
HAL Id: hal-02158846
https://hal.science/hal-02158846v1

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Computing for Hardware Implementation of
Binarized Neural Networks

Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein,
Jean-Michel Portal, Damien Querlioz

To cite this version:
Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein, Jean-Michel Portal, et al..
Stochastic Computing for Hardware Implementation of Binarized Neural Networks. IEEE Access,
2019, pp.1-1. �10.1109/ACCESS.2019.2921104�. �hal-02158846�

https://hal.science/hal-02158846v1
https://hal.archives-ouvertes.fr


Date of publication 2019.

Digital Object Identifier TBA

Stochastic Computing for Hardware
Implementation of Binarized Neural
Networks
TIFENN HIRTZLIN1, (Student, IEEE), BOGDAN PENKOVSKY 1, MARC BOCQUET 2,
JACQUES-OLIVIER KLEIN 1 (Member, IEEE), JEAN-MICHEL PORTAL 2

and DAMIEN QUERLIOZ1 (Member, IEEE)
1Centre de Nanosciences et de Nanotechnologies, Univ. Paris-Sud, CNRS, France
2Institut Matériaux Microélectronique Nanosciences de Provence, Univ. Aix-Marseille et Toulon, CNRS, France

Corresponding author: Tifenn Hirtzlin (email: tifenn.hirtzlin@c2n.upsaclay.fr), Damien Querlioz (email:
damien.querlioz@c2n.upsaclay.fr)

This work was supported by the European Research Council Starting Grant NANOINFER (715872) and Agence Nationale de la
Recherche grant NEURONIC (ANR-18-CE24-0009). ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

ABSTRACT
Binarized Neural Networks, a recently discovered class of neural networks with minimal memory require-
ments and no reliance on multiplication, are a fantastic opportunity for the realization of compact and energy
efficient inference hardware. However, such neural networks are generally not entirely binarized: their first
layer remains with fixed point input. In this work, we propose a stochastic computing version of Binarized
Neural Networks, where the input is also binarized. Simulations on the example of the Fashion-MNIST and
CIFAR-10 datasets show that such networks can approach the performance of conventional Binarized Neural
Networks. We evidence that the training procedure should be adapted for use with stochastic computing.
Finally, the ASIC implementation of our scheme is investigated, in a system that closely associates logic and
memory, implemented by Spin Torque Magnetoresistive Random Access Memory. This analysis shows that
the stochastic computing approach can allow considerable savings with regards to conventional Binarized
Neural networks in terms of area (62% area reduction on the Fashion-MNIST task). It can also allow
important savings in terms of energy consumption, if we accept reasonable reduction of accuracy: for
example a factor 2.1 can be saved, with the cost of 1.4% in Fashion-MNIST test accuracy. These results
highlight the high potential of Binarized Neural Networks for hardware implementation, and that adapting
them to hardware constrains can provide important benefits.

INDEX TERMS Binarized Neural Network, Stochastic Computing, Embedded System, MRAM, In
Memory Computing

I. INTRODUCTION

RECENT advances in deep learning have transformed the
field of machine learning, with numerous achievements

in image or speech recognition, machine translation and
others. However, a considerable challenge of deep neural
network remains their energy consumption, which limits
their use within embedded systems [1]. The hardware imple-
mentation of deep neural networks is a widely investigated
approach to increase their energy efficiency. A particularly
exciting opportunity is to rely on in-memory or near-memory

computing implementations [2]–[6], which are highly energy
efficient as they avoid the von Neumann bottleneck entirely.
This idea takes special meaning today, in particular with the
emergence of novel memories such Resistive and Magnetore-
sistive Random Access Memories (RRAMs and MRAMs).
Such memories are fast and compact non volatile memories,
which can be embedded at the core of CMOS processes,
and therefore provide an ideal technology for realizing in-
memory neural networks [2], [3], [5].

A considerable challenge of this approach is that mod-
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ern neural networks require important amounts of memory
[7], which is not necessarily compatible with hardware in-
memory computing approaches. Multiple roads have been
explored to reduce the precision and memory requirements
of neural networks. The quantization of the weights used
for inference is the most natural route [8]. Architectural
optimization can result in considerable reduction in terms of
number of parameters and arithmetic operations, with only
modest reduction in accuracy [9]. Network pruning [10] or
network compression [11], [12] techniques, sometimes com-
bining different methods, can allow implementing hardware
neural networks with reduced memory access and therefore
higher energy efficiency.

Binarized Neural Networks (BNNs) have recently ap-
peared as one of the most extreme vision of low precision
neural networks, as they go further than these approaches
[13], [14]. In these simple deep neural networks, synaptic
weights as well as neuron activations assume Boolean val-
ues. These models can nevertheless achieve state-of-the-art
performance on image recognition, while being multiplier-
less, and relying only on simple binary logic functions. First
hardware implementations have already been investigated
and have shown highly promising results [2], [6], [15], [16].

However, BNNs are not entirely binarized: the first layer
input is usually coded as a fixed point real number. This
fact is not a significant issue for operating BNNs on graph-
ical processor units (GPUs) [13], as they feature extensive
arithmetic units. Research aimed at implementing binarized
neural network on Field Programmable Gate Arrays (FPGAs)
[17] has also not specifically investigated the question of the
non-binarized first layer: these works usually use the Digital
Signal Processors (DSPs) of the FPGA to process the asso-
ciated operations. However, in an application-specific inte-
grated circuits (ASIC) implementation, the non-binarization
of the first layer implies that this layer needs a specific design,
which is more energy consuming and uses more area than the
design used for the purely binary layers.

For this reason, in this work, we introduce a stochastic
computing implementation of BNNs, which allows imple-
menting them in an entirely binarized fashion. The network
functions by presenting several stochastically binarized ver-
sions of the images to the BNN, in a way reminiscent to
the historic concept of stochastic computing [18]. After
presenting the background of the work (section II), the paper
describes the following contributions.

• We show that this stochastic computing implementation
of BNNs allows achieving high network performance
in terms of recognition rate on the Fashion-MNIST
and CIFAR-10 datasets. Stochastic BNN quickly ap-
proaches standard BNN performance when several
stochastic binarized images are presented to the net-
work. We also evidence that strategy for training
stochastic computing BNNs should differ from the one
used for conventional BNNs (section III).

• We design a full hardware ASIC in-memory BNN,
which allows showing that the stochastic computing

BNN strategy can save important area (62% on Fashion-
MNIST) and energy (factor 2.1 on Fashion-MNIST with
an accuract reduction of 1.4% with regards to a standard
BNN (section IV). These numbers are discussed with
regards to different alternative implementations.

II. BACKGROUND OF THE WORK
A. BINARIZED NEURAL NETWORKS
In this section, we first introduce the general principles of
Binarized Neural Networks, an approach to considerably
reduce the computation cost of inference in neural networks
[13], [14]. In a conventional neural network with L layers,
the activation values of the neurons of layer k, a

[k]
i , are

obtained by applying a non-linear activation function f to the
matrix product between real-valued synaptic weight matrix
W [k] and the real-valued activations of the previous layer of
neurons a[k−1]:

a
[k]
i = f

∑
j

W
[k]
ij · a

[k−1]
j

 . (1)

In a BNN, excluding the first layer, neuron activation
values as well as synaptic weights assume binary values,
meaning +1 and −1. The products between weights and
neuron activation values in Eq. (1) then simply become
logic XNOR operation. The sum in Eq. (1) is replaced by
the popcount operation, the basic function that counts the
number of ones in a data vector. The resulting value is then
converted to a binary value by comparing it to a trained
threshold value µ

[k]
i . Eq. (1) therefore becomes:
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(2)
where sign is the sign function.
Ordinarily, in binarized neural network, the first layer input

X is not binarized. The implementation of operations for
computing the first layer activations a[1] is therefore more
complex than the basic XNOR and popcount operations:

a
[1]
i = sign

∑
j

W
[1]
ij ·Xj − µ

[1]
i

 . (3)

Additionally, the thresholding operation is not performed
on the last layer of the neural network. Instead, for the last
layer, we identify the neuron with the maximum popcount
value (i.e. the argmax of the last layer neurons), which
gives the output of the neural network. The whole inference
process of a conventional BNN is described with vectorized
notations in Algorithm 1.

The performance of BNNs is quite impressive. A fully-
connected BNN with two hidden layers of 1024 neurons,
and the use of dropout during training [19] obtains a 1.8%
error rate on the test dataset of the canonical MNIST hand-
written digits task [20], with 300 epochs. In comparison, a
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conventional neural network with no binarization and tanh
activation function, and the same architecture and number
of neurons, obtains a 1.5% test error rate after 300 epochs.
Similarly, on more complex datasets such as CIFAR-10 or
ImageNet, near-equivalent performed is obtained by BNNs
and conventional neural networks [13], [14], [21]. The low
memory requirements of BNNs (one bit by synapse), as well
as the fact that they do not require any multiplication, makes
them extremely adapted for inference hardware [2], [16],
[22], [23].

The training process of BNNs is reminded in Appendix A.
Unlike inference, the training process requires real valued
weights and real arithmetic: training BNNs is not easier than
in a conventional neural network. Therefore, a natural vision
is to train BNNs on standard GPUs, and to use specialized
ultra-efficient hardware only for inference.

Algorithm 1 Conventional BNN Inference Model

Require: input vector X , trained weight matrices W and
threshold vectors µ

Ensure: predicted output
1. Non binary first layer:
z[1] ←W [1] ·X
a[1] ← sign(z[1] − µ[1])
2. Remaining layers:
for k = 2→ L do
z[k] ← popcount(XNOR(W [k], a[k−1]))
a[k] ← sign(z[k] − µ[k])

end for
z[L] ← popcount(XNOR(W [L], a[L−1]))
output← argmax(z[L] − µ[L])

In this work, we investigate how the first layer can be
approximated by a stochastic input to decrease comput-
ing resources. This approach could also allow processing
stochastic data for near sensor computing, which is a way to
reduce considerably data transfer between sensors and data
process. In addition, due to the possibility of implementing
binarization from the first layer, the model can be completely
generic with exactly the same architecture over the layers and
allows reducing chip area.

B. STOCHASTIC COMPUTING
Stochastic computing is an approximate computing
paradigm, known since the early days of computing [18],
[24]. Nevertheless, hardware engineers have not exploited
this computing scheme for processor design,as it requires
applications that can be easily mapped with approximate
computing. The principle is based on encoding all data as
probabilities, represented as a temporal stochastic bitstreams:
the number of ones among the bitstream represents the
encoded probability. The main advantage of this encoding
scheme is that mathematical functions can be easily approx-
imated with simple logic gates. For instance a product is
then implemented with a single AND gate, and a weighted
adder can be implemented with a multiplexer gate [24]. Many

arithmetic operations are therefore easy to implement with
low power and small footprint characteristic. Despite these
benefits, stochastic computing holds drawbacks: its limitation
to low precision arithmetics, and the need to generate random
bits. Random number generation can be a major part of the
energy consumption, and, moreover, the generated random
bits need to be uncorrelated.

Random bits have also found applications in the field of
neural networks. The most widely used neural networks that
intrinsically exploit stochasticity are the restricted Boltzmann
machine, where each neuron is binary valued with a proba-
bility that depends on the previous layer neurons states [25].
An alternative technique to exploit stochasticity in neural
networks is to approximate standard neural network archi-
tecture with stochastic computing. This approach as been
proposed as early as the 1990’s [26], and is currently being
revisited in modern deep neural networks [27]–[29]. These
works have shown promising results in terms of area and
energy consumption. Typically, the largest challenge is the
implementation of the non-linear activation function within
the stochastic computing framework.

In this article, we suggest that stochastic computing is par-
ticularly adapted to the case of binarized neural network, as
they work so naturally with bitstreams, and as the activation
function is replaced by a simple thresholding operation.

FIGURE 1: (a) In a conventional BNN, the first layer is not bina-
rized. Grayscale input images are presented to the neural network.
(b) In a stochastic computing-based BNN, binarized images are gen-
erated stochastically based on a grayscale image. Several binarized
versions of the same original image can be presented sequentially
to the neural network, following the basic principle of stochastic
computing.

III. STOCHASTIC COMPUTING-BASED BINARIZED
NEURAL NETWORK
To evaluate the stochastic computing approach, we use
the Fashion-MNIST dataset, which has the same format
as MNIST, but presents grayscale images of fashion items
[30], and constitutes a harder task. The canonical MNIST
dataset would not be appropriate for this study, as it con-
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sists in images that are mostly black and white. As in the
MNIST dataset, each image in Fashion-MNIST has 28x28
pixels, and can be classified within ten classes. The dataset
contains 60, 000 training examples, 10, 000 test examples.
Conventional BNNs (non-binarized first layer and no use of
stochastic computing), perform very well on this task. With
a fully connected BNN with first layer coded with eight bit
fixed point real numbers, with two hidden layers of 1024
neurons each and dropout, a classification accuracy of 90%
can be obtained after 300 epochs. This result is comparable
with the test accuracy of 91% obtained by a conventional
real-valued neural network with the same architecture.

FIGURE 2: Accuracy on the Fashion MINIST classification task as
function of the number of stochastic image presented for the two
training methods. Navy blue curve: training of the neural network
with grayscale images. Light blue curve: training with presentation
of stochastic binarized images. Dashed black line: accuracy when
training with a black and white image (i.e. pixels with a value greater
than 0.5 are white and pixels that are smaller are black). Dashed
red line: best accuracy when the binarized neural network is trained
on Fashion-MNIST classification task with grayscale images. 300
training epochs were used.

A. STOCHASTIC COMPUTING WITH REGULAR
TRAINING PROCEDURE

A first approach to design a stochastic computing BNN is
to reuse the synaptic weights of a conventional BNN, trained
with grayscale picture. However, in the inference phase,
we approximate the computation of the first layer by using
stochastic images presentation instead of grayscale images.
The full inference algorithm is presented, in vectorized form,
in Algorithm 2. An input X is transformed into binarized
stochastic inputs Xt by taking the value of each grayscale
pixel (between zero and one) as the probability for the corre-
sponding pixel in the stochastic input to be one. Then, the
networks computes popcount(XNOR(W [1], Xt)) − µ[1],
and sums the result of this computation over a number T
of stochastic versions of the input Xt. Finally, the output
of the layer is thresholded to obtain a binary value, and the
rest of the neural network is computed in one pass in a fully
binarized fashion.

Algorithm 2 Stochastic Computing BNN with Binarized
First Layer

Require: Xt vectors: T stochastic binary versions of non-
binary input X, trained weight matrices W and threshold
vectors µ

Ensure: predicted output
1. Stochastic and binarized first layer
z[1] ← 0
for t = 1→ T do

z[1] ← z[1] + popcount(XNOR(W [1], Xt))
end for
a[1] ← sign(z[1] − Tµ[1])
2. Remaining layers
for k = 2→ L do

z[k] ← popcount(XNOR(W [k], a[k−1]))
a[k] ← sign(z[k] − µ[k])

end for
z[L] ← popcount(XNOR(W [L], a[L−1]))
output← argmax(z[L] − µ[L])

The quality of the results depends on the number of image
presentation T . In Fig. 2, the navy blue curve shows the
network test error as a function of T . We can see that after
100 stochastic image presentation, the accuracy is nearly
equivalent to the use of grayscale images. With eight image
presentation, the test accuracy is reduced to 88% instead of
90.1%. With a single presentation, the test accuracy is only
76%

B. ADAPTED TRAINING PROCEDURE

We now try a second strategy, where we train the neural
network with binarized stochastic image presentation instead
of grayscale images. To do this, during training, we use the
conventional BNN training technique of Appendix A, but in-
stead of using the normal grayscale Fashion-MNIST images,
we use stochastic binarized ones, with the same number of
presentation T as will be used during inference. The infer-
ence technique then remains identical to the one described
in section III-A. In Fig. 2, in cyan color, we plotted the test
error rate as a function of the number of presentation of the
same image with this scheme. We see that the test accuracy
is equivalent to the one obtained with grayscale images for
high numbers of image presentation. On the other hand, with
few stochastic presentation (one to five), the adapted input
training technique allows reaching a quite high accuracy. If
a single presentation is used at inference time, the network
test accuracy is 86%. This test accuracy is equivalent to the
one obtained when training a BNN with non-stochastic black
and white versions of the Fashion-MNIST dataset (dashed
black line in Fig. 2). If three image presentation are used, the
network test accuracy increases to 88.7%.

These results show that when using the stochastic comput-
ing version of BNN, the adapted training procedure should
be used.
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C. CHOICE OF THE ACCUMULATION LAYER FOR
STOCHASTIC SAMPLES

FIGURE 3: Accuracy on the Fashion MINIST classification task as
function of the number of stochastic image presentation presented
when the popcount value ias accumulated at different level of the
network. The training was done with grayscale images and 300
training epochs were used.

Until now, at inference time, we have accumulated the
outputs of the first layer over several presentations of the
same image, then propagated the binarized output of the
first layer to the other layers. An alternative strategy can
be to perform the accumulation over the realizations of the
input images at another layer. If the accumulation is done at
the last layer, this procedure corresponds to using stochastic
computing in the whole depth of the neural network.

Fig. 3 presents the test accuracy of the neural network on
the Fashion-MNIST dataset, as a function of the number of
presented realizations of the input images, for the different
accumulation strategy, in networks trained with the adapted
training strategy. This Figure shows that that the different ac-
cumulation strategy lead to equivalent accuracy, consistently
with the principles of stochastic computing. The strategy of
accumulation at the first layer is retained for the rest of the
paper, as it allows for the minimum energy consumption.

D. EXTENSION TO THE CIFAR-10 DATASET

We now apply this strategy to the more advanced CIFAR-
10 dataset. We use a convolutional neural network with six
convolutional layers, with kernel size of three by three and a
stride of one (number of filters 384, 384, 384, 768, 768 and
1536) and three fully connected layers (number of neurons
1024, 1024 and 10). Training is done in the same condi-
tions as the Fashion-MNIST case, using dropout and Adam
optimizer, and the pytorch deep learning framework. In the
stochastic computing BNN, CIFAR-10 images are presented
with binarized channel: each RGB channel pixel presents a
value of zero or one. This value is chosen randomly with
a probability equal to the RGB value of the corresponding

FIGURE 4: Accuracy on the CIFAR-10 classification task as func-
tion of the number of stochastic image presented for the two training
methods. Navy blue curve: training of the neural network with color
images. Light blue curve: training with presentation of stochastic
binarized images. Dashed black line: accuracy when training with a
binarized color image (i.e. RGB values with a value greater than 0.5
are white and pixels that are smaller are black). Dashed red line: best
accuracy when the binarized neural network is trained on CIFAR-10
classification task with full color images. 2000 training epochs were
used.

FIGURE 5: Accuracy on the CIFAR-10 classification task, but
the stochastic computing approach is implemented at the end of
the convolutional layers. Navy blue curve: training of the neural
network in a conventional fashion. Light blue curve: classifier part
of the neural network retrained with stochastic versions of the output
of the convolutional layers. Dashed red line: best accuracy when the
binarized neural network is trained on CIFAR-10 classification task
with full color images. 2000 training epochs were used.

pixel of the image. Accumulation of stochastic realization is
realized at the first layer, as described in section III-C.

Fig. 4 shows that the results on CIFAR-10 are very similar
to the ones on Fashion-MNIST (Fig. 2). It present results
obtained using the weights trained with full color images,
and weights obtained with the adapted training approach.
In both cases, the stochastic BNN results approach regular
BNN results when the number of presentation T of stochastic
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images is increased. The adapted training nevertheless gives
highly superior results and should be preferred. This high-
lights that the stochastic BNN approach can be applicable to
more complicated tasks than Fashion-MNIST.

We now consider a variation of this scheme, a partially
binarized neural network. Fully connected layers of neural
networks are particularly adapted for in-memory BNN im-
plementation [2], [15], as these layers involve large quantities
of memories. Convolutional layers are less memory inten-
sive, and thus benefit less from binarization, while requiring
increasing the number of channels when binarized [13]. In
a hardware implementation, it can therefore be attractive to
binarize only the classifier (fully connected) layers. In that
case, the input of the classifier is real, and is processed
with the stochastic BNN approach. This is also of special
interest as the first fully connected layer in a convolutional
neural network is usually the layer that involves the highest
number of additions, and can therefore benefit significantly in
a hardware to be implemented with the stochastic approach.

We consider a neural network with the same architec-
ture as the fully binarized one, a reduced number of filters
(128, 128, 128, 256, 256 and 512) and the same number of
neurons in the fully connected layers (1024, 1024 and 10).
Without the stochastic approach, this neural network has the
same CIFAR-10 recognition rate than the fully binarized one
(90%). Fig. 5 shows the results of the stochastic BNN with
this approach. If the same weights are used than in a non
stochastic BNN, the results look similar to the fully binarized
approach of Fig. 4. On the other hand, if the classifier weights
are retrained with the stochastic binarized inputs to the clas-
sifier, the stochastic results are very impressive. Even with
a single image presentation T , the network approaches the
performance of the non stochastic network. The stochastic
BNN approach therefore appears especially effective in this
situation.

IV. HARDWARE IMPLEMENTATION OF STOCHASTIC
COMPUTING-BASED BINARIZED NEURAL NETWORK
In order to investigate the potential of the stochastic BNN
approach, we designed a digital ASIC version of it using
standard integrated circuit design tools. The architecture,
presented in Fig. 6, allows performing the inference of a
fully connected binary neural network of any size (up to 1024
neurons for each layer). The only parameter constrained by
the hardware design is the number of weights that can be
stored.

A. DESIGN OF THE ARCHITECTURE
Our architecture is inspired by the works of [31], with
Static RAMs replaced by Spin Torque MRAM [32], and
adaptation to stochastic computing. This architecture aims at
performing inference on binarized neuronal networks with
minimal energy consumption. To achieve this goal, it brings
memory and computation as close as possible, to limit energy
consumption related to data transfer. Such an architecture
takes special interest with the emergence of new non-volatile

memory components such as Spin Torque MRAM, which can
be integrated within the CMOS manufacturing process, and
which we consider here.

The architecture is described in detail in Appendix B, and
can compute following a parallel or a sequential structure.
The full design is made by a basic cell repeated 32x32 times
(Fig. 6 (b-c)) that can perform both sequential or parallel
calculation. It includes a 2 kbits memory array to stores
weights, as well as XNOR gates and popcount logic.

We designed this system using the design kit of a commer-
cial 28 nanometer technology. Digital circuits were described
in synthesizable SystemVerilog description. MRAM memory
arrays are modeled in a behavioral fashion, and their char-
acteristics (area, energy consumption) are inspired by [33].
The system was synthesized to estimate its area and energy
consumption. For energy consumption, we employed Value
Change Dumps extracted from a Fashion-MNIST inference
task, and estimated it using the Cadence Encounter tool.

B. ENERGY CONSUMPTION AND AREA RESULTS
Fig. 7(a) shows the area of a basic cell of our architecture
(Fig. 6(b-c)), in the case of binary input (one operating
bit), and in situations where the input is coded in Fixed
Point representation (two, four and eight operating bit), as
is required in the first layer of a conventional BNN. This
Figure separates the area used by registers, logic and MRAM.
A cell with binary input uses six times less area than a cell
designed for eight bit input. Interestingly, the difference is
mostly due to the popcount circuits, which need more depth
when the input is non-binary. Similarly, as seen in Fig. 7(b),
a cell with binary input uses 4.5 times less energy per cycle
than the corresponding one with eight bits input. Again, the
difference is mostly due to the popcount circuits.

The savings in terms of area transfer directly at the system
level. We now consider the whole neural network used for
Fashion-MNIST classification throughout section III. Using
our architecture, a full BNN with eight bit first layer occupies
1.95 mm2, while the BNN with stochastic binarized first
layer occupies 0.73 mm2, a 62% saving in area. These area
values were extracted from a system designed for a T value
of eight.

Fig. 8 plots the energy consumption for recognizing an
image with our ASIC architecture, as a function of the
number of presented stochastic images. This is compared
with the energy cost of the same architecture, but using a
non stochastic first layer, with eight bit input. We see that
the system with stochastic first layer is more energy efficient
than the system with non-binary first layer if less than eight
presentation are used.

The previous curves do not include the cost of random bit
generation. If we use a simple eight-bit Linear Feedback Shift
Register (LFSR) pseudo random number generator, the added
energy is 0.52nJ/cycle, and the added area is 48, 000 µm2.
Both are therefore negligible. It has also been shown that
Spin Torque MRAM technology can be adapted to provide
very low energy true random numbers [34]. If such a tech-
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FIGURE 6: Design of an MRAM based fully connected binarized neural network, computing both parallel and serial. (a) Full architecture
with 32× 32 repeated cells. Each cell (b-c) behaves as a neuron if the input is sequential, or each column behaves as a neuron if the input is
parallel.

nology was used, based on the numbers of [34], the energy
cost of random bit generation would be 0.125nJ/cycle, and
the area much smaller than LFSR. The energy cost of random
number generation is therefore negligible with regards to the
consumption of the system seen in Fig. 8.

These energy numbers are very attractive with regards
to non binarized implementations at equivalent recognition
rate. Non binarized neural networks require less neurons and
synapses than BNNs to achieve equivalent recognition rate.
For example, to match the performance obtained in Fig. 2
on Fashion-MNIST with three image presentations (T = 3),
one only needs a non-binarized neural network with eight-
bit synapses with two layers of 500 neurons, while the BNN
needs 1024 neurons per layer. However, in an ASIC, the non
binarized neural network requires energy-hungry 8-bits mul-
tiplications and addition (0.3 pJ and 0.04 pJ per operation
in our 28 nm technology). Taking into account only these
arithmetic operations, the energy consumption is 220 nJ for
recognizing a Fashion-MNIST image with the same accuracy
as the stochastic BNN with three image presentations. This
stochastic BNN requires only 90 nJ (Fig. 8), taking into
account the whole system.

As a conclusion, this works highlights that the stochastic
computing approach is attractive in terms of area occupancy.
In terms of energy efficiency, it is very attractive if a relatively
small number of presentation is used (T < 8). Therefore, it
appears preferable to rely on the stochastic training approach
seen in section III-B, and to use few stochastic image presen-
tation for inference. For example, if three image presentation
are used, a factor 2.1 can be saved on the energy consumption
on Fashion-MNIST, with a reduction of 1.4% of test accuracy
with regards to the best accuracy obtained by a BNN (dashed

red line in Fig. 2). It should be noticed that the benefits
of stochastic computing would be reduced on very deep
neural networks, where the first layer plays a smaller role.
Our approach is therefore the most promising for Internet-
of-Things or sensor networks applications, where relatively
small neural networks can provide sufficient intelligence, but
circuit cost and energy consumption are the most critical
issues. On deep neural networks, nevertheless, the approach
of implementing only the classifier with a stochastic BNN, as
mentioned in section III-D, can be of high interest.

V. CONCLUSION

In this work, we presented a stochastic computing approach
to Binarized Neural Networks. This allows implementing
them in an entirely binarized fashion, whereas in conven-
tional BNNs, the first layer is not binary. We showed that the
stochastic computing approach can reach recognition results
similar to the conventional approach. We identified that for
highest accuracy, the neural network should not be trained
with regular images as conventional BNNs: it it is more
beneficial to train stochastic BNNs with stochastic binarized
images, using the same number of image presentation as
will be used during inference. The design of a full BNN
ASIC relying on in-memory computing, then highlighted the
benefits of BNNs in terms of area and energy consumption.
Stochastic BNNs allow using the same compact architecture
for all layers, which leads to strong benefits in terms of area
(62% reduction in the case of Fashion-MNIST classification).
In terms of energy, the benefits can be very strong if we
accept a slight reduction in classification accuracy. For ex-
ample, on Fashion-MNIST classification, we can reduce the
energy consumption by a factor 2.1, with a decrease of 1.4%
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FIGURE 7: (a) Area of the basic cell (Fig. 6 (b-c)) of our ASIC ar-
chitecture, implemented in a 28 nm CMOS technology, as function
of the number of operating bit for a fixed point binary architecture.
One-bit corresponds to our stochastic fully binarized architecture.
(b) Corresponding energy consumption, per clock cycle.

in classification accuracy.
These results highlight the high potential of BNNs for

implementing compact and energy efficient in-memory neu-
ral networks, and the potential of stochastic approaches for
hardware artificial intelligence. Future works should focus
on the physical implementation of the proposed scheme, as
well as the extension of the approach to other tasks than
vision, such as medical tasks, where energy efficiency can
be a particularly important concern.

.

APPENDIX A TRAINING ALGORITHM
Throughout the paper, neural networks are trained with the
algorithm proposed by Courbariaux et al in [13]. This algo-
rithm relies on two fundamental principles. First, the function
Clip(x,−1, 1) is used instead of the sign function in the
backpropagation phase, as it can be differentiated. Second,
the binarized weights W are not directly modified during
the back propagation: their modification is done indirectly

FIGURE 8: Energy consumption of the full Fashion-MNIST classi-
fier systems, for the classification of one image. Light blue: stochas-
tic fully binarized binary architecture. Navy blue: Conventional
BNN with non binary (8 bit fixed point) first layers. The neural
networks have two layers with 1024 neurons each. The light blue
area indicate the regime where the non-binary first layer is more
energy efficient thant the fully binarized system.

through the modification of the real weight Wa associated
with each synapse.

Our design includes two modifications with regards to the
work of [13]. In the original paper, the multi-layer perceptron
trained on MNIST consisted of hidden layers of binarized
units, topped by L2-SVM output layer. Here, we used a
softmax output layer. Second, the parameters γ and β used
for the batch normalization were not trained, and we used
γ = 1 and β = 0 instead. The complete algorithm that we
used is presented in Algorithm 3.

APPENDIX B DESCRIPTION OF THE ASIC BNN
ARCHITECTURE
The architecture for hardware implementation of BNN in-
ference is presented in Fig. 6. The basic function of a BNN
is to compute popcount(XNOR(W,X)) − µ. To perform
this function, first, the system needs to perform the XNOR
between the inputs X and the weights W , stored in the Spin
Torque MRAM memory blocks. Second, it needs to perform
the popcount function, and then compare this value with a
threshold.

To achieve this goal, the architecture is made of basic cells
(cell Fig. 6 (b-c)), composed of a 2 kbits memory array that
store weights, 32 XNOR logic gates that perform the XNOR
between the 32 bits weights and the 32 bits received data, a
32 bits to 5 bits popcount module compound of basic tree
adders. The basic cell is repeated 32x32 times.

The architecture can be operated with a “parallel to se-
quential” structure, or a “sequential to parallel” structure.
The sequential to parallel structure allows dealing with long
input sequence data, and outputs a limited parallel output
data. By contrast, the parallel to sequential structure allows
dealing with limited parallel input data, and outputs long

8 VOLUME X, 2018
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Algorithm 3 Conventional BNN training model

Require: training data : Xtrain, targets output ytrain, previ-
ous binarized and real weights W and Wa, and previous
threshold values µ

Ensure: updated weights Wt+1 and Wa,t+1, updated Batch-
Norm parameters µ and σ
1. Forward propagation
for k = 1 to L do
W [k] ← sign(W

[k]
a )

z[k] ←W [k] · a[k−1]

ẑ[k] ← BatchNorm(z[k], µ[k], σ[k])
if (k < L) then

a[k] ← sign(ẑ[k])
else
a[k] ← softmax(ẑ[k])

end if
end for
Compute gradient of softmax cross entropy loss :

ga[L] =
∂C

∂a[L]
= a[L] − y

2. Backward propagation
for k = L to 1 do

if (k < L) then
ga[k] ← ga[k−1] ◦ 1|ak<1|

end if
gẑ[k] ← BackBatchNorm(ga[k] , ẑ[k], µ[k], σ[k])
gz[k] ←W [k] T gẑ[k]

g
W

[k]
b

← gẑ[k] aTk−1

end for
3. Update parameters
for k = 1 to L do
W

[k]
a,t+1 ← Clip(UpdateAdam(W

[k]
a,t+1, gW [k]

b

),−1, 1)
(µ[k], σ[k])t+1 ← MovingAverage(µ

[k]
B , σ

[k]
B )t

end for

sequence data. The basic cells of Fig. 6 (b-c) can perform
both, sequential or parallel calculation. The output of the
popcount can be given to the sequential part of the cell or to
the parallel part of the system that will perform the popcount
through the whole column, with a “popcount tree” module
shared with all the cells of the column. The sequential section
of the cell that receive the popcount output will perform
the full popcount operation sequentially by summing the
popcount output using a register.

To perform the activation function of the neuron, the
system adds in each cell the threshold values µ in a memory
array. The signed bit of the difference between the popcount
value saved in the register and µ gave the activation value.
The same operation is made with the output of the popcount
tree shared along the column.
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