N

N

MidiShare joins the Open Source Softwares
Dominique Fober, Yann Orlarey, Stéphane Letz

» To cite this version:

Dominique Fober, Yann Orlarey, Stéphane Letz. MidiShare joins the Open Source Softwares. Inter-
national Computer Music Conference, 1999, Beijing, China. pp.311-313. hal-02158892

HAL Id: hal-02158892
https://hal.science/hal-02158892

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02158892
https://hal.archives-ouvertes.fr

MidiShare joins the Open Source Softwares

Dominique Fober, St phane Letz, Yann Orlarey
GRAME Research Laboratory 9 rue du Garet, BP 1185, 69202 LYON Cedex 01, France
Email: [fober, letz, orlarey]@rd.grame.fr

Abstract

MidiShare is a realtime, multi-tasks operating system dedicated to musical MIDI applications. It was
awarded the Apple Trophy (1989), the Paris-City price (1990) and more recently, the Max d’Or at the
Bourges International Musical Software Competition (1999). Multi-platform support, powerful inter-
applications communication, accurate realtime performances are among the significant services provided
by the kernel. Freely available on the Internet to developers since several years, MidiShare is now
supported by a growing number of projects. Its developers mailing list count 250 members on average.
The MidiShare project itself is reaching a state which requires a different management policy: the
MidiShare source code is now publicly available to allow collaborative contributions over the Internet.
The poster session will present this new project, including changes in the kernel architecture, the source
code portability issues and the organization of the collaborative development over the Internet.

1. Introduction 2. The MidiShare revised micro-kernel

MidiShare has been designed ten years ago,Time MidiShare architecture was presented several
response to commonly met problems in thienes [Orlarey, Lequay, 1989], [Orlarey, 1990],
development of realtime musical applications. THEober & al 1996]. In order to facilitate portings on
main motivation of this work took source in th@ew platforms and to concentrate on critical
standard operating systems shortcomings andservices, it has been slightly revised. The figure 1
their unsuitability to the musical field requirementsummarizes its different components:

generally, existing systems don’t allow critical a Schedulerin charge of delivering scheduled
resources sharing, they are also not suitable to takeevents and tasks at the right date. It allows
account of time and communication in realtime. events to be sent in the future as well as

With the development of the multimedia appli- functions to be called in the future.

cations, one could expect to see the operatinga Time Manager maintains the current date of

systems design evolving towards a better support of the system.

these requirements. On the contrary, today, all the 3 communication Manager routes events

systems are progressively integrating Unix-like received from the scheduler to the client

characteristics (protected memory space, pre- gpplications and the ports manager.

emptive multi-tasking) which complicates radically aTask Managerin charge of calling the tasks

the implementation of realtime inter-applications delivered by the scheduler

communications and realtime capabilities. For this . .

reason, the works in the field of the software &Memory Managerspecially designed for real-
time operations at interrupt level.

architecture for musical applications are more o
relevant than ever. - a Ports Manager:it is a new component. It

The extent of the MidiShare project exceeds now €PIaces the previous MIDI input and output
drivers to provide a more general driver

our simple research purpose: many of the hani by th f olugai It i
MidiShare related tasks concern porting on new mechanism by the way ot piugging. IS
platforms. The number of currently supported intended to facilitate the support of protocols
systems multiplies of as much any improvement Oth%r than MIDI (I:jke Ethltlarnetdfor Iexample
implementation. As the MidiShare based project [FOP€r. 1994]) and to allow developers to
number regularly increases, we have decided toprowde_ new drivers without having to
open the kernel to a collaborative development over recompllle the kgrnel. _ _

Internet. Therefore, the MidiShare source codefi§r more information about this architecture, you
now publicly available under the GNU Librargan refer to the MidiShare Developer Documen-
General Public License and MidiShare is part of tfation [Grame, 1990] or to the MidiShare Kernel

Open Source Softwares Development Guide [Grame, 1999] which details
also the source code organization and the key
! see ahtip/Amwv.opensource.oryy for more portability issues.

information about the Open Source Definition



Time
r Scheduler |<— Manager Driver
I. #1

Ports
Task Manager
Manage

Communication } Driver
L

Manager #n

Memory
rl 5 Manager

Client Client High Level

#1 #n Musical
| ] Events

Figure 1 : the new conceptual model of MidiShare

3. Portability issues - events memory must be shared by the Midi-
Several low level implementation parts of the Share process and all the client applications. It s
kernel are platform dependent and generaly con- the responsibility of the MidiShare process to
cern critical services provided by the host operating @llocate such a memory at wake up time.
system. Among them are: setting up an interrupt filters memory must be shared by its appli-
service routine, sharing the events memory, switch- cation owner and the MidiShare process. It is
ing from the MidiShare kernel to a client process different from the events memory because a
and synchronizing the client processes. Modern filter is private to one application. Filter me-
operating systems provide high level functions to mory is allocated by the MidiShare process at
perform all these tasks but they are generaly not application request.

suitable to operate in a realtime context. In particghe source code clearly separates these services
lar, accuracy and efficiency issues are critical forging an allocation function which takes as argu-

correct operating of the kernel. The implementatigient the type of the desired memory.
problems raised for each point are detailed below.
3.3. Tasks and Alarms

3.1. The MidiShare process The MidiShare kernel provides realtime tasks and
The MidiShare process represents the entity thahitime alarms to its client applications. Realtime
owns the necessary resources for the kerggks are stored in typeProcess events, then inserted
operations. It must ensure of the permanenceigfthe scheduler and activated at interrupt level by
these resources all along the kernel active perigde MidiShare process at falling date. Realtime
from wake up time until sleep time. The MidiSharglarms are activated at application request in two
process does not necessary refer to a procesgsses:

commonly defined by the operating systems. Its \,hen a context change occurs: it is an appli-

implementation is generally dictated by the NOSt ca4ion alarm, it can be activated at any time, at
operating system and may or may not be such Qinterrupt or user level.

process. One of the design issue is to choose _theWhen new events are stored in an application
most appropriate system resource. Efficiency and fifo- it i ; | it will al pp b
accuracy must be particularly taken into account: fo. 1t 1S a receive alarm, 1t will always be
for example, if the MidiShare process is activated at interrupt level.

implemented as an operating system process andilie way used to activate a client task is platform
the process context switching costs are high, t@pendent. Some operating systems allow a process
resulting kernel will certainly be inefficient as ito directly call the client code, some other prevents

will have to pay these costs every millisecond. ~ such mechanisms by keeping separate address
spaces for each application; in this case, activating

3.2. Memory allocation a task consists generally in waking up the
Memory is allocated and owned by the MidiShamorresponding thread, which raises all the problems
process. It can freely use any way to allocate thkaccuracy, priority and context switching costs.
kernel internal memory. It is different for events

and filters memory:



3.4. Processes and synchronization Primary method of communication is the

Concurrent access to critical sections of tﬁrydishare-kernel mailing list. It is the.place to

MidiShare code raises the synchronizatigffcuss new features to add, bug fixes, user
problems. Preemptive operating systems provig@)blems, release dates, etc... The actual code
the necessary mechanisms to solve these problélggelopment takes place on the developer s local

but again, these mechanisms are generally Aichines, with proposed changes communicated
suitable in a realtime context. using a patch and committed to the source

. . . repository by one of the core developers. Anyone
The current implementation generally avoids ”2)‘?1 the mailing list can vote on a particular issue,

use of semaphores by the way of lock free shargﬁiI W :
. X e e only count those made by active members or
linked lists [Anderson & al. 1995]. The pnnmp%iople wh)(/) are known to be ex)r/Jerts on that part of

EginnSIS:rielnstrrilérr]]?oﬁzg?odr:fymicigiri(;%_Ic,mkgr?elrl e kernel. Changes to the code are proposed on the
) y 9 ailing list and usually voted on by active

available with modern micro-processors instry-
! ) embers.
ction set: for example, the Motorola PowerP

microprocessor family allows to put reservations @ The project Internet locations

a memory zone, then, cc_md!tlonal 'nStrUCt'O%e MidiShare kernel source code is located at:

operates only if the reservation is not altered, on the fiolfipg fipuoimick I "

contrary, the program have to loop until success. o ' ) .
ntributions to the source code will be done using

) . C
The only serr_laphore defined by the system is usfa/ersion control system. We plan to use CVS but
to synchronize the kernel wake-up and Sleﬁaht now, it is not yet in sérvice

periods. o o i .
The_: MidiShare mailing lists can be reached using

4. The collaborative development majordomo at: majordomo@rd grame.fr

organization We are also publishing the MidiShare libraries

source code under a free software license.

4.1. MidiShare mailing lists . . -
or up-to-date information, see the MidiShare web

. - . . F
Two MidiShare mailing lists exist for bot : . rame fiiMidiShare/
MidiShare applications and kernel development: rbages at htpasaangrame vic

- the midishare-dev list is for support andReferences

discussion about MidiShare compatibj&nderson & al. 1995] James H. Anderson,
applications development. Srikanth Ramamurthy, Kevin Jeffageal-Time

- the midishare-kernel list is for support andComputing with Lock-Free Shared Objects
discussion about MidiShare kernRiloceedings of the 16th IEEE Real-Time Systems
development. Symposium, Pisa, Italy, 1995, pp.28-37

Anyone who plans to contribute to the kerngfober & al. 1996] Fober D., Letz S. Orlarey Y.
development should subscribe to the midishar®ecent developments of MidiSharoceedings of
kernel mailing list where are discussed all thghe ICMC 1996, ICMA, San Francisco, p.40-42

changes and the development issues. [Fober 1994] Fober DReal time, musical data flow
4.2. Contributions rules on Ethernet and MidiShare software architecture

Many of the free software projects operate aSPéoce_edlngs of the ICMC, 1994, ICMA, San
"meritocracy”: the more good code you contributg,ranc'sco' PP ‘.14_7'450

the more you will be allowed to contribute. We arésrame 1990MidiShare Developer

setting up such a process for the MidiShare kerddpcumentationGrame 1990, Lyon
development. Below are the basic rules that we §@&ame 1999MidiShare Kernel Development
considering for the project management. Guide Grame 1999, Lyon

The MidiShare Group is a core group dOrlarey 1990] Orlarey YAn Efficient Scheduling
contributors which is initially formed from theAlgorithm for Real-Time Musical Systems
project founders. It may be augmented from time Rroceedings of the ICMC, 1990, ICMA, San
time when core members nominate outstandifgancisco, pp.194-198

contributors and the rest of the core members agrﬁ?rlarey, Lequay 1989] Orlarey Y., Lequay H.
The MidiShare Group is a meritocracy: the momdidiShare: a Real Time multi-tasks software
work you have done, the more you are allowed i@odule for Midi applicationsProceedings of the
do. The group founders set the original rules, bi@@MC, 1989, ICMA, San Francisco, pp.234-237
they can be changed by vote of the active members.

New members of the MidiShare Group will be

added when a frequent contributor is nominated by

one member and approved by the voting members.

In most cases, this new member has been actively

contributing to the group’s work for over six

months.



