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Optimised Lock-Free FIFO Queue

Concurrent access to shared data in preemptive multi-tasks environment and in multi-processors architecture have been subject to many works. Based on these works, we present a new algorithm to implements lock-free fifo stacks with a minimum constraints on the data structure. Compared to the previous solutions, this algorithm is more simple and more efficient. We'll present its implementation and it's performances.

Introduction

Lock-free techniques allow to synchronize concurrent access to shared objects without requiring mutual exclusion. Lock-free objects have several advantages compared to critical sections guarded by locks. If a process is preempted while updating a lock-free object, it will not prevent the other processes from operating on it. Lock-free techniques avoid problems like priority inversion, convoying and deadlock. Moreover, on simple data structures very efficient implementations can be made which are an order of magnitude faster than lock-based implementations.

A lot of works have investigated lock-free concurrent data structures implementations [Anderson & al. 1987, Herlihy 1993[START_REF] Michael | [END_REF], Valois 1994]. Advantages and limits of these works are discussed in [START_REF] Michael | [END_REF]. Our implementation is based on [START_REF] Michael | [END_REF] but removes the necessary node allocation when enqueing a value, by introducing a simple constraint on the value data type structure.

We present a new lock-free FIFO queue algorithm. It has been initially designed to be part of a multi-tasks, real-time MIDI operating system [Orlarey Lequay 1989[START_REF] Fober | [END_REF] in order to provide an efficient inter-applications communication mechanism. This algorithm is presented in section 2, correctness is discussed in section 3 and experimental results are presented in section 4.

Algorithm

Figure 1 presents the data structures used by the algorithm. The FIFO queue is implemented as a linked list of cells with head and tail pointers. Each pointer have an associated counter, ocount and icount, wich maintains a unique modification count of operations on head and tail. A cell can be anything provided it starts with a pointer available to link together the cells of the queue. The algorithm relies on an atomic primitive such as compare-and-swap which takes as argument the address of a memory location, an expected value and a new value (Figure 2). If the location holds the expected value, it is assigned the new value atomically. A boolean value indicates whether the replacement occurred. for single word operations where mem is a pointer to a memory location old and new are the expected and the new value and CAS2 (mem, old1, old2, new1, new2) for double word operations where mem is a pointer to a memory location old1, old2 and new1, new2 are the expected and the new values

As in [Valois 1994] and [START_REF] Michael | [END_REF], head always points to a dummy cell which is the first cell in the list and tail always points to the last or the second last cell in the list. The double-word compare-and-swap increments the modification counters to avoid the ABA problem.

The queue consistency is maintained by cooperative concurrency: when a process trying to enqueue a cell detects a pending enqueue operation, it initialy tries to complete the pending operation before enqueing the cell. The dequeue operation also ensures that the tail pointer does not point to the dequeued cell and if necessary, tries to complete any pending enqueue operation. Figure 3 presents commented pseudo-code for the fifo queue operations. 

Safety

The main difference with the Michael-Scott algorithm relies on the cells structure constraint, which allows to avoid nodes allocation and release. In fact, the cells memory management is now in charge of the queue clients and may be optimised to the clients requirements but it doesn't introduce any change in the algorithm functionning. Another difference is the modification counts to take account of the ABA problem: they are now associated only to the head and tail pointers to ensures atomic modifications of these pointers. Therefore, the properties satisfied by the Michel-Scott algorithm [START_REF] Michael | [END_REF] continue to hold ie:

1. the linked list is always connected, 2. cells are only inserted after the last cell in the linked list, 3. cells are only deleted from the beginning of the linked list, 4. head always points to the first node in the linked list, 5. tail always points to a node in the linked list.

Linearizability

The algorithm is linearizable because each operation takes effect at an atomic specific point [Herlihy, Wing 1987]: E5 for enqueue and D14 for dequeue. Therefore, the queue will never enter any transient state: along any concurrent implementation history, it can only swing between 2 different states S0 and S1 which are acceptable and safe states for the queue:

Assuming a queue in state S0:

• 1) consider an enqueue operation : as the queue state is S0, the atomic operation in E5 will succeed and the queue swings to S1 state. Then the atomic operation in E10 is executed: in case of success, the queue swings back to S0, in case of failure a successfull concurrent operation occurs on a S1 state and therefore by 3) and 4), the queue state should be S0. • 2) consider a dequeue operation : if the queue is empty the operation returns in D9 and the state remains unchanged, otherwise the operation atomically executes D14: in case of success, the queue state remains in S0, in case of failure, a concurrent dequeue occured and as it has successfully operated on a S0 queue (by hypothesis) the final state remains also in S0. Assuming a queue in state S1:

• 3) consider an enqueue operation : as the queue state is S1, the operation atomically executes E8 and then loops. In case of success, the queue swings to S0 otherwise the operation loops until success ie until the queue is back to S0. • 4) consider a dequeue operation : it is concerned by S1 only if tail and head points to the same cell which is only possible with a queue containing a single cell linked to the dummy cell. In this case, the operation atomically executes D11 and then loop. In case of success, the queue swings to S0 state. A failure means that a concurrent dequeue or enqueue successfully occured: a successfull dequeue swing the queue to S0 (but it is now empty) and a successfull enqueue too (by 3)

Liveness

The lock-free algorithm is non-blocking. This is asserted similarly to [START_REF] Michael | [END_REF]. Assume a process attempting to operate on the queue:

• the process tries to enqueue a new cell: a failure means that the process is looping thru E8 and then another process must have succeeded in completing an enqueue operation or in dequeuing the tail cell. • the process tries to dequeue a cell: a failure means that the process is looping thru D11 or D14. A failure in D11 means that another process must have succeeded in completing an enqueue operation or in dequeuing the tail cell. A failure in D14 means that another process must have succeeded in completing a dequeue operation.

Performances

The performances of the new algorithm are compared to a lock-based implementation and to the Michael Scott algorithms (lock-free and 2-locks algorithms) by measuring the time required for 1 to 7 concurrent threads to perform 1 000 000 x 6 concurrent enqueue and dequeue operations on a shared FIFO queue. The tests have been made on a Bi-Celeron 500MHz SMP machine with a 2.2.14 Linux kernel.

The code executed by each thread is shown in Figure 6. The integrity of the queue was checked after the threads had completed their operations. In the Michael-Scott implementation, nodes allocation is performed using a statically allocated set of nodes and an index atomically incremented to access the next free node in the table (Figure 8). The node table size prevents multiple node allocation. A node release is implicit and needs no additionnal operation. The results show that the new algorithm is more efficient:

• the Michael-Scoot algorithm additionnal cost is between 84% (single thread) and 48% (7 threads)

• the Michael-Scoot 2-locks algorithm additionnal cost is between 15% (two threads) and 553% (7 threads)

• the lock-based solution additionnal cost grows up to 1440% (7 concurrent threads).
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 7 Figure 7: average time (in µs) to perform a dequeue and enqueue operation: a) compared to Michael-Scott lock-free algorithm b) compared to a lock-based solution and to the 2-locks Michael-Scott algorithm

  Figure 8: node allocation in Michael Scott implementation