
HAL Id: hal-02158740
https://hal.science/hal-02158740

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faust audio DSP language for JUCE
Adrien Albouy, Stéphane Letz

To cite this version:
Adrien Albouy, Stéphane Letz. Faust audio DSP language for JUCE. Linux Audio Conference, 2017,
Saint-Etienne, France. pp.61-68. �hal-02158740�

https://hal.science/hal-02158740
https://hal.archives-ouvertes.fr

Faust audio DSP language for JUCE

Adrien ALBOUY and Stéphane Letz
GRAME

11, cours de Verdun (GENSOUL)
69002 LYON,

FRANCE,
{adrien.albouy, letz}@grame.fr

Abstract
Faust [Functional Audio Stream] is a functional
programming language specifically designed for real-
time signal processing and synthesis [1]. It consists
of a compiler that translates a Faust program into
an equivalent C++ program, taking care of generat-
ing the most efficient code. JUCE is an open-source
cross-platform C++ application framework devel-
oped since 2004, and bought by ROLI1 in Novem-
ber 2014, used for the development of desktop and
mobile applications. A new feature to the Faust
environnement is the addition of architectures files
to provide the glue between the Faust C++ output
and the JUCE framework. This article presents the
overall design of the architecture files for JUCE.

Keywords
JUCE, Faust, Domain Specific Language, DSP,
real-time, audio

1 Introduction
From a technical point of view Faust2 (Func-
tional Audio Stream) is a functional, syn-
chronous, domain specific language designed for
real-time signal processing and synthesis. A
unique feature of Faust, compared to other ex-
isting languages like Max, PD, Supercollider,
etc., is that programs are not interpreted, but
fully compiled.

One can think of Faust as a specification lan-
guage. It aims at providing the user with an
adequate notation to describe signal processors
from a mathematical point of view. This spec-
ification is free, as much as possible, from im-
plementation details. It is the role of the Faust
compiler to provide automatically the best pos-
sible implementation. The compiler translates
Faust programs into equivalent C++ programs
taking care of generating the most efficient code.
The compiler offers various options to control
the generated code, including options to do fully

1https://roli.com/
2http://faust.grame.fr

automatic parallelization and take advantage of
multicore machines.

The generated code can generally compete
with, and sometimes even outperform, C++
code written by seasoned programmers. It
works at the sample level, it is therefore suited
to implement low-level DSP functions like recur-
sive filters up to fullscale audio applications. It
can be easily embedded as it is selfcontained and
does not depend of any DSP library or runtime
system. Moreover it has a very deterministic
behavior and a constant memory footprint.

Being a specification language the Faust
code says nothing about the audio drivers or
the GUI toolkit to be used. It is the role of
the architecture file to describe how to relate
the DSP code to the external world [2]. This
approach allows a single Faust program to be
easily deployed to a large variety of audio stan-
dards (Max-MSP externals, PD externals, VST
plugins, CoreAudio applications, JACK appli-
cations, etc.), and JUCE is now supported.

The aim of JUCE[3] is to allow software to be
written such that the same source code will com-
pile and run identically on Windows, Mac OS X,
Linux platforms for the desktop devices, and on
Android and iOS for the mobile ones. A notable
feature of JUCE when compared to other similar
frameworks is its large set of audio functional-
ity. Those services, the user-interface possibil-
ities and the multi-platform exportability posi-
tion JUCE as a great framework for Faust to
get exported on, to have in the future less code
to maintain up-to-date, and simpler utilization.

In section 2, the idea and the use of the GUI
architecture file will be introduced. In section
3, the JUCE Component hierarchy will be pre-
sented without going into many details. Sec-
tion 4 is the main one, explaining in detail the
graphical architecture file for JUCE. MIDI and
OSC architecture files are introduced in Section
5. Section 6 will treat of the "glue" between
JUCE audio layers and Faust ones. Section 7

https://roli.com/
http://faust.grame.fr

presents the faust2juce script. Section 8 is a
quick tutorial on how to use JUCE for Faust.

2 Faust GUI architecture files
A Faust UI architecture is a glue between a
host control layer and a Faust module. It is
responsible to associate a Faust module pa-
rameter to a user interface element and to up-
date the parameter value according to the user
actions. This association is triggered by the
dsp::buildUserInterface call, where the DSP
asks a UI object to build the module controllers.

Since the interface is basically graphic ori-
ented, the main concepts are widget based: a
UI architecture is semantically oriented to han-
dle active widgets, passive widgets and widgets
layout.

A Faust UI architecture derives a UI class,
containing active widgets, passive widgets, lay-
out widgets, and metadata.

2.1 Active widgets
Active widgets are graphical elements that
control a parameter value. They are initialized
with the widget name and a pointer to the
linked value. The widget currently considered
are Button, ToggleButton, CheckButton,
RadioButton, Menu, VerticalSlider,
HorizontalSlider, Knob and NumEntry.

A UI architecture must implement a method
addxxx (const char* name, float* zone,
...) for each active widget. Additional param-
eters are available to Slider, Knob, NumEntry,
RadioButton and Menu: the init value, the min
and max values and the step (RadioButton,
Menu and Knob being special kind of Sliders,
cf. subsection 2.4, Metadata).

2.2 Passive widget
Passive widgets are graphical elements that
reflect values. Similarly to active widgets,
they are initialized with the widget name and
a pointer to the linked value. The widget
currently considered are NumDisplay, Led,
HorizontalBarGraph and VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float* zone,
...) for each passive widget. Additional

parameters are available, depending on the
passive widget type. (NumDisplay and Led are
a special kind of BarGraph, cf. Subsection 2.4).

2.3 Widget layout
Generally, a UI is hierarchically organized into
boxes and/or tab boxes. A UI architecture must

support the following methods to setup this hi-
erarchy:

openTabBox (const char* label)
openHorizontalBox (const char* label)
openVerticalBox (const char* label)
closeBox (const char* label)

Note that all the widgets are added to the cur-
rent box.

2.4 Metadata
The Faust language allows widget labels
to contain metadata enclosed in square
brackets. These metadata are handled
at UI level by a declare method taking
as argument, a pointer to the widget as-
sociated value, the metadata key and value:
declare(float*, const char*, const char*).
Metadata can also declare a DSP as polyphonic,
with a line looking like declare nvoices "8"
for 8 voices. This will always output a poly-
phonic DSP, either you use the polyphonic
option of the compiler or not. This number of
voices can be changed with the compiler (cf.
Section 7).

For instance, if the program needs a Slider
to be a Knob, those lines are written:

declare(&fVslider0, "style", "knob");
addVerticalSlider("Vol", &fVslider0,...);

The style can be a knob, menu, etc... de-
pending on the program.

Multiple aspects of the items can be described
with the metadata, such as the type of the item
just as seen before, the tooltip of the item, the
unit, etc...

3 JUCE Component class
To implement a complete program, the graph-
ical elements described in the previous section
need to be combined with JUCE classes. In the
JUCE Framework, the component class is the
base-class for all JUCE user-interface objects.
The following section explains the relationship
between Faust GUI architecture files, and the
JUCE mechanics.

3.1 Parent and child mechanics
As most frameworks have, JUCE has a hi-
erarchy of Component objects, organized in a
tree structure. The common way to set a
Component as child of another component is
to do parent->addAndMakeVisible(child);.

This function sets the child component as vis-
ible too, because it’s not by default. Multi-
ple functionalities are accessible to run through
this Component tree, with methods that give the
child Component at index i, or give the parent.
There’s even a function allowing to get the par-
ent of a Component with a specific type, this type
being a derived class of Juce::Component. How-
ever, this function does not exist for the child,
and imply that dynamic_cast has to be done if
you want to get a child of a certain type.

3.2 Component setup mechanics
First of all, a Component is drawn if it’s visi-
ble, and its parent too. If a Component is not
visible, its child and all of its children, etc...
will not be visible, but as addAndMakeVisible
function is used most of the time, this
should not be a problem. A Component has
a Rectangle<int> boundsRelativeToParent,
containing its x and y coordinates, and its width
and height. As the variable name implies, the
bounds of a Component is relative to its parent,
and not absolute in the window ; it is very im-
portant in the architecture files for Faust, as
will be demonstrated in subsection 4.4.

3.3 Drawing mechanics
A Component has two virtual functions3
that are the main tools to handle a dy-
namic layout, the void resized() and
void paint(Graphics& g) functions. The
resized one is called each time a Component
bounds are changed, and the paint one when
the Component flag indicates that it needs to be
repainted. The mouse cursor being on top of
it, a mouse click, the Component bounds being
changed, or one or multiple of its child needing
to be repainted indicates that it needs to be
repainted for example.

There is a design class called LookAndFeel
that allows customization of the interface. The
LookAndFeel objects defines the appearance of
all the JUCE widgets, and subclasses can be
used to apply different ’skins’ to the application.

There is obviously a lot more to the
Juce::Component class, but that’s the basics,
or at least what the architecture files need.

4 JuceGUI architecture file
To summarize what has been seen before, the
system of widgets and boxes of Faust needs to

3placeholder functions which programmer must im-
plement

be adapted to the Juce::Component mechanics
in an architecture file called JuceGUI.h. The
following section discusses annotated examples.

4.1 Two different kinds of objects
There are two kinds of object used in the adap-
tation:

• uiComponent, which are basically any items
of the Faust program, like sliders or but-
tons.

• uiBox, which is container component, and
so can contain a uiComponent or some oth-
ers uiBox.

Both are derived classes of a
uiBaseComponent class, which is itself a
derived class of Juce::Component.

The uiBaseComponent class regroups meth-
ods shared by both uiBox and uiComponent,
like void setRatio(), int getTotalWidth(),
etc.... This way, too many dynamic_cast
in our code are avoided. Here’s what the
uiBaseComponent class contains:

float fHRatio, fVRatio;
int fTotalWidth, fTotalHeight;
int fDisplayRectHeight,

fDisplayRectWidth;
String fName;

uiBaseComponent(int totWidth,
int totHeight, String name);

int getTotalHeight() ;
int getTotalWidth();
virtual void setRatio();
float getHRatio();
float getVRatio();
String getName();
void setHRatio();
void setVRatio()
void setBaseComponentSize

(Rectangle<int> r);
void mouseDoubleClick

(const MouseEvent &event) override;

virtual void writeDebug() = 0;
virtual void setCompLookAndFeel

(LookAndFeel* laf) = 0;

The mouseDoubleClick function is a JUCE
overridable function, which is called every time
a Component is double-clicked. Here it’s used

to call the writeDebug function, showing differ-
ent characteristics of the double clicked uiBox
or uiComponent.

The two pure virtual functions are defined
to have their own behavior for both uiBox and
uiComponent, not being the same obviously.

The virtual void setRatio(); function is
virtual because there is a special case with the
uiBox, which is setting her own ratio, and need
to be asking its child to set their ratios too, in
a recursive way.

As said before, uiComponent inherits from
those uiBaseComponent functions, and is itself
a mother class for plenty of different widgets.
Here’s the inheritance diagram:

Figure 1: Inheritance diagram

A uiComponent subclasses can handle multi-
ple "type" of items.

For instance, uiSlider groups every kind of
sliders: HorizontalSlider, VerticalSlider,
NumEntry and Knob.

4.2 The main window
The user interface cannot be shrunk infinitely in
order to be always lisible and clear, so a mini-
mal window size is defined. That implies that in-
stead of a basic Component in a DocumentWindow
(a resizable window with a title bar and max-
imise, minimise and close buttons), a Viewport
in a DocumentWindow is used, which displays
scrollbars when the window gets lower dimen-
sions than the minimal size of the Faust DSP
program, allowing to have full access to the user
interface even in the lower dimensions.

This Viewport can either contains a uiBox
as presented before, or a uiTabs if the program
requires tabs.

4.3 uiTabs class
The uiTabs class inherits of
Juce::TabbedComponent, which is a
Juce::Component with a TabbedButtonBar on
one of its size. It just needs a Juce::Component
for each tab, and a tab name, and it will display
them.

A tab layout is needed when the
buildUserInterface starts with a openTabBox
call. In this, a boolean tabLayout is set to true,
to know that it’s a tab layout.

While parsing the buildUserInterface, a
uiBox is given to the uiTabs every time the
current tab is "closed". To do that, a vari-
able called order keeps track of the "level" of
the current box. The order starts at 0, is incre-
mented when a new box is opened, and decre-
mented when a box is closed. If the order is 0
in a closeBox() call, then a tab is being closed,
and so the current box is added to the uiTabs,
using the TabbedComponent::addTab function.

Once all the tabs are closed, the tabBox is
closed too, the order is now at -1, and it
triggers the initialization function of uiTabs,
uiTabs::init(). It’ll be described it in the
next subsection.

4.4 Initialization of the layout
First of all, while parsing the
buildUserInterface lines, which are list-
ing the different boxes and items that need
to be displayed, the tree is getting built.
It’s done using the Juce::Component me-
chanics of addAndMakeVisible. The different
uiBaseComponent are added as child of different
uiBox, and uiBox display rectangle size and
total size are calculated every time a box is
closed in the buildUserInterface (i.e. when
closeBox() is called).

The uiBox display rectangle size is the sum
of his child width and the maximum of his child
height, and the contrary depending on its ori-
entation. But margins are added to our display
rectangle width and height, 4 pixels per child,
for a margin of 2 pixels on the top, left, bottom
and right, and the uiBox total size is obtained.
This is to avoid an overlapping effect, having two
items touching each other. Following the same
spirit, 12 pixels are added to the height of the
box if its name needs to be displayed, 12 pixels
being the space needed to display its name.

Here’s the buildUserInterface that display
this program:

ui_interface->openHorizontalBox("TITLE1");

Figure 2: Representation of the display rectangle size and
the total size of a box with four child

ui_interface->addVerticalSlider("Slider1",
&fVslider0, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider2",
&fVslider1, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider3",
&fVslider2, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider4",
&fVslider3, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->closeBox();

In Figure 2, the difference between the dis-
play rectangle size and the total size can
be easily seen. The total size of the box
here named "TITLE1" is the lighter gray, and
the display rectangle size would be the four
darker gray rectangle stick together. The layout
is not aligned seamlessly because of the margin
that is implemented to avoid the overlapping of
the components.

The space left on the top of the box is for its
title, and this margin is included in the total
size .

h =
n−1∑
i=0

(ci.H) (1)

w = max
i∈[0,n−1]

ci.W (2)

H = h+ 4 ∗ n (3)

W = w + 4 (4)

In those equations, H is the total height ,
W the total width , h the display rectangle
height , and w display rectangle width ; ci
being the nth child component of the current
box.

H might get incremented by 12 pixels, de-
pending on the need to display the box name.

4 pixels for each child component are added
on a dimension to have margins between each
of them, because they will be placed aside of
each other in this dimension, and simply 4 pixels
added to the other dimension to have 2 pixels
separating parent and child box on each side.

Once buildUserInterface is done, the last
box is closed, and the user interface initialized.
This last box, that will be called the "main box"
is initiated with ratios of 1 and 1, even if they
are needed, because it’ll take the window size.
Here’s how the UI is initialized:

• Setting the actual rendering size for the
main box, because the total size is
set here, but not the Juce::Component
bounds. That’s done through the
void setBaseComponentSize
(Rectangle<int> r) methods, which sets
the size of the components, and especially
position them right. Concretely, a 30 pix-
els offset is needed on the height for a tab
layout, 30 pixels being the height taken by
the tab bar. Only the main box needs to
be set with an offset, because other boxes
will be positioned depending on its parents
coordinates.

• After that, the ratios are calculated for
the whole tree, from root to leaves. The
horizontal ratio is the component total
width divided by its parent display rectan-
gle width, same for the height. This way,
it avoids to have the margins to mess with
our ratios, and to have a sum of ratio equals
to 1 instead of one approaching 1, but not
being 1 exactly.

• Last step is to set the LookAndFeel for all
uiComponents, which are for all of them
the leaves of the trees. So the tree is fully
parsed there, root to leaves.

The only possible change in the initial-
ization of the program, is in a case of a
tab layout. The uiTabs::init() method
just calls the uiBox::setRatio() and the
uiBox::setCompLookAndFeel(LookAndFeel*)
for every of its tab component.

While going through all the tabs, the algo-
rithm keeps track of the minimal size of the
uiTabs component to be displayed. Its mini-
mal dimensions being the maximum width and
the maximum height of all its tabs.

There, the tree is built, the total size has been
initiated, display rectangle size and the ratios for
all components, all the uiBox and uiComponent.

4.5 Dynamic Layout

At that point, the user interface is dis-
played at his original size, but it needs to
adapt to the potential resizing of the win-
dow. To do that, the uiBoxes are used
to layout all the items. A uiBox item has
a void arrangeComponents(Rectangle<int>
functionRect) function, which is the main tool
to organize the layout. It’s called whenever the
resized() function of the main box is called.

In this function, the initial rectangle given
as argument, that is basically the window size,
will propagate through all the child uiBox and
uiComponent, in a recursive way [4].

At the beginning, it checks if the name needs
to be displayed, and as no child components
should be displayed there, it cuts 12 pixels from
the top of the functionRect, given as argument.

After that, the margins are sets, so 2 pixels are
cut on the left, top, right and bottom side. This
way, overlapping components are avoided. Once
it’s done, it goes through all the child, to give
them the right space to occupy and the right
position of course.

The algorithm works that way: if the current
box is vertical, then it needs to give its child
a vertical part functionRect, and a horizontal
one for a horizontal box of course.The amount
of vertical or horizontal size of the child is cal-
culated, still depending on the vertical nature
of the current box. This size is the box current
height or width, minus the margins, multiplied
by the horizontal or vertical ratio. Concrete ex-
ample: the current box is a horizontal display,
and has 2 child components, one having a hori-
zontal ratio of 0.7 and the other one of 0.3. The
box display size is here 1000x500 pixels, and it’s
total size 1008x504 (2 items and it’s a horizontal
box, so 2 ∗ (2 ∗margin) = 8 on the width, and
2 ∗margin = 4 on the height).

Let’s say the size of the window almost dou-
bled, and it’s now 2008x1004 (arbitrary simple
values). It will calculate that the first item get a
0.7∗(2008−2∗4) = 0.7∗2000 = 1400 pixels wide
space and the second one 0.3∗(2008−2∗4) = 600
pixels. First item bounds will be 1400x1000 and
the second one 600x1000, height being kept the
same, without the margins of course.

On top of that, to keep track of where to place
our components, the functionRect get cut off

little by little every time a uiBaseComponent is
given a rectangle to be displayed in [5]. Basi-
cally, every rectangle that is given to child is
removed from the original functionRect, and
this allow us the keep track of the good x and y
coordinates to give to the child component, with
the margin added. It’s done over and over again
for each child component, cutting from the left
or the top of the boxRectangle<int> rect de-
pending on its orientation.

Figure 3: Representation of the layout algo-
rithm

4.6 The MainContentComponent class
In the adapted MainContentComponent class,
there is plenty of Faust libraries, that are in-
dispensable for the Faust program. There are
some optionals includes, for OSC, MIDI and
polyphonic mode, that depends on the compi-
lation options that the user sets.

The MainContentComponent class is the
Juce::Component contained in our Viewport,
and contains itself a JuceGUI object, that is a
subclass of Juce::Component, Faust GUI class
and MetaDataUI. The minimal things to do is:

addAndMakeVisible(juceGUI);
fDSP = new mydsp();
fDSP->buildUserInterface(&juceGUI);
recommendedSize = juceGUI.getSize();
setSize (recommendedSize.getWidth(),

recommendedSize.getHeight());
setAudioChannels (fDSP->getNumInputs(),

fDSP->getNumOutputs());
[...]

private:
JuceGUI juceGUI;

A simple buildUserInterface call is needed,
set the size of the MainContentComponent, and
set the amount of audio channels. Following the

same spirit, there is optional code in case of a
MIDI, OSC or polyphonic mode.

5 Other Faust architecture files
Just a GUI architecture file isn’t enough to run a
Faust program on JUCE, adaptations for dif-
ferent kind of control are also needed, such as
OSC and MIDI.

5.1 OSC
OSC integration has been done by devel-
oping a new JuceOSCUI class, subclass of
the base UI class. Two send and re-
ceive ports are defined. Input OSC mes-
sages are decoded by subclassing the JUCE
OSCReceiver class, and implementing its
OSCReceiver::oscMessageReceived method.
Output OSC messages are sent by using the
OSCSender::send method.

The special "hello" message allows to retrieve
several parameters of the Faust applications:
its root OSC port, IP address, input and output
port. The "get" message allows to retrieve the
current, min and max values for a given param-
eter. Finally a float value received on a given
path will allow to change the parameter value
in real-time.

An application wanting to be controlled by
OSC messages has to use an instance of the
JuceOSCUI class, to be given to the DSP
buildUserInterface method.

5.2 MIDI
MIDI messages handling is done by us-
ing the MidiInput and MidiOutput
JUCE classes. A new juce_midi class
subclassing the MidiInputCallback
and implementing the required
MidiInputCallback::handleIncomingMidi
Message method has been defined. MIDI mes-
sages coming from the JUCE layer are decoded
and sent to the corresponding application
controllers. MIDI messages produced by the
application controllers are encoded and sent
using a MidiOutput object.

An application wanting to be controlled by
MIDI messages has to use an instance of the
MidiUI class, created with a juce_midi handler,
to be given to the DSP buildUserInterface
method.

6 Audio integration
To be connected to the external world, a given
Faust DSP has to be connected to an audio
driver and a User Interface definition. JUCE

framework already contains an abstract audio
layer connected to a set of native audio drivers
on all development platforms. JUCE develop-
ers can choose to deploy their code as stan-
dalone audio applications or audio plugins. A
standalone application has to subclass the ab-
stract AudioAppComponent class and implement
the prepareToPlay, getNextAudioBlock and
releaseResources methods:

• prepareToPlay is called just before audio
processing starts with a sample rate param-
eter. The Faust DSP is initiated with this
sample rate value, and input/output chan-
nels number is possibly adapted to match
the capabilities of the used native layer
(that can a different number of input/out-
put channels than the DSP).

• getNextAudioBlock is called every time
the audio hardware needs a new block of
audio data. Audio buffers presented as
a AudioSourceChannelInfo data type are
retrieved and adapted to be given to the
Faust DSP compute method.

• releaseResources is called when audio
processing has finished. Nothing special
has to be done at the Faust level.

7 The faust2juce script
There are many scripts availiable in the Faust
ecosystem allowing to generate a ready to use
binary, project file, or compiled file from a sim-
ple DSP file. They are labeled faust2xxx.

Following the same spirit, a faust2juce
script has been implemented, that allows to cre-
ate a JUCE project directory from a simple DSP
file. The command is used as follow:

faust2juce [-options] dspFile.dsp

This will create a folder containing a .jucer file,
and a "Source" folder containing the Main.cpp
and the MainComponent.h. This folder is self
contained, all needed Faust includes are in the
MainComponent.h, including the compiled DSP.

There are the options available at this mo-
ment for faust2juce:

• -nvoices x: produces a polyphonic self-
contained DSP with x voices, ready to be
used with MIDI events

• -midi: activates MIDI control

• -osc: activates OSC control

• -help: shows the different options available

As described in subsection 2.4, a number of
voices can be hardcoded for a polyphonic DSP,
but you can change it with the nvoices option.
It has the priority over the metadata declara-
tion. In the case of a non-hardcoded polyphonic
DSP, it will just make it a polyphonic one with
this compiler option. Some others options will
be added later, it’s still in development.

8 How to use JUCE architecture
files

Using JUCE to export a Faust DSP program
file is easy: create the project folder with
faust2juce [-options] dspFile.dsp and
drag & drop the created folder named after the
DSP to the "example" folder contained in the
JUCE git folder.

Simply execute the .jucer file, and select "Save
Project and Open in IDE...", the first time at
least, to generate the JUCE header files, etc...
And it’s ready to execute your program on what-
ever export platform you chose.

9 Conclusion
The Faust audio DSP language implementaion
is now possible with JUCE, and can theoreti-
cally be exported to every platform that JUCE
supports. It has been tested on OS X and iOS,
both work correctly, and has a close performance
to already available options, such as faust2caqt
for OS X and faust2ios, for iOS.

MIDI control, polyphonic mode, and OSC
control are implemented, more features are in
progress of development, to permit a full com-
patibility with the whole Faust library.

JUCE offers two types of "audio project",
standalone applications or plug-in. Currently
the FAUST architecture files are limited to de-
scribe standalone applications, but we are look-
ing forward to adapt our code for plug-ins.

References
[1] Orlarey, Y., Fober, D., and Letz, S. (2009),

"FAUST: an efficient functional approach
to DSP programming." New Computational
Paradigms for Computer Music, 290.

[2] D. Fober, Y. Orlarey, and S. Letz, “Faust
Architectures Design and OSC Support",
IRCAM, (Ed.): Proc. of the 14th Int. Con-
ference on Digital Audio Effects (DAFx-11),
pp. 231-216, 2011.

[3] JUCE online documentation https://www.
juce.com/doc/classes

[4] JUCE "Tutorial: Advanced Rectangle
techniques" https://www.juce.com/doc/
tutorial_rectangle_advanced

[5] J. Storer "Developing Graphical User
Interfaces with JUCE", JUCE Summit
2015 https://www.youtube.com/watch?v=
xsCZoE1s_uw

https://www.juce.com/doc/classes
https://www.juce.com/doc/classes
https://www.juce.com/doc/tutorial_rectangle_advanced
https://www.juce.com/doc/tutorial_rectangle_advanced
https://www.youtube.com/watch?v=xsCZoE1s_uw
https://www.youtube.com/watch?v=xsCZoE1s_uw

	Introduction
	Faust GUI architecture files
	Active widgets
	Passive widget
	Widget layout
	Metadata

	JUCE Component class
	Parent and child mechanics
	Component setup mechanics
	Drawing mechanics

	JuceGUI architecture file
	Two different kinds of objects
	The main window
	uiTabs class
	Initialization of the layout
	Dynamic Layout
	The MainContentComponent class

	Other Faust architecture files
	OSC
	MIDI

	Audio integration
	The faust2juce script
	How to use JUCE architecture files
	Conclusion

