
HAL Id: hal-02158203
https://hal.science/hal-02158203v1

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NALDO: From natural language definitions to OWL
expressions

Cheikh Kacfah Emani, Catarina Ferreira da Silva, Bruno Fies, Parisa Ghodous

To cite this version:
Cheikh Kacfah Emani, Catarina Ferreira da Silva, Bruno Fies, Parisa Ghodous. NALDO: From
natural language definitions to OWL expressions. Data and Knowledge Engineering, 2019, pp.29.
�10.1016/j.datak.2019.06.002�. �hal-02158203�

https://hal.science/hal-02158203v1
https://hal.archives-ouvertes.fr


NALDO: From Natural Language Definitions to OWL
Expressions

Cheikh Kacfah Emania,b, Catarina Ferreira Da Silvab,∗, Bruno Fièsa, Parisa
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Abstract

Domain ontologies are pivotal for Semantic Web applications. The richness of an

ontology goes in hand with its usefulness and efficiency. Unfortunately, manually

enriching an ontology is very time-consuming. In this paper, we propose to

enrich an ontology automatically by obtaining logical expressions of concepts.

We present NALDO, a novel approach that provides an OWL DL (Web Ontology

Language Description Logics) expression of a concept from two inputs: (1) the

natural language definition of the concept and (2) an ontology describing the

domain of this concept. NALDO uses as much as possible entities provided by

the domain ontology, however it can suggest, when needed, new entities. The

expressiveness of expressions provided by NALDO covers value and cardinality

restrictions, subsumption and equivalence. We evaluate our approach against

the definitions and the corresponding ontologies of the BEAUFORD benchmark.

Our results show that NALDO is able to perform the correct identification of

formal entities with an F1-measure up to 0.79.
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1. Introduction

The usefulness of domain ontologies in various fields is well established. In-

deed, they are a pivotal piece when dealing with heterogeneity or complex se-

mantic issues [1, 2, 3, 4]. Building ontologies is a difficult and time-consuming

task. It usually requires to combine the knowledge of domain experts with the5

skills of ontology engineers into a single effort. We believe that this bottleneck

currently constitutes a real obstacle for the adoption of semantic technologies

into practice. In order to solve this problem, it is worth considering to apply

automated techniques to build ontology resources from existing data or at least

to assist ontology engineers and domain expert by semi-automatic ways.10

Therefore, numerous ontology learning tools have been developed aiming

at the automatic or semi-automatic construction of ontologies from structured

or unstructured sources. The current state of the art approaches are able to

generate lightweight ontology such as [5] and [6]. Some other works are able

to generate more expressive ontologies from existing knowledge base (KB) like15

in [7] and [8], or from natural language definitions like in [9] or [10]. We also

have approaches that are able to generate ontologies from sentences written in a

given controlled natural language. Among all these approaches only the works

described in [7] and [8] propose formal definition for existing concepts. Indeed,

having a formal definition for concepts in a given ontology facilitates consistency20

checking and the automatic evaluation of individuals in a KB with regards to

that given ontology. However the work in [7] and [8] rely on existing KB having

many instances. We argue that, for many domains, it is not guaranteed to have

such KB. Approaches like [5] and [6] generate lightweight ontologies, so the

inference capabilities of these ontologies are limited. Other approaches, like [9]25

and [10], do not enhance an existing ontology which means that they produce

entities in an uncontrolled manner and are not able to find equivalent concepts

expressed using different phrasings.

In this work, we propose NALDO, an approach to automatically formalize

natural language (NL) definitions of concepts of existing ontologies. We thus
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enrich these ontologies using the formal definitions that we obtain. For a given

ontology, the formal definitions from NALDO reuse foremost the entities found

in that ontology, thus NALDO limits the uncontrolled creation of new entities.

For instance, in the domain circumscribed by the Vertebrate Skeletal Anatomy

Ontology (VSAO)1, NALDO converts the NL definition S1 “A cell space is an

anatomical space that is part of a healthy cell” into the expression (using entities

of VSAO):

CellSpace v AnatomicalSpace u ∃partOf.Cell

NALDO is consequently an approach that helps ontology engineers and domain

experts to enrich their current ontologies with expressive definitions of the con-30

cepts of these ontologies, and in practice there are many lightweight ontologies

for which a set of acknowledged NL definitions exist. It is the case of OBO

foundry set of ontologies (http://www.obofoundry.org/) and BioPortal ontolo-

gies (http://bioportal.bioontology.org/).

1.1. Issues related with the automatic formalization of natural language defini-35

tions

Getting automatically a correct expression from a given natural language

(NL) definition, towards a domain ontology, requires to deal with many issues.

By correct expression, we mean an expression which is accepted by domain

experts without any change on the expression. We list the main issues to tackle40

in order to solve the automatic formalization of NL definitions problem. We

illustrate each issue with several examples.

1.1.1. (F1) Identification of single definitions in a multiple definition sentence

In practice, a sentence may contain more than one definition. So, when one

wants to enrich automatically an ontology using definitions in texts, a first chal-45

lenge is to identify automatically these definitions. For instance, the sentence

1http://svn.code.sf.net/p/phenoscape/code/tags/vocab-releases/VSAO/vsao.owl
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“An american pizza is a pizza which has toppings of tomato and a lujuhman

pizza is a pizza made with lamb” contains two distinct definitions: (1) “An

american pizza is a pizza which has toppings of tomato” and (2) “A lujuhman

pizza is a pizza made with lamb”50

1.1.2. (F2) Identification of the defined concept and its definition

A same definition can have multiple wordings. The challenge here is to

identify the concept that is defined and the phrases that give the definition

itself. For example, all the following sentences define the term cell space.

• A cell space is an anatomical space that is part of a healthy cell.55

• An anatomical space that is part of a healthy cell is a cell space.

• If an anatomical space is part of a healthy cell then it is a cell space.

1.1.3. (F3)-(F4) Entity linking

The formalization task requires to provide a formal expression of concepts

using entities provided in the domain ontology. Hence, a challenge consists60

of linking the terms of the definition with the corresponding entities in the

ontology. This linking can be

(F3) ”Basic”, which means that there are some similarities between the

surface form of the term of the definition and the one of the ontology’s

entity. For example, when the definition “An american pizza is a pizza65

which has toppings of tomato” is formalized, against the pizza ontology,

as AmericanPizza v Pizza u ∃hasTopping.TomatoTopping, we consider

the linking of “tomato” to TomatoTopping as ”basic”. Formally, basic

linking can be defined as: Given a string s, an ontology O, identify entity

e ∈ O so that s refers to e. In this task, s and labels of e share common70

stems2 (considering also synonyms).

2Stem is the root or main part of a word, to which inflections or formative elements are

added.
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(F4) ”Strong”, to denote linkings where there is no similarity between

the term of the definition and its formal correspondence in the ontology.

When the definition “A lujuhman pizza is a pizza made with lamb” is75

formalized, towards the pizza ontology, as LujuhmanPizza v Pizza u

∃hasTopping.MeatTopping, we consider that the resolution of “made” as

hasTopping and “lamb” as MeatTopping3 are both ”strong”. Formally,

strong linking can be defined as: Given a string s, an ontology O, identify

entity e′ ∈ O so that s refers to a hypothetical entity e, not found in O,80

but semantically related to e′.

1.1.4. (F5) Pruning

When we transform an NL definition of a concept into a formal expression,

some terms of the definition remain unused. So, the formalization prunes these85

terms. Domain experts, who validate the formalization, assume that those

terms are meaningless for this definition. For example, when the definition

“A cell space is an anatomical space that is part of a healthy cell” is formalized

as CellSpace v AnatomicalSpace u ∃partOf.Cell, the term “healthy” is

pruned. Formally, pruning can be defined as: Given a string s, an ontology O,90

discard the words in s so that the intended matching of s to entity e is done

correctly.

1.2. Contributions

NALDO presents the following innovative features:

• It is an approach to support ontology engineers in the creation of new95

OWL DL assertions, by suggesting automatically a formal expression of

ontology’s concepts using their NL definitions

3There is not any term which directly refers to “lamb” in the pizza ontology. Thus, since

lamb is known as a kind of meat, it is formalized as MeatTopping
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• It provides the OWL DL expression of a definition towards a given domain

ontology

• It is domain-independent: we make no assumption on the domain ontology100

• It deals with the issues (F3) and (F5). We do not focus on issue (F1) be-

cause, usually, definitions are found as isolated sentences (in dictionaries,

or in ontologies as value of skos:definition, rdfs:comment properties

4, etc.). Similarly, since the defined concepts in definitions are generally

the starting phrases of definitions, we do not focus on (F2). (F4) is out105

of scope of this paper. However, we deem important to state all the is-

sues (F1) - (F5) the community faces when dealing with the automatic

formalization of natural language definitions.

The remainder of this paper is organized as follows. First, we present a

section devoted to related works (Sect. 2). Next we present our seven-step110

approach (Sect. 3.1 - 3.3). Then, we bring in our test material and results we

obtain when evaluating our approach (Sect. 4). In the light of these results

we discuss the strengths of our algorithm and envision possible improvements

(Sect. 4.4). Finally, we make a comparison with similar approaches found within

current literature (Sect. 5). We end the paper with conclusion and perspectives115

(Sect. 6).

2. Related Work

Ontologies support many tasks in the field of Semantic Web. Consequently,

there is a real interest in developing methods to enrich existing ones or to build

new ones from available unstructured data.120

Contributing to the achievement of this goal, Wächter and colleagues [5]

propose a method to build automatically hierarchies from texts. They have a

4Prefixes skos stands for http://www.w3.org/2004/02/skos/core# and rdfs for and

http://www.w3.org/2000/01/rdf-schema#
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three-step approach: first, terms are identified within text sources, next, defini-

tion of these terms are generated (through a web search) and finally, exploiting

the “is a” pattern they suggest a hierarchical relation between terms. Still125

aiming to identify relations between concepts, we have the interesting research

work of Tastsaronis et al. [6]. They propose to identify the predicate of a given

ontology, which links two terms - labelled with the URIs of the concepts they

refer to. The recent research work of Louge et al. [11] fulfills a similar goal

by building a taxonomy from services’ short descriptions, but a taxonomy is a130

lightweight ontology and is not expressive enough.

Another way to achieve the goal of adding more information to existing

ontologies or knowledge bases (KBs) is to assign formal expressions to concepts.

Hence, through reasoning, new pieces of information could be inferred. We find

in the literature several research works aiming to provide expressions of concepts.135

In [7, 12] and [8], Bühmann, Lehman and colleagues try to get such expressions

by studying the characteristics of concepts’ instances in KBs automatically.

However all the works above-mentioned are far from our goal: NALDO ad-

dresses the problem of formalizations of given NL definition towards an existing

domain ontology.140

An excellent system which helps users to obtain formal expression from

definitions is the Atempo Controlled English (ACE) [13]. However the input

definitions of the ACE are not actually in NL. Indeed, ACE needs the user to

write the definitions in a given format, so that the system can translate them

automatically and without errors in OWL. For example, the definition we took145

here to illustrate our approach, “A cell space is an anatomical space that is part

of a healthy cell”, must be rewritten as A cell-space is an anatomical-space that

is part-of a cell. We see that users have to use hyphen to indicate multi-word

entities and that they should manually prune “meaningless” terms like “healthy”

that appear in the NL definition.150

Lexo [9] is another interesting approach which is close to NALDO when

considering goals and inputs. Lexo is a heuristic-based tool that aims to obtain

concepts’ expressions from their definitions. Lexo provides the expression of con-
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cept from their definition but that expression is not aligned with any ontology.

Hence, all its entities are new and still ambiguous. In addition, Lexo proposes a155

non-contextual formalization of meaningless NL predicates. For instance, when

an auxiliary stands by itself as a predicate in an NL phrase, Lexo always assumes

that this auxiliary denotes the same formal predicate, independently of the NL

phrase or the given definition. Such assumption is too restrictive in practice.

Finally, Lexo provides an unduly formalization of phrases. Indeed, Lexo formal-160

izes a phrase considering each token of this phrase individually. For example,

when following the transformation rules of Lexo, the phrase “red onion topping”

in a definition will be turned into ’:Redu :Onionu :Topping’, which does not

consider that this phrase may refer to a single concept. When refering to the

PIZZA ontology in this case, this phrase could refer to :RedOnionTopping.165

The approach of De Azevedo et al. [10] is similar to Lexo. On the contrary

of Lexo, [10] uses reasoning to ensure the consistency of their expressions and to

provide other expressions which can be semantically derived from the main ex-

pression, i.e. directly obtained from the definition. Such as Lexo, [10] builds DL

ALC expressions from scratch, without trying to reuse entities from a domain170

ontology.

All these differences, regarding inputs (i.e. definitions and corresponding

domain ontology), and goal (i.e. formalize the definitions w.r.t a corresponding

domain ontology) do not allow us to make a quantitative comparison with all

those existing works. However, we provide a detail comparison of NALDO175

with Lexo and the work of De Azevedo et al. [10] in section 5. We recall

that NALDO is an approach whose goal is to support ontology building by

suggesting automatically a formal expression of ontology concepts based on

their NL definition. The main advantage of NALDO is that it foremost reuses

the ontology entities in the expression that it provides.180

Now that we have described state of the art research works, we present the

steps of NALDO.

8



3. The NALDO approach

Fig. 1 gives an overview of the main steps of NALDO which are then detailed

in sections 3.1 to 3.3. A demo is available at http://tinyurl.com/j6vfuj5.185

The NALDO approach is composed of the following steps: 1) Splitting, 2) Lem-

matisation + Syntactic Pruning, 3) Semantic Pruning, 4) Concepts Identifica-

tion, 5) Template Identification, 6) Property Identification and finally 7) Re-

combination. Steps 1 to 3 reuse existing tools, whereas steps 4 to 7 comprise

our contributions.190

Figure 1: Steps of NALDO

3.1. Splitting

Splitting is the first step of the processing of a NL definition (see step 1

Fig. 1). The aim of this task is to identify all the pieces of information within

the definition Sj . Each chunk is intended to be informative and atomic. The

informativeness means that a chunk delivers a piece of information on a given195

subject. We take advantage of the suitable task called Open Information Ex-

traction (OIE) for this splitting. An OIE-tool generally provides each piece of

information in form of a triple 〈 subject, predicate, object 〉 [14], [15]. In addition,

atomicity guarantees that each triple is small enough so that we cannot extract

any other piece of information from it.200

In this work, we have chosen the system called CSD-IE5 of Bast and Hauss-

mann [15] to perform OIE. First, let us mention that to the best of our knowl-

5http://ad-wiki.informatik.uni-freiburg.de/research/Projects/CSDIE
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edge, ClausIE [14] and CSD-IE are the most efficient OIE-tools. Secondly, char-

acteristics of CSD-IE in comparison with ClausIE make the former more suitable

for us than the latter, because it presents the following aspects:205

• Minimality, i.e. atomicity mentioned above, and coverage, which means

that there is a concern to use each word from the original sentence at least

once in any resulting triple.

• N-uples. Instead of presenting an assertion in the form of a triple,

CSD-IE can provide n-uples also called tuples i.e. 〈subject, predicate,210

phrase1, phrase2,. . . 〉. For instance, in addition to the triple τ0 = 〈A

cell space, is, an anatomical space〉, CSD-IE returns this other tu-

ple 〈an anatomical space, is, part, of a healthy cell〉 from the

sentence S1. From this tuple, we can obtain:

1. A single triple, for instance215

– τ1 = 〈an anatomical space, is, part of a healthy cell〉 or

– τa = 〈an anatomical space, is part, of a healthy cell 〉

2. Or a set of triples, for example

– τα =〈 an anatomical space, is, part 〉 and τβ =〈 part, of, a healthy cell 〉

Tuples allow us to consider different levels of granularity for triples. Hence,220

the possible cuttings of S1 are ’τ0 and τ1’, ’τ0 and τa’, and ’τ0 and τα and τβ ’.

3.2. Rewriting a Triple as an OWL DL Statement

The goal of this task is to write each triple τi, made of chunks in NL, as an OWL

DL statement. The formal expression we obtain denotes a relation between two

concepts w.r.t to a given domain ontology O, if possible. We denote respectively225

?Cs and ?Co the concepts or individuals that stand in the position of the subject

and the object within the formal expression. In practice, this task consists in

instantiating one of the templates presented in Table 1.

To achieve this goal, we proceed in four steps: (i) The lemmatisation and

the syntactic pruning of the triple, (ii) the semantic pruning, (iii) instantiation230
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Names Expressions

Subsumption ?Cs v ?Co

Equivalence ?Cs ≡ ?Co

Existential restriction ?Cs v ∃ ?property.?Co

Universal restriction ?Cs v ∀ ?property.?Co

HasValue restriction ?Cs v ∃ ?property.?Co, where ?Co is an individual

MinCardinality Restriction ?Cs v≥?n ?property.?Co

MaxCardinality Restriction ?Cs v≤?n ?property.?Co

Cardinality Restriction ?Cs v=?n ?property.?Co

Table 1: Templates of atomic OWL DL restrictions (variables are preceded by ’?’)

of ?Cs and ?Co, (iv) identification of the corresponding template and (v) in-

stantiation of the variable ?property. These steps are numbered 2 to 6 in Fig.

1.

3.2.1. Lemmatisation and Syntactic Pruning

The goal of this step is to have canonical forms of the tokens (i.e. lexical235

units) within the triples, and to remove from the triples all the stop words.

At this stage, lemmatisation and syntactic pruning are carried out for each

component (i.e subject, predicate and object) of τi.

3.2.2. Semantic Pruning

Between the tokens remaining in τi after the syntactic pruning, we can still240

have some noise. Indeed, we consider that tokens (at this stage) in τi which

stems are not shared with those of the labels of domain entities, even when

considering their synonyms6, are useless for the linking of O and τi. Using

this pruning prevents the overloading of the triple, with a token that will not

match any token of the labels of entities in O. Table 2 gives the results for245

lemmatisation, syntactic and semantic prunings of our running example. We

notice that, the semantic pruning removes the token “healthy” from all the

triples where this token is found. So, the word “healthy” will not cause any

6We use the paraphrases database PPDB of Pavlick et al. [16] to identify synonyms.
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NL Phrases Triples Lemma + Syn. Pruning Semantic Prun-

ing

A cell space τ0 cell space cell space

is τ0, τ1, τα - -

an anatomical space τ0, τ1, τa, τα anatomical space anatomical space

part of a healthy cell τ1 part healthy cell part cell

is part τa part part

of a healthy cell τa healthy cell cell

part τα, τβ part part

of τβ - -

a healthy cell τβ healthy cell cell

Table 2: Some examples of lemmatisation, syntactic and semantic pruning.

distortion when we will look for the entities, of the domain ontology, that match

the NL phrases of the triples.250

3.2.3. Concepts Identification

Concepts identification is the 4th step of Fig. 1. In our approach, we upper-

most identify concepts instead of properties. Indeed, there are too many ways

to assert the same thing about a given resource (e.g: “an anatomical space is

part of/is a region of/composes a healthy cell”). Moreover, some predi-255

cates/verbs are useless for property identification (e.g: be, have, of, from, etc.).

Also, at this stage we deal with an atomic triple and its structure already sug-

gests a group of words to bind ?Cs and another one for ?Co. NALDO relies on

the algorithm 1 to bind ?Co and ?Cs.

Algorithm 1 works as follows:260

• To instantiate ?Cs (resp. ?Co), we use the subject (resp. the object) part

of τi (Line 1).

• For the subject and object of τi (after their syntactic and semantic prun-

ings - lines 1 and 2), NALDO identifies the entity within O with the

highest matching score (loop on lines 3-8).265
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Algorithm 1: Binding of ?Cs for the triple τi and score computation

Input : τi, O

Output: ?Cs, scoreCs

1 subjectSynP ←lemmatisationAndSynPruning (τi.subject);

2 subjectSemP ←SemanticPruning (subjectSynP); scoreCs ← 0.0;

3 for each uri in O.classesAndIndividuals do

4 for each label in uri.altLabels do

5 temp← Similarity (label, subjectSemP);

6 if temp > scoreCs then ?Cs ← uri; scoreCs ← temp;

7 end

8 end

9 if scoreCs < σc then

10 ?Cs ← newUri (subjectSynP); nbOfTokens ← subjectSynP.nbOfTokens;

11 scoreCs ← µc/(nbOfTokens + max(0, nbOfTokens−O.nbOfTokensClass));

12 end

• The string similarity function used here (Line 5) is the average of the

jaccard 2 similarity7 [17] and the cosine similarity [19]. This matching

score allows taking into account a similarity at word-level, with the cosine,

and at the character level, with the jaccard 2 similarity.

• When the similarity score is under a certain threshold σc(line 9), a new270

entity (line 10) having a new score (line 11) is created. This new score,

capped to a value µc, decreases with the number of tokens of the label of

the new entity and the average number of tokens of labels in O (variable

name nbOfTokensClass). Tab 4 shows result for our running example.

3.2.4. Template Identification275

The templates we have to deal with are built around a given set of operators

(v, ≡, ∀, ∃, etc.). To identify the correct template of τi means to find out in

7jaccard 2 similarity [17] is an adaptation of the jaccard similarity [18]: jaccard computes

the similarity between two bags of words, where jaccard 2 considers each word in the bags as

a set of two-characters words.
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List of keywords Corresponding template Symbol

is a, is an, are a Subsumption v

is any, are any, are all Equivalence ≡

at least n, greater than n MaxCardinality Restriction ≤ n

at most n, less than n MinCardinality Restriction ≥ n

with n, exactly n, uniquely n Cardinality Restriction = n

only, uniquely, exclusively Universal Restriction ∀

Table 3: Some examples of phrases for template identification (n = digits)

NL Subject → Formal En-

tity/Score

NL Object → Formal En-

tiy/Score

Sym.

τ0 cell space → CellSpace/1.0 anatomical

space→AnatomicalSpace/1.0

v

τ1 anatomical space →

AnatomicalSpace/1.0

part

cell→new:PartHealthyCell/0.3

∃

τa anatomical space →

AnatomicalSpace/1.0

cell → Cell/1.0 ∃

τα anatomical space →

AnatomicalSpace/1.0

part → new:Part/0.5 ∃

τβ part → new:Part/0.5 cell → Cell/1.0 ∃

Table 4: Concepts, matching scores and templates’ symbols for our triples. The prefix new:

indicates new entities (not found in O)

the text of τi any word or group of words that could lead to one of the operators

we just listed.

This identification process takes advantage of a list of predefined phrases as280

illustrate in Table 3. Practically, we first verify if ?Co is an individual. If yes, we

are facing a HasValue restriction. If not, we find, in the order exposed in Table

3, which phrases the triple τi (without any processing) matches. The existential

restriction ∃ is the default template because it states that there exists a link

between two entities. Table 4 presents in its last column the template for our285

example.
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3.2.5. Properties Identification

Now that we have possible concepts ?Co and ?Cs, we need to provide the

property that supports the relation between them. Let us note that this step

is useless when we already know that we are facing a classic subsumption or290

an equivalence. We obtain the list of properties that can link ?Cs and ?Co by

executing the following query displayed in listing 1:

1PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

2PREFIX owl: <http :// www.w3.org /2002/07/ owl#>295

3PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

4SELECT DISTINCT ?p WHERE {

5{{? hierarchySubj owl:onProperty ?p.

6:Cs rdfs:subClassOf* ?hierarchySubj .}

7UNION300

8{:Cs rdfs:subClassOf* ?DomainP. ?p rdfs:domain ?DomainP }}.

9{{?r2 owl:onProperty ?p. ?r2 ?prop ?hierarchyObj.

10:Co rdfs:subClassOf* ?hierarchyObj.

11FILTER (!(? prop = rdf:type) && !(? prop = owl:onProperty ))}

12UNION305

13{:Co rdfs:subClassOf* ?RangeP. ?p rdfs:range ?RangeP }}}

Listing 1: Query for property identification

This query of listing 1 allows NALDO to select a property ?p if:

• ?Cs is included in the domain of ?p (line 8) or ?Cs is included in an

owl:Restriction built on top of ?p (lines 5-6) and310

• ?Co is included in a class targeted by a owl:Restriction built on top of

?p (lines 10-12) or ?Co is included in the range of ?p (line 13).

Then we have to rank this list of properties according to the tokens of τi.

This ranking is similar to the one performed to bind concepts. Algorithm 2

details the binding of the ?property for τi. In this algorithm, when the property315

of the triple has only meaningless tokens (usually auxiliaries or prepositions),

its matching score depends on the tokens of the τi and the (potential) additional

tokens from labels of ?Cs and ?Co (line 8 in the algorithm).
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Algorithm 2: Binding of ?property for the triple τi and score computation

Input : τi, O, ?Cs, ?Co

Output: ?property, scoreP

1 tripleUsefulTokens ← lemmatisationAndSynPruning (τi);

2 tripleUsefulTokens.add (?Cs.label); tripleUsefulTokens.add (?Co.label);

3 predicate ←lemmatisationAndSynPruning (τi.predicate);

4 properties ← compatibleProps (?Cs,?Co); scoreP ← 0.0;

5 if predicate = ”” then

6 for each property in properties do

7 for each label in property.altLabels do

8 temp ← cosineSimilarity (label, tripleUsefulTokens);

9 if temp > scoreP then ?property ← property; scoreP ← temp;

10 end

11 end

12 else

13 for each property in properties do

14 for each label in property.altLabels do

15 temp ← NgramSimilarity (label, predicate, 2);

16 if temp > scoreP then ?property ← property; scoreP ← temp;

17 end

18 end

19 end

20 if scoreP < σp then

21 ?property ← newUri (predicate); nbOfTokens ← predicate.nbOfTokens;

22 scoreP ← µp/(nbOfTokens + max(0, nbOfTokens−O.nbOfTokensProps));

23 end
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The splitting of S provides a collection of sets of triples. Each set of triple is a

candidate to the formalization of the definition. To choose the most suitable set320

of triples, NALDO ranks this collection. To perform this ranking, we assign a

score to each formal triple. This score depends on ScoreCs, ScoreCo obtained

from algorithm 1 and ScoreP from algorithm 2 (we consider that triples denoting

subsumption or equivalence, have property score of 1.0). The score of a cutting

is the average of the score of its triples.325

Having a single set of formal triples, we need to put them together to obtain

a formal expression for the input definition. For our running example, the

properties and the final scores of triples are presented in Table 5. We recall that

we have three possible cuttings: ’τ0 and τ1’ (score = 2.325), ’τ0 and τa’ (score

= 2.825), and ’τ0 and τα and τβ ’ (score = 2.33). In the light of these scores,330

we will use τ0 and τa for the final expression of S1.

Triples Formal expression Scores

τ0 CellSpacev AnatomicalSpace 1.0 + 1.0 + 1.0 = 3.0

τ1 AnatomicalSpace v

∃ hasPart.new:PartHealthyCell

1.0+0.35+0.3 = 1.65

τa AnatomicalSpace v ∃ partOf.Cell 1.0+0.65+1.0 = 2.65

τα AnatomicalSpace v

∃ partOf.new:Part

1.0+0.35+0.5 = 1.85

τβ new:Part v ∃ partOf.Cell 0.5+0.65+1.0 = 2.15

Table 5: Properties and final scores, after running algorithms 1 and 2, for τ0, τ1, τa, τα and

τβ (with (σc, µc, σp, µp) = (0.40, 0.35, 0.35, 0.30))

3.3. Recombination

Recombination is the 7th (Fig. 1) and final step of the formalization process.

Its aim is to combine a set of formal triples to obtain a single expression. Besides

the triples to be combined, we compute the structure Σj that gives information335

on the manner these triples are linked. To perform this merging, we rely on two
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main functions that we call factorization and refinement. They both take as

input two triples (τi = (Cis reli C
i
o) and τj = (Cjs relj C

j
o)), an operator (and

or or) and return a new triple that is a merging of the input triples. To be

coherent with the possible formal expression of a triple, reli and relj can only340

be subsumption, equivalence or the body of a restriction. We detail factorization

and refinement in the following subsections.

3.3.1. Factorization

We perform this operation when Cis = Cjs = Cs. The two triples thus

make assertions about the same subject. The resulting triple regroups these345

two assertions into a single one about Cs. Equations (1) - (8) below (∗ denotes

and or or) provide all the possible results of factorisation. We make use of lower

case for presentation purposes.

(cs v cio) ∗ (cs ≡ | v cjo)→ cs v (cio ∗ cjo) (1)

(cs ≡ cio) ∗ (cs ≡ cjo)→ cs ≡ (cio ∗ cjo) (2)

(cs ≡ | v cio) ∗ (cs v cjo)→ cs ≡ (cio ∗ cjo) (3)

(cs v cio) ∗ (cs rj cjo)→ cs v (cio ∗ rj cjo) (4)

(cs ≡ cio) ∗ (cs v rj cjo)→ cs v (cio ∗ rj cjo) (5)

(cs v ri cio) ∗ (cs v cjo)→ cs v (ric
i
o ∗ cjo) (6)

(cs v ri cio) ∗ (cs ≡ cjo)→ cs v (ric
i
o ∗ cjo) (7)

(cs v ri cio) ∗ (cs v rj cjo)→ cs v (ric
i
o ∗ rj cjo) (8)

(Cs v ri Cio) (in equation (8)) means members of the class Cs are also mem-

bers (subsumption) of the anonymous class ri C
i
o. Likewise, (Cs v rj Cjo) means350

Cs v (rj C
j
o). Thus, the first member of (8) means (Cs v ri C

i
o) and|or (Cs v

rj C
j
o). We can conclude that Cs subsumes the combination (and or or) of ri C

i
o

and rj C
j
o . Moreover, when we have to put together subsumption and equiva-

lence, we decide to choose subsumption, since equivalence includes subsumption.

18



3.3.2. Refinement355

In this work, to refine a concept is to add a precision to make it a more

specific concept. We perform refinement when Cio = Cjs . Hence, it means that a

precision is made about Cio in the second triple τj . All the possible scenarios of

refinement are solved through equations (9) - (16) below. Let us note that using

the connector and is the only way to handle the piece of information brought360

by τj (one cannot provide further information on an entity using or).

(cs v cio) u (cio v | ≡ cjo)→ cs v (cio u cjo) (9)

(cs ≡ cio) u (cio ≡ cjo)→ cs ≡ (cio u cjo) (10)

(cs ≡ | v cio) u (cio v cjo)→ cs v (cio u cjo) (11)

(cs v cio) u (cio v rj cjo)→ cs v (cio u rj cjo) (12)

(cs ≡ cio) u (cio v rj cjo)→ cs ≡ (cio u rj cjo) (13)

(cs v ri cio) u (cio v cjo)→ cs v (ri(c
i
o u cjo)) (14)

(cs v ri cio) u (cio ≡ cjo)→ cs v (ri(c
i
o u cjo)) (15)

(cs v ri cio) u (cio v rj cjo)→ cs v (ri(c
i
o u rj cjo)) (16)

To evaluate the simplification of a complex expression, we use the recursive

factorisation algorithm proposed in [20, p. 13].

For our running example, the expression to recombine is ’τ0 and τa’ i.e.:

(CellSpace v AnatomicalSpace) u (AnatomicalSpace v ∃ partOf.Cell)365

This expression strictly follows the refinement equation 12. We thus obtain

CellSpace v (AnatomicalSpace u ∃partOf.Cell).

We provide this running example with details at http://tinyurl.com/

h7vgo3r.370

4. Evaluation

4.1. Benchmark and Metrics

We evaluate NALDO against the BEAUFORD benchmark [21]. BEAU-

FORD is a benchmark dedicated to the formalization of definitions. It provides
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a list of features for a formalization approach, a dataset and a set of metrics for375

the current task.

• BEAUFORD provides a corpus made of three domain ontologies (VSAO, the

Semantic Sensor Network Ontology (SSN) and the pizza ontology (PIZZA))

and 25 definitions for each of these domains. Knowing that a definition

can be formalized in many ways, BEAUFORD provides a set of possible380

formalizations for each definition. For the current evaluation, considering

the goal of NALDO, we consider only the formalizations that give priority

to entities found in the ontologies8.

• Finally, BEAUFORD proposes three metrics to evaluate formalization of

definitions: precision, recall and confidence. Basically, within BEAU-385

FORD, precision denotes the ratio of formal entities correctly identified,

recall quantifies the number of NL phrases within the definition that are

correctly formalized and the confidence is the ratio of definitions of the

corpus that are correctly formalized in all points. [21] provides additional

information and illustrations about these metrics.390

4.2. Evaluation Results

A demo of NALDO is accessible at http://tinyurl.com/j6vfuj5. NALDO is

written in Java and uses the Stanford suite9 for natural language processing

tasks.

For each of the three domain ontologies of the BEAUFORD corpus, we have395

computed precision, recall and F1-measure. These metrics are function of the

values of the parameters σc, µc, σp and µp (Fig. 2-4). These parameters serve

to control the quality of the matching between terms of the NL definitions and

labels of ontologies’ entities (algorithms 1 and 2). Accordingly, an interpretation

8Indeed some formalizations encourage the use of new entities to express a definition. See

[21, Sect. 5.2 and 5.3] for details.
9https://nlp.stanford.edu/software/
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of Fig. 2-4 gives us the highest values for parameters σc, µc, σp and µp to use400

in concepts and properties identification. We consider:

• σc > µc and σp > µp. For the creation of a new class, the string matching

score must be under σc. Since we want to discourage the creation of new

entities, we find suitable to top the score of a new class to a value µc that

is less than σc. The same explanation holds for σp and µp.405

• µc = σc − 0.05 and µp = σp − 0.05. Since we cannot evaluate NALDO for

all the possible values of our four parameters, these equations help us to

reduce the number of tests to carry on. Hence, precision, recall and F1

are computed only as function of σc and σp and their values represented

using a 3D diagram (Fig. 2 - 4). In these diagrams, the color varies from410

the lowest to the highest values on the z-axis, respectively from blue, then

yellow, then orange and finally red.
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Figure 2: Precision, Recall and F1-Measure for the VSAO domain.
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Figure 3: Precision, Recall and F1-Measure for the PIZZA domain.

Finally, for each domain ontology, for the 4-uple (σc, µc, σp, µp) for which

the F1-measure is the highest, we have computed confidence, i.e., the number of

definitions that have the formal expression correct [21]. Table 6 presents these415
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Figure 4: Precision, Recall and F1-Measure for the SSN domain.

results. It is useless to find confidence for every 4-uples (σc, µc, σp, µp), because

a low F1 means a misidentification of several formal entities and thus incorrect

final expressions.

For each of the 75 definitions of the BEAUFORD dataset, the detailed results420

are available at http://tinyurl.com/hq8vlou.

Domains Best F1-measure (σc, µc, σp, µp) Confidence

VSAO 0.68 (0.40,0.35,0.25,0.20) 07/25=28%

PIZZA 0.79 (0.40,0.35,0.35,0.30) 08/25 = 32%

SSN 0.63 (0.40,0.35,0.55,0.50) 08/25=32%

Table 6: Confidence for VSAO, PIZZA and SSN calculated at the best F1 score.

4.3. Results Analysis

The analysis of our results shows that:

• For the three domain ontologies, the best F1-measure is obtained with low

thresholds. Indeed, σc is under 0.40 and σp is less than 0.60. It means425

that, usually, the NL phrases in definitions are built upon a terminology

wider than the one covered by domain ontologies. Additionally, NL def-

initions are not concise and surround the key pieces of information with

attractive phrasing and wordy details. Consequently, to gain in logical

expressiveness, lightweight ontologies need to represent a more important430

number of real world entities.
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• The best 4-uple of parameters differ from a domain to another. This

discrepancy underlines well the differences between the three ontologies.

For instance, a domain and a range of almost all the properties within

PIZZA ontology are provided, when it is the case for very few of them in435

VSAO. Hence, the list of compatible properties between two concepts in

PIZZA is less noisy properties (hence a better matching) than a similar list

in VSAO. Another key point here is the number of tokens used for labels

of entities. The average number of tokens for SSN is 1.49, 1.66 for PIZZA

when it reaches 2.08 for VSAO. These values impact the best parameters440

of each ontology. Indeed, thresholds decrease from SSN to PIZZA and to

VSAO (third column of Table 6): higher threshold to match a 1.5-token

expression than for the matching of a 2 or more tokens expression.

• The values of the confidence, as defined in BEAUFORD benchmark [21],

are very low - under 30 %, especially when compared to F1 measures. It445

means that, in about 70 % of the formal expression, NALDO misidentifies

at least one entity. We present the main sources of errors in the next

section.

4.4. Errors Analysis

The main sources of errors in NALDO and some possible improvements450

follow.

• OIE. The first step of the formalization process is the splitting of the

definition. Although OIE helps to handle long and complex sentences, it

is not free of error. Hence, when OIE fails, even if we can identify some

entities correctly, the final expression may be wrong. The result of OIE455

itself depends directly of the quality of the parser. CSD-IE, that we use

for OIE, uses the Stanford parser. For example the sentence “A spicy

topping is a kind of topping” leads to incorrect tuple (A spicy, is topping)

because topping is tagged as a verb (VBG), instead of a noun (NN), by

the parser. A training of parsers on annotated corpus built from resources460
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of the domain of interest may lead to better result of parsing, and thus

improve information extraction from definitions of this domain.

• Thresholds for entities identification. The identification of entities

relies strongly on the values of σc and σp. These thresholds can lead to

the refusal of a good matching or the approval of a wrong one.465

• Paraphrases resolution (PR). Although the advantages of such task

are indisputable, PR causes some problems. PPDB [16] is a general and

incomplete database. Consequently, some paraphrases that are true in

general are false in a given domain and some paraphrases may be missing.

These phenomena may cause unwanted alignments. The use of a para-470

phrase resource, built specially for the domain of the ontology one aims

to enrich, should improve results of this task.

• “One to one alignment”. Except the syntactic and semantic prunings,

which allow us to avoid useless tokens in string matching, we consider

that each NL phrase and each triple is worth for the formalization pro-475

cess. However, in practice, a whole piece of a definition may be useless.

For instance, in the definition 11 “Deployment is the ongoing process of

entities deployed for a particular purpose.” of the SSN-BEAUFORD

corpus, the phrase in bold is useless for the formalization suggested by the

gold standard in BEAUFORD. We must enhance our pruning method to480

achieve a higher precision.

4.5. NALDO in practice

Here we discuss briefly how one can use NALDO in practice. For example for

a new ontology, the first step may consist in finding suitable parameters (σc, µc,

σp, µp) for concepts and properties matching. This can be done by evaluating485

the approach on a small set of definitions (training set) for many values and

choose the parameters which provide the best F1-measure on that training set.

Then using these parameters (or default ones), an ontology designer can use

NALDO to get a proposal of formal expressions of concepts given their NL
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definitions. Outputs of NALDO can be then added, with or without update, to490

the ontology.

5. Comparison of Naldo, Lexo [9] and the work of De Azevedo et al.

[10]

In this section, we detail the comparison between NALDO and some state-

of-the art approaches. Table 7 presents the characteristics of each of these495

works. This table uses the issues (F1) - (F5), provided in section 1.1, to ease the

comparison between approaches and to see clearly what is done and what is still

to address by future works. In addition, this table shows that the main difference

between NALDO and the existing works is the ability of NALDO to link the

terms of the NL definition with the entity of the domain ontology. Hence, the500

expression that NALDO provides can be added directly to the ontology.

This table shows that:

• Neither Lexo, nor De Azevedo et al.’s work tackle issues (F1)-(F5) (see

section 1.1), while Naldo addresses issues (F3) and (F5). In other words,

NALDO implements mechanisms for ”basic” linking ((F3), as explained in505

section 1.1.3) and for pruning of meaningless phrases found in definitions.

• The evaluation of the three approaches in three different domains high-

lights that NALDO outperforms both Lexo and De Azevedo et al. ap-

proach by at least 0.13 up to 0.38 of F1 measure.

6. Conclusion and perspectives510

In this paper, we present NALDO, an automatic approach that provides

formal expression of concepts from their textual definitions. After the presenta-

tion of the research problems related to the automatization of such approach, we

show how NALDO focuses on the issues of basic linking and pruning. To address

these issues and to provide expressions with a given semantics, NALDO uses515

entities of existing ontologies describing the domain of these concepts. NALDO
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Characteristics Lexo [9] Work of De

Azevedo et

al. [10]

NALDO

Input NL definition NL definition NL definition

and Domain

ontology

Expressiveness

of output

SHROIQ ALC SHROIQ

Issues

(F1) No No No

(F2) No No No

(F3) No No Yes

(F4) No No No

(F5) No No Yes

Results on

VSAO

Precision 0.52 0.61 0.70

Recall 0.44 0.44 0.66

F1 0.48 0.51 0.68

Results on

PIZZA

Precision 0.40 0.42 0.82

Recall 0.40 0.4 0.77

F1 0.40 0.41 0.79

Results on

SSN

Precision 0.47 0.53 0.68

Recall 0.45 0.48 0.59

F1 0.46 0.50 0.63

Table 7: Comparison of NALDO with Lexo and De Azevedo et al. [10]

can achieve up to 0.79 of F1-measure and a confidence of 31% i.e. 23 of the 75

tested definitions. The given score is obtained for a unique combination, for a

given domain, of the four key parameters which support NALDO. The combi-

nation can be used to extrapolate NALDO on a larger corpus. This work also520

revealed several crucial issues, of which one is prominent: the pruning, from
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a text, of meaningless phrases w.r.t. to a knowledge base and thus useless for

formal expressions of concepts. NALDO addresses this issue using semantic and

syntactic prunings, however evaluation results suggest that we should strengthen

this filtering. In addition, NALDO employs a general paraphrase database; we525

intend to make use of domain resources for future works. Another issue needs

a closed look: ”Strong” entity linking where the formalization approach is able

to identify suitable entities in the domain ontology, but which are not lexically

found in the definition. Finally, NALDO is being adapted to deal with sentences

out of the scope of definitions such as business rules and policies.530
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