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Is Training of Adaptive Equalizers still Useful ?
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Abstract - We present a novel unsupervised adaptive
equalizer. It has the same computational complexity,
convergence speed and steady-state MSE as a trained LMS
adaptive DFE, but it is not subject to error propagation.
Therefore it can equalize even severe and/or quickly varying
channels. This follows from the very structure of the
equalizer, which allows a completely reversible transition
between (i) a linear structure in the starting mode : the
decoupled cascade of a recursive adaptive predictor and a
transversal phase equalizer and (ii) a classical DFE in the
tracking mode. The equalizer behaviour is fully satisfactory
during hours of real underwater communications. It reaches
the standard of trained equalizers. Hence the question in the
title.

I. INTRODUCTION

Let d(n) be a zero-mean, unit power, independent sequence
of discrete data to be transmitted through a discrete channel
F with transfer function F(z). In this paper, d(rn) and ¥ can
be complex-valued to account for QAM transmission. As a
consequence, the resulting signal s(n) needs to be equalized.
More precisely three effects have to be corrected, namely
amplitude distorsion, phase distortion and gain. Hence, the
equalizer can be split into three cascaded devices, as already
suggested in [1].

Amplitude equalization (AE). This is realized by a
whitening filter, or innovator. For reasons which will
become appearent later, here we select a purely recursive
whitener with  transfer function (TF) 1/(1+ A(z)),

expected to be causal and stable.

Phase equalization (PE). This is performed by an all-

pass filter, which we choose as a FIR filter. Denote P(z) its
transfer function.

Complex gain. It is carried out by (i) an automatic gain
control (GC) which adjusts the output power to the unitary
power level of d(n) and (ii) a digital phase locked loop
(PLL) in order to cope with the residual phase error that
remains after the demodulation.

Clearly, with fixed devices, the order for implementing the
(AE), (PE), (GC) and (PLL) is irrelevant. However with
adaptive filters, and with a non stationary channel F, the
order will turn out to be critical.

0-7803-3336-5/96 $5.00 © 1996 IEEE

The purpose of this contribution is to present a novel and
very efficient method to adaptively control these three
devices in an unsupervised (blind) fashion : no training
sequence d(n) is required to optimize the three devices.

A first approach of this kind has been presented in [1],
[2]. However, when a zero 20,j of F(z) outside the unit

circle is close to it, the system stability is poor due to the
choice of a recursive structure for the (PE). Here we
improve the results of [1] by choosing a FIR (PE).
Moreover we grant the system a soft structure in that the
places of (AE) and (PE) can be switched at any time, based
on the result of some simple performance test. In severe
situations originating, e.g., in sudden changes of the
channel F, the (AE) comes before the (PE) and the two
updatings are decoupled, both equalizers being controlled in
an unsupervised mode. When  the channel equalization is
sufficiently improved, the (PE) comes first, the (AE) is
switched in a decision directed mode, both equalizers being
jointly controlled in the classical decision directed mode.
With this structure the system is equivalent to a classical
DFE. The advantage is that the change of structure is
perfectly reversible, which makes the system able to track
severe non stationary channels without being ever stopped
by the well-known phenomenon of errror propagation
which destroys the benefit of DFE when the channel
suddenly changes. The robustness gained in this way costs
no additional computational complexity : the updating
needs essentially the same amount of multiplications as a
classical adaptive DFE and no division is needed.

In this way, the novel adaptive equalizer appears as the
most efficient one for severely non stationary channels.

II STARTING PERIOD : (AE) BEFORE (PE)

II-1 The structure. This section presents a structure
which can be self-adaptively controlled eventhough it starts
with a "closed eye". Clearly the (PE) only acts on the phase
of the channel TF. Therefore, irrespective of its place, the
input signal of the (AE) has the same spectrum.

The role of the (AE) is to equalize this spectrum : its
output must be white (flat spectrum). Equivalently, the
output sequence must be uncorrelated. This is obtained in a
self-adaptive manner by means of prediction. Therefore the
(AE) can be easily optimized, independently of its place,
with a control based on local (input or output) signals.



A similar property does not hold for the (PE). In particular
if it comes first, the (PE) optimality is not characterised by
properties of its own output (like independence of the
sequence or acquisition of a given distribution), but by
properties of the final signal at the (AE) output. Therefore
adaptations of the (PE) and (AE) are coupled. As a result if
the (AE) is poor, the (PE) will suffer from a pump effect.

This is why to start convergence, it is better to place the
(AE) first. Then the (PE) will enjoy a local control, solely
based on its own input and output. Hence the system starts
with the structure depicted in Fig. 1 where the notations are

given. The signals s(n), t(n), u(n), v(n) , w(n) and (i(n)ale
complex valued.

The (GC) can be implemented at any place. We put it first
to decrease the dynamical ranges required in the other two
devices. As shown in the figure, we choose a purely
recursive filter for the (AE). This choice will be legitimated
in section III : it will allow a great performance
improvement in the tracking period. The (PE) section is
taken as an FIR filter. In the case of complex signals, it is
followed by the (PLL) which copes with the residual phase
error affecting the signal v(n) before the threshold decision
device (DD).

in) + ufn)

s(n)

exp(-j6)

(PE) (PLL)

(DD)

Figure 1 Linear starting structure (convergence period)

The (AE) time equation is

u(n)=t(n)— ATUN(n-1) (1
where the vector A = [a1 s eees AN » aN]T characterizes the
(AE) and

Uy(n=1)=(u(n-1), .., u(n-N))T )

is made of N past samples of u(n) in such a way that

ATu (n—1) is a prediction of #(n) and u(n) is the
N p

prediction error (or innovation). Optimization of the (AE)

will simply consist in choosing A such that the output
u(n) is an uncorrelated sequence.

The (PE) time equation is

v(n) =PTU, . (n) 3)

where the complex vector P =[pg, py,..., p L]T

characterizes the (PE) and
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Up1(n) = (u(n), u(n=1), ., u(n—-L))T @)

is made of the present sample u(n) plus L past samples.
Optimization of the (PE) will consist in choosing P such
that the output v(n) is, e. g., an independent sequence.
Other criteria are possible (see below).

The (GC) and (PLL) equations are respectively

t(n)=gs(n) , w(n)=v(n)exp(—jo) &)

where g is a positive value and 8 is real.

11-2 The adaptation. The (GC). It is easy to design
an adaptive (GC) based on the unit power property of the
data d(n), see, e. g., [3] ch. 1.

G(n)=G(n-1) +uc[1 —| w(n) ]2] » gn)=+]G(n)| (6)

where U¢ is the positive step size. This algorithm ensures
that the input power of the (PE) is unitary.

The (AE). It is well-known that decorrelation of the
prediction error u(n) is equivalent to minimization of the
prediction error power. Hence A is choosen to minimize

E{]u(n)|2}, This can be done via a stochastic gradient

algorithm which updates the complex parameter A at time
n using increment

A = (g 12) Valu(n)P . lp >0 ©)
For a recursive filter this quantity cannot be exactly
computed but efficient approximate algorithms are available
[3], ch. 14. For example, the stochastic gradient LMS
leads to

A(m)y=A(n-1)+u, u(n) Uy(n=1) 8)

u(n)=t(n) - AT (n-1)Up(n-1) ©9)
where the superscript * stands for complex conjugate. In
other words, the adaptive parameter A is in state A(n-1) at
time n, while (2) remains valid. The same notation is used
for all quantities.

The (PE).The opimization criteria to update P depend on
the a priori knowledge about d(n).

(i) d(n) is discrete, with known levels. The usual
criterion is the decision directed mean square error
(DDMSE)

Jpp(P) = E{[w(n)—&(n,)lz} (10)

Basically this criterion assumes that the overall system
works well enough for the eye to be open, in such a way



that ﬁ(n) = d(n — &) in (10) where 8 is an irrelevant delay.
So the (PE) is optimized according to the classical
supervised MSE criterion. The stochastic gradient
algorithm associated to the criterion (10) easily follows
from (3) and (5). It takes the form

P(n)=P(n—1)+pup e(n) Upy(n) 1n

e(n) = epp(n) = d(n)exp(jO(n—1)) — v(n) (12)

where LLp is positive. The theoretical study of the criterion

(10) is very awkward because the decisions a?(n) can be
wrong when A and P lie in certain regions. Therefore we
use the second kind of knowledge.

(ii) the sequence d(n) is independent. The usual
criterion is to minimize the fourth moment, subject to a
(unitary) power constraint at the output of the (PE),
corresponding, e.g., to the Godard criterion [4]

Jo(P)=E{pmi*} - 2E{|v(n)|2} (13)

which intends to minimizing the fluctuations of

() =1. The corresponding stochastic gradient
algorithm takes the same form (11) but the error is

e(n) = eg(n) = v(n) (1 - |v(n)|2) (14)

Note that in [5], Shalvi and Weinstein minimize
E{Iv(n)|4} but the constraint E{lv(n)lz} =1 is ensured by
the all-pass form of their (PE) filter. The associated error

esw (n) = =v(n) [y () is not used in our paper where the
constraint that (PE) is an all-pass filter is relaxed. The
theoretical study of the criterion (13) is still in progress in
the open literature. It appears that, provided L is large
enough, J; has only global minima. So the corresponding

algorithm (11) and (14) is efficient to recover the true data
d(n), up to an arbitrary phase 8 and an unknown delay &.
So in steady-state

v(n)=d(n-— 8)exp(jo) (15)
The (PLL). The phase error correction can be done using
the DDMSE criterion. Moreover, the signal error can be

filtered via a recursive digital filter in order to correct a
possible frequency offset. So the update equations are

£(n) = Im{w(n) [d(n) - w(n)]*} (16)
q(n)= Gie(n)+ Gy Y e(k)»

k=1
O(n)=0(n—1)+ g q(n) an
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where Hg, G and G, are real positive parameters to be
properly chosen according to the application. This kind of
update is clearly decision directed. However, we never
encountered any problems related to our simulations when
directly starting in this way.

I1I-3 The switching rule. During this starting period,
in order to get some performance measure, the DDMSE is
estimated according to (4 denoting the forgetting factor) :

Ipp(m) =2 Ipp(n—=1)+(1=21)|d(m)-wim|* (18)

When this estimate decreases below a given performance
threshold J, the (PE) and the (AE) are permutated
according to the Fig. 2 (switch in position b).

III TRACKING PERIOD : (PE) BEFORE (AE)

1II-1 The structure During the tracking mode, the
equalizer is described by Fig. 2. When Jpp (n) decreases
below a properly choosen threshold J; < Jj, the recursive
part of the (AE) is gradually fed with the past decisions
(switch in position a). As a result, our system becomes the
classical DFE. In the sequel, we shall assume that J; = Jg.

apj6)  exp(jf)

Figure 2 Structure of the equalizer (tracking period)

Obviously this removes a large part of the noise and of the
remaining interference stifl present in the signal w(n) and
improves the final error rate. In this configuration, y(n) is

replaced by d(n) exp(j6(n—1)). As a consequence, our
system allows soft transitions between a recursive linear
self-learning equalizer and a classical DFE using the
DDMSE criterion for updating both A and P. Clearly this
switch between the starting and tracking periods is
reversible. This is a very important and attractive feature,
specially for the severe non stationary channels. Besides,
we can hold the gain g(n) at a fixed value g. Then the (PE)
will ensure the (GC) function.

The time equations used during the tracking period are the
following
t(n)=gs(n) (19)

w(n) =(PT(n=1) T(2) = AT (n~1) D(n))e 700D
(20)



where T(n) =[t(n), ..., t(n—L)]" and

, . ) _ .
D(m) = [d(n =16/, .., d(n = Nyel-N-D]

HI-2 The adaptation. The simplest updating algorithm
is the classical DDLMS one which updates A and P
according to the stochastic gradient of the criterion (10).

P(m) = P(n= 1)+ pap [d(m) /%07 = y(n)] T ()
@n

A(n)=A(n—1)— [&(n) I0(=1) _ y(n)] D*(n)
(22)

The (PLL) adaptation remains unchanged while the (GC) is
now performed in the (AE). By the way, the (PLL) place
can be changed, e.g., located between the (PE) and the
(AE). This is straigtforward.

ITI-3 Switching rule. In order to go back and forth
from one structure to the other, Jpp(n) must be
permanently evaluated. The switch back to the starting
mode occurs when Jpp(n) oversteps Jg.

IV COMPUTER SIMULATIONS

Results have been obtained via Monte Carlo simulations
using 200 different runs. We have selected two severe
channels. Channel 1 and 2 have been proposed in [6] and
in [2] respectively. Their impulse responses are

Channel 1 f1=[2-0.4j, 1.5+1.8j, 1, 1.2-1.3j, 0.8+1.6j]
Channel 2 £2=[0.8264, -0.1653, 0.8512, 0.1636, 0.81]

Figure 3.a (resp. 3b) illustrates the amplitude and phase
response of channel 1 (resp. 2) while figure 4.a (resp. 4.b)
depicts the location of the TF zeros of channel 1 (resp. 2).

Note that both channels exhibit deep fading frequencies and
severely non linear phase distorsion, as a result of the zeros
of F(z) which are outside the unit circle and close to it. For
such severe channels most self-adaptive (blind) equalizers
proposed in the literature do not work at all.
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Figure 3 Amplitude and phase responses
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Figure 4 Zeros of the transfer function

Five adaptive equalizers have been tested. Three of them are
transversal linear equalizers (LE) with 31 taps, started with
a centered reference tap. They are the Godard equalizer [4],
the Duhamel and Hilal one [7] and the usual supervised
(LE). The two recursive equalizers are the classical
supervised (non linear) DFE and the new system of this
paper. Both recursive equalizers have 5 and 20 taps in their
recursive and tranversal parts, respectively. For the 16-
QAM scheme, the Duhamel and the Godard unsupervised
algorithms are totally inefficient for these two severe
channels. So our system is only compared to the supervised
(LE) and (DFE) equalizers. The forgetting factor to compute
Jpp(n) is A=0.99, starting with Jpp(0) =1, while the
switching threshold is 0.2 (-7dB) for the 4-QAM and 0.063
(-12 dB) for the 16-QAM. It means that our system starts
with the appropriate structure : (AE) comes first. The
equalizer input SNR for the 4-QAM and 16-QAM schemes
are 15 dB and 25 dB respectively.

In the following, the impulse responses are normalized to
unity. The additive noise is zero mean, white and gaussian,
whereas the channel phase shift standing for the
demodulation phase error is ¢(n) =2mnAFT+ P, T
denoting the symbol duration.

In the 200 trials, the phase error @ is uniformly distributed
in [0, 271t]. Moreover the normalized frequency offset AFT
is uniformly distributed in [0, 1e-3] for 4-QAM and in [0,
1e-4] for 16-QAM. Then the MSE is estimated in an RLS
sense (cf 18) for every experiment and averaged over the
200 trials.
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The striking important conclusion drawn from the
simulations of Fig. 5 and 6 is that our new unsupervised
system achieves essentially the same performance as the
best supervised equalizer which is the DFE. We can even
obtain a sligtly better achievement !

Of course the classical transversal equalizers are totally
outperformed (3 dB to 9 dB of output MSE gain) as a result
of the channel severity. Convergence of the new equalizer
respectively requires less than 2000 and 5000 iterations, in
the 4-QAM and 16-QAM cases. It is very fast.

V CONCLUSION

From the structural point of view, the new equalizer is
based on some ideas previously developped by Macchi et al.
[1], [2]. The specific new idea proposed in this paper is to
permute in a softly reversible way, the two main parts of
the equalizer, namely the recursive (AE) and the transversal
(PE), according to some performance test, e. g., the
DDMSE [8] . In the starting periods the system is linear
and unsupervised (blind). In the tracking periods it is a
classical adaptive DFE. Hence it is particularly well suited
for severe channels which exhibit sudden or fast time
variations : whenever this is possible, it takes advantage of
the decision directed mode but it never suffers from error
propagation and is always able to work in a self-learning
mode.

It appears to be the first time that an adaptive DFE is
successfully employed in a completely unsupervised
manner : no loss of convergence speed is observed
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compared to the supervised mode and the steady state MSE
is clearly the same. Moreover the computational
complexity is not increased (compare equations (8) and (11)
to (22) and (21) respectively).

This equalizer has been successfully tested on real
underwater communication system with 4-QAM
modulation at 6 kbit/s. The shallow underwater acoustic
channel is a very severe one suffering from both multipath
effects and Doppler shifts. At this rate, the impulse
response may spread over 40 symbol durations. Despite of
all these channel impairments the new system never got
lost during two hours.

This success is enough convincing in itself to raise the
question of our title : is the training period still worthy for
LMS adaptive equalizers ?
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