N

N
N

HAL

open science

Open source tools for music representation and notation

Dominique Fober, Stéphane Letz, Yann Orlarey

» To cite this version:

Dominique Fober, Stéphane Letz, Yann Orlarey.
notation. Journées d’Informatique Musicale - Sound and Music Computing, IRCAM, Oct 2004, Paris,

France. pp.91-95. hal-02158800

HAL Id: hal-02158800
https://hal.science/hal-02158800

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Open source tools for music representation and

https://hal.science/hal-02158800
https://hal.archives-ouvertes.fr

OPEN SOURCE TOOLS
FOR MUSIC REPRESENTATION AND NOTATION

D.Fober, S.Letz, Y.Orlarey
Grame - Centre national deéation musicale
{fober, letz, orlarey@grame.fr

ABSTRACT playing, for notation or for information retrieval are gener-
ally optimized in different ways. This is probably the main
Although numerous systems and applications exist for mu-reason that has led to a proliferation of languages and for-
sic representation and graphic notation, there are few re-mats for music description [5] [6] [7]. These formats are
sources available to developers. We present two open sourg® numerous to be discussed here. An impressive work of
projects that aim at making up for this lack of compo- Gerd Castan provides a good and updated source of infor-
nents: the MusicXML library, intended to support the Mu- mation online [8] concerning music notation formats and
sicXML format and to provide music notation exchange including related tools.

capabilities, and the GUIDO library that provides a pow- Music applications that want to include graphic score
erful graphic score engine, based on the GUIDO music |ayout capabilities have to solve both the music repre-
notation format. sentation problem and the complexity of the music lay-
out process. From layout viewpoint, many applications
could benefit of existing knowledge but none of the ac-
tual corresponding resources are really usable: systems
such as CMN or ENP are Lisp based which impose a

There is a long history of systems capable of graphically constraint generally not acceptable by many applications.

representing music in common music notation format. Conb en source resources such as Lilvoond are also based on
mercial music publishing software exist for more a decade P ypo)
non standard development technologies. Concerning the

and actually provide sophisticated but complex solutions ; ; X . .
y P b P music representation for notation, although a wide choice

for music engraving. Along thesdosedsolutions, the f formats exists, only a few resources are available to
toolbox approach has been investigated very early [1]. How? » only ;
support these formats. We present two open source li-

ever, very few systems have reached maturity: Gloen- braries that aim at makin for this lack of components:
mon Music Notatiorsystem [2] could be considered as aries that aim at making up for this fack ot components.

1. INTRODUCTION

the best achievement; more recently, Ebxpressive No- e the MusicXML library, intended to support the Mu-
tation Package(ENP) [3] introduced another promising sicXML format [10] and to provide music notation
approach; both systems are Lisp based environments. exchange capabilities,

Another solution consists in designing compilers for
producing music sheets from a textual music description. X .)
MusiXTEX [4] is among these tools: it is a set ofX score engine, based on the GUIDO music notation
macros to typeset music notation. Since MugiXTis format [11] [12].

powerful but hard to learn, preprocessors such as PMXCombined use of these libraries may constitute a simple
and M-Tx have been designed to facilitate music input and efficient solution for a large set of music applications.
and layout. A more recent initiative is Lilypond [9], an The next sections are intended to give an overview of these

open source software partially implemented in the lan- |ibraries and to highlight the essential points that a devel-
guage Scheme, its input music representation format ispper may want to know to use them.

more simple and intuitive, it includes automatic layout ca-
pabilities. Both systems produce PostScript, EPS or PDF
files.

e the GUIDO library that provides a powerful graphic

2. THE MUSICXML LIBRARY

Music representation is another critical issue for music The MusicXML format has been introduced in 2000. It is
applications: it faces the music complexity on one hand actually known as the best music notation interchange for-
and on the other hand, the diversity of needs of the variousmat. The MusicXML library is a portable C++ library de-
tools that operate on it. Music representations intended forfined very close to this format. It includes the necessary to

read, write, build, browse and modify a MusicXML music and rest information. Unpitched elements are used for
representation. It also aims at providing tools to export or unpitched percussion, speaking voice, and other musical
import other music representation formats: export to the elements lacking determinate pitch. nate element in-
GUIDO format is already supported. The MusicXML li- cludes all the necessary for an acurate graphic rendering
brary is an open source project covered by the GNU LGPL of all the signs attached to it. It covers the grapfyje

license [13] and hosted on SourceFotge corresponding to the symbolic note duration (whole, half,
guarter note...), possibéecidental anddot , stem and

2.1. Brief overview of the MusicXML Format beaming information, the graphiaotehead shape (tri-
angle, diamond, square.sjaff assignmentotation

MusicXML is axML format primarily based on two aca- elements such asticulation ,ornament , slur , tied

demic music formats: the MuseData format [15] and the |yrjcs

Humdrum format [14]. It organizes the musicinto aheader Redundant graphic and sound information may live to-
followed by the core music data. The score header CON-gether, for example: aplet element is present when

tains some basic metadata about a musical score, such ag tuplet is to be displayed graphically in addition to the
the title and composer. It also contains the part-list, which gong data provided by theme-modification ele-
lists all the parts or instruments in a musical score. The mant: or atie element indicates sound while thied
core music data may be organizedpastwiseor timewise glement indicates notation.
data:

- partwise data are organized into parallel parts con-
taining a sequence of measures, 2.2. The MusicXML Iibrary deSign

- timewise data are organized into sequence of mea-

- The MusicXML library has been developped in C++, with
sures containing parallel parts.

a great care of preserving platform independence. It has
A MusicXML part may be viewed as a music part as- peen designed very close to the MusicXML format. How-
signed to a given instrument. There is no correspondencegyer, connection between the classes andxie ele-
between staff and part: staff assignment is made note byments is not a one-to-one relation: for simplification, a
note and a part may include several staves (in case of pi-cjass may include several MusicXML elements, provided
ano or organ for example). that these elements are not reused anywhere else. For
A MusicXML partwise measure contains elements groupedexample, MusicXML defineslynamics as separate el-
under themusic-data entity. These elements cover the ements while the library defines a single object. Apart
following purposes: one exception detailled below (section 2.2.5), the library
design corresponds to the MusicXML DTDs which may

e music score description. Most of the elements are g\ e 49 library documentation as well.

intended to enumerate the graphic components of a
music score. Theote element is the most impor-
tant one but the measure contains also measure spe2.2.1. Memory management
cific attributes likeclef , key ortime signatures,
transpose indications otarline description, as
well as direction elements (likemetronome ,
dynamics) attached to a part or the overall score.

Each object that describes a MusicXML element is han-
dled usingsmart pointers A smart pointer is in charge of
maintaining an object reference count by the way of point-
ers operators overloading and of automatically freeing the
e time description using elements to move the time object when the reference count drops to zero. It supports
backward (backup) or forward (forward). class inheritance and conversion whenever possible. The
implementation prevents direct call to objects construc-
° musig analysis using elements likermony or tors; instead of constructor call, a MusicXML object is
grouping . created directly embedded within a smart pointer using a

e playback parameters: tlseund element allows for friend method.

tempo, dynamics description, but also for sound con-
trol including MIDI instrument assignment, and for 2.2.2. Common entities representation
structural description (dacapo, segno, dalsegno, coda,

tocoda). MusicXML defines entities that are common across mul-
tiple component DTDs. Many of them are intended to
e miscellaneous elements like XLink suppolitk describe graphic layout like position, placement or orien-
and bookmark elements) or printing parameters tation.
(print element). These entities are defined as separate objects. A class

is defined to aggregate the corresponding properties to ob-
jects that require them. For exampleT@rientation

class is defined to describe tbentation entity; next

an Orientable class is intended to provide the corre-
1The MusicXML Library: http:/libmusicxml.sourceforge.net sponding properties to derived classes. MusicXML ele-

Thenote element is central to the music description.
It may be acuenote, agracenote or aregular note. All
of them share common elements which are pitch, chord,

ments that carry therientation entity have to derive they are semantically different. The library representation

theOrientable class. is intended to facilitate chords handling as a single object.
MusicXML also makes use of entities to enumerate

values like thestart-stop or theyes-no examples be-

low: 2.3. Browsing the representation

The MusicXML representation is a tree which root is a
timewiseor partwisescore. All the objects defining the
score support theisitor design pattern [16] and accept a
For these entities, the library provides conversion classe§ScoreVisitor as the base class of the visitor design.
which names are closely related to the entity names (like To preserve the choice of different strategies for the
aYesNo class) that: traversing the music representation structure, traversing
- define a type for the corresponding enumeration has not been implemented in the tree components: it is
- provide conversion methods from/to integer and tex- assumed that it’s the visitor responsability. A visitor that
tual representation. These methods are generally namedmplements a basic traversing of the music structure is in-
xml and overloaded to access both the integer and stringcluded in the library: thefRoutedVisitor . It propa-
representation. gates thevisit to the subclasses in the following order:
- subclasses representing attributes are called first,
- subclasses representing elements are called in the
MusicXML defined order.
Many of the MusicXML elements are defined as an alter- \ssitors may be implemented for various purposes:

native bewteen a set of elements. These alternative may,q\ysing the music representation to collect information

be viewed as an inheritance relationship. Each time it has(for analysis purpose for example), to modify the repre-
been convenient to do so, this relationship has been madgenation or to convert it to another format. MusicXML

expli.cit using a specific type, defined asan abstract Classexport to the GUIDO format is achieved using the visi-
and intended to cover the corresponding elements: tor mechanism: thEXML2GuidoVisitor s a visitor that

- TMusicData defines a common type for all the ele- ansform a MusicXML tree into guido tree
ments covered by thausic-data entity.

- TDirectionTypeElement defines a type for all the
elements of alirection-type element, 3. THE GUIDO ENGINE LIBRARY

- TNotationElement defines a type for all the ele-
ments of anotation element,

- TPartListElement defines a type for all the ele-
ments of gart-list element.

<IENTITY % start-stop "(start | stop)">
<IENTITY % yes-no "(yes | no)">

2.2.3. Common types definition

The GUIDOLIb project aims at the development of a ge-
neric, portable library and API for the graphical rendering
of musical scores. The library is based on the GUIDO
Music Notation format [11] [12] as the underlying data
i) format. It is an open source project covered by the GNU
2.2.4. Music data representation LGPL license [13] and hosted on SourceFofge The

Most of the objects of the library have direct MusicXML Project has started in December 2002, mainly based on
element counterpart. These objects carry a name in thethe source code of the GUIDO NoteViewer developed by
form Txxx wherexxx corresponds to an element name. Kai Renz [17].'|t also mcludgs various resources to sup-
For example: theTBarline object corresponds to the port other music representation formaf[s. The MusicXML
barline element, theTNote object corresponds to the formatis supported by the way of the library above.
note element, etc... Th&Chord object is an exception
since it has no MusicXML counterpart. 3.1. The GUIDO Music Notation

Because th&xxx objects are embedded irgmart point-
ers they all have &xxx form which represents the corre-
sponding smart pointer. For example, the root of the music
representation is the MusicXMkcore element, which
corresponds to th&Score object, which is handled as a
SScore smart pointer within the frameworks.

The GUIDO Music Notation format (GMN) is a general

purpose formal language for representing score level mu-
sic in a platform independent plain text and human read-
able way. It is based on a conceptually simple but power-
ful formalism: its design concentrates on general musical
concepts (as opposed to graphical features). A key fea-
ture of the GUIDO design is adequacy which means that
2.2.5. Chords simple musical concepts should be represented in a sim-

The library includes aChord object that differs from the ~ Ple way and only complex notions should require complex
MusicXML chord element. The MusicXMlchord ele- representations. This design is reflected by three specifi-
ment is part of théull-note entity and is included ina ~ cation levels: the basic, advanéehd extendetiGUIDO

note to indicate that the note is an additional chord tone SPecifications.

Wl_th th,e precedlng note. THChord class includes a con- 2The GUIDOLib home page: http://guidolib.sourceforge.net

tainer intended to group all the notes of a chord. Although sparially available

the two representations may be deduced from each other, “not yet publicly available

3.2. The GUIDO Engine 3.3.4. The GUIDO Factory

The GUIDO Engine operates on a memory representationThe GUIDO Engine may be feeded with computer gener-
of the GMN format: the GUIDO Abstract Representation ated music using the GUIDO Factory. The GUIDO Fac-
(GAR). This representation is transformed step by step totory API provides a set of functions to create a GAR from
produce graphical score pages. Two kinds of processingscratch and to convert itinto a GGR. The GUIDO Factory
are first applied to the GAR: is a state machine that operates on implicit current ele-
ments: for example, once you open a voiGeifloFact-

» GAR to GAR transformations which represents a goryopenvoice()), it becomes the current voice and all
logical layout transformation: part of the layout (such sypsequent created events are implicitly added to this cur-
as beaming for example) may be computed from the rent voice.

GAR as well as expressed in GAR, The GUIDO Factory state includes the current score,
voice, chord, note (or rest) and tag. Some elements of
the factory state reflects the GUIDO formal specification;
unless otherwise specified, new notes will implicitly carry
the current duration and octave.

A music score dynamic construction is very close to

This GSNF is finally converted into a GUIDO Graphic the textqal GUIDO description: the Facto'ry ARI hapdles
Representation (GGR) that contains the necessary layou3AR objects that have a one to one relationship with the
information and is directly used to draw the music score. notation format. Once the score has been dynamically
This final step includes notably spacing and page breakingPuild, a call toGuidoFactoryCloseMusic() returns a
algorithms [17]. GUIDO handler to a GAR, directly usable witbuido-

Note that although the GMN format allows for precise TactoryMakeGR() , which returns a GUIDO handler to
music formatting (in advanced GUIDO), the GUIDO En- & GGR, directly usable with the main services of the Ii-

gine provides powerful automatic layout capabilities. brary. Logical layout is performed before returning the
GAR handler and graphical layout is performed before re-

turning the GGR handler.

e the GAR is converted into a GUIDO Semantic Nor-
mal Form (GSNF). The GSNF is a canonical form
such that different semantically equivalent expres-
sions have the same GSNF.

3.3. Main library services
3.3.1. Score layout 4. CONCLUSION

The library provides fu.nctions to parse a GMN file and to The GUIDO library is an original solution that may pro-
create the corresponding GAR and GGR. GAR and GGR vide score layout capabilities directly embedded into an

are referenced by opaque handlers which are used as argu.aipplication. The MusicXML library provides scores in-
ments of any function that operates on a score. For exam-

ple: GuidoParse (const char * filename) provides
conversion of a GMN file into a GGR handler returned as
the function result. This handler may be next used to draw
the score using th@uidoOnDraw function.

A typical code to draw a score from its GMN descrip- 5. REFERENCES
tion is given by the figure 1.

erchange capabilities. Both are cross-platform libraries
and may collaborate to constitute a powerful and portable
solution.

[1] ASSAYAG, G., AND D. TiMIS, A ToolBox
for Music Notation.Proceedings of the Inter-
national Computer Music Conference, ICMA,

Result of the score layout is a set of pages which size may 1986, pp.173-178
be dynamically changed according to an application or a

user needs. The library provides the necessary tochange
the page size, to query a score pages count, the current
page number or the page number corresponding to a given
music date. It also allows to change the current page (note

3.3.2. Score pages access

[2] BiLL SCHOTTSTAEDT, Common Music No-
tation. in "Beyond MIDI, The handbook of
Musical Codes.”, Selfridge-Field E. ed. MIT
Press, 1997 pp.217-222

function). LAURSON, ENP - Music Notation Library
based on Common Lisp and CLO%oceed-
3.3.3. Engine settings ings of the International Computer Music

Conference, ICMA, 2001, pp.131-134
Score layout algorithms are controlled by a set of param-

eters which are global to the GUIDO engine. The library [4] DANIEL TAUPIN, ROSS MITCHELL, AN-
provides an API to query and modify these parameters. It DREAS EGLER, MusiXEX Using BX to
includes optimal page fill control, springs and space force write polyphonic or instrumental musiavail-

control, systems distance and systems distribution. able at http://icking-music-archive.org/

void DrawGMNFile (char * filename) {

/I for simplicity , we use the cross-platform GDevicePostScript
GDevicePostScript dev (210, 297, "outfile.eps”, "™, "guido.eps");

/I data structure for engine initialization, uses fonts "guido2" and "times"
GuidolnitDesc gd = { &dev, 0, "guido2", "times" };

GuidoOnDrawDesc desc; /I declare a data structure for drawing
Guidolnit (&gd); /I Initialise the Guido Engine first

/I and parse the GMN file to get a GGR handle directly stored in the drawing struct
desc.handle = GuidoParse (filename);

desc.hdc = &dev; /I we'll draw on the postscript device
desc.page = 1; /I draw the first page only
desc.updateRegion.erase = true; /I and draw everything

desc.scrollx = desc.scrolly = O; /I from the upper left page corner

desc.zoom = 1, /I no zoom

desc.sizex = desc.sizey = 0; /I do not override the zoom factor parameter
GuidoOnDraw (&desc); /I draw the score to the PostScript device

Figure 1. Example of code to draw a score.

[5] ROGER B. DANNENBERG, Music Repre- [14] DaviD HURON, Humdrum and Kern: Selec-
sentation Issues, Techniques and Systeims. tive Feature Encodingin Beyond MIDI, The
Computer Music Journal, 17(3), MIT Press handbook of Musical Codes, Selfridge-Field
1993, pp. 20-30 E. ed, MIT Press, 1997, pp.376-401

[6] SELFRIDGE-FIELD E. ed, Beyond MIDI, The [15] WALTER B. HEWLETT, MuseData: Multi-
handbook of Musical CodeMIT Press, 1997 purpose Representatioim Beyond MIDI, The

[7]

[8]

[9]

[10]

[11]

[12]

[13]

HEWLETT, W. AND SELFRIDGE-FIELD, E.
eds, The Virtual Score: Representation, Re-
trieval, Restoration. Computing in Musicol- [16] E. GAMMA, R.HELM, R.JOHNSON,
ogy 12, MIT Press, 2001 J.VLISSIDES, Design Patterns - Ele-

GERD CASTAN, Music Notation Formats
http://www.music-notation.info/

HAN-WEN NIENHUYS AND JAN NIEUWEN-
music engravingProceedings of the XIV Col-

loquium on Musical Informatics (XIV CIM
2003), Firenze, Italy, May 2003

handbook of Musical Codes, Selfridge-Field
E. ed, MIT Press, 1997, pp.402-447

ments of Reusable Object-Oriented Software.
Addison-Wesley 1999

[17] RENz KAY, Algorithms and Data Struc-
tures for a Music Notation System based on
GUIDO Music Notation. PhD Thesis, Tech-
nischen Universittt Darmstadt, 2002

LilyPond, a system for automated

Goob, M., MusicXML for Notation and

Analysis.In The Virtual Score, Selfridge-Field
E, ed. W. B. Hewlett and E. Selfridge-Field
(Cambridge, MA, 2001), MIT Press, 2001,
pp.113-124

H. H. Hoos, K. A. HAMEL, K. RENZ, J.

The GUIDO Music Notation For-

mat - A Novel Approach for Adequately Rep-
resenting Score-level MusicProceedings of
the ICMC’98, ICMA, 1998, pp.451-454

H. H. Hoos, K. A. HAMEL, The GUIDO
Music Notation Format Specification - Version
1.0, Part 1: Basic GUIDO.Technical Report
T1 20/97, Technische Universitat Darmstadt -
Germany, 1997

GNU Lesser General Public License.
http://www.fsf.org/licenses/Igpl.html

