
HAL Id: hal-02158817
https://hal.science/hal-02158817

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INScore - An Environment for the Design of Live Music
Scores

Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz. INScore - An Environment for the Design of Live
Music Scores. Linux Audio Conference, 2012, Stanford, United States. pp.47-54. �hal-02158817�

https://hal.science/hal-02158817
https://hal.archives-ouvertes.fr

INScore
An Environment for the Design of Live Music Scores

D. Fober and Y. Orlarey and S. Letz
Grame - Centre national de création musicale

9, rue du Garet BP 1185
69202 Lyon Cedex 01,

France,
{fober, orlarey, letz}@grame.fr

Abstract
INScore is an open source framework for the design of
interactive, augmented, live music scores. Augmented
music scores are graphic spaces providing representa-
tion, composition and manipulation of heterogeneous
and arbitrary music objects (music scores but also im-
ages, text, signals...), both in the graphic and time do-
mains. INScore includes also a dynamic system for
the representation of the music performance, consid-
ered as a specific sound or gesture instance of the score,
and viewed as signals. It integrates an event based in-
teraction mechanism that opens the door to original
uses and designs, transforming a score as a user in-
terface or allowing a score self-modification based on
temporal events. This paper presents the system fea-
tures, the underlying formalisms, and introduces the
OSC based scripting language.

Keywords
score, interaction, signal, synchronization

1 Introduction

Music notation has a long history and evolved
through ages. From the ancient neumes to the
contemporary music notation, the western culture
is rich of the many ways explored to represent the
music. From symbolic or prescriptive notations
to pure graphic representation, the music score
has always been in constant interaction with the
creative and artistic process.

However, although the music representations
have exploded with the advent of computer music
[Dannenberg, 1993; Hewlett and Selfridge-Field,
2001], the music score, intended to the performer,
didn’t evolved in proportion to the new music
forms. In particular, there is a significant gap
between interactive music and the static way it is
usually notated: a performer has generally a tra-
ditional paper score, plus a computer screen dis-
playing a number or a letter to indicate the state

of the interaction system. New needs in terms of
music representation emerge of this context.

In the domain of electro-acoustic music, ana-
lytic scores - music scores made a postériori, be-
come common tools for the musicologists but have
little support from the existing computer music
software, apart the approach proposed for years
by the Acousmograph [Geslin and Lefevre, 2004].

In the music pedagogy domain and based on a
mirror metaphor, experiments have been made to
extend the music score in order to provide feed-
back to students learning and practicing a tradi-
tional music instruments [Fober et al., 2007]. This
approach was based on an extended music score,
supporting various annotations, including perfor-
mance representations based on the audio signal,
but the system was limited by a monophonic score
centered approach and a static design of the per-
formance representation.

Today, new technologies allow for real-time in-
teraction and processing of musical, sound and
gestural information. But the symbolic dimen-
sion of the music is generally excluded from the
interaction scheme.

INScore has been designed in answer to these
observations. It is an open source framework1 for
the design of interactive, augmented, live music
scores. It extends the traditional music score to
arbitrary heterogeneous graphic objects: it sup-
ports symbolic music notation (Guido [Hoos et al.,
1998] or MusicXML [Good, 2001] format), text
(utf8 encoded or html format), images (jpeg, tiff,
gif, png, bmp), vectorial graphics (custom basic
shapes or SVG), video files, as well as an original
performance representation system [Fober et al.,
2010b].

Each component of an augmented score has a

1http://inscore.sf.net

http://inscore.sf.net

graphic and temporal dimension and can be ad-
dressed in both the graphic and temporal space.
A simple formalism, is used to draw relations be-
tween the graphic and time space and to repre-
sent the time relations of any score components
in the graphic space. Based on the graphic and
time space segmentation, the formalism relies on
simple mathematical relations between segments
and on relations compositions. We talk of time
synchronization in the graphic domain [Fober et
al., 2010a] to refer to this specific feature.

INScore is a message driven system that makes
use of the Open Sound Control [OSC] 2 format.
This design opens the door to remote control and
to interaction using any OSC capable application
or device. In addition, it includes interaction fea-
tures provided at score component level by the
way of watchable events.

All these characteristics make INScore a
unique system in the landscape of music notation
or of multi-media presentation. The next section
gives details about the system features, including
the underlying formalisms. Next the OSC API is
introduced with a special emphasis on how it is
turned into a scripting language. The last section
gives an overview of the system architecture and
dependencies before some directions are presented
for future work.

2 Features

Table 1 gives the typology of the graphic resources
supported by the system. All the score elements
have graphic properties (position, scale, rotation,
color, etc.) and time properties as well (date and
duration).

INScore provides a message based API to cre-
ate and control the score elements, both in the
graphic and time spaces. The Open Sound Con-
trol [OSC] protocol is used as basis format for
these messages, described in section 3.

2.1 Time to graphic relations

All the elements of a score have a time dimension
and the system is able to graphically represent the
time relationships of these elements. INScore is
using segmentations and mappings to achieve this
time synchronization in the graphic domain.

The segmentation of a score element is a set
of segments included in this element. A segment

2http://opensoundcontrol.org/

may be viewed as a portion of an element. It
could be a 2D graphic segment (a rectangle), a
time interval, a text section, or any segment de-
scribing a part of the considered element in its
local coordinates space.

Mappings are mathematical relations between
segmentations. A composition operation is used
to relate the graphic space of two arbitrary score
elements, using their relation to the time space.
Table 2 lists the segmentations and mappings
used by the different component types. Mappings
are indicated by arrows (↔). Note that the ar-
rows link segments of different types. Segmen-
tations and mappings in italic are automatically
computed by the system, those in bold are user
defined.

Note that for music scores, an intermediate
time segmentation, the wrapped time, is necessary
to catch repeated sections and jumps (to sign, to
coda, etc.).

Figure 1: Graphic segments of a score and its
performance displayed using colors and annotated
with the corresponding time segments.

Figure 1 shows segments defined on a score and
an image, annotated with the corresponding time
segments. Synchronizing the image to the score
will stretch and align the graphic segments corre-
sponding to similar time segments as illustrated
by figure 2.

Description of the image graphic to time rela-
tion is given in table 3 as a set of pairs including
a graphic segment defined as 2 intervals on the x
and y axis, and a time segment defined as 2 ratio-
nals expressing musical time (where 1 represents
a whole note).

http://opensoundcontrol.org/

Symbolic music description Guido Music Notation and MusicXML formats
Text plain text or html (utf8)

Images jpg, gif, tiff, png, bmp
Vectorial graphics line, rectangle, ellipse, polygon, curve, SVG code

Video files using the phonon plugin
Performance representations see section 2.2

Table 1: Graphic resources supported by the system.

type segmentations and mappings required
Symbolic music description graphic ↔ wrapped time ↔ time

Text graphic ↔ text ↔ time
Images graphic ↔ pixel ↔ time

Vectorial graphics graphic ↔ vectorial ↔ time
Performance representations graphic ↔ frame ↔ time

Table 2: Segmentations and mappings for each component type

Figure 2: Time synchronization of the segments
displayed in figure 1.

([0, 67[[0, 86[) ([0/2, 1/2[)
([67, 113[[0, 86[) ([1/2, 1/1[)
([113, 153[[0, 86[) ([1/1, 5/4[)
([153, 190[[0, 86[) ([5/4, 3/2[)
([190, 235[[0, 86[) ([3/2, 4/2[)

Table 3: A mapping described as a set of relations
between graphic and time segments.

2.2 Performance representation

Music performance representation is based on sig-
nals, whether audio or gestural signals. To pro-
vide a flexible and extensible system, the graphic
representation of a signal is viewed as a graphic
signal, i.e. as a composite signal made of:

• a y coordinate signal

• a thickness signal h

• a color signal c

Such a composite signal (see figure 3) includes
all the information required to be drawn without
additional computation.

t

y
h

c

Figure 3: A composite graphic signal at time t.

The following examples show some simple rep-
resentations defined using this model.

2.2.1 Pitch representation

Represents notes pitches on the y-axis using the
fundamental frequency (figure 4).

Figure 4: Pitch representation.

The corresponding graphic signal is expressed
as:

g = Sf0 / kt / kc

where Sf0 : fundamental frequency

kt : a constant thickness signal
kc : a constant color signal

2.2.2 Articulations

Makes use of the signal RMS values to control the
graphic thickness (figure 5). The corresponding

Figure 5: Articulations.

graphic signal is expressed as:

g = ky / Srms / kc

where ky : signal y constant
Srms : RMS signal
kc : a constant color signal

2.2.3 Pitch and articulation combined

Makes use of the fundamental frequency and RMS
values to draw articulations shifted by the pitches
(figure 6).

Figure 6: Pitch and articulation combined.

The corresponding graphic signal is expressed
as:

g = Sf0 / Srms / kc

where Sf0 : fundamental frequency
Srms : RMS signal
kc : a constant color signal

2.2.4 Pitch and harmonics combined

Combines the fundamental frequency to the first
harmonics RMS values (figure 7). Each harmonic
has a different color.

Figure 7: Pitch and harmonics combined.

The graphic signal is described in several steps.
First, we build the fundamental frequency graphic
as above (see section 2.2.3) :

g0 = Sf0 / Srms0 / kc0

where Sf0 : fundamental frequency
Srms0 : f0 RMS values
kc0 : a constant color signal

Next we build the graphic for the harmonic 1:

g1 = Sf0 / Srms1 + Srms0 / kc1

Srms1 : harmonic 1 RMS values
kc1 : a constant color signal

Next, the graphic for the harmonic 2:

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2

Srms2 : harmonic 2 RMS values
kc2 : a constant color signal

etc.
Finally, the graphic signals are combined into a
parallel graphic signal:

g = g2 / g1 / g0

2.3 Interaction

INScore is a message driven system that makes
use of Open Sound Control [OSC] format. It in-
cludes interaction features provided at individ-
ual score component level by the way of watch-
able events, which are typical events available in
a graphic environment, extended in the temporal
domain. The list of supported events is given in
table 4.

mouse events time events misc.
mouse enter time enter new element
mouse leave time leave (at scene level)

mouse down
mouse up

mouse move
double click

Table 4: Typology of watchable events.

Events are associated to user defined messages
that are triggered by the event occurrence. The
message includes a destination address (INScore

by default) that supports a url-like specification,
allowing to target any IP host on any UDP port.
The message associated to mouse events may use
predefined variables, instantiated at event time
with the current mouse position or the current
position time.

This simple event based mechanism makes easy
to describe for example an intelligent cursor i.e.
an arbitrary object that is synchronized to the
score and that turns the page to the next or pre-
vious one, depending on the time zone it enters.

3 INScore messages

The INScore API is an OSC messages API. The
general format is illustrated in figure 8: it con-
sists in an address followed by a message string,
followed by parameters.

Chapter 1

General format

An OSC message is made of an OSC address, followed by a message string, followed by zero to n parame-
ters. The message string could be viewed as the method name of the object identified by the OSC address.
The OSC address could be string or a regular expression matching several objects.

OSCMessage

OSCAddress message parameters☞
✍

✎
✌

OSCAddress

/
✎✍☞✌ identifier☞

✍ regexp

✎
✌

✎
✍

☞
✌

identifier

[-_a-zA-Z] [-_a-zA-Z0-9]]✎
✍

☞
✌

Some specific nodes accept (like signals - see section 13.1.1) OSC messages without message string:

OSCMessage

OSCAddress parameters

1.1 Parameters

Message parameters types are between the OSC types int32, float32 and OSC-string. In the remainder of
this document, they are used as terminal symbols, denoted by int32, float32 and string.
When used in a script file (see section 16), string should be single or double quoted. If an ambiguous
double or single quote is part of the string, it must be escaped using a ’\’.

1

Figure 8: General format of a message.

The address may be viewed as an object
pointer, the message string as a method name
and the parameters as the method parameters.
For example, the message:

/ITL/scene/score color 255 128 40 150

may be viewed as the following method call:
score->color(255 128 40 150)

3.1 Address space

The OSC address space is strictly organized like
the internal score representation, which is a tree
with 4 depths levels (figure 9). Messages can be
sent to any level of the hierarchy.

The first level is the application level: a static
node with a fixed address that is also used to
discriminate incoming messages. An application
contains several scenes, which corresponds to dif-
ferent windows and different scores. Each scene
contains components and two static nodes: a sync
node for the components synchronization and a
signal node, that may be viewed as a special
folder containing signals. The name in blue are
user defined, those in black are static reserved
names.

3.2 Message strings

This section gives some of the main messages sup-
ported by all the score components. The list is far
from being exhaustive, it is intended to show ex-
amples of the system API.

Score components are created and/or modified
using a set message (figure 10) that takes the

Application

Scene

Components

Signals

/ITL

/scene /scene /scene

/objects/signal/sync /objects /objects

/sig /sig

Figure 9: INScore address space.

timeMsg

clock
✎✍ ☞✌☞

✍durClock
✎✍ ☞✌✍date
✎✍ ☞✌time

✍duration
✎✍ ☞✌time

✍ddate
✎✍ ☞✌time

✍dduration
✎✍ ☞✌time

✎
✌
✌
✌
✌
✌

time

int32
✎✍ ☞✌int32

✎✍ ☞✌☞
✍int32

✎✍ ☞✌✍float32
✎✍ ☞✌

✎
✌
✌

6 The ’set’ message

setMsg

set
✎✍ ☞✌type data

7

Figure 10: The set message.

object type as argument, followed by type specific
parameters.

Messages given in figure 11 are used to set the
objects graphic properties.

4 Common components messages

commonMsg

show
✎✍ ☞✌int32

✎✍ ☞✌☞
✍del

✎✍ ☞✌✍export
✎✍ ☞✌ fullPathFileName☞

✍path

✍
✎
✌
✌

✍save
✎✍ ☞✌filePath ☞

✍ +
✎✍☞✌

✎
✌

✍rename
✎✍ ☞✌name

✍PositionMsg

✍ColorMsg

✍TimeMsg

✍clickSelectMsg

✎
✌
✌

✌
✌
✌
✌
✌
✌

4.1 Positioning

PositionMsg

absPosMsg☞
✍ relPosMsg

✍originMsg

✎
✌
✌

absPosMsg

x
✎✍☞✌float32

✎✍ ☞✌☞
✍ y

✎✍☞✌float32
✎✍ ☞✌✍ z

✎✍☞✌float32
✎✍ ☞✌✍angle

✎✍ ☞✌float32
✎✍ ☞✌✍scale

✎✍ ☞✌float32
✎✍ ☞✌

✎
✌
✌
✌
✌

3
Figure 11: Graphic space management.

Messages given in figure 12 set the time proper-
ties. Time is encoded as rational values represent-
ing music time (where 1 is a whole note). Graphic
space and time management messages have rela-
tive positioning forms: the message string pre-
fixed with ’d’.

All the messages that modify the system state
have a counterpart get form illustrated by figure
13.

Synchronization between components is based
on a master / slave scheme. It is described by
a message addressed to the static sync node as
illustrated by figure 14. syncmode indicates how
to align the slave component to its master: hori-
zontal and/or vertical stretch, etc.

Interactive features are available by request-
ing to a component to watch an event using

4.3 The ’effect’ messages

effectMsg

effect
✎✍ ☞✌ none

✎✍ ☞✌☞
✍ blur

✎✍ ☞✌☞
✍colorize

✎✍ ☞✌✍shadow
✎✍ ☞✌

✎
✌
✌

☞
✍params

✎
✌

✎
✌

blurParams

radius ☞
✍blurHint

✎
✌

blurHint

performance
✎✍ ☞✌☞

✍quality
✎✍ ☞✌✍animation
✎✍ ☞✌

✎
✌
✌

colorizeParams

strength ☞
✍color

✎
✌

shadowParams

xoffset yoffset ☞
✍color ☞

✍blur

✎
✌

✎
✌

5 Time management messages

timeMsg

date
✎✍ ☞✌time☞

✍duration
✎✍ ☞✌time

✎
✌

6

Figure 12: Time management.

setFile

txtf
✎✍ ☞✌textFilePath☞

✍htmlf
✎✍ ☞✌htmlFilePath

✍gmnf
✎✍ ☞✌gmnFilePath

✍svgf
✎✍ ☞✌svgFilePath

✍img
✎✍ ☞✌imgPath

✍video
✎✍ ☞✌videoPath

✍file
✎✍ ☞✌filePath

✎
✌
✌
✌
✌
✌
✌

7 The ’get’ messages

getMsg

get
✎✍ ☞✌☞

✍ getParam✎
✍

☞
✌

✎
✌

8 Component specific messages

penMsg

penColor
✎✍ ☞✌color☞

✍penWidth
✎✍ ☞✌float32

✎✍ ☞✌✍penStyle
✎✍ ☞✌penstyle

✎
✌
✌

penstyle

solid
✎✍ ☞✌☞

✍dash
✎✍ ☞✌✍dot
✎✍ ☞✌✍dashDot
✎✍ ☞✌✍dashDotDot
✎✍ ☞✌

✎
✌
✌
✌
✌

9

Figure 13: Querying the system state.

a message like figure 15, where what indicates
the event (mouseUp, mouseDown, mouseEnter,
mouseLeave, timeEnter, timeLeave) and OSCMsg
represents any valid OSC message including the
address part.

The example in figure 16 creates a simple score,
do some scaling, creates a red cursor and synchro-
nizes it to the score with a vertical stretch to the
score height. Output is presented by figure 17.

3.3 INScore scripts

Actually, the example given in figure 16) is mak-
ing use of the file format of a score, which consists
in a list of textual OSC messages, separated by a
semi-colon. This textual form is particularly suit-
able to be used as a scripting language and addi-
tional support is provided in the form of variables
and javascript and/or lua support.

3.3.1 Variables

INScore scripts supports variables declarations
in the form illustrated by figure 18. Variables may
be used in place of any message parameter pre-
fixed using a $ sign. A variable must be declared
before being used.

3.3.2 Scripting support

INScore scripts may include javascript sections,
delimited by <?javascript and ?> The javascript
code is evaluated at parse time. It is expected
to produce valid INScore messages as output.
These messages are then expanded in place of the
javascript code.

Variables declared before the javascript section
are exported to the javascript environment, which
make these variables usable in both contexts.

10 Synchronization

sync

slave
1

master ☞
✍ syncmode

✎
✌

☞
✍2

✎
✌

sync

syncIdentifier
1

syncIdentifier ☞
✍ syncmode✎

✍
☞
✌

✎
✌

☞

✍2

✎

✌

☞

✍3
get
✎✍ ☞✌☞

✍ identifier

✎
✌

✎

✌

syncIdentifier
1

identifier☞
✍2

identifier :
✎✍☞✌mapName

✎
✌

syncmode

syncAlignment☞
✍ syncStretch

✍mapName

✎
✌
✌

syncAlignment

syncOver
✎✍ ☞✌☞

✍syncTop
✎✍ ☞✌✍syncBottom
✎✍ ☞✌

✎
✌
✌

12

Figure 14: Synchronization message: the second
form (2) removes the synchronization from the
slave object.

faustmessage

signalMsgs☞
✍1

msg
✎✍ ☞✌float32

✎✍ ☞✌✍2
get
✎✍ ☞✌ in

✎✍ ☞✌☞
✍out

✎✍ ☞✌
✎
✌

✎
✌
✌

signal

identifier ☞
✍ /

✎✍☞✌n

✎
✌

☞
✍float32

✎✍ ☞✌

✎
✌

15 Events and Interaction

interactMsg

watch
✎✍ ☞✌what oscMsg

interactMsg

watch
✎✍ ☞✌☞

✍watch+
✎✍ ☞✌

✎
✌

1☞
✍what ☞

✍oscMsg

✎
✌

✎
✌

oscMsg☞
✍ fullAddress

✎
✌

OSCAddress parameters☞
✍variable

✎
✌

✎
✍

☞
✌

fullAddress

IPAddress☞
✍hostname

✎
✌

:
✎✍☞✌port

16

Figure 15: Watching events.

Similarly, INScore may support the lua lan-
guage in sections delimited by <?lua and ?>.
By default, lua support is not embedded in the
INScore binary distribution. The engine needs
to be compiled with the appropriate options to
support lua.

4 Architecture

INScore is both a shared library and a standalone
score viewer application without user interface.
Some insight of the system architecture is given
in this section for a better understanding and an
optimal use of the system. The general architec-
ture is a Model View Controller [MVC] designed
to handle OSC message streams.

4.1 The MVC Model

The MVC architecture is illustrated in figure 19.
Modification of the model state is achieved by in-
coming OSC messages or by the library C/C++
API, that is actually also message based. An
OSC message is packaged into an internal mes-
sages representation and stacked on a lock-free
fifo stack. These operations are synchronous to
the incoming OSC stream and to the library API
call.

On a second step, messages are popped from
the stack by a Controler that takes in charge

/ITL/scene/score set ’gmn’ ’[g e f d]’;
/ITL/scene/score scale 5.0;
/ITL/scene/cursor set ’rect’ 0.01 0.1;
/ITL/scene/cursor color 255 0 0 150;
/ITL/scene/sync ’cursor’ ’score’ ’v’;

Figure 16: INScore sample script.

Figure 17: Sample script output.

xy

x
✎✍☞✌☞

✍ y
✎✍☞✌

✎
✌

☞
✍[low,high]

✎✍ ☞✌
✎
✌

date

date
✎✍ ☞✌☞

✍ :
✎✍☞✌mapname

✎
✌

☞
✍[n/d]

✎✍ ☞✌
✎
✌

15.4 Message based variables

msgVar

(
✎✍☞✌oscaddress get

✎✍ ☞✌☞
✍params

✎
✌

)
✎✍☞✌

16 Scripting

variabledecl

ident
✎✍ ☞✌=

✎✍☞✌ int32
✎✍ ☞✌☞

✍float32
✎✍ ☞✌✍string
✎✍ ☞✌

✎
✌
✌

;
✎✍☞✌

lang

<?
✎✍ ☞✌ javascript

✎✍ ☞✌☞
✍lua

✎✍ ☞✌
✎
✌

script ?>
✎✍ ☞✌

18

Figure 18: Variable declaration.

address decoding and message passing to the cor-
responding object of the model. The final opera-
tion concerns the view update. An Updater is in
charge of producing a view of the model, which is
currently based on the Qt Framework.

This second step of the model modification
scheme is asynchronous: it is processed on a reg-
ular time base.

4.2 Dependencies

The INScore project depends on external open
source libraries:

• the Qt framework3 providing the graphic
layer and platform independence.

• the GuidoEngine4 for music score layout

• the GuidoQt static library, actually part of
the Guido library project

• the oscpack library5 for OSC support

• and optionally:

– the MusicXML library6 to support the
MusicXML format.

– the v8 javascript engine7 to support
javascript in INScore script files.

– the lua engine8 to support lua in
INScore script files.

3http://qt.nokia.com/
4http://guidolib.sourceforge.net
5http://www.rossbencina.com/code/oscpack
6http://libmusicxml.sourceforge.net
7http://code.google.com/p/v8/
8http://www.lua.org/

OSC Message

Messages Stack

OSC Listener
(OSCPack)

Model State

View

Library
API

Synchronous

Asynchronous

Processing scheme Implementation

Message Stack

Controler

 uses

Score components hierarchy

Updater

 uses

Qt View

Figure 19: An overview of the MVC architecture

The GuidoEngine, the GuidoQt and oscpack li-
braries are required to compile INScore.

Binary packages are distributed for Ubuntu
Linux, Mac OS and Windows. Detailed instruc-
tions are included in the project repository for
compiling.

5 Future work

Interactive features described in section 2.3 result
from an experimental approach. The formaliza-
tion and extension of these features are planned.

Time synchronization features are based on a
continuous music time. Supporting other time
representations like the Allen relations [Allen,
1983] is part of the future work.

Due to its dynamic nature, INScore is particu-
larly suitable to interactive music, i.e. where parts
of the music score could be computed in real-time
by an interaction system. It could be particularly
interesting to provide a musically meaningful vi-
sualization of the interaction system state; exten-
sions in this direction are also planned.

http://qt.nokia.com/
http://guidolib.sourceforge.net
http://www.rossbencina.com/code/oscpack
http://libmusicxml.sourceforge.net
http://code.google.com/p/v8/
http://www.lua.org/

6 Acknowledgements

INScore was initiated in the Interlude project
funded by the French National Research Agency
[ANR- 08-CORD-010].

References

James F. Allen. 1983. Maintaining knowl-
edge about temporal intervals. Commun. ACM,
26:832–843, November.

R. B. Dannenberg. 1993. Music representation
issues, techniques and systems. Computer Mu-
sic Journal, 17(3):20–30.

D. Fober, S. Letz, and Y. Orlarey. 2007. Ve-
mus - feedback and groupware technologies for
music instrument learning. In Proceedings of
the 4th Sound and Music Computing Confer-
ence SMC’07 - Lefkada, Greece, pages 117–123.

D. Fober, C. Daudin, S. Letz, and Y. Orlarey.
2010a. Time synchronization in graphic domain
- a new paradigm for augmented music scores.
In ICMA, editor, Proceedings of the Interna-
tional Computer Music Conference, pages 458–
461.

D. Fober, C. Daudin, Y. Orlarey, and S. Letz.
2010b. Interlude - a framework for augmented
music scores. In Proceedings of the Sound and
Music Computing conference - SMC’10, pages
233–240.

Yann Geslin and Adrien Lefevre. 2004. Sound
and musical representation: the acousmo-
graphe software. In ICMC’04: Proceedings of
the International Computer Music Conference,
pages 285–289. ICMA.

M. Good. 2001. MusicXML for Notation and
Analysis. In W. B. Hewlett and E. Selfridge-
Field, editors, The Virtual Score, pages 113–
124. MIT Press.

Walter B. Hewlett and Eleanor Selfridge-Field,
editors. 2001. The Virtual Score; representa-
tion, retrieval and restoration. Computing in
Musicology. MIT Press.

H. Hoos, K. Hamel, K. Renz, and J. Kilian.
1998. The GUIDO Music Notation Format -
a Novel Approach for Adequately Represent-
ing Score-level Music. In Proceedings of the In-
ternational Computer Music Conference, pages
451–454. ICMA.

	Introduction
	Features
	Time to graphic relations
	Performance representation
	Pitch representation
	Articulations
	Pitch and articulation combined
	Pitch and harmonics combined

	Interaction

	INScore messages
	Address space
	Message strings
	INScore scripts
	Variables
	Scripting support

	Architecture
	The MVC Model
	Dependencies

	Future work
	Acknowledgements

