Stéphane Letz Grame 
  
Romain Moret 
email: rmoret@playall.fr
  
  
  
  
What's new in JACK2?

Keywords: Audio server, D-Bus, real-time, networked audio, Solaris

JACK2 is the future JACK version based on the C++ multi-processors Jackdmp version. This paper presents recent developments: the D-Bus based server control system, NetJack2 the redesigned network components for JACK and profiling tools developed during port on Solaris.

Introduction

JACK2 is the new JACK version based on the C++ multi-processor Jackdmp version [1]. Jackdmp development started in 2005 with the goal to explore data-flow based scheduling of the client graph on multi-cores machines. A re-design on the server core was necessary and various improvements [START_REF] Letz | jackdmp: Jack server for multiprocessor machines[END_REF] have been implemented to remove some limitations on the initial model. D-Bus based control for the server appeared initially as a patch for JACK1 codebase.

Section 2 describes various internal build improvements in the code, section 3 presents the D-Bus services, section 4 describes NetJack2, and section 5 new profiling tools developed during the port on Solaris (Section 6). Additional developments are presented section 7 and ideas for the future in section 8.

Code restructuring

Code has been restructured for more flexible access to server side and client side code. 2.0.1 Control API on server side A clean server control API has been defined to:

• get installed backend and get/set all their parameters.

• get installed internal clients and get/set all their parameters.

• get and set all server control parameters, start/stop the server.

The server side code is now compiled into a libjackserver.so dynamic library that exports the full client API as well as the new control API. JACK clients can possibly be linked to the libjackserver.so library and thus embed the JACK server in their process.

For specific use cases, this can be especially interesting to create and distribute "stand-alone" JACK applications. The original jackd program as well as the new jackdbus server control program (see section 3.3) are linked to libjackserver.so. [START_REF] Litchfield | Real-time in the Operating Environment Solaris 8[END_REF] 

Server internal clients

Internal clients API has been slightly extended to allow Internal Clients to be configured and loaded using the control API. Using the D-Bus server control access, internal clients can be easily activated. The new NetJack2 design (see section 4.2) is extensively using this model.

D-Bus access

D-Bus is an object model that provides IPC mechanism. D-Bus supports autoactivation of objects, thus making it simple and reliable to code a "single instance" application or daemon, and to launch applications and daemons on demand when their services are needed.

Improvements over classical

"jackd" approach

• Simplified single thread model for control and monitor applications. Various D-Bus language bindings make it trivial to write control and monitor applications using scripting languages like Python, Ruby, Perl, etc..

• A log file is available for inspection even when autoactivation happens by the first launched JACK application.

• A real configuration file is used to persist settings to be manipulated through configuration interface of JACK D-Bus object. Interface abstraction provides virtual tree of parameter containers with container leaves that contain parameters. Parameters are accessed using simple addressing scheme (array of strings) where address defines path to parameter, like "drivers", "alsa", "dither". Overview of the tree of standard settings' addresses:

• "engine"

• "engine", "driver"

• "engine", "realtime"

• "engine", ...more engine parameters

• "driver", "device"

• "driver", ...more driver parameters • "drivers", "alsa", "device"

• "drivers", "alsa", ...more alsa driver parameters

• "drivers", ...more drivers

• "internals", "netmanager", "multicast ip"

• "internals", "netmanager", ...more netmanager parameters

• "internals", ...more internals JACK settings are persisted. I.e. they are automatically saved by jackdbus when they are set. Next time user starts JACK server, last saved settings will be automatically used.

Changing JACK settings through the configure D-Bus interface takes effect on next JACK server start.

On the fly change of the buffer size, as available in the libjack (jack.h) API, is also possible through the control D-Bus interface. 3.2.3 JACK parameter constraints JACK internal modules that provide parameters visible through control API can provide information about parameter valid range (like realtime priority) or whether parameter should be presented as enumeration. Enumeration parameters can be strict and non-strict. Example of strict enum parameter is dither parameter of ALSA driver, it has only predefined valid values -"shaped noise", "rectangular", "triangualr" and "none". Example of non-strict parameter is device parameter of ALSA driver. It is useful to provide some detected device strings as choices to user, but still allow user to specify custom string that ALSA layer is supposed to understand.

JACK patchbay

In order to simplify patchbay applications, extended functionality is provided. There is a method that returns the current graph state. Graph state has unique monotonically increasing version number and contains info about all clients, their ports and connections. Connections, ports and clients have unique numeric IDs that are guaranteed not to be reused. Notifications about graph changes are provided using D-Bus signals. • Patchage, the ubiquitous canvas modular patch bay can be compiled to use D-Bus instead of libjack to communicate with JACK . Doing so also enables JACK server start/stop functionality in Patchage.

JACK D-Bus enabled applications

• LASH, recent developments of the audio session handler by default use D-Bus to communicate with JACK . Various JACK related features are planned:

-Saving of JACK settings as part of "studio" session.

-Handling of "JACK server crash" scenario: restarting JACK server, notifying JACK applications that JACK server reappeared so they can reconnect to it, and restoring JACK connections.

Portability

While D-Bus implementations exist at least for Windows and OSX platforms, D-Bus is not a central part of their desktop environments and thus using jackdbus on those operating systems will probably cause more problems than it is supposed to solve.

NetJack2

Introduction

NetJack2 is a feature allowing the use of JACK2 over a local network. It is not really a port of NetJack to JACK2 but can be seen like a refactoring of the main idea: send and receive audio, midi or transport data over a network while staying in the Jack real-time audio context. The differences between NetJack and NetJack2 are mainly about the global architecture and network processing (how to slice data into network packets and how to optimize the network bandwidth use).

Architecture

NetJack2 is designed around a Master/Slave architecture involving two components. The master is an internal client (see Section 2.02) and the slave is a classical JACK server running the Net Backend. Those two components are built as two dynamic libraries, netmanager.so and jack net.so (or .dll under Windows), which are both linked with the main JACK server library. This architecture allows several slaves to be captured and running under a single master without any other need of configuration.

• Master:

the master is a classical JACK server, driven by an audio backend (ALSA, CoreAudio, OSS or PortAudio) and where an internal client called the NetManager is running. This NetManager is just a 'logistical' component which just creates and removes classical JACK clients in the server as the Slaves appear and disappear.

• Slave: the slave is a classical JACK server, driven by the Net Backend. This specific backend isn't controlling an audio device, that means the backend's read/write operations aren't executed on some audio hardware, but on a network interface (wireless is not supported because it doesn't really offer real-time networking capabilities).

Multicast communications and NetManager

NetJack2 is based upon the principle that two computers must be able to 'connect' themselves without knowing the parameters by advance. In NetJack2 , slaves are fully configured by the master. The global initialization process is thus quite simple: First, we can't afford a total secured transmission, using secured protocol such as TCP for instance. TCP can not be used as a real-time protocol because it involves acknowledgment for each sent packet, automatic re-emission in case of packet loss, what automatically discard such a protocol for a true real-time audio transmission. That's why NetJack2 uses a very simple way to exchange streams: the UDP protocol. NetJack2 main principle is very simple, so the best way to handle it is to choose a quite low level layer of network communication protocols, and just add the few things we need to it. By using UDP, we just get a very simple and highly configurable way to exchange data.

The second main aspect is to consider time. In a network transmission, transmission delays are reflected by the bandwidth notion. The bandwidth is the amount of data we can transmit in a certain amount of time. For real-time transmission, that means the higher the bandwidth is, the quickest we receive our data on the distant computer. Increasing bandwidth means reducing transmission delay. That principle is very simple and linear: a gigabyte networking infrastructure is ten time faster than a 100mb network. The bandwidth use optimization appears as a major aspect to take care of. That's why NetJack2 splits data into packets that are maximum sized (the maximum size of a packet is given by the network MTU). Dealing with larger packets increase the network's speed use, but it also minimizes packets losses.

The third aspect of real-time networking is the fact that a network has a very randomized timing behavior, which is not only depending on the two connected computers. Routers, firewalls and other networking devices add random unpredictable transmission delay. In realtime audio, we can't wait longer than a given amount of time (one audio cycle for example). NetJack2 extensively use the timeout notion on all its internal networking transmission. If we consider we can't wait for data over than a cycle length, the best way to keep synced in time is to skip data that were not received on time.

Network modes and latency

NetJack2 doesn't have one only functional mode. It actually has three 'networking' modes: fast, normal and slow. What those modes control is in fact the total time latency the network will add. The use of one mode or another is in fact depending on what the user wants to do.

Fast mode

In fast mode, the whole system (composed by the two connected computers) will not add extra latency. In a cycle number n, the master will send its data, the slave is supposed to receive it, produce its own data, and send it back to the master in the same cycle. Everything happens just as if the slave was a classical JACK client plugged into the master's JACK server. The fast mode is designed for fast network, with a small amount of data to exchange (only a few audio channels for example), and a small amount of processing on the slave'side, because data are expected in the same audio cycle (that means we consider the network transmission time to be significantly less than the cycle length). The fast mode can be quite unstable because it uses a long timeout, allowing NetJack2 to use 100% of the available CPU time.

Normal mode

The normal mode takes into account the network, and add one extra-latency cycle, corresponding to the use of the full available bandwidth. The master send its data in the current n cycle, and expect return data from the slave in the n+1 cycle. Don't forget the slave is a backend, and as a backend, it has two 'processing' modes: sync or async. Thus, in async mode, the slave will send the previous 'n-1' cycle data just after receiving the current n cycle. That means in this mode (async), we just don't take into account the slave's processing time and data are sent with no additional delay. The normal mode use a small timeout, considering data has to be available very quickly (because of the extra latency cycle). This mode doesn't 'block' JACK processing while waiting for data.

Slow mode

The slow mode adds two extra-latency cycles. This mode has been introduced for an extensive use of the network with a lot of processing running on the slave. It can be very useful in a multitrack production context, because transport (play/stop, position), which is also sent in NetJack2 , includes latency management, so the whole network will start 'simultaneously' (that means the 'fastest' JACK client will start in the cycle within which all data are available.

Conclusion

We can resume those three mode quite simply:

• only a few channel to exchange on a fast network, the fast mode can be very pleasant because it doesn't add extra-latency

• normal use of the network (up to 48 channels at 48kHz on a 100mb network), normal mode will guarantee a very small amount of packet loss (probably no loss if the network is stable)

• huge use of network and processing: the slow mode is the most 'secured' (the master doesn't wait for the slave's return data before two cycles, giving the slave the network the time to transport data and the slave the time to process it)

Measurements

JACK can be compiled with the possibility of monitoring NetJack2 networking activity, thus allowing accurate measurements about what's going on between the master and the slave.

Those measurements are a pretty good way to understand what is behind the different available networking modes. This profiling system keeps a track of several timings, and the results can be exploited to get an approximation of NetJack2 's CPU consumption.

Because those measurements are quite uneasy to dissect and explain, more explanation will be available on the JACK wiki.

Adapters components

Adapters components allow to adapt the network stream synced on the master machine clock, in order to be played on the slave machine.

AudioAdapter

When the slave machine is using the Net Backend and if the user wants to listen to the network stream on the slave audio card, the network stream has to be "adapted", since the two audio cards may run at different buffer size, sample rate and their clocks are typically not synchronized. This is done using an in server client called audioadapter, which ajust the master sample rate and buffer size to the slave audio card sample rate and buffer size. Audioadapter components are using an intermediate ring-buffer and the libsamplerate library3 to resampled the stream when needed. They have been developed on each platform using the available native audio API: CoreAudio on OSX,

NetAdapter

When the slave machine is using a regular audio backend and if the user still wants to receive a stream from the network, the netadapter in server client can be used. This component has basically the same behaviour as the Net Backend but also adapt the master sample rate and buffer size to the possibly different slave audio card sample rate and buffer size.

NetJack2 conclusion

NetJack2 is an easy way to exchange audio, midi or transport control data over a network in a realtime context. This component is working so far, and it will be improved in the future. NetJack2 is currently available with JACK2 , and a few documentation can be found on the JACK wiki 4 .

Profiling tools

Timing measurements allow developers to help understanding the behaviour of their JACK based applications. The server code base now allows to record various timing while the server and clients are running and generates scripts to interpret them.

While running, timestamps are taken for the server and running clients: wake-up date of audio driver, activation, actual wake-up and end date of each running client. Client scheduling latency and duration are also computed. They are saved as a JackEngineProfiling.log file containing time points when the server is closed. Scripts for Gnuplot are also generated. Use the command: gnuplot -persist Timing1.plot with Timing1.plot up to Tim-ing5.plot. The scripts also generate PDF files. A jack profiler internal client allows to see all measures as audio signals to be analyzed or recorded with additional tools.

Audio driver interrupts

Timing1.plot allows to display the audio driver timing, that is the duration between consecutives interrupts.

The JACK2 server can run in two different graph scheduling mode: in synchronous mode, the audio cycle is composed of: read audio input buffers, execute the graph, write audio output buffers. In asynchronous mode on the contrary, 4 trac.jackaudio.org/wiki/WalkThrough/User/ NetJack2 the audio cycle is composed of: read audio input buffers, write audio output buffers computed at previous cycle, execute the graph. When the interrupt period is regular, then the server asynchronous mode can be safely used (fig 1). On the contrary a non regular driver interrupt force to synchronous mode to be chosen (otherwise the graph may lack time to finish its execution if duration between 2 consecutive interrupts is too short) (fig 2).

Driver end date

Timing2.plot allows to display the audio driver end date. This measure is interesting to distinguish what happens in server synchronous versus asynchronous mode. In synchronous mode, the driver end date takes the graph execution duration in account (fig 3). 5 In asynchronous mode, the driver does not wait for the graph end, but returns immediately after the write step. Thus the driver end date measures the read audio input buffers, write audio output buffers parts only (fig 4).

Clients end date

Timing3.plot allows to display the audio driver timing and all clients end date. This curve gives a global view of all clients DSP use. The audio interrupt duration is displayed as well as the end date of all running clients. The system works correctly if the end date of the last client is still below the audio interrupt duration (fig 5).

Clients scheduling latency

Timing4.plot allows to display all client scheduling latencies (difference between activation and actual wake-up dates). When the application by one, the driver end date then raise after each new client is started. real-time thread becomes runnable, the global scheduling latency depends on the fact a core is effectively available in the machine and the actual OS scheduling latency. Thus this value obviously depends of the topology of the graph and number of available cores on the machines on a given setup. To precisely measure the OS scheduling latency only, the best is to have a number of clients that is less than the number of available cores (fig 6). 

Clients duration

Real-time measurements

The jack profiler internal client allows to see all measures as audio signals. It can be loaded at anytime using the jack load tool. JACK output ports will be created and contain timing measures converted in audio signals.

At each audio cycle, the measured value is recalibrated to be in the [-1,1] range and copied into the audio buffer (same value for the entire cycle). Three general output JACK ports can be added (respectively using the -c, -p, -e parameters in the jack load parameter line):

• profiler:cpu load: is the DSP CPU load between 0 and 1.

• profiler:driver period: is the driver period variation expressed at the difference between the actual driver period and the expected driver period, then divided by the expected driver period, between -1 and 1.

• profiler:driver end time: is the driver end time expressed as driver end time divided by the driver period, between 0 and 1.

For each running client, two additional JACK ports will appear:

• profiler:"client name":scheduling: is the client scheduling duration expressed as the scheduling duration divided by the driver period, between 0 and 1.

• profiler:"client name":duration: is the client duration expressed as the client duration divided by the driver period, between 0 and 1.

Solaris port

The french radio RTL aims at developing it's future digital radio using a JACK based system, hosting a set of audio applications: playlist manager, audio effects (compressor...), realtime signal analysis components (speaker recognition for instance), encoding and web broadcasting... on a Solaris system, when most of their audio files data base management tools are already running. The timing measurements tools have been developed to characterize the real-time behaviour of this system in several setups. The set of curves in this paper have been done on a Dell XPS 420 Intel 4 cores machine running Solaris 10 and using the internal HD Audio card using OSS 4.0 version. Fig 1 shows the audio driver interrupts when the server is running using a 64 frames buffer size at 48 kHz, in synchronous mode and using the highest scheduling priority that can be obtained (using the following command: jackd -R -S -P 59 -d oss -p 64). Then fig 2 to 5 shows the different curves obtained with a highly loaded machine. Using the profiling tools we were able to conclude that:

• It appears that the OSS driver does not guaranty a perfectly regular audio interrupt period, depending of the driver settings. Thus the synchronous (-S) mode should be preferably chosen when starting the server.

• Solaris defines several scheduling classes. The Real-Time scheduling class goes from 100 to 159 on a global 0 to 169 scale. The corresponding POSIX priority to be set in JACK will go from 0 to 59 (-P59 for highest priority).

• The Solaris has quite good Real-Time capabilities [2], and we found that using Processor sets allows to decrease the RT threads scheduling latencies and have a more predictable system. We measured a maximum scheduling latency of 80 usec in this configuration.

7 Additional developments The future could (and probably should) try to solve some problems that are getting bigger with increasing popularity of JACK :

• There can be better handling of misbehaving JACK clients. Is it wise to allow clients to change parameters that will disrupt JACK operation? Today, obnoxious clients auto-connect without allowing configuration. Tomorrow, what if a client thinks it must reset the sample rate or the period size because of cutting corners in the dsp code? The Access Control Lists (ACL) looks like obvious and traditional solution but applying it to JACK domain may lead to quite complex implementation because of authentication that needs to preceed even simplest authorization checks.

• Developing a control application based on OSC could be quite interesting, allowing access and control of any JACK server on the network.

• MIDI backends: interfacing JACK MIDI with the native MIDI API on each plarfom (CoreMidi on OSX, ALSA Midi on Linux and WinMME on Windows) has to be done.

Figure 1 :Figure 2 :

 12 Figure1: Audio driver interrupt, at 48 kHz and 64 frames, average is 1333 usec, interrupt period is regular, with small variations of about +/-30 usec. (Vertical axis shows duration in usec and horizontal axis the number of audio cycles.)

Figure 3 :Figure 4 :

 34 Figure 3: Driver end date when the server runs in synchronous mode: the date raises each time a new client is launched.

Figure 6 :

 6 Figure 5: Clients end date

Figure 7 :

 7 Figure 7: Clients duration

  7.1 Better Windows portOn Windows, the JACK code base was initially compiled using Microsoft VC++ tools. All projects have been converted to use the free CodeBlock and MinGW 6 environments.7.2 Testing and debugging toolsDifferent tools have been implemented to help developers when coding JACK based applications. Profiling tools has already been presented in section 5. Two more are available:7.2.1 Checking JACK APIThe correctness of JACK API can be tested using jack test tool. This program will open JACK clients, test various aspects of the API: registering ports, setting callbacks, activating the client... Real-time communication between two clients is also tested as well as Transport API.7.2.2 Checking use of JACK APIWhen launching JACK applications, a JACK CLIENT DEBUG environment variable can be set 7 to launch the client in debug mode: all calls to the API are traced and a log file is generated. Correct use of the API will be checked (opened clients should be closed, activated clients should be deactivated, port registration/unregistration matches is verified...)8 Blue sky for singing penguins living on the planet JACK

lock-free programming techniques for graph access, "asynchronous/synchronous" server activation modes, two threads model for audio and notifications processing on client side...

All backend (dummy, alsa, coreaudio, OSS...) are also linked to libjackserver.so

http://www.mega-nerd.com/SRC/

see www.codeblocks.org and www.mingw.org

using "export JACK CLIENT DEBUG = on"

Acknowledgements

Juuso Alasuutari has significally contributed to jackdbus for JACK1 and Marc-Olivier Barre contributed to jackdbus by making it use XDG compliant directories.

Work on profiling tools and Solaris port has been funded by RTL french radio (EDIRADIO).