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1Instituto de Investigación en Ingenieŕıa de Aragón (I3A), Universidad de Zaragoza,
Spain. {cfernandez, jmfacil, alperez, josechu.guerrero} @unizar.es.

2 Le2i VIBOT ERL-CNRS 6000, Université de Bourgogne Franche-Comté, France
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Abstract. We propose a novel FCN able to work with omnidirectional
images that outputs accurate probability maps representing the main
structure of indoor scenes, which is able to generalize on different data.
Our approach handles occlusions and recovers complex shaped rooms
more faithful to the actual shape of the real scenes. We outperform the
state of the art not only in accuracy of the 3D models but also in speed.

1 Introduction

The problem of recovering the 3D layout of a cluttered indoor scene goes back to
the early days of computer vision and still is a core research topic, as it is a key
technology in several emerging application markets like augmented and virtual
reality, indoor navigation, SLAM and robotics in general. While witnessing the
rapid progress on layout recovery methods from perspective images with both
geometry and deep learning techniques, the expansion to omnidirectional vision
is yet limited. Panoramic images have broken the barriers of performance on
this task. PanoContext [1] was the first to extend the frameworks designed for
perspective images to panoramas. They recover both the layout, assumed as a 3D
box (4 walls), and bounding boxes of the main objects inside the room. With the
motivation to leave behind the assumption of simple boxes, [2] generates layout
hypotheses by geometric reasoning from structural corners obtained through
geometry and deep learning combination. Most recent work is LayoutNet [3],
which generates 3D layout models by training a network with panoramas and
vanishing lines to obtain edge and corner maps.

Here, we propose a Fully Convolutional Neural Network (FCN) that faces
the 3D layout recovery problem from panoramas with the following contribu-
tions: first, we introduce a fully convolutional architecture using ResNet-50 [4],
pretrained on ImageNet, as backbone. We include a single decoder that jointly
predicts edge and corner maps, which requires fewer parameters and computing
time than the state of the art while gaining accuracy. Notwithstanding that the
great majority of the images are labeled as 4-walls rooms, our network predicts
room solutions without assuming box-type rooms any more, from which we pro-
duce geometrically consistent room layouts. Our 3D models outperform existing
methods on standard benchmark datasets [5,6].
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Fig. 1: PanoRoom architecture: from ResNet-50, we build a single decoder that
jointly predicts edge and corner maps already refined

2 Deep learning structure perception

The proposed FCN follows the encoder-decoder structure and builds upon ResNet-
50 [4]. We replace the final fully-connected layer with a decoder that jointly
predicts layout edges and corners locations already refined. We illustrate the
proposed architecture in Fig. 1. Our ground truth (GT) for every panorama
consists of two probability maps. One represents the room edges whereas the
other encodes the corner locations. Every pixel has a value of 1 if it contains
structural information or 0 if it is background. Line thickening and Gaussian
blur are both employed to make the model training easier to converge since the
natural distribution of pixels is unbalanced, e.g. 95% is background. Instead,
similar approaches usually need to divide the GT into different classes, [7,8,9].

Encoder. Most of deep-learning approaches facing layout recovery problem
have made use of the VGG16 as encoder [7,9]. Instead, [8] builds their model over
ResNet-101 [4] outperforming the state of the art. Here, we propose ResNet-50
[4], pre-trained on the ImageNet dataset, which leads to a faster convergence due
to the general low-level features learned from ImageNet. Residual networks allow
us to increase depth without increasing the number of parameters with respect
to their plain counterparts. This leads, in ResNet-50, to capture a receptive field
of 483× 483, enough for our input resolution 128× 256.

Decoder. Most recent work [7,3] build two output branches for multi-task
learning which leads to more computation time and more parameters. We in-
stead propose a unique branch whose output has two channels, corners and edges
maps, which helps to reinforce the quality of both map types. In the decoder,
we combine two different ideas. First, skip-connections [10] from the encoder to
the decoder. Specifically, we concatenate ‘up-convolved’ features with their cor-
responding features from the contracting part. Second, we perform preliminary
predictions in different resolutions which we also concatenate and feed back to
the network following the spirit of [11], see Fig. 1.

Loss functions. Edge and corner maps are learned through a pixel-wise
sigmoid cross-entropy loss function. Since we know a priori that these maps have
an extremely unbalanced distribution of edge and corner labels, we introduce the
ponder factors λ1 and λ0. Where 1 and 0 are the positive and negative classes
respectively and λc = N

Nc
, being N the total number of pixels and Nc amount
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Fig. 2: Left: Vanishing lines and corners obtained only with geometric reasoning.
Center: Edge and Corner Maps predicted by our FCN. Right: Vanishing lines
and corners after combining both approaches.

of pixels of class c. The total sigmoid cross-entropy loss is the mean of the per-
pixel loss: LMi = λ1

(
yi
(
− log(S(ŷi))

))
+λ0

(
(1−yi)

(
− log(1−S(ŷi))

))
for every

pixel i, where y is the GT, ŷ is the predicted map and S is the sigmoid function.
Inspired by [12], we also define a perceptual loss function that measure high-level
perceptual differences between images. We make use of an auto-encoder with
same structure as the main network and we train this auto-encoder to encode
the GT. Apart from encouraging the output images, ŷ, to exactly match the
target images, y, we also encourage them to have similar feature representations.
Hence, having y as GT and I as input image LP (y, I) = ||φ̂j(I)−φj(y)||22, where

φj is the feature map on the jth hidden layer for the auto-encoder and φ̂j on our
network.

3 Layout recovery

While deep-learning approaches have shown tremendous success and provide a
deeper understanding of the scene, their output alone is insufficient as it does not
enforce geometric constraints and priors. For this reason, we take advantage of
our FCN output to produce geometrically consistent room layouts by optimizing
over the deep learning clues under Manhattan World assumption, whereby there
exist three orthogonal main directions that define the scene. Here, we do not as-
sume the scene as a 4 wall box any more. Lines and vanishing points (VP) extrac-
tion in perspective images has been satisfactorily faced so that many proposals
working with panoramas [1,13] sample perspective subviews to make use of them,
with the subsequent increase of computation time. Recently, some approaches
[14,2] proposed methods to obtain lines and VP directly on panoramas improv-
ing the overall efficiency of the method. Here, we use the RANSAC-approach of
[2] that has demonstrate also to be faster than other methods. Each extracted
line is associated to a probability given by the sum of probabilities of the pixels
it occupies in the edge map. This allows to remove those lines with 0 probability,
leading to an optimal subset of accurate lines that allow our proposal to obtain
final results with very few layout hypotheses generated. To make the most of
our network output, we intersect the structural lines to obtain candidate corners
that are scored with the corner map. See Fig. 2. The layout generation process
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follows the idea of [2] but we use a different approximation to select the best
hypothesis solution. Let’s define each layout hypothesis as a combination of its
edges and corners retrieved, Lh(Lh

E , L
h
C). We associate them with the probability

sum of the pixels they occupy in the corresponding predicted edge and corner
maps, we define the per-pixel probability as Pedge and Pcorner respectively. In
this manner, we select the layout that maximizes the match between these two
sources of information, LBest = arg max(we

∑
Pedge(L

h
E) + wc

∑
Pcorner(Lh

C)),
where we and wc are the term weights used to give them same importance.

4 Experiments

Experiments of the proposed approach are conducted within two public datasets
that comprise several indoor scenes, SUN360 [5] and Stanford (2D-3D-S) [6]. We
take advantage of the ∼ 500 panoramas from the SUN360 dataset labeled by
[1] but, since panoramas were all labeled as box-type rooms, we hand label and
substitute 35 panoramas representing more faithfully the actual shapes of the
rooms. We split the raw dataset consisting in 85% training and 15% test scenes.
For experiments with the Stanford 2D-3D dataset, we use same testing images
(area 5) and GT provided by [3].

The input to the network is a single panoramic image of resolution 128×256,
unlike [3] that uses also vanishing lines as input. The outputs, edge and corner
maps, have resolution 64×128. We apply horizontal mirroring as well as horizon-
tal rotation from 0◦ to 360◦ of input images during training as data augmenta-
tion. We minimized the cross-entropy loss using Adam, regularized by penalizing
the loss with the sum of the L2 of all weights. Initial learning rate is 2.5e−4 and
exponentially decayed by a rate of 0.995 every epoch. We apply 0.3 dropout rate
and 5e-6 weight decay. Although we label some panoramas accurately to their
actual shape, we still have a big unbalanced dataset. In order to overcome this
problem, we choose a batch size of 16 and we force it always to include one ex-
ample between those panoramas hand labeled by us (not box-type). This favors
the learning of more complex rooms despite having few examples. The network
is implemented in TensorFlow and trained with NVIDIA Geforce GTX 1080.

FCN Evaluation. After training our network on the SUN360 dataset, we
first carried out an experiment to choose more precisely the weights leading to
the best performance. To do that, we evaluate the predicted maps with their
corresponding GT at different stages of the training on the same dataset. We
saw that with 200 epochs (1 epoch = 25 iterations), our network reaches the best
performance with a training time of ∼ 1 hour and a half. Testing takes about
0.7s per image. These results are collected in Table 1, first row. Additionally,
we find interesting to also evaluate results on the Stanford 2D-3D dataset to see
how well our FCN is able to generalize, this results are shown in the second row.
As it was expected, results are not as good when testing with a different dataset.
However, we demonstrate in next experiments that it is enough to get layout
reconstructions with little error and thus, our network is able to generalize.
In Fig. 3 we show 3 examples of our predicted maps with different number of
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Table 1: Evaluation of our FCN trained on SUN360 dataset for 200 epochs

Dataset Precision(%) Recall(%) F1 Score(%) Accuracy(%)

SUN360 0.8338 0.8564 0.8449 0.9615
Stnfd.2D-3D 0.6309 0.5904 0.6113 0.9160

RGB image Ground Truth (GT) [2] F-L C. et.al [3] LayoutNet PanoRoom (Ours)

Fig. 3: Predicted Edge Maps. Our FCN outperforms last works from the state
of the art [2,3]. We predict cleaner edges around the boundaries and recover
faithful edge maps even when indoor scenes are not simple 4-walls rooms

Table 2: Performance benchmarking for SUN360 and Stanford 2D-3D datasets
training on SUN360 data. SS : Simple Segmentation (3 categories): ceiling, floor
and walls [3]. CS : Complete Segmentation: ceiling, floor, wall1,..., walln [2].

Dataset Method 3DIoU(%) CE(%) PESS(%) PECS(%)

SUN360 PanoContext [1] 67.22 1.60 4.55 10.34
F-L C. et al. [2] - - - 7.26
LayoutNet [3] 74.48 1.06 3.34 -

Ours 76.82 0.79 2.59 3.13

Stnfd.2D-3D F-L C. et al. [2] - - - 12.1
Ours 70.64 1.15 3.95 4.98

walls compared to the GT and to other two approaches [2,3]. Our proposal is
able to directly handle network outputs not limited to 4-wall rooms. Here we
demonstrate that is possible to train strategically in a way that the network
takes full advantage of the few different data that we have at our disposal.

3D Layout Evaluation. We evaluate our layout recovering approach on
three standard metrics, 3D intersection over union (3DIoU), corner error (CE)
and pixel error (PE), and compare ourselves with three works from the state of
the art [1,3,2]. Results are averaged across all images. For all experiments, only
SUN360 dataset is used for training. Table 2 shows the performance of our pro-
posal testing on both datasets. We show that results on SUN360 dataset demon-
strate better performance as the FCN has been trained on the same dataset,
however results on Standford 2D-3D dataset are also very competitive.
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Fig. 4: Qualitative results on both datasets. Yellow: PanoRoom, green: GT.
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