
HAL Id: hal-02158800
https://hal.science/hal-02158800

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open source tools for music representation and notation
Dominique Fober, Stéphane Letz, Yann Orlarey

To cite this version:
Dominique Fober, Stéphane Letz, Yann Orlarey. Open source tools for music representation and
notation. Journées d’Informatique Musicale - Sound and Music Computing, IRCAM, Oct 2004, Paris,
France. pp.91-95. �hal-02158800�

https://hal.science/hal-02158800
https://hal.archives-ouvertes.fr

OPEN SOURCE TOOLS
FOR MUSIC REPRESENTATION AND NOTATION

D.Fober, S.Letz, Y.Orlarey
Grame - Centre national de création musicale

{fober, letz, orlarey}@grame.fr

ABSTRACT

Although numerous systems and applications exist for mu-
sic representation and graphic notation, there are few re-
sources available to developers. We present two open source
projects that aim at making up for this lack of compo-
nents: the MusicXML library, intended to support the Mu-
sicXML format and to provide music notation exchange
capabilities, and the GUIDO library that provides a pow-
erful graphic score engine, based on the GUIDO music
notation format.

1. INTRODUCTION

There is a long history of systems capable of graphically
representing music in common music notation format. Com-
mercial music publishing software exist for more a decade
and actually provide sophisticated but complex solutions
for music engraving. Along theseclosedsolutions, the
toolbox approach has been investigated very early [1]. How-
ever, very few systems have reached maturity: theCom-
mon Music Notationsystem [2] could be considered as
the best achievement; more recently, theExpressive No-
tation Package(ENP) [3] introduced another promising
approach; both systems are Lisp based environments.

Another solution consists in designing compilers for
producing music sheets from a textual music description.
MusiXTEX [4] is among these tools: it is a set of TEX
macros to typeset music notation. Since MusiXTEX is
powerful but hard to learn, preprocessors such as PMX
and M-Tx have been designed to facilitate music input
and layout. A more recent initiative is Lilypond [9], an
open source software partially implemented in the lan-
guage Scheme, its input music representation format is
more simple and intuitive, it includes automatic layout ca-
pabilities. Both systems produce PostScript, EPS or PDF
files.

Music representation is another critical issue for music
applications: it faces the music complexity on one hand
and on the other hand, the diversity of needs of the various
tools that operate on it. Music representations intended for

playing, for notation or for information retrieval are gener-
ally optimized in different ways. This is probably the main
reason that has led to a proliferation of languages and for-
mats for music description [5] [6] [7]. These formats are
too numerous to be discussed here. An impressive work of
Gerd Castan provides a good and updated source of infor-
mation online [8] concerning music notation formats and
including related tools.

Music applications that want to include graphic score
layout capabilities have to solve both the music repre-
sentation problem and the complexity of the music lay-
out process. From layout viewpoint, many applications
could benefit of existing knowledge but none of the ac-
tual corresponding resources are really usable: systems
such as CMN or ENP are Lisp based which impose a
constraint generally not acceptable by many applications.
Open source resources such as Lilypond are also based on
non standard development technologies. Concerning the
music representation for notation, although a wide choice
of formats exists, only a few resources are available to
support these formats. We present two open source li-
braries that aim at making up for this lack of components:

• the MusicXML library, intended to support the Mu-
sicXML format [10] and to provide music notation
exchange capabilities,

• the GUIDO library that provides a powerful graphic
score engine, based on the GUIDO music notation
format [11] [12].

Combined use of these libraries may constitute a simple
and efficient solution for a large set of music applications.
The next sections are intended to give an overview of these
libraries and to highlight the essential points that a devel-
oper may want to know to use them.

2. THE MUSICXML LIBRARY

The MusicXML format has been introduced in 2000. It is
actually known as the best music notation interchange for-
mat. The MusicXML library is a portable C++ library de-
fined very close to this format. It includes the necessary to

read, write, build, browse and modify a MusicXML music
representation. It also aims at providing tools to export or
import other music representation formats: export to the
GUIDO format is already supported. The MusicXML li-
brary is an open source project covered by the GNU LGPL
license [13] and hosted on SourceForge1.

2.1. Brief overview of the MusicXML Format

MusicXML is a XML format primarily based on two aca-
demic music formats: the MuseData format [15] and the
Humdrum format [14]. It organizes the music into a header
followed by the core music data. The score header con-
tains some basic metadata about a musical score, such as
the title and composer. It also contains the part-list, which
lists all the parts or instruments in a musical score. The
core music data may be organized aspartwiseor timewise
data:

- partwise data are organized into parallel parts con-
taining a sequence of measures,

- timewise data are organized into sequence of mea-
sures containing parallel parts.

A MusicXML part may be viewed as a music part as-
signed to a given instrument. There is no correspondence
between staff and part: staff assignment is made note by
note and a part may include several staves (in case of pi-
ano or organ for example).

A MusicXML partwise measure contains elements grouped
under themusic-data entity. These elements cover the
following purposes:

• music score description. Most of the elements are
intended to enumerate the graphic components of a
music score. Thenote element is the most impor-
tant one but the measure contains also measure spe-
cific attributes likeclef , key or time signatures,
transpose indications orbarline description, as
well as direction elements (likemetronome ,
dynamics) attached to a part or the overall score.

• time description using elements to move the time
backward (backup) or forward (forward).

• music analysis using elements likeharmony or
grouping .

• playback parameters: thesound element allows for
tempo, dynamics description, but also for sound con-
trol including MIDI instrument assignment, and for
structural description (dacapo, segno, dalsegno, coda,
tocoda).

• miscellaneous elements like XLink support (link

and bookmark elements) or printing parameters
(print element).

The note element is central to the music description.
It may be acuenote, agracenote or aregular note. All
of them share common elements which are pitch, chord,

1The MusicXML Library: http://libmusicxml.sourceforge.net

and rest information. Unpitched elements are used for
unpitched percussion, speaking voice, and other musical
elements lacking determinate pitch. Anote element in-
cludes all the necessary for an acurate graphic rendering
of all the signs attached to it. It covers the graphictype

corresponding to the symbolic note duration (whole, half,
quarter note...), possibleaccidental anddot , stem and
beaming information, the graphicnotehead shape (tri-
angle, diamond, square...),staff assignment,notation

elements such asarticulation , ornament , slur , tied ,
lyrics ...

Redundant graphic and sound information may live to-
gether, for example: atuplet element is present when
a tuplet is to be displayed graphically in addition to the
sound data provided by thetime-modification ele-
ment; or atie element indicates sound while thetied

element indicates notation.

2.2. The MusicXML library design

The MusicXML library has been developped in C++, with
a great care of preserving platform independence. It has
been designed very close to the MusicXML format. How-
ever, connection between the classes and theXML ele-
ments is not a one-to-one relation: for simplification, a
class may include several MusicXML elements, provided
that these elements are not reused anywhere else. For
example, MusicXML definesdynamics as separate el-
ements while the library defines a single object. Apart
one exception detailled below (section 2.2.5), the library
design corresponds to the MusicXML DTDs which may
serve as library documentation as well.

2.2.1. Memory management

Each object that describes a MusicXML element is han-
dled usingsmart pointers. A smart pointer is in charge of
maintaining an object reference count by the way of point-
ers operators overloading and of automatically freeing the
object when the reference count drops to zero. It supports
class inheritance and conversion whenever possible. The
implementation prevents direct call to objects construc-
tors; instead of constructor call, a MusicXML object is
created directly embedded within a smart pointer using a
friend method.

2.2.2. Common entities representation

MusicXML defines entities that are common across mul-
tiple component DTDs. Many of them are intended to
describe graphic layout like position, placement or orien-
tation.

These entities are defined as separate objects. A class
is defined to aggregate the corresponding properties to ob-
jects that require them. For example, aTOrientation

class is defined to describe theorientation entity; next
an Orientable class is intended to provide the corre-
sponding properties to derived classes. MusicXML ele-

ments that carry theorientation entity have to derive
theOrientable class.

MusicXML also makes use of entities to enumerate
values like thestart-stop or theyes-no examples be-
low:

<!ENTITY % start-stop "(start | stop)">
<!ENTITY % yes-no "(yes | no)">

For these entities, the library provides conversion classes
which names are closely related to the entity names (like
a YesNo class) that:

- define a type for the corresponding enumeration
- provide conversion methods from/to integer and tex-

tual representation. These methods are generally named
xml and overloaded to access both the integer and string
representation.

2.2.3. Common types definition

Many of the MusicXML elements are defined as an alter-
native bewteen a set of elements. These alternative may
be viewed as an inheritance relationship. Each time it has
been convenient to do so, this relationship has been made
explicit using a specific type, defined as an abstract class
and intended to cover the corresponding elements:

- TMusicData defines a common type for all the ele-
ments covered by themusic-data entity.

- TDirectionTypeElement defines a type for all the
elements of adirection-type element,

- TNotationElement defines a type for all the ele-
ments of anotation element,

- TPartListElement defines a type for all the ele-
ments of apart-list element.

2.2.4. Music data representation

Most of the objects of the library have direct MusicXML
element counterpart. These objects carry a name in the
form Txxx wherexxx corresponds to an element name.
For example: theTBarline object corresponds to the
barline element, theTNote object corresponds to the
note element, etc... TheTChord object is an exception
since it has no MusicXML counterpart.

Because theTxxx objects are embedded intosmart point-
ers, they all have aSxxx form which represents the corre-
sponding smart pointer. For example, the root of the music
representation is the MusicXMLscore element, which
corresponds to theTScore object, which is handled as a
SScore smart pointer within the frameworks.

2.2.5. Chords

The library includes aTChord object that differs from the
MusicXML chord element. The MusicXMLchord ele-
ment is part of thefull-note entity and is included in a
note to indicate that the note is an additional chord tone
with the preceding note. TheTChord class includes a con-
tainer intended to group all the notes of a chord. Although
the two representations may be deduced from each other,

they are semantically different. The library representation
is intended to facilitate chords handling as a single object.

2.3. Browsing the representation

The MusicXML representation is a tree which root is a
timewiseor partwisescore. All the objects defining the
score support thevisitor design pattern [16] and accept a
TScoreVisitor as the base class of the visitor design.

To preserve the choice of different strategies for the
traversing the music representation structure, traversing
has not been implemented in the tree components: it is
assumed that it’s the visitor responsability. A visitor that
implements a basic traversing of the music structure is in-
cluded in the library: theTRoutedVisitor . It propa-
gates thevisit to the subclasses in the following order:

- subclasses representing attributes are called first,
- subclasses representing elements are called in the

MusicXML defined order.

Visitors may be implemented for various purposes:
browsing the music representation to collect information
(for analysis purpose for example), to modify the repre-
sentation or to convert it to another format. MusicXML
export to the GUIDO format is achieved using the visi-
tor mechanism: theTXML2GuidoVisitor is a visitor that
transform a MusicXML tree into aguido tree.

3. THE GUIDO ENGINE LIBRARY

The GUIDOLib project aims at the development of a ge-
neric, portable library and API for the graphical rendering
of musical scores. The library is based on the GUIDO
Music Notation format [11] [12] as the underlying data
format. It is an open source project covered by the GNU
LGPL license [13] and hosted on SourceForge2. The
project has started in December 2002, mainly based on
the source code of the GUIDO NoteViewer developed by
Kai Renz [17]. It also includes various resources to sup-
port other music representation formats. The MusicXML
format is supported by the way of the library above.

3.1. The GUIDO Music Notation

The GUIDO Music Notation format (GMN) is a general
purpose formal language for representing score level mu-
sic in a platform independent plain text and human read-
able way. It is based on a conceptually simple but power-
ful formalism: its design concentrates on general musical
concepts (as opposed to graphical features). A key fea-
ture of the GUIDO design is adequacy which means that
simple musical concepts should be represented in a sim-
ple way and only complex notions should require complex
representations. This design is reflected by three specifi-
cation levels: the basic, advanced3 and extended4 GUIDO
specifications.

2The GUIDOLib home page: http://guidolib.sourceforge.net
3partially available
4not yet publicly available

3.2. The GUIDO Engine

The GUIDO Engine operates on a memory representation
of the GMN format: the GUIDO Abstract Representation
(GAR). This representation is transformed step by step to
produce graphical score pages. Two kinds of processing
are first applied to the GAR:

• GAR to GAR transformations which represents a
logical layout transformation: part of the layout (such
as beaming for example) may be computed from the
GAR as well as expressed in GAR,

• the GAR is converted into a GUIDO Semantic Nor-
mal Form (GSNF). The GSNF is a canonical form
such that different semantically equivalent expres-
sions have the same GSNF.

This GSNF is finally converted into a GUIDO Graphic
Representation (GGR) that contains the necessary layout
information and is directly used to draw the music score.
This final step includes notably spacing and page breaking
algorithms [17].

Note that although the GMN format allows for precise
music formatting (in advanced GUIDO), the GUIDO En-
gine provides powerful automatic layout capabilities.

3.3. Main library services

3.3.1. Score layout

The library provides functions to parse a GMN file and to
create the corresponding GAR and GGR. GAR and GGR
are referenced by opaque handlers which are used as argu-
ments of any function that operates on a score. For exam-
ple: GuidoParse (const char * filename) provides
conversion of a GMN file into a GGR handler returned as
the function result. This handler may be next used to draw
the score using theGuidoOnDraw function.

A typical code to draw a score from its GMN descrip-
tion is given by the figure 1.

3.3.2. Score pages access

Result of the score layout is a set of pages which size may
be dynamically changed according to an application or a
user needs. The library provides the necessary tochange
the page size, to query a score pages count, the current
page number or the page number corresponding to a given
music date. It also allows to change the current page (note
that only the current page is drawn by theGuidoOnDraw

function).

3.3.3. Engine settings

Score layout algorithms are controlled by a set of param-
eters which are global to the GUIDO engine. The library
provides an API to query and modify these parameters. It
includes optimal page fill control, springs and space force
control, systems distance and systems distribution.

3.3.4. The GUIDO Factory

The GUIDO Engine may be feeded with computer gener-
ated music using the GUIDO Factory. The GUIDO Fac-
tory API provides a set of functions to create a GAR from
scratch and to convert it into a GGR. The GUIDO Factory
is a state machine that operates on implicit current ele-
ments: for example, once you open a voice (GuidoFact-

oryOpenVoice()), it becomes the current voice and all
subsequent created events are implicitly added to this cur-
rent voice.

The GUIDO Factory state includes the current score,
voice, chord, note (or rest) and tag. Some elements of
the factory state reflects the GUIDO formal specification;
unless otherwise specified, new notes will implicitly carry
the current duration and octave.

A music score dynamic construction is very close to
the textual GUIDO description: the Factory API handles
GAR objects that have a one to one relationship with the
notation format. Once the score has been dynamically
build, a call toGuidoFactoryCloseMusic() returns a
GUIDO handler to a GAR, directly usable withGuido-

FactoryMakeGR() , which returns a GUIDO handler to
a GGR, directly usable with the main services of the li-
brary. Logical layout is performed before returning the
GAR handler and graphical layout is performed before re-
turning the GGR handler.

4. CONCLUSION

The GUIDO library is an original solution that may pro-
vide score layout capabilities directly embedded into an
application. The MusicXML library provides scores in-
terchange capabilities. Both are cross-platform libraries
and may collaborate to constitute a powerful and portable
solution.

5. REFERENCES

[1] A SSAYAG, G., AND D. TIMIS, A ToolBox
for Music Notation.Proceedings of the Inter-
national Computer Music Conference, ICMA,
1986, pp.173-178

[2] B ILL SCHOTTSTAEDT, Common Music No-
tation. in ”Beyond MIDI, The handbook of
Musical Codes.”, Selfridge-Field E. ed. MIT
Press, 1997 pp.217-222

[3] M IKA KUUSKANKARE AND M ICHAEL

LAURSON, ENP - Music Notation Library
based on Common Lisp and CLOSProceed-
ings of the International Computer Music
Conference, ICMA, 2001, pp.131-134

[4] DANIEL TAUPIN, ROSS M ITCHELL , AN-
DREAS EGLER, MusiXTEX Using TEX to
write polyphonic or instrumental music.avail-
able at http://icking-music-archive.org/

void DrawGMNFile (char * filename) {

// for simplicity , we use the cross-platform GDevicePostScript
GDevicePostScript dev (210, 297, "outfile.eps", "", "guido.eps");
// data structure for engine initialization, uses fonts "guido2" and "times"
GuidoInitDesc gd = { &dev, 0, "guido2", "times" };
GuidoOnDrawDesc desc; // declare a data structure for drawing
GuidoInit (&gd); // Initialise the Guido Engine first

// and parse the GMN file to get a GGR handle directly stored in the drawing struct
desc.handle = GuidoParse (filename);
desc.hdc = &dev; // we’ll draw on the postscript device
desc.page = 1; // draw the first page only
desc.updateRegion.erase = true; // and draw everything
desc.scrollx = desc.scrolly = 0; // from the upper left page corner
desc.zoom = 1; // no zoom
desc.sizex = desc.sizey = 0; // do not override the zoom factor parameter

GuidoOnDraw (&desc); // draw the score to the PostScript device
}

Figure 1. Example of code to draw a score.

[5] ROGER B. DANNENBERG, Music Repre-
sentation Issues, Techniques and Systems.in
Computer Music Journal, 17(3), MIT Press
1993, pp. 20-30

[6] SELFRIDGE-FIELD E. ed, Beyond MIDI, The
handbook of Musical Codes.MIT Press, 1997

[7] HEWLETT, W. AND SELFRIDGE-FIELD , E.
eds, The Virtual Score: Representation, Re-
trieval, Restoration. Computing in Musicol-
ogy 12, MIT Press, 2001

[8] GERD CASTAN, Music Notation Formats
http://www.music-notation.info/

[9] HAN-WEN NIENHUYS AND JAN NIEUWEN-
HUIZEN, LilyPond, a system for automated
music engraving.Proceedings of the XIV Col-
loquium on Musical Informatics (XIV CIM
2003), Firenze, Italy, May 2003

[10] GOOD, M., MusicXML for Notation and
Analysis.In The Virtual Score, Selfridge-Field
E, ed. W. B. Hewlett and E. Selfridge-Field
(Cambridge, MA, 2001), MIT Press, 2001,
pp.113-124

[11] H. H. HOOS, K. A. HAMEL , K. RENZ, J.
K ILIAN , The GUIDO Music Notation For-
mat - A Novel Approach for Adequately Rep-
resenting Score-level Music.Proceedings of
the ICMC’98, ICMA, 1998, pp.451-454

[12] H. H. HOOS, K. A. HAMEL , The GUIDO
Music Notation Format Specification - Version
1.0, Part 1: Basic GUIDO.Technical Report
TI 20/97, Technische Universitat Darmstadt -
Germany, 1997

[13] GNU Lesser General Public License.
http://www.fsf.org/licenses/lgpl.html

[14] DAVID HURON, Humdrum and Kern: Selec-
tive Feature Encoding.in Beyond MIDI, The
handbook of Musical Codes, Selfridge-Field
E. ed, MIT Press, 1997, pp.376-401

[15] WALTER B. HEWLETT, MuseData: Multi-
purpose Representation.in Beyond MIDI, The
handbook of Musical Codes, Selfridge-Field
E. ed, MIT Press, 1997, pp.402-447

[16] E. GAMMA , R.HELM , R.JOHNSON,
J.VLISSIDES, Design Patterns - Ele-
ments of Reusable Object-Oriented Software.
Addison-Wesley 1999

[17] RENZ KAY , Algorithms and Data Struc-
tures for a Music Notation System based on
GUIDO Music Notation. PhD Thesis, Tech-
nischen UniversitŁt Darmstadt, 2002

