
HAL Id: hal-02158923
https://hal.science/hal-02158923

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TIMING MEASUREMENTS IN JACK2
Stéphane Letz, Dominique Fober, Yann Orlarey

To cite this version:
Stéphane Letz, Dominique Fober, Yann Orlarey. TIMING MEASUREMENTS IN JACK2. [Technical
Report] GRAME. 2009. �hal-02158923�

https://hal.science/hal-02158923
https://hal.archives-ouvertes.fr

TIMING MEASUREMENTS IN JACK2

S.Letz, D.Fober, Y.Orlarey
Grame - Centre national de création musicale

letz, fober, orlarey@grame.fr

ABSTRACT

Timing measurements allow developers to help under-
standing the behaviour of their JACK based applications.
The server code base now allows to record various tim-
ing while the server and clients are running and generate
scripts to interpret them.

1. INTRODUCTION

When porting JACK2 code base on a new operating sys-
tem, it is often necessary to get a precise knowledge of the
host operating system real-time capabilities. JACK2 now
contains additionnal code that allows to have a better un-
derstanding of the timing behaviour of the server and all
running clients.

2. WHAT IS MEASURED

To activate profiling, the JACK server has to be recom-
piled with special flags. Use the –profile at configure step:
./waf configure –profile. While running, timestamps are
taken for the server and running clients: wake-up date of
audio driver, activation, actual wake-up and end date of
each running client. Client scheduling latency and dura-
tion is also computed. They are saved as a JackEngine-
Profiling.log file containing time points when the server
is closed. 1 Scripts for Gnuplot are also generated. Use
the command: gnuplot -persist Timing1.plot with Tim-
ing1.plot up to Timing5.plot. The scripts also generate
PDF files. A jack profiler internal client allows to see
all measures as audio signals to be analyzed or recorded
with additional tools.

2.1. Audio driver interrupts

Timing1.plot allows to display the audio driver timing, that
is the duration between consecutives interrupts.

When the interrupt period is regular, then the server
asynchronous mode can be safely used (fig 1). On the con-
trary a non regular driver interrupt force to synchronous
mode to be chosen (otherwise the graph may lack time
to finish its execution if duration between 2 consecutive
interrupts is too short) (fig 2).

1 The server has to be closed first to correctly retrieve informations
about the running clients.

 1290

 1300

 1310

 1320

 1330

 1340

 1350

 1360

 1370

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

us
ec

audio cycles

Audio driver timing

Audio period

Figure 1. Audio driver interrupt, at 48 kHz and 64 frames,
average is 1333 usec, interrupt period is regular (with
small variations of about +/- 30 usec)

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 200 400 600 800 1000 1200 1400 1600

us
ec

audio cycles

Audio driver timing

Audio period

Figure 2. Audio driver interrupt, at 44.1 kHz and 64
frames, average is 1451 usec, but interrupt period is not
regular

2.2. Driver end date

Timing2.plot allows to display the audio driver end date.
This measure is interesting to distinguish what happens in
server synchronous versus asynchronous mode. In syn-
chronous mode, the audio cycle is composed of: read au-
dio input buffers, execute the graph, write audio output
buffers. Thus the driver end date takes the graph execu-
tion duration in account (fig 3). 2 In asynchronous mode
on the contrary, the audio cycle is composed of: read au-
dio input buffers, write audio output buffers computed at
previous cycle, execute the graph (fig 4). The driver does

2 The graph here shows several clients launched one by one, the driver
end date then raise after each new client is started.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

us
ec

audio cycles

Driver end date

Driver end date

Figure 3. Driver end date when the server runs in syn-
chronous mode

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10000 20000 30000 40000 50000 60000 70000

us
ec

audio cycles

Driver end date

Driver end date

Figure 4. Driver end date when the server runs in asyn-
chronous mode

not wait for the graph end, but returns immediately after
the write step. Thus the driver end date measures the read
audio input buffers, write audio output buffers parts only.

2.3. Clients end date

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

us
ec

audio cycles

Clients end date

Audio period
jack_simple_client

ethersonik
ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 5. Clients end date

Timing3.plot allows to display the audio driver timing
and all clients end date. This curve gives a global view
of all clients DSP use. The audio interrupt duration is
displayed as well as the end date of all running clients.
The system works correctly if the end date of the last client
is still below the audio interrupt duration (fig 5).

2.4. Clients scheduling latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

us
ec

audio cycles

Clients scheduling

jack_simple_client
ethersonik

ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 6. Clients scheduling latency

Timing4.plot allows to display all client scheduling la-
tencies (difference between activation and actual wake-up
dates). When the application real-time thread becomes
runnable, the global scheduling latency depends on the
fact a core is effectively available in the machine and the
actual OS scheduling latency. Thus this value obviously
depends of the topology of the graph and number of avail-
able cores on the machines on a given setup. To precisely
measure the OS scheduling latency only, the best is to have
a number of clients that is less than the number of avail-
able cores (fig 6).

2.5. Clients duration

 0

 50

 100

 150

 200

 250

 300

 350

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

us
ec

audio cycles

Clients duration

jack_simple_client
ethersonik

ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 7. Clients duration

Timing5.plot allows to display all client duration (dif-
ference between end date and actual wake-up date) (fig
7).

3. REAL-TIME MEASUREMENTS

The jack profiler internal client allows to see all mea-
sures as audio signals. It can be loaded at anytime using
the jack load tool. JACK output ports will be created and
contain timing measures converted in audio signals. At
each audio cycle, the measured value is re-calibrated to be
in the [-1,1] range and copied into the audio buffer (same

value for the entire cycle). Three general output JACK
ports can be added (respectively using the -c, -p, -e pa-
rameters in the jack load parameter line):

• profiler:cpu load: is the DSP CPU load between
0 and 1.

• profiler:driver period: is the driver period varia-
tion expressed at the difference between the actual
driver period and the expected driver period, then
divided by the expected driver period, between -1
and 1.

• profiler:driver end time: is the driver end time
expressed as driver end time divided by the driver
period, between 0 and 1.

For each running client, two additional JACK ports will
appear:

• profiler:”client name”:scheduling: is the client
scheduling duration expressed as the scheduling du-
ration divided by the driver period, between 0 and
1.

• profiler:”client name”:duration: is the client du-
ration expressed as the client duration divided by
the driver period, between 0 and 1.

Measured signals can then be analyzed using additional
real-time displaying tools, or possibly recorded with any
recording application. It could be even possible to sonify
them to detect problematic events by ear.

4. RESULTS ON SOLARIS

The timing measurements tools have been developed in
the context of JACK2 port to Solaris. The set of curves
in this paper have been done on a Dell XPS 420 Intel 4
cores machine running Solaris 10 and using the internal
HD Audio card using OSS 4.0 version. Fig 1 shows the
audio driver interrupts when the server is running using a
64 frames buffer size at 48 kHz, in synchronous mode and
using the highest scheduling priority that can be obtained
(using the following command: jackd -R -S -P 59 -d oss -
p 64). Then fig 2 to 5 shows the different curves obtained
with a highly loaded machine.

4.1. Using Processor Sets

More tests have been done to evaluate the effect of Pro-
cessor Sets. A Processor Set is a group of processors on
which processes can be forced to run. Moreover Interrupt
Sheltering allows to shelter a processor set from unbound
interrupts. A first measure has been done with 3 clients
consuming something like 20% of the available DSP CPU
on a 30 min period (that is 3 clients using 20% DSP CPU
each but running in parallel) with the machine doing a
multi-threaded compilation at the same time. The max-
imum scheduling latency is about 110 usec (fig 8).

 0

 20

 40

 60

 80

 100

 120

 0 100000 200000 300000 400000 500000 600000 700000

us
ec

audio cycles

Clients scheduling

ethersonik
ethersonik-01
ethersonik-02

Figure 8. Clients scheduling latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100000 200000 300000 400000 500000 600000 700000

us
ec

audio cycles

Clients scheduling

ethersonik
ethersonik-01
ethersonik-02

Figure 9. Clients scheduling latency: processor set

Next a processor set is defined with psrset -c 1 2 3 to
set processors 1,2,3 in the processor set 1 (the returned
processor set index, here 1, is used in further commands).
Then psrset -f 1 command puts all processors in the spec-
ified processor set in the P NOINTR state (that is proces-
sor will be available for thread scheduling, but does not
handle network or I/O interrupts and processor 0 is kept
unsheltered to service the system clock interrupt). Pro-
cessor state can be checked using the psrinfo command
and the binding of LW threads in the processor set can be
checked using psrset -Q 1. Any program can be started
on the given processor set using psrset -e 1 command.
The JACK server and 3 clients have been started this way:
psrset -e 1 jackd -R -S -P 59 -d oss -p 128 and psrset -e 1
ethersonik for each 3 client. 3 The maximum scheduling
latency is now lowered to about 80 usec (fig 9).

Still using a processor set, another measure is done
with the machine only loaded with JACK applications (no
more compilation). The average scheduling latency is now
lowered to about 35 usec (fig 10), but they are some schedul-
ing latency peaks when each application starts that proba-
bly correspond to application code warming.

3 Real-Time access for a user can be given using the priocntl -s -c
RT -i uid num command where num is the user uid, then all further
commands will benefit of this capability.

 5

 10

 15

 20

 25

 30

 35

 40

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

us
ec

audio cycles

Clients scheduling

ethersonik
ethersonik-01
ethersonik-02

Figure 10. Clients scheduling latency: warming code ef-
fect

4.2. Parameters setting on Solaris

To obtain the best possible behaviour of the system, the
following points have to be taken in account:

• It appears that the OSS driver does not guaranty a
perfectly regular audio interrupt period, depending
of the driver settings. Thus the synchronous (-S)
mode should be preferably chosen when starting the
server.

• Solaris defines several scheduling classes. The Real-
Time scheduling class goes from 100 to 159 on a
global 0 to 169 scale [2]. The corresponding POSIX
priority to be set in JACK will go from 0 to 59 (-P59
for highest priority).

• The Solaris has quite good Real-Time capabilities,
but as explained before, using Processor sets allows
to decrease the RT threads scheduling latencies and
have a more predictable system. We measured a
maximum scheduling latency of 80 usec in this con-
figuration.

5. CONCLUSION

Timing measurements are definitively of great help to un-
derstand the timing behaviour of a complex system us-
ing several JACK audio applications. It allows to clearly
understand where abnormal latencies are coming from.
More adapted tools like DTrace on Solaris would have to
be used to better understand the reasons. Developed in the
context of JACK2 port on Solaris, the tools show that the
Solaris system has quite good real-time capabilities. This
work has been funded by RTL french radio (EDIRADIO).

6. REFERENCES

[1] Gnuplot homepage, http:/ /www.gnuplot.info

[2] S.Letz, D.Fober, Y.Orlarey, ”Jack audio server
for multi-processor machines, Proceedings of
the International Computer Music Conference
ICMA 2005 Pages 1–4

[3] J.Litchfield, ”Real-time in the Op-
erating Environment Solaris 8”,
http:/ /www.opengroup.org/rtforum/oct2000
/slides/litchfield.pdf

[4] K.Vehmanen, A.Wingo and P.Davis
Jack Design Documentation
http://jackit.sourceforge.net/docs/design/

