
HAL Id: hal-02158795
https://hal.science/hal-02158795

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Audio Cards Clock Skew Compensation over a Local
Network

Dominique Fober

To cite this version:
Dominique Fober. Audio Cards Clock Skew Compensation over a Local Network. [Technical Report]
GRAME. 2002. �hal-02158795�

https://hal.science/hal-02158795
https://hal.archives-ouvertes.fr

GRAME - Computer Music Research Lab.
Technical Report - TR-020401

Audio Cards Clock Skew Compensation
over a Local Network

Dominique Fober
GRAME Research Laboratory

9 rue du Garet, BP 1185, 69202 LYON Cedex 01, France
fober@grame.fr

Abstract

This paper is the continuation of a previous work done on clock skew compensation over a high latency
network. It evaluates the efficiency of the EPTMA clock skew detection algorithm applied to real-time
audio streaming over a local network. The presented results include real world apparent deviations of
audio card clocks and acuracy of the skew detection. It appears that EPMTA is very suitable to measure
clocks deviation in the context of audio transport. Finally, a simple method to compensate for the clock
skew is presented, mainly to evaluate a complete solution for audio streaming.

1. Introduction
Real-time transmission of audio buffers over a
network raises the problem of the clocks
synchronization. Actually, if the sender and
receiver clock frequencies differ, the sender will
produce either more or less data than the receiver is
expected to consume, depending on which clock is
faster. We'll refer later to the clock frequencies
difference as the "clock skew".
The clock skew problem is similar when one wants
to transmit discrete time stamped events. In
previous works [1] [2], we have proposed a new
algorithm named Exponential Peak Tolerant
Midpoint Algorithm (EPTMA) to detect and
evaluate the clocks deviation in real-time. This
algorithm relies only on time stamped packets
transmission to operate and offers several
advantages:
• it doesn't require any transaction and therefore it

may be used independantly of the transport
protocol,

• it doesn't rely on a master/slave scheme: each
receiver is independantly evaluating its clock
skew relatively to the sender.

It has been initialy designed to operate on the
Internet i.e. on a high latency network with
significant delay jitter, but it is expected to run
even better on a local network. The present work
has been carried out to confirm the performances of
the algorithm in the context of real-time audio
streaming on a local network.
A detailled description of EPTMA can be found in
[2]. The rest of this paper will mainly focus on
experiments and obtained results. It is organised as
follow: section 2 presents the different hardware
and software components involved in the
experiment, section 3 is dedicated to the results,

section 4 propose a simple basic method to
compensate for the clock skew and section 5
summarizes and concludes.

2. Hardware and software components

2.1. Hardware and operating systems
Experiments have been made on a local 100 Mb
Ethernet network. This network was not dedicated
to the experiment and was supporting the
additionnal traffic corresponding to an Intranet.
Five different stations have been used, running 4
different operating systems. Table 1 summarizes
the hardware configurations and their associated
operating systems.

name audio card processor cpu Mhz OS

bach SB Live AMD Athlon 1000 Linux 2.4.8

berio SB Live AMD Duron 700 Linux 2.4.18

marcopolo IBook PowerPC G3 500 Mac OSX 10.1

macdom PowerMac G4 PowerPC G4 350 Mac OS 9.2.1

xp SB Live AMD Duron 700 Windows XP

 Table 1: hardware and OS.

2.2. Software components
Along all the different platforms, access to the
audio hardware has been implemented using
PortAudio, a portable open source audio library [3]
[4]. Audio setup was making use of the following
parameters:
• sample rate: 44 100 kHz
• audio buffers: 256 frames
• num channels: 2
These parameters were natively supported on all the
stations involved.
Network transport has been implemented using the
Unix socket API except for the Mac OS 9 station

which made use of the Apple Open Transport layer.
We used the User Datagram Protocol (UDP) [5] as
underlying protocol layer,

2.3. Packets format
The format of the audio transmitted packets is
shown on figure 1. The 8 bits type field is intended
to discriminate different packet types. Two packet
types were actually used: audio packets, containing
audio frames and end session packets. The 24 bits
u n u s e d field is only intended for structure
alignement. The serial number is a unique number
incremented at each packet transmission, intended
to detect packet losses or duplicates.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| type | unused |
+-+
| serial number |
+-+
| date |
| 64 bits |
+-+
| len | sample 1 |
+-+
| sample 2 | ... |

Figure 1: audio packets format
The 64 bits date field express the sender audio time
in frames. The length field represents the data
chunk length. Finally, audio frames are transmitted
as 16 bits samples. The total size of an audio packet
is 1074 bytes (including IP and UDP headers).

2.4. Client/Server implementation
The PortAudio API is callback based: the rate of
the callback invocation is determined by the audio
buffer size in frames.
The server task consists in filling an audio packet at
each callback and in sending this packet on the
network. According to the parameters mentionned
above, a packet is sent every 5.8 ms + ∆, where ∆
represent the latency of the PortAudio callback
activation.
The client task is a little bit more complex: audio
input is driven by a real-time thread reading the
socket and audio output is driven by the PortAudio
callback. As both tasks are running
asynchronously, incoming samples are stored in a
ring buffer to be later consumed by the PortAudio
callback. The ring buffer includes 2 indices: one for
the read location and one for the write location. The
receiver starts playing when the ring buffer is half
filled.
The ring buffer size was 28 times the size of the
audio packet data chunk. It has always been well
enough to compensate for the latency variations,
including transport and software layers latencies.

2.5. Clock skew detection
The sender contribution to the clock skew detection
consists only in filling the date field of the packet
header using the most accurate audio time source.
The implementation made use of the PortAudio
function Pa_StreamTime (PortAudioStream *stream)
which returns the current output time in samples for
the corresponding stream.

On packet reception, the client evaluates the
apparent clocks offset as the difference between
packet time stamp and the current local time (also
measured using Pa_StreamTime), then compute the
latency variation LV as the difference between the
initial apparent clocks offset and the current one.
This latency variation is finally given to the
EPTMA algorithm which output variation
represents the clock skew evaluation. This
technique is detailed in [2].

3. Results
Along all the results below, we made use of the
following parameters for the EPTMA algorithm:
• window size: 60
• retained values: 10
• weighting factor: 0.01
Actually, evaluation of the latency variation and
check of the clocks deviation has been performed
every 20 packet transmissions which represents
about 100 ms.

3.1. Latency characterization
The mean round trip time of the network has been
evaluated to about 270 µsec using the ping tool.
Figure 2 and 3 show the latency variation measured
over about 4 minutes of transmission.

3 0
2 5
2 0
1 5
1 0

5
0

-5
-10

∂ in frames

time ~ 4mn

Figure 2: latency variation from linux to linux
(bach to berio)

3 0
2 0
1 0

0
-10
-20
-30
-40

∂ in frames

time ~ 4mn

Figure 3: latency variation from linux to Mac OSX
(bach to marcopolo)

It appears that the constant range of the latency
variation fits in 4 frames with occasionnal peaks up
to 40 frames which represents respectively 90 µsec
and 900 µsec. Exceptionnaly, the latency reached
100 frames (2,27 ms).
The constant slope represents the clock skew.
Note also that the sender / receiver behavior is not
symetric in regard of the latency: figures 4 and 5

shows the latency variation from macdom to berio
and in the reverse way.

4 0

0

-40

-80

-120

-160

-200

∂ in frames

time ~ 4mn

Figure 4: latency variation from macdom to berio

200

160

120

8 0

4 0

0

-40

∂ in frames

time ~ 4mn

Figure 5: latency variation from berio to macdom
It appears clearly that the software layers latency
predominates the network latency itself.

3.2 Clock skew characterization
Theoritically and according to manufacturer's
specifications [6], cristal oscillators of sound cards
are stable to ± 100 parts per million and better.
Therefore we expected to measure up to two frames
deviation for 10 000 consumed frames. In fact and
except for the XP station, first evaluation of the
clock skew showed better results. Table 2
summarizes this evaluation for the bach station.
∂ frame represents in seconds, the time necessary
for 1 frame drift at receiver side and skew express
the receiver deviation per 10 000 consumed frames.

from -> to ∂ frame (sec) skew

bach to berio 9,55 0,024

bach to macdom 1,09 0,208

bach to marcopolo 8,58 0,026

bach to xp 0,12 1,922

Table 2: clock skew characterization
It appears that audio time generally presents a good
acuracy except for Windows XP which deviates
clearly from other systems. Actually, audio time
depends on audio card clocks acuracy but also on
the low level functions to access this time. One of
the surprising result is the difference of the
measures between bach-to-berio and bach-to-xp
because in fact, berio and xp represent the same
station running Linux or Windows XP using the
same audio card. This result is unexplained and
comes probably from low level components
behavior. However, as we are only interested in
high level behavior, it didn't change anything for

our experiments, but the question remains
unresolved.

3.3 EPTMA performances
Performance of the clock skew detection algorithm
is characterized as described in [2]. For the record,
the system behaves like follows: at initialization
stage (time 0), the receiver and sender clock offset
has a given value which will continue to move up to
the stable stage.
At the stable stage time, the additionnal clock
deviation becomes equal to:

K = k ± ε(eptma)
where k is the stable constant deviation and ε(eptma)
represents the error due to the skew profile
evaluation.
The algorithm performances are characterized with
both k and ε(eptma) values: the k value is important
because it is to be added to the provisions made for
the latency compensation and the error ε(eptma)
denotes the stability of the system.

∂ in frames

time ~ 4mn

200

160

120

8 0

4 0

0

-40

skew detection

Figure 6: clock skew detection
The results presented below come from several real
audio transmissions between the stations described
in table 1.
The figure 6 gives an example of the detection
using the latency variation shown by figure 5. The
clock skew is clearly detected.
Table 3 gives the efficiency of EPTMA measured
for the bach station. The t column represents the
time necessary to obtain the acuracy mentionned in
the last column. All the values are expressed in
frames.

from -> to t k ± ε
1 bach to berio 4960 0,4 0,4

2 bach to macdom 8060 11,1 0,35

3 bach to marcopolo 4960 0,9 0,45

4 bach to xp 9720 129 0,65

Table 3: EPTMA results for bach.
Even for exchanges with the xp station, results
provided by EPTMA are pretty good: the time
necessary to reach the stable state is lower than
10 000 frames and the system stability is under 1
frame deviation.
Concerning the xp station, results are presented by
the table 4. The skew is more important and
therefore the stabilization time is greater while the
system stability remains under 2 frames deviation.

from -> to t k ± ε
5 xp to bach 9840 132,9 0,65

6 xp to macdom 10100 -121,1 0,95

7 xp to marcopolo 9480 -132,9 0,85

Table 4: EPTMA results for xp.
The clocks deviation k is consequently more
important. A graphical example of the system
behavior in case of transmission with the xp station
is shown in figure 7.

400
0

-400
-800

-1200
-1600
-2000
-2400

∂ in frames

time ~ 4mn

skew detection

Figure7: xp to marcopolo skew detection.

4. Clock skew compensation
In order to evaluate a complete system, including
detection and compensation, we have implemented
a mechanism to correct the clocks deviations.
First, it has appeared that any implementation
should take a great care of the available audio time
source acuracy which is critical from results point
of view. For the PortAudio MacOS9 implemen-
tation for example, in the lack of system support,
the audio time was incremented by the size of the
audio buffer (in frames) inside the audio callback,
which globally means that the minimum time
resolution was 512, because the MacOS9 Sound
Manager don't allow smaller buffer sizes. An
improvement to the PortAudio implementation has
been proposed (and accepted) to get a better
resolution.
Considering that modifying the audio card clock
frequency is out of the possibilities of a user level
application, we have decided to compensate the
clock skew simply by modifying the read index
inside the receiver ring buffer: depending on which
clock is faster, the receiver will periodically skip
one frame or read one frame twice in order to
compensate the clocks deviation.
As seen above (table 2), the expected rate of the
corrections is generally greater than 1 second and
may reach several tens of seconds. Only exchanges
with xp require several adjustements per second.
We have transmitted a sinus signal between the
different stations in order to better detect the signal
distortion. As a result, even with the xp station, no
audible distortion has ever been noticed.
Of course, more sophisticated correction methods
may be implemented on top of the EPTMA results
(such as interpolation for example) but it is out of
scope of the present work.

5. Conclusion
We expected to show the suitability of the EPTMA
algorithm in the context of audio transport on a
local network. Results of our experiments confirm
that it's a really satisfying solution to detect audio
time deviations. Although with less performances,
the algorithm should operate on a high latency
network such as the Internet. This hypothesis is to
be confirmed with future works.

References
[1] D. Fober, Y. Orlarey, S. Letz. Real Time Musical
Events Streaming over Internet. Proceedings of the
International Conference on WEB Delivering of Music,
2001, pages 147-154

[2] D. Fober, Y. Orlarey, S. Letz. Clock Skew
Compensation over a High Latency Network. To be
published in Proceedings of the ICMC, 2002, ICMA San
Francisco

[3] Phil Burk, Ross Bencina. PortAudio - An Open
Source Cross Platform Audio API. Proceedings of the
ICMC, 2001, ICMA San Francisco

[4] PortAudio. A Portable Audio Library.
http://www.portaudio.com

[5] J. Postel. User Datagram Protocol. IETF, RFC 768,
1980

[6] E. Brandt R.B. Dannenberg. Time in Distributed
Real-Time Systems. Proceedings of the ICMC, 1999
ICMA San Francisco, pp.523-526

