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Abstract Data-driven computations propose a completely new paradigm

to the computational mechanics research community and to experimental-

ists. Classically, admissible material states can only be obtained experimen-

tally for homogeneous stress/strain configurations or using a parametric

optimization of material laws based on heterogeneous tests. Data-driven

algorithms aim at circumvent these limitations. However, data-driven al-

gorithms require a large database of admissible material states, otherwise

extrapolation is required and some limitations of the classical constitutive

equation based approach remain. In this paper, an inverse data-driven ap-

proach based on full field measurements is presented. The main idea is to
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extract, with no assumption on the constitutive equations, rich (i.e. het-

erogeneous and multiaxial) material state fields from displacement fields

and external load measurements. The capability of the proposed method

to extract databases of admissible material states and to evaluate stress

fields without parametric constitutive equations is illustrated through three

examples dedicated to non-linear elasticity, plasticity and dynamics.

1 Introduction

Solution algorithms in computational mechanics make use of constitutive

equations. They can be purely phenomenological or thermo-dynamically

consistent. However, it is unavoidable that, at some point, one has to write

down a constitutive equation with some parameters to be determined exper-

imentally. The most common practice is to perform a sufficient number of

experiments using samples and loading conditions that lead to homogeneous

stress and strain states, within a gauge zone, that can be estimated directly

from macroscopic force and displacement measurements. As a consequence,

the phase space (stress, strain) that is of high dimension is only explored

along a few radial trajectories. Invoking the symmetry class of the material

(isotropy, orthotropy,...), the dimensionality of the phase space can be re-

duced but at least the invariants of stress and strain tensors remain. The

sparse nature of the experimental exploration of the phase space makes the

use of the elaborated constitutive equations for predicting the behavior of

complex structures a continuous extrapolation of the experimental results.
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Since the early 80’s, full-field displacement measurements, like Digital

Image Correlation (DIC), have been developed (see [1] for a review). They

offer the opportunity for the experimentalists to obtain the full displace-

ment field at the surface of a given specimen. This provides for rich data as

the evolution of the strain field can be easily derived and thus, experiments

leading to complex heterogeneous material state fields can be analyzed. Ac-

tually only the strain field can be measured but not the stress one, which

is not that useful for the purpose of material characterization. However,

coupling these full field measurements with numerical simulations offers the

opportunity to thoroughly compare numerical predictions for a given con-

stitutive law and full-field experimental data. Even more interesting, trying

to reduce the scatter between experimental and numerical results, it is pos-

sible to adjust the parameters (Finite Element Model Updating FEMU) of

the constitutive equations being part of the simulations [2]. This kind of ap-

proach has been shown to be extremely robust and reliable [3,4] even in the

case of non-linear and history dependent constitutive models. The interested

reader should refer to [5] or [6] for an overview of parameter identification

using full-field measurements. However, within this framework, one has to

use a constitutive equation which parameters are to be identified. Usually

this equation is the same as the one developed from the homogeneous ex-

periments but classically, identification based on macroscopic or field data

will lead to different parameters. Consequently, the intrinsic limitations of

the constitutive equation itself remain unchanged but the parameters are
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more adapted to the considered heterogeneous experiments (but less for the

homogeneous ones).

Recently, Kirchdoerfer and Ortiz [7] proposed a data-driven computa-

tional mechanics (DDCM) approach. The constitutive equation is replaced

by the minimization of the distance, e.g. an energy norm, between the com-

puted state (stress, strain) and a cloud of admissible material states that

are supposed to be obtained experimentally. There is thus no need to write

down explicitly the constitutive equation. This strategy offers the oppor-

tunity to circumvent the limitations of the classical approach described in

the previous paragraphs. However, if the experimental data used within

this framework for predicting the response of complex structures are still

obtained from homogeneous state experiments then the issue regarding the

extrapolation of the experimental data remains.

In this paper, an inverse data driven approach is presented. The main

idea is to formulate the inverse problem associated to data-driven compu-

tational mechanics in order to use the displacement field and load measure-

ments, to recover a set of admissible material states with no assumption

on the constitutive equation. The approach can be used on complex ge-

ometries and thus the limitations of the classical approach regarding either

the homogeneous state experiments or the constitutive equation itself are

circumvented. In the next Section, the formulation of the proposed Data-

Driven Identification (DDI) method is developed. Then, in Section 3, two

applications are presented: they illustrate the capability of the proposed
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methodology. In the first example, the case of a non-linear elastic mate-

rial under quasi-static loading conditions is presented. Then, a linear elastic

material subjected to transient loading is analyzed. Indeed, the only differ-

ence, in the proposed framework, between quasi-static and dynamics is that

there is a volume force distribution arising from the inertia term in balance

equations. The acceleration being experimentally accessed as the second

derivative of the displacement, the extension of the proposed framework to

transient experiments is straightforward. Last, in Section 4, an alternative

formulation of the initial DDI problem formulated in Section 2 is presented.

The initial problem is solved assuming that a first guess of the stress field

is provided, either from a numerical simulation of the experiment using a

constitutive law obtained from homogeneous state experiments or from the

aforementioned FEMU technique. Then, only the correction to this first

guess is sought, what is shown to be efficiently performed over a reduced

domain and using a reduced basis. An example involving data for an elasto-

plastic material is presented. Compared to[8], all the proposed results are

new. Those of Section 3.1 are similar to those in the aforementioned paper

but a different setup is used. The methodology presented in Section 4 and

the results in Section 3.2 are completely new.

2 Data-Driven Identification

In this section, the general framework of DDI is presented. The small strain

assumption is considered and the phase space for describing the state of
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the material consists in a linear strain tensor ε and a Cauchy stress ten-

sor σ, each belonging in a 6-dimensional space (after accounting for their

symmetry).

The starting point of DDI is the existence of a large database of strain

measurements obtained for example by DIC from images acquired during

the experiments. Each of these images and the corresponding displacement

fields are called snapshot. The applied load at the corresponding time in-

stant is also measured.

A linearized kinematics, discretized on a finite element mesh in which

a given quadrature point e admits an integration weight we, is considered.

For snapshot X, the following quantities are available:

– nodal displacements (uX
j )j ,

– finite element geometry and connectivity, encoded through a matrix

(BX
ej)j , which computes the mechanical strain εXe =

∑
j BX

ej · uX
j at

each quadrature point,

– applied nodal forces fXj .

The aim of the DDI technique is to compute a number N∗ of material states

(ε∗i ,σ
∗
i )i such that:

– for each snapshot X and quadrature point e, it is possible to compute

the mechanical state σX
e which satisfies mechanical equilibrium,

– for each snapshot X , a material state (ε∗s(e,X),σ
∗
s(e,X)) can be assigned

to each quadrature point e which is the closest to the mechanical state

according to a given energetic norm ||·||Ce
. This mapping (e,X) −→



Data Driven Identification 7

s(e,X) allows to associate each mechanical state (e,X) to a material

state in the database.

Following Kirchdoerfer and Ortiz [7] , we consider

||(εe,σe)||2Ce
=

1

2
(εe : Ce : εe + σe : Ce

−1 : σe) , (1)

where Ce is a (symmetric positive definite) fourth order stiffness tensor. For

identifying the material states, the following global minimization problem

is:

solution = arg min
σX

e ,ε∗i ,σ
∗
i ,s
E(σX

e , ε
∗
i ,σ

∗
i , s) (2)

with

E(σX
e , ε

∗
i ,σ

∗
i , s) =

∑
X

∑
e

wX
e ||(εXe − ε∗s(e,X),σ

X
e − σ∗s(e,X))||

2
Ce
, (3)

and subjected to the constraint of global equilibrium equations:

∑
e

wX
e BX

ej

T · σX
e = fXj ∀X, j . (4)

In these equations,
∑

e stands for the sum over all quadrature points e

and,
∑

X for the sum over all snapshots. All unknowns are real valued except

the state mapping s which is discrete (integer valued). For an arbitrary state

mapping, the equilibrium constraints Equation (4) are enforced by means

of Lagrange multipliers ηX
j , leading to the following problem:

(5)

δ

∑
X

∑
e

wX
e (εXe − ε∗s(e,X)) : Ce

X : (εXe − ε∗s(e,X))

+ wX
e (σX

e − σ∗s(e,X)) : Ce
X−1 : (σX

e − σ∗s(e,X))−∑
j

(wX
e BX

ej

T · σX
e − fXj ) · ηX

j

 = 0 .
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Taking all possible variations yields the following set of equations:

δε∗i ⇒
∑
X

∑
e∈SX

i

wX
e Ce

X : (εXe − ε∗s(e,X)) = 0 ∀i (6)

δσ∗i ⇒
∑
X

∑
e∈SX

i

wX
e

(
Ce

X
)−1

: (σX
e − σ∗s(e,X)) = 0 ∀i (7)

δσX
e ⇒ wX

e Ce
X−1 : (σX

e − σ∗s(e,X))−
∑
j

wX
e BX

ej · ηX
j = 0 ∀e,X (8)

δηX
j ⇒

∑
e

(wX
e BX

ej

T · σX
e − fXj ) = 0 ∀j,X . (9)

In the above equations, SX
i = {e such that s(X, e) = i}. Equation (6) sim-

ply states that each material strain ε∗i is a weighted average of the mechan-

ical strains at quadrature points assigned to this specific material strain.

Similarly, Equation (7) states that each material stress σ∗i is a weighted av-

erage of the mechanical stresses at quadrature points assigned to this specific

material stress. Combining Equations (7), (8) and (9) yields the following

linear system, solved to simultaneously determine σ∗i and σX
e (through ηX

j ):

∑
k

∑
e

wX
e BX

ej

T
: Ce

X : BX
ekη

X
k +

∑
e

wX
e BX

ej

T
σ∗s(e,X) = fXj ∀j,X , (10)

and ∑
e∈SX

i

∑
X

∑
j

wX
e BX

ejη
X
j = 0 ∀i . (11)

The following algorithm is suggested for computing (ε∗i ,σ
∗
i )i,(σ

X
e )e,X and

s:

1. simultaneously initialize (ε∗i )i and s by a k-means algorithm on (εXe )e,X ,

2. simultaneously compute (σ∗i )i and (ηX
j )j,X from Equations (10-11),

3. update the value of (σX
e )e,X using Equation (8),
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4. compute a new state mapping s with:

s = arg min
s

∑
X

∑
e

wX
e ||(εXe − ε∗s(e,X),σ

X
e − σ∗s(e,X))||

2
Ce

, (12)

5. update (ε∗i )i from Equation (6),

6. iterate steps 2-5 until convergence of s.

The DDI problem is mathematically a Mixed-Integer Quadratic Program-

ming (MIQP) problem which is here solved heuristically. It is easy to observe

that the cost function (3) decreases at each iteration, but there is no guaran-

tee of convergence towards a global minimum. Following the work of Kanno

[9], it is however reasonnable to suggest that the globally optimum solution

of DDI can be achieved using standard Mixed Integer Programming meth-

ods such as branch and bound approaches. The computational cost of theses

methods is however such that they cannot be applied here.

3 Applications for quasi-static and dynamic problems

3.1 Quasi-static non-linear elasticity

The method proposed in the previous section is applied to manufactured

data. The problem consists in the identification of the mechanical response

of a non-linear incompressible material under plane stress assumption. A

2D finite element mesh with 4111 nodes and 7764 triangular elements is

considered. It is subjected to NX = 40 increasing traction steps in the y-

direction. The mesh as well as a representative deformed configuration are
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depicted in Figure 1. The constitutive equation used in the FE simulations

to generate the data is of the form:

σ = G(ε + αε3)− pI , (13)

p = −(εxx + εyy)− α(εxx + εyy)3 . (14)

where G and α are the material parameters chosen as G = 1 MPa and α = 5.

We consider a tensor Ce corresponding to the linearization, i.e. α = 0, of

the above equation with G = 100 MPa. The initialization of s and (ε∗i )i is

obtained by applying a k-means algorithm to the set of (εXe )e,X . About 70

DDI iterations are necessary to converge for N∗ = 15000. This particular

choice of parameters (Ce and N∗) is guided by the preliminary parametric

study of the method [8].

Since the “true” constitutive equation used to generate the data is

isotropic, we first explore the misalignment between the identified mate-

rial strain and stress. To this end, for each material state (ε∗i ,σ
∗
i ), the angle

θi between the dominant eigenvectors of the strain and stress tensors is com-

puted. The distribution of these misalignment angles is shown in Figure 2.

As expected the misalignment is small and 80% of all material states have

less than 0.5◦ misalignment.

In Figure 3, we present the first eigenvalue of the material stress tensor

(σ∗I ) as a function of the eigenvalues of the corresponding material strain

(ε∗I , ε
∗
II). All points fall very close to the surface built from the constitutive
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equation used to generate the input data:

σI
G

= εI + αε3I + (εI + εII) + α(εI + εII)3 . (15)

The distribution of material strain in the (ε∗I , ε
∗
II) plane provides an impor-

tance sampling of the relevant strain states in the dataset. In particular one

can observe the lack of data for equibiaxial deformation (i.e. ε∗I = ε∗II).

The DDI algorithm provides the material states (ε∗i ,σ
∗
i )i database but

also predicts the mechanical stresses (σX
e )e,X of all snapshots. Figure 4 (left)

presents the predicted von Mises stress for one of the snapshots, and Fig. 4

(middle) shows the relative error. The prediction is accurate to less than 5%

in 95% of all elements, confirming the accuracy of the DDI method. For the

whole collection of snapshots, the mean relative error in von Mises stress is

2.1%.

3.2 Wave propagation in linear elasticity

Section 3.1 illustrates a quasi-static problem and consequently all nodal

forces (fXj )j,X appearing in the right-hand side of Equation (10) are zero

excepted for the nodal forces corresponding to nodes subjected to Dirichlet

Boundary conditions.

In this section we investigate the case of wave propagation, where the

nodal forces (fXj )j,X are inertial. Note that transient data-driven compu-

tational analysis have been proposed in [10]. Again, the problem consists

in the identification of the mechanical response of an elastic material with
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the plane stress assumption but here, the successive snapshots used for the

identification represent the time evolution of a pre-deformed specimen that

is suddenly released. Figure 5 shows the initial configuration of the spec-

imen and some representative configurations following the release of the

upper boundary. The FE mesh consists of 9200 triangular elements and

4866 nodes. To generate the data, time integration is performed using a

standard Newmark method. In this example a linear elastic constitutive

model (E = 1 MPa, ν = 0.3) has been used for the sake of simplicity.

Nodal accelerations are re-computed a posteriori using centered finite dif-

ference approximation while the nodal forces are obtained by multiplying

the mass matrix of the FE mesh with the vector of nodal accelerations. The

parameters of the DDI algorithm are chosen as follows:

– the number of material states N∗ is selected to be approximately 0.05

times the number of mechanical states,

– the pseudo-elasticity tensor Ce is built using a modulus E∗ = 100MPa

and an arbitrary Poisson ratio ν∗ = 0.45.

Convergence is reached after 89 iterations.

Figure 6 compares, for all snapshots, the identified mechanical stress

with the actual true stress values computed from the underlying constitutive

model. We observe that the predictions are globally very good, excepted

for some values of σxx. This can actually be expected as the specimen was

initially stretched mostly along the y-axis yielding less rich and intense data

along x. Figure 7 shows the predicted mechanical stress σxy along with the
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error magnitude for a particular snapshot. As expected from Fig. 6, the

error levels are negligible compared to the actual stress value. Using the

computed database of material states (ε∗,σ∗), the fit of a linear elastic law

yields back the parameters of the linear constitutive model used to generate

the data: Eid = 1.01MPa and νid = 0.299.

4 Model order and mixed reduction

In this section, an alternative resolution strategy is proposed. The main

idea is that from a FE simulation of the experiment and a constitutive law

obtained either from homogeneous stress experiments or a FEMU technique,

a first guess (referred to as initial latter on) of the stress field (satisfying

balance equations and balancing the external load) can be obtained. The

strain field obtained from this simulation does not correspond to the actual

measured strain. The DDI strategy proposed above is derived in order to

obtain a non-parametric correction of the first guess of the stress field.

This first guess may be correct in zones where the material state (stress,

strain) fields remain homogeneous/simple and thus accurately predicted by

the constitutive equation. Consequently, the correction field is searched for

locally in a reduced domain (RD).

4.1 Formulation

For solving the problem stated in Section 2 locally, one needs to convert

the initial stress field σ̃X
e to Neumann conditions on the boundary between
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the RD and the rest of the structure. Alternatively, one can search for a

correction to the initial stress field. The stress field is written as

σX
e = σ̃X

e + σ̄X
e , (16)

where σ̄X
e is the self-balanced correction to the initial stress σ̃X

e . This cor-

rection being self-balanced, it is relevant to search it as part of a reduced

space of admissible stress fields that can be parametrized (decomposed on

a reduced basis). Suppose that a basis (Lj
e)j=1..Ns

of self-balanced stress

fields is known, then one obtains

σX
e = σ̃X

e + Lj
eP

X
j , (17)

where (PX
j )j=1..Ns are the parameters of the reduced basis for the snapshot

X. Appendix 6 proposes a procedure to generate such a basis of self-balanced

stress fields. It simply consists in a singular value decomposition of the linear

operator allowing to compute the finite element internal force vector from

a given stress field. The total strain associated to these correction fields

vanishes, which is to be related to the non-uniqueness of the solution of the

balance equation on its own. This means that the effect of this correction

cannot be observed. The consistency of the corrected stress field with respect

to the searched material states database is used to restore the well-posed

nature of the problem. The optimization problem written in Equation (2)

is recast as

solution = arg min
PX

j ,ε∗i ,σ
∗
i ,s
E(σ̃X

e + Lj
eP

X
j , ε

∗
i ,σ

∗
i , s(e,X)). (18)
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The basis used to decompose the stress correction being self-balanced and

the initial stress field balancing the external load, this optimization problem

is solved with no additional constraint. Then, taking all possible variations

yields the following set of equations:

δε∗i ⇒
∑
X

∑
e∈SX

i

wX
e Ce

X : (εXe − ε∗s(e,X)) = 0 ∀i (19)

δσ∗i ⇒
∑
X

∑
e∈SX

i

wX
e

(
Ce

X
)−1

: (σX
e − σ∗s(e,X)) = 0 ∀i (20)

δPX
j ⇒

∑
e

∑
k

(wX
e Lk

e

T · (Lj
eP

X
j + σ̃X

e − σ∗s(e,X)) = 0 ∀j,X . (21)

The interpretation of these equations is exactly the same as previously. The

following algorithm is suggested for computing (ε∗i ,σ
∗
i )i,(P

X
j )j,X and s:

1. simultaneously initialize (ε∗i ,σ
∗
i )i and s by a k-means algorithm on

(εXe , σ̃
X
e )e,X ,

2. compute (PX
j )j,X from Equation (21),

3. compute (σ∗i )i from Equation (20),

4. compute a new state mapping s with:

s = arg min
s

∑
X

∑
e

wX
e ||(εXe −ε∗s(e,X), σ̃

X
e +Lj

eP
X
j −σ∗s(e,X))||

2
Ce

, (22)

5. update (ε∗i )i from Equation (19),

6. iterate steps 2-5 until convergence of s.

4.2 Results

A rectangular sample of 100×20 mm2 with a hole of diameter 5 mm is con-

sidered. It is assigned an elasto-plastic behaviour with linear isotropic hard-

ening. The Young’s modulus is 168 GPa, the initial yield stress 284 MPa and
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the hardening coefficient 1.48 GPa. The Poisson’s ratio is 0.25. To generate

strain data, a numerical simulation is run under prescribed displacement at

the left and right ends of the sample with a mesh similar to the one shown

in Figure 8(a). A 2D plane stress formulation is adopted. The macroscopic

response obtained in the simulation is illustrated in Figure 9. 25 steps are

performed.

The initial stress field is obtained from a purely elastic simulation (bal-

ancing the external load) using the elastic tensor of the material. Ce is set

equal to the actual elastic tensor. The Young modulus of the material being

about 100 times higher than its hardening modulus, this choice is consis-

tent with the recommendation in [8] when the focus is on the elasto-plastic

response of the material. The RD on which the analysis is performed con-

sists in the elements that have their total strain norm exceeding 0.2%. Two

layers of elements are added to this RD as depicted in Figure 10. The RD

finally contains about 2000 elements. In practice, the RD should be defined

to ensure that plasticity remains embedded within the RD, meaning that

along the RD boundary σ̄e n = 0 is a valid assumption. The entire basis of

self-balanced stress field computed over this RD is used for the DDI anal-

ysis which involves 800 material points in the database for analyzing the

last 5 snapshots. To illustrate the potential of using model order reduction,

the normalized amplitude of the self-balanced modes used to correct the

initial stress field at the last snapshot is plotted in Figure 14. It is clearly

shown that the correction obtained with the full basis could have been ob-
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tained with a sufficiently high level of accuracy (compared the measurement

uncertainty) with half the number of modes.

After the analysis is run, the actual elastic tensor is used to reconstruct

the elastic strain (including the out-of-plane component assuming plane

stress) from the stress and then the plastic strain (including the out-of-plane

component assuming plastic incompressibility). In Figure 11, the von Mises

norm of the plastic strain is plotted for the last snapshot. At this last step,

the von Mises norm of the stress field is presented in Figure 12(b). It is to

be compared to the initial elastic stress in Figure 12(a). This correction is

consistent with the actual strain shown in Figure 8(b) which is very close

to the plastic strain as expected for such an elasto-plastic material. To

further check for the consistency of identified stress field and material state

database, a von Mises stress v.s. plastic strain plot gathering the data from

all the snapshots is proposed in Figure 13; the actual constitutive law of the

material used to generate the strain and force data is also plotted. A good

agreement with both mechanical and material states is obtained.

5 Summary and concluding remarks

In this paper, it is shown that an inverse problem for the data-driven com-

putational mechanics approach can be formulated and solved efficiently. It

allows for obtaining, with no assumption on the relationship between stress

and strain, a database of admissible material state. This database is a sam-

pling of the full-field of strain and reconstructed stress that fulfill all the
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governing equations of a mechanical problem: balance of momentum, com-

patibility, and boundary conditions. The resolution of the inverse problem

is performed either globally or on local patches where the actual behaviour

of the material is supposed to differ from an initial guess. The only data

that is required for the analysis are: the geometry of the tested sample, and

both measured displacement fields and corresponding load measurements.

Through the three examples presented in the paper, the ability of the

method to handle with different type of non-linearities and loading condi-

tions (dynamic being considering as a volume force) is illustrated. The main

limitations of the proposed approach are:

– in its present formulation the method is restricted to material behaviors

for which the stress is a function of the strain, such as (non-linear)

elasticity and monotonous radial loading in the elasto-plastic case;

– due to the non interpolating / extrapolating nature of the method, rich

experiments involving heterogeneous deformations are required.

This will be the purpose of future investigations including the analysis of

real complex experimental data sets.
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6 Appendix: Self-balanced stress field computation

The elaboration of the basis is performed using a singular value decomposi-

tion of the elementary internal force vector. Using the notations introduced

in the paper, any elementary stress field having one component c activated

in one single element k gives rise to finite element internal forces

fk,cj =
∑
e

weBej
T · σc

k ∀j, k, c. (23)

A singular value decomposition of this set of internal force vector is carried

out to obtain the combination of elementary stress σs giving rise to vanish-

ing internal force vector. If Nn denotes the number of nodes in the finite

element mesh, the internal force vector has 2Nn components in 2D. The

number of independent elementary stress being 3Ne (Ne being the number

of quadrature points), the number of self-balanced stress fields is 3Ne−2Nn

in 2D. Ls
e is simply computed as the singular vectors of the matrix gathering

all fk,cj , corresponding the 3Ne − 2Nn smallest singular values.
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Fig. 1 Computational mesh of 4111 nodes and 7764 triangular elements (left)

and typical deformed configuration (right).
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Fig. 2 Distribution of misalignment angle between the material strain ε∗ and

material stress ,σ∗.

Fig. 3 Largest eigenvalue of the material stress tensor as a function of the eigen-

values of the material strain tensor. The symbols are computed from the identified

material states (ε∗,σ∗) and the surface from Equation (15). The color denotes the

vertical distance between the symbols and the analytical surface..
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Fig. 4 Predicted von Mises mechanical stress for one of the snapshots (left) and

relative error (right) .

Fig. 5 Initial configuration (left) and some representative snapshot configurations

.
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Fig. 6 Predicted mechanical stress components [MPa] vs. ”true” FE stress com-

ponents [MPa].

Fig. 7 Identified stress for one of the snapshots (left) and error magnitude (right).
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(a)

(b)

Fig. 8 Mesh used for the elasto-plastic analysis and horizontal displacement and

strain for the last snapshot.
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Fig. 9 Macroscopic response of the holed plate with an elasto-plastic behavior.
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Fig. 10 The pink zone is used as a reduced domain for the DDI.

Fig. 11 von Mises norm of the plastic strain for the last snapshot.

(a)

(b)

Fig. 12 Comparison of the von Mises norm of initial (elastic) stress (a), recon-

structed stress (b) for the last snapshot.
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Fig. 13 Stress v.s. plastic strain representation of the reconstructed state fields.

The black line corresponds to the constitutive law used to generate the displace-

ment data. The blue points represent the mechanical states and the red points

the material state database.
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Fig. 14 Normalized amplitude (for the last snapshot) of the self-balanced modes

used to correct the initial stress field.


