
Distributing Monte Carlo Errors as a Blue Noise in Screen Space

by Permuting Pixel Seeds Between Frames

Eric Heitz Laurent Belcour

Distributing Monte Carlo Errors as a Blue Noise in Screen Space

by Permuting Pixel Seeds Between Frames

Eric Heitz Laurent Belcour

2
0
1
9
-0
7
-2
6



Introduction

In each pixel, we use a sequence of random numbers for Monte Carlo integration:

pixel value =
1

n

n∑
i=1

f(xi ,yi ) f = light transport

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

1

In each pixel, we use a sequence of random numbers for Monte Carlo integration:

pixel value =
1

n

n∑
i=1

f(xi ,yi ) f = light transport

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

2
0
1
9
-0
7
-2
6

Our context is a classic Monte Carlo forward path tracer where each pixel

is estimated using a sequence of random numbers.



Introduction

Is there a clever way to assign a sequence to each pixel?

?

2

Is there a clever way to assign a sequence to each pixel?

?

2
0
1
9
-0
7
-2
6

Many papers focus on the nature of the sequence itself. In this paper, we
are interested in another question: the choice of the sequence for each
pixel.

In a classic path tracer, a sequence is chosen randomly for each pixel. It

is the random choice of the sequence that randomize the Monte Carlo

errors in the image and produces noise. Can we do better than that?



Random Optimized di�erence of neighboring sequences

Same number of samples per pixel, same rendering time.

Random Optimized di�erence of neighboring sequences

Same number of samples per pixel, same rendering time.

2
0
1
9
-0
7
-2
6

The potential hidden behind this question is the di�erence between the
two parts of this images. Apparently, the right part looks much better
than the left part.

On the left, each pixel uses a sequence chosen randomly. On the right,

the distribution of the sequences has been optimized such that

neighboring pixels have sequences that are as di�erent as possible.



low-value cluster no clusters

Random Optimized di�erence of neighboring sequences

low-value cluster no clusters

Random Optimized di�erence of neighboring sequences

2
0
1
9
-0
7
-2
6

To get a better understanding of the di�erence in visual quality, let's
zoom in a small region of the image.

On the left, when the sequences are chosen purely randomly, we always
obtain clusters of pixels with very low (or high) errors. It is this clustering
e�ect that contributes the most to our human perception of noisiness.

On the right, since we have chosen the sequences to maximize the

di�erence between neighboring pixels, we prevent clusters from

aggregating together. This is why the image looks less noisy.



spectruminset spectrum inset

FFT FFT

Random Optimized di�erence of neighboring sequences

spectruminset spectrum inset

FFT FFT

Random Optimized di�erence of neighboring sequences

2
0
1
9
-0
7
-2
6

However, the amount of noise (the Monte Carlo errors) is really the same
in the two images. It is just that it is organized di�erently. This
di�erence can be characterized by looking at the spectrum of the errors
in a small neighborhood.

In the classic random case, the spectrum is statistically �at, i.e. we obtain
white-noise errors where all the frequencies are equally represented.

In the optimized case of the right, preventing the clusters from appearing
is basically killing the low-frequencies of the spectrum and we obtain
blue-noise errors.

This is why the problem we are going to explore is called �Distributing

Monte Carlo errors as a blue noise in screen space�.



Introduction

white
noise

blue
noise

L2 = 17800 L2 = 17800

Blue-noise errors are better perceptually.
6

white
noise

blue
noise

L2 = 17800 L2 = 17800

Blue-noise errors are better perceptually.

2
0
1
9
-0
7
-2
6

Note again that the improvement due to the blue-noise error distribution

is only perceptual. If we compute the numerical errors of the two images,

they are statistically exactly the same.



Introduction

�lter
white
noise denoised �lter

blue
noise denoised

L2 = 17800 L2 = 4300 L2 = 17800 L2 = 2100

* = * =

Denoised blue-noise errors are better perceptually and numerically.
7

�lter
white
noise denoised �lter

blue
noise denoised

L2 = 17800 L2 = 4300 L2 = 17800 L2 = 2100

* = * =

Denoised blue-noise errors are better perceptually and numerically.

2
0
1
9
-0
7
-2
6

However, one almost never displays a raw noisy image directly. Monte

Carlo rendered images are often denoised before being displayed. An

interesting e�ect of the blue-noise error distribution is that it makes the

error go down after denoising. Hence, when it is coupled with a denoiser,

this concept is no more just a perceptual e�ect, it becomes a numerical

improvement as well.



Introduction

�lter
white
noise denoised �lter

blue
noise denoised

FFT FFT FFT FFT FFT FFT

L2 = 17800 L2 = 4300 L2 = 17800 L2 = 2100

* = * =

x = x =

Denoised blue-noise errors are better perceptually and numerically.
8

�lter
white
noise denoised �lter

blue
noise denoised

FFT FFT FFT FFT FFT FFT

L2 = 17800 L2 = 4300 L2 = 17800 L2 = 2100

* = * =

x = x =

Denoised blue-noise errors are better perceptually and numerically.

2
0
1
9
-0
7
-2
6

We can understand why by looking again in the spectral domain. A
denoiser can be seen locally as the convolution with a low-pass �lter. In
the spectral domain, it becomes a multiplication with the spectrum of
the �lter.

Applying the low-pass �lter on the white-noise errors removes the
high-frequencies but the energy of the errors located in the
low-frequencies remain.

Applying the low-pass �lter on the blue-noise errors removes almost all

the energy of the errors since it is only located in the high-frequencies.

This is why the errors becomes lower numerically after the �ltering

process.



Random + denoising Optimized + denoising

Same number of samples per pixel, same rendering time, same denoiser.

Random + denoising Optimized + denoising

Same number of samples per pixel, same rendering time, same denoiser.

2
0
1
9
-0
7
-2
6

This is the dragon image from before after denoising. The di�erence in
quality is impressive.

In summary, the concept of distributing Monte Carlo errors as a

blue-noise in screen space is something that improves the visual �delity of

raw noisy images and that boosts the performance of a denoiser.



Introduction

[Georgiev&Fajardo2016]

New concept introduced in

Blue-noise Dithered Sampling

by Georgiev and Fajardo, Siggraph Talk 2016
10

[Georgiev&Fajardo2016]

New concept introduced in

Blue-noise Dithered Sampling

by Georgiev and Fajardo, Siggraph Talk 2016

2
0
1
9
-0
7
-2
6

This concept has been in the air for a very long time. For instance, it was
mentioned in an early paper of Mitchell in 1991.

But the �rst people who brought it to life for the �rst time and made

something practical out of it were Georgiev and Fajardo. They presented

an idea called Blue-noise Dithered Sampling (BNDS) in a SIGGRAPH

Talk in 2016.



Introduction

[Georgiev&Fajardo2016]

Optimal at 1 sample per pixel in low dimensions.

→ For real-time or previz.

Vanishes at high sample counts and high dimensions.

→ Not for o�ine path tracing.

11

[Georgiev&Fajardo2016]

Optimal at 1 sample per pixel in low dimensions.

→ For real-time or previz.

Vanishes at high sample counts and high dimensions.

→ Not for o�ine path tracing.

2
0
1
9
-0
7
-2
6

BNDS produces terri�c results in simple cases (typically direct
illumination) and low sample counts. However, the e�ect vanishes at
higher sampling count and higher dimensionalities of the rendering
integrand.

Because of this limitation, BNDS is something that is only meant to

improve preview images or real-time path tracing. It won't improve a

�nal beauty render in an o�ine path tracer.



Introduction

[Heitz&Belcour2019]

New theoretical formulation + temporal algorithm.

Scales to high sample counts and high dimensions.

→ For o�ine path tracing.

12

[Heitz&Belcour2019]

New theoretical formulation + temporal algorithm.

Scales to high sample counts and high dimensions.

→ For o�ine path tracing.

2
0
1
9
-0
7
-2
6

The ambition of our paper is to bring the concept of distributing MC

errors as a blue noise to true path tracing by overcoming these

limitations. To do this, we introduce a theoretical formulation and a

practical temporal algorithm that approximates it.



Participating medium path tracing, 8 bounces (24 dimensions), 1 spp

[Georgiev&Fajardo2016] Our temporal algorithm

Participating medium path tracing, 8 bounces (24 dimensions), 1 spp

[Georgiev&Fajardo2016] Our temporal algorithm

2
0
1
9
-0
7
-2
6

Here is a comparison of BNDS and our temporal algorithm. This scene is

interesting because it is a participating medium rendered with path

tracing, i.e. the dimensionality is very high. Because of this, BNDS of

Georgiev and Fajardo does not improve the error distribution compared to

a classic white noise. Our temporal algorithm is able to improve the

result despite the hig dimensionality (zoom in to see how the clusters are

prevented in our image.)



Participating medium path tracing, 8 bounces (24 dimensions), 32 spp

[Georgiev&Fajardo2016] Our temporal algorithm

Participating medium path tracing, 8 bounces (24 dimensions), 32 spp

[Georgiev&Fajardo2016] Our temporal algorithm

2
0
1
9
-0
7
-2
6

This image is the same scene rendered at 32 spp instead of 1 spp. It

shows that our algorithm scales not only in terms of dimensionality but

also in terms of sample count.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

15

Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

2
0
1
9
-0
7
-2
6

Before talking about our algorithms, we would like to share some insights
we gather regarding BNDS.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

halftoning

How to simulate shades of gray using black dots? 16

halftoning

How to simulate shades of gray using black dots?

2
0
1
9
-0
7
-2
6

The original inspiration of Georgiev and Fajardo came from dithering
algorithms for digital halftoning.

Given a grayscale image, how to obtain a binary image such that the

interleaving of black and white somehow simulates the same shades of

gray?



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

FFT

I U Heaviside(I −U)

if(input > dither)

return 1;

else
return 0;

17

FFT

I U Heaviside(I −U)

if(input > dither)

return 1;

else
return 0;

2
0
1
9
-0
7
-2
6

A classic technique to do that is to compare each grayscale pixel with a
random number. If the random number is smaller store white, black
otherwhise. Furthermore, in the halftoning community, it is well-known
that using a blue-noise texture to feed the random numbers achieves the
best results.

One of the best way to obtain such a blue-noise texture is the

void-and-cluster algorithm [Ulichney1983].



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

FFT

∫
[0,1]2

f (x ,y) dxdy (U1,U2) ∈ [0,1]2 f (U1,U2)

f = light transport

18

FFT

∫
[0,1]2

f (x ,y) dxdy (U1,U2) ∈ [0,1]2 f (U1,U2)

f = light transport

2
0
1
9
-0
7
-2
6

The idea of Georviev and Fajardo is: why don't we do the same for
Monte Carlo rendering?

Each pixel of a Monte Carlo rendered image is the result of an integral
estimates using random numbers. If we feed the random numbers using a
blue-noise texture, we will distribute the errors as a blue noise, exactly
like halftoned images.

Actually, to do that, we need blue-noise textures that contain random

vectors of the same dimensionality as the rendering integrand. For

instance, in this image the light transport is 2D (the direct illumination of

an area light) so we need a blue-noise texture with 2 channels per pixel.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

FFT FFT FFT

[Georgiev&Fajardo2016] U1 ∈ [0,1] (U1,U2) ∈ [0,1]2 (U1,U2,U3) ∈ [0,1]3

How to produce higher-dimensional blue-noise textures?
19

FFT FFT FFT

[Georgiev&Fajardo2016] U1 ∈ [0,1] (U1,U2) ∈ [0,1]2 (U1,U2,U3) ∈ [0,1]3

How to produce higher-dimensional blue-noise textures?

2
0
1
9
-0
7
-2
6

This is precisely what this paper is about. It introduces an algorithm that

computes these textures for an arbitrary dimensionality D (here

D = 1,2,3).



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

6= 6= 6=

[Georgiev&Fajardo2016] U1 ∈ [0,1] (U1,U2) ∈ [0,1]2 (U1,U2,U3) ∈ [0,1]3

Optimize the di�erence between neighboring pixels. 20

6= 6= 6=

[Georgiev&Fajardo2016] U1 ∈ [0,1] (U1,U2) ∈ [0,1]2 (U1,U2,U3) ∈ [0,1]3

Optimize the di�erence between neighboring pixels.

2
0
1
9
-0
7
-2
6

The algorithm is an optimization system. Each pixel is going to store a
D-dimensional vector. The algorithm optimizes the location of the
vectors such that they are always as di�erent as possible from the
neighboring ones.

When this constraint is optimized, we e�ectively obtain a blue-noise

texture.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

samples

(U1,U2)

correlate

6= �Neighboring samples

are as di�erent as possible.�

21

samples

(U1,U2)

correlate

6= �Neighboring samples

are as di�erent as possible.�

2
0
1
9
-0
7
-2
6

So, this paper is about optimizing the negative correlation between

neighboring pixels. When we say �negative correlation� it just means �as

di�erent as possible�.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

samples sequences

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

correlate

correlate

6= �Neighboring sequences

are as di�erent as possible.�

22

samples sequences

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

correlate

correlate

6= �Neighboring sequences

are as di�erent as possible.�

2
0
1
9
-0
7
-2
6

When we need a sample count higher than 1, Georgiev and Fajardo
propose to use a unique sequence (x1,y1), ..,(xn,yn) for all the pixels and
o�et it by the blue-noise samples. The o�setting is done modulo 1, i.e.
the samples that go out of the unit square are warped back on the other
side of the square. This is also called �Cranley Patterson rotation�, or just
�toroidal shift�.

By doing this we obtain a bunch a blue-noise textures where each texture

represent one o�setted sample of the sequence.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate

correlate correlate

6= �Neighboring errors

are as di�erent as possible.�

23

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate

correlate correlate

6= �Neighboring errors

are as di�erent as possible.�

2
0
1
9
-0
7
-2
6

Finally, the sequences are used to compute a Monte Carlo estimate of the
light transport in each pixel, which produces an error. Since neighboring
sequences are as di�eren as possible, we assume that their resulting MC
errors are also as di�erent as possible.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate

correlate correlate

24

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate

correlate correlate

2
0
1
9
-0
7
-2
6

Once we explain it in this way, we can see that BNDS relies on a chain of
correlations. The correlations originally optimized for the samples are
transferred to the sequences and �nally they get transferred to the MC
errors, which is what we want.



Blue-noise Dithered Sampling [Georgiev&Fajardo2016]

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate low dimensions

correlate correlate

low sample counts simple integrands

25

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate low dimensions

correlate correlate

low sample counts simple integrands

2
0
1
9
-0
7
-2
6

However, while the chain of correlations works very well in simple cases,
there are also many reasons for it to break down.

For instance, the original correlation of the samples does not work very

well in high dimensions. This is a classic problem with blue noise in

general. Another problem is that the correlation of the samples does not

transfer well to the sequences when the number of elements in the

sequence is high. The longer the sequence, the less it preserves the

correlation. Finally, the light-transport function f preserves the

correlation of the sequences only if it is simple enough. If f has many

discontinuities, oscillations, etc. the correlation is not successfully

transferred to the errors.



Our approach

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate low dimensions correlate

correlate correlate

low sample counts simple integrands

26

samples sequences MC errors

(U1,U2)
(U1+x1,U2+y1)···
(U1+xn,U2+yn)

1

n

n∑
i=1

f (U1+xi ,U2+yi )

correlate low dimensions correlate

correlate correlate

low sample counts simple integrands

2
0
1
9
-0
7
-2
6

The approach of our paper is that if we want to correlate the errors, then
we should design a technique that optimizes the errors directly instead of
optimizing something else and hoping that it will be successfully
transferred to the errors.



How can we directly correlate Monte Carlo errors?

27

How can we directly correlate Monte Carlo errors?

2
0
1
9
-0
7
-2
6

This leads us to this question: how can we directly correlate Monte Carlo
errors?



How can we directly correlate Monte Carlo errors?

FFT

correlate

?

28

FFT

correlate

?

2
0
1
9
-0
7
-2
6

What we mean by correlating MC errors directly is that we would like to
be able to transfer the correlation of a blue-noise texture directly to the
errors of the rendered image, without additional intermediate steps.



How can we directly correlate Monte Carlo errors?

We compute a pixel value using a sequence of random numbers. 29

We compute a pixel value using a sequence of random numbers.

2
0
1
9
-0
7
-2
6

First, let's remember how a pixel value is computed. Typically, a
sequence is chosen randomly and used to estimate the pixel value.



How can we directly correlate Monte Carlo errors?

Consider all the potential values for this pixel and sort them. 30

Consider all the potential values for this pixel and sort them.

2
0
1
9
-0
7
-2
6

There is an in�nity of di�erent sequences that we could use to estimate
the pixel. Let's consider all the potential sequences that we could use
and the values that they would produce for this pixel. All these values are
valid candidate for this pixel when it is rendered at 4 spp. Let's consider
them all and store them in a sorted list.



How can we directly correlate Monte Carlo errors?

0

Sample the sorted list using the random number provided by the blue-noise texture. 31

0

Sample the sorted list using the random number provided by the blue-noise texture.

2
0
1
9
-0
7
-2
6

What we are going to do is to choose one of these values based on the
value of this pixel in the blue-noise texture.

For instance, if the blue-noise texture has a very small value, we choose a

small element in the sorted list.



How can we directly correlate Monte Carlo errors?

1

Sample the sorted list using the random number provided by the blue-noise texture. 32

1

Sample the sorted list using the random number provided by the blue-noise texture.

2
0
1
9
-0
7
-2
6

If the blue-noise texture has a very high value, we choose a high element
in the sorted list.



How can we directly correlate Monte Carlo errors?

0.5

Sample the sorted list using the random number provided by the blue-noise texture. 33

0.5

Sample the sorted list using the random number provided by the blue-noise texture.

2
0
1
9
-0
7
-2
6

If the blue-noise texture has a median value, we choose a median element
in the sorted list.

We are just sampling the sorted list using the random number provided

by the blue-noise texture.



How can we directly correlate Monte Carlo errors?

correlate

3

high
value

low
value

high
value

low
value

34

correlate

3

high
value

low
value

high
value

low
value

2
0
1
9
-0
7
-2
6

By doing this, we are e�ectively transferring the spatial correlations of
the blue-noise texture to the errors of the rendered image. When the
blue-noise texture has a small value, the rendered image has a small
error, etc.



How can we directly correlate Monte Carlo errors?

[Georgiev&Fajardo2016] Our sorting-based correlation

1 spp, 2 dimensions (direct lighting)

⇐⇒

35

[Georgiev&Fajardo2016] Our sorting-based correlation

1 spp, 2 dimensions (direct lighting)

⇐⇒

2
0
1
9
-0
7
-2
6

Let's compare this idea to BNDS.

In this scene, the sample count is only 1, the dimensionality is low, adn

the integrand is simple (a small area light). This is a case where the

chain of correlations assumed by BNDS works well and the two

formulations achieve pretty much the same quality.



How can we directly correlate Monte Carlo errors?

[Georgiev&Fajardo2016] Our sorting-based correlation

1 spp, 4 dimensions (direct+indirect lighting)

<

36

[Georgiev&Fajardo2016] Our sorting-based correlation

1 spp, 4 dimensions (direct+indirect lighting)

<

2
0
1
9
-0
7
-2
6

However, if we add some global illumination, the dimensionality increases
and BNDS breaks down while our formulation still achieves a nice
blue-noise distribution of the errors.



How can we directly correlate Monte Carlo errors?

[Georgiev&Fajardo2016] Our sorting-based correlation

16 spp, 4 dimensions (direct+indirect lighting)

<

37

[Georgiev&Fajardo2016] Our sorting-based correlation

16 spp, 4 dimensions (direct+indirect lighting)

<

2
0
1
9
-0
7
-2
6

In this example, we also increased the number of samples per pixel. The
image produced by our formulation looks like it is almost converged in
this case.

This shows that our formulation based on the sorted list scales in terms

of dimensionality and sample count.



How can we directly correlate Monte Carlo errors?

In theory: evaluate and sort many sequences for the same pixel.

Problem: too costly! Can we obtain a cheap approximate sorted list?

We cannot do that!

38

In theory: evaluate and sort many sequences for the same pixel.

Problem: too costly! Can we obtain a cheap approximate sorted list?

We cannot do that!

2
0
1
9
-0
7
-2
6

The problem is that this idea is not practical. To compute these images,
we need to render the pixels many times. For the same rendering time,
one could just render a converged image without visible error!

In order to make this approach practical, we need to �nd a way to predict

the sorted list without actually rendering the pixels many times.



Temporal Algorithm

39

Temporal Algorithm

2
0
1
9
-0
7
-2
6

This is where our temporal algorithm comes into play.



Temporal Algorithm

frame t−1 frame t

We just rendered the previous frame. 40

frame t−1 frame t

We just rendered the previous frame.

2
0
1
9
-0
7
-2
6

The context of our temporal algorithm is the following: we just rendered

the previous frame and we are about to render the next one.



Temporal Algorithm

frame t−1 blue noise

We want to correlate the next frame as this blue noise texture. 41

frame t−1 blue noise

We want to correlate the next frame as this blue noise texture.

2
0
1
9
-0
7
-2
6

What we would like to do is to force the new frame to have the same

correlation as this blue-noise texture.



Temporal Algorithm

frame t−1 blue noise

sorted list

Sort a block of 2×2 pixels from the previous frame. (Note: we use 4×4 in practice) 42

frame t−1 blue noise

sorted list

Sort a block of 2×2 pixels from the previous frame. (Note: we use 4×4 in practice)

2
0
1
9
-0
7
-2
6

We divide the image space in small blocks (in this illustration it is 2x2
but in practice we alwayse do 4x4).

For each block, we sort the pixel values in the previous frame...



Temporal Algorithm

frame t−1 blue noise

sorted list

We sort the same block in the blue-noise texture. 43

frame t−1 blue noise

sorted list

We sort the same block in the blue-noise texture.

2
0
1
9
-0
7
-2
6

... and in the blue-noise texture.



Temporal Algorithm

frame t−1 blue noise

permutation

We obtain a permutation of the pixels in the block. 44

frame t−1 blue noise

permutation

We obtain a permutation of the pixels in the block.

2
0
1
9
-0
7
-2
6

By putting the two sorted list side by side we obtain a permutation of the

pixel coordinates inside the block.



Temporal Algorithm

frame t−1 sequences for frame t

permutation

We apply this permutation on the sequences before rendering the next frame. 45

frame t−1 sequences for frame t

permutation

We apply this permutation on the sequences before rendering the next frame.

2
0
1
9
-0
7
-2
6

The idea is to apply this permutation on the sequences that produces the
pixel values in the previous frame.

For instance, the sequence that produced the smallest value in the

previous frame will be relocated to where we want the smallest value to

be located in the next frame, etc.



Temporal Algorithm

frame t−1 frame t = blue noise

permutation

FFT FFT

46

frame t−1 frame t = blue noise

permutation

FFT FFT2
0
1
9
-0
7
-2
6

Now that the sequences to use for the new frame are decided, all we have

to do is press the rendering button. What we obtain is a frame that has

the same blue-noise correlations as the blue-noise texture.



For each 4x4 block

sort(FramePixels[1..16])

sort(BlueNoisePixels[1..16])

for i=1..16

NewSequences(BlueNoisePixels[i]) = Sequences(FramePixels[i])

end

For each 4x4 block

sort(FramePixels[1..16])

sort(BlueNoisePixels[1..16])

for i=1..16

NewSequences(BlueNoisePixels[i]) = Sequences(FramePixels[i])

end

2
0
1
9
-0
7
-2
6

Our algorithm is very simple to implement. All we do is, between two
frames, we divide the image in small blocks and sort their values to
obtain a permutation that we apply on the sequences.

To be fair, there are some more technical details to our algorithm than

just this but this is really its core component and by far the costliest

operation. The details are in the paper.



Temporal Algorithm

The hidden power of std::sort for Monte Carlo rendering.

48

The hidden power of std::sort for Monte Carlo rendering.

2
0
1
9
-0
7
-2
6

Let's look at some animated results. The animations are provided in the

supplemental material.



Temporal Algorithm

frame t−1 frame t

Spatio-temporal coherence: neighboring pixels in the previous frame are similar. 49

frame t−1 frame t

Spatio-temporal coherence: neighboring pixels in the previous frame are similar.

2
0
1
9
-0
7
-2
6

Note that our temporal algorithm makes the assumption that a sequence

produces a similar value in neighboring pixels in the next frame. Of

course, this is not always true: when the camera moves, or at the edge of

an object, this assumption is violated.



Direct + indirect lighting, 1 spp

Randomly assigned sequences Our temporal algorithm

Direct + indirect lighting, 1 spp

Randomly assigned sequences Our temporal algorithm

2
0
1
9
-0
7
-2
6

This image shows the consequences of the spatio-temporal similarity

assumption. In the regions that are smooth and coherent (e.g. the

checkerboard in the background or the center part of the teapot) the

blue-noise distribution of the errors looks good. However, at the border

of the teapot the error is poorly distributed, as a classic white noise.



Direct + indirect lighting, 4 spp

Randomly assigned sequences Our temporal algorithm

Direct + indirect lighting, 4 spp

Randomly assigned sequences Our temporal algorithm

2
0
1
9
-0
7
-2
6

This image shows the consequences of the spatio-temporal similarity

assumption. In the regions that are smooth and coherent (e.g. the

checkerboard in the background or the center part of the teapot) the

blue-noise distribution of the errors looks good. However, at the border

of the teapot the error is poorly distributed, as a classic white noise.



Direct + indirect lighting, 16 spp

Randomly assigned sequences Our temporal algorithm

Direct + indirect lighting, 16 spp

Randomly assigned sequences Our temporal algorithm

2
0
1
9
-0
7
-2
6

This image shows the consequences of the spatio-temporal similarity

assumption. In the regions that are smooth and coherent (e.g. the

checkerboard in the background or the center part of the teapot) the

blue-noise distribution of the errors looks good. However, at the border

of the teapot the error is poorly distributed, as a classic white noise.



Direct + indirect lighting, 64 spp

Randomly assigned sequences Our temporal algorithm

Direct + indirect lighting, 64 spp

Randomly assigned sequences Our temporal algorithm

2
0
1
9
-0
7
-2
6

This image shows the consequences of the spatio-temporal similarity

assumption. In the regions that are smooth and coherent (e.g. the

checkerboard in the background or the center part of the teapot) the

blue-noise distribution of the errors looks good. However, at the border

of the teapot the error is poorly distributed, as a classic white noise.



spectrum insetOur temporal algorithm, 4 spp

spectrum insetOur temporal algorithm, 4 spp

2
0
1
9
-0
7
-2
6

We applied our method on this snooker table with and without a texture.

Without the texture, our temporal algorithm manages to distributed the

errors as a blue noise on the table.



spectrum insetOur temporal algorithm, 4 spp

spectrum insetOur temporal algorithm, 4 spp

2
0
1
9
-0
7
-2
6

However, with a texture, our method fails. In this case, the errors are

distributed as a white noise.



Temporal Algorithm

Quality

Spatio-temporally coherent regions: blue-noise

Spatio-temporally incoherent regions: white-noise (worst case = classic rendering)

Performance at 1080p

CPU Intel i7-5960X (1 thread): 1035 ms

CPU Intel i7-5960X (16 thread): 64 ms

GPU NVIDIA 2080: 0.60 ms

Main selling points: negligible overhead and safe to use (results can only be better).

56

Quality

Spatio-temporally coherent regions: blue-noise

Spatio-temporally incoherent regions: white-noise (worst case = classic rendering)

Performance at 1080p

CPU Intel i7-5960X (1 thread): 1035 ms

CPU Intel i7-5960X (16 thread): 64 ms

GPU NVIDIA 2080: 0.60 ms

Main selling points: negligible overhead and safe to use (results can only be better).

2
0
1
9
-0
7
-2
6

The main selling point of our algorithm is that it never worsen the
images. In the best case, they are improved, in the worst case, we obtain
a classic white-noise error distribution.

Furthermore, our algorithm is extremelly fast since it does nothing besides
sorting small sorted lists. We originally meant it for o�ine rendering but
it turned out it can also be considered for realtime rfendering.

Given that our algorithm is safe to use and very cheap, there is almost no

reason for not using it.



Are we there yet?

57

Are we there yet?

2
0
1
9
-0
7
-2
6

So... is this it or is there more to this research topic?



Are we there yet?

Randomly assigned sequences Our temporal algorithm

4 spp, 4 dimensions (direct+indirect lighting)

<

58

Randomly assigned sequences Our temporal algorithm

4 spp, 4 dimensions (direct+indirect lighting)

<

2
0
1
9
-0
7
-2
6

Our temporal algorithm does indeed increase the quality compared to a

classic randomization.



Are we there yet?

Theory: exact sorting-based correlation Our temporal algorithm

4 spp, 4 dimensions (direct+indirect lighting)

>

59

Theory: exact sorting-based correlation Our temporal algorithm

4 spp, 4 dimensions (direct+indirect lighting)

>

2
0
1
9
-0
7
-2
6

However, compared to the exact sorted-list formulation introduced

before, the gap in quality is still large!



Are we there yet?

0.5

Theory: sort values computed for the same pixel.

Practice: sort values computed for multiple neighboring pixels in the previous frame.60

0.5

Theory: sort values computed for the same pixel.

Practice: sort values computed for multiple neighboring pixels in the previous frame.

2
0
1
9
-0
7
-2
6

In theory, we should compute this sorted list for each pixel independently

but in practice we approximated it by sharing pixel values over blocks of

pixels from the previous frame. The di�erence between theory and

practice is responsible for the di�erence in quality between the two

previous images.



Are we there yet?

[Heitz&Belcour2019] Theory: how to correlate MC errors directly

regardless of the sample count and the dimensionality.

→ The most interesting part of the paper!

Practice: a temporal algorithm that approximates it.

→ Only a simple proof of concept.

→ Potential improvement: permute only similar pixels.

→ Potential improvement: temporal reprojection.

What about other approaches (progressive, ML, etc.)?

61

[Heitz&Belcour2019] Theory: how to correlate MC errors directly

regardless of the sample count and the dimensionality.

→ The most interesting part of the paper!

Practice: a temporal algorithm that approximates it.

→ Only a simple proof of concept.

→ Potential improvement: permute only similar pixels.

→ Potential improvement: temporal reprojection.

What about other approaches (progressive, ML, etc.)?2
0
1
9
-0
7
-2
6

In our opinion, the most interesting part of our paper is the one that
introduces the theoretical formulation based on the sorted list (or
equivalently as a histogram in the paper). To show the potential of the
idea, we wanted to make a simple proof of concent and this is what the
temporal algorithm is for. It already produces some nice results but it is
not hard to imagine some improvements such as a temporal reprojection
or preventing permuting pixels that are not on the same objects, for
instance.

We also believe that it should be possible to design non-temporal

approaches. For instance, is it possible to design a progressive sequence

construction that would rank as desired in the sorted list? Or is it

possible to use Machine Learning to predict the sorting orders of multiple

sequences for a given pixel? This problem is very open and we don't have

any preconception of what would be the right approach.



Can you predict the sorting order of sequences for a given pixel?

Can you predict the sorting order of sequences for a given pixel?

2
0
1
9
-0
7
-2
6

As a conclusion, we would like to leave you with this question. If you can
predict how sequences would perform on a pixel (you only have to predict
the sorting orders, not the accurate values that they would produce) then
you will be able to produce Monte Carlo rendered imagew with a terri�c
blue-noise distriution of their errors and this has the potential to bring
the quality of your images to another level.

Thanks for your attention!


