
HAL Id: hal-02158908
https://hal.science/hal-02158908

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INScore expressions to compose symbolic scores
Gabriel Lepetit-Aimon, Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Gabriel Lepetit-Aimon, Dominique Fober, Yann Orlarey, Stéphane Letz. INScore expressions to
compose symbolic scores. International Conference on Technologies for Music Notation and Repre-
sentation, 2016, Cambridge, United Kingdom. pp.137-143. �hal-02158908�

https://hal.science/hal-02158908
https://hal.archives-ouvertes.fr

INSCORE EXPRESSIONS TO COMPOSE SYMBOLIC SCORES

G. Lepetit-Aimon D. Fober Y. Orlarey S. Letz
Grame

Centre national de création musicale
Lyon - France

gabriel.lepetit.aimon@grame.fr

ABSTRACT

INScore is an environment for the design of augmented in-
teractive music scores turned to non-conventional use of
music notation. The environment allows arbitrary graphic
resources to be used and composed for the music represen-
tation. It supports symbolic music notation, described us-
ing Guido Music Notation or MusicXML formats. The en-
vironment has been extended to provided score level com-
position using a set of operators that consistently take scores
as arguments to compute new scores as output. INScore
API supports now score expressions both at OSC and at
scripting levels. The work is based on a previous research
that solved the issues of the notation consistency across
scores composition. This paper focuses on the language
level and explains the different strategies to evaluate score
expressions.

1. INTRODUCTION

Contemporary music creation poses numerous challenges
to the music notation. Spatialized music, new instruments,
gesture based interactions, real-time and interactive scores,
are among the new domains that are now commonly ex-
plored by artists. Classical music notation doesn’t cover
the needs of these new musical forms and numerous re-
search and approaches have recently emerged, testifying
to the maturity of the music notation domain, in the light
of computer tools for music notation and representation.
Issues like writing spatialized music [1], addressing new
instruments [2] or new interfaces [3] (to cite just a few),
are now subject of active research and proposals.

Interactive music and real-time scores are also represen-
tative of an expanding domain in the music creation field.
The advent of the digital score and the maturation of the
computer tools for music notation and representation con-
stitute the basement for the development of this musical
form, which is often grounded on non-traditional music
representation [4] [5] but may also use the common mu-
sic notation [6, 7].

In order to address the notation challenges mentioned above,
INScore [8, 9] has been designed as an environment opened

Copyright: ©2016 Gabriel Lepetit-Aimon et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

to non-conventional music representation (although it sup-
ports symbolic notation), and turned to real-time and in-
teractive use [10, 11]. It is clearly focused on music repre-
sentation only and in this way, differs from tools integrated
into programming environments like Bach [12] or MaxS-
core [13].

INScore has been extended with score expressions that
provide symbolic scores composition features (e.g., putting
scores in sequence or in parallel). Building new scores
from existing scores at symbolic level is not new. Haskell
is providing such features [14]. Freeman and Lee proposed
score composition operations in a real-time and interac-
tive notation context [15]. Regarding the score operations
used by INScore, they are imported from a previous work
[16] that was focusing on the music notation consistency
through arbitrary scores composition.

The novelty of the proposed approach relies on the dy-
namic aspects of the scores composition operations, as well
as on the persistence of the score expressions. A score may
be composed as an arbitrary graph of score expressions and
equipped with a fine control over the changes propagation.

The paper introduces first the score composition expres-
sions. Next, the different evaluation strategies are explained
and illustrated with examples. The articulation with the
INScore environment is presented in detail and followed
by concrete use cases. An extension of the primary scores
composition design to score expressions composition is next
introduced. A generalisation of this approach to the whole
set of INScore graphic objects is finally considered in the
concluding section.

2. LANGUAGE SPECIFICATION

The main idea behind the project is to design a relevant
language that provides easy to use tools to compose and
to manipulate symbolic scores. Indeed, as all the opera-
tors have already been defined in a previous work [16], the
point is to imagine a handy way to use them from INScore
but above all, to benefit of the dynamic aspects of the IN-
Score environment.

2.1 The operators

All the operators have a common interface: regardless their
actual definition, they always take two scores as input to
produce a score as output. The scores are expressed using
the Guido Music Notation format [GMN][17]. A few low-
level score manipulation operations are defined (which ap-

mailto:gabriel.lepetit.aimon@grame.fr
http://creativecommons.org/licenses/by/3.0/

operation arguments description
seq s1 s2 puts the scores s1 and s2 in sequence
par s1 s2 puts the scores s1 and s2 in parallel

rpar s1 s2 puts the scores s1 and s2 in parallel, right aligned
top s1 s2 takes the n first voices of s1, where n is the number of voices of s2

bottom s1 s2 cuts the n first voices of s1, where n is the number of voices of s2
head s1 s2 takes the head of s1 on s2 duration

evhead s1 s2 takes the n first events of s1, where n is s2 events count
tail s1 s2 cuts the head of s1 on s2 duration

evtail s1 s2 cuts the n first events of s1, where n is s2 events count
transpose s1 s2 transposes s1 so its first note of its first voice match s2 one
duration s1 s2 stretches s1 to the duration of s2

(note that this operation may produce durations that are not displayable
pitch s1 s2 applies the pitches of s1 to s2 in a loop

rhythm s1 s2 applies the rhythm of s1 to s2 in a loop

Table 1. INScore operators

ply perfectly to INScore language’s philosophy) with a de-
terministic behaviour (none of the operators implement ran-
dom operations). Basically, these operations apply to the
time domain (putting scores in sequence, in parallel, cut-
ting parts of a score, time stretching), or to the score struc-
ture (extracting voices). A few additional operations are
provided: transposition and application of a score’s rhythm
or pitch to another score. The small set of operators is not a
real limitation, as the uniformity between their inputs and
output make them easy to combine into pipeline designs,
creating more high-level operations. The selected basic
operators are not intended to cover the composition pro-
cess (a real programming language like Open Music [18]
would be required) but to provide tools for dynamic sym-
bolic score computation, especially in the context of music
performance.

See Table 1 for the definition of all operators. Note that
there is no constraint on the input scores. For the par
and rpar operations, the shortest score (if any) is suffixed
or prefixed with the necessary duration to obtain the same
length. These extensions appear as empty staves, which is
easily expressed using the GMN language.

2.2 Designing a creative language

In the context of software used for artistic creation like
INScore, designing a language is not trivial. Like any
other creative tools, the score expressions language shall
inevitably frame the creation process through which the
artist must go. To that extent, conceiving a language is ac-
tually designing a creative ”work-flow” that the users shall
then adopt.

The continuity between inputs and outputs through Guido
operators allows to compose a music by successively trans-
form and aggregate scores fragments. This process (apply-
ing transformations on various materials and combining
them into a whole creation) is similar to electro-acoustic
creative processes where, after choosing sound material,
the composer applies effects... and mixes them until this
raw musical materials become unrecognisable.

Adapting this approach to the symbolic music notation

would not only make the language easy to learn for com-
poser but could offer great tools for composition: carving
and assembling score samples using structural operators,
placing the musical structure in the center of the creative
process. In some ways, the art wouldn’t emerge from the
quality of the raw score fragments but from the process that
transforms, shapes, and links them together.

It’s with this perspective and emphasis of the structure
that the score expressions syntax has been defined. In par-
ticular, these expressions should make use of various het-
erogeneous materials including score expressions or exist-
ing score objects.

2.3 Score expressions syntax

Score expressions can be defined using two syntaxes:

expr (score scoreoperator)

score

score expression:
1

2

1. The classic syntax reflects the way Guido operators
actually work: two scores are combined into one,
according to the operator.

2. The alternate syntax defines an expression using a
single score, which can be useful to duplicates ob-
jects e.g. to provide different views (see section 6.2).

Note that the leading expr token is present to disam-
biguate parenthesis that are already used in INScore scripts
with messages lists.

Both of the syntaxes make use of score arguments.
Score expressions are quite permissive regarding to their
type:

score file

score:
1

2

score string

3 score object

4 score expression

1. score string: are GMN or MusicXML strings.

2. score file: refers to a score file that should con-
tain GMN or MusicXML data. File path complies to
INScore file handling and could indicate an absolute,
a relative path or a URL.

3. score object: refers to an existing INScore ob-
ject using a relative or absolute OSC address. The
object must be a guido, musicxml or piano-roll ob-
ject, as well as guido and piano-roll streams.

4. score expression: score expressions can be
used as arguments of score expressions (in this case
the expr token is optional).

Here is an example of a score expression that puts a score
in parallel with 2 scores in sequence:

expr(par score.gmn (seq "[c]" score))

Note that some operations could take more than 2 scores
as arguments. For example, the sequence (seq) or paral-
lel (par) operations could apply to arbitrary lists of argu-
ments and higher-order operations could be defined, simi-
larly to the functional programming fold (or reduce) high-
order function [19]. The current syntax doesn’t support
folding but this may be considered in the future. For exam-
ple, that would allow to write (seq a b c) instead of
(seq a (seq b c)).

3. EVALUATION SPECIFICATION

The score expressions language is first transformed into an
internal memory representation. In a second step, this rep-
resentation is evaluated to produce Guido Music Notation
[GMN] [17] strings as output, that are finally passed to the
INScore object as specific data.

3.1 Internal representation of score expressions

When encountering an score expressions, the INScore parser
creates a tree representation of it: arguments are stored as
leaves and operators as nodes (Figure 1). This tree form
allows to easily store, manipulate, assemble and evaluate
score expressions.

expr(par score.gmn (seq "[c]" score)

par

seq

score.gmn
Guido file

"[c]"
Guido code

score
object identifier

PARSING

Figure 1. Parsing score expressions into tree form.

The tree representation is strictly matching the expression
string. Type specification of arguments is the only differ-
ence, whereas types are implicit in score expressions, ar-
guments are explicitly stored as GMN code or file or iden-
tifier... in the tree form.

Once the internal representation has been constructed by
the parser, it is stored with the newly defined object, ready
for evaluation.

3.2 Score expressions evaluation process

The evaluation process goes through every nodes of the
expression tree using a depth first post-order traversal, re-
ducing all of them into GMN code. A node evaluation is
type dependent (Figure 2).
Evaluation of:

• a GMN file gives its content,

• a GMN string returns the string,

• a MusicXML file returns its content converted to
GMN code,

• a MusicXML string returns the string converted to
GMN code,

• an object identifier gives its GMN code,

• an operator node returns the application of the oper-
ator to the GMN code given as parameters.

par

seqscore.gmn

score"[c]"

par

seq

"[c]" "[a]"

"[b]" "[c a]"

par

"[b]"

"{ [b] , [c a] }"

Figure 2. Simple evaluation of an expression tree, where
score is defined as [a] and score.gmn contains
[b].

This evaluation scheme avoid recursion issues (e.g., a
score that modifies itself using an expression based on its
own content) since the caller object is modified only at the
end of the evaluation process. All arguments are referen-
tially transparent by default: each argument is evaluated
once and its value is then considered constant.

3.3 Dynamic evaluation of score expressions

Referential transparency (i.e., static evaluation) can be a
huge limitation. For example, working with guido stream,
one could want to maintain the result of a score expression
up to date to the stream’s actual state. Thus variable ar-
guments have been introduced using a & prefix: a variable
argument is always evaluated regardless of previous values
(Figure 3). Only arguments subject to changes (score
object or score file) can be declared variable.

A tree that contains a variable argument is a dynamic tree.
When a variable argument is encountered on a tree branch,

expr(par (seq score.gmn &score)
(seq "[a]" score))

par

seq

seq

&score

score.gmn

"[a]"

scoredynamically evaluated

statically evaluated

Figure 3. Propagation of dynamic evaluation. &score is
updated to the actual value of score when re-evaluating,
while score keeps the value computed on the first evalu-
ation. Thus, on re-evaluation the lower seq operation will
not be computed again.

the dynamic tree attribute is propagated up to the tree root.
During the evaluation process, only the dynamic parts of a
tree is recomputed. For optimisation, INScore checks if a
variable argument value has changed and recomputes the
corresponding operator only when needed.

Using variable arguments, an expression tree with arbi-
trary variable parts can be described: that may be viewed
as building a symbolic score with arbitrary aggregation of
static and variable parts.

4. SCORE EXPRESSIONS API IN INSCORE

In order to fully integrate score operators, the implementa-
tion relies on INScore existing features. As a result, score
expressions support URLs as file arguments, interaction
events and benefit of web features. Interaction events have
been extended notably for the purpose of dynamic evalua-
tion (see section 4.3).

4.1 Declaring score expressions

Both gmn and pianoroll objects can be defined with
score expressions using an extension of the set message.
The evaluation of the expression is actually triggered by
the target object when the set message is processed.

/ITL/scene/score set gmn expr(score.gmn);

/ITL/scene/pr set pianoroll expr(&score);

The previous example creates two objects: score is
a symbolic representation of the GMN file score.gmn,
and pr is a piano roll representation of score (here dy-
namically evaluated due to the & prefix).

4.2 Score expressions specific messages

Objects that are based on score expressions support addi-
tional messages:

• reeval: triggers the re-evaluation of the expres-
sion tree taking account of the static and dynamic
parts.

• renew: triggers the re-evaluation of the expression
tree regardless of existing constant values.

All these messages are available through the expr mes-
sage:

/ITL/scene/score expr reeval;

/ITL/scene/score expr renew;

Finally, the score expression of an object can be retrieved
with the get expr message:

/ITL/scene/score get expr;

4.3 Events typology extension

INScore interaction features are based on the association
between an event and arbitrary set of OSC messages [10].
These messages are sent when the event occurs (e.g., a
mouse down). INScore events typology has been extended
with a newData event, that is triggered when the value of
the target object changes, either due to a set or reeval
message, or because data has been written in a stream ob-
ject.

Using the expr reeval message in conjunction with
the newData event, may trigger the automatic reevalu-
ation of an expression when an object changes. With the
example below, changing the content of score will fire
the newData event and the associated expr reeval
message is automatically sent to copy that updates its
content accordingly.

/ITL/scene/score set gmn "[a]";

/ITL/scene/copy set gmn expr(&score);

/ITL/scene/score watch newData

(/ITL/scene/copy expr reeval);

In order to catch infinite loop issues, newData event
handling is postponed to the next INScore time slot. As a
result, updating the whole scene after changing the value
of an object can take several event loop (if one object is re-
ferring to another object, itself referring to another one...)
and during this process the INScore’s graphic scene could
go through transitory states. However, if objects are de-
fined with recursive references and are auto-updated using
this mechanism, INScore will still be able to update the
score (without freezing).

5. COMPOSING SCORE EXPRESSIONS

While the expressions already presented allow to compose
symbolic scores, it is also possible to compose score ex-
pressions which are stored in the referred objects using the
prefix ~. Indeed, whereas score and &score refer to
the object’s value, ~score refers to the score expression
used to define score. In practical, before the first evalu-
ation, all arguments prefixed by ~ are replaced by a copy
of the expression tree from the corresponding objects. It
allows to easily make use of previously defined score ex-
pressions to create more complex ones.

Figure 4 illustrates how the expression tree is expanded
with the example below.

/ITL/scene/score set gmn

expr(seq "[a]" &sample);

/ITL/scene/score set gmn

expr(seq (seq ~score "[b]") ~score);

par

~score

seq

"[b]"

~score

COMPOSITION

par

seq

"[b]"

seq

"[a]"

&sample

seq

"[a]"

&sample

score

score

Figure 4. Composing score expressions

6. EXAMPLES

6.1 Canon structure

A simple but still well-known music structure is of course
the canon. Creating such structure from a score is quite
easy using score expressions.

With the example below, the first line creates a score
object based on a GMN file. It is then transposed to a fifth
and a second voice is added, delayed of a half note. Be-
cause transposing according to a specific interval is not
a basic guido operator (the transposition interval is com-
puted from the 2 scores arguments), one should combine
transposewith seq and evtail to prepend the score
with a note, transpose the whole score using this note and
finally remove it.

/ITL/scene/score set gmnf score.gmn;

Transposing score

/ITL/scene/canon set gmn

expr(evtail

(transpose (seq "[c]" score) "[g]")

"[a]"

);

Putting score in sequence with it

/ITL/scene/canon set gmn

expr(seq score canon);

Adding a second voice delayed

/ITL/scene/canon set gmn

expr(par canon (seq "[/2]" canon));

The result is a simple canon:

& 44 _Exxxxxxx Xxxxxxx Xxxxxxxx _Xxxxxxxx Xxxxxxxxxx Xxxxxxx Xxxxxxxxx

& 44 _Exxxxxxx Xxxxxxx Xxxxxxxx _Xxxxxxxxx Xxxxxxxxxx Xxxxxxx Xxxxxxxxx

& 44 D _Exxxxxxx
Exxxxxxx Xhhhhhhhh Xhhhhhhh Xhhhhhh Xhhhhhh Xhhhhhhhhh Xhhhhhhhh
Xxxxxxx Xxxxxxxx _Xxxxxxxxx Xxxxxxxxxx Xxxxxxx Xxxxxxxxx Exxxxxxx Xhhhhhhhh Xhhhhhhh Xhhhhhh Xhhhhhh Xhhhhhhhhh Xhhhhhhhh

Original score :

Canon :

Figure 5. Canon result

6.2 Multiform synced scores

Score expressions is a great tools to duplicate and dynami-
cally transform scores, keeping every copies synced to the
original.

/ITL/scene/stream set gmnstream

’[\meter<"4/4">]’;

/ITL/saxo/score set gmn

expr(evtail

(transpose

(seq

"[e&1]"

&/ITL/scene/stream)

"[c2]")

"[a]"

);

/ITL/audience/score set pianoroll

expr(&/ITL/scene/stream);

/ITL/scene/stream watch newData

(/ITL/*/score expr reeval);

The previous example creates 2 copies of the GMN stream
object stream, one transposed for the saxophone and one
displayed as a piano roll, intended as a visual support for
the audience. Both are displayed in different scenes. The

last line ensure the update of the copies when stream is
modified. The /ITL/scene/stream argument is re-
evaluated due to the & prefix. The result is illustrated in
figure 6.

Original:

& 44 Xxxxxxxx Xxxxxxx . Xxxxxxxx Xxxxxxxx Xxxxxxxx Xxxxxxx . Xxxxxxxx Xxxxxxxx . Xxxxxxx Exxxxxxx

& 44 Xhhhhhhh Xhhhhhhh .# Xhhhhhh Xhhhhhhh# Xhhhhhhh Xhhhhhhh .# Xhhhhhh Xhhhhhh . Xhhhhhhh Ehhhhhhh
Saxophone:

Audience:

Figure 6. Multiform scores result

6.3 Mixing dynamic and static scores

This example illustrates how dynamic and static symbolic
scores can be mixed and transformed in real-time. In a first
step, we create a stream (named stream) intended to be
written in real-time and a static score (named static).

/ITL/scene/stream set gmnstream

’[\meter<"4/4">]’;
/ITL/scene/static set gmn

’[\meter<"4/4"> g e f a f d c/2]’;

In a second step, the last two bars of the stream are ex-
tracted and store in a new object named tail. Since the
’tail’ operation cuts the head of the score using the sec-
ond argument, the duration of this argument is expressed
as the tail of the stream using the desired duration (2 whole
notes). Note that tail expression is using a reference to
the stream in order to be updated each time data is written
to the stream.

/ITL/scene/tail set gmn

expr(tail &stream

(tail &stream ’[a*2]’)));

The final result is simply obtained using the ’par’ and ’trans-
pose’ operations. It makes use of references to tail
but the static object is embedded statically. Note that
tail is used as an intermediate object intended to opti-
mise the computation and to facilitate reading of the ex-
pression. It can be hidden from the overall score without
affecting the result.

/ITL/scene/score set gmn

expr(par &tail

(transpose static &tail));

Activation of the score dynamic computation makes use of
the newData event watched by the stream object, that
inform tail and score that their expressions need to
be re-evaluated.

/ITL/scene/stream watch newData

(/ITL/scene/part expr reeval,

/ITL/scene/score expr reeval

);

7. CONCLUSIONS

Combining a simple set of operators with the powerful fea-
tures of INScore (like URL support, full OSC compatibil-
ity, interaction support...), score expressions fully integrate
symbolic score composition into an interactive and aug-
mented music score environment. They suggest a creative
process based upon musical structures and scores aggre-
gation by giving the possibility to compose various score
materials including score objects. Above all, score expres-
sions provide a handy way to manipulate scores regardless
to their origin (files, URL, streams...) or their representa-
tion (traditional music notation or piano roll) and to design
dynamic scores based on arbitrary score composition.

In future work, we’re considering extending the score ex-
pressions to all the INScore objects. Such an approach -
composing arbitrary graphic resources using a musical se-
mantic - raises issues that are non-trivial to solve. Indeed,
if the operations on the time domain could be applied to
any object due to their common time dimension, transfor-
mations in the pitch domain or based on structured time
(like rhythm) implies to extend the musical semantic of the
graphics space.

8. REFERENCES

[1] E. Ellberger, G. Toro-Perez, J. Schuett, L. Cavaliero,
and G. Zoia, “A paradigm for scoring spatialization
notation,” in Proceedings of the First International
Conference on Technologies for Music Notation and
Representation - TENOR2015, M. Battier, J. Bres-
son, P. Couprie, C. Davy-Rigaux, D. Fober, Y. Geslin,
H. Genevois, F. Picard, and A. Tacaille, Eds. Paris,
France: Institut de Recherche en Musicologie, 2015,
pp. 98–102.

[2] T. Mays and F. Faber, “A notation system for the karlax
controller,” in Proceedings of the International Confer-
ence on New Interfaces for Musical Expression. Lon-
don, United Kingdom: Goldsmiths, University of Lon-
don, June 2014, pp. 553–556. [Online]. Available: http:
//www.nime.org/proceedings/2014/nime2014 509.pdf

[3] W. Enstr”om, J. Dennis, B. Lynch, and K. Schlei,
“Musical notation for multi-touch interfaces,” in
Proceedings of the International Conference on
New Interfaces for Musical Expression, E. Berdahl
and J. Allison, Eds. Baton Rouge, Louisiana,
USA: Louisiana State University, May 31 – June
3 2015, pp. 83–86. [Online]. Available: http:
//www.nime.org/proceedings/2015/nime2015 289.pdf

[4] R. R. Smith, “An atomic approach to animated mu-
sic notation,” in Proceedings of the First International
Conference on Technologies for Music Notation and

http://www.nime.org/proceedings/2014/nime2014_509.pdf
http://www.nime.org/proceedings/2014/nime2014_509.pdf
http://www.nime.org/proceedings/2015/nime2015_289.pdf
http://www.nime.org/proceedings/2015/nime2015_289.pdf

Representation - TENOR2015, M. Battier, J. Bres-
son, P. Couprie, C. Davy-Rigaux, D. Fober, Y. Geslin,
H. Genevois, F. Picard, and A. Tacaille, Eds. Paris,
France: Institut de Recherche en Musicologie, 2015,
pp. 39–47.

[5] C. Hope, L. Vickery, A. Wyatt, and S. James, “The
decibel scoreplayer - a digital tool for reading graphic
notation,” in Proceedings of the First International
Conference on Technologies for Music Notation and
Representation - TENOR2015, M. Battier, J. Bres-
son, P. Couprie, C. Davy-Rigaux, D. Fober, Y. Geslin,
H. Genevois, F. Picard, and A. Tacaille, Eds. Paris,
France: Institut de Recherche en Musicologie, 2015,
pp. 58–69.

[6] R. Hoadley, “Calder’s violin: Real-time notation
and performance through musically expressive algo-
rithms,” in Proceedings of International Computer Mu-
sic Conference, ICMA, Ed., 2012, pp. 188–193.

[7] ——, “December variation (on a theme by earle
brown),” in Proceedings of the ICMC/SMC 2014,
2014, pp. 115–120.

[8] D. Fober, Y. Orlarey, and S. Letz, “Inscore – an envi-
ronment for the design of live music scores,” in Pro-
ceedings of the Linux Audio Conference – LAC 2012,
2012, pp. 47–54.

[9] ——, “Augmented interactive scores for music cre-
ation,” in Proceedings of Korean Electro-Acoustic
Music Society’s 2014 Annual Conference [KEAM-
SAC2014], 2014, pp. 85–91.

[10] D. Fober, S. Letz, Y. Orlarey, and F. Bevilacqua,
“Programming interactive music scores with inscore,”
in Proceedings of the Sound and Music Computing
conference – SMC’13, 2013, pp. 185–190. [Online].
Available: fober-smc2013-final.pdf

[11] D. Fober, Y. Orlarey, and S. Letz, “Representation
of musical computer processes,” in Proceedings of
the ICMC/SMC 2014, 2014, pp. 1604–1609. [Online].
Available: inscore-processes-final.pdf

[12] A. Agostini and D. Ghisi, “Bach: An environment for
computer-aided composition in max,” in Proceedings
of International Computer Music Conference, ICMA,
Ed., 2012, pp. 373–378.

[13] N. Didkovsky and G. Hajdu, “Maxscore: Music no-
tation in max/msp,” in Proceedings of International
Computer Music Conference, ICMA, Ed., 2008.

[14] D. Quick and P. Hudak, “Grammar-based automated
music composition in haskell,” in Proceedings of the
first ACM SIGPLAN workshop on Functional art, mu-
sic, modeling and design, ser. FARM ’13. New York,
NY, USA: ACM, 2013, pp. 59–70. [Online]. Available:
http://doi.acm.org/10.1145/2505341.2505345

[15] S. W. Lee and J. Freeman, “Real-time music notation
in mixed laptop-acoustic ensembles,” Computer Music
Journal, vol. 37, no. 4, pp. 24–36, Dec. 2013. [Online].
Available: http://dx.doi.org/10.1162/COMJ a 00202

[16] D. Fober, Y. Orlarey, and S. Letz, “Scores level
composition based on the guido music notation,” in
Proceedings of the International Computer Music
Conference, ICMA, Ed., 2012, pp. 383–386. [Online].
Available: icmc12-fober.pdf

[17] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in
Proceedings of the International Computer Music Con-
ference. ICMA, 1998, pp. 451–454.

[18] J. Bresson, C. Agon, and G. Assayag,
“OpenMusic – Visual Programming Environ-
ment for Music Composition, Analysis and Re-
search,” in ACM MultiMedia (MM’11), Scotts-
dale, United States, 2011. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01182394

[19] G. Hutton, “A Tutorial on the Universality and Expres-
siveness of Fold,” Journal of Functional Programming,
vol. 9, no. 4, pp. 355–372, Jul. 1999.

fober-smc2013-final.pdf
inscore-processes-final.pdf
http://doi.acm.org/10.1145/2505341.2505345
http://dx.doi.org/10.1162/COMJ_a_00202
icmc12-fober.pdf
https://hal.archives-ouvertes.fr/hal-01182394

	 1. Introduction
	 2. Language Specification
	2.1 The operators
	2.2 Designing a creative language
	2.3 Score expressions syntax

	 3. Evaluation Specification
	3.1 Internal representation of score expressions
	3.2 Score expressions evaluation process
	3.3 Dynamic evaluation of score expressions

	 4. Score expressions API in INScore
	4.1 Declaring score expressions
	4.2 Score expressions specific messages
	4.3 Events typology extension

	 5. Composing Score Expressions
	 6. Examples
	6.1 Canon structure
	6.2 Multiform synced scores
	6.3 Mixing dynamic and static scores

	 7. Conclusions
	 8. References

