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Introduction

Some properties for linear unbounded non self-adjoint operators, such as accretiveness, maximal accretiveness (or m-accretiveness) and m-sectoriality are very important for physical and technical problems. They are subjects of special attention in view of later applications to analytic and asymptotic perturbation theory [START_REF] Kato | Perturbation theory for linear operators[END_REF], [L79], [START_REF] Evans | Non self-adjoint operators and their essential spectra[END_REF], [H11], [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF], [START_REF] Khanalizadeh | Sectorial forms and m-sectorial operators. Seminararbetit zum fach funktionalanalysis[END_REF], [START_REF] Milatovic | Maximal accretive extensions of Schrödinger operators on vector bundles over innite graphs[END_REF]. The main importance of accretive operators is their appearance in the Hille-Yosida and Lumer-Phillips Theorems: an operator A is maximally accretive if and only if -A is the generator of a contraction semigroup. Also, we shall focus on m-sectorial operators: their spectrum lies in a sector and their resolvent satises a certain estimate. The opposite of generators of bounded holomorphic semigroups holomorphic on a sector are m-sectorial operators.

We consider a directed innite graph and we investigate the associated nonsymmetric Laplacian ∆ under a Kirchho 's Assumption [START_REF] Balti | Laplaciens non auto-adjoints sur un graphe orienté[END_REF]. This class of operators can be considered as a generalization of lower semibounded or positive symmetric operators [T-H10], [START_REF] Keller | Dirichlet forms and stochastic completeness of graphs and subgraphs[END_REF]. The purpose of the present paper is to give a criterion for the m-accretiveness and the m-sectoriality of the discrete Laplacian.

After the preliminaries in Section 1, we have four sections. In Section 2, we give a general condition on the graph using the notion of χ-completeness introduced in [AT-H15] to establish the m-accretiveness of the non-symmetric Laplacian ∆. Section 3 is devoted to the study of the relations between our non symmetric Laplacian and its symmetrized part. Section 4 deals with the msectoriality of ∆ as a generalisation of [ABT-H19]. Section 5 presents properties induced by the m-accretivity of our operator.

Preliminaries

In this section we have gathered the notations we use and the basic denitions we need in the subsequent sections, see also [B17].

1.1. Notion of Graphs. A directed weighted graph is a triple

G := (V, E, b),
where V is the countable set of the vertices, E is the set of directed edges and b : V × V → [0, ∞) is a weight satisfying the following conditions:

• b(x, x) = 0 for all x ∈ V (no loops) • b(x, y) > 0 i (x, y) ∈ E
In addition, we consider a measure on V given by a nonnegative real function

m : V → (0, ∞) . The weighted graph is symmetric if for all x, y ∈ V , b(x, y) = b(y, x), as a consequence (x, y) ∈ E ⇒ (y, x) ∈ E.
The graph is called simple if the weights m and b are constant equal to 1 on

V and E respectively.

On a non-symmetric graph we have several notions of connexity.

We x the following notations:

• The set of undirected edges is dened by

E = {x, y}, (x, y) ∈ E or (y, x) ∈ E . • for x ∈ V, V + x = {y ∈ V ; (x, y) ∈ E} • for x ∈ V, V - x = {y ∈ V ; (y, x) ∈ E} • for x ∈ V, V x = V + x ∪ V - x = {y ∈ V ; {x, y} ∈ E}.
1.2. Denitions. The degree of a vertex x is denoted by deg(x) and dened by:

deg(x) = #V x .
• A chain from the vertex x to the vertex y in G is a nite set of undirected edges {x 1 , y 1 }; {x 2 , y 2 }; ..; {x n , y n }, n ≥ 1

x 1 = x, y n = y and x i = y i-1 ∀ 2 ≤ i ≤ n.
• A path between two vertices x and y in V is a nite set of directed edges (x 1 , y 1 ); (x 2 , y 2 ); ..; (x n , y n ), n ≥ 1 such that

x 1 = x, y n = y and x i = y i-1 ∀ 2 ≤ i ≤ n • G is
called weakly connected if two vertices are always related by a chain.

• G is called connected if two vertices are always related by a path.

• G is called strongly connected if there is for all vertices x, y a path from

x to y and one from y to x.

We assume in the following that the graph under consideration is weakly connected, locally nite and satisfy:

for all x ∈ V, y∈V b(x, y) > 0.

1.3. Functional spaces. Let us introduce the following function spaces associated to the graph G.

The space of functions on the graph G is considered as the space of complex functions on V and is denoted by

C(V ) = {f : V → C}.
We denote by C c (V ) its subset of nite supported functions. We consider for a measure m, the space

2 (V, m) = {f ∈ C(V ), x∈V m(x)|f (x)| 2 < ∞},
which is a Hilbert space when equipped with the scalar product given by

f, g = x∈V m(x)f (x)g(x)
.

The associated norm is given by: f = f, f .

1.4. Laplacians and Kirchho's Assumption. For a locally nite connected graph without loops, we introduce the weighted Laplacian ∆ dened on C c (V ) by: 

∆f (x) = 1 m(x) y∈V b(x, y) (f (x) -f (y)) .

Kirchho's Assumption

∀x ∈ V, β + (x) = β -(x).
With this assumption, the formal adjoint of ∆ has a simple expression:

1.4.1. Proposition. The formal adjoint ∆ of the operator ∆ is dened on

C c (V ) by: ∆ f (x) = 1 m(x) y∈V b(y, x) f (x) -f (y) .
In this situation, we have established, see [B17], an explicit Green formula associated to the non-symmetric Laplacian ∆.

1.4.2. Proposition. (Green Formula) Let f and g be two functions of C c (V ).

They satisfy

∆f, g + ∆ f, g = (x,y)∈ E b(x, y) f (x) -f (y) g(x) -g(y) .

Proof:

We have for f and

g in C c (V ) ∆f, g + ∆ f, g = (x,y)∈ E b(x, y) f (x) -f (y) g(x) + (y,x)∈ E b(y, x) f (x) -f (y) g(x) = (x,y)∈ E b(x, y) f (x) -f (y) g(x) + (x,y)∈ E b(x, y) f (y) -f (x) g(y) = (x,y)∈ E b(x, y) f (x) -f (y) g(x) -g(y) .
2. m-accretiveness of the Laplacian 2.1. First properties. The Hilbert space theory of accretive operators was motivated by the semi-group theory and the Cauchy problem for systems of hyperbolic partial dierential equations. It is an important property for operators which cannot be studied in the framework of selfadjointness, [START_REF] Miklavcic | Applied functional analysis and partial dierential equations[END_REF], [START_REF] Schmüdgen | Unbounded Self-adjoint Operators on Hilbert Space[END_REF], [START_REF] Okazawa | Remarks on linear m-accretive operators in a Hilbert space[END_REF].

We establish conditions for the m-accretiveness (maximal accretiveness, see Denition 2.1.6) of ∆.

2.1.1. Denition. The numerical range of an operator A with domain D(A), denoted by W (A) is the non-empty subset of C dened by

W (A) = { Af, f , f ∈ D(A), f = 1}.
2.1.2. Denition. Let H be a Hilbert space, an operator A : D(A) → H is said to be accretive if for each f ∈ D(A), Af, f ≥ 0.

2.1.3. Lemma. [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]Lem.1.47] Let A be a densely dened accretive operator on H. Then A is closable, its closure A is accretive, and for every λ > 0, the range Im(λ + A) is dense in Im(λ + A).

2.1.4. Proposition. Let A : D(A) → H be a closed, densely dened and accretive operator, then

(A + λ)f ≥ (λ) f , ∀f ∈ D(A), (λ) > 0 and Im(A + λ) is closed. Proof: Let (λ) > 0, ∀f ∈ D(A) we have (A + λ)f f ≥ | (A + λ)f, f | ≥ (A + λ)f, f ≥ Af, f + λf, f ≥ (λ) f 2 . Hence ∀f ∈ D(A), (A + λ)f ≥ (λ) f and Im(A + λ) is closed.
2.1.5. Proposition. In our situation, the Laplacian ∆ with domain D(∆) = C c (V ) is accretive, closable and for any scalar (λ) > 0, Im(∆ + λ) is dense in Im(∆ + λ).

Proof:

From the Green formula, Proposition 1.4.2, we have for any

f ∈ C c (V ) ∆f, f = 1 2 ∆f, f + ∆f, f = 1 2 ( ∆f, f + ∆ f, f ) = 1 2 (x,y)∈ E b(x, y) f (x) -f (y) 2 ≥0.
Therefore ∆ is accretive. We deduce from Lemma 2.1.3 that ∆ is closable and Im(λ + ∆) = Im(λ + ∆).

We introduce the following notations (already introduced in [ABT-H19]): let

H = 1 2 (∆ + ∆ ) B = 1 2 (∆ -∆ ) (1) 
be the symmetric and the skewsymmetric parts of ∆, acting on the space of functions with nite support.

Then, thanks to the assumption (β), the operator H is the Laplacian on the symmetric graph with an edge {x, y} weighted by the symmetric weight dened by b (x, y) = b(x, y) + b(y, x) 2 for all x, y ∈ E.

(2)

2.1.6. Denition. An accretive operator A : D(A) → H is said to be maccretive if the left open half-plane is contained in the resolvent set ρ(A) and we have for (λ) > 0,

||(A + λ) -1 || ≤ 1 (λ) .
An m-accretive operator A is maximal accretive, in the sense that A is accretive and has no proper accretive extension, [START_REF] Kato | Perturbation theory for linear operators[END_REF].

In the following we give sucient conditions for ∆ to be m-accretive, based on previous works applied to the real part of ∆. First, we recall a relating result, in the symmetric case, essential selfadjointness to graphs with constant weights on V .

Theorem (Theorem 3.1 of [T-H10]

). Let (G, m, b ) be an innite weighted graph with a constant weight m on V . Then the Laplacian H is essentially selfadjoint.

From the denition of the adjoint operator ∆ * , we can deduce:

D(∆ * ) = {f ∈ 2 (V, m), ∆ f ∈ 2 (V, m)}.
Using an idea in the proof of Theorem 3.1 of [T-H10] and the following Lemma, we prove the Proposition 2.1.9 for the non-symmetric Laplacian.

2.1.8. Lemma. [Ou05, Lem.1.48] Assume that A is accretive. Then A is m- accretive if and only if there exists λ > 0 such that λ + A has dense range.

2.1.9. Proposition. Let (G, m, b) be an innite weighted graph with the constant weight m on V . Then the Laplacian ∆ is m-accretive.

Proof:

First, we show that ∆ * + 1 is injective: Let g ∈ D(∆ * ) be a function satisfying

∆ * g + g = 0, then g = 0.
Let us assume that there is a vertex x 0 such that g(x 0 ) > 0. The equality ∆ * g + g = 0 implies that there exists at least one neighboring vertex x 1 for which g(x 0 ) < g(x 1 ). We repeat the procedure with x 1 ... Hence we build a strictly increasing sequence of strictly positive real numbers (g(x n )) n . We deduce that the function g is not in 2 (V, m). A similar way is used to have the same conclusion when we take the assumption g(x 0 ) < 0. Second, the injectivity of ∆ * +1 implies that the range Im(∆+1) is dense.

Finally, from Lemma 2.1.8, we deduce that ∆ is m-accretive.

2.1.10. Remark. If ∆ is symmetric, ∆ is m-accretive if and only if ∆ is es- sentially self-adjoint.
The property of essential self-adjointness was extensively studied in the symmetric case and many tools related to completeness were introduced to assure this property. In [T-H10], one of us proved that essential self-adjointness followed from completeness for a certain metric of the graph with bounded degree.

In [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] the condition is related on completeness for an intrinsic metric.

In [AT-H15] we introduced the notion of χ-completeness.

2.2. χ-completeness. We have introduced this notion in [AT-H15] in the symmetric case. It assures the Laplacian (and even the Gauÿ-Bonnet operator) to be essentially selfadjoint. We suppose in this section that the graph is χcomplete for the symmetric conductance b dened in (2). It means that there exists an increasing sequence of nite sets (B n ) n∈N such that V = ∪ ↑ B n and there exist related functions χ n satisfying the following three conditions:

(i) χ n ∈ C c (V ), 0 ≤ χ n ≤ 1 (ii) v ∈ B n ⇒ χ n (v) = 1 (iii) ∃C > 0, ∀n ∈ N, x ∈ V, 1 m(x) y∈Vx b (x, y)|χ n (x) -χ n (y)| 2 ≤ C.
2.2.1. Theorem. Suppose that the graph G = (V, m, b) is χ-complete for the symmetric conductance b , and that the asymmetry is controlled in the following way

∃C > 0, ∀x ∈ V, 1 m(x) y∈Vx |b(x, y) -b(y, x)| 2 b (x, y) ≤ C (3)
then the non-symmetric Laplacian ∆ is m-accretive.

Proof:

We can suppose that the constants for χ-completeness and for (3) are the same. By Lemma 2.1.3 ∆ is accretive and by Proposition 2.1.4 , its range is closed. Suppose that ∆ is not m-accretive, it means that the deciency of ∆, which is constant on the left halfplane, is not 0. For instance at -1 it gives ∃v ∈ 2 (V, m), ∀x ∈ V, (∆ + 1)v(x) = 0.

We remark that the operator ∆ is real so we can suppose that v is real. Let χ ∈ C c (V ), such that 0 ≤ χ ≤ 1, and calculate χv, (∆ + 1)(χv) . First we remark that, as χv ∈ C c (V ) and has real values:

χv, (∆ + 1)(χv) = (∆ + 1)(χv), χv = χv, (∆ + 1)(χv) = χv, (H + 1)(χv) ≥ χv 2
On the other hand, using the equation satised by v we have:

(∆ + 1)(χv)(x) = 1 m(x) y∈V b(y, x) χ(x)v(x) -χ(y)v(y) -χ(x) 1 m(x) y∈V b(y, x) v(x) -v(y) = 1 m(x) y∈V b(y, x)v(y) χ(x) -χ(y) it gives χv, (∆ + 1)(χv) = x∈V χ(x)v(x) y∈V b(y, x)v(y) χ(x) -χ(y) = 1 2 x∈V,y∈V v(x)v(y) χ(x) -χ(y) b(y, x)χ(x) -b(x, y)χ(y) = 1 2 x∈V,y∈V v(x)v(y) b(y, x)χ(x) 2 + b(x, y)χ(y) 2 -χ(x)χ(y)(b(x, y) + b(y, x)) = 1 2 x∈V,y∈V v(x)v(y) b(y, x)χ(x) 2 + b(x, y)χ(y) 2 -2χ(x)χ(y)b (x, y) .
We use then that 2|v(x)v(y

)| ≤ v(x) 2 + v(y) 2 , it gives χv, (∆ + 1)(χv) ≤ 1 2 x∈V v(x) 2 y∈V |b(y, x)χ(x) 2 + b(x, y)χ(y) 2 -2χ(x)χ(y)b (x, y)|.
We see that

if χ(x) = χ(y) = 1, then b(y, x)χ(x) 2 + b(x, y)χ(y) 2 -2χ(x)χ(y)b (x, y) = 0. Moreover b(y, x)χ(x) 2 + b(x, y)χ(y) 2 -2χ(x)χ(y)b (x, y) = b (x, y) χ(x) -χ(y) 2 + b(y, x) -b(x, y) 2 χ(x) 2 -χ(y) 2
We remark that

|χ(x) 2 -χ(y) 2 | = |χ(x) -χ(y)|. χ(x) + χ(y) ≤ 2|χ(x) -χ(y)|, which implies y∈V | b(y, x) -b(x, y) 2 χ(x) 2 -χ(y) 2 | ≤ y∈V |b(y, x) -b(x, y)| 2 b (x, y) y∈V b (x, y)|χ(x) -χ(y)| 2
Applying this calculation to χ = χ n we have then, because of the hypothesis (3)

y∈V |b(y, x)χ n (x) 2 + b(x, y)χ n (y) 2 -2χ n (x)χ n (y)b (x, y)| ≤ 2Cm(x)
and nally 

χ n v 2 ≤ χ n v, (∆ + 1)(χ n v) ≤ 2C x∈Wn m(x)v(x) 2 where W n = V \ V n and V n = {x ∈ B n , ∀y ∈ V x , χ n (y) = 1}. Thus lim n→∞ x∈Wn m(x)v(x) 2 = 0 (as v ∈ 2 (V, m)), we conclude that v = 0.
∀x ∈ V #V + x \ (V + x ∩ V - x ) = #V - x \ (V + x ∩ V - x ) = 1.
(β) (#V + x = #V -
x ), we can see also that the property (3) is satised, in fact we have for all

x ∈ V 1 m(x) y∈Vx |b(x, y) -b(y, x)| 2 b (x, y) = y∈V + x \(V + x ∩V - x ) + y∈V - x \(V + x ∩V - x ) = #V + x \ (V + x ∩ V - x ) + #V - x \ (V + x ∩ V - x ) = 2.
More generally, we can suppose that

#V + x \ (V + x ∩ V - x ) = #V - x \ (V + x ∩ V - x ) ≤ M.
But, using the fact that the degree is not bounded, we can also construct a graph with

#V + x \ (V + x ∩ V - x ) = #V - x \ (V + x ∩ V -
x ) not bounded. This gives a χ-complete graph which does not satisfy the property (3). 2.2.4. Remark. In [START_REF] Baloudi | The adjacency matrix and the discreteLaplacian acting on forms[END_REF] the authors give dierent criteria for χ-completeness on weighted graphs. Let us consider a χ-complete graph (for the symmetrized weight b ) following Proposition 5.7 or Theorem 5.11 of [START_REF] Baloudi | The adjacency matrix and the discreteLaplacian acting on forms[END_REF]. To obtain the m-accretiveness of ∆, it is then sucient that the non-symmetric graph satises moreover the Kirchho Assumption (β) and the property (3). This is assured if we suppose for instance that ∀x ∈ V, y

∈ V + x ∩ V - x , b(x, y) = b(y, x)
and

∃M > 0, ∀x ∈ V , y∈V + x \(V + x ∩V - x ) b(x, y) = y∈V - x \(V + x ∩V - x )
b(y, x) ≤ M.

2.2.5. Example. Let us consider the following innite weighted graph G, see Fig. 2, with (almost) constant degree. We denote the origin by x 0 and by S n the spheres for the combinatoric distance of the symmetric underlying graph:

d comb (x 0 , x) = inf{k; ∃γ = (x 0 , . . . , x k ) a chain such that x k = x} So S n = {x ∈ V, d comb (x 0 , x) = n} = {x n , y n }. X 0 X X X Y Y Y X 1 2 3 4 1 Y 2 3 4

Figure 2. a graph with almost constant degree

To dene the weights, we take k ≥ 0 and x

• b(x 0 , x 1 ) = b(y 1 , x 0 ) = k + 2 and b(x 0 , y 1 ) = b(x 1 , x 0 ) = k and for n ≥ 1 • b(x n , x n+1 ) = (n + 1) 2 + (n + 1) and b(x n+1 , x n ) = (n + 1) 2 -(n + 1) • b(y n , y n+1 ) = (n + 1) 2 -(n + 1) and b(y n+1 , y n ) = (n + 1) 2 + (n + 1) • b(x n , y n ) = n -1 and b(y n , x n ) = n + 1 • m(x 0 ) = 1, m(x n ) = m(y n ) = √ n.
We can see that the property (3) is satised, in fact for all

x ∈ S n = {x n , y n } 1 m(x) y∈Vx |b(x, y) -b(y, x)| 2 b (x, y) = 1 √ n   y∈S n+1 ∩Vx 4 + y∈S n-1 ∩Vx 4 + y∈Sn∩Vx 2 2 n   ≤ 12 √ n ≤ 12.
We show now that G is χ-complete from the criterion given in Theorem 5.11 of [START_REF] Baloudi | The adjacency matrix and the discreteLaplacian acting on forms[END_REF]: we remark that the sets S + n and S - n introduced in [START_REF] Baloudi | The adjacency matrix and the discreteLaplacian acting on forms[END_REF] coincide with S n and for x ∈ S n the weighted degree is constant and for n ≥ 2:

a + n = sup x∈Sn 1 √ n   y∈S n+1 b (x, y)   = (n + 1) 2 √ n , a - n = sup x∈Sn 1 √ n   y∈S n-1 b (x, y)   = n 3 2 ⇒ ∞ n=0 1 a + n + a - n+1 ≥ ∞ n=2 1 2(n + 1) 3 2 = ∞.
Thus, this graph satises the hypothesis of Theorem 2.2.1.

Relations between ∆ and H

We study here the relation between the two hypothesis: m-accretiveness for ∆ and essential selfadjointness for H. 

D(∆) = D(H) : ∆ = H + B.
As H is non-negative and essentially selfadjoint, for any scalar λ, (λ) > 0, the operator H + λ is invertible on D(H) and

(H + λ) -1 ≤ 1 (λ) .
Now, let λ, (λ) > 0, we write

∆ + λ = H + λ + B = (I + B(H + λ) -1 )(H + λ) But B(H + λ) -1 ) ≤ B (λ) so (λ) > B ⇒ (∆ + λ) invertible and (∆ + λ) -1 ≤ 1 (1 -B / (λ)) (λ) = 1 (λ) -B .
So we have that the set of -λ, (λ) > B is included in the resolvent set of ∆ but, on the other hand ∆ is accretive which implies, by Theorem V.3.2 of [Kat76, p.268], that its deciency is constant on the set of λ, (λ) < 0, as a conclusion this deciency is zero on this set. Finally, for all λ, (λ

) > 0 and f ∈ C c (V ), because the real part of ∆ is non-negative (λ) f, f ≤ | (λ + ∆)f, f | ≤ (λ + ∆)f . f
and this is also true on D(∆), then, as we already know that (λ + ∆) is invertible,

(λ + ∆) -1 ≤ 1 (λ) .
3.1.2. Remark. We have introduced in [ABT-H19] a hypothesis (γ) that assures B to be bounded (and ∆ to be sectorial), namely Assumption (γ):

∃ M > 0, ∀ x ∈ V, y∈V | b(x, y) -b(y, x) |≤ M m(x)
We see easily that if the assumption (γ) is satised then (3) is also satised: as the weight b is non-negative, we have always

|b(x, y) -b(y, x)| ≤ (b(x, y) + b(y, x)) = 2b (x, y)
and thus which cannot be controlled by m(x) = √ n.

y∈Vx |b(x, y) -b(y, x)| 2 b (x, y) ≤ 2 y∈Vx |b(x, y) -b(y, x)| ≤ 2M m(x).
3.1.4. Remark. The last theorem can be extended in a situation more general than sectoriality (see the denition in Section 4), namely when B is bounded in H-norm with a relative norm suciently small. More precisely we suppose that there exist two constants C > 0 and 0 < a < 1/2 such that

∀f ∈ C c (V ) B(f ) ≤ C f + a H(f )
Then for a real λ > 0 we have

∀f ∈ C c (V ) B(H + λ) -1 f ≤ (C + aλ) (H + λ) -1 f + a f ⇒ B(H + λ) -1 ≤ C + aλ λ + a ≤ C λ + 2a
This can be made smaller than 1 for λ large enough and then, by the same argument, the deciency of ∆ must be zero on all the left halfspace (notice that under these hypotheses B is also ∆-bounded, with relative norm a 1-a ).

3.1.5. Theorem. Let (G, m, b) be an innite weighted graph and ∆ = H +B the decomposition of the combinatorial Laplacian of G decomposed in symmetric and skewsymmetric part as in (1). If H is essentially selfadjoint and if B is relatively bounded with respect to H with relative norm smaller than 1/2, then ∆ is m-accretive.

3.1.6. Remark. The hypothesis (3) gives that B is relatively bounded with respect to H. Indeed for any f ∈ C c (V )

B(f ) 2 = x∈V 1 m(x) | y∈V b(x, y) -b(y, x) 2 (f (x) -f (y))| 2 ≤ x∈V 1 m(x) y∈V |b(x, y) -b(y, x)| 2 4b (x, y) y∈V b (x, y)|f (x) -f (y)| 2 ≤ x∈V C 4 y∈V b (x, y)|f (x) -f (y)| 2 = C 2 H(f ), f ≤ C 2 4 f 2 + 1 4 H(f ) 2 .
Thus Theorem 2.2.1 is a corollary of Theorem 3.1.5. for some a ∈ R, called vertex of S a,θ , and θ ∈ 0, π 2 , called semi-angle of S a,θ (thus A -a is accretive). The operator A is said to be m-sectorial, if it is sectorial and if A -a is m-accretive. 

|(Bf, f )| = x∈V f (x) y∈V (b(x, y) -b(y, x))(f (x) -f (y)) = x∈V f (x) y∈V b(x, y) -b(y, x) b (x, y) b (x, y)(f (x) -f (y)) ≤ x∈V |f (x)| y∈V |b(x, y) -b(y, x)| 2 b (x, y) 1 2 y∈V b (x, y)|f (x) -f (y)| 2 1 2 ≤ √ C x∈V m(x)|f (x)| 2 1 2 x∈V y∈V b (x, y)|f (x) -f (y)| 2 1 2 ≤ √ C f (Hf, f ) 1 2 ≤ 1 + C 4 (Hf, f ).
4.3. Proposition. Suppose that the graph (G, m, b) is χ-complete for the symmetric conductance b , and that the assymmetry of the weight b satises the property (3) then the non-symmetric Laplacian ∆ is m-sectorial.

The heat semigroup

The property of m-accretivity can be used to generate strongly continuous semigroups. We recall the theorem of Hille-Yosida. It gives, on Banach spaces, a complete characterization of generators of semigroups with at most exponential growth, we refer here to [START_REF] Renardy | An Introduction to Partial Dierential Equations[END_REF], [START_REF] Hille | Functional Analysis and Semi-Groups[END_REF], [START_REF] Yosida | Functional analysis. Die Grundlehren der math[END_REF] and [START_REF] Arendt | From forms to semigroups. Spectral theory, mathematical system theory, evolution equations, dierential and dierence equations[END_REF].

5.1. Existence of a heat semigroup. 5.1.1. Theorem (Hille-Yosida). Let A be an operator in the Banach space X. Then A is the innitesimal generator of a C 0 semigroup T (t) satisfying T (t) ≤ M exp(wt) if and only if the following two conditions hold:

• D(A) is dense and A is closed.

• Every real number λ > w is in the resolvent set of A and

(A -λ) -n ≤ M (λ -w) -n , for every n ∈ N.
The assumptions of the Hille-Yosida Theorem are easier to achieve when M = 1, then the semigroup is said to be quasicontractive (and contractive if we can take w = 0). It is known as the Lumer-Phillips Theorem.

5.1.2. Theorem (Lumer-Phillips). Let A be a linear operator on a Hilbert space

H. If (1) D(A) is dense (2)
(x, Ax) ≤ w(x, x) for x ∈ D(A) (3) there exists λ 0 > w such that A -λ 0 I is onto. Then A is the generator of a strongly continuous one-parameter quasicontraction semigroup and exp(tA) ≤ exp(tw).

We can apply this to A = -∆: 5.1.3. Theorem. Let (G, m, b) be an innite weighted graph and ∆ its combi- natorial Laplacian. If ∆ is m-accretive, then -∆ is the generator of a strongly continuous one-parameter contraction semigroup (i.e. exp(-t∆) ≤ 1).

Using the results of [Z08] we have in the same way 5.1.4. Theorem. Let (G, m, b) be an innite weighted graph and ∆ its combi- natorial Laplacian. If ∆ is m-sectorial with angle θ and vertex a, then -∆ is the generator of a holomorphic semigroup on a sector with angle π/2 -θ and vertex 0. Moreover, on this situation one can apply the preceding result on (∆ -a).

5.2. Fast contractivity. For a non-symmetric graph G, we can estimate bounds on the real part of the numerical range of ∆ in terms of a Cheeger constant. We restrict here in the case where the weight on vertices is constant equal to 1 and consider the denition of the Cheeger constant given by Dodziuk, applied on the symmetrized graph (G, 1, b ). Indeed ∆ is m-accretive because of Proposition 2.1.9. We remark that ∆-λ 0 is also m-accretive. Then, applying Proposition 5.2.3, there is θ ∈ (0, π/2) such that the numerical range of ∆ lies in the sector {z ∈ C, | arg(z) |≤ θ} and ∆ is m-sectorial.

But we can say also that (∆ -

) is m-accretive, it gives exp(-t∆) ≤ e -t 6 .

  (β): This assumption says that at each vertex the incoming conductance equals the outcoming conductance. If the Kirchho 's Assumption is satised, the non-symmetric operator ∆ enjoys parts of the self-adjoint theory. Dening for x ∈ V , β -(x) = y∈V b(y, x) and β + (x) = y∈V b(x, y), we will suppose in the sequel of this work that (β)

Figure 1

 1 Figure 1. a tree with increasing degree It is shown in [AT-H15, Example 9] that T , considered as a symmetric graph, is χ-complete. The hypothesis (4) assures clearly the Kirchho law (β) (#V +

3. 1

 1 .3. Example. The graph considered in the example 2.2.5 satises the property (3) and does not satisfy (γ). In fact we have for all x ∈ S n y∈Vx | b(x, y) -b(y, x) | = y∈Sn | b(x, y) -b(y, x) | + y∈S n+1 | b(x, y) -b(y, x) | + y∈S n-1 | b(x, y) -b(y, x) | = 2 + 2(n + 1) + 2n

S

  a,θ := {z ∈ C, | (z)| ≤ tan θ( z -a)} := {z ∈ C, | arg(z -a) |≤ θ}

  We have used in [ABT-H19] that under the assumption (γ) (see Remark 3.1.2) the Laplacian is sectorial. More generally, we have 4.2. Proposition. Let (G, m, b) be an innite weighted graph and ∆ = H + B the decomposition of the combinatorial Laplacian of G decomposed in symmetric and skewsymmetric part as in (1). If the assymmetry of the weight b satises the property (3) then ∆ is sectorial. Proof: Let f ∈ C c (V ) with f = 1, using the Cauchy-Schwarz inequality we have 2

  5.2.1. Denition ([D05]). Let us consider a weighted symmetric graph (G, 1, b ), the Cheeger constant h(V ) is dened byh(V ) = inf U ⊂V finite x∈U, y∈V \U y∈Vx b (x, y) #U .The following theorem is a consequence of Theorem 3.7 of[START_REF] Balti | On the eigenvalues of non symmetric directed graphs[END_REF] and Theorem 3.1 of[D05] (where deg is the combinatorial degree).5.2.2. Theorem. Suppose thatsup x∈V deg(x) = M < ∞.Then the real part of W (∆) 3. Proposition. Let G be a graph with bounded degree, satisfying the property (3) and m = 1 on V . If h(V ) > 0, then ∆ is m-sectorial with vertex a ≥ 0.

5. 2

 2 .4. Example. Consider the graph of Example 2.2.5, but now with constant weight on vertices: m = 1. We dene V n = {x 0 , x 1 , y 1 , ..., x n , y n } and remark thath(V ) = infn∈N x∈{xn,yn} y∈{x n+1 ,y n+1 } b (x, y) n , x n+1 ) + b (y n , y n+1 )

  .2.3. Example. Let us consider an innite simple tree T (the weights m and b are constant equal to 1 on V and E respectively) with increasing degree, see Fig.1, we suppose that

	Thus the deciency of ∆ is 0 on the left halfplane, and we
	conclude by Proposition 2.1.4.
	2.2.2. Remark. The results of essential self-adjointness for the Laplacian in

the symmetric case give results for H in our case. Indeed the hypothesis of χ-completeness for the weight b gives that H is essentially selfadjoint. 2

  3.1.7. Remark. If ∆ is m-accretive then, by denition, the set of λ, (λ) < 0 is included in the resolvent set of ∆, we have thus We can study if the hypothesis H is essentially selfadjoint is necessary. 3.2. From ∆ to H. 3.2.1. Proposition. Let (G, m, b) be an innite weighted graph and ∆ = H +B the decomposition of the combinatorial Laplacian of G decomposed in symmetric and skewsymmetric part as in (1). If B is bounded and ∆ is m-accretive, then ∆ is m-accretive and H is essentially selfadjoint. ∆ + λ is invertible for (λ) large enough, so ∆ is maccretive. In the same way we have, as H = ∆ -B so D(H) = D(∆) andH + λ = ∆ -B + λ = (I -B(∆ + λ) -1 )(∆ + λ),that (H + λ) is invertible for λ real large enough and H is essentially selfadjoint.3.2.2. Remark. In the same way as in Remark 3.1.4 we can extend this result for B bounded in ∆-norm. We obtain that if ∆ is m-accretive and B is ∆bounded with a relative norm strictly smaller than 1/2 then H is essentially selfadjoint.

	4. Sectoriality
	In [ABT-H19] we have studied the sectoriality of ∆, we generalize here these
	results. It was McIntosh, see [Mc86], who initiated and developed a theory of
	functional calculus for a less restricted large class of operators, namely sectorial
	operators.
	∆ m-accretive ⇒ σ(∆) ⊂ {λ ∈ C, (λ) ≥ 0} 4.1. Denition. Let H be a Hilbert space, an operator A : D(A) → H is said to be sectorial if W (A) lies in a sector
	Proof:
	On C c (V ) we have that ∆ = ∆ -2B. The operator ∆ is
	accretive, as B is bounded D(∆) = D(∆ ) and for any λ, (λ) >
	0
	∆ + λ = ∆ + λ -2B = (I -2B(∆ + λ) -1 )(∆ + λ)

then
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