
HAL Id: hal-02158816
https://hal.science/hal-02158816

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAUST Architectures Design and OSC Support.
Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz. FAUST Architectures Design and OSC Support..
International Conference on Digital Audio Effects, 2011, Paris, France. pp.231-216. �hal-02158816�

https://hal.science/hal-02158816
https://hal.archives-ouvertes.fr

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

FAUST ARCHITECTURES DESIGN AND OSC SUPPORT.

D. Fober, Y. Orlarey, S. Letz

Grame
Centre national de création musicale

Lyon, France
{fober,orlarey,letz}@grame.fr

ABSTRACT

FAUST [Functional Audio Stream] is a functional programming
language specifically designed for real-time signal processing and
synthesis. It consists in a compiler that translates a FAUST pro-
gram into an equivalent C++ program, taking care of generating
the most efficient code. The FAUST environment also includes
various architecture files, providing the glue between the FAUST
C++ output and the host audio and GUI environments. The com-
bination of architecture files and FAUST output gives ready to run
applications or plugins for various systems, which makes a single
FAUST specification available on different platforms and environ-
ments without additional cost. This article presents the overall de-
sign of the architecture files and gives more details on the recent
OSC architecture.

1. INTRODUCTION

From a technical point of view FAUST 1 (Functional Audio Stream)
is a functional, synchronous, domain specific language designed
for real-time signal processing and synthesis. A unique feature of
Faust, compared to other existing languages like Max, PD, Super-
collider, etc., is that programs are not interpreted, but fully com-
piled.

One can think of FAUST as a specification language. It aims
at providing the user with an adequate notation to describe signal
processors from a mathematical point of view. This specification
is free, as much as possible, from implementation details. It is the
role of the FAUST compiler to provide automatically the best possi-
ble implementation. The compiler translates FAUST programs into
equivalent C++ programs taking care of generating the most effi-
cient code. The compiler offers various options to control the gen-
erated code, including options to do fully automatic parallelization
and take advantage of multicore machines.

The generated code can generally compete with, and some-
times even outperform, C++ code written by seasoned program-
mers. It works at the sample level, it is therefore suited to im-
plement low-level DSP functions like recursive filters up to full-
scale audio applications. It can be easily embedded as it is self-
contained and doesn’t depend of any DSP library or runtime sys-
tem. Moreover it has a very deterministic behavior and a constant
memory footprint.

From a syntactic point of view FAUST is a textual language,
but nevertheless block-diagram oriented. It actually combines two
approaches: functional programming and algebraic block-diagrams.
The key idea is to view block-diagram construction as function

1http://faust.grame.fr

composition. For that purpose, FAUST relies on a block-diagram
algebra of five composition operations (: , ~ <: :>) [1, 2].

We don’t have the space to describe the language in details
but as an example here is how to write a pseudo random number
generator r in Faust 2 :

r = +(12345)~*(1103515245);
This example uses the recursive composition operator ~ to cre-

ate a feedback loop as illustrated figure 1.

Figure 1: Block-diagram of a noise generator. This image is pro-
duced by the FAUST compiler using the -svg option.

Being a specification language the FAUST code says nothing
about the audio drivers or the GUI toolkit to be used. It is the
role of the architecture file to describe how to relate the dsp code
to the external world. This approach allows a single FAUST pro-
gram to be easily deployed to a large variety of audio standards
(Max-MSP externals, PD externals, VST plugins, CoreAudio ap-
plications, Jack applications, etc.). In the following sections we
will detail this architecture mechanism and in particular the re-
cently developed OSC architecture that allows FAUST programs to
be controlled by OSC messages.

2. FAUST SIGNAL PROCESSORS

A FAUST program denotes a signal processor implemented as an
instance of a dsp class, defined as follows:

2Please note that this expression produces a signal r(t) = 12345 +
1103515245 ∗ r(t − 1) that exploits the particularity of 32-bits integer
operations

DAFX-1

http://www.grame.fr
http://faust.grame.fr

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

class dsp {
public:

dsp() {}
virtual ~dsp() {}
virtual int getNumInputs() = 0;
virtual int getNumOutputs() = 0;
virtual void buildUserInterface(UI* ui) = 0;
virtual void init(int samplingRate) = 0;
virtual void compute(int len, float** in,

float** out)= 0;
};

The dsp object is central to the FAUST architectures design:

• buildUserInterface creates the user interface,

• compute is called by the audio architecture for the signal
processing,

• getNumInputs, getNumOutputs provides informa-
tion about the signal processor,

• init is called to initialize the sampling rate, which is typ-
ically done by the audio architecture.

3. AUDIO ARCHITECTURE FILES

A FAUST audio architecture is a glue between the host audio sys-
tem and a FAUST module. It is responsible to allocate and re-
lease the audio channels and to call the FAUST dsp::compute
method to handle incoming audio buffers and/or to produce au-
dio output. It is also responsible to present the audio as non-
interleaved float data, normalized between -1. and 1.

A FAUST audio architecture derives an audio class defined as
below:

class audio {
public:

audio() {}
virtual ~audio() {}
virtual bool init(const char* name, dsp*) = 0;
virtual bool start() = 0;
virtual void stop() = 0;

};

The API is simple enough to give a great flexibility to audio
architectures implementations. The initmethod should initialize
the audio. At init exit, the system should be in a safe state to
recall the dsp object state.

Table 4 gives the audio architectures currently available for
various operating systems.

4. GUI ARCHITECTURE FILES

A FAUST UI architecture is a glue between a host control layer and
a FAUST module. It is responsible to associate a FAUST module
parameter to a user interface element and to update the parameter
value according to the user actions. This association is triggered
by the dsp::buildUserInterface call, where the dsp asks
a UI object to build the module controllers.

Since the interface is basically graphic oriented, the main con-
cepts are widget based: a UI architecture is semantically oriented
to handle active widgets, passive widgets and widgets layout.

A FAUST UI architecture derives an UI class (defined in ap-
pendix 10.1).

Audio system Operating system
Alsa Linux

Core audio Mac OS X, iOS
Jack Linux, Mac OS X, Windows

Portaudio Linux, Mac OS X, Windows
OSC (see section 5.2) Linux, Mac OS X, Windows

VST Mac OS X, Windows
Max/MSP Mac OS X, Windows
CSound Linux, Mac OS X, Windows

SuperCollider Linux, Mac OS X, Windows
PureData Linux, Mac OS X, Windows
Pure[3] Linux, Mac OS X, Windows

Table 1: FAUST audio architectures

4.1. Active widgets

Active widgets are graphical elements that control a parameter
value. They are initialized with the widget name and a pointer
to the linked value. The widget currently considered are Button,
ToggleButton, CheckButton, VerticalSlider, Hori-
zontalSlider and NumEntry.
A GUI architecture must implement a method
addxxx (const char* name, float** zone, ...)
for each active widget. Additional parameters are available to
Slider and NumEntry: the init value, the min and max values and
the step.

4.2. Passive widgets

Passive widgets are graphical elements that reflect values. Simi-
larly to active widgets, they are initialized with the widget name
and a pointer to the linked value. The widget currently considered
are NumDisplay, TextDisplay, HorizontalBarGraph
and VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float** zone, ...)
for each passive widget. Additional parameters are available, de-
pending on the passive widget type.

4.3. Widgets layout

Generally, a GUI is hierarchically organized into boxes and/or tab
boxes. A UI architecture must support the following methods to
setup this hierarchy :
openTabBox (const char* label)
openHorizontalBox (const char* label)
openVerticalBox (const char* label)
closeBox (const char* label)

Note that all the widgets are added to the current box.

4.4. Metadata

The FAUST language allows widget labels to contain metadata en-
closed in square brackets. These metadata are handled at GUI level
by a declare method taking as argument, a pointer to the widget
associated value, the metadata key and value:
declare(float*, const char*, const char*)

Table 2 gives the UI architectures currently available.

DAFX-2

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

UI Comment
console a command line UI

GTK a GTK based GUI
Qt a multi-platform Qt based GUI

FUI a file based UI to store and recall modules states
OSC see section 5.1

Table 2: FAUST UI architectures

5. OSC ARCHITECTURES

The OSC support opens the FAUST applications control to any
OSC capable application or programming language. But it also
transforms a full range of devices embedding sensors (wiimote,
smart phones...) into physical interfaces for FAUST applications
control, allowing a direct use as music instrument (which is in
phase with the new FAUST physical models library adapted [4]
from STK [5]).

The FAUST OSC architecture provides an UI architecture but
also an audio architecture. This audio architecture runs at the OSC
data stream rate, meaning that it allows to slow the audio computa-
tion down, up to frame by frame computation, and thus proposing
a new and original way to make digital signal computation.

5.1. OSC GUI architecture

The OSC UI architecture transforms all the UI active widgets addi-
tions into an addnode call, ignores the passive widgets and trans-
forms containers calls (openxxxBox, closeBox) into op-
engroup and closegroup calls.

5.1.1. OSC address space and messages

The OSC address space adheres strictly to the hierarchy defined
by the addnode and opengroup, closegroup calls. It sup-
ports the OSC pattern matching mechanism.

A node expects to receive OSC messages with a single float
value as parameter. This policy is strict for the parameters count,
but relaxed for the parameter type: OSC int values are accepted
and cast to float.

Two additional messages are defined to provide FAUST appli-
cations discovery and address space discoveries:

• the hello message: accepted by any module root address.
The module responds with its root address, followed by its
IP address, followed by the UDP ports numbers (listening
port, output port, error port). See the network management
section below for ports numbering scheme.

• the get message: accepted by any valid OSC address. The
get message is propagated to every terminal node that re-
sponds with its OSC address and current values (value, min
and max).

Example:
Consider the noise module provided with the FAUST examples:

• it sends /noise 192.168.0.1 5510 5511 5512
in answer to a hello message,

• it sends /noise/Volume 0.8 0. 1.
in answer to a get message.

5.1.2. Network management

The OSC architecture makes use of 3 different UDP port numbers:

• 5510 is the listening port number: control messages should
be addressed to this port.

• 5511 is the output port number: answers to query messages
are send to this port.

• 5512 is the error port number: used for asynchronous errors
notifications.

When the UDP listening port number is busy (for instance in
case of multiple FAUST modules running), the system automati-
cally looks for the next available port number. Unless otherwise
specified by the command line, the UDP output port numbers are
unchanged.

A module sends its name (actually its root address) and allo-
cated ports numbers on the OSC output port on startup.

Ports numbers can be changed on the command line with the
following options:

[-port | -outport | -errport] number
The default UDP output streams destination is localhost.

It can also be changed with the command line option
-dest address where address is a host name or an IP

number.

5.2. OSC audio architecture

The OSC audio architecture provides audio input and output using
OSC messages. It is not intended for real-time audio transportation
due to the overhead introduced by the OSC coding. But, as we will
explain, it provides a very useful and powerful mean to analyze
and/or debug the behaviour of a Faust application.

Using this architecture, a FAUST module accepts arbitrary data
streams on its root OSC address, and handles this stream as input
interleaved signals. Each incoming OSC packet addressed to a
module root triggers a computation cycle, where as much values
as the number of incoming frames are computed.

The output of the signal computation is sent to the OSC out-
put port as non-interleaved data to the OSC addresses /root/n
where root is the module root address and n is the output number
(indexed from 0). For example, consider a simple FAUST program
named split and defined by:

process = _ <: _,_;
expected and generated OSC datagrams are illustrated in figure 2.

process

/split 0.5
/split/0 0.5

/split/1 0.5

Figure 2: In and out OSC datagrams for the split module.

The OSC audio architecture provides a very convenient way
to execute a signal processing at an arbitrary rate, allowing even to
make step by step computation. Connecting the output OSC sig-
nals to Max/Msp or to a system like INScore3, featuring a powerful
dynamic signals representation system, provides a close examina-
tion of the computation results.

3http://inscore.sf.net

DAFX-3

http://inscore.sf.net

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

6. OPEN ISSUES AND FUTURE WORKS

Generally, the labeling scheme for a GUI doesn’t result in an op-
timal OSC address space definition. Moreover, there are potential
conflicts between the FAUST UI labels and the OSC address space
since some characters are reserved for OSC pattern matching and
thus forbidden in the OSC naming scheme. The latter issue is han-
dled with automatic characters substitutions. The first issue could
be solved using the metadata scheme and will be considered in a
future release.

Another issue, resulting from the design flexibility, relies on
dynamic aggregation of multiple architectures covering the same
domain: for example, it would be useful to embed both a standard
and the OSC audio architecture in the same module and to switch
dynamically between (for debugging purpose for example). That
would require the UI to include the corresponding control and thus
a mechanism to permit the UI extension by the UI itself would be
necessary.

7. CONCLUSIONS

FAUST is a mature language for the design of signal processors.
The FAUST architectures give the developer a handful of various
binary outputs without additional cost. The architectures design,
made for easy extension and combination, fits very well in the
landscape of the evolving technologies. Adaptation to new hard-
ware or software is simple and opens the door to all the existing
FAUST programs. The recent OSC addition makes the connec-
tion between FAUST modules and the more and more ubiquitous
hardware embedding sensors and usable as gestural controllers.
FAUST architectures add a practical and ready to run dimension
to the powerful FAUST language and additional contributions are
welcome.

8. ACKNOWLEDGMENTS

The OSC architecture has been designed in the joint context of
the ASTREE project [ANR-08-CORD-003] and the Parallelism
in Interactive Real-Time Signal Processing with FAUST and OSC
project made in collaboration with the CNMAT and supported by
the France-Berkeley fund.

9. REFERENCES

[1] Y. Orlarey, D. Fober, and S. Letz, “An algebra for block di-
agram languages,” in Proceedings of International Computer
Music Conference, ICMA, Ed., 2002, pp. 542–547.

[2] Y. Orlarey, D. Fober, and S. Letz, New Computational
Paradigms for Computer Music, chapter FAUST : an Efficient
Functional Approach to DSP Programming, pp. 65–96, Edi-
tions DELATOUR FRANCE, 2009.

[3] Albert Graef, “Signal processing in the pure programming
language,” in Proceedings of the Linux Audio Conference
LAC2009, 2009.

[4] R. Michon and J. O. Smith, “Faust-stk: a set of linear and non-
linear physical models for the faust programming language.,”
in submitted to DAFx 2011, 2011.

[5] P. Cook, “The synthesis toolkit (stk),” in Proceedings of the
International Computer Music Conference (ICMC), Beijing,
China, Oct., 1999, pp. 299–304.

10. APPENDIX

10.1. UI class
class UI
{
public:

UI() {}
virtual ~UI() {}

// -- active widgets
virtual void addButton(const char* label, float* zone) = 0;
virtual void addToggleButton(const char* label, float* zone) = 0;
virtual void addCheckButton(const char* label, float* zone) = 0;
virtual void addVerticalSlider(const char* label, float* zone,

float init, float min, float max, float step) = 0;
virtual void addHorizontalSlider(const char* label, float* zone,

float init, float min, float max, float step) = 0;
virtual void addNumEntry(const char* label, float* zone, float init,

float min, float max, float step) = 0;
// -- passive widgets
virtual void addNumDisplay(const char* label, float* zone, int precision) = 0;
virtual void addTextDisplay(const char* label, float* zone,

const char* names[], float min, float max) = 0;
virtual void addHorizontalBargraph(const char* label, float* zone,

float min, float max) = 0;
virtual void addVerticalBargraph(const char* label, float* zone,

float min, float max) = 0;
// -- widget’s layouts
virtual void openTabBox(const char* label) = 0;
virtual void openHorizontalBox(const char* label) = 0;
virtual void openVerticalBox(const char* label) = 0;
virtual void closeBox() = 0;

// -- metadata declarations
virtual void declare(float* , const char* , const char*) {}

};

10.2. Available FAUST architectures

Audio system Environment OSC support
Linux

Alsa GTK, Qt yes
Jack GTK, Qt, Console yes

PortAudio GTK, Qt yes
Mac OS X

CoreAudio Qt yes
Jack Qt, Console yes

PortAudio Qt yes
Windows

Jack Qt, Console yes
PortAudio Qt yes

iOS (iPhone)
CoreAudio Cocoa not yet

Table 3: FAUST applications architectures

Name System
ladspa LADSPA plugins
csound CSOUND opcodes

csounddouble double precision CSOUND opcodes
maxmsp Max/MSP externals

vst native VST plugins
w32vst windows VST plugins

supercollider Supercollider plugins
puredata Puredata externals

Q Q plugins
Pure Pure plugins

Table 4: FAUST plugins architectures

DAFX-4

http://www.ladspa.org/
http://csounds.com/
http://cycling74.com/products/maxmspjitter/
http://en.wikipedia.org/wiki/Virtual_Studio_Technology
http://www.audiosynth.com/
http://puredata.info/
http://q-lang.sourceforge.net/
http://code.google.com/p/pure-lang/

	1 Introduction
	2 Faust signal processors
	3 Audio architecture files
	4 GUI architecture files
	4.1 Active widgets
	4.2 Passive widgets
	4.3 Widgets layout
	4.4 Metadata

	5 OSC architectures
	5.1 OSC GUI architecture
	5.1.1 OSC address space and messages
	5.1.2 Network management

	5.2 OSC audio architecture

	6 Open issues and future works
	7 Conclusions
	8 Acknowledgments
	9 References
	10 Appendix
	10.1 UI class
	10.2 Available Faust architectures

