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Abstract Virtual guiding fixtures constrain the movements
of a robot to task-relevant trajectories, and have been suc-
cessfully applied to, for instance, surgical and manufactur-
ing tasks. Whereas previous work has considered guiding
fixtures for single tasks, in this paper we propose a library of
guiding fixtures for multiple tasks, and propose methods for
1) Creating and adding guides based on machine learning; 2)
Selecting guides on-line based on probabilistic implementa-
tion of guiding fixtures; 3) Refining existing guides based
on an incremental learning method. We demonstrate in an
industrial task that a library of guiding fixtures provides an
intuitive haptic interface for joint human-robot completion
of tasks, and improves performance in terms of task execu-
tion time, mental workload and errors.
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1 Introduction

Recent improvements in the safety and (force) sensing capa-
bilities of robots now enable humans to physically interact
and solve tasks collaboratively with robots. The advantages
of this collaboration is that it enables non-expert users to
quickly teach robots new behaviours for new tasks. This is
essential for modern assembly lines, where lot sizes are be-
coming ever smaller due to customization, and high degrees
of flexibility are necessary to quickly adapt to changing mar-
kets (Hermann et al, 2016).

This flexibility and teach-in programming requires
robots to be adaptive and to predict the intentions of hu-
mans, for which machine learning is a key enabler. In this
paper, we apply machine learning and probabilistic methods
to “virtual guiding fixtures” (Lin et al, 2006), so that non-
expert users can teach new fixtures, and the robot is able to
recognize on-line which fixture the human intends to select.

A virtual guiding fixture (Lin et al, 2006) constrains the
motion of an end-effector to certain task-relevant trajecto-
ries. A well-known example of a guiding fixture from every-
day life is the ruler, which allows us to draw very straight
lines by constraining the movement of the pen tip along a
1-D trajectory on the 2-D paper. Robots are able to imple-
ment more complex virtual guiding fixtures, as illustrated in
Fig. 1.

Whereas previous work has focussed on single virtual
guides for single tasks, here we consider scenarios in which
multiple tasks must be solved, and a library of virtual guides
is thus necessary. Therefore, to maintain and evaluate such
a library, we make the following contributions1:

– Apply incremental training of Gaussian Mixture Mod-
els (GMM), as previously used for Programming by
Demonstration (PbD) in (Calinon, 2007), to create and
refine virtual guides (Section 4 and 6).

– Define a controller to select among multiple virtual
guides based on a probabilistic implementation of them
(Section 5), which constitutes the main technical contri-
bution of our work.

– Present an user study (Section 7), in which we evaluate
the usability and impact of the library of virtual guides
in the context of an industrial pick-and-place task.

The rest of this paper is structured as follows. In the next
section, we discuss related work. In Section 3, we introduce

1 Our previous work (Raiola et al, 2015a,b) focussed on the the-
oretical framework underlying multiple virtual guides, as well as an
analysis of their stability. This paper focusses instead on the pragmatic
implementation of a library of such guides, including a full user study.



2 Gennaro Raiola et al.

Ruler as a guide. Robot as a guide.

Robot as a guide
for industrial tasks.

Fig. 1: Rulers simplify the drawing of lines, because they
constrain (guide) the movement of the pencil tip (top left).
Robots can similarly constrain human motions with virtual
guides, but allow more flexibility on the shape of the guide
(top right). Such virtual guides enable co-manipulation for
industrial tasks (bottom).

a possible way to generate virtual guides by using virtual
mechanisms as proposed in (Joly and Andriot, 1995), which
forms the background of our work. In Section 4, we intro-
duce how to create and add guides to the library. In Section 5
we present the controller which enables the on-line selec-
tion of multiple virtual guides. In Section 6 we discuss how
to refine existing guides based on the incremental training of
GMM. We present the user study in Section 7, and conclude
with Section 8.

2 Related Work

Virtual guides are used to enforce virtual constraints on the
movements of robots, in order to assist the user during a
collaborative task. Virtual fixtures are especially useful in
contexts where human decision making is still required to
perform the overall task, but where constraints on the accu-
racy or required forces of the motion preclude humans from
performing such tasks without robot assistance. Virtual fix-
tures were first introduced by (Rosenberg, 1993), where vir-
tual fixtures are presented as an overlay of augmented sen-
sory information on a workspace used to improve human
performance in a teleoperated manipulation task. The fun-
damental concept is that virtual fixtures can reduce mental
workload, task time, and errors during the collaborative task.
After Rosenberg’s initial work, the use of virtual fixtures has
been extended to robotic surgery under the name of active
constraints (Ho et al, 1995; Davies et al, 2006) and to indus-

trial applications by (Colgate et al, 2003) in the context of
Intelligent Assist Devices.

Nowadays, virtual fixtures has been featured in sev-
eral different works, but unfortunately “there is currently
no definitive concept which unifies the field” (Bowyer
et al, 2014) because of the different definitions, applications
and implementation methods. Generally, virtual fixtures has
been used in teleoperation or comanipulation contexts. In
teleoperation, the user controls a slave robot via a separate
master device (Joly and Andriot, 1995; Aarno et al, 2005;
Abbott, 2005; Bowyer and y Baena, 2013), this offers ben-
efits such as motion scaling and the possibility to operate
in restricted and unsafe environments, for example (Ryden
et al, 2013) use virtual guides to teleoperate an underwater
robot, while (David et al, 2014) proposed a supervisory con-
trol system to speed up a disk-cutter insertion process.

In a comanipulation context, the user directly interacts
with the robot through physical contact (Raiola et al, 2015a;
Becker et al, 2013; Dumora, 2014; Pezzementi et al, 2007).
This allows a direct interaction between the robot and the
user, and a more intuitive ability to perform the task since
the user is better integrated in the procedure compared to the
case where the user interacts with the environment through
a teleoperated robot. The type of assistance offered by the
virtual fixtures can vary among different definitions, but in
general they are either used to guide the user along a task-
specific pathway or to limit the user to move the robot within
a safe region.

The particular implementation of virtual guides we use
is based on the work presented by (Joly and Andriot, 1995),
where a passive virtual mechanism is connected to the robot
end-effector by a spring-damper system in a teleoperation
context. Instead, we use the virtual mechanisms in a co-
manipulation framework, i.e. the user is directly in contact
with the robot. Virtual mechanisms have also been used
by (Pezzementi et al, 2007), where they are called “prox-
ies”. Virtual guides may also be implemented by using
anisotropic admittances to attenuate the non-preferred user
force component (Marayong et al, 2003; Bettini et al, 2004).
These methods require sensing external inputs, such as the
force or the velocity applied by the user on the robot end-
effector. This is not required with our control scheme.

Regarding the way virtual fixtures can be created, there
are many possible solutions since there are different possi-
ble applications where they can be useful, usually the way to
create them is strictly related to the goals of the application.
In general, virtual fixtures have often been limited to pre-
defined geometric shapes (Marayong et al, 2003) or com-
binations of shapes (Aarno et al, 2005; Kuang et al, 2004)
or defined through well-defined geometric models (Joly and
Andriot, 1995; Dumora, 2014). On the other hand, program-
ming by demonstration (PbD) appears as a promising solu-
tion to program robots in a fast and simple way when the
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task is known by the user. In PbD, teaching a path usually
involves demonstrating the set of trajectories and retrieving
a generalized representation of the data set suitable for re-
production by a robot. Generating guides from demonstra-
tions has been explored by (Aarno et al, 2005), who model
demonstrations in a segmented sequence of straight lines.
Another interesting work about virtual fixtures and program-
ming by demonstrations has been conducted by (Yoon et al,
2014). In this work the authors personalize the virtual fix-
ture based on a set of demonstrations provided by the users
in order to match their preferences about the guidance.

In our work, we use the demonstrations of the user
to train Gaussian Mixture Models (GMM) as in (Calinon
et al, 2007), which ensures smooth movements and explic-
itly models the variance in user demonstrations. Moreover,
this allows us to define one of the novel aspect of our work,
i.e. the probabilistic virtual guides. A first advantage of the
probabilistic approach is that it enables a guide to be acti-
vated/deactivated based on the probability of belonging to
it, which leads to smooth transitions. This is preferable to
switching the guide on/off as in (Li and Okamura, 2003;
Aarno et al, 2005; Yu et al, 2005), and does not require
the manual design of distance thresholds for activation, as
in (Nolin et al, 2003).

A second advantage is that the probabilistic approach
allows us to simultaneously activate and recognize several
guides, by assigning probabilities to each guide based on
user behavior. Thus, our method enables the use of a li-
brary of guides, with one guide for each distinct task. Multi-
ple guides have been previously used, but these (sub)guides
are activated sequentially for one unique task, rather than in
parallel for several tasks. For instance (Kuang et al, 2004)
combine different shape primitives to facilitate maze nav-
igation. (Aarno et al, 2005) use HMM to probabilistically
choose a guide in a sequence of linear guides to accomplish
a pick and place task.

Finally, we consider a co-manipulation instead of tele-
operation framework, as is customary with PbD. In this re-
spect, our work can be compared to (Amor et al, 2014; Med-
ina et al, 2012; Rozo et al, 2016; Wrede et al, 2013) where
the user and the robot have to execute a learned task together.
Regarding the definition of the virtual guides through PbD,
our work can be compared to the work done by (Vakanski
et al, 2012; Mollard et al, 2015; Boy et al, 2007; Ewerton
et al, 2016; Lee and Ott, 2011; Sanchez Restrepo et al, 2017)
where the concept of Task refinement is exploited, as we will
see in Section 6 this is possible due to the incremental train-
ing of GMM (Calinon, 2007).

3 Background: Virtual Mechanisms as Virtual Guides

We implement a virtual guide as a connection between the
end-effector of the robot and a simulated virtual robot called

“virtual mechanism” (Joly and Andriot, 1995). The equa-
tions and control schemes in (Joly and Andriot, 1995) are
important background knowledge to understand our contri-
butions, so we provide an overview of them in this section.

In general the virtual robot has fewer degrees of free-
dom than the real one, and thus the movements of the real
robot are constrained by the possible movements of the vir-
tual robot, see Fig. 2.

Fig. 2: Left: A virtual mechanism is a virtual (spring-
damper) connection between the robot and the virtual robot
with fewer degrees of freedom. xvm and xr represent respec-
tively the end-effector position in Cartesian space of the vir-
tual mechanism and the robot. svmi represents the degree
of freedom of the virtual mechanism. Right: In our work,
the virtual mechanism has only one degree of freedom rep-
resented by svm, which represents the movement along a
trajectory, the virtual guide. The virtual mechanism can be
thought as a cart moving along a rail, with the rail acting as
the constraint.

The robot end-effector and the virtual “cart” mechanism
are coupled by a spring-damper system. In this way if the
robot end-effector moves, the cart is pulled along the rail in
the direction of the movement, on the other hand, the cart
also pulls the robot towards the rail, because the connection
pulls in both directions. The overall effect is that the robot
end-effector can be moved easily along the virtual rail, but
not away from the rail. The position of the cart on the rail in
Cartesian space is described by xvm. The distance it has trav-
eled along the rail is function of the phase svm, with svm = 0
at the beginning and svm = 1 at the end of the rail, as illus-
trated in Fig. 3. The kinematics of the virtual mechanism is
described by:

xvm = f (svm), (1)

ẋvm = Jvm(svm)ṡvm. (2)

In Section 5.1 we will describe how to implement the
functions f (svm) and Jvm(svm) from user demonstrations.

3.1 Force on the virtual mechanism

The virtual mechanism is connected to the robot end-
effector with a virtual spring-damper system. The force ap-



4 Gennaro Raiola et al.

Fig. 3: The main variables and equations of the virtual
mechanism.

Fig. 4: Control scheme for the virtual mechanism.

plied to the virtual mechanism by the robot is:

Fr = K(xr−xvm)+B(ẋr− ẋvm). (3)

The virtual mechanism is ideal, so the efforts applied on it
are null

Jvm
ᵀFr = 0, (4)

which leads to

Jvm
ᵀ(K(xr−xvm)+B(ẋr−Jvmṡvm)) = 0. (5)

By solving (5) with respect to ṡvm, we obtain a first order
dynamical system that expresses the evolution of the virtual
cart along the virtual rail:

ṡvm = (Jvm
ᵀBJvm)

−1Jvm
ᵀ(K(xr−xvm)+Bẋr). (6)

Moving the robot end-effector away from the virtual cart
(xr 6= xvm) will thus make it slide along the rail, with a ve-
locity described by (6)2.

2 Eq. (6) contains the inverse of the matrix (Jvm
ᵀBJvm), which may

lead to singularities. This problem and possible solutions are presented
in Section 2.3 of (Raiola, 2017).

3.2 Force on the robot end-effector

Because the virtual mechanism and the robot end-effector
are connected to each other, the virtual mechanism also ap-
plies a force on the robot end-effector, i.e.

Fvm =−Fr = K(xvm−xr)+B(ẋvm− ẋr). (7)

This virtual force can be transformed into actual control
commands for the robot, for instance with a compliance con-
troller. In our implementation, we used the robot’s Jacobian
transposed Jᵀr to convert the forces into torque references
for the motor controllers. Fig. 4 illustrates the signals con-
nections between the robot and the virtual mechanism.

4 Creating and Adding Guides

In the previous section, we explained how a virtual guide
is implemented as a virtual mechanism. In this paper, the
mechanism may be considered as a virtual cart on a rail (a
3D trajectory), which is connected to the robot end-effector
with a spring-damper system. In this section, we present a
method for adding a new guide (rail) to a library of guides
through demonstrations and machine learning.

4.1 Gaussian Mixture Model

In our approach, virtual guides are extracted from (multiple)
user demonstrations by training a Gaussian Mixture Model
with Expectation Maximization, as in (Calinon et al, 2007).

Fig. 5: Example of a Gaussian Mixture Model, trained on
three demonstrated trajectories

In a GMM, the demonstrated data is modelled by a mix-
ture of K components defined by a probability density func-
tion:

p(ζ m) =
K

∑
k=1

p(k)p(ζ m|k), (8)

where {ζ m}M
m=1 represents the demonstrated set of Carte-

sian points of dimension D, p(k) is the prior probability and
p(ζ m|k) is the conditional probability. A Gaussian Mixture
Model can be fully described by its parameters θ which are
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θ = {πk,µk,Σ k,M}K
k=1, respectively the priors, the means,

the covariance matrices and the number of samples3 in ζ .
For a mixture of K components of dimensionality D the

parameters in (8) are defined as:

p(k) = πk,

p(ζ m|k) = N (ζ m; µk,Σ k), (9)

=
e(−

1
2 (ζ m−µk)

ᵀΣ k
−1(ζ m−µk))√

(2π)D|Σ k|
. (10)

The log-likelihood of the model described by θ , given a
set of M datapoints {ζ m}M

m=1 is:

L (θ) =
1
M

M

∑
m=1

ln(p(ζ m)). (11)

Where p(ζ m) is the probability that ζ m has been gener-
ated by the model, which is computed using (8).

4.1.1 Training the Gaussian Mixture Model

The GMM is initially trained from user demonstra-
tions, using the approach described in (Calinon et al,
2007; Raiola et al, 2015a), and briefly repeated here.
The demonstrated trajectories consist of samples {ζ m =

[x(tm),y(tm),z(tm)]}M
m=1. Multiple trajectories are first

aligned using Dynamic Time Warping. Then, each sam-
ple in a trajectory is associated with a phase value defined
as s(tm) = (tm − t1)/(tM − t1), i.e. s(t1) = 0 at the begin-
ning of the demonstration, and s(tM) = 1 at the end. The
resulting samples in one trajectory then have the format
{[xm,ym,zm,sm]}M

m=1.
Fitting the GMM to this data is done with the

Expectation-Maximization algorithm (EM). EM incremen-
tally adjusts the priors πk and the parameters µk and Σ k of
the Gaussian functions to fit the data until a stop criterion
is met. This algorithm guarantees monotone increase of the
likelihood of the training set during optimization.

4.2 Gaussian Mixture Regression

Virtual mechanisms require implementations of
the kinematics equations xvm = f (svm) (1) and
ẋvm = Jvm(svm)ṡvm (2). These are extracted from the
GMM through Gaussian Mixture Regression (GMR). In
the context of a virtual mechanism, the input space is S, and
the output space is X , respectively the phase svm and virtual

3 Note that M is not strictly necessary to describe the model but it
will be useful for the incremental training.

mechanism’s position xvm. Given this partition, the mean
and covariance matrix4 are decomposed as

µk = [µᵀ
k,S,µ

ᵀ
k,X ]

ᵀ and Σ k =

[
Σ k,S Σ k,SX

Σ k,XS Σ k,X

]
, (12)

The implementation of xvm = f (svm) in (1) corresponds to
computing xvm = E(xvm|svm), i.e. the expectation of xvm

given the input svm:

xvm =
K

∑
k=1

βk(svm)(µk,X +Σ k,XSΣ
−1
k,S(svm−µk,S)), (13)

with:

βk(svm) =
πkg(x; µk,S,Σ k,S)

∑
K
l=1 πlg(x; µ l,S,Σ l,S)

=
πkg(x;sk

vm)

∑
K
l=1 πlg(x;sl

vm)
. (14)

The function g represents a Gaussian distribution defined as:

g(x; µ,Σ) =
e(−

1
2 (x−µ)ᵀΣ−1(x−µ))√

(2π)D|Σ |
. (15)

The function Jvm(svm) in (2) is implemented with the
analytical derivative of (13) in respect of svm.

In summary, the kinematics of the virtual mechanism
xvm = f (svm) is computed with Gaussian Mixture Regres-
sion (13), based on a Gaussian Mixture Model (8), whose
parameters are trained by applying the Expectation Maxi-
mization algorithm to a set of demonstrated trajectories.

5 Selecting Guides

In a library of virtual guides, different guides exist to solve
different tasks, see Fig. 6. Our aim is to enable the robot to
recognize on-line which task the user intends to solve. To
avoid abrupt switches, we implement a control scheme in
which all mechanisms are simultaneously active, but scaled
with the probability that the task with which the mechanism
is associated is being solved. Thus, the final force Fres ap-
plied to the end-effector is a weighted sum of the forces from
each guide Fn=1...N

vm :

Fres =
N

∑
n=1

pnFn
vm. (16)

Our approach requires the computation of the probabil-
ities pn=1...N , which represent the probability that the nth

guide is responsible for the current task. To do so, we first
propose “probabilistic virtual mechanisms”, show how they
enable pn=1...N to be computed, and propose different inter-
action modes based on the exact scaling in (16).

4 The covariance matrix Σ e,S is actually a scalar, because the phase
is always 1-dimensional. For consistency, we nevertheless use the bold
symbol Σ rather than σ2.
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Fig. 6: Multiple virtual mechanisms – one for each task –
simultaneously connected to the robot end-effector.

5.1 Probabilistic Virtual Mechanism

We define a probabilistic virtual mechanism as a virtual
mechanism in which there is uncertainty about the position
of the virtual end-effector, i.e. the position of the cart on the
rail. This uncertainty is represented by a Gaussian distribu-
tion, as visualized in Fig. 7.

Fig. 7: The current state of the virtual mechanism is mod-
elled as a multi-variate Gaussian distribution N (xvm,Σ vm).

The covariance matrix of the distribution is readily com-
puted from the Gaussian Mixture Model through Gaussian
Mixture Regression by computing the conditional variance
VAR(xvm|svm):

Σ vm =
K

∑
k=1

βk(svm)
2
(

Σ k,X −Σ k,XSΣ
−1
k,SΣ

ᵀ
k,XS

)
. (17)

Thus, the (uncertain) position of the virtual mechanism
is represented by the Gaussian distribution:

xvm = E(xvm|svm = s), (18)

Σ vm =VAR(xvm|svm = s). (19)

We now show how the probabilistic virtual mechanism
is used to compute the probabilities pn=1...N for each of the
N guides in the library.

5.2 Probabilistic Weighting

Fig. 8 illustrates the association problem when using mul-
tiple guides. The two Gaussian Mixture Models represent

the two virtual guides, which are associated with two dif-
ferent tasks. The inset to the right shows how the robot end-
effector xr is connected to both of the virtual mechanism (the
“carts”). Because xr is closer to the lower cart 2, it is more
likely that the user intends to execute task 2, and the force
exerted by the cart 2 should be higher than that exerted by
cart 1. This intuition is implemented with the probabilistic
weighting scheme.

Fig. 8: Left: demonstrated trajectories (light gray) and
the two GMMs. Right: Relevant variables for computing
g(xr;svm).

If we have N virtual mechanisms, there are N cart posi-
tions xn=1:N

vm , and N probabilities. The probability pn that the
nth cart is responsible for guiding the end-effector at position
xr is

p(n;xr,sn
vm) =

g(xr; µn
vm,Σ

n
vm)

∑
N
i=1 g(xr; µ i

vm,Σ
i
vm)

=
g(xr;sn

vm)

∑
N
i=1 g(xr;si

vm)
,

(20)

where the means and covariance matrices of the cart position
are determined from the cart phase svm with (13) and (17)
respectively.

Each of the N virtual mechanisms applies a force Fn
vm to

the end-effector. The relative influence of each VM is scaled
with the probability p(n;xr,sn

vm), so that the resultant force
on the end-effector is5:

Fres =
N

∑
n=1

p(n;xr,sn
vm)F

n
vm. (21)

As described in (Raiola et al, 2015a), the underlying as-
sumption in using (21) is that xr must belong to one of the
VMs6. Another approach is to assume that if xr is too far
from the VMs, it does not belong to any of the VMs. To do
so, we use a Gaussian function h(xr; µvm,Σ vm) combined
with (21), i.e. a probability density function as in (10), but

5 The stability of such probabilistically weighted virtual guides is
analyzed in (Raiola et al, 2015b).

6 For this reason, we call the resulting guides “Hard Guides”
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without the normalization factor
√
(2π)k|Σ vm|, as the Gaus-

sian function has a known maximum of 1.

h(x,xvm) = e(−
1
2 (x−xvm)ᵀΣvm−1(x−xvm)). (22)

By using these weights (to determine if an individual vir-
tual guide is active in the first place), as well as the probabil-
ity p(n;xr,sn

vm) (to determine the relative weighting between
all the guides), the resultant force becomes

Fres =
N

∑
n=1

h(xr;sn
vm)p(n;xr,sn

vm)F
n
vm. (23)

The overall effect of this weighting scheme is the fol-
lowing: if the robot end-effector is not close to any guide,
it is simply in zero-gravity mode, as none of the guides ex-
erts a force to pull the end-effector towards the guide7. As
soon as the robot end-effector approaches one of the guides,
it starts exerting a force, and the end-effector is pulled to-
ward the guide. The relative scaling between the guides is
determined by the relative probability that the guide is re-
sponsible.

6 Refining Guides

To modify a guide we can exploit the incremental EM
presented in (Calinon, 2007). After the user provides a
new demonstration, the incremental clustering detects if the
demonstration belongs to an existing guide, see Section 6.2.
In this case, the demonstration is used to incrementally train
the GMM which gets updated with the new data. Otherwise
the demonstration is used to create a new guide, see Fig. 9.

6.1 Incremental GMM Estimation

The idea is to adapt the classic EM algorithm by splitting
the part related to the old data from the part dedicated to the
newly demonstrated data (Calinon, 2007). The update of the
model is done under the assumption that the set of poste-
rior probabilities {p(k|ζ m)}M

j=1 remains the same when the

new data {ζ̃}M̃
m=1 is used to update the model, this is called

data coherency constraint. This assumption is true only if
the new data is close to the trained model. This means that it
is necessary to determine if the new data belongs or not to an
already trained GMM (as anticipated, we will address this
problem in the next section). Thus, the model is first created
using the classic EM algorithm. Starting from an initial es-
timation8 of the GMM with parameters {π0

k ,µ
0
k ,Σ

0
k}K

k=1, at

7 We call the resulting guides “Soft Guides”
8 In practice, the initial estimation is frequently performed using the

K-means clustering algorithm which defines the initial values for the
priors, means and covariance matrices.

each step the following two steps are performed until a stop
criterion is met:

E-step:

pt+1
k,m = π

t
kN (ζ m; µ

t
k,Σ

t
k), (24)

Et+1
k =

M

∑
m=1

pt+1
k,m . (25)

M-step:

π
t+1
k =

Et+1
k
M

, (26)

µ
t+1
k =

∑
M
m=1 pt+1

k,m ζ m

Et+1
k

, (27)

Σ
t+1
k =

∑
M
m=1 pt+1

k,m (ζ m−µ
t+1
k )(ζ m−µ

t+1
k )ᵀ

Et+1
k

. (28)

The EM algorithm stops after a certain number of itera-
tions T when

L t+1

L t −1 < C , (29)

with the L defined in (11)9. The resulting GMM
is completely defined by the set of parameters θ =

{πT
k ,µ

T
k ,Σ

T
k ,M}K

k=1.
When a new demonstration is provided by the user,

T̃ steps are performed to update the model with the
new data ζ̃ with initial condition given by the previ-
ous model {π̃0

k , µ̃
0
k , Σ̃

0
k , Ẽ

0
k }K

k=1 = {πT
k ,µ

T
k ,Σ

T
k ,E

T
k }K

k=1 with
Ẽ0

k = π̃0
k M.

The EM algorithm can be rewritten as:
E-step:

p̃t+1
k,m = π̃

t
kN (ζ̃ m; µ̃

t
k, Σ̃

t
k), (30)

Ẽt+1
k =

M̃

∑
m=1

p̃t+1
k,m . (31)

M-step:

π̃
t+1
k =

Ẽ0
k + Ẽt+1

k

M+ M̃
, (32)

µ̃
t+1
k =

Ẽ0
k µ̃

0
k +∑

M̃
m=1 p̃t+1

k,m ζ̃ m

Ẽ0
k + Ẽt+1

k

, (33)

Σ̃
t+1
k =

Ẽ0
k (Σ̃

0
k +(µ̃0

k− µ̃
t+1
k )(µ̃0

k− µ̃
t+1
k )ᵀ)

Ẽ0
k + Ẽt+1

k

, (34)

+
∑

M̃
m=1 p̃t+1

k,m (ζ̃ m− µ̃
t+1
k )(ζ̃ m− µ̃

t+1
k )ᵀ

Ẽ0
k + Ẽt+1

k

. (35)

Also in this case, the number of iterations T̃ is deter-
mined by the stop criterion defined in (29).

9 The threshold C = 0.01 is used in our case.
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Fig. 9: Left: With the incremental training of GMM it is possible to iteratively modify an existing virtual guide. The number
indicates the number of demonstrated trajectories used to incrementally train the guide. Right: Incremental training including
incremental clustering, as explained in Section 6.2.

6.2 Incremental clustering

When the user demonstrates a new trajectory, we have to
automatically detect if the new data belongs to one of the
guide that has been previously created or if can be used to
create a new one. This is necessary given the constraints on
the data coherency of the proposed incremental EM. When
the user demonstrates a new trajectory, the new data ζ̃ is
used to create a new GMM with the following parameters
θnew = {πk,µk,Σ k,M}. Since these parameters are the re-
sult of a set of EM steps, the associated likelihood repre-
sents the maximum likelihood, i.e. L(θnew|ζ̃ ) = L(θML|ζ̃ ).
We can use the maximum likelihood L(θML|ζ̃ ) as a baseline
to select which GMM best fits the data ζ̃ . To perform the
comparison we use the relative likelihood (Held and Bov,
2013) expressed as:

L̂(θn|ζ̃ ) =
L(θn|ζ̃ )

L(θML|ζ̃ )
, ∀ n = 1..N, (36)

where L(θn|ζ̃ ) represents the likelihood of an existing model
n given the new demonstrated data ζ̃ . In particular, we have
1 ≥ L̂(θn) ≥ 0 and L̂(θML) = 1; because of this property,
the relative likelihood is also called the normalized likeli-
hood. The same expression can be computed using the log-
likelihood, i.e. L̂ (θn) = log(L̂(θn)) = L (θn)−L (θML)

where for the log-likelihood we have 0 ≥ L̂ (θn) > − inf
with L̂ (θML) = 0. For simplicity, we omitted the data set ζ̃

since is the same in each comparison. We can compute the
relative likelihood L̂(θn) for each existing GMM. As pro-
posed in (Held and Bov, 2013), we can select the model to
update by using the following categorization based on the
relative likelihood and a threshold c:

1≥ L̂(θn)> c. (37)

The threshold c can be selected arbitrarily. For example, we
could categorize the likelihood as:

1≥ L̂(θn)>
1
3

θn very plausible, (38)

1
3
≥ L̂(θn)>

1
10

θn plausible, (39)

1
10
≥ L̂(θn)≥ 0 θn not plausible. (40)

However, such a pure likelihood approach to inference has
the disadvantage that the threshold c is somewhat arbitrar-
ily chosen. The candidate model to be updated with the new
incoming data is chosen in the interval given by (38). Be-
tween all the models that satisfy this inequality, we select
the model with the maximum L̂(θn). If none of the available
models satisfy (38), the model θML is used to create a new
guide. This method requires the creation of a new GMM
each time new data is provided. By creating a new model,
we can keep track of the updates, meaning that the user can,
at any time, revert a guide to its original shape. The advan-
tages of this method are: it is easy to implement, fast and
configurable due to the parameter c, does not require storing
the previous data (only the GMM parameters are stored).
The main drawbacks are: the selection and the significance
of c and the necessity to create a new GMM that could not
be used.

7 Experimental Evaluation

The following experiment was conducted on a 3-DOF ISY-
BOT10 comanipulation robot with a gripper, see Fig. 11.
The general task was to use the robot and the library of
virtual guides11 to simulate pick and place operations. For
the virtual guide assistance, the stiffness was set as K = kI
with k = 10000 N/m and the damping as B = bI with b =

400 N/ms−1.

10 http://www.isybot.com
11 The code used to generate and interact with the library of virtual

guides is available at https://github.com/graiola/virtual-fixtures
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To create the virtual guides we used the incremental
training presented in Section 6 with a fixed number of 10
Gaussians per model. Each demonstration was composed by
M = 2000 samples {ζ m = [x(tm),y(tm),z(tm)]}M

m=1 recorded
at 100 Hz. The phase s for each time step was computed
with dynamic time warping and the mapping s(tm) = (tm−
t1)/(tM− t1), as explained in Section 4.1.1.

7.1 User Study

We designed the study to observe: (1) how novice users per-
ceived the virtual guide assistance with multiple guides, (2)
to determine if creating new virtual guides with the library is
intuitive and comfortable. We recruited 20 participants (with
age between 22 and 33 years old, 7 females). Twelve par-
ticipants stated they had prior experience with robots. We
divided the user study in 4 sessions:

1 The user performs a pick and place task without the
guides. (pp1)

2 The user performs a pick and place task with multiple de-
fault guides active. (pp2)

3 The user is trained on how to use the library of guides,
afterwards the user is able to create his personal set of
guides. (tr)

4 The user performs the pick and place task with the guides
created in the previous session. (pp3)

Fig. 10: Default virtual guides created by the expert user.
Left: The colored lines represent the mean of the GMMs.
Right: Virtual guides in the robot workspace.

The default guides for the session pp2 were generated by
an expert user with the library of virtual guides, see Fig. 10.

Four hypotheses were tested:

– H1: Virtual guides assistance improves task’s perfor-
mances, in terms of time and collisions occurrences.

– H2: Virtual guides assistance is more helpful when the
task requires higher level of attention.

– H3: Virtual guides assistance is perceived as useful by
the users.

– H4: It is intuitive and comfortable for novice users to
create new virtual guides.

All participants were asked to perform the four sessions.
The sessions pp1,2 were presented in a randomized order to
avoid training effects, while pp3 was always presented af-
ter the session tr. At the beginning of pp1,2, the participants
were able to familiarize with the system.

7.2 Task explanation

The task in pp1,2,3 consisted in taking 6 discs from the
robot’s workstation and insert them inside specific boxes
identified with 3 different colors: blue, brown and black.
For each box there were two discs with a piece of tape of
the same color, see Fig. 11. The objective of the task was to
place the discs in the associated box trying to minimize the
time in respect of two constraints:

– The participant had to avoid collisions between the robot
and the boxes.

– The discs had to be placed gently inside the boxes (it was
not possible to drop the discs in the boxes to save time).

The boxes were disposed to obtain an increasing difficulty in
terms of distance and accessibility ranging from the easiest
(blue) to the hardest (black), see Fig. 11.

Fig. 11: Setup for the user study (left) and buttons used for
the experiment (right). The upper button was used to hold
and release the discs with the pneumatic gripper, while the
lower button was used to start and stop the recording of the
demonstrations.

We measured the total task time (Tj) necessary to com-
plete the single session pp j with j = 1,2,3 (the time Tj was
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taken starting from the pick of the first disc and ending when
the last disc was placed) and the pick and place time for
each disc and session (ti, j) with i = 1, ..,6 (which leads to
18 = 6x3 measures for each participant). The total time Tj
differs from the sum over the single times ∑

6
i=1 ti, j because it

includes the time necessary for the user to pick the disc with
the robot and to bring the robot back to the workstation after
each placing.

In session tr the experimenter explained to the partici-
pants how to interact with the system, see Fig. 11. The par-
ticipants were able to create their own guides in order to
execute the task in session pp3. During this session, the par-
ticipants were allowed to ask for help from the experimenter.
No time was recorded in tr.

Fig. 12: Different approaches to the guides creation done
by eight of our participants. Blue, brown and black curves
are the guides created to place the disc inside the respective
box. Gray curves are extra guides created to help connecting
the guides. For comparison in the upper-left corner there are
the guides created by the expert user.

Resulting guides from eight different users are shown
in Fig. 12. At the end of pp1,2,3 the participants answered a
post-condition survey focusing on the usage experience with
the virtual guides on the form of a Likert-scale survey with
a rating from 1 to 7, with 1 as strong disagreement and 7 as
strong agreement, see Table 1. For session tr the participants
answered to a different survey focusing on the creation of
the virtual guides, see Table 2.

7.3 Results

To validate our hypothesis we measured:

– Total task time Tj for each session pp1,2,3 and pick and
place time ti, j for each disc and session. Both are used to
validate H1 and H2.

– Observed collisions, to validate H1 and H2.
– Survey results for sessions pp1,2,3 to validate H3.
– Survey results for session tr to validate H4.

We performed a repeated-measure ANOVA (Girden, 1992)
on Tj, ti, j and on the survey, on three factors: (1) the ses-
sions pp j with j = 1,2,3, (2) the difficulty, represented by
the three boxes (blue; brown; black) and (3) the repetitions
for each box (r1;r2). Posthoc analyses were performed with
Tuckey’s HSD test (Abdi and Williams, 2010). For the col-
lisions we observed that the participants collided with the
boxes only during pp1,3. For this reason, we performed
Fisher-exact test between pp1,3 on the number of partici-
pants that did at least one collision during the task and those
that did not collide during the task. The significance thresh-
old was set to p < 0.05.

7.3.1 Time Analysis

Effects of sessions on time:
We found a statistically significant difference (p = .0023)
between the sessions pp1,2,3 on the total time (T ) (Fig. 13,
Left). Posthoc analysis shows that pp1,2 and pp1,3 are sta-
tistically different (p = .005, p = .005). In pp1 (No Guides)
the participants were slower than in pp2,3 (Default and Per-
sonal Guides). In addition, we found a statistically signif-
icant difference (p = .00076) between the sessions on the
pick and place time (t) (Fig. 13, Right). Also in this case,
the posthoc analysis shows that pp1,2 and pp1,3 are statis-
tically different, with (p = .004, p = .001) respectively. We
found again that in pp1 the participants were slower than in
pp2,3. These two results enlighten that the virtual guides re-
duced the time to complete the task (both total time and pick
and place time for each disc). This validates H1. Moreover
we found that there is not statistical difference between the
execution time with default and personal guides. This indi-
cates us that the users were able to create guides that were
as efficient as the default guides created by the expert user.
This is an indication that H4 may be true, which we further
discuss in Section 7.3.3.

Effects of the difficulty on time:
As pointed out in 7.2, the difficulty related to the disc in-
sertion is different between the boxes (p < .001). This can
be seen in Fig. 14. Even if not statistically relevant, we re-
ported also the t related to each box and each session. We
can observe that the disc insertion for the black box requires
more time without guides, this can be explained with the
distance of the box from the workstation and with its dispo-
sition that does not facilitate the disc insertion. Instead, with
the guides the time seems to increase linearly, meaning that
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Fig. 13: Left: Mean of the total task time (T ). Right: Mean
of pick and place time (t).

the box disposition does not affect the insertion but only the
distance does. These results support H2.

Fig. 14: Left: Mean of t for each box. Right: Mean of t for
each box and each session.

Effects of repeated disc insertions on time:
We found a statistically significant effect (p < .001) of the
repeated insertions on t, see Fig. 15. The second repetition
is shorter than the first. This represents a training effect on
repeated disc insertions. However, we find a statistically sig-
nificant interaction effect (p = .047) between the sessions
and the repetition. Posthoc analysis shows that in pp1 there
is no statistical difference between the two repetitions but
in pp2,3 the second repetition is shorter than the first one,
with (p = .047, p = .012) respectively. This informs us that,
with guides, there is a training effect: repetitive use of vir-
tual guides can improve the user performances. This is not
necessary to prove H1 but it is a factor to take into account
when using virtual guides.

7.3.2 Collisions Analysis

For the collisions, we measured that the participants collided
with the boxes only during pp1,3. In pp2, the collisions were

Fig. 15: Left: Mean of t for the two repetitions. Right: Mean
of t for the two repetitions and each session.

not possible due to the guides created by the expert user
(Fig. 10). In pp3, collisions occurred because some partic-
ipants did not proof-test their guides. For the collision, we
found a statistical difference (p = 0.0001) between pp1 and
pp3: in pp1, 18 of the 20 participants had at least one col-
lision during the task, while in pp3 only 6 of the 20 partic-
ipants did. This indicates that using virtual guides leads to
a safer task execution (Fig. 16), which goes in the direction
of H1. Another observation could be done on the number of
collisions for each box. As shown in Fig. 16, the majority of
collisions occurred with the black box when the guides were
not available. When the guides are used, the number of col-
lisions with the black box reduces drastically (respectively 0
collisions with default guides and 1 collision with personal
guides). This last result goes in direction of H2. The higher
number of collisions with the blue box when the personal
guides are used can be explained with the fact that the par-
ticipants often started to create a guide for the blue box; this
lead to a higher number of mistakes since it was their first
training trial with the system.

Fig. 16: Left: Total number of collisions by session. Right:
Total number of collisions for each box and session.
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pp1 pp2 pp3

Question Mean SD Mean SD Mean SD F(2, 38) P-value

1) Do you think the task was easy to perform? 5.0 1.45 5.75 1.21 5.85 1.0 3.6157 0.03652
2) Do you think that you performed well the task? 4.6 1.57 5.8 0.83 5.45 1.1 7.4660 0.00184
3) Do you think the robot was helpful during the task execution? 4.3 1.52 5.45 1.54 5.75 1.02 10.298 0.00027
4) You felt comfortable with the robot while performing the task: 5.25 1.55 5.5 1.1 5.65 1.2 0.59262 0.55791
5) You felt stressed to use the robot while performing the task: 2.35 1.35 1.75 0.85 2.3 1.56 1.9334 0.15862
6) Do you think the robot is easy to work with: 4.85 1.46 5.6 1.35 5.55 1.0 2.6567 0.08319
7) Did you feel you had to put physical effort to perform the task: 2.75 1.65 3.25 1.8 2.8 1.36 1.4790 0.24068
8) Did you feel you performed the task precisely? 4.25 1.52 5.8 0.89 5.25 0.96 13.048 0.00005
9) Did you feel constrained by the robot during the experience? 2.95 1.64 4.25 1.77 3.3 1.69 4.4915 0.01774

Table 1: Survey results for the three pick and place sessions.

7.3.3 Survey on Pick and Place

Table 1 shows the results of the survey. From it we can ob-
serve the following:

1 The task was perceived as easier to perform when using
guides (both with default and personal guides).

2 Users thought that they performed better the task when
using guides. Particularly better using the default guides.
This can be verified with the collisions (no collisions us-
ing default guides, few collisions using personal guides).
Moreover, the default guides were more precise since they
were created by an expert user, see Fig. 10, while the per-
sonal guides were created in a little time by novice users.

3 Participants felt the robot was more helpful to perform the
task when using guides. No relevant difference between
default and personal guides.

4 Participants felt more comfortable with their own guides.
In this case the result is not statistically relevant.

5 Participants felt less stressed when using the default
guides, but more stressed when using their own guides.
Again, this could be explained with the number collisions
occurred during pp3. In this case we have a weak rele-
vance.

6 Participants felt that was easier to work with the robot
when the guides were active.

7 Participants perceived that they had to put more physi-
cal efforts to perform the task with the default guides.
This could be explained by the fact that the controller
generates a correction when the user tries to move away
from the guide. This effect, reduces the naturalness of the
switching when multiple guides are used. To solve this, it
could be useful to measure or estimate user’s external in-
puts, such as the force or the velocity applied on the end-
effector, to facilitate the switch. Another possible reason
for this result, is related to the fact that during the exper-
iments some participants did not have a clear vision of
where the guides were placed. During the task execution,
some participants, instead of moving the robot along the
guide, tried to move the robot where they wanted. Even
if not statistically relevant, this could be interpreted as

Question Mean SD

1) I believe that creating the new guides was:
- Intuitive 5.35 1.31
- Comfortable 4.85 1.04
- Physically demanding 3.1 2.02
- Cognitively demanding 3.9 1.71

2) I believe that to perform the task I should use:
- NO Guides at all 3.15 1.56
- ONE Guide 3.1 1.74
- MULTIPLE Guides 5.75 1.5

3) I believe that the guide(s) I created reflected
what I demonstrated

5.7 1.17

4) I believe that the guide(s) I created was(were)
precise

5.0 1.25

Table 2: Survey results for the training session.

a clear evidence that some sort of visualization for the
guides is needed.

8 Participants felt that they performed the task more pre-
cisely when using guides.

9 The participants felt more constrained when using the de-
fault guides. This can be explained by the fact that is eas-
ier to feel one’s own guides than guides created by another
person.

By looking at the results highlighted in Table 1 for the
questions 1,2,3,6,8 we can confirm that virtual guide as-
sistance is perceived as useful by the users, which validates
H3.

7.3.4 Survey Training

From (Table 2) we can see that participants felt that creating
the virtual guides was quite intuitive and comfortable (ques-
tion 1). For the selected task multiple guides were felt as
necessary (question 2). Moreover, participants felt that the
guides they created effectively reflected what they demon-
strated (question 3) and were enough precise (question 4).
With these results we can validate H4.
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8 Conclusions

The development of robotics tools such as virtual guides can
be very useful to improve human performances in indus-
trial tasks that can not be completely automatized. Robots
possess characteristics such as precision, strength and accu-
racy that can be exploited in co-manipulation tasks by using
the virtual guiding assistance. In this paper, we presented
a novel way to create virtual guides; we developed an in-
tuitive and easy way to program them through kinesthetic
teaching by using Gaussian Mixture Models. Furthermore,
the incremental training of GMM enables the user to refine
the guides iteratively with the possibility to be assisted by
the virtual guide during the refining process. We also de-
fined a controller that allows the user to use multiple vir-
tual guides in parallel, and selects which guide is responsi-
ble for the task execution, based on the variance estimated
by the GMM. Together, this constitutes a library of virtual
guides that enables the user to create, modify and use mul-
tiple guides. Finally, we studied the utility of virtual guides
with an industrial task and concluded that virtual guides im-
prove the human performances in terms of time and colli-
sions, and they can relieve the workload from the user. In fu-
ture work we will explore the possibility to exploit the uncer-
tainty given by the probabilistic model to adapt the stiffness
of the guide (Medina et al, 2012; Calinon et al, 2014) and
add a way to visualize the virtual guides in order to increase
the user’s immersion in the robot’s workspace (Rosenberg,
1993).
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