
HAL Id: hal-02158892
https://hal.science/hal-02158892

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MidiShare joins the Open Source Softwares
Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz. MidiShare joins the Open Source Softwares. Inter-
national Computer Music Conference, 1999, Beijing, China. pp.311-313. �hal-02158892�

https://hal.science/hal-02158892
https://hal.archives-ouvertes.fr

MidiShare joins the Open Source Softwares

Dominique Fober, St�phane Letz, Yann Orlarey
GRAME Research Laboratory 9 rue du Garet, BP 1185, 69202 LYON Cedex 01, France

Email: [fober, letz, orlarey]@rd.grame.fr

Abstract

MidiShare is a realtime, multi-tasks operating system dedicated to musical MIDI applications. It was
awarded the Apple Trophy (1989), the Paris-City price (1990) and more recently, the Max d’Or at the
Bourges International Musical Software Competition (1999). Multi-platform support, powerful inter-
applications communication, accurate realtime performances are among the significant services provided
by the kernel. Freely available on the Internet to developers since several years, MidiShare is now
supported by a growing number of projects. Its developers mailing list count 250 members on average.
The MidiShare project itself is reaching a state which requires a different management policy: the
MidiShare source code is now publicly available to allow collaborative contributions over the Internet.
The poster session will present this new project, including changes in the kernel architecture, the source
code portability issues and the organization of the collaborative development over the Internet.

1. Introduction
MidiShare has been designed ten years ago, in
response to commonly met problems in the
development of realtime musical applications. The
main motivation of this work took source in the
standard operating systems shortcomings and in
their unsuitability to the musical field requirements:
generally, existing systems don’t allow critical
resources sharing, they are also not suitable to take
account of time and communication in realtime.

With the development of the multimedia appli-
cations, one could expect to see the operating
systems design evolving towards a better support of
these requirements. On the contrary, today, all the
systems are progressively integrating Unix-like
characteristics (protected memory space, pre-
emptive multi-tasking) which complicates radically
the implementation of realtime inter-applications
communications and realtime capabilities. For this
reason, the works in the field of the software
architecture for musical applications are more
relevant than ever.

The extent of the MidiShare project exceeds now
our simple research purpose: many of the
MidiShare related tasks concern porting on new
platforms. The number of currently supported
systems multiplies of as much any improvement
implementation. As the MidiShare based project
number regularly increases, we have decided to
open the kernel to a collaborative development over
Internet. Therefore, the MidiShare source code is
now publicly available under the GNU Library
General Public License and MidiShare is part of the
Open Source Softwares1.

1 see at http://www.opensource.org/ for more
information about the Open Source Definition

2. The MidiShare revised micro-kernel
The MidiShare architecture was presented several
times [Orlarey, Lequay, 1989], [Orlarey, 1990],
[Fober & al 1996]. In order to facilitate portings on
new platforms and to concentrate on critical
services, it has been slightly revised. The figure 1
summarizes its different components:
- a Scheduler: in charge of delivering scheduled

events and tasks at the right date. It allows
events to be sent in the future as well as
functions to be called in the future.

- a Time Manager: maintains the current date of
the system.

- a Communication Manager: routes events
received from the scheduler to the client
applications and the ports manager.

- a Task Manager: in charge of calling the tasks
delivered by the scheduler.

- a Memory Manager: specially designed for real-
time operations at interrupt level.

- a Ports Manager: it is a new component. It
replaces the previous MIDI input and output
drivers to provide a more general driver
mechanism by the way of plugging. It is
intended to facilitate the support of protocols
other than MIDI (like Ethernet for example
[Fober, 1994]) and to allow developers to
provide new drivers without having to
recompile the kernel.

For more information about this architecture, you
can refer to the MidiShare Developer Documen-
tation [Grame, 1990] or to the MidiShare Kernel
Development Guide [Grame, 1999] which details
also the source code organization and the key
portability issues.

Client
#n

Client
#1

Task
Manager

Communication
Manager

Ports
Manager

High Level
Musical
Events

Scheduler Time
Manager

Memory
Manager

Driver
#1

Driver
#n

Figure 1 : the new conceptual model of MidiShare

3. Portability issues
Several low level implementation parts of the
kernel are platform dependent and generaly con-
cern critical services provided by the host operating
system. Among them are: setting up an interrupt
service routine, sharing the events memory, switch-
ing from the MidiShare kernel to a client process
and synchronizing the client processes. Modern
operating systems provide high level functions to
perform all these tasks but they are generaly not
suitable to operate in a realtime context. In particu-
lar, accuracy and efficiency issues are critical for a
correct operating of the kernel. The implementation
problems raised for each point are detailed below.

3.1. The MidiShare process
The MidiShare process represents the entity that
owns the necessary resources for the kernel
operations. It must ensure of the permanence of
these resources all along the kernel active period,
from wake up time until sleep time. The MidiShare
process does not necessary refer to a process as
commonly defined by the operating systems. Its
implementation is generally dictated by the host
operating system and may or may not be such a
process. One of the design issue is to choose the
most appropriate system resource. Efficiency and
accuracy must be particularly taken into account:
for example, if the MidiShare process is
implemented as an operating system process and if
the process context switching costs are high, the
resulting kernel will certainly be inefficient as it
will have to pay these costs every millisecond.

3.2. Memory allocation
Memory is allocated and owned by the MidiShare
process. It can freely use any way to allocate the
kernel internal memory. It is different for events
and filters memory:

- events memory must be shared by the Midi-
Share process and all the client applications. ItÕs
the responsibility of the MidiShare process to
allocate such a memory at wake up time.

- filters memory must be shared by its appli-
cation owner and the MidiShare process. It is
different from the events memory because a
filter is private to one application. Filter me-
mory is allocated by the MidiShare process at
application request.

The source code clearly separates these services
using an allocation function which takes as argu-
ment the type of the desired memory.

3.3. Tasks and Alarms
The MidiShare kernel provides realtime tasks and
realtime alarms to its client applications. Realtime
tasks are stored in typeProcess events, then inserted
in the scheduler and activated at interrupt level by
the MidiShare process at falling date. Realtime
alarms are activated at application request in two
cases:
- when a context change occurs: it is an appli-

cation alarm, it can be activated at any time, at
interrupt or user level.

- when new events are stored in an application
fifo: it is a receive alarm, it will always be
activated at interrupt level.

The way used to activate a client task is platform
dependent. Some operating systems allow a process
to directly call the client code, some other prevents
such mechanisms by keeping separate address
spaces for each application; in this case, activating
a task consists generally in waking up the
corresponding thread, which raises all the problems
of accuracy, priority and context switching costs.

3.4. Processes and synchronization
Concurrent access to critical sections of the
MidiShare code raises the synchronization
problems. Preemptive operating systems provide
the necessary mechanisms to solve these problems
but again, these mechanisms are generally not
suitable in a realtime context.

The current implementation generally avoids the
use of semaphores by the way of lock free shared
linked lists [Anderson & al. 1995]. The principle
consists in trying to modify a shared linked list
using the synchronization mechanisms generally
available with modern micro-processors instru-
ction set: for example, the Motorola PowerPC
microprocessor family allows to put reservations on
a memory zone, then, conditional instructions
operates only if the reservation is not altered, on the
contrary, the program have to loop until success.

The only semaphore defined by the system is used
to synchronize the kernel wake-up and sleep
periods.

4. The collaborative development
organization

4.1. MidiShare mailing lists
Two MidiShare mailing lists exist for both
MidiShare applications and kernel development:
- the Òmidishare-devÓ list is for support and

discussion about MidiShare compatible
applications development.

- the Òmidishare-kernelÓ list is for support and
discussion about MidiShare kernel
development.

Anyone who plans to contribute to the kernel
development should subscribe to the Òmidishare-
kernelÓ mailing list where are discussed all the
changes and the development issues.

4.2. Contributions rules
Many of the free software projects operate as a
"meritocracy": the more good code you contribute,
the more you will be allowed to contribute. We are
setting up such a process for the MidiShare kernel
development. Below are the basic rules that we are
considering for the project management.

The MidiShare Group is a core group of
contributors which is initially formed from the
project founders. It may be augmented from time to
time when core members nominate outstanding
contributors and the rest of the core members agree.

The MidiShare Group is a meritocracy: the more
work you have done, the more you are allowed to
do. The group founders set the original rules, but
they can be changed by vote of the active members.
New members of the MidiShare Group will be
added when a frequent contributor is nominated by
one member and approved by the voting members.
In most cases, this new member has been actively
contributing to the group’s work for over six
months.

Primary method of communication is the
midishare-kernel mailing list. It is the place to
discuss new features to add, bug fixes, user
problems, release dates, etc... The actual code
development takes place on the developerÕs local
machines, with proposed changes communicated
using a patch and committed to the source
repository by one of the core developers. Anyone
on the mailing list can vote on a particular issue,
but we only count those made by active members or
people who are known to be experts on that part of
the kernel. Changes to the code are proposed on the
mailing list and usually voted on by active
members.

5. The project Internet locations
The MidiShare kernel source code is located at:

ftp://ftp.grame.fr/pub/midishare-kernel/

Contributions to the source code will be done using
a version control system. We plan to use CVS but
right now, it is not yet in service.

The MidiShare mailing lists can be reached using
majordomo at: majordomo@rd.grame.fr

We are also publishing the MidiShare libraries
source code under a free software license.

For up-to-date information, see the MidiShare web
pages at: http://www.grame.fr/MidiShare/

References
[Anderson & al. 1995] James H. Anderson,
Srikanth Ramamurthy, Kevin Jeffay. Real-Time
Computing with Lock-Free Shared Objects.
Proceedings of the 16th IEEE Real-Time Systems
Symposium, Pisa, Italy, 1995, pp.28-37

[Fober & al. 1996] Fober D., Letz S. Orlarey Y.
Recent developments of MidiShare - Proceedings of
the ICMC 1996, ICMA, San Francisco, p.40-42

[Fober 1994] Fober D. Real time, musical data flow
on Ethernet and MidiShare software architecture.
Proceedings of the ICMC, 1994, ICMA, San
Francisco, pp. 447-450

[Grame 1990] MidiShare Developer
Documentation. Grame 1990, Lyon

[Grame 1999] MidiShare Kernel Development
Guide. Grame 1999, Lyon

[Orlarey 1990] Orlarey Y. An Efficient Scheduling
Algorithm for Real-Time Musical Systems.
Proceedings of the ICMC, 1990, ICMA, San
Francisco, pp.194-198

[Orlarey, Lequay 1989] Orlarey Y., Lequay H.
MidiShare: a Real Time multi-tasks software
module for Midi applications. Proceedings of the
ICMC, 1989, ICMA, San Francisco, pp.234-237

