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Some qualitative properties of branching multiplicities
N. Ressayre

Abstract. Let G be a connected reductive subgroup of a complex connected reduc-
tive group Ĝ. We consider the multiplicities cG,Ĝ as a function from the set of pairs
of dominant weights to the set of integers. We recall that this function is piecewise
quasipolynomial. Its support is a finitely generated semigroup ; we describe an irredun-
dant list of inequalities determining the cone generated. The relation with the projection
of coadjoint orbits for the Lie algebras of the compact forms of G and Ĝ is also recalled.

We also consider the multiplicities for the fusion products for G. More precisely, we
explain how the small quantum cohomology rings of homogeneous spaces G/P allow to
parametrize an irredundant set of inequalities determining the multiplicative eigenvalue
problem for the compact form K of G.

1. Introduction
Let G be a connected reductive subgroup of a complex connected reductive group
Ĝ. The branching problem consists in

decomposing irreducible representations of Ĝ as sum of irreducible G-modules.

Fix maximal tori T ⊂ T̂ and Borel subgroups B ⊃ T and B̂ ⊃ T̂ of G and Ĝ.
Let X(T ) denote the group of characters of T and let X(T )+ denote the set of
dominant characters. For ν ∈X(T )+, VG(ν) denotes the irreducible representation
of highest weight ν. Similarly we use notation X(T̂ ), X(T̂ )+, VĜ(ν̂) relatively to
Ĝ. For any G-module V , the subspace of G-fixed vectors is denoted by V G. For
ν ∈X(T )+ and ν̂ ∈X(T̂ )+, set

cG,Ĝ(ν, ν̂) = dim(VG(ν)⊗ VĜ(ν̂))G. (1)

The branching problem is equivalent to the knowledge of these coefficients since

VĜ(ν̂) = ∑
ν∈X(T )+

cGĜ(ν, ν̂)VG(ν)∗, (2)

where VG(ν)∗ is the dual of VG(ν).
For G diagonally embedded in Ĝ = G ×G, VĜ(ν̂) is the tensor product of two

irreducible representations of G and the coefficient cG,Ĝ(ν, ν̂) are the multiplicities
for the decomposition of VĜ(ν̂) as a sum of irreducible G-modules. If G = GLn(C),
X(T )+ identifies with the set of non-increasing sequences ν = (ν1 ≥ ⋅ ⋅ ⋅ ≥ νn) of n
integers and the coefficients are the Littlewood-Richardson coefficients cνλµ. For
Ĝ = GLn(C) and G = T̂ , the multiplicities cG,Ĝ(ν, ν̂) are the Kostka coefficients
given by the Weyl character formula. In this note, we recall some qualitive results
on the function

cGĜ ∶ X(T )+ ×X(T̂ )+ Ð→ Z≥0

(ν, ν̂) z→ cGĜ(ν, ν̂).
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More precisely:

(i) There exists a polyhedral convex cone Q≥0LR(G, Ĝ) outside which the mul-
tiplicities are zero. A multiplicity corresponding to a point in this cone can
also vanish, but it becomes nonzero after scalar multiplication.

(ii) The cone Q≥0LR(G, Ĝ) is the support of some fan called GIT-fan and the
function cGĜ is quasipolynomial on each cone of the fan.

(iii) In Section 3, we give an explicit description of the irredundant list of linear
inequalities of the cone Q≥0LR(G, Ĝ). These inequalities are parametrized
by pairs of Schubert classes for some G and Ĝ homogeneous spaces that
satisfy some cohomological condition. This condition is expressed by the
Belkale-Kumar product.

(iv) We also present a description for coefficients on the boundary of the cone
Q≥0LR(G, Ĝ): they are equal to similar coefficients for Levi subgroups of G
and Ĝ.

(v) The support LR(G, Ĝ) of the function cGĜ is a finitely generated semi-
group generating a group ZLR(G, Ĝ). We present some results comparing
LR(G, Ĝ) with the set ZLR(G, Ĝ) ∩Q≥0LR(G, Ĝ) of integral points in the
cone. This problem, called the question of saturation is far from being com-
pletely solved and we present some conjectures.

(vi) We present the PRV conjecture and its recent generalizations. These state-
ment allow to produce easily points in the semigroup LR(G, Ĝ).

Consider the case of the tensor product decomposition, that is when G is di-
agonally embedded in Ĝ = G ×G. Let K a maximal compact subgroup of G and
k its Lie algebra. It turns out that the cone Q≥0LR(G, Ĝ) identifies with the set
of triples (O1,O2,O3) of adjoint K-orbits in k such that the set O1 +O2 +O3 of
sums contains 0. This spectral problem admits a multiplicative analogue: describe
the set of triples (O1,O2,O3) of conjugacy classes in K such that O1 ⋅ O2 ⋅ O3

contains the unit e of K. By a result of Meinrenken-Woodward, these triples are
described by a convex polytope. Here, we describe recent results that give ex-
plicitly the minimal list of linear inequalities characterizing this polytope. These
inequalities are parametrized by triples of Schubert classes satisfying some con-
ditions expressed using the quantum cohomology. If the additive case is related
to tensor product decomposition, the multiplication problem is equivalent to the
description of the asymptotic support of the fusion product. In this context, the
question of saturation can also be asked: the only known result due to Belkale is
in type A.

2. Quasipolynomiality and GIT-fan
2.1. A brief review on Geometric Invariant Theory. Consider a
complex irreducible projective variety X acting on by a reductive group G. The
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set of G-linearized line bundles on X is a group (for the tenor product) denoted by
PicG(X). For L ∈ PicG(X), let H0(X,L) denote the G-module of regular sections
of L and let H0(X,L)G denote the subspace of G-invariant sections. We consider
the following set of semi-stable points for L:

Xss(L) = {x ∈X : ∃n > 0 and τ ∈ H0(X,L⊗n)G such that τ(x) ≠ 0} . (3)

Note that this definition of Xss(L) is NOT standard. Indeed, it is usually
agreed that the open subset defined by the non vanishing of τ is affine. Our
definition coincides with the usual one if L is ample. A line bundle L over X is
said to be semi-ample if a positive power of L is base point free.

2.2. The GIT-fan. To simplify, we assume that the rank of the Picard group
of X, and hence that of PicG(X) are finite. Otherwise one has to consider the
Neron-Severi group (see [DH98]). Since Xss(L) = Xss(L⊗n) for any n > 0, the
definition of Xss(L) extends to the case when L ∈ PicG(X)Q. Following [DH98],
we say that two points L1 and L2 in PicG(X)Q are GIT-equivalent if and only if
Xss(L1) = Xss(L2). A point L ∈ PicG(X)Q is said to be G-effective if Xss(L) is
not empty. Let C+(X) denote the cone of PicG(X)Q generated by the points L⊗1
where L ∈ PicG(X) is semi-ample. Let CG,+(X) denote the cone of PicG(X)Q
generated by the points L ⊗ 1 where L ∈ PicG(X) is semi-ample and G-effective.
Then C+(X) and CG,+(X) are convex. A sub-cone of C+(X) is said to be polyhedral
in C+(X) if it is the intersection of C+(X) with finitely many rational and closed
half spaces of PicG(X)Q. The geometry of the GIT-classes is described by the
following result.

Theorem 2.1. The cone CG,+(X) is polyhedral in C+(X). There are finitely
many GIT-classes. Each GIT-class is the relative interior of some convex cone
polyhedral in C+(X). The closures of the GIT-classes in C+(X) form a fan, called
the GIT-fan.

Let C1 and C2 be two GIT-classes and fix L1 ∈ C1 and L2 ∈ C2. Then Xss(L1)
is contained in Xss(L2) if and only if C1 contains C2 if and only if C2 is a face of
C1.

The points L⊗1 for ample L ∈ PicG(X) generate an open convex cone C++(X)
in C+(X). Theorem 2.1 when C+(X) is replaced by C++(X) is proved in [Res00]
following [DH98, Tha96]. The proofs in [Res00] can be applied without changing
to get Theorem 2.1.

2.3. Application to branching coefficients. We now explain the ge-
ometric interpretation of the branching coefficients allowed by Borel-Weil theorem.
Let X = G/B × Ĝ/B̂. For any pair (ν, ν̂) in X(T ) ×X(T̂ ), there exists a unique
(G × Ĝ)-linearized line bundle L(ν, ν̂) on X such that T × T̂ acts on the base-
point of X with weight −(ν, ν̂). Then L(ν, ν̂) is semi-ample if and only if ν and
ν̂ are dominant. In this case, H0(X,L(ν, ν̂)) is a G × Ĝ-module isomorphic to
VG(ν)∗ ⊗ VĜ(ν̂)∗. In particular cG,Ĝ(ν, ν̂) is the dimension of H0(X,L(ν, ν̂))G
where G acts diagonally.
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Consider the morphism θ ∶ X(T × T̂ )Q Ð→ PicG(X)Q that maps (ν, ν̂) on
L(ν, ν̂) endowed with the diagonal G-action. The pullback θ−1(C+(X)) is the cone
X(T × T̂ )+Q generated by dominant weights, and θ−1(CG,+(X)) is

Q≥0LR(G, Ĝ) ∶= {ν, ν̂) ∈X(T × T̂ )+Q ∶ ∃n > 0 cG,Ĝ(nν,nν̂) ≠ 0}.

The pullback in Q≥0LR(G, Ĝ) of a GIT-class in PicG(X)Q is called a GIT-class.

Quasipolynomiality. Let g and ĝ denote the Lie algebras of G and Ĝ. It turns
out that Q≥0LR(G, Ĝ) has nonempty interior in X(T × T̂ )Q if and only if no ideal
of g is an ideal of ĝ. Under this assumption, the GIT-classes C of nonempty interior
in X(T ×T̂ )+Q are called the GIT-chambers. Their closures C are the maximal cones
of the GIT-fan.

Theorem 2.2. Let C be a GIT-chamber. There exists a cofinite lattice ΛC of
X(T × T̂ ) and a collection of polynomial functions fl indexed by l ∈ X(T × T̂ )/ΛC
such that

cG,Ĝ(ν, ν̂) = fl(ν, ν̂),

for any (ν, ν̂) ∈ C ∩X(T × T̂ ) congruent to l modulo ΛC.

Meinrenken-Sjamaar proved Theorem 2.2 in [MS99] using symplectic geometry.
A proof using the Riemann-Roch theorem for singular varieties can be found in
[KP13]. Examples of GIT-fans and quasipolynomial functions can be found in
[KP13, AH09, Ras04, Kot11, CT04]. Another example is given in Section 3.4.

3. The cone Q≥0LR(G,Ĝ)

Theorems 2.1 or 5.1 imply that Q≥0LR(G, Ĝ) is a closed convex polyhedral cone
in X(T × T̂ )Q. The aim of this section is to describe this cone by an explicit list
of inequalities.

3.1. Spectral interpretation. Let K and K̂ be two maximal compact
subgroups of G and Ĝ such that K ⊂ K̂. Let k and k̂ denote the Lie algebras of K
and K̂. Consider the projection p ∶ k̂Ð→ k orthogonal for the Cartan-Killing form
of k̂. We are interested in the projections of adjoint orbits of k̂.

Up to changing T , we may assume that H =K ∩T is a Cartan subgroup of K.
Consider the Lie algebra h of H. Any root α of (G,T ) induces (by derivation) a
linear form (still denoted by α) on the Lie algebra Lie(T ) of T . The Lie algebra
Lie(H) of H identifies with the real Lie sub-algebra of ξ ∈ Lie(T ) such that α(ξ) ∈√
−1R for any root α. Consider the group X∗(T ) of one parameter subgroups of

T and its paring ⟨⋅, ⋅⟩ with X(T ). The dominant chamber in X∗(T )R ∶=X∗(T )⊗R
is

X∗(T )+R = {λ ∈X∗(T )R ∶ ⟨λ,α⟩ ≥ 0 for any simple root α}.
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By derivation, X∗(T ) identifies with a sub-lattice of Lie(T ), and hence, X∗(T )R
identifies with

√
−1 Lie(H). Any adjoint K-orbit in k contains a unique element

belonging to
√
−1X∗(T )+R; for any λ ∈ X∗(T )+R, we denote by Oλ the adjoint

K-orbit containing
√
−1λ. Similarly, we define the adjoint K̂-orbit Oλ̂ for any

λ̂ ∈X∗(T̂ )+R. Let w0 be the longest element of the Weyl group of G. Set

C(K,K̂) = {(λ, λ̂) ∈X∗(T )+R ×X∗(T̂ )+R ∶ O−w0λ ⊂ p(Oλ̂)}.

The Kirwan convexity theorem (see [Kir84a]) in symplectic geometry shows that
C(K,K̂) is a closed polyhedral cone.

Fix a W -invariant scalar product (⋅, ⋅)T on X∗(T )R. Then, for λ ∈ X∗(T )R,
(λ, ⋅)T is a linear form on X∗(T )R and it corresponds to a point in X∗(T )R for the
pairing ⟨⋅, ⋅⟩. Similarly (⋅, ⋅)T̂ is fixed on X∗(T̂ )Q.

Theorem 3.1. Let (λ, λ̂) ∈ X∗(T × T̂ )+Q. Then (λ, λ̂) ∈ C(K,K̂) if and only if
((λ, ⋅)T , (λ̂, ⋅)T̂ ) ∈ Q≥0LR(G, Ĝ).

As it was pointed out by Guillemin-Sternberg [GS82a], Heckman’s work [Hec82]
implies Theorem 3.1. This result is also a consequence of Kempf-Ness’ theorem
[KN79].

Example. If G is diagonally embedded in Ĝ = G×G then the branching problem
is the problem of decomposition of tensor products of 2 irreducible representations
of G. The cone Q≥0LR(G, Ĝ) is denoted by Q≥0LR(G3). The cone C(K,K̂) =∶
C(K3) identifies with the set of triples (O1,O2,O3) of adjoint orbits in k such that
O1 +O2 +O3 contains 0. A good survey on this case is [Kum13].

3.2. Belkale-Kumar Schubert calculus. It is known since A. Klyachko
[Kly98] that the inequalities that characterize the cone Q≥0LR(G, Ĝ) are related
to the cohomology of flag varieties, that is to Schubert calculus. In 2006, Belkale-
Kumar [BK06] defined a new product on the cohomology groups of flag varieties
that is useful to parametrize irredundantly the inequalities of Q≥0LR(G, Ĝ).

Let P be a parabolic subgroup of G containing B. Let W and WP denote
respectively the Weyl groups of G and P . The Weyl group W is generated by
the simple reflections sα indexed by the simple roots α. The corresponding length
function is denoted by l. Let WP be the set of minimal length representative in
the cosets of W /WP . For any w ∈ WP , let Xw be the corresponding Schubert
variety (that is, the closure of BwP /P ) and let σw ∈ H2(dim(G/P )−l(w))(G/P,C)
be its cohomology class. The structure coefficients cw3

w1w2
of the cup product are

written as

σw1 .σw2 = ∑
w3∈WP

cw3
w1w2

σw3 , ∀w1,w2 ∈WP . (4)

Let L be the Levi subgroup of P containing T and let Z be the neutral component
of the center of L. Under the action of Z, the tangent space TP /PG/P of G/P at
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the base point P /P decomposes as

TP /PG/P = ⊕
χ∈X(Z)

T χ, (5)

where Z acts on T χ with weight χ. By [ABS90], each T χ is an irreducible L-
module. For any w ∈ WP , the tangent space Tw ∶= TP /Pw−1Xw of the variety
w−1Xw at the smooth point P /P also decomposes

Tw = ⊕
χ∈X(Z)

T χw , (6)

where T χw = T χ ∩ Tw. The weights of T in Tw are the opposite of the elements of
the inversion set

Φ(w) = {α ∈ Φ+ ∶ wα ∈ −Φ+},

where Φ+ is the set of positive roots of G relatively to B. It is contained in the
set Φ(G/P ) of positive roots that are not roots of L. If w ∈ W then w ∈ WP if
and only if Φ(w) is contained in Φ(G/P ). For χ ∈ X(Z), denote Φ(w,χ) the set
of α ∈ Φ(w) whose the restriction to Z is −χ. Similarly, define Φ(G/P,χ). Since
σw has degree 2(♯Φ(G/P ) − ♯Φ(w)) in the graded algebra H∗(G/P ), if cw3

w1w2
≠ 0

then

♯Φ(w1) + ♯Φ(w2) = ♯Φ(G/P ) + ♯Φ(w3), (7)

that is

∑
χ∈X(Z)

( ♯Φ(w1, χ) + ♯Φ(w2, χ) = ) = ∑
χ∈X(Z)

( ♯Φ(G/P ) + ♯Φ(w3)). (8)

The Belkale-Kumar product requires the equality (8) to hold term by term. More
precisely, the structure constants c̃w3

w1w2
of the Belkale-Kumar product ⊙,

σw1⊙σw2 = ∑
w3∈WP

c̃w3
w1w2

σw3 (9)

can be defined as follows (see [RR11, Proposition 2.4]):

c̃w3
w1w2

= { cw3
w1w2

if ∀χ ∈X(Z) ♯Φ(w1, χ) + ♯Φ(w2, χ) = ♯Φ(G/P ) + ♯Φ(w3),
0 otherwise. (10)

Theorem 3.2. [BK06] The product ⊙ on H∗(G/P,C) is commutative, associative
and satisfies Poincaré duality.

Denote by p the Lie algebra of P and consider the convex cone C in X(Z)Q
generated by the weights of Z acting on p. It is a closed strictly convex polyhedral
cone in X(Z)Q. Consider the partial order ≽ on X(Z)Q defined by α≽β if and only
if α − β belongs to C. Then

T ≽α ∶= ⊕β≽αT β (11)
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is P -stable. Observe that the tangent bundle T G/P of G/P identifies with the
fiber product G ×P TP /PG/P . Since T ≽α is P -stable, it induces a G-homogeneous
sub-bundle T ≽αG/P of the tangent bundle T G/P . This family of G-sub-bundles is
decreasing: if α≽β then T ≽αG/P is a sub-bundle of T ≽βG/P . It is also integrable
in the sense that

[T ≽αG/P,T ≽βG/P ] ⊂ T ≽α+βG/P. (12)

This allows us to define a filtration (“à la Hodge”) of the De Rham complex and
hence of the algebra H∗(G/P,C) indexed by the group X(Z). We consider the
associated graded algebra.

Theorem 3.3. [Res13a] The X(Z)-graded algebra GrH∗(G/P,C) associated to
the X(Z)-filtration is isomorphic to the Belkale-Kumar algebra (H∗(G/P,C),⊙).

Sketch of proof. The key point to prove the isomorphism is that the subspaces of
the filtration of H∗(G/P,C) are spanned by the Schubert classes (σw)w∈WP that
it contains. To obtain this result, we use Kostant’s harmonic forms [Kos61]. ◻

3.3. A description of Q≥0LR(G,Ĝ). Let λ be a one parameter sub-
group of T . The set of g ∈ G such that limt→0 λ(t)gλ(t−1) exists in G is a parabolic
subgroup of G denoted by P (λ). Since λ is also a one parameter subgroup of
Ĝ we have a parabolic subgroup P̂ (λ) and an embedding φλ ∶ G/P (λ) Ð→
Ĝ/P̂ (λ). The comorphism φ∗λ in cohomology induces a morphism (see [RR11])
φ⊙λ ∶ (H∗(Ĝ/P̂ (λ),C),⊙)Ð→ (H∗(G/P (λ),C),⊙).

A description of Q≥0LR(G, Ĝ). An indivisible dominant λ ∈ X∗(T ) is said to
be special if the set of weights χ of T acting on ĝ/g such that ⟨χ,λ⟩ = 0 spans an
hyperplane of X(T )Q.

Theorem 3.4. Assume that no ideal of g is an ideal of ĝ. Let (ν, ν̂) ∈X(T × T̂ )+Q.
Then (ν, ν̂) belongs to Q≥0LR(G, Ĝ) if and only if

⟨wλ, ν⟩ + ⟨ŵλ, ν̂⟩ ≤ 0 (13)

for any special λ ∈X∗(T ), for any w ∈WP (λ) and ŵ ∈ Ŵ P̂ (λ) such that

φ⊙λ(σŵ)⊙ σw = σe. (14)

Moreover, this system of inequalities is irredundant.

Sketch of proof. Consider the action of G on X = G/B × Ĝ/B̂. As explained in
Section 2.3, it remains to determine CG,+(X).

Let L be a semi-ample G-linearized line bundle on X. Let x be a point in X
and λ ∶ C∗ Ð→ G be a one parameter subgroup. Since X is complete, limt→0 λ(t)x
exists; let z denote this limit. The image of λ fixes z, and hence, acts via λ on the
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fiber Lz. There exists an integer denoted by µL(x,λ) such that for all t ∈ C∗ and
z̃ ∈ Lz we have:

λ(t).z̃ = t−µ
L
(x,λ)z̃.

The integers µL(x,λ) are used in [MFK94] to give a numerical criterion (namely
the Hilbert-Mumford criterion) for stability with respect to an ample L. With
definition (3) of semi-stability, the Hilbert-Mumford theorem admits the following
direct generalization.

Lemma 3.5 (See e.g. [Res10a, Lemma 2]). Recall that L is semi-ample. Then, x
is semi-stable for L if and only if µL(x,λ) ≤ 0 for any one parameter subgroup λ
of G.

Assume now that λ is a dominant one parameter subgroup of T . Fix an ir-
reducible component C of the fixed point set Xλ of λ in X. Denote by C+ the
Białinicky-Birula cell of points x ∈ X such that limt→0 λ(t)x ∈ C. Let L ∈ C+(X).
The integer µL(x,λ) does not depend on x in C+; let µL(C,λ) denote this integer.
A key observation is the following lemma.

Lemma 3.6. If G.C+ is dense in X and Xss(L) is not empty then µL(C,λ) ≤ 0.

Proof. Since Xss(L) is open, it intersects G.C+. Since Xss(L) is G-stable, it
intersects C+. Let x ∈ C+ ∩Xss(L). By Lemma 3.5, µL(C,λ) = µL(x,λ) ≤ 0.

The subvariety C+ is P (λ)-stable and one can form the fibered product G×P (λ)
C+. Consider the morphism

η ∶ G ×P (λ) C+ Ð→ X
[g ∶ x] z→ gx.

There exists (w, ŵ) ∈WP (λ)×Ŵ P̂ (λ) such that C+ = P (λ)w−1B/B×P̂ (λ)w−1B̂/B̂.
Using Kleiman’s transversality theorem, one can prove that η is dominant if and
only if

φ∗λ(σŵ).σw ≠ 0. (15)

Since
µL(ν,ν̂)(C,λ) = ⟨wλ, ν⟩ + ⟨ŵλ, ν̂⟩,

this proves that inequalities (13) in the theorem are satisfied by points inQ≥0LR(G, Ĝ).

If we believe the theorem, we just obtained a redundant family of inequalities.
We now explain how to prove that the inequalities corresponding to pairs (w, ŵ)
satisfying condition (14) are sufficient to characterize the cone. We check that
η is birational if and only if φ∗λ(σŵ).σw = σe. One can prove that the stronger
condition (14) is equivalent to the existence of an open G-stable subset Ω in X
that intersects C such that the restriction of η to G×P (λ)(C+∩Ω) is an isomorphism
onto Ω. In this case, the pair (C,λ) is said to be well covering. The point is that,
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given L ∈ C+(X)−CG,+(X), Kempf’s theorey of instabily allows to construct a well
covering pair (C,λ) such that µL(C,λ) > 0. Note that Ω can be choosen to be the
open Hesselink strata (see [Kir84b]).

Fix a well covering pair (C,λ), where λ ∈ X∗(T ) is dominant and indivisible.
Let F(C,λ) denote the set of L ∈ CG,+(X) such that µL(C,λ) = 0; it is a face of
CG,+(X).

Let L ∈ F(C,λ) and x ∈ Xss(L) ∩ C+. Let n > 0 and σ ∈ H0(X,L⊗n)G such
that σ(x) ≠ 0. Set z = limt→0 λ(t)x. From µL(x,λ) = 0, one can deduce that
σ(z) = limt→0 λ(t)σ(x) belongs to the pointed fiber Lz − {z}. In particular z is
semi-stable. It follows that the neutral component G○

z of the isotropy of z acts
trivialy on Lz. In λ is not special, this implies that L belongs to a codimension
2 linear subspace of PicG(X)Q. In particular, F(C) has not codimension one and
the inequality µL(C,λ) can be removed.

The last step is to prove the irredundancy. Fix a well covering pair (C,λ) with
some special λ. We have to prove that F(C,λ) has codimension one. Consider the
restriction morphism

ρ ∶ PicG(X)Q Ð→ PicG
λ

(C)Q.

An explicit computation shows that ρ is surjective. Moreover, by induction, the
dimension of CG

λ,+(C) is equal to dim(PicG(X)Q) − 1. Let M ∈ PicG
λ

(C) such
thatH0(C,M)G

λ

≠ 0. It would be sufficient to prove that there exists L ∈ PicG(X)
such that H0(X,L)G ≠ 0 and ρ(L) =M. This is not true directly but it is true
after a little modification of M. Let L ∈ PicG(X) such that ρ(L) = M. Fix a
nonzero regular Gλ-invariant section τ of M. Let η and Ω ⊂ X be as above. Let
E1, . . . ,Ek be the codimension one irreducible components of X − Ω. Using the
inverse of η one can prove that L∣Ω admits a nonzero G-invariant section σ. Then,
σ does not necessarily extend to a section of L on X; but it certainly extends to a
section of L⊗dO(∑iEi) for d big enough. Since no Ei contains C, L⊗dO(∑iEi)
belongs to F(C,λ).

By this method, one can produce a family of points in F(C,λ) that generates
a codimension one cone. The irredundancy follows. ◻

3.4. The case of Q≥0LR(G3). We assume that G is semi-simple and sim-
ply connected and we consider the cone Q≥0LR(G3). The set of non-trivial weights
of T acting on ĝ/g is Φ. There are rk(G) special one parameter subgroups of T ; for
any simple root α exactly one λα is proportional to the fundamental coweight $α∨ .
The parabolic subgroup P (λα) is the maximal parabolic subgroup Pα containing
B associated to α.

Theorem 3.7. Let (ν1, ν2, ν3) ∈ (X∗(T )+Q)3. Then (ν1, ν2, ν3) ∈ Q≥0LR(G3) if
and only if

3

∑
i=1

⟨wi$α∨ , νi⟩ ≤ 0 (16)
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for any simple root α and any w1,w2,w3 ∈WPα such that

σw1⊙σw2⊙σw3 = σe. (17)

Moreover, this list of inequalities is irredundant.

Theorem 3.7 without the irredundancy is the main result of [BK06].
The Horn case. Let Hn(C) be the space of Hermitian matrices of size n. For
A ∈ Hn(C), we denote by λ(A) = (λ1 ≥ ⋯ ≥ λn) ∈ Rn the spectrum of A. For
G = GLn(C) diagonally embedded in Ĝ = G ×G, Section 3.1 implies that the cone
R≥0LR(G, Ĝ) identifies with

HornR(n) = {(λ(A), λ(B), λ(C)) ∈ R3n ∶ A,B,C ∈Hn(C) s.t.
A +B +C = 0

} .

After an easy reduction, we can apply Theorem 3.7 (with SLn(C) ⊂ SLn(C) ×
SLn(C)) to obtain a description of HornR(n). The homogeneous spaces G/Pα are
the Grassmannian variety G(r, n) of r-dimensional subspaces of Cn. The Schubert
classes (σI)I∈S(r,n) of G(r, n) are indexed by the set S(r, n) of subsets of {1,⋯, n}
with r elements. Since G(r, n) is cominuscule, the product ⊙ coincinde with the
ordinary one.

Theorem 3.8. Let (λ,µ, ν) be a triple of non-increasing sequences of n real num-
bers. Then (λ,µ, ν) ∈ HornR(n) if and only if

∑
i

λi +∑
j

µj +∑
k

νk = 0 (18)

and

∑
i∈I

λi +∑
j∈J

µj + ∑
k∈K

νk ≤ 0, (19)

for any r ∈ {1,⋯, n − 1}, for any I, J,K ∈ S(r, n) such that

σI .σJ .σK = σe. (20)

Moreover, this list of inequalities is irredundant.

An example: Q≥0LR(SL3(C)3). The symmetric group S3 acts on Q≥0LR(G3)
by permuting the three copies of G. Since (V1 ⊗ V2 ⊗ V3)G and (V ∗

1 ⊗ V ∗
2 ⊗ V ∗

3 )G
have the same dimension the group Z/2Z also acts on Q≥0LR(G3). Finally, we get
an action of S3 × Z/2Z. For SL3(C), we use the base of fundamental weights to
identify X(T )+ with Z2

≥0 and Q≥0LR(SL3(C)3) with a cone in Z6. Let (ν1, ν2, ν3)
be three dominant weights corresponding to (x1, x2, y1, y2, z1, z2) ∈ Z6

≥0. If x1+y1+
z1 + 2(x2 + y2 + z2) is not a multiple of 3, then cSL3(ν1, ν2, ν3) = 0 (to check this,
one can consider the action of the center of SL3(C)). Assume now that 3 divides
x1 + y1 + z1 + 2(x2 + y2 + z2) and set δ = 1

3
(x1 + y1 − z2 + 2(x2 + y2 − z1). Then

cSL3(ν1, ν2, ν3) is equal to the Littlewood-Richardson coefficient cz1+z2+δ≥x2δ≥δ
x1+x2≥x2, y1+y2≥y2 .
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There are two Grassmannians homogeneous under SL3(C), P2 and its dual. In
P2, the identity [P1].[P1].[P2] = [pt] gives the inequality x1−x2+y1−y2+z1+2z2 ≥ 0
and the relation [P2].[P2].[pt] = [pt] gives the inequality x1+2x2+y1+2y2−2z1−z2 ≥
0. Using the action of S3 × Z/2Z, we get 12 inequalities. Adding the inequalities
of dominance, we get that Q≥0LR(SL3(C)3) has 18 facets.

Consider the point b = (1,1,1,1,1,1) ∈ Q≥0LR(SL3(C)3). The cones generated
by b and one of the 18 facets of Q≥0LR(SL3(C)3) are the maximal cones of the
GIT-fans. Assuming that 3 divides x1 + y1 + z1 + 2(x2 + y2 + z2), the Littlewood-
Richardson coefficient cz1+z2+δ≥x2δ≥δ

x1+x2≥x2, y1+y2≥y2 is given on the cones corresponding to the
inequalities x1 ≥ 0, x1−x2+y1−y2+z1+2z2 ≥ 0 and x1+2x2+y1+2y2−2z1−z2 ≥ 0
respectively by the polynomials 1 + x1, 1 + 1

3
(x1 − x2 + y1 − y2 + z1 + 2z2) and

1 + 1
3
(x1 + 2x2 + y1 + 2y2 − 2z1 − z2).

Theorem 3.8 has a rich and long story starting with H. Weyl [Wey12] who
proved, in 1912, inequalities (19) for G/Pα = Pn−1. In 1998, A. Klyachko [Kly98]
made an important step proving the theorem is true (without the irredundancy)
if condition (20) is replaced by

σI .σJ .σK = dσe, for some positive integer d. (21)

In 2000, Belkale [Bel01] proved that Klyachko’s condition (21) can be replaced by
condition (20). The irredundancy was first proved by Knutson-Tao-Woodward in
[KTW04] using the Honeycomb model for Littlewood-Richardson coefficients.

Let us now explain Horn’s contribution. For I = {i1 < ⋯ < ir} ∈ S(r, n), set
τ I = (ir−r, . . . , i1−1) and I∨ = {n+1−ir < ⋅ ⋅ ⋅ < n+1−i1}. In 1962, Horn conjectured
that Theorem 3.8 is true if one replaces condition (20) by

(τ I , τJ , τK − (n − r)r) ∈ Horn(r), (22)

where (n−r)r = (n−r, . . . , n−r) in Rr. By the classical Lesieur’s result (see [Les47]),
σI .σJ .σK = dσe is equivalent to cτ

K∨

τIτJ = d. In particular, Klyachko’s condition is
equivalent to

cτ
K∨

τIτJ > 0, (23)

whereas condition (22) is equivalent to

∃k > 0 ckτ
K∨

kτI kτJ > 0. (24)

The equivalence between conditions (23) and (24) is called saturation (see Sec-
tion 5) and was first proved by Knutson-Tao in [KT99].

Horn’s conjecture has the advantage to be inductive and elementary (without
cohomology or representation theory). Theorem 3.8 has the advantage to give the
minimal list of inequalities. In [Res11], we get the two advantages by giving an
inductive algorithm to decide if a given Littlewood-Richardson coefficient is equal
to one or not.
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3.5. Some inequalities for nonzero Kronecker coefficients.. If
α = (α1 ≥ α2 ≥ ⋯ ≥ αe ≥ 0) is a partition, we set ∣α∣ = ∑i αi in such a way α is a
partition of ∣α∣. Consider the symmetric group Sn on n letters. The irreducible
representations of Sn are parametrized by the partitions of n, see e.g. [Mac95, I.
7] . Let [α] denote the representation of S∣α∣ corresponding to α. The Kronecker
coefficients gαβ γ , depending on three partitions α, β, and γ of the same integer n,
are defined by

[α]⊗ [β] =∑
γ

gαβ γ[γ]. (25)

The length l(α) of the partition α is the number of nonzero parts αi.

Theorem 3.9 (see [Res12]). Let e and f be two positive integers and j ∈ {2, . . . , f+
1}. Let α, β, and γ be three partitions of the same integer n such that

l(α) ≤ e + 1, l(β) ≤ f + 1, and l(γ) ≤ e + f + 1. (26)

Let 0 < r < e, 0 < s < f , I ∈ S(r, e), J ∈ S(s, f) and K ∈ S(r + s, e + f) such that

cτ
K

τI τJ = 1. (27)

If gαβ γ ≠ 0 then

n +∑
i∈I

αi+1 − α1 +∑
j∈J

βj+1 − β1 ≥ ∑
k∈K

γk+1 − γ1. (28)

Sketch of proof. Given a complex vector space V and a partition α such that
l(α) ≤ dim(V ), let SαV denote the irreducible GL(V )-representation of highest
weight α. Fix two complex vector spaces V1, V2 of dimension e + 1 and f + 1. The
Schur-Weyl duality implies that

Sγ(V1 ⊗ V2) =⊕
αβ

gαβγS
αV1 ⊗ SβV2.

We consider the action de G = GL(V1)×GL(V2) on the product X of the manifolds
of complete flags in V1 and V2 and some partial flag manifold on V1 ⊗ V2. The
coefficient gαβ γ is the dimension of the space of G-invariant sections of some line
bundle on X. Then, we use techniques similar to those used to prove Theorem 3.4.
◻

3.6. Relations between cones Q≥0LR(G3) for various G. In
this section, G is assumed to be simple, simply connected and of simply-laced
type. Consider an automorphism σ of the Dynkin diagram of G. It induces
an automorphism, still denoted by σ, of G that stabilizes a maximal torus T ,
a Borel subgroup B and a compact form K of G. The fixed point set Gσ is
a simple group with maximal torus Tσ, Borel subgroup Bσ and compact form
Kσ. The inclusion Tσ ⊂ T induces an immersion X∗(Tσ)R ⊂ X∗(T )R satisfying
X∗(Tσ)+R =X∗(Tσ)R∩ ⊂X∗(T )+R.
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Theorem 3.10. We have

C((Kσ)3) = C(K3) ∩X∗(Tσ)3
R.

Sketch of proof. The proof uses Theorem 3.4 and compares conditions (14) in G
and Gσ-homogeneous spaces. Beyond this general principle, the proof is case by
case according to the following complete list:

(i) (SL2n(C),Sp2n(C)), n ≥ 2;

(ii) (SL2n+1(C),SO2n+1(C)), n ≥ 2;

(iii) (Spin2n(C),Spin2n−1(C)), n ≥ 4;

(iv) (Spin8(C),G2);

(v) (E6, F4).

The two first cases was proved in [BK10a] (see also [Sot10] for a simplification
in some key argument). Case (iii) is proved in Braley’s thesis [Bra12]. The two
reamaning cases are proved in Lee’s thesis [Lee12]. ◻

Remark 3.11. As a consequence of Theorem 3.10, it is proved in [Res11] that
condition (14) in Theorem 3.4 in the cohomology of symplectic and odd orthogonal
Grassmannians are equivalent to similar conditions for ordinary Grassmannians.

4. Reduction for coefficients on the boundary

In this section, we are intersted in the coefficients cG,Ĝ(ν, ν̂) when (ν, ν̂) belongs
to the boundary of LR(G, Ĝ). Indeed, such multiplicities are equal to analogous
numbers for Levi subgroups of G and Ĝ. The results could be obtained by applying
results of type “quantification commutes with reduction” in symplectic geometry
(see [GS82b]). Our proof is more direct. Indeed, it remains to prove that two
spaces have the same dimension: we find an explicit and natural isomorphism.

Theorem 4.1. Let X = G/P × Ĝ/P̂ be a flag manifold for the group G× Ĝ. Let λ
be a one-parameter subgroup of G and C be an irreducible component of the fixed
point set Xλ of λ in X. Let Gλ be the centralizer of the image of λ in G. We
assume that (C,λ) is a well covering pair . Let L be a G-linearized line bundle on
X generated by its global sections such that λ acts trivially on the restriction L∣C .
Then the restriction map induces an isomorphism

H0(X,L)G Ð→H0(C,L∣C)G
λ

,

between the spaces of invariant sections of L and L∣C .
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Sketch of proof. Consider the closure C+ of the Białynicki-Birula cell C+. The
morphism

η ∶ G ×P (λ) C+ Ð→ X
[g ∶ x] z→ gx

that is proper and birational, induces a G-equivariant isomorphism

H0(X,L) ≃H0(G ×P (λ) C+, η∗(L)).

In particular

H0(X,L)G ≃H0(G ×P (λ) C+, η∗(L))G ≃H0(C+,L
∣C+)P (λ).

On the other hand, since λ acts trivially on L∣C , [Res10a, Lemma 5] proves that

H0(C+,L∣C+)P (λ) ≃H0(C,L∣C)G
λ

. (29)

Then we have to prove that

H0(C+,L
∣C+)P (λ) ≃H0(C+,L∣C+)P (λ);

that is, that any regular P (λ)-invariant section σ of L on C+ extends to C+. Using
the SL2-theory, one can checks that such a section has no pole along the divisors
of C+−C. We conclude that such a section extends to C+ by normality of C+ that
is a Schubert variety. ◻

Let F be a face of Q≥0LR(G, Ĝ). Assume that F is regular, that is that it
contains pairs (ν, ν̂) of regular dominant weights. If S is a torus in G and H is a
subgroup of G containing S, HS denotes the centralizer of S in H. By [Res10b],
the regular face F corresponds to a pair (S, ŵ) where S is a subtorus of T and
ŵ ∈ Ŵ such that

ĜS ∩ ŵB̂ŵ−1 = B̂S , (30)

and the span of F is the set of pairs (ν, ν̂) ∈ (X(T ) ×X(T̂ ))⊗Q such that

ν∣S + ŵν̂∣S = 0 ∈X(S)⊗Q. (31)

Corollary 4.2. Let (ν, ν̂) ∈X(T )+×X(T̂ )+ be a pair of dominant weights. Assume
that (ν, ν̂) belongs to the span of F (equivalently that it satisfies condition (31)).
Then

cν ν̂(G, Ĝ) = cν ŵν̂(GS , ĜS).

Sketch of proof. The corollary is obtained by applying Theorem 4.1 with X =
G/B × Ĝ/B̂ and C = GSB/B × ĜSŵB̂/B̂. ◻

Several particular cases of Theorems 4.1 and its corollary was known before. If
G = T is a maximal torus of G = GLn(C), our theorem is equivalent to [KTT07,



15

Theorem 5.8]. If Ĝ = G ×G (or more generally Ĝ = Gs for some integer s ≥ 2) and
G is diagonally embedded in Ĝ then cν ν̂(G, Ĝ) (resp. cν ŵν̂(GS , ĜS)) are tensor
product multiplicities for the group G (resp. GS). This case was recently proved
independently by Derksen and Weyman in [DW11, Theorem 7.4] and King, Tollu
and Toumazet in [KTT09, Theorem 1.4] if G = GLn(C) and for any reductive
group by Roth in [Rot11]. If ν is regular then Theorem 4.1 can be obtained
applying [Bri99, Theorem 3] and [Res10a]. Similar reductions can be found in
[Bri93, Man97, Mon96].

Remark 4.3. In Section 3.4, we seen that the multiplicities corresponding to the
points in the boundary of the cone Q≥0LR(SL3(C)3) are equal to one. This agrees
with Corollary 4.2, since the tensor product of two irreducible SL2(C)-modules is
multiplicity free.

5. The question of saturation

5.1. The branching semigroup. Consider the set LR(G, Ĝ) of pairs (ν, ν̂)
of dominant weights such that cG,Ĝ(ν, ν̂) ≠ 0.

Theorem 5.1 (Brion-Knop (see [É92])). The set LR(G, Ĝ) is a finitely generated
semigroup in X(T )+ ×X(T̂ )+.

Proof. Start with Frobenius’ decomposition of C[Ĝ] as a Ĝ × Ĝ-module:

C[Ĝ] = ⊕
ν̂∈X(T̂ )+

VĜ(ν̂)⊗ VĜ(ν̂)∗.

Let U and Û− denote the unipotent radicals of B and B̂−. Consider the algebra

C[Ĝ]U×Û
−
= ⊕
ν̂∈X(T̂ )+

VĜ(ν̂)U ⊗ (VĜ(ν̂)∗)Û
−
.

Observe that T̂ acts on the line (VĜ(ν̂)∗)Û
−
by the weight −ν̂ and that VG(ν) is

a submodule of VĜ(ν̂) if and only if VĜ(ν̂)U contains a T -eigenvector of weight ν.
Then (ν, ν̂) belongs to LR(G, Ĝ) if and only if (ν,−ν̂) is a weight of T × T̂ acting
on the algebra C[Ĝ]U×Û

−
. This implies that LR(G, Ĝ) is a semigroup.

To prove that LR(G, Ĝ) is finitely generated it is sufficient to prove that
C[Ĝ]U×Û

−
is. Recall that C[G]U is finitely generated. But

C[Ĝ]U×Û
−
= (C[G]U ⊗C[Ĝ]Û

−
)G.

Since C[G]U and C[Ĝ]Û
−
are finitely generated and G is reductive the Hilbert

theorem implies that C[Ĝ]U×Û
−
is finitely generated.
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The subgroup of X(T × T̂ ) generated by LR(G, Ĝ) is denoted by ZLR(G, Ĝ).
We already described the cone Q≥0LR(G, Ĝ). The following statement describes
the group ZLR(G, Ĝ).

Proposition 5.2 (see [PR13, Bri12]). Assume that no ideal of g is an ideal of ĝ.
Let Ẑ denote the center of Ĝ.

Then the group ZLR(G, Ĝ) is the set of pairs (ν, ν̂) ∈X(T × T̂ ) such that

ν(t).ν̂(t) = 1

for any t ∈ Ẑ ∩G.

The semigroup is said to be saturated if it can be recovered from the knowledge
of the coneQ≥0LR(G, Ĝ) and the group ZLR(G, Ĝ):

Definition 5.3. The semigroup LR(G, Ĝ) is said to be saturated if

LR(G, Ĝ) = Q≥0LR(G, Ĝ) ∩ZLR(G, Ĝ). (32)

5.2. The case of tensor product decomposition. In this section, we
review results on the saturation of LR(G3) for G is simple and simply connected.
Observe that ZLR(G, Ĝ) is the set (ν1, ν2, ν3) ∈ X∗(T )3 such that ν1 + ν2 + ν3

belongs to the root lattice ΛR.

Theorem 5.4 (Knutson-Tao). The semigroup LR(G3) is saturated for G = SLn(C).

The first proof [KT99] of Theorem 5.4 due to Knutson and Tao uses a combi-
natorial model for Littlewood-Richardson coefficients called honeycombs. Belkale
reproved [Bel06] this theorem using intersection theory. Derksen and Weyman
reproved [DW00] this result using representations of quivers and Kapovich and
Millson obtained a proof [KM08] using the geometry of Bruhat-Tits buildings.

The best known uniform generalization of Theorem 5.4 to any simple group G
is

Theorem 5.5 (Kapovich-Millson [KM08]). Let ν1, ν2, and ν3 be three dominant
weights of the simple group G. Let k be the square of the least common multiple of
the coefficients of the highest root of G written in terms of simple roots.

If (VG(Nν1) ⊗ VG(Nν2) ⊗ VG(Nν3))G ≠ {0} for some positive integer N and
ν1 + ν2 + ν3 ∈ ΛR, then (VG(kν1)⊗ VG(kν2)⊗ VG(kν3))G ≠ {0}.

Observe that for G = SLn(C), k = 1. Belkale and Kumar [BK10b] and Sam
[Sam12] obtained better constants than k for classical groups.

Two important conjectures in the topic are still open. The first one asserts
that tensor product decompositions for simply-laced groups satisfy the saturation
property. It was checked by explicit computations for G = Spin8(C) in [KKM09].
Observe that, for G of type E8, the constant k in Theorem 5.5 is equal to 3 600.
The second conjecture asserts that Theorem 5.5 is satisfied with k = 1 for any G if
the weights νi are regular.
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5.3. Other examples. If G = T̂ , (ν, ν̂) belongs to the group ZLR(G, Ĝ) if
and only if ν̂ − ν belongs to the root lattice Λ̂R. The multiplicities cG,Ĝ(ν, ν̂) are
given by the character of VĜ(ν̂). The saturation is well known in this case.

Others examples of semigroups have been determined explicitly in [PR13]. A
consequence of these computations is the following list of examples of saturated
semigroups.

Theorem 5.6. For (G, Ĝ) = (Spin2n−1(C),Spin2n(C)), (SL3(C),G2), (G2,Spin7(C)),
(Spin9(C), F4), (F4,E6), (Sp4(C),SL4(C)), (Sp6(C),SL6(C)), (Sp8(C),SL8(C))
and (Sp10(C),SL10(C)) the semigroup LR(G, Ĝ) is saturated.

6. PRV
6.1. The classical case. Recall that X(T )+ is a fundamental domain for
the action of W on X(T ) ; for any ν ∈X(T ), we denote by ν the unique dominant
element in the orbit W.ν. Parthasarathy-Ranga Rao-Varadarajan conjectured in
the sixties [PRRV67] (a weaker version of) the following

PRV conjecture. Let VG(µ) and VG(ν) be two irreducible G-modules with highest
weights µ and ν respectively. Then, for any w ∈ W , the irreducible G-module
VG(µ +wν) with extremal weight µ +wν, occurs with multiplicity at least one in
VG(µ)⊗ VG(ν).

This conjecture was proved independently by S. Kumar in [Kum88] and O. Math-
ieu in [Mat89].

6.2. A double generalization. The homogeneous space Ĝ/G is said to be
spherical if it contains an open B̂-orbit. It is said to be spherical of minimal rank
if there exists a T -fixed point in Ĝ/B̂ whose the G-orbit is open. This condition is
very strong and was classified in [Res10c]. The pairs (G, Ĝ) such that Ĝ/G is spher-
ical of minimal rank reduces to the following list (G,G×G), (Sp2n(C),SL2n(C)),
(Spin2n−1(C),Spin2n(C)), (G2,Spin7(C)) and (F4,E6).

Let ρ ∶ X(T̂ ) Ð→ X(T ) be the restriction morphism. Let ∆ (resp ∆̂) denote
the set of simple roots of G and Ĝ. By [Res10c, Lemma 4.6], ρ(∆̂) = ∆. Moreover,
for any α ∈ ∆, we have the following alternative:

(i) there exists a unique α̂0 ∈ ∆̂ such that ρ(α̂0) = α; or

(ii) there exist exactly two simple roots α̂1 and α̂2 in ∆̂ such that ρ(α̂1) = ρ(α̂2) =
α.

The set of simple roots satisfying the second assertion is denoted by ∆2. For
α ∈ ∆2, let Ŵα denote the subgroup of Ŵ generated by sα̂1 and sα̂2 . Then Ŵα is
isomorphic to Z/2Z ×Z/2Z.

Theorem 6.1. [MPR11b, MPR11a] Fix two connected reductive groups G ⊂ Ĝ
such that Ĝ/G is spherical of minimal rank. Let α ∈ ∆2 and ŵ ∈ Ŵ .
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Let ν̂ be a dominant weight of Ĝ. Let ŵ1 ∈ Ŵαŵ be such that ⟨ρ(ŵ1ν̂), α⟩ is
maximal.

Fix an integer k such that 0 ≤ k ≤ min(⟨ρ(sα̂1ŵ1ν̂), α̂∨1⟩, ⟨ρ(sα̂2ŵ1ν̂), α̂∨2⟩).
Then, if ν = ρ(ŵ1ν̂) − kα is dominant, the irreducible G-module VG(ν) occurs
with multiplicity at least one in VĜ(ν̂).

For Ĝ = G ×G and k extremal in the interval, Theorem 6.1 implies the PRV
conjecture.

Sketch of proof. Denote the Ĝ-linearized line bundle Lν̂ on Ĝ/B̂ such that
H0(Ĝ/B̂,Lν̂) is isomorphic to VĜ(ν̂)∗. Set v̂ = sα̂1ŵ ∈ Ŵ , X○(v̂) = G.v̂B̂/B̂. Let
X(v̂) denote the closure of X○(v̂). By [Bri01, Corollary 8], the restriction map

H0(Ĝ/B̂,Lν̂)Ð→H0(X(v̂),Lν̂)

is surjective. Then, it is sufficient to prove the existence of a section σ ∈H0(X(v̂),Lν̂)
that is an eigenvector of weight −ν for B−.

We first construct a section τ ∈H0(X(v̂),L⊗nν̂ ) that is an eigenvector of weight
−nν for B−, for some positive integer n. Consider X = G/B− × Ĝ/B̂, the neutral
component S ⊂ T of the kernel of α, the centralizer GS of S in G, the fixed point set
XS of S in X and the irreducible component C of XS containing (B−/B−, v̂B̂/B̂).
Let Lν⊗Lν̂ be the (G×Ĝ)-linearized line bundle on X such that H0(X,Lν⊗Lν̂) ≃
VG(ν) ⊗ VĜ(ν̂)∗. Actually, GS is isomorphic to (P)SL2(C) and C is isomorphic
to (P1)3. We can deduce that C contains points semi-stable for the action of
GS relatively to Lν ⊗ Lν̂ . Then, a Luna’s theorem (see [Lun75, Corollary 2 and
Remark 1] shows that C contains points semi-stable for the action of G. The
existence of τ and n follows.

Secondly, we prove that dim(H0(X○(v̂),Lν̂)(B
−
)−ν ) = 1. Observe that the stabi-

lizerGv̂B̂/hB contains T . Then, Forbenius’ theorem allows to embedH0(X○(v̂),Lν̂)(B
−
)−ν

in VG(ν̂)(T )ρ(v̂ν̂) . Since ρ(v̂ν̂) belongs to ν + Zα this space has dimension at most
one (it is, once again, a consequence of the SL2-theory). From the existence of τ ,
we deduce that H0(X○(v̂),Lν̂)(B

−
)−ν and VG(ν̂)(T )ρ(v̂ν̂) have dimension one.

Finally, fix a nonzero element σ ∈ H0(X○(v̂),Lν̂)(B
−
)−ν . By unicity σ⊗n and

the restriction τ∣X○(v̂) must coincide (up to scalar multiplication). In particular,
σ⊗n extends to a section of L⊗nν̂ on X(v̂). Since X(v̂) is normal (see [Bri03,
Theorem 1]), σ itself extends to a section of Lν̂ on X(v̂). This ends the proof. ◻

It is natural to ask if the LR(Sp2n(C),SL2n(C)) is saturated for any n.

7. The multiplicative Horn problem

In this section, we assume that G is simple and simply-connected.

7.1. The Meinrenken-Woodward polytope. Recall from Section 3.1
that C(K3) identifies with the set of triples (O1,O2,O3) of adjoint orbits in k
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such that O1 +O2 +O3 contains 0. We now consider a multiplicative analogous
of C(K3). Let O1 and O2 be two conjugacy classes in K. Then the product
O1 ⋅O2 = {k1k2 ∶ k1 ∈ O1 and k2 ∈ O2} is stable by conjugacy.

What conjugacy classes are contained in O1 ⋅O2? (†)

Let θ be the longest root of G. The fundamental alcove in X∗(T )R is

A∗ = {λ ∈X∗(T )R ∶ { ⟨λ,α⟩ ≥ 0 ∀α ∈ ∆
⟨λ, θ⟩ ≤ 1

}.

Consider the exponential map

exp ∶ Lie(H) Ð→ H
µ z→ exp(µ).

Any conjugacy class in K contains a unique element of the form exp(
√
−1λ) for

some λ ∈ A∗ (see e.g. [Bou05, Chapter IX. §5]); we denote by OKλ the conjugacy
class containing exp(

√
−1λ).

To answer the question (†) we want to describe the set

PK = {(λ1, λ2, λ3) ∈ A3
∗ ∶ OKλ1

⋅OKλ2
⋅OKλ3

∋ e},

where e is the unit element of K. According to the convexity theorem proved by
Meinrenken-Woodward [MW98], PK is a convex polytope of nonempty interior
in A. The aim of this section is to describe the minimal list of inequalities that
characterize PK .

7.2. The fusion product. Let g̃ = g⊗C((z))⊕Cc be the affine Lie algebra
with c central in g̃ and

[x⊗ f, y ⊗ g] = [x, y]⊗ fg + (x, y)Resz=0(gdf)c,

for x, y ∈ g and f, g ∈ C((z)). Set g̃+ = g ⊗ zC[[z]]. Fix a positive integer and
set X(T )+

�l
= {ν ∈ X(T )+ ∶ ⟨ν, θ∨⟩ ≤ �l}. For any ν ∈ X(T )+

�l
, there exists a unique

g̃-module Vg̃(ν, �l) such that c acts on by multiplication by �l and the subspace of
Vg̃(ν, �l) annihilated by g̃+ is isomorphic to Vg(ν) as a g-module.

Consider now the projective line P1 with four distinct marked points {0, p1, p2, p3}.
Set U = P1 − {0} and consider the ring O(U) of regular functions on U identified
with C[z−1]. Then g ⊗O(U) is a sub-algebra of g̃ and acts on Vg̃(0, �l). For each
point pi, consider the evaluation map evi ∶ O(U) Ð→ C at pi and the associated
morphism (still denoted evi) from g ⊗ O(U) to g. Fix three weights ν1, ν2, ν3 ∈
X(T )+

�l
. Consider the action of g ⊗O(U) on Vg̃(0, �l) ⊗ Vg(ν1) ⊗ Vg(ν2) ⊗ Vg(ν3)

given by

ξ.(v0 ⊗ v1 ⊗ v2 ⊗ v3) = (ξv0)⊗ v1 ⊗ v2 ⊗ v3 + v0 ⊗ (ev1(ξ)v1)⊗ v2 ⊗ v3

+v0 ⊗ v1 ⊗ (ev2(ξ)v2)⊗ v3

+v0 ⊗ v1 ⊗ v2 ⊗ (ev3(ξ)v3).
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The space of conformal blocks V †
P1(ν1, ν2, ν3) can be defined (see [Bea96, Corol-

lary 3.5]) as the space of g ⊗ O(U)-invariant linear forms on Vg̃(0, �l) ⊗ Vg(ν1) ⊗
Vg(ν2)⊗ Vg(ν3). It is finite dimensional and the fusion multiplicities are

N �l(ν1, ν2, ν3) = dim(V †
P1(ν1, ν2, ν3)).

The fusion product ⊛
�l
on ⊕ν∈X(T )+

�l
ZV (ν) is defined by

V (ν1)⊛�l
V (ν2) = ∑

ν3∈X(T )
+
�l

N �l(ν1, ν2, ν3)V (−w0ν3),

for any ν1, ν2 ∈ X(T )+
�l
. The product ⊛

�l
is associative and commutative (see e.g.

[Bea96]).
The fundamental alcove in X∗(T )Q is

A∗Q = {λ ∈X∗(T )Q ∶ { ⟨λ,α∨⟩ ≥ 0 ∀α ∈ ∆
⟨λ, θ∨⟩ ≤ 1

}.

The multiplicative analogous to Q≥0LR(G3) is

P⊛ = {(ν1, ν2, ν3) ∈ (A∗Q)3 ∶ �lν1, �lν2, �lν3 ∈X(T )+
�l

and N �l(ν1, ν2, ν3) ≠ 0,

for some positive �l.
}.

Theorem 7.1 (see [TW03]). Let (ν1, ν2, ν3) ∈ (A∗Q)3. Then (ν1, ν2, ν3) ∈ P⊛ if
and only if ((ν1, ⋅)T , (ν2, ⋅)T ), (ν3, ⋅)T ) ∈ PK .

7.3. Relation with Q≥0LR(G3). The fusion multiplicities are related to
the tensor product multiplicities by

lim
�l→∞

N �l(ν1, ν2, ν3) = cG3(ν1, ν2, ν3). (33)

A trivial consequence for the cones is the following.

Proposition 7.2. The cone in X∗(T 3)R generated by P⊛ is Q≥0LR(G3).

7.4. Quantum Belkale-Kumar Schubert calculus. Fix a simple
root α and consider the associated maximal parabolic subgroup Pα containing B.
Let Lα be its Levi-subgroup containing T . The Picard group Pic(G/Pα) identifies
withH2(G/Pα,Z) = Zσsα . We denote by σ∗sα the element of Hom(H2(G/Pα,Z),Z)
mapping σsα to 1.

Let γ ∶ P1 Ð→ G/Pα be a curve. Identifying the group Pic(P1) to Z (by
mapping ample line bundles on positive integers), the pullback of line bundles
induces an element of Hom(H2(G/Pα,Z),Z) called the degree of γ and denoted
by d(γ). By construction d(γ) ∈ Z≥0σ

∗
sα .
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Let ρ and ρLα denote the half sum of positive roots of G and Lα respectively.
Set

nα = ⟨α∨,2(ρ − ρLα)⟩. (34)

Fix a nonnegative integer d. Let M0,3(G/P, d) be the moduli space of stable maps
of degree dσ∗sα with 3 marked points into G/Pα. It is a projective variety and

dim(M0,3(G/P, d)) = dim(G/Pα) + dnα.

It comes equipped with 3 evaluation maps evi ∶ M0,3(G/P, d) Ð→ G/Pα. The
Gromov-Witten invariant associated to three Schubert classes (corresponding to
wi ∈WPα) and a degree d = dσ∗sα is then the intersection number

GW (w1,w2,w3;d) = ∫
M0,3(G/P,d)

ev∗1(σw1) ⋅ ev∗2(σw2) ⋅ ev∗3(σw3).

Introduce a variable q and consider the group

QH∗(G/Pα,Z) ∶=H∗(G/P,Z)⊗Z[q]
=⊕w∈WPα Z[q]σw.

The Z[q]-linear quantum product ⋆ on QH∗(G/Pα,Z) is defined by, for any
w1,w2 ∈WPα ,

σw1 ⋆ σw2 =∑GW (w1,w2,w3;d)qdσ∨w3
,

where the sum runs over w3 ∈WPα and over nonnegative integers d.

The grading onH∗(G/Pα,Z) extends to the quantum setting by setting deg(q) =
2nα. In particular GW (w1,w2,w3;d) ≠ 0 implies

l(w1) + l(w2) + l(w3) + dnα = 2 dim(G/Pα). (35)

Condition (35) can be rewritten like

♯Φ(w1) + ♯Φ(w2) + ♯Φ(w3) + dnα = 2 ♯Φ(G/Pα). (36)

Set h = dα∨. Since 2(ρ − ρLα) = ∑β∈Φ(G/P ) β, condition (36) can be rewritten like

∑
χ∈X∗(Z)

(
3

∑
i=1

♯Φ(wi, χ) + ∑
β∈Φ(G/P,χ)

⟨h,β⟩) = 2 ∑
χ∈X∗(Z)

♯Φ(G/P,χ). (37)

The Belkale-Kumar quantum product requires the equality (37) to hold term
by term. More precisely, set

σw1 ⍟ σw2 = ∑
w3 ∈WP

d ∈ Z≥0

G̃W (w1,w2,w3;d)qdσ∨w3
, (38)
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where G̃W (w1,w2,w3;d) = GW (w1,w2,w3;d) if

∀χ ∈X(Z) ∑
i

♯Φ(wi, χ) + ∑
β∈Φ(G/Pα,χ)

d⟨α∨, β⟩ = 2 ♯Φ(G/P,χ), (39)

and G̃W (w1,w2,w3;d) = 0 otherwise.

Theorem 7.3 (Belkale-Kumar [BK13]). The product ⍟ is associative.

7.5. Descriptions of PK. Let $α denote the fundamental weight associ-
ated to α. To any (w1,w2,w3) ∈ (WPα)3 and any d ∈ Z≥0, we associate the following
linear inequality on points (λ1, λ2, λ3) in X∗(T )R:

Iα(w1,w2,w3;d) ⟨w1$α, λ1⟩ + ⟨w2$α, λ2⟩ + ⟨w3$α, λ3⟩ ≤ d.

Here, comes a first description of PK .

Theorem 7.4 (Teleman-Woodward (see [TW03])). Let (λ1, λ2, λ3) ∈ A3
∗. Then

(λ1, λ2, λ3) ∈ PK if and only if inequality Iα(w1,w2,w3;d) is fulfilled for any simple
root α, any nonnegative integer d and any w1,w2,w3 ∈WPα such that

GW (w1,w2,w3;d) = 1 (40)

in G/Pα.

Recently, Theorem 7.4 was improved as follows.

Theorem 7.5. Belkale-Kumar [BK13], R. [Res13b]] Let (λ1, λ2, λ3) ∈ A3
∗. Then

(λ1, λ2, λ3) ∈ PK if and only if inequality Iα(w1,w2,w3;d) is fulfilled for any simple
root α, any nonnegative integer d and any (w1,w2,w3) such that, in QH∗(G/Pα),

G̃W (w1,w2,w3;d) = 1. (41)

Now, Teorem 7.5 is optimal.

Theorem 7.6 (Belkale-Kumar [BK13]). The list of inequalities given by Theo-
rem 7.5 is irredundant.

Remark 7.7. For G classical, condition (41) can be checked using works of
Bertram, Buch, Kresch and Tamvakis or the software qcalc [Buc]. Explicit lists of
inequalities can be downloaded on the homepage of the author. For example, the
polype PSp12

has 43 136 facets and 20 839 vertices.

In this multiplicative context, the question of saturation can be asked for the
fusion product multiplicities by analogy with Section 5. The only known result is
in type A:

Theorem 7.8. [Bel08] Let G = SLn(C), �l be a positive integer and ν1, ν2 and ν3

be three dominant weights in X(T )+
�l
. We assume that ν1 + ν2 + ν3 belongs to the

root lattice ΛR.
Then N �l(ν1, ν2, ν3) ≠ 0 if and only if there exists a positive integer k such that

Nk �l(kν1, kν2, kν3) ≠ 0.
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