Dominique Fober

Yann Orlarey
email: orlarey@grame.fr

Stéphane Letz
email: letz]@grame.fr

Stephane Letz

Lock-Free Techniques for Concurrent Access to Shared Objects

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

A shared data structure is lock-free if its operations do not require mutual exclusion: if a process is interrupted in the middle of an operation, it will not prevent the other processes from operating on that object. Lock-free techniques avoid common problems associated with conventional locking techniques:

• priority inversion: occurs when a high-priority process requires a lock holded by a lower-priority process,

• convoying: occurs when a process holding a lock is descheduled by exhausting its quantum, by a page fault or by some other kind of interrupt. In this case, running processes requiring the lock are unable to progress. • deadlock: can occur if different processes attempt to lock the same set of objects in different orders. In particular locking techniques are not suitable in a real-time context and more generally, they suffer significant performance degradation on multiprocessors systems. A lot of works have investigated lock-free concurrent data structures implementations [START_REF] Anderson | Real-time computing with lock-free shared objects[END_REF][START_REF] Herlihy | A methodology for implementing highly concurrent data objects[END_REF][START_REF] Valois | Implementing Lock-Free Queues[END_REF][START_REF] Michael | Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms[END_REF]. Advantages and limits of these works are discussed in [START_REF] Michael | Nonblocking Algorithms and Preemption-Safe Locking on Multiprogrammed Shared Memory Multiprocessors[END_REF]. We propose a new lock-free FIFO queue algorithm. It has been initially designed to be part of a multi-tasks, real-time MIDI operating system [START_REF] Orlarey | MidiShare : a Real Time multi-tasks software module for Midi applications[END_REF] in order to support an efficient inter-applications communication mechanism. Its implementation is based on Michael-Scott [START_REF] Michael | Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms[END_REF] but removes the necessary node allocation when enqueing a value, by introducing a simple constraint on the value data type structure. The rest of this paper is organized as follow: section 2 introduces lock-free techniques with the example of a LIFO stack, section 3 presents our proposed lock-free FIFO queue algorithm, section 4 discuss the correctness of the FIFO operations and section 5 is dedicated to performances issues.

Lock-free LIFO stacks

A LIFO stack is made up of linked cells. A cell can be anything provided it starts with a pointer available to link together the cells of the stack (figure 1) and the structure of a LIFO is a simple pointer to the top of the stack (figure 2). The last cell of the LIFO always points to NULL. Obviously, if a process trying to enqueue a new cell is preempted after A1 and if the top pointer has been modified when it resumes at A2, the push operation will not operate correctly.

Atomic operations implementation

To guaranty the correctness of the lifo operations, they should appear as taking instantaneously effect, as if they couldn't be interrupted. We'll further talk of "atomic operation" to refer to this property. A common approach is to make use of an atomic primitive such as compare-and-swap which takes as argument the address of a memory location, an expected value and a new value (figure 4). If the location holds the expected value, it is assigned the new value atomically. The returned boolean value indicates whether the replacement occurred. The compare-and-swap primitive was first implemented in hardware in the IBM System 370 architecture [START_REF]System / 370 Principles of Operation[END_REF]. More recently, it can be found on the Intel i486 [START_REF]i486 Processor Programmer's reference Manual" Intel[END_REF] and on the Motorola 68020 [START_REF] Motorola | MC68020 32-Bit Microprocessor User's Manual[END_REF]. A variation of the compareand-swap primitive can also operate in memory on double-words. To differenciate between the two primitives in the following examples we'll refer to them with:

CAS (mem, old, new)
for single word operations where mem is a pointer to a memory location old and new are the expected and the new value and CAS2 (mem, old1, old2, new1, new2) for double word operations where mem is a pointer to a memory location old1, old2 and new1, new2 are the expected and the new values On PowerPC architecture, the compare-and-swap primitive may be implemented using the load-and-reserve instruction associated with a store-conditional instruction [START_REF]PowrPC 601 RISC Microprocessor User's Manual[END_REF].

Using compare-and-swap, the operations on the stack are now implemented as shown in figure 5

The ABA problem

However, the above implementation of the LIFO pop operations doesn't catch the ABA problem. Assume that a process is preempted while dequeing a cell after C6: severall concurrent push and pop operations may result in a situation where the top cell remains unchanged but points to a different next cell as shown in figure 7. The LIFO change won't prevent the CAS operation to operate in C7, allowing to put a wrong cell on top of the stack. The solution to the ABA problem consists in adding a count of the cells popped from the stack to the LIFO structure as shown in figure 8 and to make use of the CAS2 primitive. The push operation remains unchanged and the pop operation is now implemented as shown in figure 9: it checks both for lifo top and output count changes when trying to modify the lifo top.

A B C X NULL 1) A N X NULL 2) B ? 3)

Lock-free FIFO stacks

The FIFO queue is implemented as a linked list of cells with head and tail pointers. Each pointer have an associated counter, ocount and icount, wich maintains a unique modification count of operations on head and tail. The cell structure is the same as above (figure 1) and the fifo structure is shown in figure 10.

structure fifo { head: a pointer to head cell ocount:

total count of pop operations tail:

a pointer to tail cell icount:

total count of push operations }

Figure 10: the fifo structure

As in Michael-Scott [START_REF] Michael | Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms[END_REF] and Valois [START_REF] Valois | Implementing Lock-Free Queues[END_REF], the FIFO always contains a dummy cell, only intended to maintain the consistency. An empty FIFO contains only this dummy cell which points to an end fifo marker unique to the system: a trivial solution consists in using the FIFO address itself as a unique marker. All along the operations, head always points to the dummy cell which is the first cell in the list and tail always points to the last or the second last cell in the list. The double-word compare-and-swap increments the modification counters to avoid the ABA problem. The queue consistency is maintained by cooperative concurrency: when a process trying to enqueue a cell detects a pending enqueue operation (tail is not the last cell of the list), it first tries to complete the pending operation before enqueing the cell. The dequeue operation also ensures that the tail pointer does not point to the dequeued cell and if necessary, tries to complete any pending enqueue operation. Figure 11 to 13 presents the commented pseudo-code for the fifo queue operations.

Correctness of the FIFO operations

Traditional sequential programs may be viewed as functions from inputs to outputs which may be specified as a pair consisting of a precondition describing the allowed inputs and postcondition describing the desired results for these inputs. However for concurrent programs, this approach is too limited and numerous work has been done for formal verification of concurrent systems. Although informal, two properties introduced by Lamport [START_REF] Lamport | Proving the Correctness of Multiprocess Programs[END_REF] are required for correctness of concurrent programs:

• safety property: states that "something bad never happens",

• liveness property: states that "something good eventually happens". Formalizing this classification has been a main motivation for much of the work done on specification and verification of concurrent systems [START_REF] Cleaveland | Strategic Directions in Concurrency Research[END_REF]. Formal methods successfully applied to sequential programs have also been extended to consider concurrent programming: Herlihy proposed a correctness condition for concurrent objects called "Linearizability" [START_REF] Herlihy | Axioms for concurrent objects[END_REF][START_REF] Herlihy | Linearizability: A Correctness Condition for Concurrent Objects[END_REF]. It states that a concurrent computation is linearizable if it is equivalent to a legal sequential computation. An object (viewed as the agregate of a type, which defines a set of possible values, and a set of primitive operations), is linearizable if each operation appears to take effect instantaneaously at some point between the operation's invocation and response. It implies that processes appear to be interleaved at the granularity of complete operations and that the order of non-overlapping operations is preserved. Correctness of the FIFO operations formal proof is beyond the scope of this paper, however it will be examined according to the properties mentionned above.

Linearizability

The algorithm is linearizable because each operation takes effect at an atomic specific point: E5 for enqueue and D14 for dequeue. Therefore, the queue will never enter any transient unsafe state: along any concurrent implementation history, it can only swing between the two different states S0 and S1 illustrated in figure 14 and 15, which are acceptable and safe states for the queue: Assuming a queue in state S0:

1) consider an push operation : as the queue state is S0, the atomic operation in E5 will succeed and the queue swings to S1 state. Then the atomic operation in E10 is executed: in case of success, the queue swings back to S0, in case of failure a successfull concurrent operation occurs on a S1 state and therefore by 3) and 4), the queue state should be S0. 2) consider a pop operation : if the queue is empty the operation returns in D9 and the state remains unchanged, otherwise the operation atomically executes D14: in case of success, the queue state remains in S0, in case of failure, a concurrent dequeue occured and as it has successfully operated on a S0 queue (by hypothesis) the final state remains also in S0. Assuming a queue in state S1:

3) consider an enqueue operation: as the queue state is S1, the operation atomically executes E8 and then loops. In case of success, the queue swings to S0 otherwise a concurrent dequeue or enqueue successfully occured and the operation loop should operate on a queue back to S0. 4) consider a dequeue operation: it is concerned by S1 only if tail and head points to the same cell which is only possible with a queue containing a single cell linked to the dummy cell. In this case, the operation atomically executes D11 and then loop. In case of success, the queue swings to S0 state. A failure means that a concurrent dequeue or enqueue successfully occured: a successfull dequeue swing the queue to S0 (but it is now empty) and a successfull enqueue too (by 3).

Safety

The main difference with the Michael-Scott algorithm [START_REF] Michael | Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms[END_REF] relies on the cells structure constraint, which allows to avoid nodes allocation and release. In fact, the cells memory management is now in charge of the FIFO clients and may be optimised to the clients requirements but it doesn't introduce any change in the algorithm functionning. Another difference is the modification counts to take account of the ABA problem: they are now associated only to the head and tail pointers to ensures atomic modifications of these pointers. The safety properties satisfied by the Michel-Scott algorithm continue to hold ie:

• the linked list is always connected,

• cells are only inserted after the last cell in the linked list,

• cells are only deleted from the beginning of the linked list,

• head always points to the first node in the linked list,

• tail always points to a node in the linked list.

Liveness

The lock-free algorithm is non-blocking. This is asserted similarly to [START_REF] Michael | Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms[END_REF]. Assume a process attempting to operate on the queue:

• the process tries to enqueue a new cell: a failure means that the process is looping thru E8 and then another process must have succeeded in completing an enqueue operation or in dequeuing the tail cell. • the process tries to dequeue a cell: a failure means that the process is looping thru D11 or D14. A failure in D11 means that another process must have succeeded in completing an enqueue operation or in dequeuing the tail cell. A failure in D14 means that another process must have succeeded in completing a dequeue operation.

Performances

Performances have been measured both for the lock-free LIFO compared to a lock-based implementation and for the lock-free FIFO algorithm compared to a lock-based implementation and to the Michael Scott algorithm. The bench has been made on a Bi-Celeron 500MHz SMP station running a 2.4.8 Linux kernel. It measures the time required for 1 to 8 concurrent threads to perform 500 000 x 6 concurrent push and pop operations on a shared LIFO or FIFO queue. The code executed by each thread is shown in Figure 16. The lock-based implementation makes use of the pthread mutex API with a statically allocated mutex. The integrity of the queue was checked after the threads had completed their operations. Results are presented by figures 17 and 18 as average time (in µs) to perform a paired pop and push operations. In the Michael-Scott implementation, nodes allocation is performed using a statically allocated set of nodes and an index atomically incremented to access the next free node in the table (figure 19). The node table size prevents multiple node allocation. A node release is implicit and needs no additionnal operation. • in lack of concurrency (single thread), the lock-based operations are more than 2 times more expensive than the lock-free operations, • performances are roughly the same for a few concurrency (2 to 5 threads), • lock-based operations cost dramatically increases in medium-high concurrency to reach more than 7 times the lock-free cost for 8 concurrent threads.

Comparison between our lock-free FIFO algorithm and the Michael-Scott algorithm shows the following:

• for a single thread, the Michael-Scott operations cost is roughly 2 times more expensive • when the concurrency increases, this cost is converging to 1.6 times our solution cost. This behavior may be explained by the necessity to allocate the nodes pushed on the stack and to handle additionnal concurrency while performing the allocation.

Conclusion

Lock-free techniques are clearly more suited to real-time applications than lock-based techniques. They are more efficient and avoid priority inversion which is a major drawback in a real-time context. We have showed how to apply this technique to simple objects like LIFO and FIFO queues associated with basic operations. Finaly, our proposed new algorithm for FIFO operations improves existing algorithms with a simple constraint on the value data structure which allows more efficient specialized implementations. Although limited to LIFO and FIFO queues, the presented lock-free techniques may be very useful to solve situations commonly encountered in the musical domain where events have frequently to be queued while waiting for their deadline.

Aknowledgements

Thanks to Shahar Frank <fesh@exanet.com> who reported the fifo-pop problem and for its suggested solution.

Figure 1 :

 1 Figure 1: a cell structure

Figure 3 :

 3 Figure 3: non-atomic lifo-push

Figure 4 :

 4 Figure 4: atomic compare-and-swap

Figure 6 :

 6 Figure 6: lifo-pop

Figure 7 : 1)

 71 Figure 7: 1) state at the beginning of the pop operation, 2) state after preemption, 3) state after pop completion

Figure 8 :

 8 Figure 8: extended lifo structure

Figure 9 :

 9 Figure 9: lifo-pop catching the ABA problem

Figure 11 :Figure 12 :

 1112 Figure 11: the fifo initialization operation

Figure 13 :

 13 Figure 13: the fifo pop operation

Figure 15 :

 15 Figure 14: FIFO state S0

Figure 16 :

 16 Figure 16: the bench task.

Figure 18 :

 18 Figure 17: lock-free LIFO compared to lockbased.

Figure 19 :

 19 Figure 19: node allocation in Michael Scott implementationComparison between the lock-free and the lock-based operations shows the following:• in lack of concurrency (single thread), the lock-based operations are more than 2 times more expensive than the lock-free operations, • performances are roughly the same for a few concurrency (2 to 5 threads), • lock-based operations cost dramatically increases in medium-high concurrency to reach more than 7 times the lock-free cost for 8 concurrent threads.