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Abstract

This paper is the continuation of a previous work done on clock skew compensation over a high latency 
network. It evaluates the efficiency of the EPTMA clock skew detection algorithm applied to real-time 
audio streaming over a local network. The presented results include real world apparent deviations of 
audio card clocks and acuracy of the skew detection. It appears that EPMTA is very suitable to measure 
clocks deviation in the context of audio transport. Finally, a simple method to compensate for the clock 
skew is presented, mainly to evaluate a complete solution for audio streaming.

1. Introduction
Real-time transmission of audio buffers over a 
network raises the problem of the clocks 
synchronization. Actually, if the sender and 
receiver clock frequencies differ, the sender will 
produce either more or less data than the receiver is 
expected to consume, depending on which clock is 
faster. We'll refer later to the clock frequencies 
difference as the "clock skew".
The clock skew problem is similar when one wants 
to transmit discrete time stamped events. In 
previous works [1] [2], we have proposed a new 
algorithm named Exponential Peak Tolerant 
Midpoint  Algorithm (EPTMA) to detect and 
evaluate the clocks deviation in real-time. This 
algorithm relies only on time stamped packets 
transmission to operate and offers several 
advantages:
• it doesn't require any transaction and therefore it 

may be used independantly of the transport 
protocol,

• it doesn't rely on a master/slave scheme: each 
receiver is independantly evaluating its clock 
skew relatively to the sender.

It has been initialy designed to operate on the 
Internet i.e. on a high latency network with 
significant delay jitter, but it is expected to run 
even better on a local network. The present work 
has been carried out to confirm the performances of 
the algorithm in the context of real-time audio 
streaming on a local network.
A detailled description of EPTMA can be found in 
[2]. The rest of this paper will mainly focus on 
experiments and obtained results. It is organised as 
follow: section 2 presents the different hardware 
and software components involved in the 
experiment, section 3 is dedicated to the results, 

section 4 propose a simple basic method to 
compensate for the clock skew and section 5 
summarizes and concludes.

2. Hardware and software components

2.1. Hardware and operating systems
Experiments have been made on a local 100 Mb 
Ethernet network. This network was not dedicated 
to the experiment and was supporting the 
additionnal traffic corresponding to an Intranet. 
Five different stations have been used, running 4 
different operating systems. Table 1 summarizes 
the hardware configurations and their associated 
operating systems.

name audio card processor cpu Mhz OS

bach SB Live AMD Athlon 1000 Linux 2.4.8

berio SB Live AMD Duron 700 Linux 2.4.18

marcopolo IBook PowerPC G3 500 Mac OSX 10.1

macdom PowerMac G4 PowerPC G4 350 Mac OS 9.2.1

xp SB Live AMD Duron 700 Windows XP

 Table 1: hardware and OS.

2.2. Software components
Along all the different platforms, access to the 
audio hardware has been implemented using 
PortAudio, a portable open source  audio library [3] 
[4]. Audio setup was making use of the following 
parameters:
• sample rate: 44 100 kHz
• audio buffers: 256 frames
• num channels: 2
These parameters were natively supported on all the 
stations involved. 
Network transport has been implemented using the 
Unix socket API except for the Mac OS 9 station 



which made use of the Apple Open Transport layer.
We used the User Datagram Protocol (UDP) [5] as 
underlying protocol layer,  

2.3. Packets format
The format of the audio transmitted packets is 
shown on figure 1. The 8 bits type field is intended 
to discriminate different packet types. Two packet 
types were actually used: audio packets, containing 
audio frames and end session packets. The 24 bits 
u n u s e d  field is only intended for structure 
alignement. The serial number is a unique number 
incremented at each packet transmission, intended 
to detect packet losses or duplicates. 

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      type     |                    unused                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          serial number                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              date                             |
|                            64 bits                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              len              |           sample 1            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            sample 2           |             ...               |

Figure 1: audio packets format
The 64 bits date field express the sender audio time 
in frames. The length field represents the data 
chunk length. Finally, audio frames are transmitted 
as 16 bits samples. The total size of an audio packet 
is 1074 bytes (including IP and UDP headers).

2.4. Client/Server implementation
The PortAudio API is callback based: the rate of 
the callback invocation is determined by the audio 
buffer size in frames. 
The server task consists in filling an audio packet at 
each callback and in sending this packet on the 
network. According to the parameters mentionned 
above, a packet is sent every 5.8 ms + ∆, where ∆ 
represent the latency of the PortAudio callback 
activation. 
The client task is a little bit more complex: audio 
input is driven by a real-time thread reading the 
socket and audio output is driven by the PortAudio 
callback. As both tasks are running 
asynchronously, incoming samples are stored in a 
ring buffer to be later consumed by the PortAudio 
callback. The ring buffer includes 2 indices: one for 
the read location and one for the write location. The 
receiver starts playing when the ring buffer is half 
filled. 
The ring buffer size was 28 times the size of the 
audio packet data chunk. It has always been well 
enough to compensate for the latency variations, 
including transport and software layers latencies.

2.5. Clock skew detection
The sender contribution to the clock skew detection 
consists only in filling the date field of the packet 
header using the most accurate audio time source. 
The implementation made use of the PortAudio 
function Pa_StreamTime (PortAudioStream *stream) 
which returns the current output time in samples for 
the corresponding stream.

On packet reception, the client evaluates the 
apparent clocks offset as the difference between 
packet time stamp and the current local time (also 
measured using Pa_StreamTime), then compute the 
latency variation LV as the difference between the 
initial apparent clocks offset and the current one. 
This latency variation is finally given to the 
EPTMA algorithm which output variation 
represents the clock skew evaluation. This 
technique is detailed in [2].

3. Results
Along all the results below, we made use of the 
following parameters for the EPTMA algorithm:
• window size: 60
• retained values: 10
• weighting factor: 0.01
Actually, evaluation of the latency variation and 
check of the clocks deviation has been performed 
every 20 packet transmissions which represents 
about 100 ms.

3.1. Latency characterization
The mean round trip time of the network has been 
evaluated to about 270 µsec using the ping tool. 
Figure 2 and 3 show the latency variation measured 
over about 4 minutes of transmission.
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Figure 2: latency variation from linux to linux 
(bach to berio)
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Figure 3: latency variation from linux to Mac OSX 
(bach to marcopolo)

It appears that the constant range of the latency  
variation fits in 4 frames with occasionnal peaks up 
to 40 frames which represents respectively 90 µsec 
and 900 µsec. Exceptionnaly, the latency reached 
100 frames (2,27 ms).
The constant slope represents the clock skew.
Note also that the sender / receiver behavior is not 
symetric in regard of the latency: figures 4 and 5 



shows the latency variation from macdom to berio 
and in the reverse way.
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Figure 4: latency variation from macdom to berio
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Figure 5: latency variation from berio to macdom
It appears clearly that the software layers latency 
predominates the network latency itself.

3.2 Clock skew characterization
Theoritically and according to manufacturer's 
specifications [6], cristal oscillators of sound cards 
are stable to ± 100 parts per million and better. 
Therefore we expected to measure up to two frames 
deviation for 10 000 consumed frames. In fact and 
except for the XP station, first evaluation of the 
clock skew showed better results. Table 2 
summarizes this evaluation for the bach station. 
∂ frame represents in seconds,  the time necessary 
for 1 frame drift at receiver side and skew express 
the receiver deviation per 10 000 consumed frames.

from -> to ∂ frame (sec) skew

bach to berio 9,55 0,024

bach to macdom 1,09 0,208

bach to marcopolo 8,58 0,026

bach to xp 0,12 1,922

Table 2: clock skew characterization
It appears that audio time generally presents a good 
acuracy except for Windows XP which deviates 
clearly from other systems. Actually, audio time 
depends on audio card clocks acuracy but also on 
the low level functions to access this time. One of 
the surprising result is the difference of the  
measures between bach-to-berio and bach-to-xp 
because in fact, berio and xp represent the same 
station running Linux or Windows XP using the 
same audio card. This result is unexplained and 
comes probably from low level components 
behavior. However, as we are only interested in 
high level behavior, it didn't change anything for 

our experiments, but the question remains 
unresolved.

3.3 EPTMA performances
Performance of the clock skew detection algorithm 
is characterized as described in [2]. For the record, 
the system behaves like follows: at initialization 
stage (time 0), the receiver and sender clock offset 
has a given value which will continue to move up to 
the stable stage. 
At the stable stage time, the additionnal clock 
deviation becomes equal to:

K = k ± ε(eptma)
where k is the stable constant deviation and ε(eptma) 
represents the error due to the skew profile 
evaluation. 
The algorithm performances are characterized with 
both k and ε(eptma) values: the k value is important 
because it is to be added to the provisions made for 
the latency compensation and the error ε(eptma) 
denotes the stability of the system.
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Figure 6: clock skew detection
The results presented below come from several real 
audio transmissions between the stations described 
in table 1. 
The figure 6 gives an example of the detection 
using the latency variation shown by figure 5. The 
clock skew is clearly detected.
Table 3 gives the efficiency of EPTMA measured 
for the bach station. The t column represents the 
time necessary to obtain the acuracy mentionned in 
the last column. All the values are expressed in 
frames.

from -> to t k ± ε
1 bach to berio 4960 0,4 0,4

2 bach to macdom 8060 11,1 0,35

3 bach to marcopolo 4960 0,9 0,45

4 bach to xp 9720 129 0,65

Table 3: EPTMA results for bach.
Even for exchanges with the xp station, results 
provided by EPTMA are pretty good: the time 
necessary to reach the stable state is lower than 
10 000 frames and the system stability is under 1 
frame deviation.
Concerning the xp station, results are presented by 
the table 4. The skew is more important and 
therefore the stabilization time is greater while the 
system stability remains under 2 frames deviation.



from -> to t k ± ε
5 xp to bach 9840 132,9 0,65

6 xp to macdom 10100 -121,1 0,95

7 xp to marcopolo 9480 -132,9 0,85

Table 4: EPTMA results for xp. 
The clocks deviation k  is consequently more 
important. A graphical example of the system 
behavior in case of transmission with the xp station 
is shown in figure 7.

400
0

-400
-800

-1200
-1600
-2000
-2400

∂ in frames

time ~ 4mn

skew detection

Figure7: xp to marcopolo skew detection.

4. Clock skew compensation
In order to evaluate a complete system, including 
detection and compensation, we have implemented 
a mechanism to correct the clocks deviations.
First, it has appeared that any implementation 
should take a great care of the available audio time 
source acuracy which is critical from results point 
of view. For the PortAudio MacOS9 implemen-
tation for example, in the lack of system support, 
the audio time was incremented by the size of the 
audio buffer (in frames) inside the audio callback, 
which globally means that the minimum time 
resolution was 512, because the MacOS9 Sound 
Manager don't allow smaller buffer sizes. An 
improvement to the PortAudio implementation has 
been proposed (and accepted) to get a better 
resolution.
Considering that modifying the audio card clock 
frequency is out of the possibilities of a user level 
application, we have decided to compensate the 
clock skew simply by modifying the read index 
inside the receiver ring buffer: depending on which 
clock is faster, the receiver will periodically skip 
one frame or read one frame twice in order to 
compensate the clocks deviation.
As seen above (table 2), the expected rate of the 
corrections is generally greater than 1 second and 
may reach several tens of seconds. Only exchanges 
with xp require several adjustements per second.
We have transmitted a sinus signal between the 
different stations in order to better detect the signal 
distortion. As a result, even with the xp station, no 
audible distortion has ever been noticed.
Of course, more sophisticated correction methods 
may be implemented on top of the EPTMA results 
(such as interpolation for example) but it is out of 
scope of the present work.

5. Conclusion
We expected to show the suitability of the EPTMA 
algorithm in the context of audio transport on a 
local network. Results of our experiments confirm 
that it's a really satisfying solution to detect audio 
time deviations. Although with less performances, 
the algorithm should operate on a high latency 
network such as the Internet. This hypothesis is to 
be confirmed with future works. 

References
[1] D. Fober, Y. Orlarey, S. Letz. Real Time Musical 
Events Streaming over Internet. Proceedings of the 
International Conference on WEB Delivering of Music, 
2001, pages 147-154

[2] D. Fober, Y. Orlarey, S. Letz. Clock Skew 
Compensation over a High Latency Network. To be 
published in Proceedings of the ICMC, 2002, ICMA San 
Francisco

[3] Phil Burk, Ross Bencina. PortAudio - An Open 
Source Cross Platform Audio API. Proceedings of the 
ICMC, 2001, ICMA San Francisco

[4] PortAudio. A Portable Audio Library. 
http://www.portaudio.com

[5] J. Postel. User Datagram Protocol. IETF, RFC 768, 
1980

[6] E. Brandt R.B. Dannenberg. Time in Distributed 
Real-Time Systems. Proceedings of the ICMC, 1999 
ICMA San Francisco, pp.523-526


