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ABSTRACT

Discovering the very first ligands of pharmacologically important targets in a fast and cost-efficient
manner is an important issue in drug discovery. In the absence of structural information on either
endogenous or synthetic ligands, computational chemists classically identify the very first hits by
docking compound libraries to a binding site of interest, with well-known biases arising from the usage
of scoring functions. We herewith propose a novel computational method tailored to ligand-free
protein structures and consisting in the generation of simple cavity-based pharmacophores to which
potential ligands could be aligned by the use of a smooth Gaussian function. The method, embedded
in the IChem toolkit, automatically detects ligand-binding cavities, then predicts their structural
druggability, and last creates a structure-based pharmacophore for predicted druggable binding sites.
A companion tool (Shaper2) was designed to align ligands to cavity-derived pharmacophoric features.
The proposed method is as efficient as state-of-the-art virtual screening methods (ROCS, Surflex-Dock)
in both posing and virtual screening challenges. Interestingly, IChem-Shaper2 is clearly orthogonal to

these latter methods in retrieving unique chemotypes from high-throughput virtual screening data.



INTRODUCTION

Computer-aided drug design® has become a standard tool to assist medicinal chemists in identifying
and/or optimizing hits for targets of pharmaceutical interest. Corresponding computational methods
are classically divided into ligand-based? or structure-based approaches® as to whether preexisting
knowledge of ligands or target structures is taken into account. Among ligand-centric methods,
pharmacophore searches* are extremely popular for many reasons: (i) the concept of pharmacophore
is very intuitive and easily understandable for both computational and medicinal chemists, (ii) it does
not require the a priori knowledge of the target's three-dimensional (3D) structure, (iii) it does not
suffer from the main drawbacks® of structure-based approaches (e.g. inaccurate binding free energy
estimates) since topological scoring functions® are used to rank ligand adequacy (fitness) to a
pharmacophore query, (iv) aligning a ligand to a pharmacophore intuitively guides its further

optimization in order to gain or lose additional features.

Typical ligand-based pharmacophore searches first require aligning template ligands sharing the same
functional effect, then extract common features of these aligned ligands to derive a pharmacophore
hypothesis, and last, search compound libraries for hits satisfying this hypothesis. If the X-ray
structures of protein-ligand complexes are available, protein-ligand-based pharmacophores’!® may be
derived as well by mapping features onto protein-interacting ligand atoms, and therefore complement
purely ligand-based pharmacophores. However, there are still many protein structures and/or novel
cavities for which not a single ligand has ever been identified. In order to avoid problems associated
with structure-based approaches (e.g. absolute or relative ranking of compounds of interest, target
flexibility) for such orphan targets, several methods have been proposed over the last decade to fill

the gap between structure-based methods and pharmacophore searches.

Structure-based pharmacophore perception methods classically use a set of molecular probes (atoms,
fragments) to locate energetically preferred probe locations. Grid-based methods (e.g. GRID,*

SuperStar,'? FTMap,? VolSite,** T2F,*®> GRAIL®) locate these preferred positions on a three-dimensional



lattice encompassing either the full protein or at least a user-defined binding cavity. Energy minima on

the contour maps’*°

are then saved for every probe and used as guides to define structure-based
pharmacophoric features. Fragment-based methods rely on the prediction of hotspots from molecular
dynamics simulations of the target (e.g. MCSS,?° SILCS,?! HSRP?2) with multiple copies of fragments
bearing well-defined pharmacophoric properties. Again, the most energetically favorable positions of
every fragment are later converted into pharmacophoric features. Last, the position of
pharmacophoric features can be topologically predicted by scanning the cavity-lining and accessible
amino acids, in order to generate topologically ideal interaction vectors pointing at 3D space (spheres,
cones) where potential ligand atoms should be located to optimally interact with the protein surface.
The pioneering method LUDI® has inspired many structure-based pharmacophore perception

methods (e.g. Virtual ligand,®* SBP,”> HS-Pharm,?® Snooker,”” Examplar?®) to position ideal

pharmacophoric moieties from the 3D structure of a binding cavity.

Whatever the method, the number of generated features (a few hundreds) exceeds by far the upper
complexity tolerated by pharmacophore searching algorithms. The number of features must be

therefore considerably lowered to an acceptable value, usually below 10. A preselection can be done

15, 16, 20-22 15,19

based on energetic and buriedness criteria, overlap with hydration sites,?? or location with
respect to knowledge-based predicted anchoring hotspots?® to prune pharmacophoric features. Most
methods finish the filtering step by a hierarchical clustering based on feature properties and inter-

features distances.

Receptor-based pharmacophore searches have proven to perform at least as well as molecular
docking, with respect to enrichment in true actives in retrospective virtual screening experiments.?% 2>
26,28 They however suffer, with a few exceptions,? % from a lack of automation since many of the

above-cited post-processing steps are tedious, leaving therefore the user with subjective decisions to

make with respect to e.g. the nature of probes to use, acceptable energy minima, or the number of



clusters. Moreover, the true value of receptor-based pharmacophore searches in posing a ligand has

rarely been examined? and compared to molecular docking.

To address the above limitations, we herewith modified a previously-described cavity detection
method (VolSite!*) in order to automatize many steps between cavity detection and workable
pharmacophore query definition. VolSite has notably been embedded in the IChem® toolkit to
perform the following operations: (i) on-the-fly detection of all cavities at the surface of the target of
interest, (ii) prediction of their structural druggability, (iii) perception of potential pharmacophores
from the 3D structures of predicted druggable cavities. We next modified the previously reported
Shaper!* method to align ligand atoms to cavity features by shape matching and tested several

topological and energy scoring functions in posing and virtual screening challenges.

COMPUTATIONAL METHODS

Datasets

sc-PDB Diverse Set: 213 diverse protein-ligand complexes (Table S1) were retrieved from the sc-PDB
database of protein-ligand complexes3! according to the diversity of their protein-ligand interaction

patterns, measured by a previously-reported graph matching procedure (GRIM).3?

Starting from a full
GRIM similarity matrix calculated on 9,283 entries of the sc-PDB archive, clusters were defined using a
simple agglomerative clustering, a minimal pair-wise similarity (GrimScore) of 0.70 between its
representatives, a minimal size of 6 entries, and a single linkage criterion. For every cluster,

representative X-ray structures of the bound ligand and its cognate target (cluster center) were

downloaded from the sc-PDB website.*3



Astex Diverse Set: The 85 entries of the Astex Diverse Set3* (Table S2) were downloaded from the CCDC
website®® and processed as follows. For each entry, the protein-ligand complex was reconstructed in
SYBYL-X.2.1.1%¢ by merging the ligand (mol2 file format) into the protein (mol2 file format). Bound
water molecules were imported from the corresponding RCSB Protein DataBank (PDB)*’ file, all
hydrogen atoms were deleted, and the fully hydrated complex (heavy atoms only) was protonated
using Protoss.?® lons and co-factors having no heavy atoms located in a 4.5 A-radius sphere centered
on the ligand's center of mass were deleted. Water molecules were kept if two conditions were
satisfied: (i) the oxygen atom was located in the above-described sphere; (ii) the bound water was
engaged in at least two hydrogen bonds (donor-acceptor distance < 3.5 A, donor-hydrogen-acceptor
angle > 120 deg.) with the protein. The ligand, as defined in the original Astex data, and the hydrated

protein (including ions and co-factors), were separately saved in mol2 file format.

DUD-E subset: 10 entries (Table S3), selected from a previous benchmarking study®? and representing
5 important target families (G protein-coupled receptors, nuclear receptors, protein kinases,
proteases, other enzymes) were retrieved from the DUD-E dataset®® and further processed as reported

above for the Astex Diverse Set.

ROCK2 screening set: 59,805 compounds assayed for Rho kinase 2 (ROCK2) inhibition were
downloaded from the PubChem archive in 2D sd file format. Primary screening data (% of inhibition at
a single concentration of 6 uM, Bioassay AID 604)% for all compounds and dose-response inhibitory

)*! were downloaded from the PubChem

concentrations for primary hits (ICso values, Bioassay AID 644
bioassay repository. Compounds with ICsp values equal to or lower than 10 uM (n = 67) were
considered active, all other compounds were considered inactive. The X-ray structure of human ROCK2

kinase in complex with inhibitor 1426382-07-1 was retrieved from the PDB (PDB identifier 4WOT) and

further processed as previously reported for the Astex Diverse Set. The starting 3D coordinates of



PubChem ligands (mol2 file format) were generated with Corina v.3.4*? and all compounds were
ionized at physiological pH with Filter v.2.5.1.4.** The fully processed dataset comprises 59,781

compounds (67 actives and 59,714 inactives).

ESR1 screening set: 10,486 compounds assayed for estrogen receptor a (ESR1) inhibition were
downloaded from the PubChem archive in 2D sd file format. Dose-response inhibitory concentrations
for confirmed hits (ICso values, Bioassay AID 743080)* were downloaded from the PubChem bioassay
repository. Compounds with 1Cso values equal to or lower than 25 uM, exhibiting full inhibition curves
and devoid of Sn and P atoms (n = 59) were kept as actives. To avoid biasing the inactive set, inactive
compounds were selected among molecules free of Sn and P atoms, with molecular weights in the
same range (310-750) as that observed for true actives. 1,530 inactive compounds were finally
selected. The X-ray structure of human estrogen receptor a in complex with the selective antagonist
4-hydroxytamoxifen was retrieved from the PDB (PDB identifier 3ERT) and further processed as
previously reported for the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2
file format) were generated with Corina v.3.4** and all compounds were ionized at physiological pH
with Filter v.2.5.1.4.* The fully processed dataset comprises 1,589 compounds (59 actives and 1,530

inactives).

OPRK1 screening set: 284,220 compounds assayed as kappa opioid receptor (OPRK1) agonists were
downloaded from the PubChem archive in 2D sd file format. Dose-response activity data (ECso values,
Bioassay AID 1777)* were downloaded from the PubChem bioassay repository. Compounds with ECso
values equal to or lower than 20 uM (n = 35) were considered active. All other compounds were
considered as inactive, out of which a randomly selected set of 64,048 compounds was retrieved. The
X-ray structure of the active state-stabilized human kappa opioid receptor in complex with the full

agonist MP1104 was retrieved from the PDB (PDB identifier 6B73) and further processed as previously



reported for the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2 file format)
were generated with Corina v.3.4%? and all compounds were ionized at physiological pH with Filter

v.2.5.1.4.% The fully processed dataset comprises 34,083 compounds (35 actives and 34,048 inactives).

Cavity-based pharmacophore perception (IChem)

The previously described VolSite algorithm* was embedded in the IChem toolkit v.5.2.932 with small
modifications compared to the original description. First, hydrogen atoms were added to the input
target PDB structure using Protoss,*® therefore optimizing the intra and intermolecular hydrogen bond
network for all molecules in the input PDB file. The pharmacophoric properties of protein atoms
(hydrophobic, aromatic, hydrogen-bond donor, hydrogen-bond acceptor, positive ionizable, negative
ionizable, metal) were detected on-the-fly from their atom types (mol2 input) thereby enabling us to
consider additional molecules (ions, cofactors, water, prosthetic groups, nucleic acids) as parts of the
protein. Second, hydrophobic protein atoms were redefined using tighter rules with respect to our
seminal report.}* Hydrophobic atoms were restricted to carbon or sulfur atoms not bonded to
heteroatoms or halogen atoms. Cavity-based pharmacophores were defined using a 4-step protocol

(Figure 1) as follows:



Input Protein Structure Coarse-grained cavity High-resolution cavity
detection description description

Ligand alighment Clustering features Pruning features

Figure 1. Overall flowchart of the method. 1) Starting from a hydrogens-containing protein input
structure, cavities were automatically detected using standard VolSite parameters and described as a
collection of pharmacophoric features (blue, cyan, red and green dots); 2) Predicted druggable cavities
(enclosed by a red circle) were submitted to a second structure-based pharmacophoric description
using a tighter grid resolution (1.0 A). Pharmacophoric features (hydrophobic, cyan; aromatic, orange;
hydrogen bond acceptor and negative ionizable, green; hydrogen bond donor and positive ionizable,
magenta) were assigned according to the pharmacophoric properties of the nearest acceptable
protein atom (see Computational methods); 3) Pruning pharmacophoric features according to
knowledge-based rules (buriedness, distance to cavity center, PLP interaction energy); 4) Hierarchical
clustering of pharmacophoric features; 5) Shape-based alignment of ligand atoms to the cavity-based
features (same color coding as in step 2) by optimizing the overlap of the corresponding molecular

shapes.



Step 1 - Coarse-grained cavity detection: The general procedure for detecting cavities has already been

t* and will just be briefly summarized here. Starting from atomic

described in a previous repor
coordinates of the target protein, a three-dimensional (3D) cube was centered on the center of mass
of the target and filled with a 1.5 A-resolution grid defining voxels with a volume of 3.375 A% each. To
every voxel was associated a site point along with a property at its center. If the corresponding voxel
encompassed a protein atom or if its center was less than 2.0 A away from any protein heavy atom,
the site point would be considered inaccessible ('IN' property). Any other point was then checked for
buriedness by generating, from its coordinates, a set of 120 regularly spaced 8 A-long rays. If the
number of rays intersecting an 'IN' cell (Nri) was smaller than 55, the corresponding point would be
deemed outside the enclosing cavity and was assigned the 'OUT' property. Remaining points were
claimed to encompass the cavity and checked for direct neighborhood with other cavity points. If
isolated (less than 3 neighbors in adjacent voxels), the points were deleted. Site points closer than 4.0
A to a protein atom were assigned one of the eight possible pharmacophoric properties (hydrophobic,
aromatic, H-bond acceptor, H-bond donor, H-bond acceptor and donor, negative ionizable, positive
ionizable, metal-binding) complementary to that of the closest protein atom using previously-reported
interaction rules.3 Points with no neighboring protein atoms within a 4 A distance were assigned the
null property (Dummy). For each detected cavity, a set of site points (mol2 file format) and a
druggability score (derived from a previously-described support vector machine model)** were given.

Only cavities with positive druggability scores were further considered for the generation of cavity-

based pharmacophores.

Step 2- High-resolution cavity description: For each cavity, the previously reported procedure (Step 1)
was repeated with two modifications: (i) the center of the 3D lattice was defined as the center of mass

of the corresponding coarse-grained cavity, (ii) the grid resolution was then set to 1 A for a better
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description of cavity points. Each cavity point was assigned a pharmacophoric feature as previously

reported.

Step 3 - Pruning pharmacophoric features: To describe the properties of true pharmacophoric features,
'ideal pharmacophores' were deduced from 213 protein-ligand complexes of the sc-PDB Diverse Set.
In an ideal pharmacophore, a feature is assigned to any ligand atom in interaction with the target
protein with a property equal to that of the corresponding interaction, but using exactly the same
IChem rules (atom types, distances, angles, planes) as those used to define pharmacophoric properties
of cavity points. An analysis of these ideal pharmacophoric features enables setting threshold values
for simple descriptors (buriedness, distance to the cavity center, interaction energy) to reduce the
number of pharmacophoric features without losing crucial information. Three pruning rules were
applied in the following order: (i) buriedness Nri <80, (ii) distance of the feature to the cavity center <
8 A, (iii) piecewise linear potential (PLP)*® interaction energy < feature-dependent threshold
(hydrophobic, donor, acceptor, positive ionizable, negative ionizable: 0 kcal/mol; aromatic: -2.4

kcal/mol; metal-binding: -3.5 kcal/mol).

Step 4 - Refining and clustering pharmacophoric features: The remaining features were next refined
with respect to three properties: hydrogen-bond acceptor, aromatic, and hydrophobic. Because
hydrogen atoms were explicitly described in the target protein, a cavity point would keep a hydrogen-
bond acceptor feature only at the condition that the nearest protein atom was a hydrogen-bond donor
(previous definition in steps 1 and 2) and that the donor-hydrogen-feature angle was between 120 and
180 deg. Previously-defined acceptor features not fulfilling the new angular threshold were therefore
re-assigned a novel property according to the second nearest protein atom and so on until a new
property could be unambiguously assigned. If it was not possible (no clear assignment possible from

any of the protein atoms closer than 4 A from the feature), the feature was simply eliminated.
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Remaining aromatic features were next reconsidered from their spatial location with respect to the
aromatic plane to which the closest aromatic protein atom belonged. Apart from the previously
applied distance criterion (< 4 A between feature and protein atom), we herein applied a second
distance threshold of 1.5 A corresponding to the largest possible distance between the aromatic
feature and two virtual points situated 4 A away from the closest protein aromatic ring along a normal
to the aromatic plane in both directions. Again, aromatic features not satisfying this additional filter
were either reassigned a new property (starting from the second closest protein atom) or eliminated
if no assignment was possible. Last, remaining hydrophobic features were also reconsidered and kept
hydrophobic only if: (i) more than 50% of protein atoms located within 4.5 A of the feature were
hydrophobic, (ii) at least 50% of neighboring protein residues (less than 4.5 A away) were considered
hydrophobic (alanine, valine, leucine, isoleucine, proline, methionine, phenylalanine, tyrosine, and
tryptophan). Please note that these refinements were applied at step 4 and not to the full set of

pharmacophoric features (step 2) to speed up the overall protocol.

Remaining features were then clustered using a simple hierarchical clustering method by
pharmacophoric property and inter-feature distance (< 3.1 A). The final pharmacophoric features were
saved in three possible file formats (TRIPOS mol2 format, CATALYST chm file format,*’ LigandScout pml

format®). The pharmacophore describes for each feature the following items:

- property: hydrophobic, aromatic, acceptor, donor, negative ionizable, positive ionizable, metal-

binding;

- atomic coordinates of the feature (head);

- a 3 A-long projection vector to a tail (acceptor, donor, aromatic features) directed to the

complementary protein atom;

- special attributes for aromatic features (centroid, normal, vector, plane);

12



- location spheres for directional features (acceptor, donor, aromatic) of 1.6 and 2.2 A radius for head

and tail spheres, respectively;

- exclusion volumes placed, for each cavity-lining residue (one exclusion volume per residue), on the
geometric center of residue heavy atoms located at a distance range of 4.1-5.0 A from any
pharmacophoric feature. The radii of exclusion spheres are dependent on the number of close protein
heavy atoms (1 close atom: 1.15 A; 2 atoms: 1.25 A; 3 atoms: 1.35 A; 4 atoms: 1.45 A; 5 atoms: 1.55 A;

6 atoms: 1.60; 7 atoms: 1.65; > 8 atoms: 1.70 A).

Please note that features having the double property hydrogen-bond donor and hydrogen-bond

acceptor were described by two separate properties (donor, acceptor) matched on the same point.

Ligand alignment to IChem pharmacophoric features (Shaper2)

The previously described Shaper algorithm,** designed to align cavities, was slightly modified to align
ligand atoms (mol2 file format) onto the above-described set of cavity points. Shaper2 relies on
OpenEye python libraries* to describe molecular shapes by a smooth Gaussian function and to align
two molecular objects (ligand features, cavity features) by optimizing the intersection of their
corresponding volumes.*® During the alignment, cavity features are kept rigid while a maximum of 200
pre-defined conformers of the ligand to fit (fit object), constructed in Omega2 v.2.5.1.4* % undergo
rigid body rotations and translations. Contrary to the original Shaper method, the updated version now
allows the user to choose among different overlap methods (by default: Exact), different overlap
minimization techniques (by default: Subrocs) and diverse similarity metrics (by default:

TanimotoCombo). A detailed description of all options is available online.>°

A specific force field (Table S4) has been set up to align ligand atoms to cavity features. It consists in
SMARTS patterns for 9 pharmacophoric feature properties (hydrophobic, ring, donor, acceptor, donor

and acceptor, cation, anion, Ca_Mg, Zn) and 56 pattern-matching rules to score the shape-based
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alignment by pharmacophoric similarity (Table S4). All aligned poses were then subjected to a two-
step structure optimization process using the MMFF94 force field®! implemented in SZYBKI v. 1.8.0.1.%3
In the first step, each pose was minimized with the steepest descent algorithm with respect to the
MMFF94 potential in full Cartesian coordinates using default settings. In the second step, a single point

2

calculation was done with the Poisson-Boltzmann (PB) protein-ligand electrostatics,®? calculating

protein-ligand interaction energy including solvent effects.

All possible ligand-cavity matches were scored according to four metrics:

1) TanimotoCombo similarity score as follows:

0ScL ocCcL
ISc+ IS +0S¢cy  ICc+ICL+0Ccy

TanimotoCombo = ShapeTanimoto + ColorTanimoto =

where OS¢, is the overlap between shapes of cavity and ligand features, I1Sc and IS, are the non-
overlapped shapes of each entity, OCc is the overlap between colors of cavity and ligand features, ICc
and IC, are the non-overlapped colors of each entity. The metric is asymmetric and varies between 0

and 2.

2) The PLP interaction of each feature with the protein, as implemented in the original publication?®

3) MMFF94 total energy: TotE= TotlE + IntE

TotlE (ligand MMFF intramolecular energy) = Evaw + Ecoulomb + Egond + Ebend + Estretchsend + Etorsion +

EImproper_Torsion

IntE (protein-ligand interaction energy) = Evaw-p. + Ecoulomb-pt + Eprotein_desolv_pe-pL + Eligand_desolv_pB-pL +

ESolvent_screening_PB—PL-

4) MMFF94 protein-ligand interaction energy IntE

For more details, the reader is directed to the SZYBKI implementation of the MMFF94 force field.>?
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Ligand alignment to IChem pharmacophores (Discovery Studio)

The input ligand 3D structure was converted from mol2 to sd file format using Corina v.3.4%* and used
as input to generate a set of 3D conformers using the 'Generate Conformations' protocol of Discovery
Studio v.2017.%* The conformer generation method was set to 'FAST', a maximum of 200 conformers
were generated within an energy threshold of 20 kcal/mol with respect to the global minimum. Ligand
conformers were next aligned to IChem pharmacophoric features (chm format) using the 'citest' online
command of Discovery Studio. A maximum of 2,000 pharmacophores were generated with a minimum
of 2 and a maximum of 6 features, to map ligand conformers in rigid mode. The best mapping

conformer (highest fit value) was finally saved in sd file format.

Ligand alignment to IChem pharmacophoric features (LigandScout)

Ligands (sd file format) were converted to the internal LigandScout®® v.4.1.10 Idb database format
thanks to the idbgen script saving, for each ligand, up to 200 conformations using high quality settings
of the iCon®® conformer generator (icon-best option). The conformations were next aligned, with
standard settings of the iscreen routine, to IChem-generated pharmacophores in LigandScout pml

format. The best mapping conformer (highest fit value) was finally saved in sd file format

Docking (Surflex-Dock)

Surflex-Dock v.4.227°7 was used as prototypical docking engine. A protomol®” was first generated from
the list of residues, ions, cofactors and water molecules lining the ligand-binding site (any molecule
with a heavy atom in a 4.5 A-radius sphere centered on the ligand's center of mass) using default
settings. The protomol was further used to dock a randomly generated conformation of the ligand

using the —pgeom option of Surflex-Dock. Only the best-ranked pose (scored by pkd value) was saved.
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ROCS shape overlap

A maximal number of 200 conformers (sd file format) were generated for every PubChem ligand using
standard settings of Omega2 v.2.5.1.4.%> % Every conformer was then compared to the query (protein-
bound ligand X-ray pose, mol2 file format) with ROCS v. 3.2.0.4% %8 and the best matching conformers

for every ligand were scored by decreasing TanimotoCombo value.

RESULTS AND DISCUSSION

The pharmacophore concept is more than one century old®® and has been widely used in ligand-based*
and more recently in protein-ligand-based” & virtual screening. When only structures of ligand-free
proteins are available, defining simple and workable pharmacophore queries is more difficult for the
simple reason that cavity structure-based pharmacophore perception is a complex and multi-step
procedure. Cavities first need to be detected at the protein surface and evaluated for their potential
druggability. The positions of pharmacophoric features mimicking a perfect ligand must then be
inferred from the coordinates of cavity-lining protein residues. Very often, the number of ideal
pharmacophoric features exceeds by far the upper complexity tolerated by standard 3D
pharmacophore searches. Therefore, cavity features need to be pruned on a rational basis, usually
from interaction energy maps, to downsize the number of features and enable the definition of a

workable pharmacophore query (< 10 features). Moreover, many methods?*%?

rely on lengthy
molecular dynamic simulations to locate the energetically preferred positions of probes, which
prohibits their usage even at a low throughput. Although recent efforts have been reported to simplify

the above described steps,?” 28 there is still a need for a tool that is able to quickly and reliably

automatize the entire process from early cavity detection to late final pharmacophore definition.

Cavity-based pharmacophore perception
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The herein proposed cavity-based pharmacophore perception workflow is made of four consecutive
steps (Figure 1). First, potentially druggable cavities were detected on-the-fly from the input protein
structure using standard parameters of our in-house developed VolSite algorithm.** The method
centers the protein in a 1.5 A resolution lattice and assigns a pharmacophoric feature (hydrophobic,
aromatic, hydrogen bond donor, hydrogen bond acceptor, negatively-charged, positively-charged,
metal-binding) to every accessible voxel, depending on the pharmacophoric property of the nearest
accessible protein atom. The structural druggability of every detected cavity was predicted thanks to
a support vector machine model'* showing a very good accuracy in comparison to state-of-the-art
methods. For each cavity, the detection procedure was repeated using a tighter grid resolution (1.0
R) centered on its center of mass. In a third step, the obtained cavity features were pruned in order to

decrease their number.

The previously published VolSite algorithm!* was modified to take into account the positions of explicit
hydrogen atoms, added by the Protoss knowledge-based method.*® The main advantage of using
hydrogen coordinates of the target protein is that hydrogen acceptor features can be better assigned
from the corresponding vectors (donor-hydrogen-voxel center) than using the previous protocol that
just relied on distances. Along the same spirit, we have also refined the definition of cavity aromatic
features by taking into account additional topological measurements for detecting face-to-face
aromatic interactions (see Computational methods). Last, the assignment of hydrophobic features is
stricter and now requires that the closest protein atom is also annotated as hydrophobic and that it
lies in a global hydrophobic environment. The consequence of these changes is that the
pharmacophoric assignment of cavity features may require several steps. For example, a hydrophobic
protein atom (e.g. CB atom of an alanine) cannot be used to assign a hydrophobic property to a cavity
voxel if the latter does not satisfy some above described proximity conditions, even if it is the closest
protein atom of that particular voxel. In that case, a second assignment step is done by considering the

second closest protein atom to the voxel, and so on until one protein atom perfectly suits all required
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conditions. Therefore, contrary to the original VolSite implementation,* some cavity voxels may not

be assigned a pharmacophoric property in the updated version.

A key issue in the current work is the implementation of knowledge-based rules to limit the number
of pharmacophoric features to the lowest possible number. To reach this objective, we carefully
analyzed the position of 'ideal' pharmacophoric features derived from a training set of 213 diverse
protein-ligand structures. By ideal, we mean that pharmacophoric features are directly mapped onto
protein-bound ligand atoms if the corresponding atom is in direct interaction, according to IChem
rules, with the protein. To define a set of ideal features, 213 high-resolution protein-ligand X-ray
structures were extracted from the sc-PDB archive of druggable protein-ligand complexes.3! These
structures present a maximal diversity of protein-ligand interaction patterns, as assessed by our
previously described GRIM methodology®? that directly computes pairwise similarity of protein-ligand
interaction patterns. Out of the 213 most diverse complexes, we could identify 4,871 ideal features for
which three properties were inspected: buriedness, distance to cavity center, PLP interaction energy

(Figure 2).
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Figure 2. Properties of 4871 ideal pharmacophoric features generated from the sc-PDB Diverse Set
(213 complexes); A) Box-and-whisker plot of the distribution of the buriedness of pharmacophoric
features (Hyd, hydrophobic; Aro, aromatic; Don, hydrogen-bond donor; Pos, positive ionizable; Acc,
hydrogen bond acceptor; Neg, negative ionizable; Met, metal-binding) expressed by the number of 8
A-long rays (out of a total of 120) originating from the feature center and intersecting protein atoms.
The boxes delimit the 25th and 75th percentiles, the whiskers delimit the 5th and 95th percentiles.
The median and mean values are indicated by a horizontal line and an empty square in the box,
respectively. Crosses delimit the 1% and 99th percentiles. Minimum and maximum values are indicated
by a dash; B) Distance of the feature (in A) to the cavity center, expressed by the cumulative number
of features. The cumulative distribution follows a Boltzmann sigmoidal function (R? = 0.999); C) Box-
and-whisker plot of the distribution of the PLP* interaction energy between features (Hyd,

hydrophobic; Aro, aromatic; Don, hydrogen-bond donor; Pos, positive ionizable; Acc, hydrogen bond
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acceptor; Neg, negative ionizable; Met, metal-binding) and their protein environment. The boxes
delimit the 25th and 75th percentiles, the whiskers delimit the 5th and 95th percentiles. The median
and mean values are indicated by a horizontal line and an empty square in the box, respectively.

Crosses delimit the 1% and 99th percentiles. Minimum and maximum values are indicated by a dash.

Whatever the feature type, more than 75% of ideal features had a buriedness value higher than 80
(Figure 2A). Likewise, over 90% of all these features were closer than 8 A from the corresponding cavity
center (Figure 2B). Last, recording the PLP interaction energy of each feature with its protein
environment clearly indicated, as to be expected, that such interaction energies are negative and
feature type-dependent (Figure 2C). Applying feature-dependent cut-off values (0 kcal/mol for
hydrophobic, donor, acceptor, donor and acceptor, positive ionizable, negative ionizable features; -2.4
kcal/mol for aromatic features, -3.5 kcal/mol for metal-binding features) ensured that at least 95% of

these ideal features would be selected.

The application of the above-described pruning rules all along the flowchart (Figure 3A) indeed limited
the number of output features from 326 + 90 at the beginning of the process (fine-grained cavity
description) to 259 + 95 after buriedness evaluation, 253 + 88 after cavity center-feature distance
calculation, 37 7 after clustering, and finally 27 + 7 after PLP interaction energy calculation (Figure
3B). The chronological order in applying these three filters does not affect the obtained results. To
avoid repeating the PLP interaction energy evaluation before and after clustering, we decided to place
this step at the end of the protocol. Here again, we verified that this choice did not bias the obtained

results.
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Figure 3. 5-step protocol to prune cavity-based pharmacophoric features in IChem. Features were
defined from the IChem detected ligand binding-site of the 213 entries of sc-PDB Diverse Set. A)
Flowchart; B) Decreasing number of pharmacophoric features all along the protocol; C) Percentage of
recovery of ideal features all along the protocol. A predicted feature was defined as recovered if closer
than 2.0 A from an ideal feature of the same type, generated for the same test set and identical

topological rules by matching pharmacophoric properties to protein-interacting ligand atoms.

Of course, we verified that the observed drastic reduction of the number of features did not lead to a
global loss of information. For that purpose, we estimated the percentage of recovery of ideal features.
For every IChem feature, we computed the closest distance between an ideal feature and an IChem
predicted feature of compatible pharmacophoric type. If the distance is less than 2.0 A, we considered

that the predicted feature is close enough to the ideal one and that the latter is recovered. Estimating
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the percentage of recovery of ideal features at every step of the pruning stage (Figure 3C) indicated
that the filtering process did not discard a significant proportion of key features. After the last filtering
step, about 80% of all feature types (except for aromatic features for which the recovery rate was
about 70%) were indeed within 2 A of a predicted feature of the same type. We therefore assume that
our feature selection process is accurate enough to simplify the final cavity-based pharmacophore

without any major loss of information.

Ligand posing accuracy

Ligands were aligned onto the above-described cavity-based pharmacophoric features using a
modified version (Shaper2) of our Shaper algorithm®* that uses a smooth Gaussian function to
maximize the shape overlap of ligand atoms and cavity features, and score the alignment by both
shape and color (feature type) similarity. With respect to the previous Shaper version that was
designed for pairwise cavity comparisons, we modified the force field (Table S4) to enable aligning
ligands to cavity features. A test set of 85 high-quality protein-ligand complexes (Astex Diverse Set),3*
specifically designed for assessing docking performance, was used for that purpose. To estimate the
posing quality, we compared the results obtained with Shaper2 alignment to IChem features (this
work) to those of a state-of-the-art docking tool (Surflex-Dock).>” Moreover, we also compared the
alignment accuracy of Shaper2 to that of two standard pharmacophore search methods (Discovery
Studio, LigandScout), using the same set of IChem-derived features. Four scoring functions were
evaluated to analyze Shaper2 matching poses to IChem pharmacophores. The first one (Tc) just
computes the TanimotoCombo similarity (shape + color) between the aligned poses and the protein-
bound ligand X-ray coordinates. The second one (PLP) computes the PLP interaction energy of the
feature with its protein environment. The third and fourth ones (TotE, IntE) register the MFF94 total
interaction energy and MMFF94 protein-ligand interaction energy using a Poisson-Boltzmann

treatment of desolvation effects.
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Plotting, for each Astex Diverse Set entry, the root-mean square deviation (rmsd) of the best Surflex-
Dock pose (heavy atoms only) to the true X-ray pose, defines the base line for applying a structure-

based docking tool to this dataset (Figure 4).
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Figure 4. Performance of different methods in predicting the bound pose of 85 ligands from the Astex
Diverse Set. Posing was done using docking (Surflex-Dock), ligand-based pharmacophore
(DiscoveryStudio, LigandScout), and cavity-based pharmacophore (IChem) searches. IChem alignments
were scored by four different scoring functions: Tc, TanimotoCombo similarity; PLP, PLP interaction

energy in kcal/mol; TotE, total MMFF94 energy in kcal/mol; IntE, MMFF94 protein-ligand interaction
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energy. A) Cumulative percentage of entries form the Astex Diverse Set, for which the top-ranked pose
of the cognate ligand is within a certain rmsd to the X-ray pose. B) Distribution of rmsd values to the
X-ray pose. The boxes delimit the 25th and 75th percentiles, the whiskers delimit the 5th and 95th
percentiles. The median and mean values are indicated by a horizontal line and an empty square in the
box, respectively. Crosses delimit the 1% and 99th percentiles. Minimum and maximum values are

indicated by a dash.

Surflex-Dock indeed posed quite accurately the Astex ligands with a median rmsd of 1.62 A. 65% of all
ligands were docked with rmsd values to the X-ray pose below 2 A (Table 1). This docking performance
is quite similar to previous results obtained on this peculiar dataset®® and on other sets by us®! and
other groups.> %2 We can therefore assess that no particular bias is present in both the dataset and the
manner we set the input files. In our hands, the two ligand-based pharmacophore tools (Discovery
Studio, LigandScout) failed in predicting a correct pose (rmsd < 2.0 A) in ca. 90% of the cases (Figure 4,
Table 1). In other words, the complexity of IChem cavity-based features (28 features on average for
the Astex Diverse Set) is still too important for hard sphere-based alignment tools. The quality of IChem
cavity-based pharmacophores is not responsible for this observation since Shaper2 alignments to the
same pharmacophores produced much better results, albeit with significant differences with respect
to the chosen scoring function (Figure 4, Table 1). Just relying on the similarity of shapes and colors
(Tc metric) was not sufficient to yield high-quality poses (average rmsd = 4.10 A) although obtained
results were already better than that observed with Discovery Studio and LigandScout. Rescoring
Shaper2 poses according to the PLP energy potential improved significantly the alignment (average
rmsd = 2.95 A, Table 1). This scoring method remains inferior to Surflex-Dock in producing high-quality

poses (Figure 4).
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Table 1. Posing accuracy of docking (Surflex-Dock), ligand-based pharmacophore (Discovery Studio,

LigandScout), and receptor-based pharmacophore (IChem) searches, applied to 85 protein-ligand

complexes from the Astex Diverse Set.

Program Average Median % entries %entries
rmsd, A rmsd, AP rmsd <1 A rmsd <2 A
Surflex-Dock® 2.57 1.62 24 65
Discovery Studio® 4.80 4.77 3 12
LigandScout® 5.53 5.70 0 6
Shaper2-Tcf 4.10 3.70 4 28
Shaper2-PLP® 2.95 2.14 6 45
Shaper2-TotE" 2.23 1.06 49 64
Shaper2-IntE' 2.22 1.06 48 67

2 average rms deviation (heavy atoms) to the ligand X-ray pose
® median rms deviation (heavy atoms) to the ligand X-ray pose

¢ Surflex-Dock pose with the lowest internal score (pkd)

d Discovery Studio pose with the highest fit score

¢ LigandScout pose with the highest fit score

fShaper2 pose with the highest TanimotoCombo score

€ Shaper2 pose with the lowest PLP interaction energy

h Shaper2 pose with the lowest MMFF94 total energy

' Shaper2 pose with the lowest MMFF94 ligand-protein interaction energy
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We therefore minimized the pose (ligand in its protein environment) with the MMFF94 force field
including an explicit Poisson-Boltzmann treatment of desolvation effects.>? Using either the total
MMFF94 energy (TotE: ligand strain energy + protein-ligand interaction energy) or just the protein-
ligand interaction energy term (IntE) yielded very accurate poses (identical median rmsd to the X-ray
pose of 1.06 A). Interestingly, although the fraction of high-quality poses (rmsd < 2.0 A) was almost
identical to that obtained with Surflex-Dock (ca. 65%), the latter two scoring functions were much

more efficient in producing very high-quality poses (rmsd to the X-ray pose < 1.0 A; Figure 1).

Altogether, Shaper2 alignment to IChem cavity-based pharmacophores is therefore competitive with
a standard docking tool with respect to posing accuracy. The competitive advantage of a Gaussian
function (Shaper2) in comparison to either the Kabsch algorithm®® (Discovery Studio) or the Hungarian
matcher®® (LigandScout) appears quite significant for the complexity of pharmacophore queries (27
features on average) produced by our method. However, the scoring function used to rank Shaper2
poses is very important. Energy-based scoring functions are preferred to faster shape/color overlap
estimations. Moreover, an explicit treatment of desolvation effects yields a very accurate pose ranking,

albeit at the cost of an extra computational demand (ca. 5 sec per pose)

Virtual screening accuracy (DUD-E set)

In the next challenge, we probed the accuracy of Shaper2 alignment to IChem cavity-based
pharmacophores to discriminate between true actives and chemically similar decoys for a set of ten
DUD-E targets®* 3 (Table S3). Although results obtained on such benchmarks are not fully predictive
of real-life prospective virtual screening studies,® we still wanted to compare our approach to Surflex-

Dock in this exercise. Ten targets were selected to span major target families (G protein-coupled
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receptors, kinases, nuclear hormone receptors, proteases, globular enzymes) and caution was given
to discard easy test cases (targets leading to areas under the ROC curve above 0.85) as suggested by
the seminal paper.®® The chosen subset is believed to be rather difficult for docking (DUD-E authors
used the Dock3.6 docking program as screening engine) with an average AUC value of 0.66, well below
the mean AUC value (0.76) observed for the entire DUD-E dataset.?® Results obtained with Surflex-
Dock generally confirmed the previous report with a mean AUC value of 0.73 (Table 2). For two targets
(GCR, FGFR1), the observed ROC AUC values were statistically better than random selection but still
below 0.70, therefore indicating just a fair performance. Shaper2 alignment to IChem pharmacophores
scored by the PLP potential led to a poor performance in this challenge (mean AUC value of 0.57; Table
2). Conversely to the above-described challenge, scoring matching poses by either MMFF94 protein-
ligand interaction energy or MMFF94 total energy marginally enhanced the virtual screening accuracy
of the method (mean AUC values of 0.62 and 0.65, respectively; Table 2) despite significant
ameliorations (AUC > 0.70) for five out of the ten targets (ADRB2, GCR, ACE, FGFR1, AKT1), using the
MMFF total energy as a scoring function. Given that the MMFF94 total energy led to the best
performance, we tried to decouple the scoring function used to select the best poses from that utilized
to sort compounds. The best combination was obtained by selecting the poses by MMFF94 total energy
and sorting compounds (actives and decoys) by PLP energy (Table 2). Using this approach, a mean AUC
value of 0.68 comparable to that observed with the docking program Dock3.6, was obtained. The
performance was excellent for two targets (ADRB2, RENI; AUC > 0.80), good for two other entries
(FGFR1, AKT1; 0.70 < ROC AUC < 0.80), fair for four targets (AA2AR, GCR, ADA, ACE; AUC > 0.57) and
remained poor but still better than random picking for two entries (ANDR, PGH2). Despite the small
sample size, the distribution of ROC values observed from the three Shaper2 protocols with MMFF94
refinement (IntE, TotE, TotE+PLP) is statistically different from that seen when only PLP energy was
taken into account in a two-sample t-test assuming either equal or unequal variance at a confidence
interval of 95% (p < 0.05). The differences observed with respect to each pair of the refinement

protocols are however statistically not significant in the same test. Compared to Surflex-Dock, the
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mixed approach gave a better performance for three targets (ADRB2, ANDR, FGFR1), a rather similar
accuracy for three entries (GCR, RENI, AKT1), and gave a poorer performance in four entries (AA2AR,

ADA, PGH2, ACE; Table 2, Figure 5).

A B
0.6 _ 404 —
354
0.5
8 — M 30
(<_E)o.4- — ST ]
O o34 bzo-

BEDR
=

D) T
=
—
E—

T T T T T T T T T T _1|_Il_I T —1

< & 0 2 & N N YV N S SIS PN SA SR RPN N

& 0&0{1' L S S S & K & fb&o S &S S RS
Target Target

Figure 5. Virtual screening performance of Surflex-Dock (white bars) and Shaper2 (gray bars) on 10
entries of the DUD-E set.3? Shaper2 alighments to IChem cavity-based pharmacophores were scored
by MFF94 total energy, whereas DUD-E compounds were ranked by increasing PLP interaction energy.
A) Area under the BEDROC curve (a = 20), B) Enrichment in true actives at a constant 1% false positive

rate.

We must acknowledge that we have no clear explanation on the positive role of PLP rescoring on poses
selected by MMFF94 total energy. We could not either explain successes and failures of the approach
with respect to target and/or ligand properties. To account for early enrichment in true actives, the
area under the Boltzmann-enhanced discrimination of the ROC (BEDROC) curve, as well as the
enrichment in true actives at 1% decoys retrieval, were also computed for each of the entries (Figure
5). Disappointingly, BEDROC curves clearly show that our method was inferior to Surflex-Dock in early

enrichment in true actives for seven out of the ten cases.
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Table 2. Area under the ROC plot of a binary classification (actives, decoys) of DUD-E ligand poses to the X-ray structure of 10 representative targets.?

Posing Dock3.6? SF-Dock Shaper2 Shaper2 Shaper2 Shaper2
Conformer selection Dock3.6 SF-Dock PLP IntE TotE TotE
Scoring Dock3.6 Sf-Dock PLP IntE TotE PLP
G Protein-Coupled receptors

Adenosine A2A receptor (AA2AR) 0.83 0.74 0.57 0.61 0.56 0.58
Beta2 adrenergic receptor (ADRB2) 0.76 0.85 0.51 0.61 0.71 0.96
Nuclear hormone receptors

Androgen receptor (ANDR) 0.51 0.47 0.56 0.52 0.59 0.54
Glucocorticoid receptor (GCR) 0.44 0.56 0.56 0.64 0.73 0.57
Other enzymes

Adenosine deaminase (ADA) 0.76 0.83 0.60 0.56 0.53 0.63
Prostaglandin G/H synthase 2 (PGH2) 0.62 0.76 0.57 0.62 0.54 0.55

Proteases
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Angiotensin-converting enzyme (ACE) 0.72 0.84 0.58 0.60 0.75 0.64
Renin (RENI) 0.66 0.88 0.56 0.68 0.66 0.82
Protein kinases

Fibroblast growth factor receptor 1 (FGFR1) 0.73 0.67 0.60 0.78 0.70 0.76
RAC-alpha protein kinase (AKT1) 0.72 0.76 0.57 0.61 0.72 0.74
Mean ROC area under the curve 0.67 0.73 0.57 0.62 0.65 0.68

2Report from the original paper describing the DUD-E dataset®®

31



Virtual screening accuracy (PubChem bioassays)

The real value of DUD-E ligands for providing virtual screening guidelines is currently debated because
of severe ligand and target-based drawbacks in selecting decoys.®® Most docking tools were notably
reported to overestimate the real discrimination between actives and decoys, for the simple reason
that DUD-E actives tend to be chemically similar to the co-crystallized ligand in the target 3D structure

selected for docking.®®

We therefore challenged our method with respect to true experimental screening data from the
PubChem bioassay archive®® in which both true active and true inactive compounds have been
explicitly defined from a single in vitro assay. Three targets of pharmaceutical importance (one kinase,
one nuclear hormone receptor, one G protein-coupled receptor) for which both high-quality screening
data (primary assay, confirmatory dose-response assay) and 3D structural information (ligand-bound

high resolution X-ray structure) are available were selected as test cases (Table 3).

Virtual screening was done using one ligand-based method (ROCS),*® and two structure-based
methods (Surflex-Dock, Shaper2). The virtual screening accuracy was simply estimated from the
number of true actives ranked among the top 1% and top 5% scorers, respectively. The experimentally
determined hit rate is low (ca. 0.1%) for two screens (ROCK2, OPR1) and much higher (3.71%) for the
ESR1 challenge. Activity data ranged from low nanomolar to two-digit micromolar values, the ESR1
dataset being the most enriched in low nanomolar ligands (Table 3). The latter screening data should
therefore be easier to predict, an assumption that is confirmed by analyzing the results of the ROCS
screening for which spectacular enrichments over random picking were already observed when
considering the top 1% ESR1 ligands (Table 3). This means that the true actives in this dataset are
similar in shape and pharmacophoric properties to the reference ligand (4-hydroxytamoxifen) co-

crystallized in the protein structure used for the structure-based approaches.
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Table 3. Virtual screening of PubChem bioassay data.

Target Rho kinase 2 Estrogen receptor a Kappa opioid receptor
Encoding gene ROCK2 ESR1 OPRK1

PubChem bioassay AID 604,644 743080 1777

Number of actives 67 59 35

Number of inactives 59,714 1,530 34,048

Activity range, uM 0.03-9.78 0.03-9.69 0.06-18.1

Hite rate, % 0.11 3.71 0.10

Virtual screening® Topl% Top5% Topl% Top5% Topl% Top5%
ROCSP 2(3) 3(0.9) 11 (18.5) 11 (3.7) 1(2.9) 1(0.6)
Surflex-Dock® 1(1.5) 2 (0.6) 1(1.7) 6 (2.0) 3(8.8) 4(2.3)
Shaper2® 1(1.5) 2 (0.6) 2(3.4) 18 (6.1) 1(2.9) 6 (3.5)

2number of true actives among the top 1% and top 5% scoring molecules. Numbers in brackets indicate the observed enrichment over random picking

branked by TanimotoCombo similarity to ROCK2-bound inhibitor (ligand ID 3SG, PDB ID 4WOT), ESR1-bound antagonist (ligand ID OHT, PDB ID 3ERT),
and OPRK1-bound agonist (ligand ID CVV, PDB ID 6B73).

¢ ranked by pkd (Surflex score)

dranked by PLP energy after MMFF94 energy minimization



For the two other targets (ROCK2, OPRK1), ROCS screening performed three times better than random
selection when the top 1% scorers were considered, the enrichment logically decreased when selecting
more compounds from the screen with a performance equal or even inferior to random picking when
the top 5% scoring compounds were considered (Table 3). In other words, two screening sets (ROCK2,
OPRK1) were considered difficult for structure-based approaches whereas the third one (ESR1) should

be much easier.

Surflex-Dock and Shaper2 gave identical results when considering the top 1% scorers of the ROCK2
screen, however inferior to that observed with ROCS (Table 3). Considering a higher percentage of top
scoring compounds (5%) allowed retrieving one additional active, but at the cost of a lower hit rate.
For the easier ESR1 test case, Shaper2 gave much better results than Surflex-Dock whatever the
fraction considered to qualify virtual hits. Enrichment factors over random picking of 3.4 and 6.1 were
observed for the top 1% and top 5% scoring molecules, respectively (Table 3). Noteworthy, Shaper2
continued to retrieve novel actives upon increasing the number of selected virtual hits, and even
outperformed ROCS when considering the top 5% scoring hits. For the last dataset (OPRK1), both
Surflex-Dock and Shaper2 gave statistically relevant enrichment over random picking (8.8 and 2.9 at
1% top scorers, 2.3 and 3.5 at top 5% scorers). Docking performed better than cavity-based
pharmacophore search in the initial enrichment. However, Shaper2 retrieved more actives than

Surflex-Dock among the top 5% scorers (Table 3).

In agreement with many previous studies,®”%°

we observed that the three virtual screening methods
used in this study tend to retrieve different true actives and most importantly different chemotypes
(Figure 6). In all screens, Shaper2 was able to identify true actives (one ROCK2 inhibitor, seven ESR1
antagonists, four OPRK1 agonists, Figure 6) not found by any other method. If one restricts the analysis
to the retrieval of unique scaffolds, Shaper2 was the method producing the highest number of uniquely

retrieved chemotypes (Figure 6), thereby demonstrating its utility and orthogonality to other virtual

screening methods.
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Figure 6. Orthogonality of three virtual screening methods (ROCS, Surflex-Dock, Shaper2) in retrieving
true actives among the top 5% ranking hits, from three PubChem bioassay high-throughput screens
(ROCK2 inhibitors, PubChem bioassay AID 644; ESR1 antagonists, PubChem bioassay AID 743080;
OPRK1 agonists, PubChem bioassay AID 1777). The numbers of true actives recovered by each method
are displayed by Venn diagrams’ highlighting molecules uniquely found by a single method or

common to two or three hit lists. Each chemotype retrieved by a single method is highlighted by a star.

The motivations for retrieving the top 5% scorers were two-fold: (i) Since we were really mining HTS
data with very few high affinity ligands, the number of hits retrieved among the top 1% scorers was
low (even for the ligand-based ROCS shape matching method). We therefore increased the threshold
to select the top 5% scoring molecules in order to begin to see statistically meaningful differences
between the screening methods; (ii) retrieving a higher proportion of virtual hits enabled us to cluster
them by scaffolds (maximum common substructures) and pick a more representative set of hits for
experimental validation (in terms of scaffold coverage) than a strategy based on a harder cut-off (say,
pick the top 100 scoring compounds). Of course, no definitive conclusion can be drawn from the

present benchmarking exercise focusing on three independent HTS data. However, it appears that
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Shaper2 alignment to IChem cavity-based pharmacophores is at least as efficient as other virtual
screening methods (shape alignment, docking) when applied to three test cases for which the entire
screening results were known. The good performance of Shaper2 in true virtual screening benchmarks
is in contradiction with the previously reported poorer performance observed with artificially
reconstituted DUD-E training sets for which severe target and ligand-bias have been noticed.®®> We
therefore recommend benchmarking virtual screening methods with true experimentally determined
high-throughput screening data. Fortunately, the PubChem bioassay repository®® proposes an
increasing number of high-quality screening sets with both primary and confirmatory dose-response

data to guide computational method development and validation.

Comparison to other cavity-based pharmacophore perception methods

With respect to current structure-based pharmacophore perception methods,’*? the herein

described approach presents five noticeable assets.

First, the pharmacophore perception method is fully automated, does not rely on any third party tool,
and is freely available for non-profit research. The last criterion is particularly important to enable fair
benchmarking. Second, in contrast with many alternative approaches,**>® |Chem does not require
user intervention in defining grid lattice coordinates. It scans the entire surface and can therefore
generate as many pharmacophores as non-overlapping binding sites. Third, IChem offers the unique
opportunity to restrict pharmacophore perception to binding cavities predicted as structurally
druggable. Druggability (or ligandability) is predicted on the fly thanks to a robust support vector
machine model, immediately after cavity detection. Fourth, IChem rules to select the most valuable
pharmacophoric features have been derived from an exhaustive training set of 213 high resolution
protein-ligand x-ray structures featuring non-redundant interaction patterns and 4,871
pharmacophoric features. Fifth, the method has been extensively validated on different test sets

(Astex diverse set, DUD-E, PubChem bioassays) for its accuracy in ligand posing and virtual screening.
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To the best of our knowledge, we provide here for the first time several high throughput screening
data mimicking real life scenarios in which all true positives and true negatives are known. Such
benchmarking data are, to our opinion, much more valuable than commonly used benchmarks in
which actives (usually high affinity ligands) are mixed with chemically similar decoys of unknown

affinity for the intended target.

CONCLUSIONS

We herewith propose an alternative computational method (IChem-Shaper2) to molecular docking to
identify ligands from the single knowledge of a protein 3D structure. The concept of structure-based
pharmacophores has already been exploited, but rarely led to pharmacophore queries truly adapted
to virtual screening purposes. The proposed approach is fully automatized and consists in three
consecutive steps that each can be customized if necessary: (i) detection of druggable cavities at the
surface of the target of interest, (ii) generation of cavity-based pharmacophore queries, (iii) alignment
of library compounds to the structure-based pharmacophore. The method appears to be quite robust
in producing high-quality poses, distinguishing true actives from decoys, and retrieving confirmed hits
from high throughput experimental screens. It should be considered as a novel weapon to the arsenal
of current virtual screening methods such as protein-ligand docking or ligand-centric similarity
searches. Since virtual screening benchmarks suggest its strong orthogonality to existing methods, we
recommend its usage in parallel to docking and/or ligand-based methods in order to retrieve different

chemotypes and optimize the real value of virtual screening hits for medicinal chemistry optimization.
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