipelining option (or -pipe) with a value, the
factor the initial buffer will be divided in.

Previously described code generation strat-
egy has to be completed. The initial tasks graph
is rewritten and each task is split in several sub-
tasks:

- recursive tasks © are rewritten as a list of
n connected sub-tasks (that is activation has to
go from the first sub-task to the second one and
so on). Each sub-task is then going to run on
buffer-size /n number of frames. There is no real
gain for the recursive task itself since it will still
be computed in a sequential manner. But out-
put sub-tasks can be activated more rapidly and
possibly executed immediately is they are part
of a non recursive task (Figure 2).

- non recursive tasks are rewritten as a list of
n non connected sub-tasks, so that all sub-tasks
can possibly be activated in parallel and thus
run on several cores at the same time. Each
sub-task is then going to run on buffer-size/n
number of frames.

This strategy is used for all tasks in the DAG,
the rewritten graph enters the previously de-
scribed code generator and the complete code
is generated.

4 Benchmarks

To compare the performances of these various
compilation schemes in a realistic situation, we
have modified an existing architecture file (Alsa-
GTK on Linux and CoreAudio-GTK on OSX)
to continuously measure the duration of the
compute method (600 measures per run). We give
here the results for three real-life applications:
Karplus32, a 32 strings simulator based on the
Karplus-Strong algorithm (figure 3), Sonik Cube
(figure 4), the audio part software of an audio-
visual installation and Mizer (figure 5), a multi-
voices mixer with pan and gain.

Instead of time, the results of the tests are
expressed in MB/s of processed samples because
memory bandwidth is a strong limiting factor
for today’s processors (an audio application can
never go faster than the memory bandwidth).

Sthose where the computation of the frame n depends
of the computation of previous frames

Karplus32
120
100 HM
0
3 80
=3 e ¢ "= Scalar
5 60‘-_-‘ == \/ector
2 O - - l v openvP
2 40 =4 Scheduler
o
= 20
0
1 2 3 4
Run
Figure 3: Compared performances of the 4

compilation schemes on karplus32.dsp

As we can see, in both cases the paralleliza-
tion introduces a real gain of performances. The
speedup for Karplus32 was x2.1 for OpenMP
and x2.08 for the WS scheduler. For Sonik Cube
the speedup with 8 threads was of x4.17 for
OpenMP and x5.29 for the WS scheduler. It
is obviously not always the case. Simple appli-
cations, with limited demands in terms of com-
puting power, tend to perform usually better
in scalar mode. More demanding applications
usually benefit from parallelization.

Sonic Cube (MacPro 8 cores)

160

140

120
— 100
g -
= sch
= 80 o sch2
2 ¥V omp1
=4 " omp2
E 60 = linear
E

40

20

0

1 2 3 4 5 i) 7 8
Mumber of threads
Figure 4: Compared performances of different

generation mode from 1 to 8 threads

The efficiency of OpenMP and WS scheduler
are quite comparable, with an advantage to WS
scheduler with complex applications and more
CPUs. Please note that not all implementations
of OpenMP are equivalent. Unfortunately the
GCC 4.4.1 version is still unusable for real time
audio application. In this case the WS scheduler
is the only choice. The efficiency is also depen-
dent of the vector size used. Vector sizes of 512
or 1024 samples usually give the best results.

The pipelining mode does not show a clear
speedup in most cases, but Mizer is an example
when this new mode helps.

Mixer
250
Vv
200
g ’_-3_/-’
150
% & scal
a = sch
£ 100 -
g-. ¥ pipe
2
=y
F s
0
1 2 3 4
Mumber of threads
Figure 5: Compared performances of different

generation mode from 1 to 4 threads on OSX
with a buffer of 4096 frames

5 Open questions and conclusion

In general, the result can greatly depends on
the DSP code going to be parallelized, the cho-
sen compiler (icc or g++) and the number of
threads to be activated when running. Simple
DSP effects are still faster in scalar of vector-
ized mode and parallelization is of no use. But
with some more complex code like Sonik Cube
the speedup is quite impressive as more threads
are added. But they are still a lot of opened
questions that will need more investigation:

- improving dynamic scheduling, since right
now there is no special strategy to choose the
task to wake up in case a given task has several
output to activate. Some ideas of static schedul-
ing algorithms could be used in this context.

- the current compilation technique for
pipelining actually duplicates each task code n
times. This simple strategy will probably show
its limit for more complex effects with a lot of

tasks.

- there is no special strategy to deal with
thread affinity, thus the performances can de-
grade if tasks are switched between cores.

- the effect of memory bandwidth limits and
cache effects have to be better understood

- composing several pieces of parallel code
without sacrificing performance can be quite
tricky. Performance can severally degrade as
soon as too much threads are competing for
the limited number of physical cores. Using ab-
straction layers like Lithe [6]or OSX libdispatch
7 could be of interest.

References

[1] Y. Orlarey, D. Fober, and S. Letz. Adding
Automatic Parallelization to Faust. Linux
Audio Conference 2009.

[2] Yann Orlarey, Dominique Fober, and
Stephane Letz. Syntactical and seman-
tical aspects of faust. Soft Computing,
8(9):623632, 2004.

[3] J.Ffitch, R.Dobson, and R.Bradford. The
Imperative for High-Performance Audio
Computing. Linux Audio Conference 20009.

[4] Fons Adriaensen. Design of a Convolution
Engine optimised for Reverb. Linux Audio
Conference 2006.

[5] Robert D.Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiser-
son, Keith H. Randall, and Yuli Zhou. Cilk:
an efficient multithreaded runtime system.
In PPOPP 95: Proceedings of the fifth
ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages
207216, New York, NY, USA, 1995. ACM.

[6] Heidi Pan, Benjamin Hindman, Krste
Asanovic. Lithe: Enabling Efficient Compo-
sition of Parallel Libraries. USENIX Work-
shop on Hot Topics in Parallelism (Hot-
Par’09), Berkeley, CA. March 20009.

[7] Blumofe, Robert D. and Leiserson, Charles
E. Scheduling multithreaded computations by

work stealing. Journal of ACM, volume 46,
number 5, 1999, New York NY USA.

[8] David Wessel et al. Reinventing Audio and
Music Computation for Many-Core Proces-

sors. International Computer Music Con-
ference 2008.

"http://developer.apple.com/

