
Real-time Midi data flow on Ethernet
and the software architecture of MidiShare.

Dominique Fober
GRAME Research Laboratory, 9, rue du Garet, BP 1185, 69202 LYON Cedex 01, France

Email: fober@rd.grame.fr

Abstract
We propose a way to transmit real-time musical data flow on Ethernet. The presented implementation is based
on the software architecture of MidiShare. After some reminders about Ethernet and MidiShare, we shall present
an overview of the intended solution. Then we shall examine the chosen protocols, the implementation and its
performance.
1 Introduction
Using a network to transmit musical events results in
transporting frequently small amounts of data. With
Ethernet, the problem to solve is that it is not adapted
to frequent transmission of small packets and further-
more in real-time. The two reasons for this are:
-Êthe access time of the network is not deterministic,
-ÊEthernet is very efficient to transmit large packets

occasionally, but its efficiency decreases rapidly
when the size of the packets decreases and when
their frequency increase.

There are not many projects using Ethernet in real-
time. Those that exist mainly concern data transmis-
sion, voice transmission or mixed voice and data
transmission particularly in an industrial environment,
where transmission delay can be critical. The model
we propose here is based on the IEEE 802.3 protocol
which means that it can work efficiently on any net-
work supporting the CSMA/CD protocol. Our method
relies on the results of previous work concerning real-
time data flow on Ethernet. Our goal with this imple-
mentation is to extend the communication scheme of
musical applications, allowing them to share remote
resources (hardware as well as software). Later this
system will become the basis of our hierarchical real
time inter-application communication system
[Orlarey, 1991].

2 Backgrounds

2.1 Ethernet
Ethernet is based on the CSMA/CD protocol (Carrier
Sense, Multiple Access / Collision Detection) as defi-
ned by the IEEE 802.3 standard [Millet, 1986]. This
protocol allows free access to all the stations on the
network and in respect of its rules, they can transmit a
message without having to be invited.

2.1.1 Transmission mechanisms
The network is characterized by its flow and the
transmission speed of its medium. The time slot repre-
sents the double of end to end course time on the net-
work. A packet transmission on the bus can be detec-
ted by its corresponding state transitions, we speak
then of the presence of a carrier . Every station on the
network is capable of simultaneously reading and wri-
ting to the bus. Carrier detection is used to prevent fur-
ther packet transmission on the network and hence re-
duces data collision.
Packet transmission: a station ready to transmit a pa-
cket will always begin by listening to the bus, if it de-

tects a carrier, it delays its transmission until the bus is
silent. When the bus becomes free, the station can
then begin to transmit. The packet is sent as a binary
string and propagates on the bus in the two directions
from the connection point.
Collisions detection : if several stations are queued to
transmit, when the carrier disappears, they will simul-
taneously begin to transmit and their packets will in-
terfere on the bus, this is called a collision. Stations
detect collision by comparing the value of the bit they
write to the bus with the one they read from the bus, a
difference indicates that their packet has been dama-
ged. To be sure to detect all the collisions, the mini-
mum duration of a message transmission needs to be
equal or greater than the time slot.
Collisions solving: when several stations detect a col-
lision, they first enforce it to be sure that all stations
on the network will detect it, they then stop their
transmission and calculate a random retry slot accor-
ding to a recent history of collisions. Several algo-
rithms permit the control of these retry delays so as to
optimize network efficiency.

2.1.2 Bus states
A bus can take two states:
- a productive state: that is, when all the periods of

data transmission are successful.
-Êan unproductive state: that is all the periods of com-

petition between stations to acquire exclusive use of
the bus.

2.1.3 Transmission periods
Packet transmission consists of two periods:
-Êa contention period: of duration equal to the time slot

in which a collision can happen.
-Êa productive period: that succeeds to the previous

one. In fact, after the contention period, all the sta-
tions on the network listen to the carrier. If no colli-
sion happened during the contention period, then the
transmitting station is sure to be able to transmit its
packet correctly.

2.2 MidiShare
MidiShare is a real-time multi-tasking Midi operating
system specially devised for the development of musi-
cal applications [Orlarey and Lequay, 1989].
MidiShare is based on a client/server model. It is
composed of four main components : an event mana-
ger, a time manager, a task manager and a communi-
cation manager. The event manager provides an uni-
form way to process and store midi events. The time
manager and the task manager control the real-time

behavior of applications. The communication manager
is in charge of both inter-applications and midi com-
munications.
Communication is based on high level events instead
of midi byte packets. These events support fully the
Midi and the Midi File standard. Their semantic can
be easily extended for the purpose of any client appli-
cation.
The heart of MidiShare is a real time scheduler which
allows events and function calls to be scheduled in the
future. This powerful mechanism considerably sim-
plifies the task of creating applications which need to
operate with real-time. A proprietary scheduling algo-
rithm ensures a very low constant time scheduling
cost per event, even when the scheduler is heavily
loaded [Orlarey, 1989].

3 Overview of the intended solution
The data flow on the network is made of millisecond
dated events. These events are gathered into packets
which are then transmitted on the network. Ideally,
any station should be able to receive events as soon as
they are sent and to render them with the same sche-
duling. Actually due to the CSMA/CD protocol, the
network transmission always introduces a variable de-
lay corresponding to the sum of the physical transmis-
sion time and the network acquisition time.
Acquisition time is the sum of the waiting time for the
network to become free and the possible contention
periods in the case of collision. The physical transmis-
sion time is considered to be insignificant. We shall
further refer to this total transmission delay as trans-
mission time.
The network efficiency (defined as the ratio between
productive periods and the sum of productive periods
and contention periods) decreases when the traffic in-
creases but above all, when the size of the transmitted
packets decreases [Metcalfe and Boggs 1983]. Taking
account of this fact, we introduce a second transmis-
sion delay, the grouping period which corresponds to
the time during which we can reasonably differ the
data transmission to avoid overloading the network
and to increase the packets size. So the total transmis-
sion delay is made up of two successive periods: the
grouping period followed by the transmission time.
Events to be transmitted are accumulated during the
grouping period before being sent on to the network.
Although Ethernet has a high probability of transmis-
sion success there is no protocol to guarantee that a
packet will arrive at its destination and arrive unda-
maged. It is the applications responsibility to imple-
ment the necessary protocol to ensure their required
security level. This distribution of the transmission
control on the network allows an independent packet
sizing protocols and in our case allows the use of a
low time cost protocol which avoids overloading the
network with unnecessary acknowledgments.
Each station on the network is known by all the others
and can directly address them by using their Ethernet
address, so that each connection can be independent
from all the others. A station can also simultaneously

send a message to all the others, by using a multicast
address.

4 Protocols
We are using IEEE 802.2 Type 1 packets which in-
clude a protocol number. At reception time, the
Ethernet driver reads this number and checks to see if
any client has a reading function pending for it. If not,
the driver discards the packet. We use 3 different pro-
tocol numbers to transmit small events, large events
and stations management packets.

4.1 Station management
Every station on the network is connected to all the
others. The difference with the standard use of the
network (file transfer for example) is that a real-time
data flow is endless and the corresponding connec-
tions needs to be maintained in time. We use a particu-
lar protocol to manage the inter-station connections,
defined by 4 packets types:
-Ê'NEW' packet: sent to all stations by every new sta-

tion on the network to notify its presence.
-Ê'MACH' packet: sent as reply by every station that

received a 'NEW' packet for identification.
-Ê'QUIT' packet: sent to all stations by every station

that leaves the network.
-Ê'CTRL' packet: regularly sent by every station to all

the others. It permits control of the state of the
connection between stations. If for one of the sta-
tions this packet disappears, the others will consider
that the corresponding station is not available any
more.

Ethernet addresses for all stations on the network are
collected at identification time.

4.2 Small events transmission
We consider events smaller than 6000 bytes, i.e. those
that fit into 5 packets, to be small events. Small event
transmission uses only one packet type: small events
packets. Each packet includes a unique serial number
particular to each connection on the network. This
number increases with each packet transmission on
this connection and the receiver can detect transmis-
sion failures by comparing the current serial number
to the last one received. In the current implementation,
there is no recovery sequence for lost packets.

4.3 Large events transmission
For large event transmission, we need to ensures as
much security as synchronization between the trans-
mitter and the receiver. All packets belonging to a
large event are transmitted one after another possibly
up to the full network flow rate. A minimum protocol
ensures that if the receiver is busy with other tasks at
transmission time, it is able to enforce its own rate to
receive and process the packets. The large events
transmission protocol uses 3 packet types:
-Êlarge events packets
-Êacknowledgment packets
-Êtransmission cancel packets
This protocol simply consists of:
-Êfor the receiver: to send a acknowledgment for each
received packet.

-Êfor the transmitter: to send the next large event pa-
cket when the acknowledgment corresponding to the
last packet is received. If it does not receive an ack-
nowledgment after one retry the process is canceled
(see fig. 1).

Done

Xmt packet

Last packet ?

Wait ACK Timeout

yes

no
ok

Next packet Xmt packet

Wait ACK
Timeout

Send UNDO

ok

fig. 1: large events transmission protocol

4.4 Consensus on transmission delay
As previously defined, the transmission delay is the
sum of the grouping factor and the transmission time,
it has a fixed maximum value, given by the maximum
acquisition time allowed. All the receivers on the net-
work must take account of this value to accordingly
adjust their event time rendering.

5 Implementation

5.1 Architecture
The general architecture of our implementation is as
shown in figure 2. It includes a network driver and a
remote controller for every station on the network:
-Êthe network driver is in charge of the transmission

and reception of packets, as well as their dispatch to
the corresponding remote controllers, according to
their Ethernet source address.

-Êthe remote controller includes a time renderer for
scheduling the received events, an input stream
sampler to collect events ready to be sent, a packet
assembler to gather them into packets and a trigger
to launch the sampler. The trigger is set by the as-
sembler at transmission time with the fixed value of
the grouping period.

T
ri

gg
er

Input stream
sampler

Packets
assembler

Time
renderer

ReceiverTransmitter

Remote
controlers

Network card

Network
driver

<<< >>>

MidiShare applications

software

hardware

fig. 2: general architecture

This mechanism leads towards a time multiplexing of
the transmission channel. If a collision occurs during a
packet transmission and if the two stations involved
try to transmit their next packet at the same fixed time

after this collision, there is great probability that a new
collision will occur. Setting the trigger after a success-
ful channel acquisition forces the transmission dates
to diverge from possible collision dates.
The dispatch of the events to the different MidiShare
applications or to the physical Midi ports is handled
by the MidiShare driver. This is done according to the
current connections between the remote controllers
and the MidiShare applications. In fact, to the network
user , the remote controllers appear just like any other
MidiShare application .

5.2 The different packets
All the packets have a common header consisting of
the Ethernet address of the source and destination sta-
tions, and a protocol number. The common header in-
cludes all the necessary information to identify a sta-
tion on the network.
-ÊEvents packets: small and large events packets differ

only by their protocol number. They are made up of
the common header followed by the real transmis-
sion date, the packet serial number, the packet sche-
duling date (use to measure acquisition times), its
corresponding grouping period and then the data.

-ÊStations management packets: these have a particu-
lar protocol number and consist of a common hea-
der, a 4 bytes message type and corresponding data.

5.3 Time rendering: reference conversion
All the transmitted events are MidiShare events and
include a date expressed in MidiShare time i.e. milli-
seconds. The applications in charge of transmitting
and receiving these events are MidiShare applications
and so, share the same clock as the events. A problem
arises here due to the shift of the different clocks on
the different stations and the lack of synchronization
between them. As MidiShare allows us to schedule
events in the future, we just need to convert the events
dates from the transmitter time reference to the recei-
ver and to delay them for a correct time rendering.
Let P be a packet transmitted on the network. P
contains its real transmission date De, its duration L
and events e1 to en. The maximum acquisition time k
is implicitly known by all the stations on the network
(see fig. 3).

g g

kk

a1 a2

e:d(e) Dt De

L1 L2

L1

Dr
2k

e:d''(e)e:d'(e)

transmitter time

receiver time

ai: acquisition times
g: grouping period
Li: real grouping period
k: maximum acquisition time

Dt: transmission date
De: effective transmission date
Dr: reception date

P

fig. 3: time rendering

Using the consensus on transmission delay, an event e
will be scheduled in the receiver time reference for the
date:

d©©(e) = d©(e) + L + 2k where d©(e) = d (e) + Dr - De

where Dr is the packet reception date expressed in the
receiver reference and k is the maximum transmission
delay.
Event dates are converted to the destination station
reference time by adding the offset between the two
station references. We then add the packet duration L
to move this event into the present time. Finally, ad-
ding two maximum acquisition times makes up for the
acquisition time delays and allows a correct time ren-
dering of the transmitted events. The real grouping
period is variable and depends on the acquisition time.
Another solution would be to regularly schedule each
transmission at multiple dates of a fixed grouping
period g. This has the advantage of reducing the trans-
mission delay because we just need to add 1 maximum
acquisition time (instead of 2) to make up for acquisi-
tion time delays, however this technique does not al-
low channel multiplexing and so reduces network ef-
ficiency.

6 Performances
Hutchinson and Merabti [1987] showed that if the net-
work load is lower than a given threshold, acquire-
ment time will always fit in a given period. Their re-
sults come from a network behavior simulation. For n
stations transmitting a 512 bit packet every 100ms,
they got a maximum acquisition time variation from
7,5 to 28ms for a network load variation of 10 to 90%.
From 90 to 98%, this time increases up to 70ms and
beyond 98%, it overruns 100ms.

6.1 Theoretical behavior
We shall further refer to the reference data flow as a
1000 note events per second data flow (each note cor-
responds to one key on and one key off).
The grouping period has a direct effect on the packets
size. For a reference data flow this size varies from
510 to 1150 bytes when the grouping period varies
from 30 ms to 70 ms. It also has a direct effect on the
resulting network flow rate: in fact, to transmit a refe-
rence data flow, the real flow rate on the network will
be:

(h+16g)´8

g
where h is the packet header size and g the grouping
period. So, for a 10 mbps system, the theoretical count
of stations that can simultaneously transmit a refe-
rence data flow is as shown in the table 1 below:

gr. period 5 10 20 30 50 70
n stations 57 66 71 74 75 76

table 1: count of possible stations according to the grouping
factor

For our purpose, we choose the values of 50 ms for
the grouping period and 30 ms for the maximum trans-
mission delay so that events can be rendered with a
110 ms delay or 80 ms without time multiplexing.

6.2 Practical measures
The following results are incomplete, due to a lack of
stations to make extensive benchmarks, but they
clearly show the efficiency of our solution.

6.2.1 Network efficiency
To evaluate the real-time data transmissions influence
on the other services of the network, we measured file
transfer times with an increasing number of stations
transmitting a reference data flow. We used 8 different
stations: 2 of them were dedicated to file transfer only,
another one to time measurement, 5 stations were de-
dicated to real-time transmissions. Files sizes varied
from 100k to 1Mb. With up to 5 stations transmitting
a reference data flow, transfer times remained
constant.

6.2.2 Acquisition times
For our measurements we consistently used 7 stations.
Each of them was transmitting and receiving one or
more reference data flow. We have been able to load
the network with up to 25 reference data flows. The
maximum acquisition time always fits in 22ms and the
median acquisition time was 3,5ms. We have not been
able to increase the network load beyond this, because
of the station saturation.

7 Conclusion
This model is our first step in creating a network sys-
tem that takes account of time in musical data trans-
mission. In comparison to previous works, our system
adheres to both the constraints of simultaneity and
time rendering without altering the CSMA/CD proto-
col. We hope that it will offer new prospects for musi-
cal application.

References
[Chalmtac, 1985] Chalmtac I. An Ethernet compatible pro-
tocol for real-time voice/data integration. Computer net-
works and ISDN systems, 1985, Vol 10, N°2, pp. 81-96.

[Hoffmann and Kersting, 1984] Hoffmann W., Kersting T.
Simulation von Ethernet unter Echtzeitbedigungen.
Regelungstechnische Praxis, 1984, Vol 26, N°11, pp. 486-
491.

[Hutchinson and Merabti, 1987] Hutchinson D., Merabti M.
Ethernet for real-time applications. IEE proceedings. Part E.
Computers and digital techniques, 1987, Vol 134, N°1,
pp.47-53.

[Maxemchuk, 1982] Maxemchuk N.F. A variation on
CSMA/CD that yelds movable TDM slots in integrated
voice/data local networks. Bell Syst. Tech. J. 1982, 61, (7),
pp.1527-1550.

[Metcalfe and Boggs 1983] Metcalfe Robert M., Boggs
David R. Ethernet : Distributed Packet Switching for Local
Computer Networks. Communication of the ACM, Vol 26,
N°1 January 1983, pp.90-95.

[Millet, 1986] Millet P. Transmission et r�seaux locaux, ar-
chitecture I.E.E.E. 802. Masson 1986

[Orlarey and Lequay, 1989] Orlarey Y., Lequay H.
MidiShare : a Real Time multi-tasks software module for
Midi applications. Proceedings of the ICMC, 1989, ICMA,
San Francisco.

[Orlarey, 1990] Orlarey Y. An Efficient Scheduling
Algorithm for Real-Time Musical Systems. Proceedings of
the ICMC, 1990, ICMA, San Francisco.

[Orlarey, 1991] Orlarey Y. Hierarchical Real Time Inter
application Communications Proceedings of the ICMC,
1991, ICMA, San Francisco.

