
IMUTUS SCORE PROCESSING COMPONENTS

D.Fober, S.Letz, Y.Orlarey
Grame - Centre national de création musicale

{fober, letz, orlarey}@grame.fr

ABSTRACT

IMUTUS is an IST European project that aims at the de-
velopment of an open platform for training students on the
recorder. Among the results of the project are two open
source libraries for music representation and graphic nota-
tion: the MusicXML library, intended to support the Mu-
sicXML format and to provide music notation exchange
capabilities, and the GUIDO library that provides a pow-
erful graphic score engine. This paper introduces both li-
braries and describes their use in IMUTUS system.

1. INTRODUCTION

The IMUTUS (Interactive MUsic TUition System) project
aims at the development of an open platform for training
students on the recorder. It is primary focused on perfor-
mance skills but since it addresses beginners, it also in-
cludes fundamentals of music and games which are com-
bined to practicing sessions to create a complete learning
setting. Due to this pedagogical orientation, IMUTUS is
very demanding in term of music representation.

Although there is a long history of systems capable of
graphically representing music in common music notation
format, very few systems have reached maturity. The tool-
box approach for graphic score layout has been investi-
gated very early [1]. TheCommon Music Notationsystem
[10] may be considered as the best achievement; more re-
cently, theExpressive Notation Package(ENP) [7] intro-
duced another promising approach; both systems are Lisp
based environments. Another solution consists in compil-
ers producing music sheets from a textual music descrip-
tion. Among them is MusiXTEX: a set of TEX macros to
typeset music notation. Lilypond [8]; a more recent initia-
tive; is an open source software partially implemented in
the language Scheme. Both systems generate PostScript,
EPS or PDF files.

Music representation is another critical issue for mu-
sic applications: it faces the music complexity as well as
the diversity of needs of the various tools that operate on
it. Music representations intended for playing, for nota-
tion or for information retrieval are generally optimized in
different ways. This is probably the main reason that has
led to a proliferation of languages and formats for music
description [2] [11] [5].

Music applications that want to include graphic score
layout capabilities have to solve both the music represen-
tation problem and the complexity of the music layout

process. From layout viewpoint, none of the existing re-
sources are ready to be embedded into a standalone appli-
cation. Concerning the music representation for notation,
although a wide choice of formats exists, only a few re-
sources are available to support them. Facing these critical
issues, the IMUTUS project developed two open source
projects, aiming at making up for this lack of components:

• the MusicXML library, intended to support the Mu-
sicXML format [4] and to provide music notation
exchange capabilities,

• the GUIDO Engine library that provides a powerful
graphic score engine, based on the GUIDO Music
Notation format [6].

The next sections are intended to give an overview of these
libraries and to highlight the essential points of interest for
developers. Finally, a concrete example of these libraries
capabilities is given with a description of the IMUTUS
Score Processing components.

2. THE MUSICXML LIBRARY

The MusicXML format has been introduced in 2000. The
MusicXML library is a portable C++ library defined very
close to this format. It includes the necessary to read,
write, build, browse and modify a MusicXML music rep-
resentation. It also provides tools to support other formats:
export to the GUIDO format is already included. The Mu-
sicXML library is an open source project covered by the
GNU LGPL license and hosted on SourceForge1 .

2.1. Brief overview of the MusicXML Format

MusicXML is a XML format primarily based on two aca-
demic music formats: the MuseData and the Humdrum
formats [11]. It organizes the music into a header fol-
lowed by the core music data. The header contains basic
metadata about the music score, such as the title and com-
poser. It also contains the part-list, describing all the parts
or instruments in the music score. The core music data are
organized aspartwiseor timewisedata:

- partwise data are organized into parallel parts con-
taining a sequence of measures,

- timewise data are organized into sequence of mea-
sures containing parallel parts.

1 The MusicXML Library: http://libmusicxml.sourceforge.net



A partwisemeasure contains elements grouped under
themusic-data entity. It covers the following purposes:

• Music score description: most of the elements are
intended to enumerate the graphic components of a
music score. Thenote element is the main one but
a measure contains also attributes likekey or time

signatures, ordirection elements (likedynamics )
attached to a part or to the overall score.

• Time description: using elements to move the time
backward (backup ) or forward (forward ).

• Playback parameters: thesound element allows for
tempo, dynamics description, but also for sound con-
trol including MIDI instrument assignment, and for
structural description (da capo, segno, dal segno...).

• Miscellaneous elements like XLink support (link ,
bookmark ), printing parameters or music analysis
elements (harmony , grouping ).

Thenote element is central to the music description. It
includes all the necessary for an acurate graphic rendering
of all the signs attached to it (accidental , dot , stem ,
beaming , articulation , ornament , slur , lyrics ...)

2.2. The MusicXML library design

The MusicXML library is a set of platform independent
C++ classes. It has been designed very close to the Mu-
sicXML format but connection between the classes and
theXML elements is not a one-to-one relation: for simpli-
fication, a class may cover several MusicXML elements.
For example, MusicXML definesdynamics as separate
elements while the library defines a single object. Apart
one exception detailled in section 2.2.3, the library design
corresponds to the MusicXML DTDs which may serve as
library documentation as well.

2.2.1. Smart pointers for memory management

Each object that describes a MusicXML element is han-
dled usingsmart pointers. Smart pointers simplify the
programmer task by automatically freeing the objects when
they are not any more used.

2.2.2. Element to class correspondence

A clear relationship between objects and MusicXML ele-
ments has been preserved all along the library, for exam-
ple, the root of the music representation is the MusicXML
score element, implemented by theTScore object and
handled as aSScore smart pointer within the framework.

2.2.3. Chords

The library includes aTChord object that differs from the
MusicXML chord element, part of thefull-note entity
and included in anote to indicate that the note is an ad-
ditional chord tone with the preceding note. TheTChord

class includes a container to group all the notes of a chord.

2.3. Browsing the representation

The MusicXML representation is a tree which root is a
timewiseor partwisescore. All the objects defining the
score support thevisitor design pattern [3] and accept a
TScoreVisitor as the base class of the visitor design.
Visitors may be implemented or derived for various pur-
poses: browsing the music representation to collect infor-
mation, to edit the score or to convert it to another format.
Severalvisitorsare included in the library, providing dif-
ferent ways for traversing the music structure or maintain-
ing information along thevisiteprocess. It includes:

- a TRolledVisitor : provides a straightforward tra-
versing of the score,

- aTUnrolledVisitor : unrollsrepeats and structural
jumps like ’da capo’ or ’to coda’

- a TMidiContextVisitor : maintains a context for
MIDI generation.

The code sample below implements a raw transposi-
tion. It illustrates how the visitor mechanism allows to
focus on the elements of interest .

class Transposer : public TRoutedVisitor {
int fInterval; // the transposing interval
public:

Transposer(int interval) : fInterval(interval) {}
virtual ˜Transposer() {}
void visite (SNote& n) { n->pitch()+= fInterval;}

};

Figure 1. A transposervisitor

3. THE GUIDO ENGINE LIBRARY

The GUIDOLib project aims at the development of a ge-
neric, portable library for the graphical rendering of mu-
sical scores. The library is based on the GUIDO Music
Notation format [6] as the underlying data format. It is an
open source project covered by the GNU LGPL license
and hosted on SourceForge2 . The project has started in
December 2002, based on the source code of the GUIDO
NoteViewer mainly developed by Kai Renz [9].

3.1. The GUIDO Music Notation

The GUIDO Music Notation format (GMN) is a general
purpose formal language for representing score level mu-
sic in a platform independent plain text and human read-
able way. Its design concentrates on general musical con-
cepts (as opposed to graphical features). A key idea of the
GUIDO approach is adequacy which means that simple
musical concepts should be represented in a simple way
and only complex notions should require complex repre-
sentations.

3.2. The GUIDO Engine

The GUIDO Engine operates on a memory representation
of the GMN format: the GUIDO Abstract Representation
(GAR). This representation is transformed step by step to
produce graphical score pages [9]:

2 The GUIDOLib home page: http://guidolib.sourceforge.net



• GAR to GAR transformation represents the logical
layout transformation: part of the layout (such as
beaming for example) may be computed from the
GAR as well as expressed in GAR,

• the GAR is next converted into a GUIDO Semantic
Normal Form (GSNF), which is a canonical form
such that different semantically equivalent expres-
sions have the same GSNF.

• the GSNF is finally converted into a GUIDO Gra-
phic Representation (GGR) that contains the nec-
essary layout information and is directly usable to
draw the music score. This final step includes no-
tably spacing and page breaking algorithms.

Note that although the GMN format allows for accurate
music formatting, the GUIDO Engine provides powerful
automatic layout capabilities.

3.3. Main library services

3.3.1. Score layout

The library provides functions to parse a GMN file and
to create the corresponding GAR and GGR. GAR and
GGR are referenced by opaque handlers, used as argu-
ments of any function that operates on a score. For ex-
ample:GuidoParseFile provides conversion of a GMN
file into a GAR handler and theGuidoAR2GR function
converts it into a GGR handler, which may be next used
to draw the score using theGuidoOnDraw function.

3.3.2. Browsing music pages

Result of the score layout is a set of pages which size may
be dynamically changed according to an application or a
user needs. The library provides the necessary to setup the
page size, to query a score pages count, the current page
number or to retrieve the page number corresponding to a
given music date.

3.3.3. The GUIDO Factory

The GUIDO Engine may be feeded with computer gener-
ated music using the GUIDO Factory. The GUIDO Fac-
tory API provides a set of functions to create a GAR from
scratch.

A music score dynamic construction is very close to
the textual GUIDO description: the Factory API handles
GAR objects that have a one to one relationship with the
notation format. Once the score has been dynamically
build, a call toGuidoFactoryCloseMusic() returns a
GUIDO handler to a GAR, which may be next converted
into a GGR handler usingGuidoAR2GR() .

3.3.4. GUIDO Mappings

Along with the GGR, the Guido Engine maintains a tree
of graphical musical elements for each page of the score
(figure 2). Each element has a bounding box, a date and a

duration. The GUIDO library API includes a set of func-
tions to browse this tree and to retrieve elements by type,
date or position.

page
system

slice

measureevent

Figure 2. The score graphic elements tree.

4. IMUTUS SCORE PROCESSING

MusicXML and GUIDO libraries have been used to de-
sign an extended score viewer and a simple score editor.
Both components are ready to be embedded into any ap-
plication by the way of aScore Processing library.

4.1. The Extended Score Viewer

4.1.1. General architecture

The score viewer is organized in two main modules :

• a players module: in charge of the audio and MIDI
rendering. It synchronizes the graphic module to
display the current position in real time.

• a graphic module: in charge of producing and merg-
ing several graphic representations in order to draw
what is actually seen on the screen according to the
current position in the score. It handles also the
mouse clicks and selections on the score and may
trigger the audio or MIDI playback.

The graphic module is at the heart of the system. All
the information linked to pedagogical issues are related to
the corresponding musical material and displayed on the
score: it represents pedagogical annotations or graphical
signs to highlight a specific section. This information is
attached to a given exercise or dynamically computed by
the system. Additional information a student may require
is also related to the music score and therefore is obtained
by interacting with the score: for example, a student can
listen to a given note by clicking on this note. The score
viewer may therefore be viewed as the user interface of
the players mentioned above.

4.1.2. Segment mappings to relate graphic and sound

The role of asegment mappingis to relatetime based re-
sourcesdefining correspondencies betweensegmentsof
resources. In the framework of IMUTUS such mappings
are typically used to link graphical positions, musical po-
sitions and audio positions. IMUTUS time based resources
use different time representations: absolute time in frames
for the audio player, musical time expressed in bar/beat/unit



for the MIDI players, graphic time in page number and x,
y coordinates for the graphic module.

A segment mappingprovides the required information
to definetime convertionfunctions. Appropriate links to
synchronize all the related time based resources are cre-
ated by combining such mappings (figure 3). This design
is notably supported by the GUIDO library mappings API.

Absolute time
(frames or 

milliseconds)
Unrolled to 

Score mapping

Score musical time
(ticks or bar/beat/unit) 

Graphic to 
Score mapping

Unrolled 
musical time

(ticks or bar/beat/unit) 

Graphic position
(page num, x, y)

Tempo Map

Audio to Score 
mapping

Figure 3. Time to graphic mappings.

4.2. The Simple Score Editor

The simple score editor is basically a score viewer ex-
tended with editing capabilities. It provides a simple way
to write a short score and includes all the automatic layout
capabilities to help in writing a well formatted score.

4.2.1. Underlying concepts

A score is viewed as a collection of measures containing
symbols (notes or rests). The score editor basic concepts
are reduced to two simple ideas:

• symbols are considered similarly to alphabetical char-
acters in a text editor: they are carrying attributes
that may be compared to characters styles (bold,
italic...) and are edited similarly.

• time space within a measure is always consistent,
it pre-exists to symbols and plays a role similar to
magnetic grids in drawing applications.

4.2.2. Measure time space

Let’s consider an empty 4/4 measure: such a measure is
actually including 4 virtual quarter notes in place of 4 real
notes. This approach has some important repercussions
for the design as well as from pedagogical viewpoint:

• a measure is internaly always complete,

• since a measure is always complete, there is noin-
sert nor deleteoperation: new symbols replace ex-
isting virtual symbols and symbols to be deleted are
tranformed into virtual symbols.

• since a new symbol can only replace a virtual sym-
bol, its time location will be that of the virtual sym-
bol. Therefore, place and size of the virtual symbols
operate like a magnetic grid.

From pedagogical viewpoint, the idea of magnetic grid
may be used to guide the student in the music writing pro-
cess. The system also allows to write scores with ”holes”
(i.e. with measures that appear to be incomplete) and to
designfill-in like games for example.

5. CONCLUSION

Combined use of the MusicXML and GUIDO libraries
may constitute a simple and efficient solution for a large
set of music applications. They provide music notation in-
terchange capabilities and relieve the programmer of the
tricky task of the score layout. Both solutions are freely
available to developers on the SourceForge public reposi-
tory.

ACKNOWLEDGEMENTS

This work was supported by the European Community un-
der the Information Society Technology (IST) RTD pro-
gramme, contract IST-2001-32270

6. REFERENCES

[1] Assayag G., Timis D. ”A ToolBox for Music No-
tation.” Proceedings of the International Computer
Music Conference, ICMA, 1986, pp.173-178

[2] Dannenberg R. B. ”Music Representation Issues,
Techniques and Systems”Computer Music Journal,
17(3), MIT Press 1993, pp. 20-30

[3] E Gamma, R Helm, R Johnson, J Vlissides ”Design
Patterns - Elements of Reusable Object-Oriented
Software” Addison-Wesley 1999

[4] Good M. ”MusicXML for Notation and Analysis”
in The Virtual Score, ed. W. B. Hewlett and E.
Selfridge-Field, MIT Press, 2001, pp.113-124

[5] Hewlett W. and Selfridge-Field E. eds ”The Virtual
Score: Representation, Retrieval, Restoration”Com-
puting in Musicology12, MIT Press, 2001

[6] H. Hoos, K. Hamel, K. Renz, J. Kilian ”The GUIDO
Music Notation Format - A Novel Approach for Ad-
equately Representing Score-level Music”Proceed-
ings of the ICMC’98, ICMA, 1998, pp.451-454

[7] M Kuuskankare, M Laurson ”ENP - Music Notation
Library based on Common Lisp and CLOS”Pro-
ceedings of the International Computer Music Con-
ference, ICMA, 2001, pp.131-134

[8] Han-Wen Nienhuys, Jan Nieuwenhuizen ”LilyPond,
a system for automated music engraving”Proceed-
ings of the XIV Colloquium on Musical Informatics,
Firenze, Italy, 2003

[9] Renz Kai ”Algorithms and Data Structures for a Mu-
sic Notation System based on GUIDO Music No-
tation” PhD Thesis, Technischen Universität Darm-
stadt, 2002

[10] Schottstaedt B. ”Common Music Notation” inBe-
yond MIDI, The handbook of Musical Codes.,
Selfridge-Field E. ed. MIT Press, 1997 pp.217-222

[11] Selfridge-Field E. ed ”Beyond MIDI, The handbook
of Musical Codes” MIT Press, 1997


