
HAL Id: hal-02158706
https://hal.science/hal-02158706

Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE FAUST PHYSICAL MODELING LIBRARY: A
MODULAR PLAYGROUND FOR THE DIGITAL

LUTHIER
Romain Michon, Julius Smith, Chris Chafe, Ge Wang, Matthew Wright

To cite this version:
Romain Michon, Julius Smith, Chris Chafe, Ge Wang, Matthew Wright. THE FAUST PHYSICAL
MODELING LIBRARY: A MODULAR PLAYGROUND FOR THE DIGITAL LUTHIER. Interna-
tional Faust Conference, 2018, Mainz, Germany. �hal-02158706�

https://hal.science/hal-02158706
https://hal.archives-ouvertes.fr

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

THE FAUST PHYSICAL MODELING LIBRARY: A MODULAR PLAYGROUND FOR THE
DIGITAL LUTHIER

Romain Michon1,2, Julius O. Smith1, Chris Chafe1, Ge Wang1, and Matthew Wright1

1Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, USA
2GRAME – Centre National de Création Musicale, Lyon, France

rmichon@ccrma.stanford.edu

ABSTRACT

This paper introduces the FAUST Physical Modeling Library, an
environment to create physical models of musical instruments in a
modular way in the FAUST programming language. Low and high
level elements can be combined to implement existing or com-
pletely novel instruments. Various examples of physical models
are provided. The combined use of mesh2faust, a tool to gen-
erate FAUST physical models from 3D drawings, and of the FAUST
Physical Modeling Library is also demonstrated through the im-
plementation of a marimba physical model.

1. INTRODUCTION

The FAUST programming language has been used extensively in
the framework of waveguide [1] and modal [2] physical modeling
of musical instruments. Implementing such algorithms in FAUST
is eased by the wide range of functions available in the FAUST
DSP libraries [3] and by the block-diagram/signal-oriented syntax
of the language.

Julius Smith was the first to exploit FAUST’s potential in this
context by implementing a virtual electric guitar and its related ef-
fects [4]. This model was used later as the basis for GeoShred,1 a
mobile music app where a touchscreen interface controls a FAUST
electric guitar physical model. Smith et al. also implemented a
waveguide mesh [5] that can be used to model nonlinear percus-
sion instruments.

Similarly, the FAUST-STK [6] which is a collection of phys-
ical models implemented in FAUST and based on some of the al-
gorithms of the “original” STK [7] was implemented at the same
period. Even though FAUST-STK models share many functions
through the instrument.lib FAUST library, they are still im-
plemented as standalone objects, and virtual instrument parts can’t
be reused.

The idea of creating a physical modeling environment where
musical instrument “parts” (e.g., embouchures, tubes, strings, bod-
ies, etc.) can be assembled modularly has been explored in vari-
ous projects such as Modalys [8] and CORDIS-ANIMA[9]. More
recently, Synth-A-Modeler [10] was introduced. It offers a graphi-
cal environment for high-level physical modeling/“digital lutherie”
and uses FAUST internally to implement its models.

FAUST itself makes it rather difficult to combine functions im-
plementing instrument parts/elements, mostly because the consti-
tuting elements of most musical instruments are usually coupled
to each other, which requires the use of bi-directional connections,
a feature that FAUST doesn’t provide “out-of-the-box.”

1http://www.moforte.com/ All the URLs presented in this pa-
per were verified on March 12, 2018.

In this paper, we introduce the FAUST Physical Modeling Li-
brary (FPML): physmodels.lib,2 an environment to create
physical models of musical instruments in a modular way. Low
and high level elements can be combined to implement existing or
completely novel instruments.

First, we introduce a new system implementing a bidirectional
block-diagram algebra in FAUST. Next, we demonstrate how it
can be used to assemble virtual instrument parts: the example of
the violin (bowed string) is studied in this context. We then show
how mesh2faust [11] can be used to generate custom instru-
ment parts to be used with the FAUST Physical Modeling Library.
Finally, future directions for this work are presented in the conclu-
sion.

2. BIDIRECTIONAL BLOCK-DIAGRAM ALGEBRA

In the physical/acoustical world, waves propagate in multiple di-
mensions and directions across the different parts of musical in-
struments. Thus, coupling among the constituting elements of an
instrument sometimes plays an important role in its general acous-
tical behavior [12]. Coupling might be limited and even neglected
when designing models of some instruments such as the electric
guitar where energy is transmitted from the string to the pickup in
a predominantly unidirectional way [4]. On the other hand, cou-
pling is crucial for other types of instruments such as woodwinds
(e.g., the clarinet), where the frequency of vibration of the reed(s)
is determined by the length of the connected tube.

Coupling can be implemented by creating bidirectional con-
nections between the different elements of a model. The block-
diagram algebra of FAUST allows us to connect blocks in a unidi-
rectional way (from left to right) and feedback signals (from right
to left) can be implemented using the tilde (~) diagram composi-
tion operation:

process = (A : B) ~ (C : D) ;

where A, B, C, and D are hypothetical functions with a single ar-
gument and a single output. The resulting FAUST-generated block
diagram can be seen in Figure 1.

In this case, the D/A and the C/B couples can be seen as bidi-
rectional blocks/functions that could implement some musical in-
strument part. However, the FAUST semantics doesn’t allow them
to be specified as such from the code (A, B, C, and D must be de-
clared all together as part of the same expression), preventing the
implementation of “bidirectional functions.” Since this feature is
required to create a library of physical modeling elements, we had
to implement it.

2The FAUST Physical Modeling Library is now part of the FAUST dis-
tribution.

IFC-1

https://ccrma.stanford.edu
http://grame.fr
mailto:rmichon@ccrma.stanford.edu
http://www.moforte.com/

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

A B

CD

process

Figure 1: Bidirectional Construction in FAUST Using the Tilde
Diagram Composition Operation.

Bidirectional blocks in the FAUST Physical Modeling Library
all have three inputs and outputs. Thus, an empty block can be
expressed as:

emptyBlock = _,_,_;

The first input and output correspond to left-going waves (e.g.,
C and D in Figure 1), the second input and output to right-going
waves (e.g., A and B in Figure 1), and the third input and output
can be used to carry any signal to the end of the algorithm. As
we’ll see in §3, this can be useful when picking up the sound at the
middle of a virtual string, for example.

The chain primitive (part of physmodels.lib) connects
bidirectional blocks to each other. For example, an open waveg-
uide (no terminations) can be expressed as:

waveguide(nMax,n) =
par(i,2,de.fdelay4(nMax,n)),_;

where nMax is the maximum length of the waveguide in samples
and n its current length, could be connected to our emptyBlock:

foo = chain(emptyBlock : waveguide(256,n) :
emptyBlock) ;

Note the use of fdelay4 in waveguide, which is a fourth order
fractional delay line [13].

The FAUST compiler is not able yet to lay out the block di-
agram corresponding to the previous expression in an organized
bidirectional way. However, a “hand-made” diagram can be seen
in Figure 2.

The placement of elements in a chain matters and corre-
sponds to their order in the physical/acoustical world. For exam-
ple, for a set of hypothetical functions implementing the different
parts of a violin, we could write:

violin =
chain(nuts : string : bridge : body);

The main limitation of this system is that it introduces a one
sample delay in both directions for each block in the chain due to
the internal use of ~ [14]. This has to be taken into account when
implementing certain types of elements such as a string or a tube.

Terminations can be added on both sides of a chain us-
ing lTermination(A,B) for a left-side termination and
rTerminations(B,C) for a right-side termination where B
can be any bidirectional block, including a chain, and A and C
are functions that can be put between left and right-going signals
(see Figure 3).

A signal x can be fed anywhere in a chain by using the in(x
) primitive. Similarly, left and right-going waves can be summed
and extracted from a chain (via the third output) using the out
primitive (see Code Listing 1).

Finally, a chain of blocks A can be “terminated” using
endChain(A) which essentially removes the three inputs and
the first two outputs of A.

Assembling a simple waveguide string model with “ideal”
rigid terminations is simple using this framework:

string(length,pluckPosition,excitation) =
endChain(wg)

with{
maxStringLength = 3; // in meters
lengthTuning = 0.08; // adjusted by hand
tunedLength = length-lengthTuning;
// upper string segment length
nUp = tunedLength*pluckPosition;
// lower string segment length
nDown = tunedLength*(1-pluckPosition);
// left phase inversion
lTerm = lTermination(*(-1),emptyBlock);
// right phase inversion
rTerm = rTermination(emptyBlock,*(-1));
stringSegment(maxLength,length) =

waveguide(nMax,n)
with{

nMax = maxLength : l2s;
// length in samples
n = length : l2s/2;

};
wg = chain(// waveguide chain

lTerm :
stringSegment(maxStringLength,nUp) :
in(excitation) : out :
stringSegment(maxStringLength,nDown) :
rTerm

);
};

Listing 1: “Ideal” string model with rigid terminations.

In this case, since in and out are placed next to each other
in the chain, the position of excitation and the position of the
pickup are the same as well.

3. ASSEMBLING HIGH LEVEL PARTS: VIOLIN
EXAMPLE

The FAUST Physical Modeling Library contains a wide range
of ready-to-use instrument parts and pre-assembled models. An
overview of the content of the library is provided in the FAUST li-
braries documentation [13]. Detailing the implementation of each
function of the library would be interesting, however this section
focuses on one of its models: violinModel (see Code List-
ing 2) which implements a simple bowed string connected to a
body through a bridge.

violinModel(stringLength,bowPressure,
bowVelocity,bowPosition) =

endChain(modelChain)
with{

stringTuning = 0.08;

IFC-2

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

emptyBlock waveguide(256,g) emptyBlock
RightGoingWaves

LeftGoingWavesOutput
Figure 2: Bidirectional construction in FAUST using the chain primitive.

lTermination(A,B)

A
B

C
B

rTermination(B,C)

Figure 3: lTermination(A,B) and rTermination(B,C)
in the FAUST Physical Modeling Library.

stringL = stringLength-stringTuning;
modelChain = chain(
violinNuts :
violinBowedString(stringL,bowPressure,

bowVelocity,bowPosition) :
violinBridge : violinBody : out

);
};

Listing 2: violinModel: a simple violin physical model from
the FAUST Physical Modeling Library.

violinModel assembles various high-level functions im-
plementing violin parts. violinNuts is a termination
applying a light low-pass filter on the reflected signal.
violinBowedString is made out of two open string segments
allowing us to choose the bowing position. The bow nonlinearity
is implemented using a table. violinBridge implements the
“right termination” as well as the reflectance and the transmittance
filters [1]. Finally, violinBody is a simple violin body modal
model.

In addition to its various models and parts, the FAUST Physical
Modeling Library also implements a series of ready-to-use models
hosting their own user interfaces [13]. The corresponding func-
tions end with the _ui suffix. For example:

process = pm.violin_ui;

is a complete FAUST program adding a simple user interface to
control the violin model presented in Code Listing 2.

While [...]_ui functions associate continuous UI elements
(e.g., knobs, sliders, etc.) to the parameters of a model, functions
ending with the _ui_MIDI prefix automatically link the FAUST
parameters (i.e., frequency, gain, and note-on/off) to MIDI using
envelope generators. Thus, such functions are ready to be con-
trolled by a MIDI keyboard.

Nonlinear behaviors play an important role in some instru-
ments (e.g., gongs, cymbals, etc.). While waveguide models and

modal synthesis are naturally linear, nonlinearities can be intro-
duced using nonlinear allpass ladder filters [5]. allpassNL im-
plements such a filter in the FAUST Physical Modeling Library.

Some of the physical models of the FAUST-STK [6] were
ported to the FAUST Physical Modeling Library and are available
through various functions summarized in Table 1.

FAUST-STK Model Corresponding FPML Functions
bowed.dsp violin / violin_ui /

violin_ui_MIDI
brass.dsp brassModel / brass_ui /

brass_ui_MIDI
clarinet.dsp clarinetModel /

clarinet_ui /
clarinet_ui_MIDI

fluteStk.dsp fluteModel / flute_ui /
flute_ui_MIDI

Table 1: FAUST-STK models and their corresponding function re-
implementations in the FAUST Physical Modeling Library.

4. EXAMPLE: MARIMBA PHYSICAL MODEL USING
FPML AND MESH2FAUST

This section briefly demonstrates how a simple marimba physical
model can be made using mesh2faust [11] and FPML.3 The
idea is to use a 3D CAD model of a marimba bar, generate the
corresponding modal model, and then connect it to a tube model
implemented in FPML.

A simple marimba bar 3D model was made by extruding a
marimba bar cross section (see Figure 4) using the Inkscape to
OpenSCAD tool provided with mesh2faust [11]. The result-
ing CAD model was then turned into a volumetric mesh by im-
porting it to MeshLab4 and by uniformly re-sampling it to have
approximately 4500 vertices. The mesh produced during this step
(marimbaBar.obj in the following code listing) was processed
by mesh2faust using the following command:

mesh2faust --infile marimbaBar.obj
--nsynthmodes 50 --nfemmodes 200
--maxmode 15000
--expos 2831 3208 3624 3975 4403
--freqcontrol --material 1.3E9 0.33 720
--name marimbaBarModel

3An extended version of this example with more
technical details is also available here: https://
ccrma.stanford.edu/~rmichon/faustTutorials/
#making-custom-elements-using-mesh2faust

4http://www.meshlab.net/

IFC-3

https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-custom-elements-using-mesh2faust
http://www.meshlab.net/

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

2D Drawing
Inkscape to OpenSCAD

OpenSCAD to MeshLab

3D CAD Model

mesh2faustFPML Model

Volumetric Mesh

Figure 4: Marimba bar model – steps from a 2D drawing to a FAUST modal model.

IFC-4

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

The material parameters are that of rosewood which is tra-
ditionally used to make marimba bars. The number of modes is
limited to 50 and various excitation positions were selected to be
uniformly spaced across the horizontal axis of the bar.

The --freqcontrol switch activates “frequency control
mode’,’ to be able to transpose the modes of the generated model
relative to the fundamental frequency, making the model more
generic.

A simple marimba resonator was assembled using FPML and
is presented in Code Listing 3. It is made out of an open tube
where two simple lowpass filters placed at its extremities are used
to model the wave reflections. The model is excited on one side of
the tube and sound is picked-up on the other side.

marimbaResTube(tubeLength,excitation) =
endChain(tubeChain)

with{
lengthTuning = 0.04;
tunedLength = tubeLength-lengthTuning;
absorption = 0.99;
lowpassPole = 0.95;
endTubeReflection =
si.smooth(lowpassPole)*absorption;

tubeChain = chain(
in(excitation) :
terminations(endTubeReflection,

openTube(maxLength,tunedLength),
endTubeReflection) :

out
);

};

Listing 3: Simple marimba resonator tube implemented with
FPML.

Code Listing 4 demonstrates how the marimba bar model gen-
erated with mesh2faust (marimbaBarModel) can be simply
connected to the marimba resonator. A unidirectional connection
can be used in this case since waves are only transmitted from the
bar to the resonator.

marimbaModel(freq,exPos) =
marimbaBarModel(freq,exPos,maxT60,

T60Decay,T60Slope) :
marimbaResTube(resTubeLength)

with{
resTubeLength = freq : f2l;
maxT60 = 0.1; T60Decay = 1; T60Slope = 5;

};

Listing 4: Simple marimba physical model.

This model is now part of the FAUST Physical Modeling Li-
brary. More examples of models created using this technique can
be found on-line.5

5. CONCLUSIONS

The FAUST Physical Modeling Library is far from being exhaus-
tive and many models and instruments could be added to it. We

5FAUST Physical Modeling Toolkit Webpage: https://ccrma.
stanford.edu/~rmichon/pmFaust/.

believe that mesh2faust will help enlarge the set of functions
available in this system.

The framework presented in §2 allows us to assemble the dif-
ferent parts of instrument models in a simple way by introducing
a bidirectional block diagram algebra to FAUST. While it pro-
vides a high level approach to physical modeling, FAUST is not
able to generate the corresponding block diagram in a structured
way. This would be a nice feature to add.

Similarly, we would like to extend the idea of being able to
make multi-dimensional block diagrams in FAUST by adding new
primitives to the language.

6. REFERENCES

[1] Julius Orion Smith, Physical Audio Signal Processing for
Virtual Musical Instruments and Digital Audio Effects, W3K
Publishing, 2010.

[2] Jean-Marie Adrien, “The missing link: Modal synthesis,”
in Representations of Musical Signals, chapter The Miss-
ing Link: Modal Synthesis, pp. 269–298. MIT Press, Cam-
bridge, USA, 1991.

[3] Romain Michon, Julius Smith, and Yann Orlarey, “New sig-
nal processing libraries for Faust,” in Proceedings of the
Linux Audio Conference (LAC-17), Saint-Etienne, France,
May 2017, Paper accepted to the conference but not pub-
lished yet.

[4] Julius Orion Smith, “Virtual electric guitars and effects us-
ing Faust and Octave,” in Proceedings of the Linux Audio
Conference (LAC-08), KHM, Cologne, Germany, 2008, pp.
123–127.

[5] Julius Orion Smith and Romain Michon, “Nonlinear allpass
ladder filters in Faust,” in Proceedings of the 14th Inter-
national Conference on Digital Audio Effects, Paris, France,
September 2011, IRCAM.

[6] Romain Michon and Julius O. Smith, “Faust-STK: a set
of linear and nonlinear physical models for the Faust pro-
gramming language,” in Proceedings of the 14th Interna-
tional Conference on Digital Audio Effects (DAFx-11), Paris,
France, September 2011.

[7] Perry Cook and Gary Scavone, “The Synthesis Toolkit (stk),”
in Proceedings of the International Computer Music Confer-
ence (ICMC-99), Beijing, China, 1999.

[8] René Caussé, Joel Bensoam, and Nicholas Ellis, “Modalys,
a physical modeling synthesizer: More than twenty years of
researches, developments, and musical uses,” Journal of the
Acoustical Society of America, vol. 130, no. 4, 2011.

[9] Claude Cadoz, Annie Luciani, and Jean Loup Florens,
“Cordis-anima: A modeling and simulation system for sound
and image synthesis: The general formalism,” Computer
Music Journal, vol. 17, no. 1, pp. 19–29, Spring 1993.

[10] Edgar Berdahl, “An introduction to the Synth-A-Modeler
compiler: Modular and open-source sound synthesis using
physical models,” in Proceedings of the Linux Audio Confer-
ence (LAC-12), Stanford, USA, May 2012.

[11] Romain Michon, Sara R. Martin, and Julius O. Smith,
“Mesh2Faust: a modal physical model generator for the
Faust programming language – application to bell model-
ing,” in Proceedings of the International Computer Music
Conference (ICMC-17), Shanghai, China, October 2017.

IFC-5

https://ccrma.stanford.edu/~rmichon/pmFaust/
https://ccrma.stanford.edu/~rmichon/pmFaust/

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

[12] Neville H. Fletcher and Thomas D. Rossing, The Physics of
Musical Instruments, 2nd Edition, Springer Verlag, 1998.

[13] “Faust libraries documentation,” On-line, http://
faust.grame.fr/library.html.

[14] GRAME – Centre National de Création Musicale, Lyon,
France, FAUST Quick Reference, June 2017.

IFC-6

http://faust.grame.fr/library.html
http://faust.grame.fr/library.html

	1 Introduction
	2 Bidirectional Block-Diagram Algebra
	3 Assembling High Level Parts: Violin Example
	4 Example: Marimba Physical Model Using FPML and Mesh2faust
	5 Conclusions
	6 References

