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m-ACCRETIVE LAPLACIAN ON

A NON SYMMETRIC GRAPH

COLETTE ANNÉ, MARWA BALTI, AND NABILA TORKI-HAMZA

Abstract. We consider a non self-adjoint Laplacian on a directed graph
with non-symmetric weights on edges. We give a criterion for the m-
accretiveness and the m-sectoriality of this Laplacian. Our results are based
on a comparison of this operator with its symmetric part for which we can
apply di�erent results concerning essential self-adjointness of a symmetric
Laplace operator on an in�nite graph. This gives results on the heat oper-
ator related to our non-symmetric Laplacian.
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Introduction

Some properties for linear unbounded non self-adjoint operators, such as
accretiveness, maximal accretiveness (or m-accretiveness) and m-sectoriality
are very important for physical and technical problems. They are subjects of
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special attention in view of later applications to analytic and asymptotic per-
turbation theory [Kat76], [L79], [ELZ83], [H11], [Ou05], [Kh13], [MT15]. The
main importance of accretive operators is their appearance in the Hille-Yosida
and Lumer-Phillips Theorems: an operator A is maximally accretive if and
only if −A is the generator of a contraction semigroup. Also, we shall focus on
m-sectorial operators: their spectrum lies in a sector and their resolvent sat-
is�es a certain estimate. The opposite of generators of bounded holomorphic
semigroups holomorphic on a sector are m-sectorial operators.

We consider a directed in�nite graph and we investigate the associated non-
symmetric Laplacian ∆ under a Kirchho�'s Assumption [Bal17]. This class
of operators can be considered as a generalization of lower semibounded or
positive symmetric operators [T-H10], [KL12]. The purpose of the present
paper is to give a criterion for the m-accretiveness and the m-sectoriality of the
discrete Laplacian.
After the preliminaries in Section 1, we have four sections. In Section 2,

we give a general condition on the graph using the notion of χ-completeness
introduced in [AT-H15] to establish the m-accretiveness of the non-symmetric
Laplacian ∆. Section 3 is devoted to the study of the relations between our non
symmetric Laplacian and its symmetrized part. Section 4 deals with the m-
sectoriality of ∆ as a generalisation of [ABT-H19]. Section 5 presents properties
induced by the m-accretivity of our operator.

1. Preliminaries

In this section we have gathered the notations we use and the basic de�nitions
we need in the subsequent sections, see also [B17].

1.1. Notion of Graphs. A directed weighted graph is a triple G := (V, ~E, b),

where V is the countable set of the vertices, ~E is the set of directed edges and
b : V × V → [0,∞) is a weight satisfying the following conditions:

• b(x, x) = 0 for all x ∈ V (no loops)

• b(x, y) > 0 i� (x, y) ∈ ~E

In addition, we consider a measure on V given by a nonnegative real function

m : V → (0,∞) .

The weighted graph is symmetric if for all x, y ∈ V , b(x, y) = b(y, x), as a

consequence (x, y) ∈ ~E ⇒ (y, x) ∈ ~E.
The graph is called simple if the weights m and b are constant equal to 1 on
V and ~E respectively.

On a non-symmetric graph we have several notions of connexity.
We �x the following notations:
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• The set of undirected edges is de�ned by

E =
{
{x, y}, (x, y) ∈ ~E or (y, x) ∈ ~E

}
.

• for x ∈ V, V +
x = {y ∈ V ; (x, y) ∈ ~E}

• for x ∈ V, V −x = {y ∈ V ; (y, x) ∈ ~E}
• for x ∈ V, Vx = V +

x ∪ V −x = {y ∈ V ; {x, y} ∈ E}.

1.2. De�nitions. The degree of a vertex x is denoted by deg(x) and de�ned
by:

deg(x) = #Vx.

• A chain from the vertex x to the vertex y in G is a �nite set of undirected
edges {x1, y1}; {x2, y2}; ..; {xn, yn}, n ≥ 1

x1 = x, yn = y and xi = yi−1 ∀ 2 ≤ i ≤ n.

• A path between two vertices x and y in V is a �nite set of directed edges
(x1, y1); (x2, y2); ..; (xn, yn), n ≥ 1 such that

x1 = x, yn = y and xi = yi−1 ∀ 2 ≤ i ≤ n

• G is called weakly connected if two vertices are always related by a chain.
• G is called connected if two vertices are always related by a path.
• G is called strongly connected if there is for all vertices x, y a path from
x to y and one from y to x.

We assume in the following that the graph under consideration is weakly con-
nected, locally �nite and satisfy:

for all x ∈ V,
∑
y∈V

b(x, y) > 0.

1.3. Functional spaces. Let us introduce the following function spaces asso-
ciated to the graph G.
The space of functions on the graph G is considered as the space of complex
functions on V and is denoted by

C(V ) = {f : V → C}.
We denote by Cc(V ) its subset of �nite supported functions. We consider for a
measure m, the space

`2(V,m) = {f ∈ C(V ),
∑
x∈V

m(x)|f(x)|2 <∞},

which is a Hilbert space when equipped with the scalar product given by

〈f, g〉 =
∑
x∈V

m(x)f(x)g(x).

The associated norm is given by:

‖f‖ =
√
〈f, f〉.
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1.4. Laplacians and Kirchho�'s Assumption. For a locally �nite con-
nected graph without loops, we introduce the weighted Laplacian ∆ de�ned
on Cc(V ) by:

∆f(x) =
1

m(x)

∑
y∈V

b(x, y) (f(x)− f(y)) .

Kirchho�'s Assumption (β): This assumption says that at each vertex
the incoming conductance equals the outcoming conductance. If the Kirch-
ho�'s Assumption is satis�ed, the non-symmetric operator ∆ enjoys parts of

the self-adjoint theory. De�ning for x ∈ V , β−(x) =
∑
y∈V

b(y, x) and β+(x) =∑
y∈V

b(x, y), we will suppose in the sequel of this work that

(β) ∀x ∈ V, β+(x) = β−(x).

With this assumption, the formal adjoint of ∆ has a simple expression:

1.4.1. Proposition. The formal adjoint ∆′ of the operator ∆ is de�ned on
Cc(V ) by:

∆′f(x) =
1

m(x)

∑
y∈V

b(y, x)
(
f(x)− f(y)

)
.

In this situation, we have established, see [B17], an explicit Green formula
associated to the non-symmetric Laplacian ∆.

1.4.2. Proposition. (Green Formula) Let f and g be two functions of Cc(V ).
They satisfy

〈∆f, g〉+ 〈∆′f, g〉 =
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)(
g(x)− g(y)

)
.

Proof:

We have for f and g in Cc(V )

〈∆f, g〉+ 〈∆′f, g〉 =
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)
g(x) +

∑
(y,x)∈ ~E

b(y, x)
(
f(x)− f(y)

)
g(x)

=
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)
g(x) +

∑
(x,y)∈ ~E

b(x, y)
(
f(y)− f(x)

)
g(y)

=
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)(
g(x)− g(y)

)
.

�
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2. m-accretiveness of the Laplacian

2.1. First properties. The Hilbert space theory of accretive operators was
motivated by the semi-group theory and the Cauchy problem for systems of
hyperbolic partial di�erential equations. It is an important property for op-
erators which cannot be studied in the framework of selfadjointness, [Mi98],
[Sch12], [Ok75].
We establish conditions for the m-accretiveness (maximal accretiveness, see
De�nition 2.1.6) of ∆.

2.1.1. De�nition. The numerical range of an operator A with domain D(A),
denoted by W (A) is the non-empty subset of C de�ned by

W (A) = {〈Af, f〉, f ∈ D(A), ‖ f ‖= 1}.

2.1.2. De�nition. Let H be a Hilbert space, an operator A : D(A)→ H is said
to be accretive if for each f ∈ D(A),

<〈Af, f〉 ≥ 0.

2.1.3. Lemma. [Ou05, Lem.1.47] Let A be a densely de�ned accretive operator
on H. Then A is closable, its closure A is accretive, and for every λ > 0, the
range Im(λ+ A) is dense in Im(λ+ A).

2.1.4. Proposition. Let A : D(A) → H be a closed, densely de�ned and ac-
cretive operator, then

‖(A+ λ)f‖ ≥ <(λ)‖f‖, ∀f ∈ D(A), <(λ) > 0

and Im(A+ λ) is closed.

Proof:

Let <(λ) > 0, ∀f ∈ D(A) we have

‖(A+ λ)f‖‖f‖ ≥ |〈(A+ λ)f, f〉| ≥<〈(A+ λ)f, f〉
≥<〈Af, f〉+ <〈λf, f〉
≥<(λ)‖f‖2.

Hence ∀f ∈ D(A), ‖(A + λ)f‖ ≥ <(λ)‖f‖ and Im(A + λ) is
closed.

�

2.1.5. Proposition. In our situation, the Laplacian ∆ with domain D(∆) =
Cc(V ) is accretive, closable and for any scalar <(λ) > 0, Im(∆ + λ) is dense
in Im(∆ + λ).

Proof:
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From the Green formula, Proposition 1.4.2, we have for any
f ∈ Cc(V )

<〈∆f, f〉 =
1

2

(
〈∆f, f〉+ 〈∆f, f〉

)
=

1

2
(〈∆f, f〉+ 〈∆′f, f〉)

=
1

2

∑
(x,y)∈ ~E

b(x, y)
∣∣f(x)− f(y)

∣∣2
≥0.

Therefore ∆ is accretive. We deduce from Lemma 2.1.3 that ∆
is closable and Im(λ+ ∆) = Im(λ+ ∆).

�
We introduce the following notations (already introduced in [ABT-H19]): let

H =
1

2
(∆ + ∆′) B =

1

2
(∆−∆′) (1)

be the symmetric and the skewsymmetric parts of ∆, acting on the space of
functions with �nite support.
Then, thanks to the assumption (β), the operator H is the Laplacian on

the symmetric graph with an edge {x, y} weighted by the symmetric weight
de�ned by

b′(x, y) =
b(x, y) + b(y, x)

2
for all x, y ∈ E. (2)

2.1.6. De�nition. An accretive operator A : D(A) → H is said to be m-
accretive if the left open half-plane is contained in the resolvent set ρ(A) and
we have for <(λ) > 0,

||(A+ λ)−1|| ≤ 1

<(λ)
.

An m-accretive operator A is maximal accretive, in the sense that A is ac-
cretive and has no proper accretive extension, [Kat76].

In the following we give su�cient conditions for ∆ to be m-accretive, based
on previous works applied to the real part of ∆. First, we recall a relating
result, in the symmetric case, essential selfadjointness to graphs with constant
weights on V .

2.1.7.Theorem (Theorem 3.1 of [T-H10]). Let (G,m, b′) be an in�nite weighted
graph with a constant weight m on V . Then the Laplacian H is essentially self-
adjoint.

From the de�nition of the adjoint operator ∆∗, we can deduce:

D(∆∗) = {f ∈ `2(V,m), ∆′f ∈ `2(V,m)}.
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Using an idea in the proof of Theorem 3.1 of [T-H10] and the following
Lemma, we prove the Proposition 2.1.9 for the non-symmetric Laplacian.

2.1.8. Lemma. [Ou05, Lem.1.48] Assume that A is accretive. Then A is m-
accretive if and only if there exists λ > 0 such that λ+ A has dense range.

2.1.9. Proposition. Let (G,m, b) be an in�nite weighted graph with the con-
stant weight m on V . Then the Laplacian ∆ is m-accretive.

Proof:

First, we show that ∆∗ + 1 is injective: Let g ∈ D(∆∗) be a
function satisfying

∆∗g + g = 0, then g = 0.

Let us assume that there is a vertex x0 such that g(x0) > 0. The
equality ∆∗g+ g = 0 implies that there exists at least one neigh-
boring vertex x1 for which g(x0) < g(x1). We repeat the pro-
cedure with x1 ... Hence we build a strictly increasing sequence
of strictly positive real numbers (g(xn))n. We deduce that the
function g is not in `2(V,m). A similar way is used to have the
same conclusion when we take the assumption g(x0) < 0.
Second, the injectivity of ∆∗+1 implies that the range Im(∆+1)
is dense.
Finally, from Lemma 2.1.8, we deduce that ∆ is m-accretive.

�

2.1.10. Remark. If ∆ is symmetric, ∆ is m-accretive if and only if ∆ is es-
sentially self-adjoint.

The property of essential self-adjointness was extensively studied in the sym-
metric case and many tools related to completeness were introduced to assure
this property. In [T-H10], one of us proved that essential self-adjointness fol-
lowed from completeness for a certain metric of the graph with bounded degree.
In [HKMW13] the condition is related on completeness for an intrinsic metric.
In [AT-H15] we introduced the notion of χ-completeness.

2.2. χ-completeness. We have introduced this notion in [AT-H15] in the sym-
metric case. It assures the Laplacian (and even the Gauÿ-Bonnet operator) to
be essentially selfadjoint. We suppose in this section that the graph is χ-
complete for the symmetric conductance b′ de�ned in (2). It means that there
exists an increasing sequence of �nite sets (Bn)n∈N such that V = ∪↑Bn and
there exist related functions χn satisfying the following three conditions:

(i) χn ∈ Cc(V ), 0 ≤ χn ≤ 1
(ii) v ∈ Bn ⇒ χn(v) = 1

(iii) ∃C > 0,∀n ∈ N, x ∈ V, 1

m(x)

∑
y∈Vx

b′(x, y)|χn(x)− χn(y)|2 ≤ C.
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2.2.1. Theorem. Suppose that the graph G = (V,m, b) is χ-complete for the
symmetric conductance b′, and that the asymmetry is controlled in the following
way

∃C > 0, ∀x ∈ V, 1

m(x)

∑
y∈Vx

|b(x, y)− b(y, x)|2

b′(x, y)
≤ C (3)

then the non-symmetric Laplacian ∆ is m-accretive.

Proof:

We can suppose that the constants for χ-completeness and for
(3) are the same. By Lemma 2.1.3 ∆ is accretive and by Proposi-
tion 2.1.4 , its range is closed. Suppose that ∆ is not m-accretive,
it means that the de�ciency of ∆, which is constant on the left
halfplane, is not 0. For instance at −1 it gives

∃v ∈ `2(V,m),∀x ∈ V, (∆′ + 1)v(x) = 0.

We remark that the operator ∆′ is real so we can suppose that
v is real. Let χ ∈ Cc(V ), such that 0 ≤ χ ≤ 1, and calculate
〈χv, (∆′ + 1)(χv)〉.
First we remark that, as χv ∈ Cc(V ) and has real values:

〈χv, (∆′ + 1)(χv)〉 = 〈(∆ + 1)(χv), χv〉 = 〈χv, (∆ + 1)(χv)〉 =

〈χv, (H + 1)(χv)〉 ≥ ‖χv‖2

On the other hand, using the equation satis�ed by v we have:

(∆′ + 1)(χv)(x) =

1

m(x)

∑
y∈V

b(y, x)
(
χ(x)v(x)− χ(y)v(y)

)
− χ(x)

1

m(x)

∑
y∈V

b(y, x)
(
v(x)− v(y)

)
=

1

m(x)

∑
y∈V

b(y, x)v(y)
(
χ(x)− χ(y)

)
it gives

〈χv, (∆′ + 1)(χv)〉 =
∑
x∈V

χ(x)v(x)
∑
y∈V

b(y, x)v(y)
(
χ(x)− χ(y)

)
=

1

2

∑
x∈V,y∈V

v(x)v(y)
(
χ(x)− χ(y)

)(
b(y, x)χ(x)− b(x, y)χ(y)

)
=

1

2

∑
x∈V,y∈V

v(x)v(y)
(
b(y, x)χ(x)2 + b(x, y)χ(y)2 − χ(x)χ(y)(b(x, y) + b(y, x))

)
=

1

2

∑
x∈V,y∈V

v(x)v(y)
(
b(y, x)χ(x)2 + b(x, y)χ(y)2 − 2χ(x)χ(y)b′(x, y)

)
.
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We use then that 2|v(x)v(y)| ≤ v(x)2 + v(y)2, it gives

〈χv, (∆′ + 1)(χv)〉 ≤
1

2

∑
x∈V

v(x)2
∑
y∈V

|b(y, x)χ(x)2 + b(x, y)χ(y)2 − 2χ(x)χ(y)b′(x, y)|.

We see that

if χ(x) = χ(y) = 1, then
(
b(y, x)χ(x)2 + b(x, y)χ(y)2− 2χ(x)χ(y)b′(x, y)

)
= 0.

Moreover

b(y, x)χ(x)2 + b(x, y)χ(y)2 − 2χ(x)χ(y)b′(x, y) =

b′(x, y)
(
χ(x)− χ(y)

)2
+
b(y, x)− b(x, y)

2

(
χ(x)2 − χ(y)2

)
We remark that

|χ(x)2 − χ(y)2| = |χ(x) − χ(y)|.
(
χ(x) + χ(y)

)
≤ 2|χ(x) − χ(y)|,

which implies∑
y∈V

|b(y, x)− b(x, y)

2

(
χ(x)2 − χ(y)2

)
| ≤√√√√∑

y∈V

|b(y, x)− b(x, y)|2
b′(x, y)

√∑
y∈V

b′(x, y)|χ(x)− χ(y)|2

Applying this calculation to χ = χn we have then, because of
the hypothesis (3)∑

y∈V

|b(y, x)χn(x)2 + b(x, y)χn(y)2 − 2χn(x)χn(y)b′(x, y)| ≤ 2Cm(x)

and �nally

‖χnv‖2 ≤ 〈χnv, (∆′ + 1)(χnv)〉 ≤ 2C
∑
x∈Wn

m(x)v(x)2

where Wn = V \ Vn and Vn = {x ∈ Bn, ∀y ∈ Vx, χn(y) =
1}. Thus limn→∞

∑
x∈Wn

m(x)v(x)2 = 0 (as v ∈ `2(V,m)), we
conclude that v = 0.
Thus the de�ciency of ∆ is 0 on the left halfplane, and we

conclude by Proposition 2.1.4.

�

2.2.2. Remark. The results of essential self-adjointness for the Laplacian in
the symmetric case give results for H in our case. Indeed the hypothesis of
χ-completeness for the weight b′ gives that H is essentially selfadjoint.
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2.2.3. Example. Let us consider an in�nite simple tree T (the weights m and

b are constant equal to 1 on V and ~E respectively) with increasing degree, see
Fig.1, we suppose that

∀x ∈ V #V +
x \ (V +

x ∩ V −x ) = #V −x \ (V +
x ∩ V −x ) = 1. (4)

....

....

........

O

Figure 1. a tree with increasing degree

It is shown in [AT-H15, Example 9] that T , considered as a symmetric graph, is
χ-complete. The hypothesis (4) assures clearly the Kirchho� law (β) (#V +

x =
#V −x ), we can see also that the property (3) is satis�ed, in fact we have for all
x ∈ V

1

m(x)

∑
y∈Vx

|b(x, y)− b(y, x)|2

b′(x, y)
=

∑
y∈V +

x \(V +
x ∩V −x )

+
∑

y∈V −x \(V +
x ∩V −x )

= #V +
x \ (V +

x ∩ V −x ) + #V −x \ (V +
x ∩ V −x )

= 2.

More generally, we can suppose that

#V +
x \ (V +

x ∩ V −x ) = #V −x \ (V +
x ∩ V −x ) ≤M.

But, using the fact that the degree is not bounded, we can also construct a
graph with #V +

x \ (V +
x ∩ V −x ) = #V −x \ (V +

x ∩ V −x ) not bounded. This gives a
χ- complete graph which does not satisfy the property (3).
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2.2.4.Remark. In [BGJ19] the authors give di�erent criteria for χ-completeness
on weighted graphs. Let us consider a χ-complete graph (for the symmetrized
weight b′) following Proposition 5.7 or Theorem 5.11 of [BGJ19]. To obtain
the m-accretiveness of ∆, it is then su�cient that the non-symmetric graph
satis�es moreover the Kirchho� Assumption (β) and the property (3). This is
assured if we suppose for instance that ∀x ∈ V, y ∈ V +

x ∩ V −x , b(x, y) = b(y, x)
and

∃M > 0, ∀x ∈ V ,
∑

y∈V +
x \(V +

x ∩V −x )

b(x, y) =
∑

y∈V −x \(V +
x ∩V −x )

b(y, x) ≤M.

2.2.5. Example. Let us consider the following in�nite weighted graph G, see
Fig.2, with (almost) constant degree. We denote the origin by x0 and by Sn the
spheres for the combinatoric distance of the symmetric underlying graph:

dcomb(x0, x) = inf{k; ∃γ = (x0, . . . , xk) a chain such that xk = x}
So Sn = {x ∈ V, dcomb(x0, x) = n} = {xn, yn}.

X
0

X X X

Y Y Y

X1 2 3 4

1 Y2 3 4

Figure 2. a graph with almost constant degree

To de�ne the weights, we take k ≥ 0 and �x

• b(x0, x1) = b(y1, x0) = k+ 2 and b(x0, y1) = b(x1, x0) = k and for n ≥ 1
• b(xn, xn+1) = (n+ 1)2 + (n+ 1) and b(xn+1, xn) = (n+ 1)2 − (n+ 1)
• b(yn, yn+1) = (n+ 1)2 − (n+ 1) and b(yn+1, yn) = (n+ 1)2 + (n+ 1)
• b(xn, yn) = n− 1 and b(yn, xn) = n+ 1
• m(x0) = 1, m(xn) = m(yn) =

√
n.

We can see that the property (3) is satis�ed, in fact for all x ∈ Sn = {xn, yn}

1

m(x)

∑
y∈Vx

|b(x, y)− b(y, x)|2

b′(x, y)
=

1√
n

 ∑
y∈Sn+1∩Vx

4 +
∑

y∈Sn−1∩Vx

4 +
∑

y∈Sn∩Vx

22

n


≤ 12√

n
≤ 12.

We show now that G is χ-complete from the criterion given in Theorem 5.11
of [BGJ19]: we remark that the sets S+

n and S−n introduced in [BGJ19] coincide
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with Sn and for x ∈ Sn the weighted degree is constant and for n ≥ 2:

a+
n = sup

x∈Sn

1√
n

 ∑
y∈Sn+1

b′(x, y)

 =
(n+ 1)2

√
n

, a−n = sup
x∈Sn

1√
n

 ∑
y∈Sn−1

b′(x, y)

 = n
3
2

⇒
∞∑
n=0

1√
a+
n + a−n+1

≥
∞∑
n=2

1√
2(n+ 1)

3
2

=∞.

Thus, this graph satis�es the hypothesis of Theorem 2.2.1.

3. Relations between ∆ and H

We study here the relation between the two hypothesis: m-accretiveness for
∆ and essential selfadjointness for H.

3.1. From H to ∆.

3.1.1. Theorem. Let (G,m, b) be an in�nite weighted graph and ∆ = H+B the
decomposition of the combinatorial Laplacian of G decomposed in symmetric
and skewsymmetric part as in (1). Then if H is essentially selfadjoint and if
B is bounded, then ∆ is m-accretive.

Proof:

As B is bounded, ∆ and H have the same domain and

on D(∆) = D(H) : ∆ = H +B.

As H is non-negative and essentially selfadjoint, for any scalar
λ,<(λ) > 0, the operator H + λ is invertible on D(H) and

‖(H + λ)−1‖ ≤ 1

<(λ)
.

Now, let λ,<(λ) > 0, we write

∆ + λ = H + λ+B = (I +B(H + λ)−1)(H + λ)

But ‖B(H + λ)−1)‖ ≤ ‖B‖
<(λ)

so <(λ) > ‖B‖ ⇒ (∆ + λ) invertible

and

‖(∆ + λ)−1‖ ≤ 1

(1− ‖B‖/<(λ))<(λ)
=

1

<(λ)− ‖B‖
.

So we have that the set of −λ,<(λ) > ‖B‖ is included in the
resolvent set of ∆ but, on the other hand ∆ is accretive which
implies, by Theorem V.3.2 of [Kat76, p.268], that its de�ciency is
constant on the set of λ,<(λ) < 0, as a conclusion this de�ciency
is zero on this set. Finally, for all λ,<(λ) > 0 and f ∈ Cc(V ),
because the real part of ∆ is non-negative

<(λ)〈f, f〉 ≤ |〈(λ+ ∆)f, f〉| ≤ ‖(λ+ ∆)f‖.‖f‖
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and this is also true on D(∆), then, as we already know that
(λ+ ∆) is invertible,

‖(λ+ ∆)−1‖ ≤ 1

<(λ)
.

�

3.1.2.Remark. We have introduced in [ABT-H19] a hypothesis (γ) that assures
B to be bounded (and ∆ to be sectorial), namely
Assumption (γ):

∃ M > 0, ∀ x ∈ V,
∑
y∈V

| b(x, y)− b(y, x) |≤Mm(x)

We see easily that if the assumption (γ) is satis�ed then (3) is also satis�ed:
as the weight b is non-negative, we have always

|b(x, y)− b(y, x)| ≤ (b(x, y) + b(y, x)) = 2b′(x, y)

and thus ∑
y∈Vx

|b(x, y)− b(y, x)|2

b′(x, y)
≤ 2

∑
y∈Vx

|b(x, y)− b(y, x)|

≤ 2Mm(x).

3.1.3. Example. The graph considered in the example 2.2.5 satis�es the prop-
erty (3) and does not satisfy (γ). In fact we have for all x ∈ Sn∑
y∈Vx

| b(x, y)− b(y, x) | =
∑
y∈Sn

| b(x, y)− b(y, x) | +
∑

y∈Sn+1

| b(x, y)− b(y, x) |

+
∑

y∈Sn−1

| b(x, y)− b(y, x) |

= 2 + 2(n+ 1) + 2n

which cannot be controlled by m(x) =
√
n.

3.1.4. Remark. The last theorem can be extended in a situation more general
than sectoriality (see the de�nition in Section 4), namely when B is bounded
in H-norm with a relative norm su�ciently small. More precisely we suppose
that there exist two constants C > 0 and 0 < a < 1/2 such that

∀f ∈ Cc(V ) ‖B(f)‖ ≤ C‖f‖+ a‖H(f)‖

Then for a real λ > 0 we have

∀f ∈ Cc(V ) ‖B(H + λ)−1f‖ ≤ (C + aλ)‖(H + λ)−1f‖+ a‖f‖

⇒ ‖B(H + λ)−1‖ ≤ C + aλ

λ
+ a ≤ C

λ
+ 2a
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This can be made smaller than 1 for λ large enough and then, by the same
argument, the de�ciency of ∆ must be zero on all the left halfspace (notice that
under these hypotheses B is also ∆-bounded, with relative norm a

1−a).

3.1.5. Theorem. Let (G,m, b) be an in�nite weighted graph and ∆ = H+B the
decomposition of the combinatorial Laplacian of G decomposed in symmetric
and skewsymmetric part as in (1). If H is essentially selfadjoint and if B is
relatively bounded with respect to H with relative norm smaller than 1/2, then
∆ is m-accretive.

3.1.6. Remark. The hypothesis (3) gives that B is relatively bounded with
respect to H. Indeed for any f ∈ Cc(V )

‖B(f)‖2 =
∑
x∈V

1

m(x)
|
∑
y∈V

b(x, y)− b(y, x)

2
(f(x)− f(y))|2

≤
∑
x∈V

1

m(x)

∑
y∈V

|b(x, y)− b(y, x)|2

4b′(x, y)

∑
y∈V

b′(x, y)|f(x)− f(y)|2

≤
∑
x∈V

C

4

∑
y∈V

b′(x, y)|f(x)− f(y)|2 =
C

2
〈H(f), f〉

≤
(C2

4
‖f‖2 +

1

4
‖H(f)‖2

)
.

Thus Theorem 2.2.1 is a corollary of Theorem 3.1.5.

3.1.7. Remark. If ∆ is m-accretive then, by de�nition, the set of λ,<(λ) < 0
is included in the resolvent set of ∆, we have thus

∆ m-accretive⇒ σ(∆) ⊂ {λ ∈ C, <(λ) ≥ 0}

We can study if the hypothesis �H is essentially selfadjoint� is necessary.

3.2. From ∆ to H.

3.2.1. Proposition. Let (G,m, b) be an in�nite weighted graph and ∆ = H+B
the decomposition of the combinatorial Laplacian of G decomposed in symmet-
ric and skewsymmetric part as in (1). If B is bounded and ∆ is m-accretive,
then ∆′ is m-accretive and H is essentially selfadjoint.

Proof:

On Cc(V ) we have that ∆′ = ∆ − 2B. The operator ∆′ is

accretive, as B is bounded D(∆) = D(∆
′
) and for any λ,<(λ) >

0

∆′ + λ = ∆ + λ− 2B = (I − 2B(∆ + λ)−1)(∆ + λ)

then ∆′ + λ is invertible for <(λ) large enough, so ∆′ is m-
accretive. In the same way we have, as H = ∆− B so D(H) =
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D(∆) and

H + λ = ∆−B + λ = (I −B(∆ + λ)−1)(∆ + λ),

that (H +λ) is invertible for λ real large enough and H is essen-
tially selfadjoint.

�

3.2.2. Remark. In the same way as in Remark 3.1.4 we can extend this result
for B bounded in ∆-norm. We obtain that if ∆ is m-accretive and B is ∆-
bounded with a relative norm strictly smaller than 1/2 then H is essentially
selfadjoint.

4. Sectoriality

In [ABT-H19] we have studied the sectoriality of ∆, we generalize here these
results. It was McIntosh, see [Mc86], who initiated and developed a theory of
functional calculus for a less restricted large class of operators, namely sectorial
operators.

4.1. De�nition. Let H be a Hilbert space, an operator A : D(A)→ H is said
to be sectorial if W (A) lies in a sector

Sa,θ := {z ∈ C, |=(z)| ≤ tan θ(<z − a)} := {z ∈ C, | arg(z − a) |≤ θ}

for some a ∈ R, called vertex of Sa,θ , and θ ∈
[
0, π

2

)
, called semi-angle of

Sa,θ (thus A− a is accretive). The operator A is said to be m-sectorial, if it is
sectorial and if A− a is m-accretive.

We have used in [ABT-H19] that under the assumption (γ) (see Remark 3.1.2)
the Laplacian is sectorial. More generally, we have

4.2. Proposition. Let (G,m, b) be an in�nite weighted graph and ∆ = H +B
the decomposition of the combinatorial Laplacian of G decomposed in symmet-
ric and skewsymmetric part as in (1). If the assymmetry of the weight b
satis�es the property (3) then ∆ is sectorial.

Proof:
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Let f ∈ Cc(V ) with ‖f‖ = 1, using the Cauchy-Schwarz inequal-
ity we have

2 |(Bf, f)| =

∣∣∣∣∣∑
x∈V

f(x)
∑
y∈V

(b(x, y)− b(y, x))(f(x)− f(y))

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈V

f(x)
∑
y∈V

b(x, y)− b(y, x)√
b′(x, y)

√
b′(x, y)(f(x)− f(y))

∣∣∣∣∣
≤
∑
x∈V

|f(x)|

(∑
y∈V

|b(x, y)− b(y, x)|2

b′(x, y)

) 1
2
(∑
y∈V

b′(x, y)|f(x)− f(y)|2
) 1

2

≤
√
C

(∑
x∈V

m(x)|f(x)|2
) 1

2
(∑
x∈V

∑
y∈V

b′(x, y)|f(x)− f(y)|2
) 1

2

≤
√
C‖f‖(Hf, f)

1
2

≤ 1 +
C

4
(Hf, f).

�

4.3. Proposition. Suppose that the graph (G,m, b) is χ-complete for the sym-
metric conductance b′, and that the assymmetry of the weight b satis�es the
property (3) then the non-symmetric Laplacian ∆ is m-sectorial.

5. The heat semigroup

The property of m-accretivity can be used to generate strongly continuous
semigroups. We recall the theorem of Hille-Yosida. It gives, on Banach spaces,
a complete characterization of generators of semigroups with at most exponen-
tial growth, we refer here to [RR93], [HP57], [Yo78] and [AE12].

5.1. Existence of a heat semigroup.

5.1.1. Theorem (Hille-Yosida). Let A be an operator in the Banach space
X. Then A is the in�nitesimal generator of a C0 semigroup T (t) satisfying
‖T (t)‖ ≤M exp(wt) if and only if the following two conditions hold:

• D(A) is dense and A is closed.
• Every real number λ > w is in the resolvent set of A and

‖(A− λ)−n‖ ≤ M

(λ− w)−n
, for every n ∈ N.

The assumptions of the Hille-Yosida Theorem are easier to achieve when
M = 1, then the semigroup is said to be quasicontractive (and contractive if
we can take w = 0). It is known as the Lumer-Phillips Theorem.

5.1.2. Theorem (Lumer-Phillips). Let A be a linear operator on a Hilbert space
H. If
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(1) D(A) is dense
(2) <(x,Ax) ≤ w(x, x) for x ∈ D(A)
(3) there exists λ0 > w such that A− λ0I is onto.

Then A is the generator of a strongly continuous one-parameter quasicontrac-
tion semigroup and ‖ exp(tA)‖ ≤ exp(tw).

We can apply this to A = −∆:

5.1.3. Theorem. Let (G,m, b) be an in�nite weighted graph and ∆ its combi-
natorial Laplacian. If ∆ is m-accretive, then −∆ is the generator of a strongly
continuous one-parameter contraction semigroup (i.e. ‖ exp(−t∆)‖ ≤ 1).

Using the results of [Z08] we have in the same way

5.1.4. Theorem. Let (G,m, b) be an in�nite weighted graph and ∆ its combi-
natorial Laplacian. If ∆ is m-sectorial with angle θ and vertex a, then −∆ is
the generator of a holomorphic semigroup on a sector with angle π/2 − θ and
vertex 0.

Moreover, on this situation one can apply the preceding result on (∆− a).

5.2. Fast contractivity. For a non-symmetric graph G, we can estimate
bounds on the real part of the numerical range of ∆ in terms of a Cheeger
constant. We restrict here in the case where the weight on vertices is con-
stant equal to 1 and consider the de�nition of the Cheeger constant given by
Dodziuk, applied on the symmetrized graph (G, 1, b′).

5.2.1.De�nition ([D05]). Let us consider a weighted symmetric graph (G, 1, b′),
the Cheeger constant h(V ) is de�ned by

h(V ) = inf
U⊂V
finite

∑
x∈U, y∈V \U

y∈Vx

√
b′(x, y)

#U
.

The following theorem is a consequence of Theorem 3.7 of [Ba17] and The-
orem 3.1 of [D05] (where deg is the combinatorial degree).

5.2.2. Theorem. Suppose that supx∈V deg(x) = M < ∞. Then the real part
of W (∆) satis�es

inf
z∈W (∆)

<(z) ≥ h2(V )

2M
= λ0.

5.2.3. Proposition. Let G be a graph with bounded degree, satisfying the prop-
erty (3) and m = 1 on V . If h(V ) > 0, then ∆ is m-sectorial with vertex
a ≥ 0.

Indeed ∆ is m-accretive because of Proposition 2.1.9. We remark that ∆−λ0

is also m-accretive.
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5.2.4. Example. Consider the graph of Example 2.2.5, but now with constant
weight on vertices: m = 1. We de�ne Vn = {x0, x1, y1, ..., xn, yn} and remark
that

h(V ) = inf
n∈N

∑
x∈{xn,yn}

y∈{xn+1,yn+1}

√
b′(x, y)

#U

= inf
n∈N

√
b′(xn, xn+1) +

√
b′(yn, yn+1)

#U

= inf
n∈N

2(n+ 1)

2n+ 1
= 1.

Hence

inf
z∈W (∆)

<(z) ≥ 1

6
.

Then, applying Proposition 5.2.3, there is θ ∈ (0, π/2) such that the numerical
range of ∆ lies in the sector {z ∈ C, | arg(z) |≤ θ} and ∆ is m-sectorial.

But we can say also that (∆− 1

6
) is m-accretive, it gives

‖ exp(−t∆)‖ ≤ e−
t
6 .
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