N

HAL

open science

Real Time Musical Events Streaming over Internet

Dominique Fober, Yann Orlarey, Stéphane Letz

» To cite this version:

Dominique Fober, Yann Orlarey, Stéphane Letz. Real Time Musical Events Streaming over Inter-
net. International Conference on WEB Delivering of Music, 2001, Firenze, Italy. pp.147-154. hal-

02158790

HAL Id: hal-02158790
https://hal.science/hal-02158790

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02158790
https://hal.archives-ouvertes.fr

Real Time Musical Events Streaming over Internet

Dominique Fober

Yann Orlarey

Stephane Letz

Grame - Computer Music Research Laboratory
9, rue du Garet BP 1185
69202 LYON CEDEX 01
[fober, orlarey, letz] @grame.fr

Abstract

We present a new protocol to transmit time ordered
events in real-time over Internet and to operate a correct
time rendering on the receiver side. This protocol
provides solutions to compensate for the network latency,
to optimize the bandwidth use and to take account of the
clock drift of the different stations involved in a
transmission. It is particularly suitable to transmit
musical events such as MIDI events. The implementation
is based on the User Datagram Protocol (UDP) however,
the proposed solution is independant of the underlying
network layers.

1. Introduction

Real-time streaming of digital continuous media such
as audio or video raises several problems identified at the
beginning of the 90s in term of requirements for real-time
communication services [1]. They include delay, through-
put and reliability requirements. As multimedia streams
are generally large bandwith consumers, a particular
attention has been given to throughput and protocols such
as the Internet Stream Protocol (ST2) [2] or the Resource
ReSerVation Protocol (RSVP) [3] [4] have been
developed to support the efficient delivery of data streams
to single or multiple destinations in applications that
require guaranteed quality of service. This support is
notably achieved with a resource reservation policy all
along each node on the data path. Although these
protocols do not affect routing, it involves the support of
routers as the resources allocation should be maintained
during all the session. Resource reservation has also been
addressed at lower level protocol layer by ATM (specified
in 1991 by CCITT 1.361) and integration of real-time
services in an IP-ATM network architecture [5] has been
approached using ST2 or RSVP.

On the contrary, RTP, a Transport Protocol for Real-

Time Applications [6], has been designed beside the
quality of service concerns: it does not address resource
reservation and does not guarantee quality of service for
real-time services. But the data transport is augmented by
a control protocol (RTCP) to allow monitoring of the
data delivery in a manner scalable to large multicast
networks, notably using regular transmission of RTCP
reports carrying quality feedback. As RTP and RTCP are
designed to be independant of the underlying transport
and network layers, it may provide an efficient real-time
streaming solution in association with a resource
reservation protocol such as ST2.

Provided that their size is limited, events real-time
transmission differs from audio or video streams because
it does not require any particular bandwith. Transmission
of MIDI formatted datas for example, can be achieved in
far less time than necessary to render them: a Bach Two-
Part Invention in C Major (BWYV 772) MIDI file, which
represents 6646 bytes and about 1 minute and 30 seconds
of music, may be send in about 2 seconds using UDP on
a 28.8 kbps line. Therefore, raw files transmission is
fullfilling the requirements of most applications,
possibly associated with buffering technics in case of
large files, in order to start rendering before transfer
completion.

However, this transmission way is not suitable when
the datas are generated in real-time: in this case, further
conventions between the sender and the receiver are
required. As for audio streams, any protocol design will
then hit the problem of transmission delay and network
latency but in a particular manner as it should provide a
way to render the events time ordering at receiver side.

Concerning the throughput requirement, although it
may not be a problem, a special attention should be
given to packets optimisation as a too frequent events
transmission may jam the network with half filled
packets: this may be the case if one tries to send a full
MIDI data flow (or greater), which represents one 3 bytes
MIDI packet at least every millisecond. In this case, the
underlying transport layers overhead represents more than
91% of the packet content which does not constitute a



satisfactory solution from efficiency point of view.

Finally, one problem not addressed by the previous
works concerns the sender and receiver time
synchronisation. In fact, we are only interested in clock
skew which represents the frequency difference between
the clocks of two stations on the network. Unless a
correction mechanism is provided, the clock skew may
appear on a station as a constantly increasing network
latency (or decreasing, depending on which clock is
faster) and may prevent it from a correct time rendering.

There are few publications dealing with real-time
streaming in the particular context of time ordered events.
Young and Fujinaga have presented a work applied to
piano master classes via the Internet [7]. It is based on
OTUDP (Open Transport UDP), a Max object that
transmits data using UDP [§8], and focus mainly on
packet losses. Time synchronisation is not an issue of the
proposed solution. Another work applied to real-time
MIDI streaming over Ethernet [8] includes bandwith
optimization technics which are adopted in the present
work.

The rest of the paper is structured as follow: section 2
presents the solutions provided to compensate for the
network latency and optimize packets transmission.
Section 3 focus on the mechanisms intended to handle
clock skew. Section 4 presents the protocol
implementation and experimental results. Section 5
summarizes and outlines the future developments of this
work.

1.1. Terminology

Some terms used in this paper are defined as follow:

time rendering: the time rendering process ensures that
time ordered events will be rendered at receiver side
with the same time order, including offset between
consecutive events.

transport latency: it represents the transport time from
one protocol level to the same protocol level on
remote host. The level examined is the presented
protocol level, which means that the transport latency
includes the possible host software latency as well as
the network latency.

rendering delay: let da be the date of an event occurrence
on host A and db the rendering date of this event on
host B. Assuming that da and db are expressed in a
reference time common to A and B, the rendering
delay D is defined as db - da. It includes the transport
latency but also the delay introduced for the time
rendering.

clocks offset: the offset of two clocks is the time
difference between them.

clock skew: the skew represents the frequency difference
between two clocks.

apparent clocks offset: the clocks offset increased by the
current transport latency at measurement time.

2. Transport and time rendering

The mechanisms to transmit and to render events are
based on a previous work on real-time MIDI streaming
over Ethernet [8]. They relie on a grouping period and a
maximum latency allowed to operate a correct time
rendering of the transmitted events.

2.1. Grouping period

The grouping period is intended to minimize the
packets frequency and to optimize the ratio between the
transport layers overhead and the data to be transmitted.
It represents the period during which events are
accumulated before being sent on the network. It is also
the lower bound of the packets transmission rate. Figure
1 presents the transmitted data count per packet according
to the events rate and a grouping period varying from 10
to 200 ms. The events rate is expressed in number of
events per second. It is assumed that each event is coded
using 5 bytes. Figure 2 presents the corresponding
protocols overhead ratio, including the underlying layers
overhead. It is assumed that this overhead is 44 bytes per
packet (IP, UDP and protocol headers) .

data count per
packet gp=200 ms
1000
800
600
gp=100 ms
400 _—
gp=50 ms
200
gp=10 ms
0 T T T T
10 100 200 400 800 1000
events / second

Figure 1: Data count per packet according to the grouping
period (gp) and the events rate.

The grouping period affects the sender behavior and is
part of the rendering delay. It has the additionnal effect to
minimize the packet loss probability as shown in [9] and
packets delivery inversion due to different routes from



source to destination. The grouping period value should
be fixed according to the network transmission context
and to the expected events rate. In particular, it may be
greatly minimized if the protocol is intended to operate
on a Local Array Network (LAN).

protocols overhead

100%

80% |

60% \\ \
\\ W ms
40%
gp=<100
20% gp=50 ms

~—
gp=200 ms

10 100 200 ' 400 ' 800 ' 1000

events / second

0%

Figure 2: Protocols overhead according to the grouping period
and the events rate.

2.2. Time rendering

As the next section is dealing with clock skew, we’ll
ignore it to explain the base mechanism of time
rendering. This mechanism relies on a maximum latency
allowed to ensure a correct time rendering of the
transmitted events. It acts similarly to buffering technics:
events rendering is delayed according to the current
transport latency, which is equivalent to accumulate these
events during a period equal to the maximum latency
allowed.

The maximum latency allowed parameter affects the
receiver behavior and is part of the rendering delay.

2.2.1. Latency variation evaluation. In fact, we are
interested in the latency variation rather than the transport
latency itself. First the apparent clocks offset is fixed at
protocol initialization. We assume that each packet is
time stamped with its transmission date at protocol level.
Let An be the time stamp of the nth packet sent by a host
A, and Bn the reception date of this packet on host B at
the same protocol level, the apparent clocks offset is
viewed on host B as:
O©=Bo— Ao (1)

which includes the transport latency.

For any further packet transmission, the transport
latency variation from host A to B is then:

& =Bn-A—-0 7

2.2.2. Events time stamping. At transmitter side, each
event is time-stamped as an offset to its transport packet
time stamp. At receiver side, this offset is first added to
the packet reception date to produce the local event time

stamp. Let Bn be the nth packet reception date and OL,
the ith event time offset within the Bn packet, the local
event time stamp e; is then:

€ =Bn+0] 3)
To compensate for the transport latency, the rendering
date I’nI of the event e,'1 is then computed as:

r' =€ + Lma—dn )
where L4y is maximum latency allowed.
Due to (1, 2, 3), I‘ni may be also expressed as follow:

' =Bo+ An— Ao+ Lmax+ Q] )
which is independant of the latency variation o,

However, to operate a correct time rendering, we must

ensure that the rendering date rn' is greater or equal to the

packet reception date Bn. Derived from (2), it can be
expressed as:

Bot Av— Aot Lmxt0 2 A+O+d (6)

and from (1), it is equivalent to:
L maxt Q) = n 0

Assuming that O:] is null for the first event in a

packet, correctness of the events time rendering assumes
that the latency variation never exceed the maximum

latency allowed parameter.
3. Clock skew detection

Clock skew may be viewed at receiver side as a
constantly increasing latency: let R be the ratio of two
clocks frequency on hosts A and B. We consider that the
transport latency is null. Then, according to (2), we
should have:

Bh=A+0© 8)
but according to the clocks skew, the reception date of
the nth packet on B can be expressed as:

An+0O
Bn = g )
R
which means that the latency variation is viewed on host
B as:
1-R
On= (An + @) ? (10)

If the ratio R between the clocks A and B is equal to
1, then the latency variation on is actually null | but if R

is smaller than 1 (e.g. the B clock is running faster than



the A clock), then &n increases with An and may reach
more or less fast, the maximum latency allowed, and
prevents the protocol from correct events time rendering.

3.1. Related technologies

Clock synchronization has been subject of many
works. Among them, the Network Time Protocol (NTP)
[10] is intended to synchronize clocks over the Internet. It
may be run beside our protocol however, such an
architecture would come up against some NTP
limitations in regard to our requirements: in particular,
acuracy achieved by NTP is directly dependant on the
time taken to achieve it and periods of many hours and
dozens of measurements are required to resolve oscillator
skew and maintain local time to the order of a
millisecond.

As clock synchronization is one of the most basic
problems in distributed systems, many Clock
Synchronization Algorithms (CSA) have been developed
[11, 12, 13] to ensure that physically dispersed process
will acquire a common notion of time using local
physical clocks and message exchange over a
communication network. Although fewer, research has
also been conducted on clock rate synchronization [14,
15]. All these works generally apply to multi-nodes
systems. A common approach consists of using fault-
tolerant clock synchronization algorithms and frequently,
via interactive convergence algorithms [16, 17] such as
the sliding window algorithm (SWA), the fault-tolerant
midpoint algorithm (FTMA), the adaptative exponential
fault-tolerant midpoint algorithm (AEFTMA) and the
multistep interactive convergence algorithm (m-ICV). Our
solution for clock skew detection is based on these
convergence averaging algorithms.

3.2. Skew detection algorithm

Compared to the previous works on clock and rate
synchronization, our situation constitutes a special case
from several points of view:

- only two nodes are involved in the skew detection
process,

- they don’t have to agree on a common time base: each
node is independantly estimating its clock deviation
compared to its peer node,

- as the latency variation is used to detect the clock
skew, we cannot consider that there are faulty
messages.

3.2.1. Peak latency filtering. We made several transport
latency variation measurements using differents network
paths. It appears that this latency globally fits in a

constant range, with more or less frequent peaks. The
range width and the peaks amplitude may greatly vary
depending on the Internet service provider and the
network path. Figure 3 shows 5 minutes of continuous
measurements done over a 42,6 kbps modem line
connection via a free Internet service provider, at a time
renowned for being a high traffic period. Table 1 shows
the corresponding traceroute output.

dn (ms)

250

200 |
150 clock
skew

100 ]

50 |
>l

0
time ~5mn

Figure 3: Continuous latency variation measured over 5 mn

The continuous measurement has been done using
time stamped UDP packets sent every 200 milliseconds.
The slow latency increase slope corresponds to the
measured clocks deviation on peer hosts.

Table 1: Traceroute output

lyon2-2-58-254.dial.proxad.net
paris11-2-al.routers.proxad.net
telehouse-6.routers.proxad.net
teleglobe.net
if-0-0.corel.paris.teleglobe.net

No host name found.
if-1-7.corel.newyork.teleglobe.net
ix-1-8.corel.newyork.teleglobe.net
jfk-core-02.inet.qwest.net
Jfk-core-01.inet.qwest.net
chi-core-01.inet.qwest.net
chi-edge-01.inet.qwest.net
ar-chicago-cern.ch
cernh9-pos500.cern.ch
in2p3-fddi.in2p3.fr
lyon-inter.in2p3.fr

lyon-tif.in2p3.fr
grame-cisco.in2p3.fr

19 bach.grame.fr

The intended solution consists in peak filtering and in
computing the convergence point of the remaining
values. We applied a FTMA derived algorithm to the
measured latency variation in order to obtain what we call
the skew profile.

Applied to clock synchronization, the fault-tolerant
midpoint algorithm (FTMA) relies on the hypothesis that
at most k clocks are faulty at any resynchronization
interval. At least n = 3k + 1 nodes are required in the
system to tolerate £ Byzantine faults [21]. To find the
clock correction term, FTMA discards the & lowest and



highest clock deviations and computes the arithmetic

mean of the lowest and highest remaining clock

deviations [16].

Our algorithm, named peak-tolerant midpoint
algorithm (PTMA) operates similarly with the following
differences:

- the sorted FTMA clock deviation vector made up of
the # nodes deviations collection is transformed into a
sorted latency variation vector made up over time,

- the discarded values count is not limited to the &
Byzantine tolerance,

- the arithmetic mean is computed using all the
remaining latency variations (and not only the lowest
and highest).

Let w be the time window size of the latency variation

collection and & be the number of values discarded per

window. At the time ¢, the sorted latency variation vector

is A=[A-w...d...8],0<d+1

and the midpoint latency variation is then computed as:

i=t—ks
a
LVi = ﬁ (11)

Intuitively, the algorithm operation may be viewed as
a selection on the latency variations: it discards the
lowest and the highset variations, but also as a selection
on the variation history as it may retain only a
discontinuous subset of the sliding temporal window.
Figure 4 presents the output of the algorithm applied to
the previous latency variation measurement. The outlined
skew profile represents the PTMA output.

dn (ms)

250 _

200 |
150 skew
profile

100 |

50 |
~1

0
time ~5mn

Figure 4: PTME output

The window size w was 50 and only 10 values per
window were retained. As the measurement rate was 200
ms, it means that only a discontinuous subset of 500 ms
was retained over 10 seconds of measurements.

Note that the skew profile represents the clock skew
but may also include possible long term changes in the
transport latency, which also suits our requirements.

3.2.2. Skew Profile Smoothing. However, with the
previous example, the transmission conditions was rather
good compared to other measurements (using alternate
Internet service providers and therefore other network
paths) which showed more chaotic transmission
conditions, with peak latencies over 3 sec and a constant
range width varying up to 200 ms during periods larger
than the PTMA window size.

We have extended PTMA to the exponential peak-
tolerant midpoint average algorithm (EPTMA) by simply
applying exponential smoothing to the PTMA output.
Assume that LV is the skew profile value at time ¢,
EPTMA computes the corresponding smoothed value by:

LViprya = 0.LVi+ (1= 0a) LV (12)
where the weight factor a is such that 0 < a0 < 1.

Choosing a small a value gives more weight to the
passed values and minimizes the effect of any pulse while
this effect is more persistent. Assume that the latency has
a constant value L. At time ¢, it changes by stage to a
value L’. Let R be the ratio between L and L’ . At ¢+ 6,
the ratio between the computed smoothed value and L’
is expressed by:

6+1
L=y (R-1) )
R

Figure 5 shows the response over time for R=1/.3 and
different values of the weight factor a .

1,00

/ a1=0.05
0,90
02=0.02
a3=0.01
0,80
0,70

0 6 12 18 24 30 36 42 48 54 60’
Figure 5: Response to latency variation over time

It appears that even with the smallest weight factor,
the correction error may be considered as negligible after
one minute, in regard of the time rendering requirements.

Figure 6 shows a smoothed skew profile made up of
the worst transport latency measured. The corresponding
weight factor a is 0.01.

The last part of the diagram shows important
disturbance in the skew profile. Although this
disturbance is partially reported to the smoothed values,
the global shape of the skew detection is correct and the
distortion introduced in time rendering is greatly
minimized.



The smoothed skew profile resolution is the

millisecond, which explains the step shape of the curve.
ms

0 skew
profile
40 |
30 | </
20 |
10 EPTMA output
0

time ~5mn
Figure 6: EPMTA output compared to PTMA

3.2.3. Clock deviation correction. As shown in the sub-
section 2.2, events time rendering is based on the
apparent clocks offset measured at protocol initialization.
One host B, connected to a host A, maintains two dates:
the initialization local time Bo and the corresponding
apparent remote time Ao. To compensate for the clock

skew, the time rendering I, of an event € expressed in

(5) has now to be corrected as follow:
r = Bo+ LViprya + An— Ao+ Lmaxt+ Oi (14)

where LVgpryais the smoothed value of the skew profile

computed at date 7.

This is equivalent to add any change in the EPTMA
output to the local initialization date Bo in order to
maintain the apparent clock offset constant in the peer
reference time. This technic to compensate for the clock
skew avoids to compute the clocks ratio and to convert
the dates from one reference time to another. Moreover,
the skew compensation mechanism can operate
independantly of the time rendering mechanism, which
greatly facilitates the protocol implementation.

4. Protocol implementation

The current protocol implementation transmits
MidiShare events [18, 19, 20] which are high level
structured events, time stamped with a millisecond
resolution. Their typology includes MIDI events as well
as MIDIFILE events. The underlying transport layer is
the User Datagram Protocol (UDP). Two variations on
the basic protocol requirements are presented, designed to
optimizes LAN and WAN implementations.

4.1. Basic packets format

The common messages header is shown in Figure 7.

Following is a description of its fields:

- ID: a 16 bits protocol identificator intended to
discriminate non-conformant packets.

- Version: a 8 bits version number, currently one (1).

- Type: a 8 bits message type identificator intended to
discriminate different packet types.

0 8 16 24 31
ID ‘Version ‘ Type

Figure 7: Common messages header.

The protocol relies on two packet types: Events
Packets intended to transmit events and ID Packets,
which purpose is both to allow a station identification on
the network and to ensure the clock skew detection
continuity when no events packet is to be transmitted.
Both packet types are time stamped with a millisecond
resolution.

4.1.1. Events packet. Events packet format is shown in
Figure 8.
0 8 16 24 31

Common header [events type]

Serial number

Transmission date

Count ‘ Offset

Data

Figure 8: Events packet format

Following is a description of its fields:

- Common header: as described before

- Serial number: a 32 bits unique serial number,
incremented at each packet transmission and intended
to detect packet losses or duplicates.

- Transmission date: a 32 bits millisecond date
expressed in the sender reference time.

- Count: a 16 bits data count which represents the Data
chunk length.

- Offset: a 16 bits value which represents the first event
start offset within the Data chunk. The offset field is
commonly set to 0 but may be greater if a large event
don’t fit in a single packet. It allows data recovery in
case of packet losses.

- Data: a variable length field which contains the
transmitted events data. The only constraint on the
data format concerns the events time stamping: as
shown before and to allow a correct time rendering,
each event should be time stamped as an offset to its
packet transmission date. This time stamp is currently
expressed with a millisecond resolution and 2 bytes
are enough to cover the possible offset range.



The current protocol definition doesn’t provide any
recovery mechanism in case of packet losses.

4.1.2. ID packet. ID packet format is shown in Figure 9.

0 8 16 24 31
Common header [ID type]

Transmission date

Name

Figure 9: ID packet format.

As for events packets , the Transmission date field is a
32 bits millisecond date expressed in the sender reference
time. The Name field is a variable length field containing
the symbolic name of the sender.

Current use of ID packets slightly differs with the
specific LAN and WAN implementations. However, its
common purpose is to ensure the clock skew detection
continuity.

4.2. LAN and WAN specific operations

The LAN and WAN implementations differ on their
way to make a connection and to maintain the clock skew
detection continuity. They also use additional optional
packets to provide a clean connection management. Lastly
and for LAN, the grouping period and the maximum
latency allowed parameters are defined by default to
minimize the rendering delay.

4.2.1. Connection process. The LAN implementation
provides automatic connection process: at protocol
startup, an ID Packet is broadcasted and then refreshed
every 200 ms. Any host on the network receiving an ID
Packet is supposed to allocate the necessary resources (if
not already done) to handle the corresponding connection.
When this packet disappears, the corresponding host is
considered as unreachable and the connection is to be
destroyed. The WAN implementation uses a TCP socket
for the connection management.

4.2.2. Skew detection continuity. To maintain the skew
detection over time, one host has to receive time stamped
packets at a frequent rate. The regular broadcast of /D
Packet on LAN is providing this continuity over time.
On WAN and in order to minimize packets transmission,
ID Packet are sent only when there is no Events Packet to
be transmitted.

4.2.3. Optional packets. Two additional packets are
defined to provide a clean connection management:
- a Connection Refused Packet: only used on WAN and

via TCP, it contains the reason of the deny.

- a Bye Packet: it contains statistic information on the
session to be closed, including the packet losses
count, the maximum latency parameter value and the
count of maximum latency overruns. On LAN, it is
the only way to properly close a connection.

4.2.4. Protocol parameters. Experiments of the protocol
on LAN and WAN made use of the following values:

param. name LAN value WAN value
grouping period 10 ms 200 ms
maximum latency 10 ms 1500 ms

The corresponding rendering delay is then 20 ms on LAN
and at least 1700 ms on WAN.

The EPTMA parameters was also different for LAN and
WAN experiments:

param. name LAN value WAN value
window size 10 50
retained values 8 10
weight factor 0.8 0.01

5. Conclusion

We have proposed a simple protocol to transmit and
render time ordered events in real-time over Internet. The
intended solution has many advantages: no transaction
required to operate, independance of peer hosts, asymetric
evaluation of the clock skew, ligthness and easyness of
the implementation. However, many possible impro-
vements have not been yet explored: in particular
concerning the clock skew detection, adaptative
algorithms based on PTMA and EPTMA may provide
better results. Support of multicast address may also
optimize the packets traffic in case of client / server uses.

The source code of the current implementation is
freely available under the Library General Public License
(LGPL). It is part of the MidiShare source code and can
be reached at the following address:

http://www.grame.fr/MidiShare/SCPP/

Acknowledgements

This research was partly supported by the Mil
Productions Company (Villefranche/Saone - France). We
would like to thank it for its support.



References

[1] D.Ferrari. Client requirements for real-time
communication services. RFC 1193 (Status: informational)
Nov-01-1990.

[2] L. Delgrossi, L. Berger. Internet Stream Protocol Version 2
(ST2) Protocol Specification - Version ST2+.RFC 1819
(Status: experimental) August 1995.

[3] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin.
Resource ReSerVation Protocol (RSVP) RFC 2205 (Status:
proposed standard) September 1997.

[4] S. Herzog. RSVP Extensions for Policy Control. RFC
2750 (Status: proposed standard) January 2000.

[5] M. Borden, E. Crawley, B. Davie, S. Batsell. Integration of
Real-time Services in an [P-ATM Network Architecture. RFC
1821 August 1995.

[6] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP:
A Transport Protocol for Real-Time Applications. Audio-
Video Transport Working Group. RFC 1889 (Status:
informational) January 1996.

[7]1J.P. Young, I. Fujinaga. Piano master classes via the
Internet. Proceedings of the International Computer Music
Conference 1999. ICMA San Francisco, 1999, pp.135-137

[8] M. Wright. Implementation and performances issues with
OpenSound Control. Proceedings of the International
Computer Music Conference 1998, ICMA San Francisco,
1998, pp. 224-227

[8] D. Fober. Real-Time Midi data flow on Ethernet and the
software architecture of MidiShare - Proceedings of the
International Computer Music Conference 1994, ICMA San
Francisco, 1994, pp. 447-450

[9] J.C. Bolot. End-to-end packet delay and loss behavior in
the internet. Conference proceedings on Communications
architectures, protocols and applications. ACM, 1993,
pp-289-298

[10] D.L. Mills. Network Time Protocol (Version 3)
Specification, Implementation. RFC 1305 (Status: draft
standard) March 1992,

[11] T.K. Srikanth, S. Toueg. Optimal Clock Synchronization.
Journal of the ACM, vol. 34, pp. 626645, July 1987.

[12] B. Patt-Shamir, S. Rajsbaum. A theory of clock
synchronization (extended abstract). Proceedings of the
twenty-sixth annual ACM symposium on Theory of
computing, 1994, pp. 810 - 819

[13] R. Ostrovsky, B. Patt-Shamir. Optimal and efficient
clock synchronization under drifting clocks. Proceedings of
the eighteenth annual ACM symposium on Principles of
distributed computing, 1999, pp. 3 - 12

[14] K. Schossmaier. An interval-based framework for clock
rate synchronization. Proceedings of the sixteenth annual
ACM symposium on Principles of distributed computing,
1997, pp. 169 - 178

[15]1 K. Schossmaier, B. Weiss. An Algorithm for Fault-
Tolerant Clock State and Rate Synchronization. Proceedings
of the 18th IEEE Symposium on Reliable Distributed
Systems, 1998

[16] M.M. de Azevedo and D.M. Blough, “Fault-Tolerant
Clock Synchronization for Distributed Systems with High
Message Delay Variation,” 1994 IEEE Workshop Fault-
Tolerant Parallel and Distributed Systems. (Appears in
Fault-Tolerant Parallel and Distributed Systems, D.
Pradhan and D. Avresky, eds., pp. 268-277, IEEE CS Press,
1995.) Computing, vol. 27, pp. 1-14, May 1995.

[171MM. de Azevedo, D.M. Blough. Multistep Interactive
Convergence: An Efficient Approach to the Fault-Tolerant
Clock Synchronization of Large Multicomputers. [EEE
Transactions on Parallel and Distributed Systems 9(12),
1998, pp. 1195-1212

[18]Y. Orlarey, H. Lequay. MidiShare : a Real Time multi-
tasks software module for Midi applications - Proceedings
of the International Computer Music Conference 1989,
ICMA San Francisco, 1989, pp.234-237

[19] D.Fober, Y. Orlarey, S. Letz. Recent developments of
MidiShare - Proceedings of the International Computer
Music Conference 1996, ICMA San Francisco, 1996, pp.40-
42

[20] D.Fober, Y. Orlarey, S. Letz. MidiShare joins the Open
Source Softwares - Proceedings of the International
Computer Music Conference 1999 ICMA San Francisco,
1999, pp.311-313

[21]L. Lamport, R. Shostak, M. Pease. The Byzantine
Generals Problem, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 3, July 1982, pp.382-
401.



