
HAL Id: hal-02158922
https://hal.science/hal-02158922v1

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What’s new in JACK2?
Stéphane Letz, Nedko Arnaudov, Romain Moret

To cite this version:
Stéphane Letz, Nedko Arnaudov, Romain Moret. What’s new in JACK2?. Linux Audio Conference,
2009, Parma, Italy. �hal-02158922�

https://hal.science/hal-02158922v1
https://hal.archives-ouvertes.fr


What’s new in JACK2?

Stéphane LETZ
Grame

Centre national de création musicale
France

letz@grame.fr

Nedko ARNAUDOV
Sofia,

Bulgaria,
nedko@arnaudov.name

Romain MORET
PlayAll
France

rmoret@playall.fr

Abstract

JACK2 is the future JACK version based on the
C++ multi-processors Jackdmp version. This pa-
per presents recent developments: the D-Bus based
server control system, NetJack2 the redesigned net-
work components for JACK and profiling tools de-
veloped during port on Solaris.

Keywords

Audio server, D-Bus, real-time, networked audio,
Solaris

1 Introduction

JACK2 is the new JACK version based on
the C++ multi-processor Jackdmp version [1].
Jackdmp development started in 2005 with the
goal to explore data-flow based scheduling of
the client graph on multi-cores machines. A
re-design on the server core was necessary and
various improvements 1 have been implemented
to remove some limitations on the initial model.
D-Bus based control for the server appeared ini-
tially as a patch for JACK1 codebase.

Section 2 describes various internal build im-
provements in the code, section 3 presents the
D-Bus services, section 4 describes NetJack2,
and section 5 new profiling tools developed dur-
ing the port on Solaris (Section 6). Additional
developments are presented section 7 and ideas
for the future in section 8.

2 Code restructuring

Code has been restructured for more flexible ac-
cess to server side and client side code.
2.0.1 Control API on server side
A clean server control API has been defined to:

• get installed backend and get/set all their
parameters.

1lock-free programming techniques for graph access,
”asynchronous/synchronous” server activation modes,
two threads model for audio and notifications process-
ing on client side...

• get installed internal clients and get/set all
their parameters.

• get and set all server control parameters,
start/stop the server.

The server side code is now compiled into
a libjackserver.so dynamic library that ex-
ports the full client API as well as the
new control API. JACK clients can possi-
bly be linked to the libjackserver.so library
and thus embed the JACK server in their
process. For specific use cases, this can
be especially interesting to create and dis-
tribute ”stand-alone” JACK applications. The
original jackd program as well as the new
jackdbus server control program (see section
3.3) are linked to libjackserver.so. 2

2.0.2 Server internal clients
Internal clients API has been slightly extended
to allow Internal Clients to be configured
and loaded using the control API. Using the
D-Bus server control access, internal clients can
be easily activated. The new NetJack2 design
(see section 4.2) is extensively using this model.

3 D-Bus access

D-Bus is an object model that provides IPC
mechanism. D-Bus supports autoactivation of
objects, thus making it simple and reliable to
code a ”single instance” application or daemon,
and to launch applications and daemons on de-
mand when their services are needed.

3.1 Improvements over classical
“jackd” approach

• Simplified single thread model for con-
trol and monitor applications. Various
D-Bus language bindings make it trivial to

2All backend (dummy, alsa, coreaudio, OSS...) are
also linked to libjackserver.so



write control and monitor applications us-
ing scripting languages like Python, Ruby,
Perl, etc..

• A log file is available for inspection even
when autoactivation happens by the first
launched JACK application.

• A real configuration file is used to persist
settings to be manipulated through config-
uration interface of JACK D-Bus object.

• Improved graph inspection and control
mechanism. JACK graph is versioned.
Connections, ports and clients have unique
(monotonically increasing) numeric IDs.

• High level abstraction of JACK settings.
Allows applications that can configure
JACK to expose parameters that were not
known at compile (or tarball release) time.
Recent real world examples are the JACK
MIDI driver parameters and support for
FFADO driver in QJackCtl. Upgrading of
JACK requires upgrade of QJackCtl in or-
der to make new settings available in the
GUI.

3.2 How it works
3.2.1 Autoactivation and

starting/stopping JACK server
First, application that issues D-Bus method
call to JACK controller object, causes
D-Bus session daemon to activate the ob-
ject by starting the jackdbus executable.
Activating controller object does not start
the server. Instead controller object has
several interfaces. The most important of
them is the control interface. Control interface
contains methods for starting and stopping
JACK server, loading and unloading of internal
clients (netjack), setting buffer size and reset-
ting xrun counter. It also contains methods for
querying information required by monitoring
applications: whether JACK server is started,
whether JACK server is running in realtime
mode, sample rate, DSP load, current buffer
size, latency, xrun counter.

JACK server autostart is achieved by lib-
jack calling “jack server start” method of
JACK control D-Bus interface.
3.2.2 JACK settings
Applications that want to manage
JACK settings can query and set all set-
tings that were traditionally specified as
jackd command-line parameters. Interface

abstraction provides virtual tree of parameter
containers with container leaves that contain
parameters. Parameters are accessed using
simple addressing scheme (array of strings)
where address defines path to parameter, like
“drivers”, “alsa”, “dither”.

Overview of the tree of standard settings’ ad-
dresses:

• ”engine”

• ”engine”, ”driver”

• ”engine”, ”realtime”

• ”engine”, ...more engine parameters

• ”driver”, ”device”

• ”driver”, ...more driver parameters

• ”drivers”, ”alsa”, ”device”

• ”drivers”, ”alsa”, ...more alsa driver pa-
rameters

• ”drivers”, ...more drivers

• ”internals”, ”netmanager”, ”multicast ip”

• ”internals”, ”netmanager”, ...more net-
manager parameters

• ”internals”, ...more internals

JACK settings are persisted. I.e. they are au-
tomatically saved by jackdbus when they are
set. Next time user starts JACK server, last
saved settings will be automatically used.

Changing JACK settings through the con-
figure D-Bus interface takes effect on next
JACK server start. On the fly change of
the buffer size, as available in the libjack
(jack.h) API, is also possible through the con-
trol D-Bus interface.
3.2.3 JACK parameter constraints
JACK internal modules that provide parame-
ters visible through control API can provide
information about parameter valid range (like
realtime priority) or whether parameter should
be presented as enumeration. Enumeration pa-
rameters can be strict and non-strict. Exam-
ple of strict enum parameter is dither parame-
ter of ALSA driver, it has only predefined valid
values - “shaped noise”, “rectangular”, “trian-
gualr” and “none”. Example of non-strict pa-
rameter is device parameter of ALSA driver. It
is useful to provide some detected device strings
as choices to user, but still allow user to specify
custom string that ALSA layer is supposed to
understand.



3.2.4 JACK patchbay
In order to simplify patchbay applications, ex-
tended functionality is provided. There is a
method that returns the current graph state.
Graph state has unique monotonically increas-
ing version number and contains info about all
clients, their ports and connections. Connec-
tions, ports and clients have unique numeric IDs
that are guaranteed not to be reused. Notifica-
tions about graph changes are provided using
D-Bus signals.

3.3 JACK D-Bus enabled applications

• JACK contains “jack control” executable
- a 300 lines of Python exposing
JACK D-Bus functionality. It allows
chained execution of several commands.
For example jack control ds alsa dps
midi-driver raw eps realtime on
eps relatime-priority 70 start se-
lects ALSA driver, enables JACK MIDI
raw backend, enables realtime mode,
sets realtime priority to 70 and starts
JACK server.

• LADI Tools is a set of programs to config-
ure, control and monitor JACK . It pro-
vides tray icon, Window Maker style dock-
app, G15 keyboard LCD display integra-
tion application, configuration utility for
managing JACK settings and log file mon-
itor application. All tools are written in
Python.

• Patchage, the ubiquitous canvas modu-
lar patch bay can be compiled to use
D-Bus instead of libjack to communicate
with JACK . Doing so also enables
JACK server start/stop functionality in
Patchage.

• LASH, recent developments of the audio
session handler by default use D-Bus to
communicate with JACK . Various
JACK related features are planned:

– Saving of JACK settings as part of
“studio” session.

– Handling of “JACK server crash”
scenario: restarting JACK server,
notifying JACK applications that
JACK server reappeared so they
can reconnect to it, and restoring
JACK connections.

3.4 Portability

While D-Bus implementations exist at least for
Windows and OSX platforms, D-Bus is not a
central part of their desktop environments and
thus using jackdbus on those operating sys-
tems will probably cause more problems than
it is supposed to solve.

4 NetJack2

4.1 Introduction

NetJack2 is a feature allowing the use of
JACK2 over a local network. It is not really
a port of NetJack to JACK2 but can be seen
like a refactoring of the main idea: send and re-
ceive audio, midi or transport data over a net-
work while staying in the Jack real-time audio
context. The differences between NetJack and
NetJack2 are mainly about the global architec-
ture and network processing (how to slice data
into network packets and how to optimize the
network bandwidth use).

4.2 Architecture

NetJack2 is designed around a Master/Slave ar-
chitecture involving two components. The mas-
ter is an internal client (see Section 2.02) and
the slave is a classical JACK server running the
Net Backend. Those two components are built
as two dynamic libraries, netmanager.so and
jack net.so (or .dll under Windows), which are
both linked with the main JACK server library.
This architecture allows several slaves to be cap-
tured and running under a single master with-
out any other need of configuration.

• Master: the master is a classical
JACK server, driven by an audio back-
end (ALSA, CoreAudio, OSS or PortAu-
dio) and where an internal client called the
NetManager is running. This NetManager
is just a ’logistical’ component which just
creates and removes classical JACK clients
in the server as the Slaves appear and dis-
appear.

• Slave: the slave is a classical JACK server,
driven by the Net Backend. This specific
backend isn’t controlling an audio device,
that means the backend’s read/write oper-
ations aren’t executed on some audio hard-
ware, but on a network interface (wireless
is not supported because it doesn’t really
offer real-time networking capabilities).



4.2.1 Multicast communications and
NetManager

NetJack2 is based upon the principle that two
computers must be able to ’connect’ themselves
without knowing the parameters by advance.
In NetJack2 , slaves are fully configured by the
master. The global initialization process is thus
quite simple:

1. The slave starts multicasting it’s availabil-
ity on the network by communicating its
capabilities (number of available channels)
to anyone who wants to hear it

2. The master catches the message and gives
back to the slave a full set of parameters
(samplerate, backend buffer size...)

3. The slave receives it and starts the stream
exchange

4. Bi-directional communication is now run-
ning, and the slave is fully synched on the
master’s incoming network stream

Lets see how this exchange begins...
Multicast communications This first ini-
tialization step is done over a Multicast group,
thus the slave doesn’t have to know the mas-
ter’s address, or even configuration. A newly
incoming slave just has to send its ’availability’
message to the Multicast group, and if a mas-
ter is listening to this Multicast group, it will
automatically starts the transmission.
NetManager component The NetManager
component is dealing with the initialization
phase. The NetManager doesn’t manipulate au-
dio or midi signals, it just listens to the Multi-
cast group and creates or destroy Masters as
Slaves come and go. This component is seen
by JACK as an internal client, that means this
client is loaded in the JACK server context,
using the specifically designed API and util-
ity (jack load executable). But it can also be
loaded and managed by the jack control system.

4.3 Real-time networking
NetJack2 Provides real-time network capabili-
ties. Audio (or midi or transport) data use net-
work streams as if those streams were classical
’jackified’ applications. The main difficulty of
such a concept is to handle real-time network-
ing. Connecting two computers in a simple net-
work implies some constraints: packets losses,
random transmission delay, routing issues, dis-
connection timeout management etc. Reducing

those constraints to keep a real-time transmis-
sion means compromises.

First, we can’t afford a total secured trans-
mission, using secured protocol such as TCP for
instance. TCP can not be used as a real-time
protocol because it involves acknowledgment for
each sent packet, automatic re-emission in case
of packet loss, what automatically discard such
a protocol for a true real-time audio transmis-
sion. That’s why NetJack2 uses a very simple
way to exchange streams: the UDP protocol.
NetJack2 main principle is very simple, so the
best way to handle it is to choose a quite low
level layer of network communication protocols,
and just add the few things we need to it. By
using UDP, we just get a very simple and highly
configurable way to exchange data.

The second main aspect is to consider time.
In a network transmission, transmission delays
are reflected by the bandwidth notion. The
bandwidth is the amount of data we can trans-
mit in a certain amount of time. For real-time
transmission, that means the higher the band-
width is, the quickest we receive our data on the
distant computer. Increasing bandwidth means
reducing transmission delay. That principle is
very simple and linear: a gigabyte networking
infrastructure is ten time faster than a 100mb
network. The bandwidth use optimization ap-
pears as a major aspect to take care of. That’s
why NetJack2 splits data into packets that are
maximum sized (the maximum size of a packet
is given by the network MTU). Dealing with
larger packets increase the network’s speed use,
but it also minimizes packets losses.

The third aspect of real-time networking is
the fact that a network has a very random-
ized timing behavior, which is not only depend-
ing on the two connected computers. Routers,
firewalls and other networking devices add ran-
dom unpredictable transmission delay. In real-
time audio, we can’t wait longer than a given
amount of time (one audio cycle for example).
NetJack2 extensively use the timeout notion on
all its internal networking transmission. If we
consider we can’t wait for data over than a cy-
cle length, the best way to keep synced in time
is to skip data that were not received on time.

4.4 Network modes and latency

NetJack2 doesn’t have one only functional
mode. It actually has three ’networking’ modes:
fast, normal and slow. What those modes con-
trol is in fact the total time latency the network



will add. The use of one mode or another is in
fact depending on what the user wants to do.
4.4.1 Fast mode
In fast mode, the whole system (composed by
the two connected computers) will not add ex-
tra latency. In a cycle number n, the mas-
ter will send its data, the slave is supposed
to receive it, produce its own data, and send
it back to the master in the same cycle. Ev-
erything happens just as if the slave was a
classical JACK client plugged into the master’s
JACK server. The fast mode is designed for
fast network, with a small amount of data to
exchange (only a few audio channels for ex-
ample), and a small amount of processing on
the slave’side, because data are expected in the
same audio cycle (that means we consider the
network transmission time to be significantly
less than the cycle length). The fast mode can
be quite unstable because it uses a long timeout,
allowing NetJack2 to use 100% of the available
CPU time.
4.4.2 Normal mode
The normal mode takes into account the net-
work, and add one extra-latency cycle, corre-
sponding to the use of the full available band-
width. The master send its data in the current
n cycle, and expect return data from the slave in
the n+1 cycle. Don’t forget the slave is a back-
end, and as a backend, it has two ’processing’
modes: sync or async. Thus, in async mode, the
slave will send the previous ’n-1’ cycle data just
after receiving the current n cycle. That means
in this mode (async), we just don’t take into
account the slave’s processing time and data
are sent with no additional delay. The normal
mode use a small timeout, considering data has
to be available very quickly (because of the ex-
tra latency cycle). This mode doesn’t ’block’
JACK processing while waiting for data.
4.4.3 Slow mode
The slow mode adds two extra-latency cycles.
This mode has been introduced for an exten-
sive use of the network with a lot of processing
running on the slave. It can be very useful in
a multitrack production context, because trans-
port (play/stop, position), which is also sent in
NetJack2 , includes latency management, so the
whole network will start ’simultaneously’ (that
means the ’fastest’ JACK client will start in the
cycle within which all data are available.
4.4.4 Conclusion
We can resume those three mode quite simply:

• only a few channel to exchange on a fast
network, the fast mode can be very pleas-
ant because it doesn’t add extra-latency

• normal use of the network (up to 48 chan-
nels at 48kHz on a 100mb network), normal
mode will guarantee a very small amount of
packet loss (probably no loss if the network
is stable)

• huge use of network and processing: the
slow mode is the most ’secured’ (the mas-
ter doesn’t wait for the slave’s return data
before two cycles, giving the slave the net-
work the time to transport data and the
slave the time to process it)

4.5 Measurements
JACK can be compiled with the possibility of
monitoring NetJack2 networking activity, thus
allowing accurate measurements about what’s
going on between the master and the slave.
Those measurements are a pretty good way to
understand what is behind the different avail-
able networking modes.

This profiling system keeps a track of sev-
eral timings, and the results can be exploited to
get an approximation of NetJack2 ’s CPU con-
sumption.

Because those measurements are quite uneasy
to dissect and explain, more explanation will be
available on the JACK wiki.

4.6 Adapters components
Adapters components allow to adapt the net-
work stream synced on the master machine
clock, in order to be played on the slave ma-
chine.
4.6.1 AudioAdapter
When the slave machine is using the Net Back-
end and if the user wants to listen to the net-
work stream on the slave audio card, the net-
work stream has to be ”adapted”, since the two
audio cards may run at different buffer size,
sample rate and their clocks are typically not
synchronized. This is done using an in server
client called audioadapter, which ajust the mas-
ter sample rate and buffer size to the slave
audio card sample rate and buffer size. Au-
dioadapter components are using an interme-
diate ring-buffer and the libsamplerate library
3 to resampled the stream when needed. They
have been developed on each platform using the
available native audio API: CoreAudio on OSX,

3http://www.mega-nerd.com/SRC/



ALSA on Linux, PortAudio on Window and
OSS an Solaris.
4.6.2 NetAdapter
When the slave machine is using a regular au-
dio backend and if the user still wants to receive
a stream from the network, the netadapter in
server client can be used. This component has
basically the same behaviour as the Net Back-
end but also adapt the master sample rate and
buffer size to the possibly different slave audio
card sample rate and buffer size.

4.7 NetJack2 conclusion
NetJack2 is an easy way to exchange audio,
midi or transport control data over a network
in a realtime context. This component is work-
ing so far, and it will be improved in the future.
NetJack2 is currently available with JACK2 ,
and a few documentation can be found on the
JACK wiki4.

5 Profiling tools

Timing measurements allow developers to
help understanding the behaviour of their
JACK based applications. The server code base
now allows to record various timing while the
server and clients are running and generates
scripts to interpret them.

While running, timestamps are taken for the
server and running clients: wake-up date of au-
dio driver, activation, actual wake-up and end
date of each running client. Client schedul-
ing latency and duration are also computed.
They are saved as a JackEngineProfiling.log
file containing time points when the server is
closed. Scripts for Gnuplot are also gener-
ated. Use the command: gnuplot -persist
Timing1.plot with Timing1.plot up to Tim-
ing5.plot. The scripts also generate PDF files.
A jack profiler internal client allows to see
all measures as audio signals to be analyzed or
recorded with additional tools.

5.1 Audio driver interrupts
Timing1.plot allows to display the audio driver
timing, that is the duration between consecu-
tives interrupts.

The JACK2 server can run in two different
graph scheduling mode: in synchronous mode,
the audio cycle is composed of: read audio input
buffers, execute the graph, write audio output
buffers. In asynchronous mode on the contrary,

4trac.jackaudio.org/wiki/WalkThrough/User/
NetJack2

 1290

 1300

 1310

 1320

 1330

 1340

 1350

 1360

 1370

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

us
ec

audio cycles

Audio driver timing

Audio period

Figure 1: Audio driver interrupt, at 48 kHz and
64 frames, average is 1333 usec, interrupt pe-
riod is regular, with small variations of about
+/- 30 usec. (Vertical axis shows duration in
usec and horizontal axis the number of audio
cycles.)

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0  200  400  600  800  1000  1200  1400  1600

us
ec

audio cycles

Audio driver timing

Audio period

Figure 2: Audio driver interrupt, at 44.1 kHz
and 64 frames, average is 1451 usec, but inter-
rupt period is not regular

the audio cycle is composed of: read audio in-
put buffers, write audio output buffers computed
at previous cycle, execute the graph. When the
interrupt period is regular, then the server asyn-
chronous mode can be safely used (fig 1). On
the contrary a non regular driver interrupt force
to synchronous mode to be chosen (otherwise
the graph may lack time to finish its execution
if duration between 2 consecutive interrupts is
too short) (fig 2).

5.2 Driver end date
Timing2.plot allows to display the audio driver
end date. This measure is interesting to distin-
guish what happens in server synchronous ver-
sus asynchronous mode. In synchronous mode,
the driver end date takes the graph execution
duration in account (fig 3). 5 In asynchronous

5The graph here shows several clients launched one



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

us
ec

audio cycles

Driver end date

Driver end date

Figure 3: Driver end date when the server runs
in synchronous mode: the date raises each time
a new client is launched.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  10000  20000  30000  40000  50000  60000  70000

us
ec

audio cycles

Driver end date

Driver end date

Figure 4: Driver end date when the server
runs in asynchronous mode: the date stay ap-
proximatively constant when new clients are
launched, since it only depends of cumulated
read and write durations.

mode, the driver does not wait for the graph
end, but returns immediately after the write
step. Thus the driver end date measures the
read audio input buffers, write audio output
buffers parts only (fig 4).

5.3 Clients end date
Timing3.plot allows to display the audio driver
timing and all clients end date. This curve gives
a global view of all clients DSP use. The audio
interrupt duration is displayed as well as the end
date of all running clients. The system works
correctly if the end date of the last client is still
below the audio interrupt duration (fig 5).

5.4 Clients scheduling latency
Timing4.plot allows to display all client schedul-
ing latencies (difference between activation and
actual wake-up dates). When the application

by one, the driver end date then raise after each new
client is started.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

us
ec

audio cycles

Clients end date

Audio period
jack_simple_client

ethersonik
ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 5: Clients end date

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

us
ec

audio cycles

Clients scheduling

jack_simple_client
ethersonik

ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 6: Clients scheduling latency

real-time thread becomes runnable, the global
scheduling latency depends on the fact a core
is effectively available in the machine and the
actual OS scheduling latency. Thus this value
obviously depends of the topology of the graph
and number of available cores on the machines
on a given setup. To precisely measure the OS
scheduling latency only, the best is to have a
number of clients that is less than the number
of available cores (fig 6).

5.5 Clients duration

 0

 50

 100

 150

 200

 250

 300

 350

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

us
ec

audio cycles

Clients duration

jack_simple_client
ethersonik

ethersonik-01
ethersonik-02
ethersonik-03
ethersonik-04
ethersonik-05
ethersonik-06
ethersonik-07
ethersonik-08
ethersonik-09

Figure 7: Clients duration



Timing5.plot allows to display all client du-
ration (difference between end date and actual
wake-up date) (fig 7).

5.6 Real-time measurements
The jack profiler internal client allows to
see all measures as audio signals. It can be
loaded at anytime using the jack load tool.
JACK output ports will be created and con-
tain timing measures converted in audio signals.
At each audio cycle, the measured value is re-
calibrated to be in the [-1,1] range and copied
into the audio buffer (same value for the entire
cycle). Three general output JACK ports can
be added (respectively using the -c, -p, -e pa-
rameters in the jack load parameter line):

• profiler:cpu load: is the DSP CPU load
between 0 and 1.

• profiler:driver period: is the driver pe-
riod variation expressed at the difference
between the actual driver period and the
expected driver period, then divided by the
expected driver period, between -1 and 1.

• profiler:driver end time: is the driver
end time expressed as driver end time di-
vided by the driver period, between 0 and
1.

For each running client, two additional
JACK ports will appear:

• profiler:”client name”:scheduling: is
the client scheduling duration expressed
as the scheduling duration divided by the
driver period, between 0 and 1.

• profiler:”client name”:duration: is the
client duration expressed as the client dura-
tion divided by the driver period, between
0 and 1.

6 Solaris port

The french radio RTL aims at developing it’s
future digital radio using a JACK based sys-
tem, hosting a set of audio applications: playlist
manager, audio effects (compressor...), real-
time signal analysis components (speaker recog-
nition for instance), encoding and web broad-
casting... on a Solaris system, when most of
their audio files data base management tools
are already running. The timing measurements
tools have been developed to characterize the
real-time behaviour of this system in several
setups. The set of curves in this paper have

been done on a Dell XPS 420 Intel 4 cores ma-
chine running Solaris 10 and using the inter-
nal HD Audio card using OSS 4.0 version. Fig
1 shows the audio driver interrupts when the
server is running using a 64 frames buffer size
at 48 kHz, in synchronous mode and using the
highest scheduling priority that can be obtained
(using the following command: jackd -R -S -P
59 -d oss -p 64). Then fig 2 to 5 shows the
different curves obtained with a highly loaded
machine. Using the profiling tools we were able
to conclude that:

• It appears that the OSS driver does not
guaranty a perfectly regular audio inter-
rupt period, depending of the driver set-
tings. Thus the synchronous (-S) mode
should be preferably chosen when starting
the server.

• Solaris defines several scheduling classes.
The Real-Time scheduling class goes from
100 to 159 on a global 0 to 169 scale. The
corresponding POSIX priority to be set in
JACK will go from 0 to 59 (-P59 for high-
est priority).

• The Solaris has quite good Real-Time capa-
bilities [2], and we found that using Proces-
sor sets allows to decrease the RT threads
scheduling latencies and have a more pre-
dictable system. We measured a maximum
scheduling latency of 80 usec in this config-
uration.

7 Additional developments

7.1 Better Windows port
On Windows, the JACK code base was ini-
tially compiled using Microsoft VC++ tools.
All projects have been converted to use the free
CodeBlock and MinGW 6 environments.

7.2 Testing and debugging tools
Different tools have been implemented to help
developers when coding JACK based applica-
tions. Profiling tools has already been presented
in section 5. Two more are available:

7.2.1 Checking JACK API
The correctness of JACK API can be tested us-
ing jack test tool. This program will open
JACK clients, test various aspects of the API:
registering ports, setting callbacks, activating
the client... Real-time communication between

6see www.codeblocks.org and www.mingw.org



two clients is also tested as well as Transport
API.

7.2.2 Checking use of JACK API
When launching JACK applications, a
JACK CLIENT DEBUG environment
variable can be set 7 to launch the client in
debug mode: all calls to the API are traced
and a log file is generated. Correct use of the
API will be checked (opened clients should be
closed, activated clients should be deactivated,
port registration/unregistration matches is
verified...)

8 Blue sky for singing penguins
living on the planet JACK

The future could (and probably should) try to
solve some problems that are getting bigger
with increasing popularity of JACK :

• There can be better handling of misbe-
having JACK clients. Is it wise to allow
clients to change parameters that will dis-
rupt JACK operation? Today, obnoxious
clients auto-connect without allowing con-
figuration. Tomorrow, what if a client
thinks it must reset the sample rate or the
period size because of cutting corners in
the dsp code? The Access Control Lists
(ACL) looks like obvious and traditional
solution but applying it to JACK domain
may lead to quite complex implementation
because of authentication that needs to
preceed even simplest authorization checks.

• Developing a control application based on
OSC could be quite interesting, allowing
access and control of any JACK server on
the network.

• MIDI backends: interfacing JACK MIDI
with the native MIDI API on each plar-
fom (CoreMidi on OSX, ALSA Midi on
Linux and WinMME on Windows) has to
be done.

9 Acknowledgements

Juuso Alasuutari has significally contributed to
jackdbus for JACK1 and Marc-Olivier Barre
contributed to jackdbus by making it use XDG
compliant directories.

Work on profiling tools and Solaris port has
been funded by RTL french radio (EDIRADIO).

7using ”export JACK CLIENT DEBUG = on”

References

[1] Stephane Letz, Dominique Fober, and Yann
Orlarey. jackdmp: Jack server for multi-
processor machines. Linux Audio Confer-
ence, 2005.

[2] J Litchfield. Real-time in the Op-
erating Environment Solaris 8.
http://www.opengroup.org/rtforum/oct2000
/slides/litchfield.pdf, 2008.


