Adrien Albouy
email: adrien.albouy@grame.fr

Stéphane Letz
email: letz@grame.fr

Faust audio DSP language for JUCE

Keywords: JUCE, Faust, Domain Specific Language, DSP, real-time, audio

. It consists of a compiler that translates a Faust program into an equivalent C++ program, taking care of generating the most efficient code. JUCE is an open-source cross-platform C++ application framework developed since 2004, and bought by ROLI 1 in November 2014, used for the development of desktop and mobile applications. A new feature to the Faust environnement is the addition of architectures files to provide the glue between the Faust C++ output and the JUCE framework. This article presents the overall design of the architecture files for JUCE.

Introduction

From a technical point of view Faust 2 (Functional Audio Stream) is a functional, synchronous, domain specific language designed for real-time signal processing and synthesis. A unique feature of Faust, compared to other existing languages like Max, PD, Supercollider, etc., is that programs are not interpreted, but fully compiled.

One can think of Faust as a specification language. It aims at providing the user with an adequate notation to describe signal processors from a mathematical point of view. This specification is free, as much as possible, from implementation details. It is the role of the Faust compiler to provide automatically the best possible implementation. The compiler translates Faust programs into equivalent C++ programs taking care of generating the most efficient code. The compiler offers various options to control the generated code, including options to do fully automatic parallelization and take advantage of multicore machines.

The generated code can generally compete with, and sometimes even outperform, C++ code written by seasoned programmers. It works at the sample level, it is therefore suited to implement low-level DSP functions like recursive filters up to fullscale audio applications. It can be easily embedded as it is selfcontained and does not depend of any DSP library or runtime system. Moreover it has a very deterministic behavior and a constant memory footprint.

Being a specification language the Faust code says nothing about the audio drivers or the GUI toolkit to be used. It is the role of the architecture file to describe how to relate the DSP code to the external world [START_REF] Fober | Faust Architectures Design and OSC Support[END_REF]. This approach allows a single Faust program to be easily deployed to a large variety of audio standards (Max-MSP externals, PD externals, VST plugins, CoreAudio applications, JACK applications, etc.), and JUCE is now supported.

The aim of JUCE [3] is to allow software to be written such that the same source code will compile and run identically on Windows, Mac OS X, Linux platforms for the desktop devices, and on Android and iOS for the mobile ones. A notable feature of JUCE when compared to other similar frameworks is its large set of audio functionality. Those services, the user-interface possibilities and the multi-platform exportability position JUCE as a great framework for Faust to get exported on, to have in the future less code to maintain up-to-date, and simpler utilization.

In section 2, the idea and the use of the GUI architecture file will be introduced. In section 3, the JUCE Component hierarchy will be presented without going into many details. Section 4 is the main one, explaining in detail the graphical architecture file for JUCE. MIDI and OSC architecture files are introduced in Section 5. Section 6 will treat of the "glue" between JUCE audio layers and Faust ones. Section 7 presents the faust2juce script. Section 8 is a quick tutorial on how to use JUCE for Faust.

Faust GUI architecture files

A Faust UI architecture is a glue between a host control layer and a Faust module. It is responsible to associate a Faust module parameter to a user interface element and to update the parameter value according to the user actions. This association is triggered by the dsp::buildUserInterface call, where the DSP asks a UI object to build the module controllers.

Since the interface is basically graphic oriented, the main concepts are widget based: a UI architecture is semantically oriented to handle active widgets, passive widgets and widgets layout.

A Faust UI architecture derives a UI class, containing active widgets, passive widgets, layout widgets, and metadata.

Active widgets

Active widgets are graphical elements that control a parameter value. They are initialized with the widget name and a pointer to the linked value. The widget currently considered are Button, ToggleButton, CheckButton, RadioButton, Menu, VerticalSlider, HorizontalSlider, Knob and NumEntry.

A UI architecture must implement a method addxxx (const char* name, float* zone, ...) for each active widget. Additional parameters are available to Slider, Knob, NumEntry, RadioButton and Menu: the init value, the min and max values and the step (RadioButton, Menu and Knob being special kind of Sliders, cf. subsection 2.4, Metadata). Note that all the widgets are added to the current box.

Passive widget

Metadata

The Faust language allows widget labels to contain metadata enclosed in square brackets.

These metadata are handled at UI level by a declare method taking as argument, a pointer to the widget associated value, the metadata key and value: declare(float*, const char*, const char*). Metadata can also declare a DSP as polyphonic, with a line looking like declare nvoices "8" for 8 voices. This will always output a polyphonic DSP, either you use the polyphonic option of the compiler or not. This number of voices can be changed with the compiler (cf. Section 7).

For instance, if the program needs a Slider to be a Knob, those lines are written: declare(&fVslider0, "style", "knob"); addVerticalSlider("Vol", &fVslider0,...);

The style can be a knob, menu, etc... depending on the program.

Multiple aspects of the items can be described with the metadata, such as the type of the item just as seen before, the tooltip of the item, the unit, etc...

JUCE Component class

To implement a complete program, the graphical elements described in the previous section need to be combined with JUCE classes. In the JUCE Framework, the component class is the base-class for all JUCE user-interface objects. The following section explains the relationship between Faust GUI architecture files, and the JUCE mechanics.

Parent and child mechanics

As most frameworks have, JUCE has a hierarchy of Component objects, organized in a tree structure. The common way to set a Component as child of another component is to do parent->addAndMakeVisible(child);. This function sets the child component as visible too, because it's not by default. Multiple functionalities are accessible to run through this Component tree, with methods that give the child Component at index i, or give the parent. There's even a function allowing to get the parent of a Component with a specific type, this type being a derived class of Juce::Component. However, this function does not exist for the child, and imply that dynamic_cast has to be done if you want to get a child of a certain type.

Component setup mechanics

First of all, a Component is drawn if it's visible, and its parent too. If a Component is not visible, its child and all of its children, etc... will not be visible, but as addAndMakeVisible function is used most of the time, this should not be a problem. A Component has a Rectangle<int> boundsRelativeToParent, containing its x and y coordinates, and its width and height. As the variable name implies, the bounds of a Component is relative to its parent, and not absolute in the window ; it is very important in the architecture files for Faust, as will be demonstrated in subsection 4.4.

Drawing mechanics

A Component has two virtual functions 3 that are the main tools to handle a dynamic layout, the void resized() and void paint(Graphics& g) functions.

The resized one is called each time a Component bounds are changed, and the paint one when the Component flag indicates that it needs to be repainted. The mouse cursor being on top of it, a mouse click, the Component bounds being changed, or one or multiple of its child needing to be repainted indicates that it needs to be repainted for example.

There is a design class called LookAndFeel that allows customization of the interface. The LookAndFeel objects defines the appearance of all the JUCE widgets, and subclasses can be used to apply different 'skins' to the application.

There is obviously a lot more to the Juce::Component class, but that's the basics, or at least what the architecture files need.

JuceGUI architecture file

To summarize what has been seen before, the system of widgets and boxes of Faust needs to 3 placeholder functions which programmer must implement be adapted to the Juce::Component mechanics in an architecture file called JuceGUI.h. The following section discusses annotated examples.

Two different kinds of objects

There are two kinds of object used in the adaptation:

• uiComponent, which are basically any items of the Faust program, like sliders or buttons.

• uiBox, which is container component, and so can contain a uiComponent or some others uiBox. The two pure virtual functions are defined to have their own behavior for both uiBox and uiComponent, not being the same obviously.

Both

The virtual void setRatio(); function is virtual because there is a special case with the uiBox, which is setting her own ratio, and need to be asking its child to set their ratios too, in a recursive way.

As said before, uiComponent inherits from those uiBaseComponent functions, and is itself a mother class for plenty of different widgets.

Here's the inheritance diagram: For instance, uiSlider groups every kind of sliders: HorizontalSlider, VerticalSlider, NumEntry and Knob.

The main window

The user interface cannot be shrunk infinitely in order to be always lisible and clear, so a minimal window size is defined. That implies that instead of a basic Component in a DocumentWindow (a resizable window with a title bar and maximise, minimise and close buttons), a Viewport in a DocumentWindow is used, which displays scrollbars when the window gets lower dimensions than the minimal size of the Faust DSP program, allowing to have full access to the user interface even in the lower dimensions.

This Viewport can either contains a uiBox as presented before, or a uiTabs if the program requires tabs.

uiTabs class

The uiTabs class inherits of Juce::TabbedComponent, which is a Juce::Component with a TabbedButtonBar on one of its size. It just needs a Juce::Component for each tab, and a tab name, and it will display them.

A tab layout is needed when the buildUserInterface starts with a openTabBox call. In this, a boolean tabLayout is set to true, to know that it's a tab layout.

While parsing the buildUserInterface, a uiBox is given to the uiTabs every time the current tab is "closed". To do that, a variable called order keeps track of the "level" of the current box. The order starts at 0, is incremented when a new box is opened, and decremented when a box is closed. If the order is 0 in a closeBox() call, then a tab is being closed, and so the current box is added to the uiTabs, using the TabbedComponent::addTab function.

Once all the tabs are closed, the tabBox is closed too, the order is now at -1, and it triggers the initialization function of uiTabs, uiTabs::init(). It'll be described it in the next subsection.

Initialization of the layout

First of all, while parsing the buildUserInterface lines, which are listing the different boxes and items that need to be displayed, the tree is getting built. It's done using the Juce::Component mechanics of addAndMakeVisible. The different uiBaseComponent are added as child of different uiBox, and uiBox display rectangle size and total size are calculated every time a box is closed in the buildUserInterface (i.e. when closeBox() is called).

The uiBox display rectangle size is the sum of his child width and the maximum of his child height, and the contrary depending on its orientation. But margins are added to our display rectangle width and height, 4 pixels per child, for a margin of 2 pixels on the top, left, bottom and right, and the uiBox total size is obtained. This is to avoid an overlapping effect, having two items touching each other. Following the same spirit, 12 pixels are added to the height of the box if its name needs to be displayed, 12 pixels being the space needed to display its name.

Here's the buildUserInterface that display this program: ui_interface->openHorizontalBox("TITLE1"); ui_interface->addVerticalSlider("Slider1", &fVslider0, 0.0f, 0.0f, 6.0f, 1.0f); ui_interface->addVerticalSlider("Slider2", &fVslider1, 0.0f, 0.0f, 6.0f, 1.0f); ui_interface->addVerticalSlider("Slider3", &fVslider2, 0.0f, 0.0f, 6.0f, 1.0f); ui_interface->addVerticalSlider("Slider4", &fVslider3, 0.0f, 0.0f, 6.0f, 1.0f); ui_interface->closeBox();

In Figure 2, the difference between the display rectangle size and the total size can be easily seen. The total size of the box here named "TITLE1" is the lighter gray, and the display rectangle size would be the four darker gray rectangle stick together. The layout is not aligned seamlessly because of the margin that is implemented to avoid the overlapping of the components.

The space left on the top of the box is for its title, and this margin is included in the total size.

h = n-1 i=0 (c i .H) (1)
w = max i∈[0,n-1] c i .W (2)
H = h + 4 * n (3) W = w + 4 (4)
In those equations, H is the total height, W the total width, h the display rectangle height, and w display rectangle width ; c i being the nth child component of the current box.

H might get incremented by 12 pixels, depending on the need to display the box name. 4 pixels for each child component are added on a dimension to have margins between each of them, because they will be placed aside of each other in this dimension, and simply 4 pixels added to the other dimension to have 2 pixels separating parent and child box on each side.

Once buildUserInterface is done, the last box is closed, and the user interface initialized. This last box, that will be called the "main box" is initiated with ratios of 1 and 1, even if they are needed, because it'll take the window size. Here's how the UI is initialized:

• Setting the actual rendering size for the main box, because the total size is set here, but not the Juce::Component bounds.

That's done through the void setBaseComponentSize (Rectangle<int> r) methods, which sets the size of the components, and especially position them right. Concretely, a 30 pixels offset is needed on the height for a tab layout, 30 pixels being the height taken by the tab bar. Only the main box needs to be set with an offset, because other boxes will be positioned depending on its parents coordinates.

• After that, the ratios are calculated for the whole tree, from root to leaves. The horizontal ratio is the component total width divided by its parent display rectangle width, same for the height. This way, it avoids to have the margins to mess with our ratios, and to have a sum of ratio equals to 1 instead of one approaching 1, but not being 1 exactly.

• Last step is to set the LookAndFeel for all uiComponents, which are for all of them the leaves of the trees. So the tree is fully parsed there, root to leaves.

The only possible change in the initialization of the program, is in a case of a tab layout.

The uiTabs::init() method just calls the uiBox::setRatio() and the uiBox::setCompLookAndFeel(LookAndFeel*) for every of its tab component.

While going through all the tabs, the algorithm keeps track of the minimal size of the uiTabs component to be displayed. Its minimal dimensions being the maximum width and the maximum height of all its tabs. There, the tree is built, the total size has been initiated, display rectangle size and the ratios for all components, all the uiBox and uiComponent.

Dynamic Layout

At that point, the user interface is displayed at his original size, but it needs to adapt to the potential resizing of the window.

To do that, the uiBoxes are used to layout all the items. A uiBox item has a void arrangeComponents(Rectangle<int> functionRect) function, which is the main tool to organize the layout. It's called whenever the resized() function of the main box is called.

In this function, the initial rectangle given as argument, that is basically the window size, will propagate through all the child uiBox and uiComponent, in a recursive way [START_REF]Tutorial: Advanced Rectangle techniques[END_REF].

At the beginning, it checks if the name needs to be displayed, and as no child components should be displayed there, it cuts 12 pixels from the top of the functionRect, given as argument.

After that, the margins are sets, so 2 pixels are cut on the left, top, right and bottom side. This way, overlapping components are avoided. Once it's done, it goes through all the child, to give them the right space to occupy and the right position of course.

The algorithm works that way: if the current box is vertical, then it needs to give its child a vertical part functionRect, and a horizontal one for a horizontal box of course.The amount of vertical or horizontal size of the child is calculated, still depending on the vertical nature of the current box. This size is the box current height or width, minus the margins, multiplied by the horizontal or vertical ratio. Concrete example: the current box is a horizontal display, and has 2 child components, one having a horizontal ratio of 0.7 and the other one of 0.3. The box display size is here 1000x500 pixels, and it's total size 1008x504 (2 items and it's a horizontal box, so 2 * (2 * margin) = 8 on the width, and 2 * margin = 4 on the height).

Let's say the size of the window almost doubled, and it's now 2008x1004 (arbitrary simple values). It will calculate that the first item get a 0.7 * (2008-2 * 4) = 0.7 * 2000 = 1400 pixels wide space and the second one 0.3 * (2008-2 * 4) = 600 pixels. First item bounds will be 1400x1000 and the second one 600x1000, height being kept the same, without the margins of course.

On top of that, to keep track of where to place our components, the functionRect get cut off little by little every time a uiBaseComponent is given a rectangle to be displayed in [START_REF] Storer | Developing Graphical User Interfaces with JUCE[END_REF]. Basically, every rectangle that is given to child is removed from the original functionRect, and this allow us the keep track of the good x and y coordinates to give to the child component, with the margin added. It's done over and over again for each child component, cutting from the left or the top of the boxRectangle<int> rect depending on its orientation. A simple buildUserInterface call is needed, set the size of the MainContentComponent, and set the amount of audio channels. Following the same spirit, there is optional code in case of a MIDI, OSC or polyphonic mode.

Other Faust architecture files

Just a GUI architecture file isn't enough to run a Faust program on JUCE, adaptations for different kind of control are also needed, such as OSC and MIDI. Two send and receive ports are defined.

Input OSC messages are decoded by subclassing the JUCE OSCReceiver class, and implementing its OSCReceiver::oscMessageReceived method. Output OSC messages are sent by using the OSCSender::send method.

The special "hello" message allows to retrieve several parameters of the Faust applications: its root OSC port, IP address, input and output port. The "get" message allows to retrieve the current, min and max values for a given parameter. Finally a float value received on a given path will allow to change the parameter value in real-time.

An application wanting to be controlled by OSC messages has to use an instance of the JuceOSCUI class, to be given to the DSP buildUserInterface method. An application wanting to be controlled by MIDI messages has to use an instance of the MidiUI class, created with a juce_midi handler, to be given to the DSP buildUserInterface method.

MIDI

Audio integration

To be connected to the external world, a given Faust DSP has to be connected to an audio driver and a User Interface definition. JUCE framework already contains an abstract audio layer connected to a set of native audio drivers on all development platforms. JUCE developers can choose to deploy their code as standalone audio applications or audio plugins. A standalone application has to subclass the abstract AudioAppComponent class and implement the prepareToPlay, getNextAudioBlock and releaseResources methods:

• prepareToPlay is called just before audio processing starts with a sample rate parameter. The Faust DSP is initiated with this sample rate value, and input/output channels number is possibly adapted to match the capabilities of the used native layer (that can a different number of input/output channels than the DSP).

• getNextAudioBlock is called every time the audio hardware needs a new block of audio data. Audio buffers presented as a AudioSourceChannelInfo data type are retrieved and adapted to be given to the Faust DSP compute method.

• releaseResources is called when audio processing has finished. Nothing special has to be done at the Faust level.

The faust2juce script

There are many scripts availiable in the Faust ecosystem allowing to generate a ready to use binary, project file, or compiled file from a simple DSP file. They are labeled faust2xxx. Following the same spirit, a faust2juce script has been implemented, that allows to create a JUCE project directory from a simple DSP file. The command is used as follow: faust2juce [-options] dspFile.dsp This will create a folder containing a .jucer file, and a "Source" folder containing the Main.cpp and the MainComponent.h. This folder is self contained, all needed Faust includes are in the MainComponent.h, including the compiled DSP.

There are the options available at this moment for faust2juce:

• -nvoices x: produces a polyphonic selfcontained DSP with x voices, ready to be used with MIDI events

• -midi: activates MIDI control

• -osc: activates OSC control

• -help: shows the different options available

As described in subsection 2.4, a number of voices can be hardcoded for a polyphonic DSP, but you can change it with the nvoices option. It has the priority over the metadata declaration. In the case of a non-hardcoded polyphonic DSP, it will just make it a polyphonic one with this compiler option. Some others options will be added later, it's still in development.

How to use JUCE architecture files

Using JUCE to export a Faust DSP program file is easy: create the project folder with faust2juce [-options] dspFile.dsp and drag & drop the created folder named after the DSP to the "example" folder contained in the JUCE git folder.

Simply execute the .jucer file, and select "Save Project and Open in IDE...", the first time at least, to generate the JUCE header files, etc... And it's ready to execute your program on whatever export platform you chose.

Conclusion

The Faust audio DSP language implementaion is now possible with JUCE, and can theoretically be exported to every platform that JUCE supports. It has been tested on OS X and iOS, both work correctly, and has a close performance to already available options, such as faust2caqt for OS X and faust2ios, for iOS.

MIDI control, polyphonic mode, and OSC control are implemented, more features are in progress of development, to permit a full compatibility with the whole Faust library. JUCE offers two types of "audio project", standalone applications or plug-in. Currently the FAUST architecture files are limited to describe standalone applications, but we are looking forward to adapt our code for plug-ins.

Figure 1 :

 1 Figure 1: Inheritance diagram

Figure 2 :

 2 Figure 2: Representation of the display rectangle size and the total size of a box with four child

Figure 3 :

 3 Figure 3: Representation of the layout algorithm

5. 1 OSC

 1 OSC integration has been done by developing a new JuceOSCUI class, subclass of the base UI class.

 The mouseDoubleClick function is a JUCE overridable function, which is called every time a Component is double-clicked. Here it's used to call the writeDebug function, showing different characteristics of the double clicked uiBox or uiComponent.

		are	derived	classes	of	a
	uiBaseComponent class, which is itself a
	derived class of Juce::Component.	
	The uiBaseComponent class regroups meth-
	ods shared by both uiBox and uiComponent,
	like void setRatio(), int getTotalWidth(),
	etc....	This way, too many dynamic_cast
	in our code are avoided. Here's what the
	uiBaseComponent class contains:	
	float fHRatio, fVRatio;		
	int fTotalWidth, fTotalHeight;	
	int fDisplayRectHeight,		
	fDisplayRectWidth;		
	String fName;			
	uiBaseComponent(int totWidth,	
		int totHeight, String name);
	int getTotalHeight() ;		
	int getTotalWidth();		
	virtual void setRatio();		
	float getHRatio();		
	float getVRatio();		
	String getName();		
	void setHRatio();		
	void setVRatio()		
	void setBaseComponentSize		
			(Rectangle<int> r);
	void mouseDoubleClick		
	(const MouseEvent &event) override;
	virtual void writeDebug() = 0;	
	virtual void setCompLookAndFeel	
	(LookAndFeel* laf) = 0;