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This volume contains the Proceedings of the Seventh Congress of the European 

Society for Research in Mathematics Education (ERME), which took place 9-13 

February 2011, at Rzeszñw in Poland. ERME came into being at its first congress in 

Osnabrueck, Germany, in 1998. Thereafter, CERME congresses have taken place 

every two years since CERME2 in 2001.  

CERME places great emphasis on promoting participation by all who attend the 

congress, with a deliberate shift from the succession of parallel research report 

presentations that characterise most international scientific conferences. Thus, the 

vast majority of CERME time is devoted to discussion and debate within thematic 

Working Groups (WGs), facilitated by a team of leaders for each WG.  

These leaders give a great deal of their time in organising the peer review for their 

WG before the congress, the working sessions at the congress itself, and in 

coordinating and editing those parts of these proceedings related to their WG. 

CERME participants must commit themselves to membership of just one such 

Group, and to 6 or 7 sessions of 90-120 minutes working with the Group.  

The number of WGs increased to 17 at CERME7, and the number of participants in 

each was around 25-30 on average, including about 4 WG leaders. The WG themes 

were as follows: 

WG1:  argumentation and proof; 

WG2:  teaching and learning of number systems and arithmetic; 

WG3:  algebraic thinking; 

WG4:  geometry teaching and learning; 

WG5:  stochastic thinking; 

WG6:  applications and modelling; 

WG7:  mathematical potential, creativity and talent; 

WG8:  affect and mathematical thinking; 

WG9:  mathematics and language; 

WG10:  diversity and mathematics education; 

WG11:  comparative studies in mathematics education; 

WG12:  history in mathematics education; 

WG13:  early years mathematics; 

WG14:  university mathematics education; 
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WG15:  technologies and resources in mathematics education; 

WG16:  different theoretical perspectives and approaches in research in mathematics 

education; 

WG17:  from a study of teaching practices to issues in teacher education. 

Research paper and poster proposals were submitted to a Group, and were then 

subject to peer review within the WG and a decision about acceptance by the WG 

leaders. This structure results in significantly devolved and distributed responsibility 

for the organisation of the congress, and – hopefully – a sense of belonging to their 

chosen WG, for all participants. All accepted papers were posted on the CERME 

website before the congress, and each participant was expected to read all of those 

related to their WG – typically 15 or more – in advance of the congress.  

At the congress itself, it was then possible to devote all of the time allotted to each 

paper to discussion, rather than the usual monologue-presentation. In this way, 

opportunities for interaction and participation are maximised. Following the 

congress, the authors of the accepted papers had the opportunity to make further 

revisions in response to the feedback and discussion within their WG. The form in 

which they appear in these proceedings reflects this continuous process of 

improvement, assisted by critical support within the WG. 

The success of the ERME movement can be measured, in part, by the numbers of 

participants and presentations at recent meetings. In Rzeszñw, 453 participants came 

from 50 countries, and were involved in 17 Working groups, coordinated by 75 

leaders. 293 research papers were accepted for presentation and discussion at the 

congress, as well as 69 posters. Taken to the next stage, 279 papers and 49 poster-

communications appear in these proceedings. Interest in CERME continues to grow, 

with participants coming from 17 countries beyond Europe (such as Canada, US, 

Brazil, Singapore, Australia ...) this time.  

The ERME ‗spirit‘ of communication, cooperation and collaboration is explicitly 

enshrined in its aims and vision. Inclusion is central to its ethos, and the way that the 

WGs organise their activity. At the same time, ERME must promote and support 

scientific Quality if it is to be useful to its members and credible on the international 

stage. At times the two goals, inclusion and quality, seem to pull in different 

directions, creating tension and sometimes dissatisfaction when, for example, a 

research paper is not accepted for presentation, despite formative feedback and 

revision, and the author is then unable to access funds to attend the congress. Thus, 

by upholding a notion of necessary ‗standards‘ of scientific quality, someone is 

effectively denied participation in the congress.   

This tension has recently been addressed in collaborative research by Barbara 

Jaworski (UK), João Pedro da Ponte (Portugal) and Maria Alessandra Mariotti 

(Italy), which is reported in Jaworski et al. (2011). A paper related to this research 

was made available to CERME7 participants in advance of the congress. 
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In addition to the WG activities, the sense of belonging to the whole congress was 

fostered in a number of plenary scientific activities, and in a varied social and 

cultural program. The opening ceremony, held in the splendid surroundings of the 

Rzeszñw Philharmonic Concert Hall, included a plenary address by Anna Sierpinska, 

on her recent research into elementary mathematics methods courses in preservice 

teacher education. Sierpinska maintains close links with mathematicians and 

mathematics educators in her native Poland. Two other plenary talks later in the 

conference recognised the work of two CERME WGs across several congresses, and 

were given by researchers who had led these WGs until recently. Thus, the address 

of Markku Hannula (Finland) was on the Structure and Dynamics of Affect in 

Mathematical Thinking and Learning; Maria Alessandra Mariotti‘s title was Proof as 

an Educational Task.  

Three papers corresponding to these plenary addresses are published later in these 

proceedings. Another notable event in the plenary program was a session introducing 

the current work of the Education Committee of the European Mathematical Society, 

in particular the project to itemise ‗solid findings‘ in mathematics education. This 

session included fruitful discussion about the nature and warrants of such findings, 

and their relationship to the work of ERME and its members.  

The vision and ethos of ERME is also distinctive in its support for ‗young‘ 

researchers in the field of mathematics education, notably those undertaking doctoral 

research or in post-doctoral positions. Every CERME conference is preceded by two 

half-days of YERME (‗young-ERME‘) discussion groups and workshops.  

At CERME7 these were led by professors Paolo Boero, Pessia Tsamir, Dina Tirosh, 

Barbara Jaworski, João Pedro da Ponte and Heinz Steinbring. The Society is 

fortunate to have such experts willing to give freely of their time for the benefit of 

the future leaders of ERME.  

We extend sincere thanks to Ewa Swoboda and all the local organisers for their hard 

work, and to the University of Rzeszñw for making us so welcome at the first 

CERME to be held in Eastern Europe. The next CERME will take place in February 

2013, in Antalya, Turkey.  

Information on-line  

The CERME website was at http://www.cerme7.univ.rzeszow.pl/ 

These proceedings can be accessed online from http://www.erme.unito.it/ 
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In this brief introduction to these proceedings of the Seventh Congress of the 

European Society for Research in Mathematics Education (CERME7), we set out to 

explain the nature and the organisation of the contents. Individual contributions can 

be accessed directly from hyperlinks on the contents page. 

Following the general introduction by the ERME President and the CERME7 Chair, 

the first section-proper of the CERME7 Proceedings consists of three major papers, 

by Anna Sierpinska, Markku Hannula and Maria Alessandra Mariotti. These three 

distinguished scholars were invited by the scientific program committee to give 

plenary addresses to the congress. Each of them responded to the request for a 

written paper, recording and elaborating on the content of their presentations. 

Following discussions with the editorial panel, these papers are published here. 

The second section of the proceedings is the written record of the activity which lies 

at the heart of every CERME congress. It is in 17 parts, corresponding to the 17 

Working Groups (WGs) at CERME7. Each part begins with an introduction, an 

overview of the work of the WG by the team that led it, followed by those papers 

accepted for presentation and publication by the WG leaders, following peer review 

before and discussion during the congress. The papers are ordered alphabetically, by 

first author, although thematic groupings are sometimes suggested in the WG-

leaders‘ introductions. We extend our thanks to, and acknowledge the editorial 

contribution of, the leaders of each WG in their scrutiny of the papers accepted for 

publication from their Group. 

The third section of the proceedings is an innovation in the dissemination of the 

content of posters accepted for presentation and discussion at CERME. In response 

to a request from some WG leaders, the ERME Board agreed that posters accepted 

for CERME7 could be ‗published‘ in the proceedings. This was realised by inviting 

the relevant poster-authors to submit a two-page communication of the content of 

their poster. These poster-communications, also grouped by Working Group, 

appear in this final section. 

Since CERME3 in 2003, Proceedings of CERME congresses have been produced 

electronically, usually in CD format. They can be also be accessed online from 

http://www.erme.unito.it/ 

Tim Rowland, University of Cambridge, UK 

Ewa Swoboda and Marta Pytlak, University of Rzeszñw, Poland 

Editors, Proceedings of CERME7.  
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CERME 7 (2011) 

RESEARCH INTO PRE-SERVICE ELEMENTARY TEACHER 

EDUCATION COURSES 

Anna Sierpinska  

Concordia University, Montreal, Canada 

Considerable effort has been put into mathematics education research towards the 

development of knowledge that could serve as a basis for a professionalization of the 

work of mathematics teachers. In recent years, a similar effort has been expended 

with regard to the work of the mathematics teacher educator. Three years ago, I 

joined this current by engaging in a research project on the ―Teaching 

Mathematics‖ (TM) courses for future elementary school teachers with Helena P. 

Osana, a researcher in educational psychology and an experienced elementary 

mathematics teacher educator. The goal of this research, ultimately, is to make 

public, communicable and open to critical analysis the personal experience of 

university professors teaching such courses. The more modest and immediate goal of 

our small project is to describe and make sense of TM courses in six Canadian 

universities, three Francophone and three Anglophone. We observed classes, studied 

course descriptions, and conducted long interviews with instructors; we also 

interviewed students. In the talk, I present some results of our research so far, 

focusing on a framework for analysing the TM courses that we have started 

developing in our research. This framework might be useful for other researchers 

wishing to contribute to professionalization of elementary mathematics teacher 

educators‘ work.  

HOW IT STARTED 

It all started with a meeting of two singularities: Helena P. Osana, the single 

mathematics educator in the Education Department, and myself, one of two 

mathematics educators in the Mathematics & Statistics department of our university. 

We started talking about possibilities of collaboration, such as teaching courses in 

the other department, and doing research together. Helen could certainly teach a 

course in educational psychology in the Master in the Teaching of Mathematics 

program in the math department. But what could I teach? The Education Department 

has only two courses in mathematics education, both in the undergraduate program 

leading to certification of elementary school teachers. Moreover, Helen‘s research 

has been in the area of elementary education, whereas my research so far, was on 

secondary or tertiary mathematics teaching and learning. So, if I wanted to engage in 

collaboration with Helen – and I did – I had to learn something about her area of 

practice and research.  

I was curious about her elementary mathematics teacher preparation courses, 

thinking that I could maybe teach one in the future. There were plans, in fact, to add 

one more course on mathematics teaching to the two already in place in the 
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elementary teacher preparation program. To prepare, I started reading about 

mathematics teacher education. There was no shortage of sources. This is a huge 

area. There is a specialized journal, Journal of Mathematics Teacher Education, and 

one of the recent ICMI Studies was devoted to the area (Even & Ball, 2009). I was 

finding interesting ideas for activities for teachers and information about teacher 

education programs around the world. All this was, however, not enough for me to 

make decisions in designing a whole course for future teachers. Of course, I could 

just start by teaching one of the courses already in place by taking Helen‘s course 

outline and her lecture notes and materials and teach according to those. But I don‘t 

think I would be able to do that properly without seeing her course as a result of a 

rational choice. To understand it as a result of a choice, I had to see alternative ways 

of conceiving such course. I wanted to see what other instructors of elementary 

mathematics teacher preparation courses in Canada are doing. And this is how I 

embarked, with Helen, on the research of which I will be showing some snapshots in 

this talk.     

THE DATA 

We visited elementary mathematics teacher preparation courses in six universities in 

three Canadian provinces: Québec, Nova Scotia and New Brunswick. Three 

universities were Francophone and three Anglophone. We labelled the French 

universities FU1, FU1, FU3; AU1, AU2, AU3 are labels for the English universities. 

I will call all these courses ―Teaching Mathematics‖ courses (TM), although they had 

different names in different universities. The courses we visited were part of 120 

credit Bachelor of Education programs (Elementary Education option). At all the 

English language universities, 6 of the 120 credits had to be obtained in two 3-credit 

TM courses, each lasting about 13 weeks. FU1 and FU3 had four 3-credit 

compulsory TM courses. At FU2, located in New Brunswick, beside the two 3-credit 

TM courses, students preparing to teach in grades 5-8 had to take four mathematics 

courses, including one-variable Calculus. In New Brunswick, elementary education 

counts 8 grades, not 6 as in other provinces. There were no compulsory mathematics 

courses for elementary teachers at the other universities, although at FU1, there was 

a mathematics ―placement test‖, and students who failed it had to take a remedial 

mathematics course based on secondary school material.  

We interviewed instructors and students, observed classes, collected various 

documents such as course outlines, lecture notes, assignments, tests and 

examinations. We labelled the instructor of the course at AU1 ―Professor Aone‖; 

similarly, Atwo, Athree, Efune, Efdeux, Eftrois were labels for instructors of courses 

at the other universities. ―Professor‖ marks the fact that these instructors were full 

time faculty members in charge of these courses. For the sake of brevity, I will omit 

the title ―Professor‖ when referring to the instructors. Most of them designed their 

courses from scratch and had been developing them for several years. An exception 

was Atwo who was in her second year of teaching at the time we met her, and she 
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was teaching her course along a design inherited from her predecessor, who was 

retiring. There was also a somewhat exceptional situation at AU3, where, at the time 

of our visit, Athree did not teach the TM course, and was replaced by ―Ms. West‖. 

Ms. West was a part-time instructor at the university, and a pedagogical consultant 

for mathematics teaching on the Elementary School Board in the area. She did not 

use Athree‘s course design but developed her own. We interviewed both Ms. West 

and Athree about the way they designed and ran the TM course, but could visit only 

Ms. West‘s class.   

FOCAL ASPECTS OF THE STUDY 

As we collected and analysed data, we tried to identify, in each course: the content 

structure; the tasks given to students; the formats of teacher-student interaction (see 

Bruner, 1985; Sierpinska, 1997); the instructor‘s reasons for his or her choices about 

the previous three aspects; and students‘ perceptions of the course. Based on our 

analysis of these aspects, we attempted a description of the nature of knowledge that 

was emerging in the course.  

SOME SNAPSHOTS OF THE RESULTS SO FAR 

This is a study in progress, so what I can offer is only a glimpse of partial results 

obtained so far. I will talk about the following aspects of the TM courses: (a) course 

content components, (b) differences in course content and the weighting of course 

components, (c) our analysis of tasks in TM courses and in particular, the epistemic 

actions they are designed to generate, (d) the formats of interaction between TM 

instructors and students as another way to capture the nature of epistemic actions 

emerging from TM courses, and (e) student perceptions of the TM courses.  

Content Components 

The content of the courses seemed to have the following components, in various 

proportions: 

 Mathematical Knowledge for Teaching (MKT) 

 Psychology of Mathematics Learning (PML) 

 Teacher‘s Didactic Actions (TDA) 

 Reflection on teacher preparation (R) 

 Ideology (I) 

The name Mathematical Knowledge for Teaching sounds like Ball‘s MKT model of 

a knowledge base for mathematics teaching (Ball, Thames, & Phelps, 2008), but it 

refers to only a subset of this model, namely Common Content Knowledge and 

Specialized Content Knowledge. Ball‘s MKT encompasses our MKT, PML and TDA 

combined. Our PML is close to Ball‘s Knowledge of Content and Students, and 

TDA, to Ball‘s Knowledge of Content and Teaching. We chose to separate MKT 
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from PML and TDA because syllabi of the TM courses sometimes do that too. At 

AU2, the first TM course focuses on MKT only: it is intended to be a review of 

elementary school mathematics.  

Our MKT, PML, and TDA categories are different from Ball‘s model in that they 

refer not to what teachers should know but to what TM instructors choose to teach in 

their courses. PML may contain any content related to how elementary school 

children learn mathematics (e.g. Piagetian theories of learning mathematics, the van 

Hiele model, or ―principles‖ of learning mathematics advanced by mathematics 

educators), and TDA – any content related to teacher‘s didactic actions (planning a 

lesson; designing an assessment, etc.). I will not discuss the PML and TDA 

components in general terms; some examples of PML and TDA content will be given 

later in this talk. Here, I will dwell a bit more on MKT, focusing on the aspect that 

has been stressed also in Ball‘s model, namely that mathematical knowledge for 

teaching is very different from the mathematician‘s mathematics.  

As Freudenthal stressed long ago (1986), MKT for elementary school is neither a 

part nor a ―didactic transposition‖ of scholarly mathematics (Chevallard, 1985). One 

immediately obvious difference is the kind of quantities they work with: mostly 

abstract numbers for the mathematician, and mostly (concrete) quantities of units (of 

lengths, areas, time, weight, money) in the elementary school, and abstract numbers 

figure as ―multipliers‖ (or scalars) that can scale the quantities (e.g., one can double a 

quantity, or halve it). Vergnaud‘s notion of ―measure spaces‖ models rather well the 

quantitative structures of MKT (Vergnaud, 1983).  

The mathematician conceives of operations on numbers as functions; in MKT, an 

arithmetic operation is conceived of via problem situations that call for this 

operation. For example, in a recent textbook for elementary school teachers (Sowder, 

Sowder, & Nickerson, 2010), the chapter on ―Understanding Whole Number 

Operations‖ has a list of ―Problem situations that call for multiplication‖ (p. 63). The 

―problem situations‖ in the list are named and described as ―ways of thinking about‖, 

―views,‖ or ―models‖ of multiplication or division. The categories are labelled as: 1. 

Repeated addition; 2. Area/array model; 3. Operator view, and 4. Fundamental 

counting principle. A mathematician may be baffled by the categories because some 

sentences in their descriptions look like definitions, some like computational 

procedures, and others like statements of problems. Some conditions appear 

unnecessary and some categories, redundant. This confusion is one of the 

consequences of a different understanding of the notion of ―model‖ by the two 

parties. An expression such as ―models of multiplication‖ used in reference to a 

―context that calls for multiplication‖ is surprising for the mathematician who would 

find it more natural to say, ―multiplication is a (mathematical) model for this 

context‖ than ―this context is a model for multiplication.‖ The mathematician looks 

at a problem situation and tries to find or construct a mathematical theory that would 

represent it. MKT works in the opposite direction: Given a piece of mathematical 
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theory (e.g., the operation of multiplication), look for situations that could be 

described using this piece of theory, so that, in teaching, the theory acquires some 

sense for the students, and which can be used to practice the theory and assess 

students‘ knowledge of it. MKT contains a categorization of situations that can be 

described using the piece of theory. The categorization then serves to design 

exercises, curricula, and textbooks.  

The existence of different ―models‖ for multiplication in MKT leads to more 

differences with the mathematician‘s mathematics. In particular, while for the 

mathematician, multiplication in real numbers is commutative, for MKT, it is not 

necessarily. It depends on the model of multiplication the class is presently working 

on. In the repeated addition model of multiplication, which applies to ―problem 

situations‖, where one has to find ―the sum when a whole number of like quantities is 

combined‖ (Sowder et al., 2010, p. 59), in the US textbooks for children, an 

expression such as 2 x 3 means 3 + 3 , and not 2 + 2 + 2. The first number is 

understood as the multiplier; the second – as the quantity multiplied. From the point 

of view of this model, the expression 2.5 x 3 ―cannot be interpreted‖ (ibid.)  

The Reflection on teacher preparation component has no counterparts in Ball‘s 

model, but we had to add it to the aspects we looked at in the courses because it 

played an important part in some of them. When Aone and Athree were starting to 

develop their courses, Reflection could take the form of only an informal classroom 

discussion, but, over the years, it would gradually occupy a larger space. For about 3-

4 years now, Athree has not been preparing a detailed course syllabus before the 

course starts. He begins his course by developing the syllabus together with his 

students. He also designs the assignment and assessment techniques for the course 

with them. Athree claims that by devolving part of the responsibility for the course 

content to his students, they understand better the goals of the course and what is 

expected of them in the assignments. This was Athree‘s solution to the recurrent 

problem he faced in his courses of students asking him ―Why do we need to know all 

that?‖ and not producing what he expected in the assignments, despite increasingly 

detailed and lengthy instructions and explanations. Aone has not turned to such 

radical solutions, but she believes her students need a preview of the kind of 

knowledge she is going to give them a glimpse of in her TM course and that they 

will be responsible for developing later in their professional careers in schools. Thus 

for quite some years now, she would start her course with one long written 

assignment, where students are asked to reflect on what they think an elementary 

mathematics teacher should know, and then revisit their thoughts after reading an 

article on teacher knowledge (usually Ball, Hill, & Bass, 2005).   

We use the word Ideology in the sense of ―visionary theorizing‖ (see Endnote 1) . 

Some instructors promote a ―vision‖ of mathematics learning and teaching. This 

vision may or may not be explicitly linked to a theory, but it is not a theory. In a 

theory, statements about teaching and learning are hypotheses or results of empirical 
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research. An ideology makes statements about how teaching and learning should be. 

Thus, a theoretical statement such as, ―a child learns by adapting her cognitive 

structures to deal with problems arising in her own environment‖ may be turned, in 

an ideology, into ―an invitation to teach mathematics from a problem-solving 

perspective‖ (promoted, in particular, by the NCTM Standards), and ―placing the 

child in the centre‖, as in a textbook used, at the beginning of his work as a TM 

course instructor, by Athree:    

The vision of mathematics learning presented in this book places the student at its centre. 

The living context of each student is important to the learning scene and it is out of that 

culture that ideas for proposing mathematical problems should emerge. (Cathcart, Pothier, 

Vance, & Bezuk, 2000, p. xi)  

At the beginning of his career, Athree was strongly promoting ―constructivism‖ as 

the preferred vision of learning for teaching. In his second year of teaching, for 

example, students‘ responses to a task of planning a take-home mathematics teaching 

activity were evaluated based on, among a few other aspects, ―the extent to which 

your planning reflects consideration of constructivist learning theory‖ (Athree, 

Course Outline 2000). Now, he leaves his students the choice of the learning theory 

on which they want to build their own visions of teaching and learning, and even 

according to which they want to be assessed in the course. He expects them, 

however, to be conscious of the choice they make and aware of its consequences, and 

suggests relevant articles to read. However, there can be no escape from ideology in 

a TM course. If it is not explicit, it is conveyed by the instructor‘s choice of 

classroom activities and comments, however neutral he or she may try to appear. 

Education, in general, is value-laden.  

Course Differences: Weights and Content of Course Components 

Courses differ in the weight they assign to the content components. When we 

examined the evolution of a course developed by an instructor over a longer period 

of time, changes in the weight assigned to different components were one of the 

more salient observations. In the case of AU1 and AU3, we noticed a drastic change 

in the weight of MKT from very small in the first year to quite large in the second 

year. This was the result of the realization, by both instructors, that future elementary 

teachers know even less mathematics than they had been warned to expect, and TM 

instructors must review with them the most basic ideas.    

We measured the weight of a content component by analysing a sample of tasks 

instructors assigned the students: we looked at the content area of the knowledge 

each task called for and counted the relative frequency of tasks corresponding to the 

given content area. An example of such analysis will be given later. We considered 

this measure to adequately represent the weights of the components because there 

was usually very little lecturing in the courses. Classes were organized around 

―activities‖, which we were able to decompose into tasks.  
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With respect to course content components, the categories of MKT, TDA, PML, etc. 

are quite broad and their detailed content varies widely from one TM course to 

another. Even using the same textbook for elementary mathematics teachers, such as 

the quite popular textbook by Van de Walle (1998), does not guarantee many 

commonalities in the content of the courses. Some instructors choose to ―cover‖ all 

fundamental elementary mathematics topics; others pick only a few. Some insist on 

knowing the precise mathematical terminology and definitions for mathematical 

concepts; others are much more relaxed about it. Ms. West at AU3, in particular, 

would correct any student‘s departure from the conventional mathematical 

terminology. In the class we observed, a student called a regular hexagon, an 

―equilateral hexagon‖. She laughed at the expression, and corrected it: ―regular!‖. 

Professor Athree said that he would not correct this expression since it is quite 

logical: a generalization of the term ―equilateral triangle‖ to a hexagon with all sides 

equal.  

Some instructors insist also on knowing terminologies developed in mathematics 

education, educational psychology or cognitive psychology in relation with chosen 

theories and models of teaching and/or learning. We started calling these theories 

and models ―structuring frameworks‖. One of the frameworks is a repertoire of 

problem-solving strategies, included in all textbooks for elementary teachers we had 

a chance to look at. The textbook used by Professor Athree in the first few years of 

his teaching the TM course, for example, presented strategies such as ―Draw a 

picture or a diagram‖; ―Find a pattern‖; ―Solve a simpler problem‖, etc. (Cathcart, 

Pothier, Vance, & Bezuk, 2000). Professor Athree, however, did not require his 

students to know and use the exact names of these strategies. Professor Aone, on the 

other hand, does, and she tests her students on this knowledge. On a test, students 

may be given a solution of a problem and the question would be, ―Name the strategy 

used in solving the problem‖. At FU2 (and only at this university), the Piagetian 

theory of developmental stages was an important structuring framework. One of 

major assignments in the course was to design and implement a diagnostic interview 

with children between 4   and 12 years of age to assess their developmental stage in 

relation to a particular mathematical concept (number, chance, space). To prepare for 

this task, students had to read Copeland (1984, 1974) and Kamii (1985, 1989). 

The course at AU1 appeared to be the strictest in the use of structuring frameworks. 

In fact, at AU1, in the first TM course, there was at least one explicit structuring 

framework for each content area, and students had to know the categories well since 

they were used and required on tests and the written final examination. The MKT 

component of the first of the two TM courses contained the following structuring 

frameworks (and only those):  

 Mathematical principles of counting, based on Ginsburg (1989), e.g. ―One-to-one 

Principle‖ (each member of the set must be counted once and only once) 

 Place value and numeration systems, based on a chapter from Burris (2005) 
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 Arithmetic operations on whole numbers and their properties (Burris, 2005) 

 Types of problems involving each of the four arithmetic operations, based on 

Carpenter et al. (1999) – written from the perspective of Cognitively Guided 

Instruction (CGI). 

Structuring frameworks for the PML component were:  

 Psychological principles of counting, based on Ginsburg (1989); e.g. different 

results after having counted a set twice do not usually bother pre-schoolers; most 

pre-schoolers have difficulty touching each thing in a set once and only once when 

counting 

 General problem solving strategies, based on Reys et al. (2008) 

 Children‘s problem solving strategies, based on the CGI book by Carpenter et al. 

(1999) 

For TDA, the frameworks were: 

 Teaching counting based on mathematical and psychological counting principles 

(Ginsburg, 1989) 

 Flexible interviewing techniques, based on Ginsburg, Jacobs and Lopez (1998) 

 Effective learning environments, based on Hiebert et al. (1997). 

Hiebert et al. (1997) provided also a structuring framework for the Ideology 

component, and, as already mentioned, a structuring framework for the Reflection 

component was Ball et al.‘s (2005) model of mathematical knowledge for teaching.  

Tasks for future elementary mathematics teachers 

Tasks in mathematics teacher education have been at the centre of attention in the 

area for some years now. In 2007, the Journal of Mathematics Teacher Education 

produced a Special Issue on tasks in 2007 (Jaworski, 2007). A recent ICMI Study on 

mathematics teacher education was also interested in tasks (Clarke, Grevholm, & 

Millman, 2009). The question of such tasks has puzzled me for years, long before I 

embarked on this research, and the hope of getting some insight into those tasks was 

a great incentive to engage in it. What can future teachers be asked to do in a course 

besides solving mathematical problems? How can we ask them to do problems about 

the teaching of mathematics if they have never taught before, and particularly 

because TM courses are often given before they have their practicum? Aren‘t the 

problems of teaching mathematics always very deeply situated in the actual, day-to-

day practice of teaching?  

What can the TM instructor do to engage his or her students in tasks that are 

meaningful for teachers‘ work in the absence of real life elementary classroom 

experience?  

We saw several ways that instructors deal with this issue in the courses we observed: 
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 organizing authentic educational interactions with real children, with future 

teachers in the role of educators; e.g. tutors, animators of an extra-curricular 

activity, researchers;  

 simulating an elementary mathematics classroom with future teachers in the role of 

elementary school-children and the TM instructor as the teacher, or some TM 

students in the role of teachers and others in the role of their students;  

 engaging future teachers in a teacher‘s ―private‖ tasks, i.e. tasks that are mostly 

done outside of the classroom.  

We saw the ―authentic‖ technique applied at AU2 and FU2. One of the assignments 

at AU2 was for future teachers to do at least two weeks of volunteer tutoring in math 

in a community centre, where children came after school to get some help with their 

homework. Future teachers had to write a report about their experience as part of 

their coursework. Interviewing the future teachers after their volunteer tutoring, we 

were amazed at how enthusiastic they were about the tutoring experience, even those 

who were extremely critical about the TM course in all our previous interviews. 

Those future teachers, who up to that point had talked only of how miserable and 

unsure they were about being able to pass the exam in the TM course, suddenly 

started talking from the position of teachers concerned about children‘s difficulties in 

math and the challenge of helping them. This was difficult for them, and yet they 

were saying they ―had a wonderful time‖.    

At FU2, future teachers had to interact with real children in two assignments. One of 

the assignments was the Piagetian diagnostic interview task already mentioned 

above. The other, was an ―enrichment project‖. Students had to invent problems for a 

―math trail‖ activity to be run in one of the buildings of the university, and then 

actually organize the event in collaboration with a school and animate it, 

accompanying the children along the trail. The math problems had to deal with 

objects actually found in the building. They were therefore intended to be 

―situational‖ or contextual problems, whose importance is stressed in Canadian 

mathematics curricula at both the elementary and secondary levels (see, e.g. 

Ministère de l'Education, des Loisirs et du Sport, Gouvernement de Québec, n.d., or 

New Brunswick, Department of Education, Curriculum Development Branch, 2011). 

All the activities mentioned here as examples of the ―authentic‖ technique are 

authentic teaching tasks only in the sense that they involve real children. They do not 

belong to an ordinary teacher‘s day-to-day practice.         

The ―simulation‖ technique with future teachers playing the part of elementary 

school children solving mathematical problems was used to some extent in all 

courses. In particular, in the first TM course at AU2, future teachers spent most of 

the time in a ―lab‖, solving, in small groups, problems that could be given to 

elementary school children (although they were perhaps more ―fun‖ and involved the 

use of a much greater variety of manipulatives and hands-on activities than is 
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common in most schools). The lab was intended to provide future teachers with an 

experience of a model learning environment for teaching mathematics in elementary 

school. There was no instructor-guided reflection on those activities from the point 

of view of a teacher at AU2, however. Such reflection was attempted in all the other 

courses, with greater or lesser use of the structuring frameworks. I give an example 

from Ms. West‘s class at AU3.  

In one of the activities we observed in Ms. West‘s class, students were given a bagful 

of shapes, cut out by Ms. West herself, from a plastic foam sheet. The shapes were of 

a large variety of kinds, not only those with known names such as circles, squares, 

triangles and rectangles; some looked like apples, others like eyes; there were 

concave shapes, convex shapes, rectilinear shapes, curvilinear shapes, etc. The task 

for students was the following: ―The group chooses one shape and places it at the 

centre of the table. One person chooses a shape that is like the shape in the centre, 

and explains how it is alike. The rest of the people at the table must choose shapes 

that have the same properties.‖ The task‘s name was ―The sorting task‖. After 15 

minutes, Ms. West asked the students: ―What is the purpose of this activity?‖ 

Students would venture some one-word responses, sounding tentative. I overheard, 

―Categories?‖ This was obviously not what Ms. West expected; so, without making 

any comments about these responses, she asked a question that indicated better her 

expectations: ―What does it tell me about the children?‖ I hear a student responding, 

again with hesitation in her voice: ―How they think?‖ Now Ms. West looked more 

satisfied, but she felt obliged to make explicit her expected answer herself: ―It is an 

informal assessment of their van Hiele level of understanding. At Level 0, a student 

would say, ‗it is a triangle because it looks like a triangle‘. At level 1, the student 

would say, ‗it is a triangle because it has three sides‘.‖ In Ms. West‘s class, the 

simulation phase of an activity always dealt with the MKT content area (students 

were learning elementary school mathematics); the reflection phase, in this example, 

brought up PML content: the van Hiele model of understanding in geometry.  

This technique was also used by Athree, who, in a discussion about Ms. West‘s class, 

said: 

Something I would do exactly the same [as Ms. West], I think, is this operating on two 

levels simultaneously. I am teaching mathematics and I am teaching elementary school 

mathematics because they don‘t know it. And I am trying to teach it that way that I would 

like for them to be teaching it because I think that that is the most effective way to be 

teaching it. And that I can simultaneously comment on that as I go along. Whether that 

shifting of levels is in fact something the students are comfortable with and can follow, 

whether they can reflect on their activity while they are engaged in that activity, is … 

Somebody could do some research on that. (Athree, interview) 

In yet another type of simulation, Athree engaged his students in co-teaching with 

him. The technique was also used by Efune. Athree used it for several years in his 
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TM courses in a task called ―Teachers of the week‖. The task was formulated as 

follows:  

You and your teaching group will share responsibility (with the instructor) for the 

teaching of one component of one class. Prior to the class you will meet with the 

instructor to plan the lesson for that week…. All classes will conclude with a 20 minute 

discussion of the class: how it was taught, usefulness of the content, etc…. 

The ―lesson‖ would consist of an activity to be done in small groups.  Members of 

the teachers of the week group would present the activity, distribute any handouts, if 

needed, and then circulate among the tables, interacting with students, giving hints or 

prompts to reflect; the lesson would close with a plenary discussion of the results of 

the activity. Athree used this technique for a couple of years and then abandoned it.  

He said it was taking up a lot of his and his students‘ time, and it was not obvious the 

students were gaining much from this experience for their future teaching in schools.  

Tasks related to the teacher‘s ―private‖ activities were common in the courses.  

In particular, at AU1, there were no other tasks. The closest the future teachers were 

brought into contact with the reality of teaching was through watching and analyzing 

videos of teachers in the classroom and children solving problems [examples of 

videos used at AU1 can be viewed at the website of Annenberg Media (1997, 2000); 

videos of children solving problems were taken from the DVD accompanying the 

CGI publication by Carpenter et al. (1999)].  

The private tasks technique might seem a rather poor substitute for real life 

experience of teaching. Yet the following tasks on which Ball‘s (2008) model of 

mathematical knowledge for teaching is built could be, in principle, engaged with 

outside of direct interactions with children: 1. do the mathematical work that the 

teacher assigns to students;  2. plan the teaching of a thematic unit and each of its 

lessons; 3. explain a mathematical idea, concept or procedure in a manner 

appropriate to a given educational level and curricular context; 4. design questions, 

exercises and problems for various purposes; 5. design own teaching materials, 

which involves choosing or developing appropriate representations; 6. evaluate 

teaching materials designed by others (in particular, textbook materials); 7. assess 

students‘ learning and understanding of mathematics not only in terms of 

correct/incorrect but also in terms of identifying mathematical sources of students‘ 

errors (as opposed to psychological sources, such as lack of attention); 8. find a way 

to help a student to correct an error he or she does in a systematic way; 9. find some 

―strategic examples‖ and /or representations to highlight a feature misunderstood by 

the student.  

Therefore, the private tasks seem important to mathematics teacher educators, not as 

a substitute for real teaching, but on their own merits. Future teachers do not always 

appreciate the relevance of these tasks for teaching practice, however. We heard 

criticisms pointing in this direction from students in all universities. Admittedly, if 
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done outside of the school context, tasks 1-9 are not authentic. Instructors only take 

students through a ―dry run‖ of such tasks, without the prospect of implementing the 

results of the private work in the public arena of classroom teaching. The tasks are 

imposed by the instructor of the TM course rather than arising naturally from 

interactions with children and colleagues. 

If TM courses cannot engage students with knowledge that a practitioner actually 

uses in teaching, with what kind of knowledge do future teachers engage in those 

courses?  

To obtain a deeper insight into the ‗epistemic nature‘ of knowledge that tasks in the 

TM courses called for, we needed to analyze them in more detail. The idea was to 

select a sample of tasks in a TM course, examine the actions related to mathematical 

or teaching practices that were involved in solving each task, and then calculate the 

distribution of the actions. This method is similar to that used by Sánchez and García 

(2009) in their analysis of tasks in TM courses. These authors used a grid of analysis 

that identified elements related to, on the one hand, ―mathematical practices‖ 

(defining, justifying, modelling, symbolizing, etc.), and, on the other, ―mathematics 

teacher‘s systems of activity‖ (e.g., the organization of the mathematical content for 

teaching; management of the mathematical contents and discourse in the classroom; 

analysis and interpretation of students‘ mathematical thinking, which correspond to 

some of the private teacher tasks we enumerated above).  

To derive some information about the nature of actions involved in solving each 

task, we needed a way to analyze each task in detail. We decided to use the 

praxeology framework developed by Chevallard in his Anthropological Theory of 

the Didactic (1999). Praxeology models a practice by the tasks it sets out to 

accomplish; the techniques normally used to accomplish the tasks; and two levels of 

discourse, one developed to objectify, communicate, and justify the techniques 

(―technology‖), and the other, to justify the choice of the technology as one 

theoretical choice among others (―theory‖). Based on this framework, we used a grid 

of analysis made of the following rubrics: Task, Content Area addressed in the task 

(MKT, PML, TDA, etc.); Technique; Technology; Theory; Type of Action 

(epistemic, pragmatic, mathematical, didactic, sub-type of such action, etc.). We also 

identified the institutional status of the task (e.g., small group activity in class; quiz 

question; midterm examination question; final examination question; take-home 

project). Below are a few examples of tasks, and Table 1 illustrates how these tasks 

were coded. 

Task 1. (AU1, Quiz question) True or false? Justify. Statement: ―Children must grasp the 

One-to-one Principle before they can effectively apply the Stable Order Principle‖ 

Task 2. (AU1, Final examination question) Name the problem type: ―Martha has 12 Polly 

dolls. She has 5 more Polly dolls than Sam. How many dolls Sam has?‖ (Expected 

answer: Addition-subtraction problem / Compare problem / Compared set unknown) 
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Task 3. (AU1, Final examination question) ―When we use the standard algorithm to 

compute 454 x  3, we write the following [3 is written below 454; a horizontal line below 

3, sign of multiplication on the left of 3, 1362 below the line; small 1 above the leftmost 4 

and small 1 above the 5 in 454]. Show how you would model this computation with Base 

10 blocks. Make sure to be careful to explicitly point out the connection between the little 

‗1‘s in the algorithm and your manipulations with the blocks.‖ 

Task 4. (AU3, Mrs. West, in-class activity) ―Van Hiele Guided exploration of a square‖. 

Envelopes with squares of different sizes are distributed, one envelope per table. Each 

student takes one square. Ms. West: ―Jot on a piece of paper everything you know about a 

square‖. When students finished writing, Ms. West gives further instructions, and asks 

consecutive questions to guide students in their exploration; she either repeats a student‘s 

answer that she approves of, or states the expected answer herself: ―Draw a line 

underneath your writing. (…) We are now going to be generating a vocabulary. (…) Fold 

your square on one diagonal. Underline ‗diagonal‘. What do you get? (…) What happens 

when you fold the square along a diagonal? The diagonal is…? (…) The diagonal‘s a line 

of symmetry (…) We are building our knowledge about the square. What does the 

diagonal do to the angle? (…)  What‘s the word for it? Bisects. The diagonal is bisecting 

the angle. Now fold the square on the other diagonal. Measure your diagonals with a 

ruler. (…)‖. At the end of the activity, students are asked to fill out a table with names of 

shapes (Square, Rectangle, Rhombus, Parallelogram, Trapezoid, Kite) as headings of the 

columns, and a selection of properties as headings of the rows: Number of pairs of 

congruent sides; Number of pairs of parallel sides; Diagonals are congruent (Y/N); 

Diagonals bisect each other (Y/N); Has half-turn symmetry (Y/N); Number of lines of 

reflective symmetry.  

Task Content 

area 

Technique  Technology  Theory Type of action 

Task 1, 

True/False, 

Justify, statement 

about counting 

principles (AU1, 

Quiz) 

PML Recall the meaning 

of technical terms, 

figure out relations 

between them 

Mathematical and 

Psychological 

Counting Principles; 

empirical cases of 

children‘s behaviour 

(Ginsburg) 

No theory: 

Ginsburg‘s 

―Psychological 

Counting 

Principles‖ treated 

as facts, not 

theoretical and 

hence hypothetical 

knowledge. 

Epistemic 

actions: Reason 

based on recalled 

definitions of 

technical terms 

and knowledge of 

empirical facts  

Task 2, Name the 

type of problem 

(AU1, Final 

exam) 

MKT Recall the list of 

categories of types 

of problems; 

identify the category 

that fits the example 

Classification of 

addition / subtraction 

problems according 

to Carpenter et al. 

(CGI) 

No theory: CGI 

categories treated 

as facts, not 

theoretical 

knowledge 

Epistemic action: 

Identify an object 

(i.e. recognize it 

and name) 

Task 3, Explain a 

standard 

algorithm (AU1, 

Final exam) 

TDA Use Base 10 blocs 

to model regrouping  

Base 10 blocs, the 

notion of regrouping 

in positional 

numeration systems 

No formal theory Epistemic action: 

Represent a 

mathematical 

operation using 

material objects 

Task 4, Van 

Hiele Guided 

MKT  Recall and 

recognize properties 

Properties of 

polygons; concepts of 

No theory. 

Euclidean 

Epistemic 

actions: identify 
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exploration 

(AU3, Ms. West) 

of the square and 

other polygons 

diagonal, angle, 

bisecting segments, 

perpendicular, 

parallel, half-turn 

symmetry, reflective 

symmetry  

geometry treated as 

empirical 

knowledge about 

idealization of 

material objects 

properties of 

classes of shapes 

(functioning at 

the van Hiele 

level of 

―Analysis‖) 

Table 1. Examples of our coding of tasks used in the TM courses. 

Some examples of results of our detailed analysis of tasks 

In Ms. West‘s 3-hour class on geometry, future teachers were engaged in 23 tasks in 

the first 2 hours of the class. Of these, 13 tasks focused on MKT; 4 tasks (short 

questions asked by Ms. West in the ‗reflection‘ phase of each activity) focused on 

TDA only; 2 tasks on PML only; and 4 tasks included both a TDA and PML 

reflection. In the MKT tasks, the techniques expected and/or hinted at were to 

represent a mathematical situation with material objects; observe; experiment; state 

one‘s observations; and use known mathematical ‗facts‘ to derive new information 

about the properties of the studied objects. The ‗technology‘ part of the praxeology 

consisted of mathematical terminology (restricted in this class to names of geometric 

shapes); properties such as ‗the sum of angles in a triangle is 180 degrees‘, or ‗angles 

at vertices in a regular polygon are congruent‘. These properties were treated as 

‗facts‘, not as hypothetical, theoretical activities. The level of geometric thinking 

expected of students did not go beyond the van Hiele level of ―Analysis‖ and never 

touched upon the levels of Abstraction, Deduction and Rigor. In tasks related to 

TDA and/or PML, the techniques consisted mostly in recalling didactic or 

psychological principles and guessing which one the teacher had intended to 

illustrate with the mathematical activity she proposed in the simulation phase. 

Technology in both TDA and PML areas was restricted to a loose collection of 

‗principles‘ such as, in TDA, ―always relate the math to the real world‖; ―use varied 

examples so as not to instructionally disable the children‖, or, in PML, ―children 

build categories based on typical examples, not definitions‖; ―recognizing is easier 

than naming‖. The van Hiele model was expected to be known to the future teachers, 

but, in the class, they were only expected to recognize its application in Ms. West‘s 

organization of the activities. They might, if they chose to, use it themselves in 

planning a geometric activity intended for children, when doing the homework 

assignment titled ‗Unit plan‘. There were no written limited-time tests or 

examinations in the TM courses at AU3.  

There were such tests in all other universities. In the first of Aone‘s two TM courses, 

there was a 30-minute Quiz, a 2-hour midterm test, and a 3-hour final examination. 

We analyzed the 51 tasks involved in all these three examinations and the 

―Reflection‖ assignment given at the beginning of the course, where students had to 

read Ball et al.‘s paper on mathematical knowledge for teaching. In the Fall 2010 

version of the course, the distribution of the tasks among the content areas of MKT, 



Plenary lecture  

CERME 7 (2011) 23 

 

PML, TDA and Reflection was 17, 17, 11 and 6 respectively. In the first year of 

Aone‘s teaching, MKT tasks held a much smaller weight.  

The techniques expected to be used in these tasks (but not explicitly taught) could be 

described as: use a checklist; recall a definition; apply principles or properties; and 

use common sense to find relations. The technology made available to students was 

very elaborate: it was made of the many structuring frameworks mentioned above. 

The frameworks were not presented as results of theoretical choices, rather, they 

started from explicit assumptions about mathematics, didactics and psychology of 

mathematical learning.  

Examining the actions involved in tasks belonging to each content area, we could 

identify the following types:   

MKT: Produce, discuss, assess a representation of a number; Assess the use of a standard 

algorithm; Identify the property of an operation used in solving a problem; Identify the 

type of problem; Identify the category of a mathematical object; Solve an elementary 

school mathematics problem. 

PML: Identity the child‘s strategy in solving a problem; Name the advantages of a 

strategy used in the solution of a problem; Produce an example of use of a strategy; 

Model and assess a child‘s solution in a more formal mathematical symbolism; Find 

relations among the principles of counting and research findings; Discuss the relative 

difficulty of one problem over another. 

TDA: Identify the didactic objective of a task; Produce a problem of a given type; 

Describe a didactic action of a given type; Explain a standard algorithm to (hypothetical) 

children of a given age; Assess a teacher‘s didactic actions (observed in a video or 

described in words); Assess the counting skills of a child (observed in a video or 

described in words). 

Reflection: Express your beliefs about (a) the reasons why knowing mathematics is 

important for an elementary mathematics teacher; (b) ways a good teacher uses 

mathematics in the classroom; Read a research article; Identify a new kind of knowledge, 

namely the mathematical knowledge for teaching, and distinguish it from the ‗plain old 

math‘.  

In 18 out of the 51 tasks (7 in MKT, 7 in PML, 2 in TDA and 2 in Reflection tasks), 

students were required to justify their answers. Taking this into account, abstracting 

from the content areas and generalizing the actions involved in the types of tasks, we 

found the following distribution of actions among the 51 tasks: Justify (18 tasks); 

Identify the type of an object (17); Produce an example of a type of object (9); 

Discuss / reflect on (8); Assess correctness of (7); Model child‘s work (3); Solve a 

mathematical problem (2); Find relations among mathematical statements (2); 

Explain something to a hypothetical child (2); Explain the sources of a mistake (1).  

Solving a mathematical problem was given little weight in Aone‘s written tests: only 

two out of the 51 tasks required this action. Problem solving was given more space 
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in the class sessions, where students sometimes spent almost 2 hours on solving 

mathematical problems, e.g. an ―Adventures of Jasper Woodbury‖ series problem 

(Cognition and Technology Group at Vanderbilt, 1997). Students were not tested on 

solving school mathematics problems, however. Aone believes that, if they were, 

most would probably fail the course.  

As we can see from the distribution, the action of ―Identifying‖ (i.e. recognizing and 

naming) was very frequently expected in the examination tasks in Aone‘s course. 

This action is not usually ranked high on a ladder of levels of thinking. In particular, 

it belongs to the lowest level of ―Visualization‖ in the van Hiele model. Ms. West 

also insisted on the action of identifying, mainly mathematical objects: in the 

geometry class, she expected future teachers to recognize geometric shapes and name 

them correctly. Athree, on the other hand, said he had no use for identify tasks in his 

courses. He would not insist on strict observation of institutionalized terminologies 

for mathematical objects and he did not teach classifications of types of problems or 

problem solving strategies. He said his students were free to communicate their 

reasoning using a mixture of ―official‖ terms and ad hoc names and representations.  

Athree insists on reasoning. So does Aone, with the stress on the action of justifying 

in her examination tasks. The justification is expected to be systemic, i.e. based on a 

system of concepts, properties and principles from the areas of MKT, TDA and 

PML. It was also written. The systemic and written character of Aone‘s justification 

tasks contrasts with such tasks in Ms. West‘s course, where students were asked to 

justify their claims, but they could do so only if they wanted (questions were asked to 

the whole class and only some students responded to them) and they could do so 

orally, without having to use complete sentences organized into a consistent 

discourse. Aone aims at teaching her students systemic knowledge. Ms. West is 

teaching her students that there exists a systemic knowledge out there, but she is not 

making it necessary for them to engage in using this knowledge in their own 

thinking.   

Formats of interaction 

Looking at actions involved in tasks was one source of our reflection on the 

epistemic nature of knowledge emerging in the TM courses. Modeling formats of 

interaction between the instructor and the future teachers were another. As 

mentioned, Ms. West interacted with future teachers on two levels: as a model 

elementary school teacher with her students (with future teachers in the role of 

students), and as a teacher educator. Each episode related to one mathematical 

problem concludes with a presentation of one or more solutions that Ms. West 

considers correct. We could say that there were three main formats of interaction in 

her classroom: the ‗Pretend-we-are-in-an-elementary-classroom‘ format, the 

‗Guided-reflection-on-the-math-activity‘ format, and the ‗Here-are-the-correct-

solutions‘ format.  
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In Aone‘s class, we could identify two main formats: ‗Make-a-mess-clean-it-up‘ 

used during the phase of small group work, and ‗Interactive-lecture‘ used during the 

whole class discussion phase. In the ‗Make-a-mess-clean-it-up‘ interactions, Aone 

provokes cognitive conflicts in her students to make them aware of what they don‘t 

know. She uses the structuring frameworks made explicit in her course to help 

students resolve the conflicts and learn more content, or see connections among 

pieces of content. She provokes her students to pose ―why?‖ questions and uses this 

as an opportunity to teach the fundamental concepts of the structuring frameworks.  

Based on the interview with Athree, we could infer that he was fond of what we 

labelled as ‗Keep-thinking‘, and ‗That‘s-an-interesting-question‘ formats. When, 

after a phase of small group work on a mathematical problem, a student asks him, 

―But what‘s the answer, sir?‖, Athree‘s answer is ―Keep thinking‖. Athree collects, 

compares and discusses his students‘ solutions, but does not tell them whose answer 

is correct or what the correct answer is. In the interview, Athree said:  

I have absolutely no problem with leaving a problem without an answer. … Usually, the 

main reason why I am interested in the problem is to talk about the process. And usually 

you talk about the process without ever coming to an end. It‘s really not my goal in the 

course that they know the answer to a particular problem. (Athree, interview) 

When he was asked, in the interview, if he would revisit the problem more formally 

later, he said, ‗No‘. When asked then, ‗Suppose students are adding fractions by 

adding numerators, and adding the denominators? Would you still not react?‘, he 

said: 

Well, in that case I would probably take it as an opportunity to say that there are several 

ways of adding fractions. They are appropriate in different contexts. It depends if you are 

adding parts of the same whole or parts of different wholes. (Athree, interview) 

The ‗That‘s-an-interesting-question‘ format was identified based on the following 

Athree‘s description of his seemingly disorganized way of teaching, which 

exasperated his students, and was one of the reasons why they liked Ms. West‘s way 

of teaching better: 

Part of my teaching is that if an opportunity comes up, some abstraction in a weird and 

wonderful way, then, oh! Okay, the topic for today was supposed to be 3D geometry, but 

forget about that, we are doing fractions instead. (Athree, interview) 

Based on this kind of analyses of the instructors‘ interactions with future teachers, 

and the actions involved in the tasks, we can say that there were at least these types 

of knowledge emerging in the TM courses:  

Craft knowledge: knowing how to accomplish a type of task (Grimmett & 

MacKinnon, 1992); (Hiebert, Gallimore, & Stigler, 2002); in Chevallard‘s 

praxeology terms, this knowledge refers to the practical block: task + technique.  
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Téchnê, in Aristotle‘s sense of craft knowledge grounded in theoretical 

understanding [see Metaphysics, Book I, Part 1 (Aristotle, written 350 B.C.)]; in 

Chevallard‘s terms, this knowledge corresponds to task + technique + technology, or 

to knowing how to accomplish a task and knowing to justify the technique using a 

system of concepts and principles.  

Craft knowledge with a theoretical attitude: knowing how to accomplish a type of 

task, knowing that there probably exist other ways, and that any justification of the 

solution is hypothetical, not certain. This type of knowledge is not easily described 

in terms of praxeology, although perhaps the closest would be: task + technique + 

theory-awareness.  

Ms. West appeared to aim mainly at some limited Craft knowledge: knowing how to 

solve elementary mathematics problems and knowing how to set up a classroom 

activity to teach a given topic at a given grade level. This is, of course, a very limited 

portion of what teachers‘ craft knowledge may become after several years of practice 

(Grimmett & MacKinnon, 1992).  

Aone aimed at Téchnê, also limited to certain teacher‘s ―private‖ tasks: knowing how 

to choose tasks or sequences of tasks for different teaching and learning purposes 

and evaluate children‘s reactions to them, based on ―structuring frameworks‖ such as 

knowledge of types of tasks, typical children‘s mistakes and strategies, or 

characteristics of effective learning environments.  

Athree seemed to aim at Craft knowledge with a theoretical attitude. In Athree‘s 

course, no technology or theory was explicitly and systematically taught. However, 

mathematical concepts were not treated as facts but as theoretical, hypothetical 

entities. Didactic decisions were not justified by didactic or psychological principles 

accepted as true. They were based on experience and hypothetical thinking; e.g. ‗If 

we choose to do X, what could be the consequences for achieving our assumed goals 

Y and Z, according to our past experience?‘ Future teachers were expected to gain 

this experience by planning lessons, implementing their plans in simulated teaching 

activities with their peers as students, reflecting on the implementation and having 

their teaching evaluated by others. Since 2008, Athree engaged his students in co-

designing the whole TM course with him.  

Interviews with students 

As researchers and theoreticians we may value Téchnê and the Craft knowledge with 

theoretical attitude higher than Craft knowledge, especially if the latter is focused on 

only one component of the knowledge we think is absolutely necessary for teaching. 

But Ms. West‘s students were considerably more satisfied than Athree‘s students, 

and happier than Aone‘s students. Ms. West‘s students said in an interview: 

She gives such … great ideas and examples of how to get that across to students. (…) 

And her love of math really comes through, too. Which makes us want to love math, too. 
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(…) You go into every class excited. There‘s something new going on and there‘s always 

fun things to do and you don‘t realize that you actually are learning. 

Athree had an explanation why future teachers like Ms. West better: ―They like her 

better, because she is energetic, well-organized, and positive, while I am perceived as 

phlegmatic, disorganized and cynical‖.  

Will Ms. West‘s students be happy also when they start teaching? They feel 

confident. They love math. They‘ve seen a model of teaching that they find 

attractive, exciting even. They do not feel the pressure to be at the forefront of a 

―constructivist revolution‖ when they start teaching. Did Ms. West‘s students 

express any fears? Yes, they did. They were afraid of not being able to deal with the 

noisy reality of the elementary classroom; they were being acquainted with the 

―normal‖ curriculum, but not prepared to adapt it to special cases: e.g., to ―special 

needs‖ children. But they voiced these fears only when prompted to say what they 

did not like about the course. And after responding, they still said, ―Given the time 

allotted to the course, it is relatively perfect‖.  

Yet, when we interviewed the other instructors, asking them, if this is what makes 

future teachers happy, whether they would teach like Ms. West, they all said No. A 

large variety of reasons was quoted, but the most common was that there was no 

guarantee that Ms. West was achieving even the limited Craft knowledge she was 

aiming at, since this knowledge was never debated, put to the test, or even 

confronted with alternative ways of knowing and doing things.     

DISCUSSION AND CONCLUSIONS 

The idea of constructing a knowledge base for teaching was advocated by Shulman 

(1986, 1987), and adapted for teaching mathematics by Ball (2008). In the Abstract, 

we suggested that the same idea could be applied to teaching future elementary 

school teachers, and that contribution to the construction of a knowledge base for 

teacher educators is the goal of our research on TM courses.   

Not all researchers on teacher education would agree with this statement. The very 

idea of a ―knowledge base for teaching‖ has been strongly criticized, particularly by 

researchers working in Schôn‘s tradition of ―the reflective practitioner‖ (Schôn, 

1987). It has been criticized for promoting the ―theory-into-practice‖ approach to 

teacher education, based on the ―epistemology of propositional knowledge… 

predicated on the assumption that teacher candidates are novice consumers, not 

expert producers, of knowledge‖ (Cochran-Smith & Lytle, 1999, quoted in Bullock, 

2011, p. 26). Critics claim that ―theory‖ in the ―theory-into-practice‖ approach to 

teacher education refers to a mere ―rhetoric of conclusions‖ (a phrase coined by 

Schwab, 1971, quoted by Clandinin & Connelly, 1995, p. 9), or ―codified outcomes 

of inquiry‖ stripped of their origins in the inquiry process, and ―packaged for 

teachers in textbooks, curriculum materials, and professional-development 

workshops‖ (ibid.). 
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This knowledge seems to correspond to the ―technology‖ component in Chevallard‘s 

praxeology model: it is technology without theory. Aone‘s structuring frameworks 

such as ―Effective learning environments‖, ―Psychological Principles of Counting‖ 

etc., presented in her course without the stories of the research processes that led to 

their formulation as plausible hypotheses based on explicit assumptions, would be 

examples of such ―rhetoric of conclusions‖. But Aone did not teach her students the 

technology only. She taught her students a praxeology of which the technology was 

one of the elements: she aimed at téchnê. Bullock‘s description of teacher education 

programs based on ―purely propositional approach to understanding how teacher 

candidates construct professional knowledge‖ which he claims is underlying 

Shulman‘s model (2011, pp. 26-7) is a caricature that distorts and hides the 

complexity of the knowledge that emerges in Aone‘s course, and probably in any TM 

course: 

Teacher education programs usually require teacher candidates to complete a certain 

amount of coursework before having a practicum experience. The assumption 

underpinning this design is that coursework can begin to transmit the knowledge base for 

teaching to teacher candidates. The practicum experience is then an opportunity for 

teacher candidates to practice applying the knowledge gained from both undergraduate 

course work (subject matter knowledge) and professional studies courses (pedagogical 

content knowledge). (Bullock, 2011, pp. 26-7) (my emphasis) 

The knowledge base for teaching TM courses need not be reduced to a technology 

abstracted from the praxeology within which it was constructed. Nor need it be 

transmitted by means of ―rhetoric of conclusions‖ in a crash course for newly hired 

faculty expected to teach such courses at the university. There is no risk of this 

happening any time soon, anyway, because a body of ―codified outcomes of inquiry‖ 

on TM courses does not exist. All we have, so far, are stories of individual TM 

instructors‘ experience, and information about the various organizations of teacher 

preparation programs around the world. Stories of TM instructors‘ professional 

experience, somewhat structured and interpreted using a network of metaphors or 

other tools for noticing, recognizing and naming phenomena in teaching/learning 

situations, would be a research outcome quite in line with Schôn‘s tradition, and 

would satisfy such vehement opponents of Shulman‘s take on teacher education as 

Connelly and Clandinin (1995, 1996) or Bullock (2011).   

That is what we could do in our research and stop there. I am not sure we would be 

satisfied with it, however. We think it would be useful for a TM instructor to know 

not only what choices other TM have made in designing their courses but also why 

and what consequences a given choice is likely to have for his or her goals in the 

course (e.g., the kind of knowledge he or she would like to see emerge in the course). 

We also believe that TM instructors have good reasons to ask themselves questions 

such as ―What is known about effective teaching? What do teachers know? What 

knowledge is essential for teaching? Who produces knowledge about teaching?‖ TM 
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instructors ask these questions because they have a course to design and run, and the 

responsibility of assessing, at the end of it, that certified teachers coming out of the 

program will not have to be too ashamed of themselves in front of their students 

when they start teaching mathematics. Yet, these questions have been quoted by 

Clandinin and Connelly (1996, p. 24) as not the type of questions that they, working 

in the ―narrative tradition of describing and interpreting teachers‘ professional 

knowledge‖, would ask to obtain ―valid, reliable knowledge… making possible 

better educated teachers‖ (ibid.). 

Thus our goals put us on an epistemological position that is contradictory with the 

narrative tradition. In Fernstermacher‘s terms, our position is grounded in ―the 

epistemic status sense of knowledge‖, whereas the narrative tradition understands 

knowledge in the ―grouping [categorical] sense‖, meaning that the professional 

knowledge of teachers is produced ―in the course of acting on experience… 

generat[ing] ideas, conceptions, images or perspectives when performing as 

teachers‖ (Fernstermacher, 1994, p. 31).  

TM instructors appreciate the value of knowledge in the grouping sense, and we 

have seen how they have tried to provide future teachers with at least a substitute of 

the authentic teaching experience. Some of them would welcome the possibility of 

combining their courses with the practicum, thus getting a chance to engage future 

teachers more with experiential knowledge. But they have no influence over the 

organization of the teacher education programs of which TM courses constitute a 

minuscule part (6 to 12 credits out of 120). There is no guarantee that a teacher 

candidate will even have a chance to teach mathematics during the practicum, since 

they are being trained to be ―generalists‖, not mathematics specialists. All the 

instructor can do is engage future teachers in ―reflection-BEFORE-action‖ (rather 

than ―reflection-in-action‖, (Schôn, 1987)). I mentioned several techniques the 

instructors use in their courses to obtain this engagement, without putting students in 

real-life educational interactions with children. One was watching videos of 

classrooms and commenting or analyzing didactic and mathematical behaviors of the 

actors. There are other ways, of course. Videos of live teacher-student interactions in 

real classrooms can be replaced by animated movies of classroom interactions 

(Chazan & Herbst, 2011). Reading and reflecting on narratives of individuals‘ 

practicum experience or practicing teachers‘ narratives such as found in Clandinin 

and Connelly (1995) could be another technique.  

In the just cited book, the narratives are analyzed and commented upon by the 

authors through the lens of a definite structuring framework – the framework of 

teachers‘ professional knowledge landscapes – which, if used in a TM course, would 

probably be ―transmitted‖ as a ―technology without theory‖ condemned by Schwab 

(1971) as ―rhetoric of conclusions‖. Narrative approaches thus do not eliminate 

propositional knowledge. I don‘t see how one could avoid presenting future teachers 

with unquestioned frameworks if one wants them to notice certain things in a 
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narrative. Future teachers have no personal experience of teaching with which these 

representations of practice could resonate. The instructor can only hint at the 

hypothetical character of the frameworks but may find it inappropriate to embed 

them in long-winded stories of processes of inquiry leading to them. TM instructors 

have varying reasons for avoiding narrative engagements, such as a lack of time or, 

like Aone, the fear of confusing future elementary teachers, who are notoriously very 

unsure about their knowledge (Marchand, 2010)).  

Therefore, the landscape – to use Connelly and Clandinin‘s metaphor – of TM 

instructors‘ professional knowledge is constrained so that it is difficult, if not 

impossible, to totally avoid a transmission of propositional knowledge.  

On the plane of research on TM‘s instructors‘ professional knowledge, therefore, it is 

also difficult to avoid asking how this knowledge addresses the four fundamental 

questions that the narrative tradition has issue with. As already mentioned, we do not 

think it would be enough to recount – as I have mostly done in this talk – individual 

TM instructors‘ stories about their struggle with these questions, noticing similarities 

and differences and grouping tasks into types and epistemic actions. We would like 

to obtain more knowledge in the epistemic sense about TM instructors‘ practices. 

This would require an effort of ―instrumented synthesis‖ of individual instructors‘ 

stories, but, at this point of our research, we do not know what the instrument we are 

looking for could look like. We don‘t think there are any ready-made answers to our 

problem. We have to keep thinking. 
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In this paper, I will review the development of research on affect in mathematics 

education since 1990s and forecast some directions for future development. One 

trend of development has been the elaboration of the theoretical foundation for 

affect. I will suggest that a useful description of the affective domain can be based on 

distinctions on three dimensions: 1) cognitive, motivational and emotional aspects of 

the affect, 2) rapidly changing affective states vs. relatively stable affective traits, 

and 3) the social, the psychological and the physiological nature of affect. Another 

direction of development has been to explore the structural nature of affect 

empirically. I will review some instruments that have been developed to measure 

different dimensions of beliefs, motivation and emotional traits. Moreover, I will 

look at some empirical results concerning how the different dimensions are related 

to each other and how they develop over time. 

INTRODUCTION 

Mathematics is typically considered as the most objective and logical of academic 

disciplines. Yet, emotions, attitudes and motivation play an important role in 

contemporary research on mathematics education. From a practical perspective, 

mathematics-related attitudes and motivation are perhaps the most important 

determinants of mathematics attainment, because they determine how much people 

choose to study mathematics after it becomes optional. Compared with motivation to 

study mathematics, it is irrelevant how talented the student is for mathematics. 

Moving beyond the individual, there is consensus in educational policy in most 

countries that society has a need for mathematically educated persons in scientific 

and technical fields.  

Affective issues are important in mathematics education also from a scientific 

perspective. When we investigate creativity, genuine problem solving, proofs and 

other higher-level cognitive processes, we see that cognition is intrinsically 

intertwined with emotions. However, we do not yet understand these processes well 

enough. 

Research on mathematics-related affect has been a topic of interest at least since the 

1970s. However, the reason for such interest has varied across decades and this has 

been also reflected in the variety of theoretical and methodological approaches to the 

topic. McLeod‘s (1992) review and reconceptualization of research has been 

extremely influential in this field of study. According to Harzing‘s ‗Publish or 

Perish‘ software, (Harzing, 2011), it has received over 600 citations so far. The 

review provides an excellent overview of the state of art in the early 1990s. 
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Moreover, McLeod‘s conceptualization of the research area as well as his 

suggestions for future research have had a major influence on research on 

mathematics-related affect for the last two decades. 

In this article, I will first review McLeod‘s seminal paper, then we will summarize 

the main criticisms of his approach and most important new ideas and findings since 

1990s, with a special focus on work done within CERME. 

As a synthesis of these reviews, this paper will suggest a new theoretical foundation 

for research on mathematics-related affect. The most important notions in this new 

framework are 1. a distinction between trait and state-aspects of affect; 2. perceiving 

emotions, cognition and motivation in a synergistic relationship; and 3. the 

identification of biological, psychological and social levels of affect. 

Based on this conceptual framework, we will elaborate some structural properties of 

mathematics-related affect and review a number of instruments developed to measure 

affect towards mathematics. In a more speculative tone, we will use the theoretical 

framework and previous research to suggest some dynamic relationships between 

different dimensions of affect. Finally, the paper will look for some future venues for 

research on mathematics-related affect. 

History pre 1990s 

In this section of the article, I will provide an overview of the main conclusions that 

McLeod made in his article as a summary of research on mathematics-related affect 

prior to 1992. In the era of behaviourism, affect had been largely neglected, being 

considered an imaginary construct. As an exception, social psychology measured 

attitudes through a large number of quantitative survey studies. These studies had 

identified differences between countries and genders and an overall tendency for 

students‘ affective relation with mathematics to decline over the school years. 

Within research on mathematical beliefs, McLeod had identified four main objects of 

these beliefs: mathematics as a discipline, self, mathematics teaching (and learning), 

and social context. In his conceptualization, beliefs about self were related to 

metacognition and self-regulation and included also motivation. As an important 

aspect of beliefs about context, McLeod had recognized Cobb, Yackel and Wood‘s 

(1989) work on social norms in the (mathematics) classroom. 

One of McLeod‘s main concerns with respect to previous research was the lack of a 

decent theoretical framework. Research on mathematics-related affect was based on 

local theories, such as self-efficacy, mathematics anxiety, attribution theories, and 

aesthetics. However, from a holistic point of view, the local theories used confusing 

and ambiguous terminology. 

McLeod identified cognitive science and cognitive psychology as promising new 

trends for mathematics-related affect in the 1990s. Cognitive science had accepted 

the importance of affect. More specifically, cognitive scientists had acknowledged 
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the significance of affect (interest, confidence) in metacognition. However, at that 

time, most cognitive scientists avoided affect in their theorizations in order to avoid 

some of the complexity. 

According to McLeod, cognitive psychology emphasized more theoretical issues 

than cognitive science. Cognitive psychologists used qualitative methods in order to 

construct an empirically well-founded theoretical framework for the role of affect in 

mathematical thinking and learning. Their elaborations emphasized beliefs and 

emotions as central concepts. 

As a summary for his review on the literature, McLeod (1992) suggested that 

research on mathematics related affect should use a ―combination of techniques‖, i.e. 

mixed methods. For a theoretical framework he suggested using Mandler‘s (1989) 

theory, which provided not only a sufficient conceptualization for mathematics-

related affect, but also for dynamics of affect in mathematical thinking and learning. 

In this framework beliefs were seen as an element that influenced the initiation of 

emotions. Moreover, repeated emotional reactions were seen as the origin of 

attitudes.  Regarding the origin of beliefs, McLeod considered both social context 

(culture) and individual experiences to contribute to their formation. 

Work that builds on McLeod‘s paper 

McLeod‘s work has had a significant influence on later research and his foundation 

has proved to be fruitful for accumulating evidence. Much of the research has 

adopted a simplified version of McLeod‘s framework where emotions, attitudes and 

beliefs are located on a continuum where beliefs are seen to be the most cognitive 

and stable, emotions as least cognitive and stable, and attitudes in the middle for both 

dimensions. Fewer studies have elaborated the dynamic nature between beliefs, 

emotions and attitudes. 

One specific field of research on mathematics-related affect that has accumulated 

very strong evidence over the years is the role of gender. Studies have produced very 

consistent results that indicate that, across age and performance levels, female 

students tend to have lower self-confidence in mathematics than male students (e.g. 

Hannula, Maijala, Pehkonen & Nurmi, 2005; Leder, 1995). Lower self-confidence 

among female students has been found even at the level of individual tasks, in the 

case of both correct and incorrect answers (Hannula , Maijala, Pehkonen & Soro, 

2002). Related to low self-confidence, female students also suffer mathematics 

anxiety more often than male students (Frost, Hyde & Fennema, 1994; Hembree, 

1990). These results in affect provide an explanation to why female students usually 

choose not to study optional mathematics, especially when we consider that female 

students may have higher performance levels in arts and social sciences. Lower self-

efficacy is also likely to explain why female students rely on school-taught solution 

methods and avoid non-standard or their own solution methods that include an 

element of risk.  
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There is no reason to believe that the low level of female students‘ self-efficacy 

beliefs is a natural and permanent characteristic of the female sex. The research has 

accumulated evidence for the hypothesis that female students‘ lack of confidence in 

mathematics is consistent with their teachers' beliefs (Li, 1999; Soro, 2002; Sumpter, 

2009) and that teachers' typical interaction patterns with male and female students 

may thus attribute to the generation of gender differences. Mathematics teachers tend 

to believe that their male students often have hidden talent, but due to being lazy and 

careless they underperform, while female students tend to reach their performance 

due to diligence and hard work even if they are not very talented. Such teacher 

beliefs are assumed to lead to different feedback to male and female students and 

thus to contribute to the observed gender differences in self-efficacy beliefs.  

A large number of studies have explored the relationship between mathematical 

affect and achievement. Ma and Kishor (Ma & Kishor, 1997a, b; Ma, 1999) have 

summarised much of that research in two meta-analyses. In one of these studies, they 

synthesised 113 survey studies of the relationship between attitude towards (=liking) 

mathematics and achievement in mathematics. The causal direction of the 

relationship was from attitude to achievement. Although the correlations were weak 

in the overall sample, they were stronger throughout grades 7 to 12, and in studies 

that had done separate analysis of male and female subjects. (Ma & Kishor, 1997a). 

In another meta-analysis, Ma and Kishor (1997b) summarised 143 original studies on 

the effect of mathematics-related beliefs on achievement in mathematics. They found 

out that students‘ self-concept, family support and perception of mathematics as a 

male domain were positively related to their achievement in mathematics. Moreover, 

correlations between self-concept and achievement were stronger in studies that had 

done separate analysis of male and female subjects. 

However, there has been criticism of studies that do not use a longitudinal design 

(see Ma & Xu, 2004). Minato and Kamada (1996) reviewed eight studies that had 

used a cross-lagged panel correlation technique (a longitudinal design) in order to 

synthesize findings on the causal relationship between attitude towards mathematics 

and achievement in mathematics. In most of the studies, there was no predominance 

of either attitude or achievement. However, in the few instances that predominance 

was found, the causal direction was from attitude to achievement. However, Ma and 

Xu (2004) found a contrasting result with a larger and more representative sample. 

According to their study, the dominant causal relationship is from achievement to 

attitude. 

Research on mathematics-related emotions has been less active than research on 

attitudes and beliefs. However, several studies have confirmed that experts control 

their emotions better than novices (e.g. Allen & Garifio, 2007; Schoenfeld, 1985). 

There has been also some attempt to include physiological measures, e.g. heart rate 

(Isoda & Nakagoshi, 2000), skin conductivity, and muscle tension, to research on 
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Emotions Beliefs Behaviour

Attitude Belief

Affect

emotions. In the case of anxiety, physiological measure and questionnaire data did 

not match (Gentry & Underhill, 1987; Dew, Galassi, & Galassi, 1984) 

Main criticisms of McLeod‘s framework 

Although McLeod‘s (1992) framework has dominated research in mathematics-

related affect since 1990s, criticism has accumulated since then, regarding 

terminology, blind spots of the conceptual framework and the overall foundation of 

the framework. Regarding the terminology, researchers on mathematics-related affect 

had not succeeded in unifying their language. When Furinghetti and Pehkonen 

(2002) collected a virtual panel of these researchers to evaluate a number of 

definitions that these same researchers had suggested for the concepts attitude, belief 

and conception in their papers, the researchers could not agree on any of the their 

definitions.  

The problem has been raised repeatedly over the years. For example, in the PME 

2004 research forum on affect, Gerald Goldin (2004) said:  

We do not now have a precise, shared language for describing the affective domain, 

within a theoretical framework that permits its systematic study (p. 109). 

And this perspective has been repeated also more recently: 

theories not yet well-developed, terminology used differently and ambiguously, and 

varying instruments, some untested, make the literature difficult to interpret, and leave 

researchers open to criticism. (Chretcheley, 2008, p. 147) 

Probably the most problematic concept in McLeod‘s framework is attitudes. Within 

mathematics attitude research, attitudes have typically been defined as consisting of 

cognitive (beliefs), affective (emotions) and conative (behaviour) dimensions (e.g. 

Hart, 1989). If we try to combine the tripartite framework with McLeod‘s, we see 

that attitude is at the same time a parent and a sibling to emotions and beliefs. 

Figure 1. An unsuccessful attempt to combine McLeod‘s (1992) framework for affect 

with Hart‘s (1989) tripartite framework for attitude. 

In fact, researchers have provided a variety of definitions of the concept ‗attitude‘. In 

addition to the tripartite definition above, some have used a bi-dimensional 

definition (emotions, beliefs) or simply identified attitude as positive or negative 
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degree of affect. Many researchers have given only an implicit definition through the 

instrument they have chosen to use. (Di Martino & Zan, 2010). 

There are also more fundamental problems with the concept. Attitude is an 

observer‘s category which involves several psychological structures (Ruffel, Mason 

& Allen, 1998; Hannula, 2002a). Hence, it does not really help us to understand the 

inner world of the person, whose attitude we have observed. In fact, teachers often 

use the concept attitude as ‗a claim of surrender‘, i.e. as an attribution to student‘s 

uncontrollable failure (Di Martino & Zan, 2009). 

In McLeod‘s (1992) framework, emotions are considered to be unstable (at least less 

stable than beliefs or attitudes).  This view has been criticized, because people can 

have very stable patterns for emotional arousal across similar situations (e.g. anxiety, 

frustration, Aha!) How would this differ from beliefs that appear only in appropriate 

context (e.g. self-efficacy beliefs in a test situation)? We shall return to this issue 

below, when we discuss the state and trait aspects of affect. 

McLeod‘s framework did not pay enough attention to the variety of different 

emotions. Although McLeod (1992) had pointed out the importance of Buxton‘s 

(1981) study Do you panic about maths and Mason, Burton and Stacey‘s (1982) 

studies on the Aha!-experience, in his framework attitude was seen through 

positive/negative duality. This view misses important distinctions. For example, 

boredom, anger and shame are all negative emotions, but very different from each 

other. The three emotions appear in different situations and they have quite different 

impacts on behaviour. In similar way elation, pride and relief are very different 

positive emotions 

Moreover, more recent research in mathematics education has highlighted affective 

concepts that are (or seem to be) missing from McLeod‘s conceptualization, such as 

values (DeBellis & Goldin, 1997, Bishop, 2001), motivation (Hannula, 2006b; 

Yates, 2000) and identity (Beijaard, Meijer & Verloop, 2004; Frade, Roesken & 

Hannula, 2010, Sfard & Prusak, 2005). 

Also the ‗social turn‘ in mathematics education (Lerman, 2000) has highlighted the 

problems of the primarily individual focus of McLeod‘s framework. Yackel and 

Cobb (1996) have elaborated the relationship between individual beliefs and the 

norms that are their social parallel. Moreover, the social view speaks about identity 

instead of beliefs or attitudes. 

New findings and ideas since McLeod  

Since McLeod published his paper in 1992, there have been important advances 

outside mathematics education research that have opened up new opportunities for 

research in mathematics-related affect.  

Within educational psychology, motivation research has developed several 

theoretical approaches (for an overview see Murphy & Alexander, 2000). One of the 
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most influential is achievement goal theory (Pintrich & Schunk, 2002). It is a 

sociocognitive theory, which focuses on students‘ self-set goals in achievement 

situations, and is interested in the student‘s reasons for engage with learning tasks 

(Middleton, Kaplan, & Midgley, 2004). Different terminologies are used for two 

main goal orientations: A student who focuses on learning the task is said to have a 

mastery, task, or learning orientation, while students whose primary interest is to 

impress others with their performance are said to have a performance, ego, or ability 

orientation, but there are only nuanced differences between the different 

terminologies (Ames 1992; Järvelä, 1996; Pintrich & Schunk ,2002).  

Different researchers have found rather comparable positive relationships between 

mastery goal orientation and achievement (Friedel, Cortina, Turner, & Midgley 

2007; Midgley et al., 1998). Results concerning performance goal orientation and 

achievement have been less consistent. Some have identified negative learning 

behaviour, while other results indicate performance orientation to lead to positive 

learning behaviour and achievement (Freeman, 2004; Midgley et al., 1998). This has 

led to a need to differentiate between so-called performance-approach and 

performance-avoidance goal orientations (Elliot & Harackiewicz, 1996). More recent 

results have indicated that students may be influenced by several goal orientations 

simultaneously, and the emphasis of each orientation is influenced by the situation 

(e.g. Vollmeyer & Rheinberg, 2000). 

Affect has also been given a significant role in elaborations of self-regulation. In 

mathematics education, the role of affect in self-regulation has been elaborated, for 

example, by Malmivuori (2001, 2006) and Hannula (2006b). Also the concept meta-

affect (DeBellis & Goldin, 1997) relates to self-regulation. 

The embodied view of cognition (e.g. Maturana, 1988; Brown & Reid, 2006; Nöðes, 

2006) and advances on the neurophysiology of affect (Damasio, 1994, LeDoux, 

1998) have radically challenged the earlier view on human mind. Most notably this 

research has highlighted the indispensable role of emotions in human reason.  

Increased computational capacity has allowed the use of more advanced quantitative 

methods, e.g. Meta-analysis and Structural Equation Models. These methods have 

made it possible to test more complex hypotheses with data from large scale surveys. 

For example, Williams and Williams (2009) used  

…a structural equation model in which the mutual influence of self-efficacy and 

performance in mathematics is represented as a feedback loop. This model was estimated 

in each of 33 nations on the basis of data on the mathematics self-efficacy and 

mathematics achievement of 15-year-olds. The model was a good fit to the data in 30 

nations and was supportive of reciprocal determinism in 24 of these, suggesting a 

fundamental psychological process that transcends national and cultural boundaries. 

(Williams & Williams, 2009, p. 453) 



Plenary lecture  

CERME 7 (2011) 41 

 

Issues raised in previous CERME meetings  

Next, I will review the main issues of the Working Group (WG) on affect in CERME 

conferences 3, 4, 5, and 6, between 2003 and 2009) This review is very much also a 

personal journey, because I was a WG coordinator at CERME 3 (2003) and chair of 

the Affect WG for the three following CERME conferences. What I will present later 

in this article as a new (meta)theoretical framework for the study on affect is deeply 

influenced by the discussions in the CERME working group on affect. 

Much of the discussions in the affect group in each of these CERME have focused 

on the conceptual framework and terminology. This has increased our awareness of 

being specific about the concepts that we use. We have realized that it is not 

sufficient to give definitions of the concepts that are being used in a particular study, 

but we have to explicate their relations to the other dimensions of affect research as 

well.  A significant step forward was the graphic representation of the conceptual 

field that Peter Op ‗t Eynde drew for the final presentation session of the affect group 

at CERME 5 (Figure 2). Firstly, the figure identifies three main conceptual 

categories: cognition, motivation and affect, and their partial overlapping.  

  

Figure 2. A graphic representation of the different dimensions of mathematics-related 

affect and their relationships, presented at CERME 5 (Hannula, Op ‘t Eynde, 

Schlöglmann & Wedege, 2007, p. 204). 

Cognition 

Motivation 
Affect 
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The figure also positions several of the frequently-used concepts in relation to each 

other and in relation with the three overarching concepts cognition, motivation and 

affect. Thirdly, the figure identifies the local classroom context and the socio-

historical context where the individual student‘s or teacher‘s affect is being formed 

and is developing. Since CERME 5 we have always returned to this figure as an 

overall framework where we locate individual studies and their relations. 

The dynamic nature of affect is another recurrent issue through the history of 

CERME conferences. How do emotions and other less stable affects interact with 

cognitive processes? How are relatively stable affects (e.g. beliefs, attitudes and 

motivation) formed in the first place? How do they develop over time? How can we 

change these through interventions? As an example of the complexity of the 

dynamics of affect, let us consider the four different aspects of stability that we 

identified at CERME 6 (Hannula, M. S., Pantziara, M., Wæge, K., & Schlôglmann, 

2009): 

1) The state and trait aspects of affect. This will be discussed in more detail 

below. 

2) Resistance to change. How strongly are individual beliefs and attitudes held? 

Which of them change ‗naturally‘ over time? How difficult it is to influence 

them?  

3) Robustness of constructs. Are the affective constructs held in a similar way 

across age levels? For example, some dimensions can not be reliably measured 

in younger populations. Does this suggest that these constructs are not 

developed until an older age? Would some of the constructs disappear in older 

populations? Are some affective constructs formed in a specific socio-

historical context (e.g. the belief of mathematics as a male domain) and are 

they similar across the different cultures? Would some constructs that are 

relevant now disappear in the historical development of the society?  

4) Relative stability in relation to other persons. Several studies have observed an 

overall decline in mathematics-related affect over the school years (e.g. Eccles. 

Adler, Futterman, Goff, Kaczala, Meece et al. 1985; Hannula, Maijala & 

Pehkonen, 2004). However, do those who have the most positive relationship 

with mathematics in the early years continue to have more positive 

relationship with mathematics than their peers who had a more negative affect 

to begin with? 

The refinement of the conceptual framework and the focus on the dynamic nature of 

affect have highlighted the need to explore the structural properties of affect.  

A third issue that we have discussed repeatedly in CERME is methodology. I will 

not go into detail here, but there has been a trend towards mixed methods that 

combine quantitative and qualitative methods, as well as a trend to adopt the more 

complex computational tools that have become available. 
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A NEW (META)THEORETICAL FOUNDATION 

After this lengthy review of old theories, findings and their criticisms, we will finally 

begin our constructive efforts. The framework that I will construct below could be 

seen as a metatheoretical foundation for research in mathematics-related affect. 

Because of its broadness I do not expect this framework to be used as such in any 

single empirical study. However, this framework helps to identify similarities and 

differences between studies in this field, and it is probably useful for relating a 

variety of theories to each other. Moreover, this framework is likely to help in 

generating a shared language for researchers to communicate their findings and 

theories. 

The framework will be based on distinctions on three dimensions: 1. cognitive, 

motivational and emotional aspects of the affect; 2.rapidly changing affective states 

vs. relatively stable affective traits; and 3. the social, the psychological and the 

physiological nature of affect. 

The need to integrate cognition, motivation and emotion 

Historically, psychologists have adopted three components to describe human learning: 

cognition, motivation, and emotion [...]. Yet, theorists and researchers have tended to 

study these processes separately, attempting to artificially untangle them rather than 

exploring their synergistic relations in the complexity of real life activities. (Meyer & 

Turner, 2002, p. 107) 

My personal journey into mathematics-related affect started from beliefs research 

under the supervision of Erkki Pehkonen (Hannula, Malmivuori & Pehkonen, 1996). 

Trying to understand the formation of beliefs, I realized the importance of emotional 

experiences (Hannula, 2002a, 2003). When building an understanding of emotions, 

their relationship to personal goals became unavoidable (Hannula, 2002b, 2006b). 

Hence, my personal journey led me to attempt an integration of cognition, emotions 

and motivation. (Hannula, 2004, 2006a) 

Of course, I have been influenced by the work of colleagues. If we accept values to 

be an aspect of motivation, all these three categories are present already in the 

tetrahedral framework of DeBellis and Goldin (1997), where the vertices are 

emotions, attitudes, beliefs and values. Another important influence has been 

Schoenfeld‘s framework for teacher decision making, where the key components are 

knowledge, goals and beliefs (Schoenfeld, 1998). In Schoenfeld‘s terminology, 

‗beliefs‘ is a broad category which includes also emotional aspects. Goals, on the 

other hand, are clearly a motivational concept. 

In my framework, the cognitive domain includes knowledge, beliefs and memories, 

i.e. those mental representations to which it makes sense to attribute a truth value (cf. 

Goldin 2002).  For example, ―I have solved this task before‖, ―Mathematics is 

useful‖ and ―I can solve this task using an equation‖ belong in this category. With 

some hesitation I have also classified other cognitive schemata (e.g. scripts and 
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concepts) in this category as their applicability can be seen as a sort of truth value.  

In the category of emotions belong joy, pride, sadness, frustration, anxiety and other 

feelings, moods and emotional reactions. The third category, motivation, is perhaps 

the most difficult to define.  The most important characteristic of this category is that 

motivation reflects personal preferences and explains choices. The distinction from 

the cognitive aspect is that preferences are subjective and it is not possible to 

attribute truth value or applicability to them. Motivation varies from very local 

preferences (―This would be a perfect moment for a cappuccino‖) to a variety of 

different levels of goals (―I want to solve this task‖, ―I want my peers to think that I 

am clever‖) and very global needs such as needs for nutrition and social belonging. 

Although the basic needs seem very universal, there are individual differences to 

how much importance they are given in different situations.  

Some of the distinctions between the categories may seem arbitrary. However, in this 

integrative approach, the point is not simply to acknowledge all three aspects. The 

purpose is to go beyond that, and focus on the synergistic relations between the 

three. The distinctions between these categories make more sense when one focuses 

on their function in human thinking and behaviour. From the functional point of 

view, cognition codes the personal information about self and the environment (e.g. 

―I don‘t believe that I can solve any of my homework‖), motivation gives direction 

for behaviour through giving preference to some self-environment relationships over 

some others (e.g. ―I want to show my parents that I at least try‖). Success or failure in 

motivation-directed behaviour (e.g. solving a mathematics task) is reflected in 

emotions (e.g. relief). These emotions, in turn, can influence cognition through 

shifting the focus of attention (e.g. from ego to task), which may modify motivation 

(e.g. from showing effort to solving the task). 

The state and trait of mathematics related affect 

I was not successful in my effort to track down the origin of the distinction between 

trait and state aspects of psychological constructs. However, the first instance where 

I was able to find it (Bergmann 1955), considered the terms ‗state‘ and ‗trait‘ 

idiomatic. The distinction between trait and state (Spielberger, 1966) was an 

important step forward in anxiety research. More recently, Dweck (2002) has 

claimed that a similar distinction (traits and processes) is also relevant in 

motivational systems and that these are formed at an early age.  

The state and trait aspects of affect towards mathematics have been implicitly present 

in most of the research done. However, these two temporal aspects have seldom been 

addressed explicitly. The rapidly changing affective state has typically been 

addressed as an element in problem solving. For example, the continuously 

fluctuating emotions and beliefs may influence the critical choices that determine 

whether the problem will be solved or not.  These affects are situational and 

contextual. However, there is also a stable pattern in how an individual feels and 

thinks in these different contexts and situations, i.e. an affective trait. For example, in 
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any classroom situation high achievers are likely to have more positive expectations 

and affect than low achievers. This distinction has been reflected in different 

theoretical frameworks. In McLeod‘s (1992) conceptualisation, beliefs were 

considered more stable than attitudes, which were more stable than emotions. Also in 

Goldin‘s (2002) framework there is a distinction between local and global (more 

stable) affect. However, both McLeod and Goldin attribute stability to beliefs and 

rapid changes to emotions. 

Unlike McLeod (1992) and Goldin (2002) I see that beliefs have both a state aspect 

and a trait aspect. While a student may have a belief trait that he is not very good 

with mathematical tasks, his belief state regarding a specific task evolves as he reads 

the task and begins to solve it. In a similar fashion, although the emotions of a 

student may fluctuate and change rapidly during problem solving, students also have 

very stable patterns of emotional reactions. By this we mean that each individual has 

typical emotional reactions to typical situations in the mathematics classroom. This is 

most clear in cases of mathematics anxiety, where worry and fear are typical 

reactions to many learning situations. This trait aspect of emotions can also be called 

emotional disposition, and it is also the core of different conceptualizations of 

attitude. 

Also the third element in the present framework, motivation, has a state aspect and a 

trait aspect. The trait aspect of motivation is related to the overall values the person 

attributes to mathematics and to the general motivational orientations for learning. 

However, these traits are not sufficient to understand personal choices during 

problem solving or learning processes. During such processes one sets more local 

goals, that represent the motivational state at that time.  

The trait and state aspects of cognition, motivation and emotion are summarized in 

Table 1.  

 Cognition  Motivation Emotion 

State Thoughts in mind Active goals Emotional state 

Trait Concepts, facts, 

scripts, etc. 

Needs, values, 

desires, 

motivational 

orientations 

Emotional 

dispositions 

(attitude) 

Table 1. The state and trait aspects of cognition, motivation and emotion. 

How about the social turn and the embodied cognition?  

In order to guide you towards the social and biological dimensions of affect, I will 

now elaborate a little on emotions. Firstly, recall that we consider emotions here in 

their full spectrum. Joy, fear, sadness, curiosity, shame etc. have each their specific 
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characteristics in the dynamics of affect, and they can not be reduced on a single 

dimension. 

Within theories of emotion we can distinguish three different traditions. The  first  

tradition  is  the  Darwinian  tradition,  which  sees  emotions  as evolutionary 

functional means of body regulation and social coordination. This view highlights 

the biological basis of emotions but also acknowledges their social importance. The 

Freudian tradition conceptualises affects as derivatives of the instinctual drives and 

emphasizes the unconscious origin and regulation of emotions. (Taylor, Bagby & 

Parker 1997, p. 11 & p. 14) 

The cognitive approach (e.g. Lazarus, 1991; Power & Dalgleish, 1997) argues that 

emotions are primarily psychological phenomena, generated and guided by cognitive 

appraisals. Nowadays, there is general agreement that emotions consist of three 

processes:  physiological  processes  that  regulate  the  body,  subjective experience 

that regulates behaviour, and expressive processes that regulate social coordination 

(Buck, 1999; Power & Dalgleish, 1997; Schwarz & Skrunik,  2003;  Taylor,  Bagby  

&  Parker,  1997).    

 

 

Figure 3. Identifying the social and psychological dimensions to state and trait of 

cognition, motivation and emotion. 

Within the cognitive domain it is easy to identify similar distinctions between 

subjective experience and expressive behaviour (typically talking). Moreover, social 

theories of learning e.g. social interactionism (Bauersfeld, Krummheuer & Voigt, 

1988), emergent perspective (Cobb & Yackel, 1996) and didactic contract, 
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(Brousseau, 1997) have highlighted the social construction of meaning. There is also 

a level of physio-cognitive processes, such as gestures as part of thinking (e.g. 

Nöðez, 2006).With respect to motivation, it is possible to make a distinction between 

physiological, psychological and social needs (Nuttin 1984). On the other hand, the 

norms that social groups negotiate and form (Yackel & Cobb, 1996; Cobb & Yackel, 

1996; Partanen, 2011) can be seen as shared goals, which are another social aspect of 

motivation. 

It should be noted here that the social aspect can be further elaborated. There is the 

classroom microculture of teacher-student interactions, but also the more 

institutionalized school culture and broader socio-cultural situation where schooling 

takes place (Cobb & Yackel, 1996, Partanen 2011).  

As a summary, we can add a third dimension to our framework on affect (Figure 3). 

Furthermore, we can identify the typical state and trait type constructs for 

psychological, psychological and social level of the affective domain (Table 2).  

 Physiological Psychological Social 

Affect as a state  Neural activation, 

physiological 

adaptation.  

Feelings, 

emotions, 

thoughts, 

meanings, goals 

Social 

interaction, 

communication, 

classroom 

‗weather‘ 

Affect as a trait Brain structure, 

neural 

connections. 

Attitudes, values, 

beliefs, 

motivational 

orientations 

Norms, social 

structures, 

classroom climate  

Table 2. Physiological, psychological and social aspects of affective states and traits 

The physiological trait refers, for example, to the structural properties of the brain 

that are slow to change. On the other hand, the physiological state refers to the 

dynamic activity in the brain and the hormonal adaptation of the body (e.g. 

adrenaline rush). With regard to the state and trait of the social dimension of affect, 

we can perceive the social traits as the overall social ‗climate‘ of a group, which 

includes the norms and the discourse that the group has adapted to, and the social 

relationships that they have formed. Some of the norms and structures are 

institutionalized, e.g. the rules of a school and the educational legislation. The state 

aspect of this social dimension is the ‗weather‘ in the class, which is constituted by 

the verbal and non-verbal communication in the group. 

The structure of students‘ view of mathematics 

The structural nature of affect has been emphasized repeatedly in mathematics 

education research. One of McLeod‘s (1992) recommendations for future research on 
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mathematics-related affect was to build a theoretical framework that would allow 

exploration of the relationships that explain the dynamics of affect. In one of the 

early elaborations of the systematic nature of affect, Green (1971) characterized 

beliefs systems in terms of three dimensions: quasi-logicalness (primary vs. derived 

beliefs), psychological centrality (core beliefs vs. peripheral beliefs), and cluster 

structure (beliefs are held in clusters around specific situations and contexts, more or 

less isolated from each other) (c.f. Furinghetti & Pehkonen, 2002).  

Before delving deeper into the structural properties of affect, I now review a number 

of survey instruments. Each instrument‘s subscales have been classified into beliefs, 

attitudes (emotional traits) and motivations (including values) (Table 3).  

 Beliefs (about) Emotion 

trait 
Motivation 

Instru-

ment 
mathe-

matics 

sel

f 

teaching

/ 

learning 

social 

context 
 

(including 

values) 

MAS   1 1 3 1 3 

BMPS  0 - 1 1 1   1 -2 

AtMI   1   1 2 

MRBQr   1 4 -5 1 1 1 -2 

VoM  1 2 1 1 1 1 

PALS   2  11 1 6 

MEW   2 2  1 6 

AEQ-M      8  

Table 3. A review of the dimensions of mathematics-related affect measured by some 

instruments.  

Key: MAS = Mathematics Attitude Scales (Fennema-Sherman, 1976), BMPS = Beliefs about 

Mathematical Problem Solving (Kloosterman & Stage, 1992), AtMI = Attitude towards 

Mathematics Inventory (Tapia & Marsh, 2004), MRBQr = Mathematics- Related Belief 

Questionnaire, refined (original by Op ‘t Eynde and De Corte, 2003, refined by Diego-Mantecñn, 

Andrews and Peter Op ‘t Eynde, 2007), VoM = View of Mathematics (Hannula,  Kaasila, Laine & 

Pehkonen, 2006; Roesken, Hannula & Pehkonen, 2011), PALS = Patterns of Adaptive Learning 

Systems (Midgley et al. 2000), MEW = The Motivation and Engagement Wheel (Martin, 2001), 

AEQ-M = the Academic Emotions Questionnaire-Mathematics (Pekrun, Goetz & Frenzel,. 2005).  

Such survey instruments focus typically on individual traits. However, some also 

provide a window on the social dimension. For example, PALS includes several 

measures on the respondent‘s perception of the motivational orientation emphasized 

by parents, and peers. Because of the incoherent use of language in this research 

domain, my classification is based on the original items of the scales. Attribution of 
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some of the components was problematic, and rather than emphasizing my subjective 

doubtful interpretation for those components, their classifications were left uncertain 

(e.g. BMPS has one component that could be interpreted either as a belief about 

mathematics or as a motivation for studying mathematics, see Table 3). If 

classification was very speculative, I omitted the scale from this table. 

Most instruments have their specific focus. For example, MRBQr (Diego-Mantecñn, 

Andrews & Op ‘t Eynde, 2007) has four to five scales on teaching and learning, 

while no other instrument has more than two scales in this category. In a similar way, 

PALS (Midgley et al. 2000) has a focus on social context and motivation, MEW 

(Martin, 2001) on motivation and AEQ-M (Pekrun, Goetz & Frenzel,. 2005) on 

different dimensions of emotional traits. On the other hand, most instruments are 

fairly broad, covering several categories. However, broad instruments have only 

simplified measures on some of the categories. For example, while VoM (Hannula, 

Kaasila et al., 2006; Rosesken, Hannula & Pehkonen, 2011) has a subscale in each of 

the categories, it does not have more than two subscales in any of them. 

Empirical research on mathematics-related beliefs has identified an overall pattern, 

where positive beliefs are related to each other and with positive emotions (e.g. 

Hannula, Kaasila et al., 2006; Roesken et al., 2011). 

Although it is generally assumed that there is a relationship between mathematics-

related motivation and beliefs, the theories about their relationships are fairly recent 

(Op ‗t Eynde, De Corte, & Verschaffel, 2006; Hannula, 2006b). Research has 

identified a positive relation between mastery orientation and attitudes, effort, 

competence beliefs (Seo, 2000, Hannula & Laakso, 2011; Kaldo & Hannula, 

manuscript) and positive emotions (Kumar, Gheen, & Kaplan, 2002; Midgely et al., 

1998; Pekrun, Elliot, & Maier, 2006).  

The development and dynamics of affect  

In this section, I will elaborate my personal understanding of the interplay of 

different aspects of affect through an example. 

Let us consider a situation, where a teacher is about to meet a new class for the first 

time. Before entering the classroom, the teacher has his preconceptions about the 

class, based on his previous encounters with students of the same age in the same 

school. He is also in a certain physiological state, perhaps hungry or tired (this state 

is influenced by his physiological traits). The teacher‘s physiological state and 

preconceptions influence what kind of emotions, goals and expectations he has 

before entering the classroom. In a similar manner, the students in the class have 

their emotions, goals and expectations. Moreover, as a group, they have a set of 

social norms they adhere to (especially if they have studied together for a long time).  

When the teacher enters the room, his state of mind will influence how he will 

interpret what he sees and hears. However, the environment (e.g. the lighting and 

acoustics, how is the entrance located in the class) will also influence his 
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impressions. When the teacher and the class begin to interact, they also negotiate the 

teacher role in this class. This negotiation is basically between the social norms of 

the class and the individual goals of the teacher, but it takes place through the 

communication between the teacher and his students. Through this communication 

the teacher and students influence each others‘ state of mind (emotions, thoughts, 

goals etc.) Moreover, they may end up changing the environment (e.g. seating of the 

students). This negotiation will influence the social norms of the class, the 

psychological traits of the teacher and to some extent also the negotiators‘ 

physiological traits. 

After the lesson, both teacher and his students will engage in some reflection on the 

first lesson. This reflection is influenced by the cultural-historical background they 

are in and it may lead to further changes in the social norms of the class and the 

psychological and physiological traits of the teacher. The process will continue in 

their future lessons. 

What I want to highlight here, is the interplay between the individual and the social 

and between the trait and state. Through the process of communication the individual 

state interacts with the social state. The individual is forming the social through 

communication and, through this very same communication, the social is forming the 

individual. The continuously dynamic psychological state of the individual is always 

influenced by three factors: the previous state, the traits and the situational 

information. The situational information and the previous state always determine 

which (if any) of the traits is activated. On the other hand, the activation and possible 

reflection of these different states is gradually changing the traits. The process is 

analogous for physiological and social traits. 

POSSIBLE NEW DIRECTIONS  

In the future, research on mathematics related affect is likely to make advances in the 

directions that have not yet been explored sufficiently. For example, quantitative 

studies on the structural and dynamic aspects of affect have so far relied on linear 

models. As an example of a study of non-linear relationships, Tuohilampi   (2011) 

has explored how the discrepancy between ideal and real self (how we would like to 

be versus how we are) might be related to the student‘s enjoyment of mathematics. 

The preliminary analysis suggests that students enjoy mathematics most, when their 

real self is on a slightly lower level or on the same level as their ideal self.  

Another future dimension for quantitative studies is to identify to what extent we can 

attribute variation of different affective measures to individual and social levels. The 

two origins of beliefs (individual experiences and cultural influences) were pointed 

out already by McLeod (1992). Researchers who emphasize the individual nature of 

affect tend to rely on psychological theories and in-depth interviews or surveys. On 

the other hand, those who emphasize the social construction of affect rely more on 

social theories and they focus on observing the emergence of affect in social 
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scenarios. Both of these approaches are valuable, but we should also evaluate the 

importance of these two origins for each affective variable. For example, is the lower 

self-efficacy of girls compared to males so culturally determined that teachers can 

have only a small effect on it? Or could this gender difference disappear in classes 

that have a gender sensitive teacher?  

There are studies that attribute the origin of different affective variables on social 

and individual levels. For example, results from a Finnish high school indicate that 

students in the same class tend to have similar effort, enjoyment of mathematics and 

evaluation of the teacher, while their self-efficacy beliefs are more varied.  One 

aspect of their self-efficacy beliefs is significantly influenced by gender while 

another aspect of it is mainly influenced by their achievement in mathematics 

(Hannula, 2009, 2010). 

Another under-explored direction is the identification of different affective profiles 

for example through cluster analysis. In our study, we identified six affective clusters 

among teacher education students at the beginning of their mathematics education 

studies and we found this clustering to predict some of the differences in their 

progress in mathematics over the course (Hannula, Kaasila et al.,  2006). 

Thirdly, there is shortage of good longitudinal studies. Due to the difficulties in 

longitudinal data collection, analysis is often based either on relatively small samples 

or a secondary analysis of data collected for another purpose. For example, Ma and 

Xu (2004) used data from another study and had to rely on only three items on 

mathematics usefulness as a measure of mathematics attitude in their attempt to 

analyse the causal ordering between attitude toward mathematics and achievement in 

mathematics. As the authors point out themselves, more reliable measures of 

confidence and enjoyment in mathematics might have produced different results. 

Another direction that might produce interesting new results is the use of brain 

imaging techniques. For example, a recent study has identified that activity in the 

amygdala during an Aha! experience is a strong predictor of which solutions will 

remain in long-term memory (Ludmer, Dudai & Rubin, 2011). 

The main purpose of this article has been to provide an overview of research on 

mathematics related affect that would enable bridging between existing theoretical 

frameworks. Empirical studies can well be based on local theories. However, if we 

wish to gain an overall understanding of human mathematical thinking and 

behaviour we need to engage into a dialogue across a number of local theories. I am 

well aware that my attempt at this synthesis is biased towards the individual level 

and psychological theories. People with a background in social theories might find 

different distinctions more relevant and useful for analysing and relating the variety 

of research in mathematics-related affect. I also expect and welcome other efforts at 

synthesising theories of affect. 
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Situated in the context of current research, my talk presents a point of view on proof 

as an educational issue. This point of view intends to combine three perspectives: 

epistemological, what we mean by proof; cognitive, which are the main difficulties 

that students meet; and didactical, what kind of didactic interventions can be 

proposed, among those that have been experimented and showed their effectiveness. 

The examples that will be presented are drawn from the current literature, but also 

from research studies which I have been directly involved in recently. In particular, I 

will discuss some results coming from long-term teaching experiments related to the 

use of computer-based artefacts as tools of semiotic mediation that teachers can 

exploit to develop the mathematical meaning of proof. 

INTRODUCTION 

It is for me a great honour and a great pleasure to give this lecture, and I thank the 

Program committee for their invitation.  

The theme of my lecture has been that of one of the Working Groups at CERME 

since the very beginning, and it has been one of the themes of my research for many 

years. However, for a long time Proof and proving has been a theme of debate, not 

only in the community of mathematics educators, but also in the community of 

mathematicians (see for instance, Thurstone, 1994; Hanna, 1989) 

Proof represents a very special case relative to other topics, like Geometry or 

Algebra. Debate among researchers has been very passionate, reflecting sometimes 

great divergences. This makes this theme fascinating but also shows its complexity, 

mainly with respect to the objective of outlining didactical implications that can be 

useful in school practice. In this respect, I found the contribution in the book by Reid 

and Knipping (2010) to be valuable, though I hardly recognize my work in their 

interpretation. However this is part of the complexity of the problem: often we take 

for granted that we share much more than we actually have in common, and only 

recently have we become aware of the need of making our epistemological 

assumptions (stance) explicit in our research work. Actually this is crucial in order to 

foster mutual understanding, but it is also needed in order to find a way of 

overcoming divergence of opinions, and to make our research results deliverable to 

an extended scientific community including teachers and curriculum developers.  

Thus I will start with a brief introduction addressing some epistemological issues 

that I feel I must share with you, before entering into the core of my talk, when I will 

address the issue of proving and proof from a didactical perspective, and specifically 

I will present the analysis of different research studies concerning teaching 

approaches to proving and proof.  
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EPISTEMOLOGICAL ISSUES 

I will start by posing a question: 

Is there a shared meaning of ‗mathematical proof‘ among researchers in mathematics 

education? 

This question opens a recent paper by Nicolas Balacheff (2008) explicitly posing the 

issue of the existence of a shared meaning of the term ‗proof‘ and consequently of 

any other term or expression related to it. 

Currently the situation of our field of research is quite confusing, with profound 

differences in the ways to understand what is a mathematical proof within a teaching-

learning problématique but differences which remain unstated. (Balacheff, 2008, p. 501)  

As clearly argued by Balacheff in his paper, different epistemological positions 

affect mathematics education research on proof and in particular didactic 

/pedagogical approaches to proof at school. For this reason it is crucial to be aware 

of this problem and to make an effort to clarify one‘s own different assumptions.  

Though it may appear to be a simplification, I claim that when approaching the issue 

of proof there are two opposing positions that may be referred to two different 

epistemological, and maybe cultural, perspectives.  

On the one hand proof is meant as an idiosyncratic issue, strictly dependent on the 

individual that produces it. In this respect a wide range of cases can be observed and 

described. An example of a study consistent with this perspective is offered by the 

research work developed by Harel & Sowder (1998), and the classification 

(taxonomy) provided by these authors is an exemplar of the results coming from 

these type of studies. Such a classification is very accurate, and differentiates a large 

number of students‘ behaviours. However such different behaviours (proof schemes) 

share a common ‗definition‘ of proof that is obviously quite general. The authors 

formulate an explicit definition of the process of proving, a process of which a proof 

can be considered a product.  

Proving is the process employed by an individual […] to remove or create doubts about 

the truth of an assertion.  The process of proving includes two sub-processes: ascertaining 

and persuading. (Harel & Sowder, 1998, p. 241)  

As the authors explain, ascertaining is the process an individual employs to remove 

her or his own doubts, whilst persuading is the process employed to remove others‘ 

doubts.  

According to this definition, the term proof is largely referred to any kind of 

argument, and ―need not connote mathematical proof‖ (Harel & Sowder, 1996, p. 60) 

On the other hand, other researchers take a completely different point of view and 

hold/claim that proof has a peculiarity of its own, and that such a peculiarity 

constitutes a key element of mathematics as a theoretical discipline. Proof is meant 
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as the product of the process of theoretical validation that is considered a specific 

and indispensible component of Mathematics. Taking such a perspective, that for 

good reasons we can call ‗formal‘ (Arzarello, 2007), means to consider a proof 

independent on any interpretation and factual verification of the statement 

/statements that are involved. This is the stance, among others, of Raymond Duval 

(1991; 1992-93), who clearly states the specificity of proof, contrasting it with 

argumentation. Duval claims the need to clearly distinguish between argumentation 

and proof, stressing the epistemological and cognitive gap existing between these 

two processes, in spite of their similarities. The core of Duval‘s argument concerns 

the difference between the semantic level, where the epistemic value of a statement 

is fundamental for its acceptability, and the theoretical level where the only matter is 

checking the theoretical validity of a statement: i.e., checking the validity of the logic 

dependence of a statement with respect to the axioms, definitions and theorems, 

without taking into account the epistemic value that can be attributed to any 

statement involved. 

The epistemological and cognitive analysis carried out by Duval makes him warn us 

that the main issue from an educational perspective is exactly in the proximity of the 

two processes and in the danger of mistaking one for the other. Thus there is need of 

a careful distinction between them, stressing the theoretical nature of proof and 

recognising argumentation as a possible obstacle to the development of a sense of 

proof.  

Of course this radical position leaves place for a wide range of intermediate 

possibilities and variations in conceiving the relationship between argumentation and 

proof. However it focuses on specific features of mathematical proof that 

characterize it, and for this very reason can hardly be neglected without serious/great 

loss for mathematics education. (Mariotti, 2006) 

These same characteristics that inspired the following statement where the 

educational value of proof was clearly stated. 

The concept of proof is one concerning which the pupil should have a growing and 

increasing understanding. It is a concept which not only pervades his work in 

mathematics but is also involved in all situations where conclusions are to be reached and 

decision to be made. Mathematics has the unique contribution to make in the 

development of this concept [...] (Fawcett, 1938, p.120, quoted by Reid & Knipping) 

Coming back to the analysis carried out by Duval, we can remark that the distinction 

/opposition between argumentation and proof is based on the distinction between the 

semantic plane and the theoretical plane. While proof is confined on the theoretical 

plane and does not require any reference to the interpretation of any of the statements 

involved, it is on the semantic plane that an argumentation derives the epistemic 

value of the statement in focus. Based on the interpretation of the different 

statements and on their semantic relationships argumentation it is strictly connected 
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with the issue of understanding ‗why‘ (Dreyfus & Hadas, 1996), in particular to an 

explication function that seems to be also a proper goal of proof (Hanna, 1989a) 

From this perspective the following question arises: 

What is the role of theoretical derivation in respect to understanding? If we take a 

theoretical perspective, what about the explication function of proof ?  

Different answers are possible, however it seems reasonable to agree on the fact that 

the sense of mathematical proof should include elements related to the semantic 

plane. This becomes more evident is we consider the process of proving not only in 

relation to the process of evaluating the acceptability of a proof of a given statement, 

but also in relation to the process of producing a new theorem; i.e. producing a 

conjecture and then its proof. Considering the practice of mathematicians, it seems 

difficult to conceive producing a conjecture, and in particular producing the links of 

logical implication between two statements, without referring to the meanings 

involved in the formulations of such statements and in the relationships between 

them.  

to expose, or to find, a proof people certainly argue, in various ways, discursive or 

pictorial, possibly resorting to rhetorical expedients, with all the resources of 

conversation, but with a special aim ... that of letting the interlocutor see a certain pattern, 

a series of links connecting chunks of knowledge. (Lolli, 1999) 

Meaning and epistemic values, given by the interlocutors to the statements involved, 

have no theoretical status, nevertheless it seems nearly impossible to think of a 

‗practice of theorems‘ –the mathematicians‘ practice of producing theorems by  

formulating and proving conjectures - without any reference to meanings. 

In this respect I do not see any conflict between the two perspectives presented 

above; rather I think that each perspective focuses on different aspects which are 

both fundamental for mathematics education. And taking the risk of over-

simplification, I would summarize the didactic issue of proof in terms of resolving 

the potential conflict between the two main functions of proof, i.e. validating within 

a theory and explaining with respect to interlocutors‘ conceptions. This means 

finding a way, a pedagogical/ didactical way, of developing the complex relationship 

between argumentation, with its goal of convincing, and proof, with its goal of 

theoretically validating. Finally, it means taking into account the differences between 

argumentation and proof, and exploiting their deep link rather than ignoring it. 

Addressing the complexity of this issue sometimes requires the researcher to assume 

a position that may appear too rigid or oversimplified. Such simplifications might be 

reasonable for methodological reasons, but it remains necessary for the researcher 

(and the teacher) not to miss the complexity of the problematique.  

In order to better clarify this point I will present two theoretical constructs that  are 

consistent with the previous statement, and in my view can be of help to frame the 

design and the analysis of research studies on proof; at least, I would like to propose 
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them because I found them personally very useful in the research studies that I 

carried out recent years and are still in progress. 

The first construct is the notion of Theorem that we introduced some years ago 

(Mariotti et al., 1997) At the beginning there was a need to provide a shared frame to 

describe commonalities between different research approaches to proof among some 

Italian research groups. Later, this notion has been used and further elaborated in 

other studies (see for instance its use in the analysis of the proof by contradiction 

(Antonini & Mariotti, 2008) The second construct is that of Cognitive Unity as 

developed by Pedemonte (2002),starting from the original definition introduced by 

Boero et al. (1996) In the following sections I am going to give a brief description of 

both such constructs.  

A DEFINITION OF THEOREM 

The definition of Theorem that we are going to introduce is motivated by the 

following remark. The current literature, but also textbooks, commonly refers to the 

educational issue of proof, and in so doing proof is considered in itself, without any 

reference to the other key elements without which the idea of proof evaporates. As a 

matter of fact, as briefly discussed above it is impossible to grasp the sense of a 

mathematical proof, specifically when we want to differentiate it from 

argumentation, without linking it to the two other elements involved: a statement and 

overall a theory.  

In other words, we speak of a proof when there is a statement to which it provides a 

support for validity, but also when there is a theoretical frame within which such a 

support makes sense. Leaving statement and theory implicit is certainly 

comprehensible if we take the perspective of mathematics experts, but it may become 

a serious flaw if we take an educational perspective and we consider the students‘ 

point of view.  

What may have become an automatic and unconscious implicit reference for experts, 

cannot be expected to be the same for novices. Grasping the sense of the 

mathematical proof in terms of theoretical validation may be difficult and not 

spontaneous. Certainly, where students are concerned, the peculiarity of such a way 

of thinking cannot be taken for granted and its complexity cannot be ignored. In 

particular, one may expect serious consequences from the confusion between an 

absolute and a theoretically situated truth, corresponding to the two main functions 

of proof - explication and validation - (for a full discussion see Mariotti, 2006)  

Hence, taking an educational perspective and in order to express the contribution of 

each component involved, the following characterization of Mathematical Theorem 

was introduced, where a proof is conceived as part of a system of elements: 

The existence of a reference theory as a system of shared principles and deduction rules is 

needed if we are to speak of proof in a mathematical sense. Principles and deduction rules 
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are so intimately interrelated so that what characterises a Mathematical Theorem is the 

system of statement, proof and theory. (Mariotti et al. 1997, 1, p. 182)  

Traditionally in school practice, the reference to the Theory within which a proof 

makes sense is neglected, and, except for the case of Geometry, the theoretical 

context in which theorems are proved normally remains implicit. Consider, for 

instance, Calculus courses and textbooks: his is one of the few cases when proofs are 

provided, yet the axiomatic reference system is largely left implicit, and a careful 

analysis shows that most of the proofs would be better classified as argumentations. 

Coming back to the definition of Mathematical Theorem, it is important to remark 

that what is shortly referred to as Theory, has a twofold component. On the one hand, 

Axioms, Definitions and already proved Theorems constitute the means of 

supporting the single steps of a proof; on the other hand, meta-theoretical rules 

assure the reliability of the specific way to accomplish this support - that is to say, 

how the Axioms and Theorems belonging to a Theory can be used to validate a new 

statement.  

Actually, as clearly pointed out by Sierpinska, acting at a meta-theoretical level 

constitutes the very essence of a theoretical perspective  

[T]heoretical thinking is not about techniques or procedure for well-defined actions, […] 

theoretical thinking is reflective in that it does not take such techniques for granted but 

considers them always open to questioning and change. […] Theoretical thinking asks not 

only, Is this statement true? but also What is the validity of our methods of verifying that 

it is true? Thus theoretical thinking always takes a distance towards its own results. […] 

theoretical thinking is thinking where thought and its object belong to distinct planes of 

action. (Sierpinska, 2005, pp. 121-23) 

In the school context, the complexity of this meta-theoretical level seems to be 

ignored. It is commonly taken for granted that students' ways of reasoning are 

spontaneously adaptable to the sophisticated functioning of a theoretical system. 

Thus not much is said about it, and in particular deduction rules and their functioning 

in the development of a Theory are rarely made explicit
1
.  

There are at least two aspects of acting at a meta level that need to be made explicit. 

One consists in the acceptability of some specific deductive means, the other in the 

fact that no other means, except those explicitly shared, is acceptable. If these two 

aspects are left implicit, it may happen that students have no access to any control on 

their arguments. In this case the control remains completely in the hands of the 

teacher, resulting for students in a general feeling of confusion, uncertainty and lack 

of understanding.  

THE NOTION OF COGNITIVE UNITY 

In the context of a long-term teaching experiment (Boero et al., 1995a), interesting 

results came to light concerning students‘ production of conjectures (Boero et al., 
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1996; 2007) and the argumentation accompanying it. The teaching experiments were 

based on the solution of an open-ended problem, requiring both a conjecture and its 

proof. Clear evidence was found of different kinds of argumentative processes 

appearing in the solution. Further investigations demonstrated that when the phase of 

producing a conjecture had shown a rich production of arguments that aimed to 

support or reject a specific statement, it was possible to recognize an essential 

continuity between these arguments and the final proof; such continuity was referred 

to as Cognitive Unity. 

During the production of the conjecture, the student progressively works out his/her 

statement through an intense argumentative activity functionally intermingling with 

the justification of the plausibility of his/her choices. 

During the subsequent statement proving stage, the student links up with this process in a 

coherent way, organizing some of the previously produced arguments according to a 

logical chain. (Boero et al., 1996, p. 113)  

If the first results supported a sort of ―continuity‖ (as the authors called it), further 

investigation brought evidence of a possible gap between the arguments supporting 

the production of a conjecture and the proof validating it. 

This construct has been widely used in analysing students‘ solutions to different 

types of open problems. These studies led to a refinement of the construct and to the 

introduction of the distinction between referential and structural Cognitive Unity 

(Pedemonte, 2002) Further elaborations of this construct have been recently 

developed (Boero et al., 2010) 

PROOF AS AN EDUCATIONAL TASK 

Different research projects at different age levels in different countries have designed 

and implemented possible approaches to proof. Naturally, this has been done 

assuming different epistemological perspectives and different cultural contexts with 

respect to proof.  

Results of survey studies and research work focused on students‘ conceptions of 

proof, on difficulties that students may encounter, motivated and, at the same time, 

inspired the development of innovation projects aimed more or less directly at 

improving students learning about proof. There are two main types of such studies: 

first, those that more generally address the design of activities aimed at fostering 

students‘ insight into what proof is for fostering their performances in proving tasks; 

and secondly, those that explicitly address the design of teaching sequences aimed at 

introducing students to proof, and developing a sense of proof not only for 

recognizing but also for producing a proof. 

Because of the time limitations of this talk, I will deal only with the first types of 

studies, and focus on approaches to students‘ first experiences of proof.  
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DESIGN OF TEACHING SEQUENCES TO INTRODUCE STUDENTS TO 

PROOF 

In the light of the analysis carried out in the previous sections, we can synthetically 

summarize the educational issue concerning students‘ introduction to proof as 

follows: 

teaching proofs and Theorems should have a double aim: on the one hand that of making 

students understand what mathematical proof is, and on the other hand that of making 

students capable of producing it.  

Rephrasing what Balacheff (1982) wrote some year ago, proof should be considered 

both as on object, by which I mean a product that must fulfil the epistemic and 

communicative requirements of a mathematics community, and also as a process, 

that is to say the answer to a problem solving stance, intentionally aimed at 

producing a proof as product.  

Consistent with this educational issue, the design of teaching sequences has taken the 

direction of searching for specific contexts to make possible: 

1. fostering the emergence of a culture of explaining (a culture of Why 

questions); and 

2. fostering the development of a theoretical perspective (a culture of Theorems) 

 In the following sections I will present examples of such contexts, trying to explain 

in what sense they may fulfil these two 

requirements. 

Approaching Theorems in the field of 

experience of sun shadow  

The first example concerns a research 

project aimed at analysing mental processes 

underlying the production and proof of 

conjectures in mathematics. The project was 

part of a long-term teaching experiment 

carried out by the research team directed by 

Paolo Boero, and involved several classes 

at different school levels (Boero et al., 

1995a, 1995b, 2007) Within this project the 

idea of context is filtered by the notion of 

‗field of experience‘, explained as follows: 

Field of experience: a system of three evolutive components: (external context, student‘s 

internal context and teacher‘s internal context) referred to a sector of human culture, 

which teacher and students can recognize and consider as unitary and homogeneous. 

(Boero et al., 1995a, pag.153) 

Figure 1 Pupils experiencing sun shadows 
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The importance given in the project to the cultural value of Mathematics raised the 

issue of introducing pupils to theoretical thinking as well as that of developing 

pupils‘ competences in argumentation. Argumentative competences were considered 

a requirement for accessing theoretical thinking, in addition to their function as a 

means of control over mathematical techniques. But first and foremost, 

argumentative competences were considered a necessary condition for accessing a 

cultural discourse. (Boero et al. 1995a) In this respect it is important to highlight 

how the introduction to Theorems was part of a broader educational project aiming at 

developing concepts and ways of thinking belonging to mathematics, and generally 

speaking to our culture.  

The field of experience of sun shadows was chosen in the project. This choice was 

motivated by the fact that it offers the possibility of producing, in open problem 

solving situations, conjectures which are meaningful from a space geometry point of 

view. Specific activities were designed for introducing students to a theoretical 

perspective, that is to introduce students to the culture of Theorems, as the designers 

express it, integrated in the teaching sequence concerning geometrical concepts 

emerging from making sense and produce conjectures in a real situation. The 

evolution of the field of experience is based on modelling shared experiences (see 

Figure 1) related to sun shadows.(Douek, 1999; Boero, 2002) 

Conjectures are not immediate, and often there is a great variety of them; for this 

very reason, ‗why‘ questions arise naturally. However, direct validation is mostly not 

possible, and any argument may be accompanied by drawings, although it can hardly 

be substituted by drawings. Because of the difficulties and the ambiguity in 

representing 3D spatial properties by drawing, drawings may not be convincing.  

A first modelling approach leads the class to formulate a set of shared principles that 

constitute what we call a ‗Germ Theory‘ (Bartolini Bussi et al. 1999)   

Figure 2 The triangle of shadow illustrating the first principle  

This particular Germ Theory is constituted by the following two principles: 

1. The length of the shadow depends on the height of the sun. 

2. Two vertical sticks have parallel shadows. 

The activities which then follow are characterized by posing open-ended problems 

concerning experiences with sun shadows. As already remarked, the context offers 
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rich possibilities of posing open problems where uncertainty, stressed by the 

difficulty and often the impossibility of a direct verification, is the main motivation 

triggering the production of arguments supporting one‘s own conjectures.  

Thus, conjectures ask for supporting arguments, and the acceptability of such 

arguments is related to the shared principles. The aim is that of developing the sense 

of proof by connecting the construction of a theory to the production of arguments 

that make sense within it. In other words, according to the definition of Theorem 

given above, the educational aim consists in developing a sense of Theorems through 

relating three elements: a statement, a proof and a Theory within which the proof 

makes sense.  

It is not surprising that in this experimental context the notion of Cognitive Unity, 

described above, emerged and became a designing principle. In the following section 

I briefly outline a specific example (for a full discussion see Boero et al., 2007)  

The ―two sticks‖ Theorem  

Consider the following problem proposed to the class as individual work or work in 

pairs, as students prefer. 

Problem. In recent years we observed that the shadows of two vertical sticks on the 

horizontal ground are always parallel. What can be said of the parallelism of shadows in 

the case of a vertical stick and an oblique stick? Can shadows be parallel? Sometimes? 

When? Always? Never? Formulate your conjecture as a general statement. 

Some thin, long sticks and three polystyrene platforms were provided in order to 

support the dynamic exploration process of the problem situation. 

The problem refers to a familiar situation – a stick standing and producing a certain 

shadow – it proposes to add a new element – the oblique stick – and asks students to 

analyse the effect of this variation. It is also explicitly asks students to formulate the 

conjecture as a ‗general statement‘, while the initial reference to the parallelism of 

the shadows of vertical sticks implicitly frames the arguments supporting the 

conjectures, and eventually makes sense of asking for a ‗proof‘. Let us consider the 

following text produced by one of the pupils involved in the teaching experiment. 

Simone (8th grade) 

If we took into consideration two sticks, of which one is vertical, the shadows will be 

parallel when the two sticks are seen parallel by the sun. If we suppose that the person is 

in the position of the sun and looks at the sticks, by going around the sticks we can 

observe that the sticks are parallel in a certain position and the shadows are also parallel 

since the difference in position of the two sticks cannot be seen from that position. 

Thinking about the shadow space we can say that the non-vertical stick seems to be 

within the shadow space. Let‘s imagine an imaginary vertical stick representing the 

oblique one, in line with the sun‘s rays and the same stick, the oblique one cannot be seen 

so it seems to be vertical, forming parallel shadows. The shadows can be parallel if the 
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sun is situated along the direction of the oblique stick [with a gesture he indicates the 

vertical plane containing the oblique stick]. 

This text is a good exemplar of the kinds of proofs that can be generated by students, 

in which the arguments are intermingled with subsequent different formulations of 

the conjecture statement. In spite of the reference to experience, and in particular to 

the fictive dynamic experience of ―a person in the position of the sun‖, the arguments 

also clearly show reference to the shared principles; thus it is possible to speak of a 

proof and then of a Theorem in a consistent way with respect to the definition given 

above.  

However, it is clear that the interest and the care invested in developing such a 

theoretical perspective is deeply rooted in a semantic field: arguments are strictly 

related to their meanings in the context of sun shadow. They make sense in response 

to uncertainty, but base their acceptability on being elaborations (consequences) of 

the shared principles. It is clear, in this respect, how the aim of the Project designers 

is achieved: starting from an organization of the arguments based on their semantic 

content, to develop an organization consistent with the expectation and the 

requirements of the Theory, passing through the awareness of a shared need of 

communication and acceptability.  

The specificity of the approach to Theorems presented above is highlighted by 

comparing it with others. In this respect we mention the distance between this 

approach and that of Duval (1991) The distance corresponds to that between two 

different epistemological perspectives. On the one hand an epistemological approach 

that recognizes a proof as primarily a derivation within a theory and aims at 

‗realizing dissociation between content and operative status of propositions‘ (op. cit., 

p. 223); on the other hand an epistemological approach that recognizes a proof as the 

construction of a validation in respect to a complex system of reasons, within which 

the reasons of the theory are only one part, and an epistemological and didactical 

approach that intends to maintain the priority of propositional content and reasoning 

with regard to such content.  

This last claim is shared by other researchers, as the following passage shows. 

In particular proof cannot be taught or learned without taking into consideration the 

relationships of mathematics to reality (Hanna and Janke 1996, p. 902) 

Hence it is interesting to compare the Sun shadow Project approach with another 

approach that shares with it the choice of using the modelling of physical experience 

as a source of Geometry theory construction. 

Modelling and theory: the approach of the theoretical physicist  

When Geometry theory sprouts from a modelling process the relationship between 

Theorems and the verification of facts cannot be neglected. As we observed above, 

this problem was intentionally partially avoided in the activities proposed in the Sun 
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shadow Project. In fact, after an intense experience of sun shadow phenomena from 

which shared principles emerged, crucial activities were centred on the solution of 

problems where direct verification was impeded by specific circumstances (for 

instance, clouds hide the sun or students are asked to make a conjecture sitting in the 

classroom so that the situation at stake is out of their direct control) forcing the 

students to develop arguments based on stated principles to support conjectures.  

Nevertheless the delicate issue concerning a the relationship between Geometry and 

reality can hardly be neglected. Starting from remarking how measuring and 

empirical verification have been discredited in common school practice, some 

authors (Hanna & Jahnke, 2007; Jahnke, 2007) claim the need to confront that issue, 

taking what they call the point of view of a theoretical physicist. From such a 

perspective Jahnke (op. cit., 2009) discusses the relationship between theory and 

practice, and in particular he discusses the status of geometrical problems and their 

solutions in respect to empirical verification, asking for consistency in treating 

empirical data in relation to Geometry and in relation to Physics. The didactical 

implication is the following. 

Therefore, in teaching beginners an intellectually honest way is to take side by the 

physicist and to say that the angle sum theorem is true because of empirical 

measurements. Only at a later stage, one should expose the idea of a purely mathematical 

theory separated from reality. (Jahnke, 2005, p. 430) 

There are similarities between the approach proposed by Jahnke and that proposed in 

the Sun shadow Project: both consider physical phenomena and their experience as a 

key element in posing meaningful problems that may generate uncertainty and 

consequently a culture of ‗why‘ questions, and to produce conjectures and their 

validations according to stated hypotheses. However the issue of the relationship 

between argumentation and proof, specifically between empirical verification and 

theoretical validation is approached differently. In the Sun shadow Project, that issue 

is not explicitly addressed; rather, the implicit relationship between argumentation 

and proof is exploited, in an attempt to take advantage of spontaneous argumentation 

processes in order to make sense of mathematical proof. According to Jahnke‘s 

approach the relationship between empirical an theoretical validation  has to be 

explicitly taken into account. The need to state assumptions in relation to answering 

a ‗why‘ question, and the need for a reasonable empirical base for these assumptions 

is part of the ―theoretical physicist‖ approach that is held to be indispensable in the 

development of a sense of proof. 

All this is related to a specific epistemological perspective that considers the 

assessment of a theory to be, in the end, a pragmatic decision. The ultimate reason 

for accepting a law is not of a logical, but of a pragmatic nature.  

[…] a mathematical proof deriving a statement (natural law) of the theory does not 

provide absolute certainty to this statement, but it will considerably enhance its certainty 
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since the corroboration does not only come from an isolated set of direct measurements 

but from all measurements related to the theory. Such a theoretical network of statements 

and measurements connected by mathematical proofs is the safest form of knowledge at 

our disposal, though this does not change its, in principle, preliminary character. (op cit, 

p. 430) 

Of course, the discussion on such a position is open. The ultimate autonomy of 

Mathematics might be claimed, nevertheless we must admit that the position of 

Jahnke is fairly reasonable in respect to the educational objective of introducing 

students to Theorems within the context of common physical experience.  

LOOKING FOR CONTEXTS FOSTERING STUDENTS‘ INTRODUCTION TO PROOF 

Looking for contexts for introducing students to proof, some authors pointed out the 

specificity of a Dynamic Geometry System (DGS) in offering powerful resources for 

designing situations for enhancing students‘ learning of proof (see for instance the 

Special Issue of ESM edited by Jones, Gutiérrez & Mariotti (2001) and specifically, 

Laborde‘s contribution to this Special Issue) 

[…] the findings concerning the failure to teach proofs, the recognition of the multiple 

aspects of proving, and the existence of DG tools, lead naturally to the design of 

investigative situations in which DG tools may foster these multiple aspects. (Hadas et al., 

2000, p. 130)  

Open-ended problems are generally recognized as key elements, because of their 

potential in raising uncertainty and conflicts, and sometimes surprise - all ingredients 

that may trigger the need for explaining and validating, and eventually producing 

arguments. I will return to the specific issue of open-ended problems in the 

discussion of the last example. However other components have to be taken into 

account in the design; Hadas and colleagues outline a set of design principles, and 

the combination of these principles leads to designing tasks that afford ―productive 

argumentative talk‖ (Hadas et al., 2000) In particular, besides promoting a 

collaborative situation, the need of ―providing tools for raising and checking 

hypotheses‖ is suggested. In the case of a DGS, some of the negative aspects related 

to empirical verification may be overcome because of the specificity of the system of 

validation internal to the virtual environment. Such a validation system has a number 

of positive qualities: it can be explicitly shared in the classroom and it seems easily 

acceptable because it asks users to conform to the functioning of an artificial 

environment. Moreover validation by dragging is independent on the authority of the 

teacher and the aim of pleasing her, and it can be directly activated by any student, 

raising uncertainty, and sometimes curiosity. It is capable of triggering ‗why‘ 

questions that open the way to producing arguments and explanations. For this 

reason, and other characteristics, to which we will return in the following, a DGS 

offers a rich potential for a didactical approach to proof. 
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FIELD OF EXPERIENCE CENTRED ON THE USE OF ARTEFACTS. THE 

CASE OF CABRI CONSTRUCTION  

The second example that I present concerns a long-term teaching experiment centred 

on the use of a particular DGS, Cabri Géomètre, and aiming at introducing students 

to proof at the upper secondary level. 

As mentioned above, the main objective was that of exploiting the didactical 

potential offered by a DGS, and in particular by the specific system of validation 

based on the use of dragging. An epistemological analysis of the use of Cabri 

highlighted the deep relationship between producing figures in Cabri that are stable 

under dragging, and solving Construction problems within Euclidean Geometry. On 

the base of this relationship we designed a sequence of activities which aimed to 

initiate and develop a culture of Theorems within what we can call the field of 

experience of Cabri Construction (Mariotti, 2000) In order to better explain the 

principles of the design, I need to clarify some elements of the theoretical framework 

within which the didactical potential of Cabri has been described, and its utilization 

in the classroom activities explained. The theoretical frame is that of the Theory of 

Semiotic Mediation (TSM) as it was elaborated in Bartolini Bussi & Mariotti (2008) 

Taking quite a broad perspective, TSM aims to describe the use of artefacts
2
 as a 

means to foster the teaching-learning process.  

The theory of semiotic mediation 

 The Theory of Semiotic Mediation (TSM) (Bartolini Bussi and Mariotti, 2008; 

Mariotti, 2009; Mariotti, 2010; Mariotti & Maracci, 2010) combines a semiotic and 

an educational perspective and elaborates on Vygotskij‘s notion of semiotic 

mediation (Vygotskij, 1978), considering the crucial role of human mediation 

(Kozulin, 2003, p.19) in the teaching-learning process.  

Interpreting the teaching-learning process from a semiotic perspective means 

recognizing the central role of signs
3
 and describing the teaching-learning process as 

a process of evolution (transformation in a given direction) of signs. In particular, 

TSM focuses on the production of signs, as they originate in the use of an artefact, in 

relation to personal meanings emerging from it, and on the process of transformation 

of such signs through social interaction; such a transformation may be applied to 

specific mathematical knowledge and the signs related to it, thus the evolution of 

signs may be considered as an indication of a change in the relationship between the 

subject and mathematical knowledge, and eventually as an evidence of learning.  

When using an artefact for accomplishing a task, students‘ personal meanings 

emerge. Such meanings can be related to mathematical meanings, but establishing 

such a relationship is not a spontaneous process for students. On the contrary it can 

be an explicit educational aim for the teacher, who can intentionally orient her/his 

own actions towards promoting the evolution from personal towards mathematical 

meanings. Evolution may occur through social interaction, so that in a mathematics 
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class context, signs
4  

produced by students and expressing the relationship between 

the artefact and the task in which it is used, can evolve into signs expressing the 

relationship between the artefact and mathematical knowledge (Figure 1) 

The organization and fostering of this semiotic process has been the focus of our 

studies, based on long term teaching experiments (see for instance, Mariotti et al, 

1997; Bartolini Bussi, 1996; Bartolini Bussi et al, 1998; Mariotti, 2000; Mariotti& 

Cerulli, 2001) from which the theoretical framework originated and developed, 

around two key elements: the notion of the semiotic potential of an artefact and the 

notion of a didactic cycle (for a full discussion see Bartolini Bussi & Mariotti, 2008)  

As said above, the use of an artefact to accomplish a particular task may evoke 

(Hoyles, 1993) specific mathematical knowledge. In fact, going beyond the 

immediate sense of its use, experts – mathematicians, and in particular teachers – 

may recognize mathematical notions in solving a specific problem with the artefact. 

For example, positional notation and the polynomial notation of numbers may be 

evoked by an abacus and by its use in counting or addition; similarly, as we will see 

in the following, constructing a stable figure in a Dynamic Geometry System may 

evoke classic ‗ruler and compasses‘ Geometry. In the TSM framework, the following 

definition aims to make explicit the twofold relation that may link an artefact to both 

the sphere of individuals and that of culture, to personal meanings and mathematical 

meanings. At the same time such a definition aims to draw attention to the need for a 

clear distinction between meanings related to the use of an artefact, in particular 

those related to the individual accomplishing a task, and meanings related to 

mathematical content as cultural attainment. 

A double relationship may occur between an artefact and on the one hand the 

personal meanings emerging from its use to accomplish a task (instrumented 

activity), and on the other hand the mathematical meanings evoked by its use and 

recognizable as Mathematics by an expert. 

We will call this double semiotic link the semiotic potential of an artefact. (Bartolini 

Bussi & Mariotti, 2008, p. 754) 

The notion of semiotic potential captures 

the idea that an artefact may be used not 

only by the student to accomplish a task 

but also as a vehicle for learning, in other 

words, it can be used by the teacher as a 

tool of semiotic mediation. Once its use is 

introduced in the classroom activities the 

teacher may exploit its semiotic potential 

to foster students‘ mathematical learning. 

The analysis of the semiotic potential is to 

be considered an a priori phase that 

Figure 3 The TMS model for the teaching learning 
process 
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constitutes the core of the teaching sequence design. In the case of classic ancient 

tools one can take advantage of history, finding there inspiration (Bartolini Bussi, 

2001) As far as new technological tools are concerned, the instrumental approach 

(Rabardel, 1995) as developed by some authors (Trouche, 2005; Artigue, 2002; 

Lagrange, 2000) offers a good frame for an a priori analysis of the use of the artefact 

with different tasks and provides the basis for a cognitive and epistemological 

analysis that contributes to the identification of potential meanings that might emerge 

during students‘ activities and the related mathematical meanings. 

Exploiting the semiotic potential of the artefact involves for the expert (for instance, 

the teacher) an awareness of its potential both in terms of evoked mathematical 

meanings and emergent personal meanings during the activity in the classroom. On 

the one hand, to the teacher must contrive didactic situations where students face 

tasks that are expected to mobilize specific schemes of utilization and consequently, 

situations in which they are expected to generate personal meanings. On the other 

hand, the teacher needs to orchestrate social interactions with the aim of making 

personal meanings, which have emerged during the artefact-centred activities, 

develop into the mathematical meanings that constitute the teaching objectives.  

Within the frame of the TSM, I will describe how a DGS offers a good context for 

approaching proof, in particular how some of its elements may function in the hands 

of the teacher as tools of semiotic mediation to develop mathematical meanings 

related to proof: specifically, as discussed above, meanings related to the notion of 

Theorem as a system of statement, proof and theory. 

Geometrical construction in a DGS  

Let us start from the core of the analysis that lies in the relationship, immediately 

evoked in the mind of any mathematician, between Cabri figures and geometrical 

constructions. Such relationship can be elaborated from the point of view of semiotic 

mediation through both an epistemological and a cognitive analysis, leading to an 

outline of the semiotic potential of the artefact ‗Cabri‘ with respect to the meaning of 

Theorem.  

In Euclidean Geometry, traditionally referred to as ‗ruler and compasses geometry‘, 

construction problems have a central position. The theoretical nature of a 

geometrical construction is clearly stated, and that is in spite of their apparent 

practical objective, i.e. the drawing which can be produced on a sheet of paper 

following the solution procedure (Mariotti, 2007) As Vinner clearly points out: 

The ancient Greek undertook a challenge which in a way represents some of the most 

typical features of pure mathematics as an abstract discipline. It is not related to any 

practical need.(Vinner, 1999, p. 77) 

Actually, the use of ruler and compasses generates a set of axioms defining the 

theoretical system of Euclid‘s Elements, thus any construction problem to be solved 
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within Euclidean Geometry – let‘s say a geometrical construction - leads to a 

Theorem that validates the construction procedure that solves it. 

The appearance of DGSs has triggered a new revival in geometrical constructions. 

The use of virtual tools can simulate use of the ruler and compass of classic 

Geometry: lines and circles intersecting each other, over centuries drawn on sand, 

papyrus or paper, are now reproduced on a computer screen. Any DGS offers 

something new to the classic world of paper and pencil figures: screen drawings can 

be acted upon, using the ‗dragging modality‘. This modality allows the 

transformation of screen figures, changing the starting points of the construction, but 

maintaining all the properties defined by the constructing procedure. As a 

consequence, the stability of the characterizing properties of the drawn figure in 

respect to dragging, constitutes the natural/standard test of correctness for any 

construction task in a DGS . 

Moreover, consider a DGS like Cabri (Laborde & Bellemain, 1995): the elements of 

any Cabri figure are related according to the hierarchy of properties determined by its 

construction procedure. Such a hierarchy of properties corresponds to a relationship 

of logical dependence between them, while a sub-set of the tools available in a Cabri 

Menu can be related to its correspondent set of construction tools in Euclidean 

Geometry (Laborde & Laborde, 1991) This correspondence allows control by 

―dragging‖ to be put into a relationship with ―theorems and definition‖ within the 

system of Euclidean Geometry (Mariotti, 2000; Jones, 2000)
5
.  

In summary, as far as the Cabri tools are concerned, a double relationship is 

recognizable. On the one hand, Cabri tools are related to the construction task that 

can be solved through their use, resulting in the appearance of a Cabri figure, and to 

the stability of such a figure by dragging; on the other hand, specific Cabri tools can 

be related to the geometrical axioms and theorems that can be used to validate the 

solution of the corresponding construction problem within the Geometry theory.  

Hence, a semiotic potential of the Cabri environment is recognizable, residing in the 

twofold relation that it has with the meaning of the Cabri figure as it emerges from 

the use of its virtual drawing tools for solving construction problems controlled by 

the dragging test, and the theoretical meaning of geometrical construction as it is 

defined within Euclidean Geometry in relation to a given set of axioms. 

Exploiting the semiotic potential of the artefact Cabri became the key pedagogical 

assumption inspiring the design of a teaching sequence that, according to the 

structure of a Didactic Cycle, consisted of activities involving the use of the artefact 

and semiotic activities aimed at individual and social elaboration of signs (for details 

see Mariotti, 2000; 2001) 

The use of the artefact was centred on a construction task requiring students: 
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 to produce a specific Cabri figure that should be stable by dragging, and write 

the description of the procedure used to obtain it; 

 to produce a validation of the ‗correctness‘ of the construction realized. 

The Construction task consisted of two requests, the first corresponding to acting 

with the artefact, the second to producing a written text referring to such actions. 

Note that producing a written text consists of both describing and commenting on the 

procedure carried out. The request of validating the solution made sense with respect 

to the Cabri environment, corresponding to the need for explaining and gaining 

insight into the reason why the figure on the screen passes the dragging test. The 

process which began in the students‘ semiotic production proceeded through social 

interactions orchestrated by the teacher in true Mathematics Discussions (Bartolini 

Bussi, 1998; Mariotti, 2001) Whereas, at the very beginning, the term construction 

made sense only in relation to using particular Cabri tools and to passing the 

dragging test, later on the meaning slowly evolved, acquiring the theoretical meaning 

of Geometrical construction.  

Such an evolution could be accomplished, under the guidance of the teacher 

exploiting the correspondence between Euclidean Axioms and specific Cabri tools 

and their modes of use. Starting from an empty menu, the choice of the appropriate 

tools to start with was discussed as well the correspondence with a set of 

Construction axioms constituting the first core of the Geometry Theory which any 

validation can refer to. Then, as long as new constructions were produced, the 

corresponding Theorems were validated and added to the theory. Students could 

experience and participate in  two  parallel processes of evolution: on the one hand, 

the enlargement of the Cabri menu, and on the other hand the corresponding 

development of a Geometry Theory. We can claim that students were introduced to 

the Theorems culture, because students not only produced new statements and their 

proofs, but they also had the opportunity of becoming aware of the theory within 

which proofs made sense, and of how such a theory was developing.  

Results of several long-term teaching experiments attest the emergence of 

intermediate meanings, rooted in the semantic field of the artefact, and their 

evolution into mathematical meanings, consistent with Euclidean Geometry. In 

particular, the experience in the classroom highlighted how meanings emerging from 

the use of tools in the constrained world of Cabri were effective in developing and 

interlacing the sense of proof and the sense of theory. The use of any single tool 

mediates the meaning of the application of an axiom or a theorem, while the idea of 

the Cabri menu, that is the set of available tools, mediates the meaning of theory. 

Conventionality and the evolutionary nature of a theory clearly emerged during 

collective discussions where students experienced both establishing and developing 

a Geometry Theory through exploiting the possibility of personalizing the menu by 

selecting the tools to be used. I have written extensively in the past about these 
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experiments (Mariotti, 2000, 2001, 2007, 2009), and now I will move on to the last 

example.  

More about the semiotic potential of a DGS: Dragging as a semiotic mediator of 

conditionality 

For my last example I will elaborate a bit more on the potential offered by a DGS, 

and in particular on the semiotic potential of dragging modes in respect to the 

mathematical notion of conjecture. The significance of this discussion stems from a 

shared opinion, already mentioned above, about the fundamental role that open 

problems and conjecturing activities have in developing the sense of proof, fostering 

a productive relationship between ‗spontaneous‘ argumentation processes and 

theoretical validation (Arsac & Mante, 1983; Arsac, 1992; Hadas et al. 2000; 

Pedemonte, 2002)  

As I have already said, different contexts afford open-ended questions in different 

ways, offering different potentialities for both posing and solving open problems. 

What I want to discuss concerns a very peculiar aspect of Dynamic Geometry, and 

from this perspective I intend to compare the two contexts considered above, the sun 

shadow and the DGS contexts. 

The studies carried out by Boero and his colleagues focused on different aspects of 

experiencing sun shadows, highlighting the crucial role played by the dynamic 

character of the phenomena under investigation. In the case of open problems, when 

it is requested to produce a conjecture, dynamicity seemed to foster transformational 

mental processes (Simon, 1996; Harel & Sawder, 1998) providing key elements to 

produce conditional statements. The conditional statement seemed to emerge as 

―crystallization‖ of a dynamic exploration. This crystallization isolates a specific 

moment, and a position, when the occurrence of one fact has the occurrence of 

another fact as consequence. In Mathematics, the formulation of a conjecture 

expresses such a crystallization in a conditional statement (Boero et al., 1999; Boero 

et al., 2007) Because of the dynamic nature of experiences in a DGS it seems 

reasonable to address the issue of the role of dragging modes in conjecture 

production.  

Thus, in the broader perspective of the solution of open-ended problems, let us 

consider the specific request of formulating a conjecture concerning a specific 

configuration in a DGS. Actually, the term open-ended problem has often been used 

in the mathematics education literature (see for instance Arsac & Mante, 1983; 

Silver, 1995) Usually, it refers to a task that asks a question without revealing or 

suggesting the expected answer. In the specific case when the solver is explicitly 

requested to formulate a conjecture, we speak of conjecture open problems. This is a 

very common case in Geometry, when within a specific situation, corresponding to a 

well-defined geometrical configuration, the solver is asked to make a conjecture that 

usually assumes the form of a conditional statement between possible properties of 
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the given configuration. When the solution is sought within a DGS, like Cabri, the 

solver is expected to explore the configuration dynamically. This means that the 

solver has to interpret perceptual data coming from observing the screen whilst 

dragging the figure, and to transform them into a geometrical statement. In other 

words, the process of exploration is productive if the solver is able to transform 

perceptual data into a conditional relationship between geometrical properties 

The seminal work of Arzarello, Olivero and colleagues (Arzarello et al., 1998, 2002; 

Olivero, 2001, 2002) as well that of other researchers (Hôlzl, 1996; Leung & Lopez-

Real, 2002 2006; Leung, 2008; Healy 2000), has shown the potentialities of different 

dragging modalities in supporting the conjecturing process. Starting form their 

results, I want to discuss the potential offered by a DGS not only in supporting the 

conjecturing processes but also in mediating the mathematical meaning of conjecture 

and specifically of conditional statement in the Geometry context. Specifically, in 

the frame of the TSM, I will outline the semiotic potential of particular modalities of 

dragging with respect to the notion of conjecture as a conditional statement. 

Dragging modalities can be considered as specific artefacts used to solve an open 

problem, and meanings emerging from this use may be related to the mathematical 

meanings of conditional statements that express the logical dependency between a 

premise and a conclusion. 

Exploring in a DGS: invariants by dragging  

When dragging is activated on a specific figure obtained by a construction, it 

provokes a phenomenon usually described as the movement of the figure. Such a 

movement is perceived because of the contrast between what is changing and what is 

not changing, because some properties of the figure are maintained by dragging and 

others are not. The notion of invariant by dragging naturally emerges as a property, 

or a set of properties, that are preserved during a dragging action, but for our 

discussion, it is useful to look more carefully at this phenomenon.  

When a figure is acted upon, the properties stated by the primitives used in the 

construction are maintained, but it happens that other properties will appear as 

invariant too, specifically all those properties that are a consequence of the 

construction properties within the theory of Euclidean Geometry (Laborde & Sträßer, 

1990) Take for instance the following 

configuration:  

ABCD is a quadrilateral in which D is chosen on 

the line parallel to AB through C, and the 

perpendicular bisectors of AB and CD are 

constructed.  

By dragging the Cabri figure, the constructed 

properties are preserved - the parallelism between 

AB and CD, the perpendicularity between the 

Figure 4: The result of the construction 

described in the example above. 
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each side and its bisector – but also the parallelism between the two bisectors clearly 

emerges as invariant. This can lead us to formulate the following conjecture: ―if two 

sides of the quadrilateral are parallel, then the corresponding perpendicular bisectors 

are parallel.‖  

Actually, the fact that a specific relationship between invariants is preserved 

corresponds to the general validity of a logical implication between properties of a 

geometrical figure. Because of their simultaneity it may be difficult to control the 

hierarchy induced on the different invariants by the construction. Nevertheless, the 

asymmetry between the two kinds of invariants has a counterpart in an asymmetry in 

the movement of different elements of the figure. Actually, only basic points – those 

from which the construction originates - can be selected and dragged, thus two 

different types of movement occur that it is worth distinguishing and analysing 

carefully for our purpose.  

Direct motion, that is the variation of an element in the plane under the direct control 

of the mouse, and indirect motion, that is the variation of any other element as a 

consequence of direct motion. 

During a dynamical exploration, the possibility of discriminating between the two 

movements allows one to ‗feel‘ motion dependency. Hence, the solver can 

distinguish between direct invariants and indirect invariants and interpret their 

dynamic relationship in terms of logical consequences between geometrical 

properties, eventually expressing it as a conditional statement between a premise and 

a conclusion.  

The distinction between direct and indirect movement leads us to reconsider the 

results coming from previous studies on conjecturing in a DGS, and in particular to 

reconsider one specific modality of dragging, previously described as Dummy locus 

dragging (or Lieu muet dragging) (Arzarello et al. 1998, 2002; Olivero, 2002) This 

involves acting on the mouse with the intention of maintaining a specific property, 

i.e. realizing a constrained movement of the original figure in order to make a 

specific property become ‗invariant‘. Such a new type of invariant that we can call an 

Indirectly Induced Invariant will correspond to a consequence of all the properties 

given by the construction plus the new hypothesis corresponding to the constrained 

dragging. In other words, exploring via this modality that we call Maintaining 

Dragging (MD) (Baccaglini-Frank, 2010) corresponds to what mathematicians 

would describe as exploring ―under which condition … a certain property occurs‖.  

According to the previous analysis using MD to solve a conjecture problem, it is 

possible to clearly distinguish between the premise and the conclusion of the 

conditional statement that is the outcome of the exploration as the student can carry 

it out. The student can directly and intentionally control such a distinction during the 

exploration: the conclusion will be the property that the solver decides to maintain, 

the premise will the property corresponding to the constrained movement. 
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In summary, as far as dragging and conjecturing is concerned there are two main 

modalities characterized by the intention with which the solver selects and searches 

different types of invariants: 

 free dragging: looking for indirect invariants as consequences of the direct 

invariants; and 

 constrained dragging: looking for possible construction invariants that may 

cause a specific indirect intentional invariant to happen.  

The simultaneity of invariants combined with the control of the different status of 

each kind of invariant is the counterpart of the logical dependency between a 

premise, corresponding to the direct invariants, and a conclusion, corresponding to 

the indirect invariants (induced either intentionally or unintentionally) 

Taking the perspective of semiotic mediation, we claim that the different dragging 

modalities, together with the different types of invariants that originate from their use 

in solving a conjecture-production task, offer a rich semiotic potential in respect of 

the notion of conjecture as a conditional statement between a premise and a 

conclusion. The semiotic potential is recognizable in the following relationships 

between: 

 direct and indirect invariants and respectively premise and conclusion of a 

conditional statement; and  

 the dynamic sensation of dependence between the two types of invariants and 

the geometrical meaning of logical dependence between premise and 

conclusion.  

The analysis of process of exploration that can be expected when using the MD has 

been the focus of a recent study carried out at the upper secondary level 

(Baccaglini-Frank, 2010) The experiment consisted of a teaching phase in which 

students were introduced to the different modalities of dragging and an observation 

phase in which students were interviewed in pairs during the solution of conjecture 

open problems. 

Results from the study show how different meanings related to the notion of 

conjecture may emerge. The different kinds of invariant can be characterized by 

reference to their specific status in the activity of exploration; their specific 

characteristics make them clearly recognizable by the students and can be used by 

the teacher to exploit the semiotic potential of dragging and specifically of MD. Such 

results, and in particular a model of the process of conjecture-generation based on 

the use of MD, has been presented and discussed in several papers to which I refer 

for a detailed discussion (Baccaglini-Frank, 2010, in press; Baccaglini-Frank & 

Mariotti, 2009, 2010; Baccaglini-Frank et al., 2009)  
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CONCLUSIONS 

We started with some considerations about different epistemological approaches to 

proving and proof, aiming at clarifying their impact on didactical approaches to 

proof in the classroom. The educational aim was summarized as resolving the 

potential conflict between the two main functions of proof, i.e. validating within a 

theory and explaining with respect to interlocutors‘ conceptions. This means finding 

a way, a pedagogical/ didactical way, of developing the complex relationship 

between argumentation, with its goal of convincing, and proof, with its goal of 

theoretically validating. Finally, it means taking into account the differences between 

argumentation and proof, and exploiting their deep link rather than ignoring it. 

The approaches to proof that were discussed above can be considered consistent with 

that aim, though the way they were implemented in the classroom present 

differences; in particular, differences in the choice of context and the way its 

potential was exploited.  

Differences can be referred to specific theoretical frameworks that inspire the design 

of the scenario of classroom activities. This is for instance the case of the choice of a 

DGS in the examples given above. In that case the potential of Cabri, as generally 

acknowledged in current literature, is elaborated via the filter of the TSM and 

described in terms of semiotic potential giving a clear explanation of the specific 

links between acting in Cabri and the meanings that may emerge in such use, and the 

mathematical meanings that may be recognized and may constitute the educational 

goal of the instructional intervention.   

The complexity of the educational aim certainly requires long term interventions, and 

this requires long term teaching experiments and research projects that are very 

demanding, both from the point of view of the methodological design and the 

implementation in the classroom. Nevertheless, further research is needed, and I 

hope that this contribution will offer a stimulus in this direction.

NOTES 

1. An exception is that of mathematical induction, which is explicitly treated, and to which a specific training is devoted. 

But, very rarely, is mathematical induction presented in comparison to other modalities of proving, which are commonly 

considered natural and spontaneous ways of reasoning.  

2. Following the distinction introduced by Rabardel (1995) we use the term artefact in order to distinguish between the 

tool itself and the specific way of using that tool in order to accoplish a specific task. 

3. According to the semiotic approach developed by other researchers (Radford, 2003; Arzarello, 2006) and inspired by 

Pierce, we use the term sign consistently with the idea of the indissoluble relationship between signified and signifier, 

and the idea that meaning originate in the intricate interplay of signs (Bartolini Bussi and Mariotti, 2008); for a 

thoughtful discussion see also (Sfard, 2000, p. 42 and following)  

4. The distinction between personal meanings and mathematical meanings may remind of Brousseau‘s distinction 

between knowing (connaissance) and knowledge (savoir) (1997) Even if they are not in antithesis the two perspectives 
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cannot be reduced one to the other: the former stresses the semiotic dimension of the teaching-learning processes which 

is in the shadow in the latter. 

5. Actually a DGS provides a larger set of tools, including for instance "measure of an angle", "rotation of an angle" and 

the like. That implies that the whole set of possible constructions do not coincide with that attainable only with ruler and 

compass, see (Stylianides & Stylianides, 2005) for a full discussion. 
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INTRODUCTION TO THE PAPERS OF WG01: 

ARGUMENTATION AND PROOF 

Viviane DURAND-GUERRIER, Université Montpellier 2, France 

Kirsti HEMMI, Mälardalen University, Sweden 

Niels JAHNKE, Universität Duisburg-Essen, Deutschland 

Bettina PEDEMONTE, Istituto per le Tecnologie Didattiche - CNR Genova, Italy 

 

This chapter collects the contributions discussed during the working sessions by the 

thirty-one participants from fourteen countries of the WG1 «Argumentation and 

proof» at CERME7 in Rzeszow (Poland). Eighteen papers from eleven countries 

have been presented and discussed. Each presentation was followed by a reaction 

from a participant presenting the key issues and posing questions to the author(s). 

The papers are presented under five themes: epistemological and cognitive issues, 

means for analysing proving activities, transparency, educational implication of 

views on mathematics, on the relevance of proof on teaching mathematics.. We will 

conclude this introduction by some challenging perspectives emerging from our 

discussion. 

EPISTEMOLOGICAL AND COGNITIVE ISSUES 

Cognitive and meta-cognitive issues were specifically developed in three papers by 

the Italian participants, in line and deepening the research in this area since 1980. 

The paper by Paolo Boero and the one by Ferdinando Arzarello and Cristina Sabena 

draw explicitly on the integration of the models of Toulmin and Habermas that was 

presented in CERME 6. Boero presents some tools for analyzing a « successful » 

classroom discussion at a university course in primary school teacher education, with 

the aim of developing awareness about the « rules » of argumentation and proof. 

Arzarello and Sabena consider the construction of  ―meta-cognitive unity" in order to 

give reason of success and difficulties in indirect proofs, using Peirce's account of 

abduction for their description of the cognitive processes involved in indirect proofs. 

The paper by Anna Baccaglini-Frank focuses on an elaboration of conjectures in 

dynamic systems. The author emphasises two different types of abduction associated 

to two different ways of generating conjectures that arise using a particular modality 

of dragging in dynamic geometry. The hypothesis of the author is that conjectures 

suggested by the use of the dragging function will lead to cognitive rupture, while 

conjectures suggested by mathematical considerations will lead to cognitive unity. 

MEANS FOR ANALYSING PROVING ACTIVITIES  

An important issue in the research on proof and proving is the possibility to have 

access to the process in which students are involved when they elaborate a proof. 

The four papers in this section focus on this aspect, in various manners and with 
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different populations. Esther Brunner, Kurt Reusser and Christine Pauli present an 

analysis instrument developed to describe content-related aspects of the proving 

process. This instrument has been used to analyse videos concerning a mathematical 

problem solving session in 32 classes of the 8th or 9th year of the three school types 

in Germany and Switzerland. The main result of this study is the dominance of 

formal deductive proof among the classes whatever the type of school, while 

experimental or generic proof could be relevant for the proposed problem. In his 

paper, Yosuke Tsujiyama focuses on the role of looking-back at proof-planning 

processes in students' proving activity, that are not explicit in proof as a product. 

This is illustrated with an example in geometry with Japanese 8th grade students. 

Patricia Perry, Óscar Molina, Leonor Camargo, and Carmen Samper analyse the 

proving activity of a group of three university students solving a geometrical 

problem in a dynamic geometric system. Solving the problem requires formulation of 

a conjecture and justification in a theoretical system. For their analyses, the authors 

refer to the integration of Toulmin‘s and Habermas‘ models mentioned above to 

elaborate components of a successful performance. The activities of the students 

were video taped and transcribed. Their analyses indicate that students' proving 

activities are close to the considered components. Julia Cramer develops a 

methodology combining Toulmin's scheme and a collection of topical schemes, and 

an epistemic action model in order to shed light on the relations between 

argumentation and knowledge construction. In her paper she presents some 

preliminary results obtained from the work of grade 10 German students and grade 

11 Israeli students who were submitted three tasks in the frame of a research project 

on ―effective knowledge construction in interest-dense situations‖. In the presented 

cases, everyday argumentation was the starting point to develop mathematical 

conjectures. 

TRANSPARENCY  

Through the notion of ―transparency‖ the three papers presented in this section show 

the importance to make more or less invisible for students some important aspects 

concerning proof.  

Kirsti Hemmi and Clas Lôfwall present an ongoing research aiming to develop and 

test some tasks that could enhance students' understanding of the discovery function 

of proof. The authors consider proof as an essential artefact (i.e. tools that mediate 

knowledge between the social and the individual) in mathematical practice. The 

students seemed to catch the idea of the function of discovery, although they did not 

manage to construct the proof. The paper provides evidence of the interest of 

exploring these questions in further research. Kirsten Pfeiffer presents a scheme that 

she has developed to describe and explore students' proof evaluation performance; 

following Hemmi, she considers proof as an intellectual artefact in mathematical 

practice. The author uses this scheme for analysing an experiment consisting of 

interviews with eight first year university students. Students were asked to evaluate 
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six different proofs of the same statement in a familiar domain. The results suggest 

the relevance of this scheme to investigate students' knowledge and skill in proof and 

proving. In her paper, Bettina Pedemonte explores the development of algebraic 

proof in a dynamic system (AlNuSet). The main hypothesis of the author is that 

activities in this environment favour the ―transparency" of the proof, due to the fact 

that in this system, the transformation of an expression is not the result of a 

calculation, but is carried out by explicit algebraic rules and axioms. 

EDUCATIONAL IMPLICATION OF VIEWS ON MATHEMATICS  

In their paper, Simon Modeste and Cecile Ouvrier-Buffet consider the opportunity 

offered by the appearance of algorithms in the curricula in France to study the links 

between algorithms and proof. They have developed an epistemological analysis and 

a study of ―how researchers know the algorithms‖ through interviews, taking into 

account both tool and object aspects. Their results support the relevance of 

algorithms for studying proof, but the authors point out that little is known about 

algorithms as objects. The authors intend to use this epistemological model of 

analysis in further research with students. Joanna Mamona-Downs and Martin 

Downs discuss in which respect mathematicians as teachers at tertiary level are able 

to convey the interest of proof. Relying on the difference between a credited 

argument and a proof, they hypothesise that in certain circumstances the insistence 

on proof could appear to students as a game for pedants. The examples that are 

provided concern examples where mathematical modelling takes place. Considering 

that beauty should take a place in curricula, which is the case in some countries, but 

not in others, Manya Raman and Lars-Daniel Öhman investigate in what ways 

mathematical proofs could be perceived as beautiful by working mathematicians and 

discuss possible educational implications on insight into the nature of beauty in 

mathematics. Their analysis relies on two proofs of Picks' theorem that gives a 

simple formula for calculating the area of a lattice polygon. Relying on the work of 

Etchmendy concerning Hyperproof, and on the legitimacy of visual or diagrammatic 

proof through possible formalisation in -logic, Reinert A. Rinvold and Andreas 

Lorange investigate the interest of developing multimodal proof, including actions 

and gestures in mathematics education, with a case study conducted with pairs of 

teacher training students, involving number patterns represented by visual and 

physical figures. The authors conclude that this kind of activity has a potential for 

learning proof. Antti Viholainen examines the effects of the view of mathematics on 

how the role of argumentation and proof is seen. He considers mainly two opposite 

views: if mathematics is seen as an axiomatic system, formal argument will be 

required, while if mathematics is seen as a thinking and learning process, informal 

arguments play an important role. 

ON THE RELEVANCE OF PROOF ON TEACHING MATHEMATICS  

In this session papers analyse the role of proof in teaching mathematics Emelie 
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Reuterswärd and Kirsti Hemmi report some results from a case study on five 

Swedish upper secondary school teachers concerning their view on proof, 

particularly concerning the role and relevance of proof in teaching mathematics. The 

data consist of interview transcripts and protocols of observation of lessons. Two 

main different views appear: "proof as something for all students" and "proof as not 

necessarily for all students". This study was motivated by the appearance in the new 

Swedish curriculum of a more explicit focus on proof. The results open for the 

necessity of studying how these reforms are implemented and what effect they have 

on different student groups. In some countries like Canada, France or Italy, the 

relevance of teaching proof at secondary school level is well admitted, and the 

possibility of developing reasoning skills at elementary school is considered. The 

paper from Stephan Cyr presents the results of an experiment with elementary school 

students aged 11-12 showing the possibility of developing ability to reason 

deductively and validate geometric statements by using geometrical properties rather 

than measurement, which is an important issue for students in order to become aware 

of the difference between practical and theoretical geometry. Margo Kondratieva 

takes into account that development of reasoning skills and formation of concepts is 

a life-long process, considering that at each level of concept development, reasoning 

behaviour and degree of rigor depends on the level of concept maturity. In her paper, 

she illustrates the process of designing interconnecting problems on an example from 

Euclidian geometry, claiming that the course of formalisation of reasoning affects the 

conceptualisation process related to the object of the problem. 

CHALLENGING PERSPECTIVES 

During this session, we discussed on challenging perspectives about argumentation 

and proof.. A first issue concerns the use, evolution, elaboration or integration of 

theoretical constructs introduced at the previous CERME (e.g. cognitive unity; 

Toulmin's model, transparency background), and discussion of new theoretical 

frames (e.g. Habermas model for rational behaviour in proving). Closely related are 

the epistemological and cognitive issues concerning different varieties of indirect 

proof, and the specificity of proof in accordance with different mathematical fields, 

in particular according with the prominence or not of axiomatisation, and the effect 

on the nature of proof of the use of technological environment. Another important 

issue concerns the cognitive development with three main topics that were discussed 

during the session and for which further research are needed: the effect on teaching 

and learning proof, on students' performance in mathematics - the way students really 

prove and learn to prove - the designing activity fostering argumentation and proof 

skills along the curriculum from kindergarten to university. We also discussed the 

logical aspects of proof, the way of taking into account everyday logic competencies 

in class and of considering the role of semantics aspects and the place for logical 

matters in the teaching and learning of proof and proving. The implication for 

teaching is a crucial question addressed to researchers and mathematics educators; it 



Working Group 1 

CERME 7 (2011) 97 

 

appears necessary to share relevant problems for fostering the learning of proof all 

along the curriculum, and on the way to prepare prospective teachers to teach proof 

and to work with teachers to implement design relying on research results, taking 

into account the difference of cultural contexts and curricula in the different 

countries. This may constitute a program for our next up-coming meeting in 

CERME8. 

 

Papers 

A: Epistemological and cognitive issue 

 Meta-cognitive unity in indirect proofs, Ferdinando Arzarello, Cristina Sabena 

Abduction in generating conjectures in dynamic geometry through ―maintaining 

dragging‖,  Anna Baccaglini-Frank 

Argumrntation and proof: discussing a ―successful‖ classroom discussion, Paolo 

Boero 

B: Means for analysing proving acticities 

Mathematical Proving on Secondary School level I: Supporting Student 

Understanding through different types of Proof. A Video Analysis, Esther Brunner, 

Kurt Reusser, Christine Pauli 

Everyday argumentation and knowledge construction in mathematical tasks, Julia 

Cramer 

Analyzing the proving activity of a group of three students, Patricia Perry, Óscar 

Molina, Leonor Camargo and Carmen Samper 

On the role of looking back at proving processes in school mathematics: focusing on 

argumentation, Yosuke Tsujiyama 

C: Transparency 

Making the discovery function of proof visible for upper secondary school students, 

Kirsti Hemmi, Clas Lôfwall 

Conjecturing and proving in AlNuset, Bettina Pedemonte 

A schema to analyse students' Proof evaluations, Kirsten Pfeiffer 

D: Educational implication  
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Modeste Simon, Ouvrier-Buffet Cécile 

Proof: a game for pedants?, Joanna Mamona-Downs, Martin Downs 
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The view of mathematics and argumentation, Antti Viholainen 

E: On the relevance of proof on teaching mathematics 

Upper secondary school teachers‘ views of proof and the relevance of proof in 

teaching mathematics, Emelie Reuterswärd, Kirsti Hemmi 

Development of beginning skills in proving and proof – writing by elementary 

school students, Stéphane Cyr 

Designing interconnecting problems that support development of Concepts and 

reasoning, Margo Kondratieva 
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META-COGNITIVE UNITY IN INDIRECT PROOFS 

Ferdinando Arzarello, Cristina Sabena  

Dipartimento di Matematica, Università di Torino, Italia  

In this paper we focus on the cognitive aspects of indirect argumentation and 

proving processes. Drawing on the Habermas model of rational behaviour in three 

components (epistemic, teleological, and communicative) and on the notion of 

cognitive unity as developed by Boero and his collaborators, we distinguish between 

two levels of argumentation, a ‗ground level‘ and a ‗meta-level‘. On the base of a 

case study in early Calculus context (secondary school), we introduce the notion of 

‗meta-cognitive unity‘, which may give reason of success and difficulties in indirect 

proving processes. Furthermore, we use Peirce‘s account of abduction to shed light 

into some cognitive processes behind the production of indirect proofs. 

Key-words: indirect proof, meta-cognitive unity, argumentation processes, 

diagrammatic reasoning, abduction. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Proving is one of the main activities in mathematics, and the investigation on 

proving processes has been one of the major subjects of research in mathematics 

education for thirty years at least (Balacheff, 1987; Hanna, 1989; Duval, 1991; 

Mariotti & Antonini, 2008; Boero, Douek, Morselli, & Pedemonte, 2010). 

Many of these studies have focused on the nature of the relationships between 

conjecturing and proving, and have put forward different perspectives. Some of them 

point out the differences between argumentation and proving processes (Balacheff, 

1987; Duval, 1991). According to others, ―in order to bring about a smooth approach 

to theorems in school, it is necessary to consider the connections between 

conjecturing and proving, in spite of the undeniable differences between the two 

processes‖ (Garuti, Boero, Lemut, & Mariotti, 1996, p. 113). The possibility of a 

cognitive continuity between the phases of conjecture production and proof 

construction has been analysed with the notion of cognitive unity (ibid.). Within this 

perspective, Pedemonte (2007) has further distinguished between 

- ―the referential system, made up of the representation system (the language, heuristics, 

and drawings) and the knowledge system (conceptions and theorems) of argumentation 

and proof (Pedemonte, 2005). The analysis of cognitive unity takes into account the 

referential system.  

- the structure intended to allow logical cognitive connection between statements 

(deduction, abduction, and induction structures) (Pedemonte, 2007). 

There is continuity in the referential system between argumentation and proof if some 

expressions, drawings, or theorems used in the proof have been used in the argumentation 

supporting the conjecture. There is structural continuity between argumentation and proof 
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when inferences in argumentation and proof are connected through the same structure 

(abduction, induction, or deduction).‖  

(Boero, Douek, Morselli, & Pedemonte, 2010, p. 183, emphasis as in the original).  

Recently Boero and his collaborators (Boero, Douek, Morselli, & Pedemonte, 2010) 

have integrated the cognitive unity analysis with Habermas‘ elaboration of rational 

behaviour in discursive practices. Adapting the three components of rational 

behaviour according to Habermas (teleologic, epistemic, and communicative) to the 

discursive practice of proving, they have identified: 

―A) an epistemic aspect, consisting in the conscious validation of statements according 

to shared premises and legitimate ways of reasoning (cf. the definition of ―theorem‖ by 

Mariotti & al. (1997) as the system consisting of a statement, a proof, derived according 

to shared inference rules from axioms and other theorems, and a reference theory);  

B) a teleological aspect, inherent in the problem-solving character of proving, and the 

conscious choices to be made in order to obtain the desired product;  

C) a communicative aspect, consisting in the conscious adhering to rules that ensure 

both the possibility of communicating steps of reasoning and the conformity of the 

products (proofs) to standards in a given mathematical culture.‖  

(ibid., p. 188) 

In this model, the expert‘s behaviour in proving processes can be described in terms 

of (more or less) conscious constraints upon the three components of rationality: 

―constraints of epistemic validity, efficiency related to the goal to achieve, and 

communication according to shared rules‖ (ibid., p. 192). As the authors point out, 

such constraints work at two levels of argumentation:  

- a level (that we call ground-level) inherent in the specific nature of the three 

components of rational behaviour in proving;  

- a meta-level, ―inherent in the awareness of the constraints on the three 

components‖ (ibid., p. 192).  

In our research, we focus on the cognitive aspects involved in argumentation and 

proving processes, and use a Peircean semiotic lens to analyse them (see for instance 

Arzarello & Sabena, in print). Considering the description given by Peirce (Peirce, 

1931-1958) of diagrammatic reasoning as a three-step process—constructing a 

representation, experimenting with it, observing the results—we can observe that the 

three components of Habermas and of Peirce have deep analogies (though not a one-

to-one correspondence): the construction of a representation may be guided mainly 

by a teleological rationality, whereas the experimentation and observation with it 

assume an epistemic value. 
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In this paper we present the first results of an ongoing study on particular cases of 

argumentation and proving processes, i.e. those related to indirect proofs, namely 

proofs by contraposition or proof by contradiction. 

Analysing indirect proofs and argumentations both from a mathematical and a 

cognitive point of view, Antonini and Mariotti (2008) provide a model to interpret 

students‘ difficulties. Essentially, the model splits any indirect proof of a sentence S 

(principal statement) in a pair (s,m), where s is a direct proof (within a theory T, for 

example Euclidean Geometry) of a secondary statement S* and m is a meta-proof 

(within a meta-theory MT, generally coinciding with classical logic) of the statement 

S*  S. An example given by the authors is the following. Consider the (principal) 

statement S: ‗Let a and b be two real numbers. If ab = 0 then a = 0 or b = 0‘; and the 

following indirect proof: ‗Assume that ab = 0, a  0, and b  0. Since a  0 and b  0 

one can divide both sides of the equality ab = 0 by a and by b, obtaining 1 = 0‘. In 

this proof, the secondary statement S* is: ‗let a and b be two real numbers; if ab = 0, 

a  0, and b  0 then 1 = 0‘. A direct proof is given. The hypothesis of this new 

statement is the negation of the original statement and the thesis is a false proposition 

(―1 = 0‖).  

Through this model, Antonini and Mariotti point out that the main difficulties for 

students who face indirect proofs consist in switching from s to m. On the contrary 

the difficulties seem less strong for statements that require a proof by contraposition, 

that is to prove B  A (secondary statement) in order to prove A  B (principal 

statement). 

Let us observe that the meta-proof m does not coincide with the meta-level we 

considered above; rather, it is at the meta-mathematical level (based on logic). 

Integrating the two models, we can say that switching from s to m requires a well-

established epistemic and teleological rationality in the students. To better 

disentangle this issue, we make the hypothesis regarding the importance of a meta-

cognitive unity in argumentation and proving processes. 

META-COGNITIVE UNITY 

The distinction between the ground level and the meta-level drawn from the Boero et 

al. (2010) model may be very useful to investigate the proving processes related to 

indirect proof. Basing on such a distinction, we introduce the notion of meta-

cognitive unity, as a cognitive unity between the two levels of argumentation 

described above, specifically between the teleological component at the meta-level 

and the epistemic component at the ground-level. 

Differently from the structural and referential cognitive unity, which focuses on two 

diachronic moments in the discursive activities of students (namely the 

argumentation and the proving phases), the meta-cognitive unity refers to a 

synchronic integration between ground- and meta- levels of argumentations.  
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Our hypothesis is that the existence of such a meta-cognitive unity is an important 

condition for producing indirect proofs. In other words, a missing integration 

between the two levels of argumentations can block the students‘ proving processes, 

or produce cognitive breaks as those described in the literature on cognitive unity 

mentioned above. Furthermore, our ongoing data analysis suggests that meta-

cognitive unity may entail also some kind of cognitive unity at the ground level (e.g. 

structural or referential).  

We shall illustrate our claims through an emblematic example, in which meta-

cognitive unity is accompanied by structural-cognitive unity, and develops through 

what we call the logic of not (see also Arzarello & Sabena, in print). 

AN EXAMPLE 

To illustrate the meta-cognitive unity and the logic of not, we discuss the case of 

Simone, related to the following Calculus problem in the graphical register.  

The drawing [reported in Fig. 1] shows the graphs of: a function f, its derivative, one 
of its antiderivatives. Identify the graph of each function, and justify your answer. 

 

                                

    Fig. 1 The graphs of the problem                    Fig. 2 Simone‘s protocol 

The problem was given to grade 9 students in a scientifically oriented school (5 

hours of mathematics per week). It worked as an assessment task at the end of a 

teaching sequence on the relationships between a function graph and the graphs of its 

derivative and of one of its primitives (introduced as ‗antiderivatives‘, i.e. the 

function graphs whose derivative is the given graph). Though it may appear of 

simple combinatorial nature, the task indeed shows to be difficult for the students, 

who by ―didactic contract‖ are asked to provide articulated arguments for their 

answers. A main source of difficulty consists in involving both direct and inverse 

problems mixed together. The antiderivative function has in fact been introduced as 

the inverse of the derivative function. 

Red function 

Blue function 

Green function 
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Simone solves the problem correctly, as we can see from his written production 

(shown in Fig. 2, and translated below). In doing so, he is able to develop a strategy 

that may be compared to the one of a chemist, who in the laboratory has to detect the 

nature of some substance. He knows that the substance must be of three different 

categories (a, b, c) and uses suitable reagents to accomplish his task. For example, he 

knows that if a substance reacts in a certain way to a certain reagent, it may be of 

type a or b but not c, and so on. This kind of strategy may be referred to the notion of 

abduction (for a discussion of abduction in mathematics education, see for instance 

Arzarello et al., 1998; and Hoffmann, 2005). According to Peirce (1931-1958, 2.623) 

abduction is a form of reasoning in which a Case is drawn from a Rule and a Result. 

It is well known his example about beans: 

 Rule:  All the beans from this bag are white 

 Result: These beans are white 

Case:  These beans are from this bag  

As such, abduction is different from deduction, which would have the form: the 

Result is drawn from the Rule and the Case; and it is obviously different from an 

induction, which has the form: a Rule is drawn from a Case and many Results. Of 

course the conclusion of an abduction holds only with a certain probability; in fact 

Polya (1954) calls heuristic syllogism this form of reasoning. In our example of the 

chemist: if, as a Rule, the substance S makes blue the reagent r and if the Result of 

the experiment shows that the unknown substance X makes blue the reagent r, the 

Case of the abduction is that X=S.  

Let us see how Simone develops abductive arguments in order to solve the task. We 

report the translation in English of the protocol shown in Fig. 2, parcelled and 

numbered for the sake of analysis: 

0: Starting from the ―red‖ function  

1: I looked for a possible primitive among the other two:  

2: I noticed that in the point x = 0 the ―red‖ function touches the plane of abscissas, so it 

has ordinate = 0;  

3: and therefore any of its primitives should have in x = 0 null slope,  

4: but both the ―green‖ function and the ―blue‖ function have slope = 0; 

5: so I saw that the red function has a point of minimum,  

6: and I looked among the other two functions for the one with a point of inflection  

7: and only the ―blue‖ function has it;  

8: to check [this] I saw that 

9: when the ―red‖ function comes to touch the plane of abscissas again,  

10: only the ―blue‖ function has s[slope]=0,  
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11: therefore the ―red‖ function is a derivative of the ―blue‖ function.  

Simone first describes two phases of his inquiry (Part A: lines 1-4; Part B: lines 5-8). 

In both parts he develops what we could call an abductive attitude, namely how he 

has been looking for Results that allow him to state a Case because of a Rule. More 

precisely, Simone starts with f = red function (line 0), probably because it is the 

simplest graph, and wonders whether he can apply an abductive argument to the blue 

or to the green function. In both Parts the Rule is: ―any primitive of f has property 

Q‖; the Result is: ―a specific function h has property Q‖; the Case is ―h is a primitive 

of f‖. 

In Part A, the Rule is in line 3, the Result is in lines 2 and 4, while the Case is 

contained implicitly in line 5, which states that the first inquiry has not been 

successful and starts a new inquiry. In Part B we have a new abductive process with 

a new Rule (implicitly contained in lines 5 and 6), a new Result (line 7), a judgment 

about the validity of the abduction (line 7) and a Case, which is not made explicit, 

but is implicitly stated in line 7.  

Afterwards Simone checks his hypothesis (Part C: lines 8-11): he is successful with a 

fresh abductive argument. Recalling the metaphor with the chemist experiment, 

Simone has been able first to find a reagent that discriminates between the 

substances he is analysing, and then to confirm his hypothesis with a further 

discriminating experiment; that is, within the abductive frame, he has been able first 

to produce an hypothesis through an abduction and then to corroborate the 

hypothesis through a further abduction. The experiments of the chemists are here the 

practices with the graphs of functions. Such practices with graphs are examples of 

diagrammatic reasoning, according to the definition of Peirce: ―by experimenting 

upon the diagram and observing the results thereof, it is possible to discover 

unnoticed and hidden relations among the parts‖ (Peirce, 1931-58, 3.363: quoted in 

Hoffmann, 2005, p. 48). Hence in Parts A-B-C Simone has produced and checked 

the Case of line 11.  

Using Habermas model, some of Simone‘s sentences can be considered teleological 

and at the meta-level, since they address the successive actions of Simone and his 

control of what is happening. On the other hand, other sentences show an epistemic 

character at ground-level, since they regard the specific mathematical notions and 

representations involved in the task. Coding the sentences of the protocol as a  b to 

indicate that the sentence a is at the meta-level and controls the sentence b at the 

ground-level, it appears that the teleological component at the meta-level intertwines 

with the epistemic component at the ground level: 

0, 1, 3  2, 4, 5     

6, 8  7, 9, 10, 11 
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We interpret such intertwining as an index of meta-cognitive unity in Simone‘s 

argumentation process. Besides, the presence of a meta-cognitive unity is signalled 

by the fact that the epistemic sentences can be understood only at the light of the 

teleological ones guiding them, and vice-versa. Even more than this: the sentences at 

the ground level have an epistemic component, e.g. they are logically linked each 

other, because of the influence of those at the meta-level. Let now see how this 

complex form of cognitive unity allows Simone to manage the problem using an 

argument by contraposition. It is the form of reasoning that logicians call ―modus 

tollens‖ (from ―A implies B‖ to ―not B implies not A‖). We have called such a 

process ―the logic of not‖ (see also Arzarello & Sabena, in print). Let us explain it 

through what is written in Part D (lines 12-15): 

12: Then I compared the ―red‖ with the ―green‖ function:  

13: but, the ―green‖ function cannot be a derivative of the ―red‖ one,  

14. a: because in the first part,  

      b: when the ―red‖ function is decreasing,  

      c: its derivative should have a negative sign,  

15: but the ―green‖ function has a positive sign. 

Here the structure of the sentence is more complex than before: Simone is thinking to 

a possible abductive argument, like the ones used before: 

(a) Rule: ―any derivative of a decreasing function is negative‖ (lines 14) 

(b) Result: ―the function h is negative‖;                                                                (ARG. 1)  

(c) Case: ―the function h is the derivative of f‖      

But the argument is a refutation of this virtual abduction (line 13); namely it has the 

form of the following syllogism:  

(a) Major premise:  

      ―any derivative of a decreasing function is negative‖ (lines 14)       

(b‘) Minor premise: ―the ―green‖ function has a positive sign‖ (line 15)             (ARG. 2) 

(c‘) Consequence: ―the ―green‖ function cannot be a derivative of  

       an increasing function‖ (line 13).         

In terms of the structure of the virtual abduction ARG 1, it has the form: (a) and not 

(b); hence not (c). It is crucial here to observe that also the refutation of the usual 

Deduction (Rule, Case; hence Result) has the same structure, because of the 

contrapositive of an implication (―A implies B‖ is equivalent to ―not B implies not 

A‖); namely: (a) and not (b); hence not (c) is the same as (a‘) and (b‘); hence (c‘). In 

other words, the refutation of a virtual argument drawn through an abduction 

coincides with the refutation of a virtual argument drawn through a deduction. 

Simone produces in a very natural way this form of deductive argument within an 
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abductive modality. This is remarkable from an epistemological point of view: 

whereas the abductive approach appears very natural for students in conjecturing 

phases (Arzarello et al., 1998), there is often a cognitive break with the deductive 

approach of the proving phase (Pedemonte, 2007 analyses it in terms of ―structural 

discontinuity‖). In fact, the transition from an abductive to a deductive modality 

requires a sort of ―somersault‖, namely an inversion in the way things are seen and 

structured in the argument (the Case- and the Result-functions in the argument are 

exchanged). Such an inversion is not present in case of refutation of an abduction, 

insofar it coincides with the refutation of a deduction (expressed in a syllogistic 

form). Of course a greater cognitive load is required to manage the refutation of an 

abduction compared with that required to develop a simple direct abduction. But the 

coincidence between abduction and deduction in case they are refuted allows 

avoiding the somersault. In our case study, Simone has been able to lighten the 

cognitive load of the task through a transition to a new epistemological status of his 

statements. 

Moreover, Simone is doing mental experiments with the graphs and observing their 

results. The ground level at which Simone epistemic arguments are drawn is very 

concrete; possibly this makes it possible for him to develop at the meta-level the 

teleological arguments we have underlined above, which support him in producing a 

correct proof by contraposition. Lines 16-18 below show the conclusion of Simone‘s 

argument: 

16: Therefore the ―red‖ function is surely f‘(x)  

17: and consequently its primitive (the blue one) is f(x)  

18: and the ―green‖ function is the primitive of f(x), thus F(x). 

We shall now consider an example from the literature, in which the indirect 

argumentation process does not lead to a correct proof by contraposition. The 

example shows a typical difficulty, in which the students do not realise any meta-

cognitive unity and shift from the problems they should solve to another problem, 

which allows them to skip the difficulties of the indirect proof. It is taken from 

Antonini & Mariotti (2008). A well known problem is considered in pencil and paper 

environment: ―Can two bisectors in a triangle form an angle of 90°?‖. The students 

―formulate the conjecture that the angle…cannot be a right angle…The 

argumentation produced can be summarized as follows: if the angle is right then the 

sum of two angles of the triangles is 180°, then the triangle becomes a quadrilateral . 

After this argumentation, no proofs are generated by the students‖ (ibid., p. 410). As 

stated in the paper, the shift to the quadrilateral can be considered an antidote to an 

―absurd world‖: ―the theory is changed according to the validity of the theorems he 

[the student] knows‖ (ibid.).  

Here are the excerpts of the interview taken from that paper: 
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61 P: As far as 90þ, it would be necessary that both K and H are 90þ, then K/2 = 45, H/2 = 

45...180þ-90þ and 90þ.  

62 I: In fact, it is sufficient that the sum is 90þ, that K/2 + H/2 is 90þ.  

63 R: Yes, but it cannot be.  

64 P: Yes, but it would mean that K + H is ... a square […]  

65 R: It surely should be a square, or a parallelogram  

66 P: (K - H)/2 would mean that […] K + H is 180þ...  

67 R: It would be impossible. Exactly, I would have with these two angles already 180þ, 

that surely it is not a triangle. […]  

71 R: We can exclude that [the angle] is /2 [right] because it would become a 

quadrilateral.  

The excerpts show that no teleological aspects are present in the students at the meta-

level: on the contrary they are completely embedded in the situation at the ground 

(epistemic) level and their geometrical knowledge pushes them to shift from a 

triangle to a quadrilateral (# 64, 67, 71).  

DISCUSSION 

We presented an illustrative example of of how a meta-cognitive unity (i.e. a unity 

between a teleological control at meta-level and an epistemic knowledge at ground 

level) may contribute to the production of indirect arguments and proofs. 

In the example, the graphical component is the core of the tasks, and it allows the 

student a visual approach to the problem, what in Peirce‘s words can be called 

‗diagrammatic reasoning‘. This ―concrete‖ component possibly lightens the cognitive 

load of the task, and facilitates the integration between the two levels to produce a 

meta-cognitive unity. Referring to the protocol, we see that the student is able to 

reduce the different cases to simple pass/not-pass ‗experiments‘, like a chemist who 

checks the nature of an unknown substance, and we interpret his ability as an 

outcome of his meta-cognitive unity, which integrates the teleological meta-level 

control and the ground-level knowledge. As a consequence, the situation becomes a 

‗heuristic device‘ similar to cognitive mechanisms used naturally in everyday life, as 

pointed out by Freudenthal (1973, p. 629). The meta-cognitive unity construct brings 

about a unitary analysis of many students‘ difficulties as pointed out in the literature. 

We have also given a short example in which the absence of a teleological rationality 

at meta-level prevents the students from correctly carry out an indirect proof. 

As far as concerns didactic consequences, our approach suggests a possible way for 

teaching indirect proofs, namely in making explicit the teleological dimension that 

can be developed in any reasoning made by the students. In particular it should be 

important to cultivate the idea of the rationality of impossible worlds related to the 

indirect arguments discussing with the students the intertwining between the 
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teleological control and the epistemic knowledge starting from concrete examples 

produced by the same students. In a sense this was already suggested by Freudenthal, 

who wrote: ―If the teacher would tell the student what is an indirect proof, he is 

advised not to contrive examples but to catch a student performing an indirect proof 

and let him understand consciously what he did unconsciously‖ (ibid.).  

In fact in the teaching of both indirect and direct proofs, generally there is more 

attention to the communicative and possibly to the epistemic component, while the 

teleological one is not made explicit. This can start a sort of comedy of errors with 

students, who think that the communicative component is the more relevant and 

produce what Harel (2007) calls ‗ritual schemes‘, which are not useful for 

understanding and possibly produce proofs, especially indirect ones.  
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ABDUCTION IN GENERATING CONJECTURES IN DYNAMIC 

GEOMETRY THROUGH MAINTAINING DRAGGING  

Anna Baccaglini-Frank 

University of Siena (Italy) 

This paper introduces two types of abduction associated to two different ways of 

generating conjectures that arise from using a particular dragging modality in 

dynamic geometry. We refer to such dragging modality as maintaining dragging 

(MD). A first use of MD relies on physical dragging-support and it seems to lead the 

solver ―automatically‖ to the formulation of a conjecture. In this case the abductive 

reasoning seems to occur at a meta-level and to be concealed within the MD-

instrument. On the other hand, some of our data shed light onto a different way of 

generating conjectures which is rooted in use of MD but is ―freed‖ from the physical 

dragging-support. In this case abductive reasoning seems to occur at the level of the 

dynamic exploration. 

Key words: abduction, conjecture-generation, dragging, dynamic geometry, 

instrument, instrumented abduction, maintaining dragging (MD), psychological tool 

INTRODUCTION 

This paper reports on some findings of a study on conjecture-generation in a 

dynamic geometry system (DGS). The study
1
 blossomed from results of Italian 

research that provided a classification of various dragging modalities used by solvers 

during explorations of open problem activities (Arzarello, Olivero, Paola, Robutti, 

2002). This classification describes different ways of dragging points on the screen 

as a conjecture is elaborated and tested, and the solver‘s control shifts from 

―ascending‖ to ―descending‖ (Arzarello et al., 1998). Such transition was described 

as occurring in correspondence to use of dummy locus dragging, that is moving a 

base-point so that the drawing keeps a discovered property, and as being promoted 

by abduction. Our study aimed at unravelling the relationship between abduction and 

the use of particular dragging modalities. 

Since according to the literature (Olivero, 2002), spontaneous use of dummy locus 

dragging does not seem to occur frequently, first, we explicitly introduced the 

participants of the study to four dragging modalities, elaborated from Arzarello et 

al.‘s classification, during two in-class lessons. The modality elaborated from dummy 

locus dragging that we introduced is what we refer to as maintaining dragging 

(MD), and it consists in dragging a base-point of the dynamic figure on the screen 

trying to maintain some geometrical property of the figure. In other words, 

performing MD consists in identifying a property that the figure can have and in 

trying to induce such property as a soft
3
 invariant during dragging. 
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In order to unravel the relationship between abduction and the use of MD during a 

process of conjecture-generation, we constructed a model (Baccaglini-Frank, 2010; 

Baccaglini-Frank & Mariotti, 2010) that provides a cognitive description of the 

process, as a sequence of (implicit) tasks that the solver seems to address. During the 

study we tested, refined, and tested again the model, which was used as a tool of 

analysis in the final round of data analysis. We proceeded through two rounds of 90-

minute clinical interviews
2
 with pairs of students, each round with different students 

who had participated to the introductory lessons on dragging. Data was collected in 

the form of screenshots with audio, video recording, students‘ Cabri files and work 

on paper, transcriptions and subtitled videos. The students (a total of 31), between 

the ages of 15 and 18, were from three Italian high schools and had been using Cabri 

in the classroom for at least one year prior to their interviews. 

A few theoretical background notions 

The study made use of the notions of abduction and instrument as follows. 

Abduction. Peirce was the first to introduce the notion of abduction as follows:  

...abduction looks at facts and looks for a theory to explain them, but it can only say a 

―might be‖, because it has a probabilistic nature. The general form of an abduction is: a 

fact A is observed; if C was true, then A would certainly be true; so, it is reasonable to 

assume C is true (Peirce, 1960, p. 372). 

Recently, there has been renewed interest in the concept of abduction, with a number 

of studies focused on its various uses in mathematics education (see for example 

Baccaglini-Frank, 2010, chapter 2). For this paper we will refer to the definition 

introduced above and to Magnani‘s description of abduction as an explanatory 

hypothesis (2001, pp. 17-18). 

Instrument. The study considers ―dragging‖ in a DGS after the instrumentation 

approach (Vérillon & Rabardel, 1995; Rabardel & Samurçay, 2001; Rabardel, 2002), 

as has been done fruitfully by other researchers (for example, Lopez-Real & Leung, 

2006; Leung, 2008; Strässer, 2009). A particular way of dragging, in our case MD, 

may be considered an artifact that can be used to solve a particular task (in our case 

that of formulating a conjecture). When the user has developed particular utilization 

schemes for the artifact, we say that it has become an instrument for the user. We 

will call the utilization schemes developed by the user in relation to particular ways 

of dragging, ―dragging schemes‖. In this sense the model we developed can be 

interpreted as the description of a utilization scheme for MD, with respect to the task 

of generating a conjecture. From now on we will refer to our model as the MD-

conjecturing model. 

INSTRUMENTED ABDUCTION 

The successive analyses of our data led to the development of a new notion, that of 

instrumented abduction, through which we describe the place and role of abduction 



Working Group 1 

CERME 7 (2011) 112 

 

in the process of conjecture-generation we have studied (Baccaglini-Frank & 

Mariotti, 2010; Baccaglini-Frank, 2010). We introduce this notion by providing 

excerpts of two solvers‘ exploration that constitute a paradigmatic example of how 

MD can be used in the process of conjecture-generation and how the MD-

conjecturing model can be used as a tool of analysis. 

James and Simon were given the following open-problem activity: 

Construct three points A, B, and C on the screen, the line through A and B, and the line 

through A and C. Then construct the parallel line l to AB through C, and the perpendicular 

line to l through B. Call the point of intersection of these last two lines D. Consider the 

quadrilateral ABCD. Make conjectures on the kinds of quadrilaterals can it become, trying 

to describe all the ways it can become a particular kind of quadrilateral. 

The solvers followed the steps that led to the construction of ABCD 

(Fig. 1) and soon noticed that it could become a rectangle. Simon was 

holding the mouse (this is shown in the excerpts below by his name 

being in bold letters), and followed James‘ suggestion to use MD to 

―see what happens‖ when trying to maintain the property ABCD 

rectangle while dragging the base-point A. The solvers have 

accomplished Task 1 of our model (Baccaglini-Frank & Mariotti, 

2010): determining a configuration to be explored by inducing it as a 

(soft) invariant. In such situation we refer to the selected property 

ABCD rectangle, as intentionally induced invariant. As Simon was focused on 

performing MD, James‘ attention seemed to shift to the movement of the dragged-

base-point, and he proposed to ―do trace‖ in order to ―see if …[A moves along a 

―pretty precise curve‖].‖ James seemed to be looking for something that A can be 

dragged along in order for ABCD to remain a rectangle, thus addressing Task 2 of 

our model (searching for a condition, through MD, that makes the intentionally 

induced invariant be visually verified, and recognizing a condition in the movement 

of dragged-base-point along a path). This intention seems to indicate that James has 

conceived an object along which dragging the base point A will guarantee that the 

intentionally induced invariant is visually verified. This is what we call a path. In 

order to ―understand‖ what such path might be he suggests activating the trace on A 

as Simon performs MD (Fig. 2). 

Excerpt 1 
1  I:  and you, James what are you looking at? 

2 James:  That it seems to be a circle... 

3  Simon:  I'm not sure if it is a circle... 

4 James:  It's an arc of a circle, I think the curvature suggests 
that. (...)… 

10  James:  Ok, do half and then more or less you understand 
it, where it goes through. 

11  Simon:  But C is staying there, so it could be that BC is...is 

Figure 2 

Figure 1 
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12  James:  right! because considering BC a diameter of a circle… 

 [They construct the circle and drag A along it, and then they write the conjecture: 
―ABCD is a rectangle when A is on the circle with diameter BC.‖] 

In this Excerpt there seems to be the intention of looking for something that leads the 

solvers to a geometric description of the path as ―a circle‖ ([2], [4]) ―considering BC 

a diameter‖ ([12]). Recognizing and describing the path can lead to a second 

invariant, that we call the invariant observed during dragging, as a regular 

movement of the dragged-base-point along such path (in this case ―A on the circle 

with diameter BC‖). Both invariants are perceived within the phenomenological 

domain of the DGS, where a relationship of ―causality‖ may also be perceived 

between them. Of course such relationship can be formulated within the domain of 

Euclidean Geometry as a conditional link between geometrical properties 

corresponding to the invariants, provided that the solver gives an appropriate 

geometrical interpretation. This can be expressed through a conjecture and checked 

(Task 3: checking the conditional link between the invariants and verifying it 

through the dragging test). 

Solvers like Simon and James who use MD effectively for generating a conjecture 

seem to withhold the key for making sense of their findings. This consists in 

conceiving, within the phenomenology of the DGS, the invariant observed during 

dragging as a ―cause‖ of the intentionally induced invariant, and then, within the 

domain of Euclidean geometry, in interpreting such cause as a geometrical 

―condition‖ for the intentionally induced invariant, a geometrical property of the 

figure, to be verified. In other words, the solvers establish a causal relationship 

between the two invariants generating – as Magnani says (2001) – an explanatory 

hypothesis for the observed phenomenon. 

From the data analyzed another characteristic of behaviors like that of Simon and 

James is the use of MD in an ―automatic‖ way. That is, the solver proceeds through 

steps that lead smoothly to the discovery of invariants and consequently to the 

generation of a conjecture, with no apparent abductive ruptures in the process. So 

where is abduction when conjecture-generation occurs as described by the MD-

conjecturing model? Abduction can be recognized in the expert‘s interpretation of 

the invariant observed during dragging as a cause for the intentionally induced 

invariant to be visually verified. Thus, automatic use of MD does not seem to 

produce explicit abductive arguments during the exploration leading to a conjecture; 

instead it seems to condense and subsume the abductive process. We introduce the 

new notion of instrumented abduction to refer to an abductive inference supported 

by an instrument, like in this case. Here the instrument is the combination of MD 

(artifact) with the MD scheme (utilization scheme) described in the MD-conjecturing 

model. 
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USE OF MAINTAING DRAGGING AS A PSYCHOLOGICAL TOOL  

Our study was primarily aimed at developing and subsequently testing the MD-

conjecturing model. Our final data analyses seemed to confirm the model, however 

one case opened a window onto a fundamentally different way of generating a 

conjecture that seems to have roots in use of MD even though no dragging is actually 

performed. Below we summarize the exploration in which we found such evidence 

and present an excerpt from it. The solvers, Francesco and Gianni, were given the 

following task:  

Draw a point P and a line r through P. Construct the perpendicular line l to r through 

P, construct a point C on it, and construct the circle with center in C and radius CP. 

Construct the symmetric point of C with respect to P and call it A. Draw a point D on 

the semi-plane defined by r that contains A, and construct the line through D and P. 

Let B be the second intersection with the circle and the line through P and D. 

Consider the quadrilateral ABCD. Make conjectures on the kinds of quadrilaterals 

can it become, trying to describe all the ways it can become a particular kind of 

quadrilateral. 

Francesco and Gianni had effectively used MD to generate conjectures in previous 

explorations. In this particular exploration they had noticed the potential property 

ABCD parallelogram. Thus Francesco had chosen a base-point to drag while trying 

to maintain such property. However Francesco and Gianni seemed to conceive a 

geometric description of the path that did not coincide with their interpretation of the 

trace mark left on the screen as Francesco performed MD. This led the solvers to 

reject the original description and search for a new condition for maintaining ABCD 

parallelogram. The solvers were not able to reach such condition using MD and they 

interrupted all forms of dragging. After a moment of silence Gianni started speaking 

about constructing a circle to drag along, as shown in the following excerpt. 

Excerpt 2 

1 Gianni:   eh, since this is a chord, it‘s a 
chord right? We have to, it means 
that this has to be an equal chord 
of another circle, in my opinion 
with center in A. because I 
think if you do, like, a circle with 
center 

2 Francesco:   A, you say… 

3 Gianni:  symmetric with respect to this 
one, you have to make it with 
center A. 

4 Francesco:   uh huh 

5 Gianni:   Do it! 

6 Francesco:   with center A and radius AP? 

Figure 3 
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7 Gianni:   with center A and radius AP. I, I think… 

Gianni appears to be trying to solve the problem of finding a way to drag D in order 

to maintain the property ABCD parallelogram as if he had to perform MD. However 

the solvers‘ inability to perform MD successfully, led to the argumentation above in 

which the following abductive inference (in Pierce‘s terms) is evident: 

 fact: DP=PB (recognized as chords [1]) 

 rule: given symmetric circles with DP and PB symmetric chords ([1], [3]), then 

DP=PB (as observed) 

 abductive hypothesis: there exists a symmetric circle with center in A and radius 

AP ([3]-[7]). 

Without further hesitation the solvers formulate their conjecture (Fig.3): ―D belongs 

to the circle centered in A with radius AP implies ABCD parallelogram.‖ We 

highlight how Gianni applies a way of reasoning, that has roots in his knowledge of 

the MD scheme, to a substantially different situation. Gianni is trying to find a 

condition for ABCD to be a parallelogram, but instead of focusing on the movement 

of a point (D) as would have occurred during use of MD, Gianni notices chords (BP 

and PD, which he interprets as a chord) and visualizes their symmetric behavior, 

which leads him to produce an explicit abductive argument. In particular now the 

―rule‖ appears, while in the case of instrumented abduction such rule would have 

remained implicit in the movement of the dragged base-point and/or the trace mark 

on the screen.  

Taking a Vygotskian perspective (Vygotsky, 1978, p. 52 ff.), the process that was 

external, supported by the MD-instrument in the case of instrumented abduction, 

now can be seen as ―transformed‖ into an internal process. We can say that the MD-

instrument has been internalized and it can now be used as a psychological tool 

(Kozulin, 1998) to solve a conjecture-generation problem. Moreover, now we can 

underline how the intention of searching for a cause that solvers who have 

appropriated the MD scheme exhibit, resides at a different level, a meta-level 

(Gollwitzer & Schaal, 1998), with respect to each specific investigation the solvers 

engage in. Thus, instrumented abduction resides at such meta-level, while the 

abductive inference in the second case resides at the level of the dynamic 

exploration. 

A HYPOTHESIS ON PROOF  

If we consider conjectures generated in the two different ways described above, the 

differences between them are not in the product of the dynamic exploration, the 

statement of the conjecture, but in the elements that emerge during the process of the 

exploration. When MD is used ―automatically‖ as in the conjecture-generation 

process characterized by instrumented abduction, the premise and the conclusion of 

the statement of the final conjecture seem to be ―distant‖. That is, these conjectures 

seem to exhibit a ―gap‖ between the premise and the conclusion, because no bridging 
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arguments tend to emerge from the exploration. On the other hand, it seems that 

when MD is internalized and used as a psychological tool, the produced conjectures 

are accompanied by arguments that can be used to bridge the premise and the 

conclusion. To support this hypothesis, we now provide an excerpt (Excerpt 3) 

containing an oral proof produced by Francesco and Gianni after having reached 

their conjecture (Excerpt 2). 

Excerpt 3 

Francesco:  ah, no! but wait! we know a lot of things here, excuse me, if DA is equal to 

AP which is equal to PC which is equal to CB, DAP and PCB are isosceles. 

Gianni:  yes… And so the angles, right! 

Francesco:  Wait, and so this [pointing to the angle ADP]… 

Gianni:  the angles over there and down there are.. 

Francesco:  so, let‘s say ADP is equal to APD, which is equal to 

Gianni:  we know that these, these are also opposite at the vertex and so they are all 

equal those angles there. (…) 

Francesco:  but, excuse me, if this… if the angles at the base, are equal, also, obviously, 

the angle at the vertex, uhm, the angle DAP is equal to PCB necessarily 

because of the sum of angles. 

Gianni:  Yes, right. 

Francesco:  Because it is 180þ minus equal angles 

Gianni:  okay, so this way we understood that the two triangles are equal. 

Francesco:  Exactly. 

Gianni:  And so also PD and PB are equal. 

Francesco:  Okay, so the diagonals divide each other in their midpoints, and therefore 

ABCD is a parallelogram. 

Gianni:  Yes, right. [Smiling] 

In the analysis of the Excerpt 2 we described how Gianni focuses on the two 

segments PB and PD, and interprets them as chords of symmetric circles. This 

constitutes the key idea (Raman, 2003) in their oral proof summarized as follows: 

 the circles are symmetric so AD is congruent to AP which is congruent to PD 

and to therefore to BC; 

 the isosceles triangles APD and PBC are congruent because they have 

congruent angles, since the angle DPA is opposite at its vertex to CPB; 

 therefore PD is congruent to PB, 

 so ABCD has diagonals that intersect at their midpoints and therefore it is a 

parallelogram. 
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The geometrical properties that emerged during the production of the conjecture, 

now become fundamental ingredients of the solvers‘ proof. In other words, these 

geometrical properties seem to help bridge the gap between premise and conclusion 

of the conjecture. At this point, if we consider conjectures as both the product (the 

statement of the conjecture) and the process (the exploration leading to the statement 

of the conjecture), we can characterize conjectures as those with a gap that emerge 

through automatic use of MD as opposed to those with bridging elements that 

emerge as a product of an internalization of MD. This characterization helps express 

our hypothesis as follows. 

Hypothesis on proof. Automatic use of MD seems to generate conjectures with a gap, 

while use of MD as a psychological tool seems to generate conjectures with bridging 

elements. Therefore use of MD as a psychological tool may foster the solver‘s 

construction of a proof of the statement of his/her conjecture. 

CONCLUDING REMARKS 

Through our study we were able to identify two distinct forms of abductive 

reasoning related to two different ways of generating conjectures that arise from 

using a particular dragging modality in dynamic geometry. When MD is used 

automatically through physical dragging, the abductive reasoning seems to reside at 

a meta-level with respect to the dynamic exploration. This idea is condensed in the 

notion of instrumented abduction that we introduced. On the other hand, when MD 

seems to be ―freed‖ from the physical support, and internalized, the abduction seems 

to occur at the level of the exploration. In this case the conjecture-generation process 

seems to have the advantage of involving arguments that can be reinvested in a 

successive proof, like in the case of Francesco and Gianni.  

We hypothesize that conjectures generated ―automatically‖ through physical use of 

MD, that is conjectures with a gap, will present cognitive rupture with respect to a 

potential proof since the solver will have no arguments emerging from the 

conjecturing-process to base his/her proof upon. This seems to be the case because 

the process of conjecture-generation is supported by the DGS and mostly concealed 

within it, as is the abductive inference that we refer to as instrumented abduction. On 

the other hand, we hypothesize that if solvers who have appropriated the MD-

instrument also internalize it transforming it into a psychological tool, or a fruitful 

―mathematical habit of mind‖ (Cuoco, 2008) that may be exploited in various 

mathematical explorations leading to the generation of conjectures, a greater 

cognitive unity (Pedemonte, 2007) might be fostered. In other words, it may be the 

case that when the MD-instrument is used as a psychological tool the conjecturing 

phase is characterized by the emergence of arguments that the solver can set in chain 

in a deductive way when constructing a proof (Boero et al., 1996). In particular we 

think this may occur if, as in the case of Francesco and Gianni, abduction in which 

the rules are taken from the domain of the Theory of Euclidean Geometry is used 
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during the process of conjecture-generation. An abduction of this sort seems to 

expose key ideas that can be reinvested in the proof.  

The relatively small amount of data analyzed in our study does not allow us to make 

general statements about the hypothesis on proof we illustrated above. Moreover our 

study was not focused on investigating internalization of the MD-instrument and its 

transformation into a psychological tool: the case of Gianni and Francesco was an 

unexpected isolated instance that suggested new potential insight into how a DGS 

can be used (or not) in the context of argumentation and proof, opening an alley for 

future research. For example, as some colleagues have suggested, it would be 

interesting to investigate what it takes, both from learning and teaching perspectives, 

for the solver to make the cognitive shift we describe, transforming the MD-

instrument into a psychological tool. 

NOTES 

1. Research study partly funded by PRIN 2007B2M4EK (Instruments and representations in the teaching and learning of 

mathematics: theory and practice). 

2. The activities proposed were open-ended tasks. The interviewer would typically ask the solver to explain an action, to 

describe what s/he was looking at or trying to accomplish, or to provide clarification or elaboration of a statement s/he 

made. 

3. We use the terminology ―soft‖ and ―robust‖ as introduced by Healy (2000).  
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ARGUMENTATION AND PROOF:  

DISCUSSING A "SUCCESSFUL" CLASSROOM DISCUSSION 

Paolo Boero  

Dipartimento di Matematica, Università di Genova 

This paper concerns a discussion in a university course of primary school teacher 

education. The discussion was aimed at developing awareness about the condition of 

"equally likely possible cases" in the classical definition of probability. During the 

discussion students engaged several times in reflections about validity of statements, 

validity of inferences, etc. The aim of this paper is to present some tools to analyze 

the discussion and hypothesize possible follow-ups, related to the performed 

analysis and the aim of developing awareness about the "rules" of argumentation 

and proof. 

Keywords: argumentation; mathematical proof; rationality; meta-mathematics 

INTRODUCTION 

The development of students' awareness about the "rules" of argumentation and 

proof in mathematics is one of the main challenges for mathematics education. This 

statement expresses a conviction largely shared among mathematics educators in the 

last three decades, in spite of different positions concerning when to develop such 

awareness, which elements should awareness consist of, and how to deal with them 

in the classroom (cf Balacheff, 1987; Duval, 1991; Harel, 2008). 

Concerning the how, we think that the rules of argumentation and proof cannot be 

taught as a separate subject in the phase of approach to them (obviously it can 

become a subject for specialized courses in more advanced education). For us the 

best didactical choice is to exploit suitable mathematical activities of argumentation 

and proof, and develop awareness of the rules according to the occasions offered by 

those activities. But what mathematical activities are suitable to offer the expected 

occasions? And how to exploit those occasions? 

In this paper we will deal only with the occasions and the how question. After a 

description of the educational context in which the discussion reported in this paper 

took place, we will try to frame the analysis of the discussion in order to identify the 

occasions offered in it. We will also discuss how to exploit those occasions. 

THE DOCUMENT IN ITS EDUCATIONAL CONTEXT 

In Italy, since 1999 prospective primary school teachers must follow a four-year 

university preparation, including courses, laboratories and teaching stages (in the 

future a fifth year will be added). At present, students must follow at least four 

courses of 30 hours each in the mathematical area, which should integrate the 

revision of basic mathematical subjects together with didactic considerations, with 
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an eye to national indications for primary school curricula. At the Genova University 

our courses are strictly co-ordinated. Teaching is organized according to a cyclic 

structure. In most cases, the starting point of each cycle is an individual problem 

solving activity; it exploits knowledge supposed as shared by students (sometimes 

recapitulated by the teacher), and/or new knowledge introduced by the teacher, 

and/or a document coming from primary school classes. A collective discussion 

leaded by the teacher follows; it concerns students' individual productions, selected 

by the teacher. Discussion results in a synthesis, which can provide elements for a 

further cycle - or constitute an end point for the subject at stake. Some contributions 

of the teacher during and after the discussions concern the historical origin of the 

mathematical content dealt with in that moment, and reflections on the relationships 

mathematics - "reality" and on the ways of reasoning in mathematics. Students' 

interventions and questions on the above issues are encouraged. Traces of the effects 

of these choices are in the document. 

Students attending our courses come from different kinds of high school; the 

majority comes from a socio-pedagogical high school, with few hours of 

mathematics (3 or 2 hours each week, according to the grades); some students come 

from scientific high school (3-5 weekly hours of mathematics) or technical high 

school (3-4 hours of mathematics, but no mathematics in the last year). In the year 

2004/05 49 students attended the fourth course of 30 hours (I was the teacher); 12 

hours were dedicated to a technical and didactical introduction to elementary 

probability theory. 45 students took part in the activity described below. 15 of them 

(P-students) had already met elementary probability theory in the high school. Like 

every year, the starting point of the activity on probability was the following 

individual problem: 

"If we cast two dice and sum the digits on their superior faces, is it more convenient to 

bet even, odd, or is it indifferent?" 

Four solutions were considered for further discussion: 

A) - it is more convenient to bet even, because the possible results are eleven (2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12) and 6 results out of 11 are even (14 answers similar to this, 6 of  

them are by students who studied elements of probability in the high school: P-students); 

B) - it is more convenient to bet even, because even+even=even, odd+odd=even, 

even+odd=odd, thus in two cases out of three the result is even (7 answers, 1 from a P- 

student) 

C) - it is indifferent because even+even=even, odd+odd=even, even+odd=odd,  

odd+even=odd, therefore two results out of four are odd and two results are even (11 

answers, 3 from P- students); 

D) - it is indifferent because if I take an even digit of the first dice, like 2, the sums with 

the digits of the other dice (2+1, 2+2, 2+3, 2+4, 2+5, 2+6) are even in three cases and odd 
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in three cases, and the same happens if I take an odd digit of the first dice (8 answers, 3 

from P- students). 

5 other students had produced other kinds of texts: "(...) I do not remember the 

solution"- a P-student; "It should be indifferent but I cannot explain why"; "Half of 

the numbers of each dice are even" (two answers, 1 from a P-student). 

The knowledge at stake concerns the classical definition of probability (as the ratio 

between the number of favorable cases and the number of all possible cases, 

provided that they are equally likely), particularly the crucial condition of "equally 

likely cases". Usual approaches to probability in high school (when required in the 

programs) do not focus enough on this condition; exercises and examples on most 

texts concern only equally likely cases (without putting this aspect into evidence).  

Individual solutions were written on a sheet of paper and distributed to all students; a 

discussion followed. The translation has "smoothed" some students' expressions, due 

to difficulties of finding equivalent English expressions. Only main steps are 

reported below. The whole texts in Italian and English will be available for 

discussion. 

Some supporters of solution B quickly recognized to have considered only one of the 

two possibilities and abandoned it; but we will see that some doubts about this issue 

still emerged during the discussion. Then: 

1-S1:  I have studied probability at the high school, I have applied the 
definition of probability as the ratio between the number of favorable 
cases and the number all possible cases... The possible cases are 11, 
the even cases are 6, the odd cases are 5, thus the probability of an 
even sum is  6/11, bigger than 5/11. 

2-S2:  but this is not compatible with the precise reasoning of  D.    (...) 

5-S5:  we could make an experiment... to cast the dice a lot of times, one 
hundred, two hundreds, and see which solution is correct! 

6- S2:  we are making a discussion concerning mathematics, we must reach a 
conclusion by reasoning, not by experiments! Like in geometry, where 
measurements are not accepted to validate statements!  (...) 

10- S3:  the dice are concrete! And if we cast two dice a lot of times we can see 
who is right (even or indifferent). 

11- S7:  but we are reasoning in our head, by considering different possibilities 
and reasoning about them.      (...) 

13- T:  let us try to see if we can get a shared conclusion by reasoning!   

14 -S9:  I would like to come back to solution C. For me it provides a good 
justification for the "indifferent" hypothesis 

15-S10:  For me C is too abstract. I prefer the justification D.  

16-S2:  In C do not have the possible cases, we have general, abstract cases... I 
am convinced that "indifferent" is the correct answer, but       (...) 
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18-S12:  A fits very well what I have studied in the high school: probability of 
an event is the ratio between the number of favorable cases and the 
number of all possible cases! 

19-T:  Are you sure? Imagine that you win if the sum is equal to 2. Let us 
consider the following possible cases: sum 2; and sum different from 
2.They are two possible cases, the favorable case is the first one, thus 
probability of winning is ´. Would you accept to bet an important 
amount of money on 2? 

20-S11:  But in this situation it is evident that the two cases are not.... They are 
not balanced, the case "different from 2" contains many numbers (like 
3, 4, 5, 6, ...), we cannot divide one favorable case by those two un-
balanced cases!       (....) 

23-S13:  The example provided by the professor is like a counter-example for 
the use of our definition... 

24-S2:  but what does it happen in our situation? Perhaps, the sums 2, 3, 4, 5, 
6 are not well balanced cases! 

25-S6:  There is a contradiction: if we follow A, it is more convenient to bet 
even; if we follow D, it is indifferent to bet even or odd. Thus some of 
the premises for A or for D are wrong.    (...) 

28-T:  what are the premises?      (...) 

30-S6:  If the conclusions are contradictory, it means that the premises are not 
compatible among them! We discussed it several times! 

31-S11:  I agree with you that one of the premises is right, the other is wrong 

32-T:  Are you sure that one of the two premises is necessarily right? 

33-S3:  Yes 

34-S6:  Not, both premises (though different) might be wrong! 

35-T:  Try to go in depth in the analysis of the premises! 

36-S2:  the most sure premise is in the solution D: the idea is to consider all 
the sums...        (...) 

40-S4:  wait! Now I understand:  2 can be the sum in only one case (1+1), 
while 3 can be the sum in two cases (1+2 and 2+1)... They are not 
balanced! 

41-S1:  but I do not agree that 1+2 and 2+1 are different cases... (...) 

44-S4:  now I understand! A is wrong, because the cases (the sums 2, 3, 4, ...) 
are not well balanced!   (some voices of consensus) 

45-T:  So, what conclusion can we derive from the above considerations? 

46-S3:  That A is wrong  

47-S2:  That D is right 

48-S6:  I agree that A is wrong, but this does not imply that D is right! 

49-T:  Try to explain why! 

50-S6:  I am still convinced that it is better to bet even, though I have 
understood that the motivation A is not right. 

51-S3:  But if a A is wrong and D is right, then what follows from D is right! 

52- S6:  We have not yet proved that D is right! 
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53-S2:  D is the opposite of A... A is wrong, thus D is right! 

54-S6:  No, D is another thing. It is like if I say that Milan is the capital of 
Italy, and you say that Naples is the capital of Italy: if I prove that 
Milan is not the capital of Italy, this does not means that Naples is the 
capital of Italy!       (...) 

56-T:  does D consider all possible cases?    (...) 

60- S9:  yes, six cases for each number, it makes 36 cases - all possible cases! 

61-S2:  I see: we could represent it by a 6x6 table 

62-T:  draw it on the blackboard!                        (S9 constructs the 6x6 table) 

63-S4:  now I start to understand - not only D is right, but this allows to get the 
conclusion that it is indifferent to bet even or odd,   (...) 

65-T:  is it OK for everybody?     (consensus) 

66-T:  what about C? Does it prove that it is the same to bet even or odd? (...) 

69-T:  Can we avoid considering specific couples, like in D?  (...) 

71-T:  are you sure that C ensures that all cases are balanced without 
considering couples?     (long silence) 

72-S6:  If a dice would have 5 faces... 

73-S3:  But a dice has 6 faces!      (...) 

76-S2:  D implies C, D is a justification for C! 

77-S?:  C allows to get the conclusion "indifferent" but is also necessary... 

78-S?:  to get D, C is a consequence of D,  

79-S?:  thus a longer road to prove that it is indifferent to bet even or odd! 

80-T:  Are you sure that C is not an independent way to get the conclusion 
"indifferent" ?  

81-S3:  It is independent, because a 5-faces dice does not exist! 

82-S?:  In the reality... But we could imagine it! 

83-S4:  C is an independent way to get the conclusion "indifferent" if we can 
prove in general  that the four cases  even+odd, odd+even, even+even, 
odd+odd are balanced... 

84-T:  How we could disprove it? 

85-S2:  To disprove it, it would be necessary to find a counter-example... 

86-T:  Everybody agrees on it?      (silence) 

87-T:  To invalidate a statement is it necessary to find a counter-example?  

88-S4:  No, it is sufficient .... 

89-T:  Why sufficient and not necessary? 

90-S4:  Because to invalidate a statement we can also make a reasoning ... find 
a contradiction... without finding counter-examples! 

91-T:  Let us search for a counter-example. Have you any ideas? 

92-S6:  The five-faces dice... 

93- S3:  But it does not exist, and I cannot imagine it 

94-T:  Is it really important to have dice? What is relevant in the reasoning 
C? Where digits come from, or... 

95-S2:  The fact that half of digits are odd, and half are even! 
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97-S6:  Thus we could imagine another source of digits... 

99- S4:  For instance, digits taken from two boxes.. each box could contain 5 
tickets! 

100-S2:  Let us see with the table: 

(the 5x5 table is constructed; counting results in 13 even sums and 12 odd sums) 

101-S6:  But then it would be easier to imagine boxes with 3 tickets! 

(the 3x3 table is constructed; counting results in 5 even sums and 4 odd sums) 

In the economy of the course, if we consider the aim of introducing students into 

elementary probability theory, the reported discussion can be considered successful 

not only because crucial aspects of the concept of probability have been focused and 

clarified, but especially because the subsequent activities put into evidence that the 

most important "content" knowledge had been learnt by most students. Indeed the 

individual task "How to explain to a student that was not there how we got the 

solution" was accomplished by 36 students out of 45 with correct and enough precise 

justifications of the solution "indifferent" (34 students preferred to take the solution 

D and complete it). More interestingly, after the discussion of some unsatisfactory 

individual texts another individual task was proposed (the request was to identify in 

which random situations of a list it was possible to calculate the probability by 

applying the definition to the given set of cases, and to explain why): 42 students out 

of 45 were able to identify all the 3 appropriate situations out of the 5 proposed to 

them, with exhaustive specific justifications for the rejection of the others. 

Thus, the "content" aim was achieved. But later I realized (reconsidering the reported 

discussion) that the potential inherent in some of its "segments" had not been 

exploited. With the exception of two students (S2 and S6) no trace of the 

epistemological, logical and meta-mathematical considerations was reported in the 

individual texts after the discussion. It was like if the attention had shifted from what 

was required in the task, to the usual presentation of a learned proof (according to 

the prevailing activity in high school). I must add that during the discussion, the 

teacher (myself) was aware of the importance of some interventions of the students 

(this was the reason that induced me to keep the audio-recording till now); what was 

lacking was not only the time needed to exploit the offered occasions, but also a 

broad perspective where to situate both "content", and "epistemological", "logical" 

and "meta-mathematical" aims (elaboration not yet available at that time).  

DISCUSSION OF THE DOCUMENT 

In this section I will present some tools to frame the reported discussion, and I will 

use them to analyze the discussion and prepare possible follow-ups. 

The culture of theorems  

By this synthetic expression I will mean both the knowledge needed to master 

conjecturing and proving and the capacity to use it, with reference to the construct of 

theorem (Mariotti & al, 1997) as the triad that consists of: the statement of the 
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theorem; the theory, which the theorem belongs to; and the proof of the theorem, 

performed within the theory (according to the inference rules and by exploiting the 

reference knowledge provided by the theory). Knowledge inherent in the culture of 

theorems concerns the rules of the game of conjecturing and proving. It includes 

meta-mathematical knowledge about the nature of the acceptable references for the 

validation of a statement, the role of counter-examples, the logical and textual 

requirement of a statement and a proof, etc. It includes also more general (logical) 

rules of arguing. As to the capacity of using knowledge, I will elaborate on it in the 

following subsections. 

This description makes evident the fact that the culture of theorems is part of what 

we could call "the culture of argumentation". The interest for prospective primary 

school teachers of the discussion reported in the enclosed document depends on the 

fact that the development of skills related to argumentation belongs to teachers' 

professional duties (explicitly stated in the present national programs and national 

curricula of several states, including Italy). The occasions offered by the document 

concern in some cases specific requirements of proof, in other cases more general 

requirements of argumentation; thus prospective teachers can relate reflections on 

the rules of argumentation to specific issues concerning further mathematics 

education. 

The content of this paper could be rephrased now by saying that it deals with the 

problem of passing over to students the culture of theorems and of argumentation. 

Framing argumentation and proof: Toulmin's and Habermas' models at work 

B. Pedemonte in her thesis (2003) and then in Pedemonte (2007) proposed the use of 

Toulmin's model to study the relationships between argumentation and proof. In 

Toulmin‘s model an argument consists of three elements: 

(claim): the statement of the speaker; (data): data justifying claim, (warrant): the 

inference rule, which allows data to be connected to the claim. 

In any argument, the first step is expressed by a viewpoint (an assertion, an opinion). 

In Toulmin's terminology the standpoint is called the claim. The second step consists 

of providing data to support the claim. The warrant provides the justification for 

using the data as a support for the claim. The warrant, which can be expressed as a 

principle or a rule, acts as a bridge between the data and the claim. Three other 

elements that describe an argument can be taken into account: (backing) the support 

of the rule; (qualifier) the strength of the argument; (rebuttal) the exception to the 

rule. The force of the warrant would be weakened if there were exceptions to the 

rule: in that case conditions of exceptions or rebuttal should be inserted. The claim 

must then be weakened by means of a qualifier. Backing is required if the authority 

of the warrant is not accepted straight away.  

Following Pedemonte (2007) we can apply this model to analyze specific points of 

the discussion; for instance, in the first intervention the student's claim (it is more 
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convenient to bet even) is related to data (the possible sums) through a warrant (the 

way of evaluating probability as the ratio between the number of favorable cases and 

the number of all possible cases) that will be weakened by the remark that another 

reasoning brings to a conclusion different from the claim.   

Habermas (2003, ch.2) distinguishes three interrelated components of rational 

behaviour: the epistemic component (epistemic rationality) inherent in the control 

of the propositions and their chaining, the teleological component (teleological 

rationality) inherent in the conscious choice of tools to achieve the goal of the 

activity, and the communicative component (communicational rationality) inherent 

in the conscious choice of suitable means of communication within a given 

community). With an eye to Habermas‘ elaboration, in the discursive practice of 

proving we can identify (see Boero & al, 2010): an epistemic aspect, consisting in 

the conscious validation of statements according to shared premises and legitimate 

ways of reasoning (cf. the definition of ―theorem‖ by Mariotti & al., 1997); a 

teleological aspect, inherent in the problem-solving character of proving, and the 

conscious choices to be made in order to achieve the aim; and a communicative 

aspect, consisting in the conscious adhering to rules that ensure both the possibility 

of communicating steps of reasoning and the conformity of the products (proofs) to 

standards in a given mathematical culture.  

Our adapted Habermas model allows to consider some pieces of the transcript under 

the perspective of rational behavior: for instance, in the last 10 interventions, once 

students realize that (C) might not stand by itself as a proof that it is indifferent to bet 

"even" or "odd" without considering (D), the search for an example in which the four 

cases of (C) are not equally likely is guided by the teacher and performed according 

to teleological rationality, in dialectic relationship with epistemic rationality. 

The complexity of the discussion can be described rather well if we consider the 

nature of the claims, data, and warrants used by the teacher and the students during 

the discussion: we could qualify them with the adjectives "mathematical" (like in the 

case §1), "meta-mathematical" (like in the case §94), "logical" (like in the case §53 - 

§54), "epistemological" (like in the case §6).  

The integrated use of Habermas' and Toulmin's models proposed in Boero & al. 

(2010) allows us to analyse the reported discussion according to a broader, unified 

perspective. The discussion can be considered from two points of view: the point of 

view of the teacher and the point of view of the students. The teacher's intention is to 

bring students to realize why the condition of equally likely possible cases is 

necessary to get a way of evaluating probability that makes sense. Thus his 

teleological rationality consists of interventions that address the students' attention 

towards data (produced by the students, or provided by him -see §19) that could 

weaken or confirm their warrants; while his epistemic rationality allows him to take 

under control the evolution of the argumentation from the point of view of logical 
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and mathematical validity (see §87), and communicational rationality results in the 

formulation of interventions  that are suitable to reach the students.  

From the students' point of view, their teleological rationality is exercised in few 

occasions and only locally (according to short term aims - see for instance §101)  

during the discussion, while the path towards the global achievement of the final aim 

and several steps to approach it are in the hands of the teacher. On the contrary, the 

students' epistemic rationality is locally at work in an autonomous way in several 

occasions, both at the mathematical level and at the metamathematical, logical and 

epistemological level. The task "How to explain to a student that was not there how 

we got the solution" fulfils the aim of re-constructing a mathematical, unitary 

solution of the problem. Did it allow the students to exercise rationality on the global 

level in all of its components? The lack of reflexive traces in almost all the texts 

prevents to answer. It is probable that several students wrote down what they were 

accustomed to do since the secondary school - a well written presentation of the 

solution of a task, without exercising awareness of the epistemic and teleological 

requirements of proving. Thus the task does not fulfill the aims of letting the students 

recompose the rationality of the guided construction of the solution, and of making 

them aware of the components of the rational behavior at the epistemological, meta-

mathematical and logical level. The students' experience in our previous courses 

allowed some of them (less than 10 out of 45) to raise or deal with epistemological, 

meta-mathematical and logical issues during the discussion. Those issues remained 

as concerns for the students who introduced or discussed them, and in most cases 

were even lost in their individual texts. 

The follow-ups 

The analysis of the transcript has put into evidence some important elements of the 

culture of theorems (and, more generally, of the culture of argumentation), which 

some students have brought to the fore with their interventions. In order that those 

elements become shared and conscious acquisition for all students, it is necessary to 

design suitable didactical situations. Epistemological and meta-mathematical 

concepts cannot be introduced through definitions (specially when young students 

are concerned). Thus it is necessary to exploit the occasions offered by the 

discussion to approach those concepts through meaningful examples and situations 

(that will become "reference situations" for them). Various solutions can be worked 

out. 

In a situation like the reported one, the analysis of the main motive of the discussion 

for the teacher (and the students as well) brings us to exclude the introduction of 

systematic reflections on epistemological and meta-mathematical issues during the 

discussion. It would mean to distract the students' (and the teacher's) attention from 

its important "content" goal. Thus it is necessary to design a-posteriori didactical 

situations based on the use of the transcript of the discussion. The transcript can play 
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the role of a permanent mediation tool, useful for addressing attention to elements 

that remain available to all students for reflection. 

According to experiments performed in similar circumstances (see Douek, 2009 and 

Boero & al, 2010, second part), I think that a possibility might be to choose the final 

text by S6 (the most rich on the logical and epistemological ground, even if far from 

being exhaustive!) and ask students to compare it with another "poor" (but 

satisfactory from the mathematical point if view) text in order to identify the 

differences, then ask to identify further aspects of the discussion concerning similar 

(epistemological and logical, according to our terminology) aspects. 

Another idea might be to present a complete, reasoned re-construction of the 

problem (where explicit epistemological, logical and meta-mathematical 

considerations inform and guide the sequence of steps of reasoning needed to 

achieve the solution), and ask students to identify if, how and when in the transcript 

(and eventually in students' individual productions) those considerations emerged. 

A third idea might be to analyze the first part of the transcript with students, putting 

into evidence the relevant logical and meta-mathematical aspects, then ask them to 

complete the analysis of the transcript according to the same categories.  

The three proposals are based on the exploitation of written texts; the first two imply 

a comparison of at least two texts. This choice provides all students with permanent 

tools for reflection on the issues at stake.    

All the proposals need to be followed by a whole class discussion, orchestrated by 

the teacher, about (some of the) individual productions. According to the students' 

maturity and the aims of the activity, during the discussion or after it the teacher 

might introduce some technical terms and explicit logical and meta-mathematical 

concepts in order to bring students from an initial, informal awareness of the issues 

at stake to a more mature take in charge of elements of the culture of theorems (and 

of the culture of argumentation). More importantly, during the discussion the teacher 

could drive the students' attention towards a re-construction of the whole elaboration 

of the solution, in order to make them aware of his intentions and the aims of his 

interventions. A way to contribute to pass over to the students his rationality. 
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Within the framework of the Swiss-German study ―Instructional Quality, Learning 

Behaviour and Mathematical Understanding‖ [1] (Klieme, Pauli & Reusser, 2006, 

2009) and by using the example of a purely mathematical problem, it was examined 

in 32 classes how teachers support the process of proving in classroom instruction 

from a subject-based and a communicative point of view. For this purpose, an 

analysis instrument was developed which describes content-related aspects of the 

problem-solving process as well as the students‘ participation. The results clearly 

indicate that the individual teachers differ in terms of their choice and application of 

specific types of proof. A special group, however, is constituted by those teachers 

who prove in multiple ways.  

Keywords: Mathematical proving, Mathematics instruction, Secondary school level 

I, Support of the students, Video analysis 

INTRODUCTION 

In the context of educational standards (cf. Blum et al., 2006; EDK, 2010; NCTM, 

2000), learning to prove and argue has gained new significance and experiences a 

real renaissance. This change was particularly furthered after the criticism of formal 

proof and its strictness could be neutralized with respect to public school instruction 

and was complemented by other concepts like, for example, pre-formal (or operative) 

proving (e.g. Krauthausen, 2001). 

Since mathematical proving is a demanding activity, it requires teachers to support 

their students in a way which is close to contents and understanding-oriented. And 

since a mathematical proof is accepted or rejected by the community, argumentation 

takes place within a discourse. For these reasons, two aspects are crucial to the 

support of proving: content-related support as well as participation in subject specific 

discourse. This paper is focused on content-related, subject specific support. 

Various empirical studies have shown that rather few students are able to give 

mathematical reasons for or to prove a given fact (cf. Healy & Hoyles, 1998; Reiss, 

Klieme & Heinze, 2001). As regards geometrical proofs, Reiss and collaborators 

(Reiss, Hellmich & Thomas, 2002) found that the varying capabilities of students in 

terms of proving can be substantially explained by class membership. Against this 

background it is surprising that only relatively few studies focus on the part of the 

teacher and his or her support behaviour while proving. 
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THEORETICAL FOUNDATIONS  

Proving as an Important and Demanding Mathematical Core Activity  

The debate around proving in mathematics instruction is multi-faceted and extensive. 

Besides questions about the strictness of a proof (cf. Hanna, 1997; Jahnke, 1978) or 

its significance (cf. Heintz, 2000), there is an interest in the different functions of a 

proof (cf. Hanna & Jahnke, 1996; Hersh, 1993; de Villiers, 1990), or in the role of 

communication and the community in proving. The distinctions between process and 

product, or proof and proving as an activity are likewise objects of the debate. In a 

genetic conception of learning, the process of proving is important especially to 

mathematics instruction. It is for this reason that Jahnke (1978), by reverting to 

Freudenthal‘s proposition of ―local ordering‖ (1977), recommends that students 

should also be offered an understanding of sufficient reasons while problem-solving. 

It is not the completed proof alone or its re-enaction that should dominate 

mathematics instruction. Various didactic models of teaching proving processes are 

based on this assumption (cf. Boero, 1999; Reiss, 2002). By starting out by a 

(constructed) need for proving (cf. Hefendehl-Hebeker & Hussmann, 2003; Reusser, 

1984), these models suggest different steps of how to get from a ―why‖-question to 

argumentatively supported reasoning. This reasoning, however, must turn out to be 

conclusive enough also for other persons, and it must be possible to validate it. 

Owing to this validity claim and external validation, a proof obtains a 

communicative function as well. Correspondingly, didactic communication and 

together with it orality are of high importance in classroom instruction. 

Types of Proof  

As various authors highlight the importance of sufficient reasons in connection with 

the strictness of a proof, it becomes clear that in mathematics instruction not only 

proof in the mathematically strict sense but also its action- and thought-

psychological precursors in the sense of more or less ―strong‖ reasoning should be 

permitted. 

There are numerous different classifications of proofs (cf. Balancheff, 1988; Blum & 

Kirsch, 1989; Leiss & Blum, 2006). The classification of Wittmann and Müller 

(1988) constitutes the basis for this study. It differentiates three fundamentally 

different types of proof: 1) formal-deductive proof, 2) experimental proof and 3) 

content-related illustrative proof.  

Formal-deductive proofs are based on the logical deduction of a statement which 

follows from another statement step by step. They are related to conciseness of 

formulation which is manifested in as brief a form as possible, i.e. the mathematic 

formula or the formal language. Because of this, formal-deductive proofs require not 

only a particular way of thinking but also a particular procedure backed by a specific 

technical terminology. 
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In contrast to formal-deductive proofs, experimental proofs do not yield conclusive 

certainty but remain tied to the respective examples. Yet working directly with 

examples is fruitful especially for younger and less competent students, and it 

facilitates argumentations which are bound to examples. Moreover, experimental 

approaches are suitable for generating a subjective need for proving. 

As far as content-related illustrative proofs are concerned, formalism is only of 

limited significance as well, though in addition to that reasons should not solely be 

derived by showing plausible examples as this is the case with experimental proofs. 

Content-related illustrative proofs are rather based on constructions and operations 

which render it intuitively discernible that they are applicable to a whole class of 

examples, and that certain conclusions can be drawn (cf. Wittman & Müller, 1988, p. 

249). It must be possible to generalise content-related illustrative proofs directly 

from the given example. This process of generalisation should be as intuitively 

discernible as possible which is facilitated by making the mathematical structure 

transparent, mostly on the enactive or iconic level. 

These three types of proof each make different demands on the students‘ 

competences, and at the same time they offer different approaches – and as a 

consequence specific, content-related support – depending on the current level of 

knowledge of the class. A genetic procedure might start out by an experimental or 

content-related illustrative proof and then advance to a formal-deductive proof, thus 

inducing an increasing degree of abstraction and symbolization.  

Research Questions and Aims of the Study  

The aim of the current analysis is to describe teachers‘ support in phases of 

mathematical proving in secondary school level I instruction as extensively as 

possible and to analyse it comparatively. The following two research questions are 

guiding the study presented below: 

 Which types of proof can be observed while the proving and reasoning problem is 

being worked on? 

 Is it possible to distinguish special groups of teachers whose support in proving 

phases differs clearly from the support of the majority? 

METHOD 

In order to compare instructional processes and the teachers‘ acting on the micro-

level, it is important to standardise contents. This is realised by the video-based 

study of mathematics instruction in secondary school level I classes from Germany 

and Switzerland named ―Unterrichtsqualität, Lernverhalten und mathematisches 

Verständnis‖ [―Instructional Quality, Learning Behaviour and Mathematical 

Understanding‖] (Klieme, Pauli & Reusser, 2006, 2009) which was jointly 

conducted by the German Institute for International Educational Research 

(Deutsches Institut für Pädagogische Forschung, DIPF) and the Institute for 
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Educational Science of the University of Zurich. The aim of the project is to examine 

components of instructional quality. It ran from 2000 to 2006, and was structured 

into three phases each of which lasted two years. These three phases had different 

research focuses: The first phase involved a representative survey of teachers 

regarding instruction-related, self-related and school environment-related cognitions. 

The second phase of the project consisted in the video-based recording of two 

different instructional modules in 20 German classes of the 9
th

 and 19 Swiss classes 

of the 8
th

 school year. In the third project phase, an internet-based training 

programme for the participating teachers was organized. 

In total, 5 lessons per teacher on a standardised content were video-taped. Two 

thematic units, both representing typical learning situations, were recorded as objects 

of the investigation: on the one hand a unit on the introduction to the Pythagorean 

Theorem, and on the other hand a unit on solving mathematical word problems 

picked from a given set. One of these problems was a purely mathematical proving 

and reasoning task. This paper refers to the implementation of this task in its purely 

mathematical context with the teachers‘ support of the students while reasoning and 

proving being at the centre of the analyses. 

Data Set 

The sample consisted of 32 teachers and their classes of the 8
th

 or 9
th

 school year 

from the highest track (―Gymnasium‖) and from the middle track 

(―Realschule‖/―Sekundarschule‖) of the three school types in Germany and 

Switzerland. 

In order to enable as representative an insight as possible into the everyday working 

on a reasoning problem, the teachers were not specifically prepared. Several days 

before the arranged double lesson, they were sent a set of word problems which had 

to occur in the instructional unit. Apart from that, the teachers were free in their 

methodological-didactic arrangement. 

For the analysis presented in the following, the provided proving and reasoning task 

was selected. The object of the analysis is the complete tackling of the problem. This 

was realised in classroom discourse but also in the form of learning support in phases 

of group work and silent work. 

Mathematical Problem 

The task in question is a purely mathematical proving and reasoning problem which 

opens up different procedural options. 

The sum 13 + 15 + 17 + 19 is divisible by 8. Does this hold for any sum of four 

ensuing uneven numbers? 

The given fact can be both elucidated by means of a numerical example 

(experimental and/or content-related illustrative proof) and worked out through a 

formal-deductive procedure. As the formal-deductive procedure is not too 
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demanding for the age group in focus, the students can actively participate in the line 

of argument when they are appropriately supported. 

Instrument 

To be able to describe proving phases with respect to content-connected tackling and 

understanding-oriented support as well as with respect to opportunities for 

participation in classroom discourse in a differentiated manner, in a first step a 

subject-based analysis instrument was developed by means of which the 32 cases 

were coded. In total, 117 different features of the way of working on the problem 

were captured per case. These features constituted the starting point for further 

analyses. 

The instrument, specially developed for this analysis, captures features both on the 

surface structure and on the deep structure of instruction (cf. Reusser, 2005). The 

three big domains of the instrument refer to 1) the context of working on the 

problem, 2) the communicative dimension and 3) the content-related dimension. The 

context of working on the problem captures, among others, the duration and the 

arrangement pattern of working on the problem. The communicative dimension 

captures features like the conceptual level, communication of meta-rules and meta-

commentaries, and others, as well as the type of didactic communication and the 

students‘ participation for every content-related feature. The content-related 

dimension captures the type of proof chosen by the teacher, the heuristics made use 

of, the elements of comprehension as actual content-related kernel of the problem, as 

well as rather peripheral features of working on the problem. 

The current paper is restricted to the presentation of results referring to the type of 

proof chosen by the teacher. 

Video Analyses 

The 32 instructional units were coded with the help of the analysis instrument (inter-

rater reliability: 88–100%). The thus yielded data could then be further processed by 

means of statistical analyses. The first results, presented below, are based on 

descriptive statistics, on group comparisons, and on correlative connections between 

the individual supportive features. 

RESULTS 

Type of Proof 

All of the three different categories of proof occurred, though in a quite varying 

distribution. Formal-deductive proofs could be found in 65.5% of all cases (21 

classes), experimental proofs in 12.5% of the cases (4 classes), and content-related 

illustrative proofs in 37.5% of the cases (12 classes). Consequently, there are classes 

in which several categories of proof could be observed. This was true for 9 classes. 
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In 4 classes, however, no proof at all was (conclusively) completed. The choice of 

the type of proof does not bear any connection with the type of school. 

Multiple Proving – A Special Group 

In total, 9 classes could be determined in which two of the three types of proof were 

implemented. These classes can be described as a special group because the use of 

different types of proof can be regarded as an elaborated line of argument. 

That these classes constitute a special group can be inferred from statistically 

significant differences. These teachers clearly made more use of heuristic aids in 

their classes (M = 2.33; SD = .86; N = 9) than those teachers who only realised one 

type of proof (M = 1.53; SD = .96; N = 19). This difference in the mean is 

statistically significant (t = 2.13; df = 26; p < .05), and it displays a very strong effect 

(ESd = .86). 

Statistically significant differences between the group of teachers who carry through 

several types of proof (n1 = 9), the group of teachers who make use of one type of 

proof (n2 = 19), and the group of teachers who do not implement any proof (n3 = 4) 

can also be detected with respect to other supportive features in the reasoning 

process, for example concerning the formal-deductive procedure (
2
 = 9.55; df = 2; p 

< .01), the content-related illustrative procedure (
2
 = 9.34; df = 2; p < .01), the 

criterial assessment of a proof (
2
 = 10.38; df = 2; p < .01), and others more which 

cannot be set out any further here. All differences appear in favour of the group 

which implements several proofs – i.e. in this group, the supportive aids mentioned 

above (heuristics) are made use of more often than in the other two groups. The 

group of teachers who carry through two different types of proof can therefore be 

characterised as a special group also on the level of individual features of the solving 

process. 

Since the choice of the two different types of proof differs quite obviously within 

this group, further sub-groups can be differentiated. 

Group A: Experimental and formal-deductive: Two classes of the middle track 

(―Sekundarschule‖/―Realschule‖) belong to this group. Both teachers first carry 

through an experimental proof and discuss its limits with the class. Afterwards, a 

formal-deductive proof is worked out in a questioning-developing classroom 

dialogue. Both cases can be regarded as genetic procedures, because a formal-

deductive approach is developed out of an experimental approach and the 

determination of its weaknesses. 

Group B: Content-related illustrative and formal-deductive: In six classes there is 

first a content-related illustrative proof and then a formal-deductive proof. Five of 

these classes are of the highest track (―Gymnasium‖), one is of the middle track 

(―Sekundarschule‖). In one class, the teacher initially asks his students to work out a 

proving procedure themselves in groups during quite a long period of time. 
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Thereafter, students from two different groups present two different types of proof – 

first a content-related illustrative proof and then a formal-deductive one – as results 

of their independent work. Subsequently, these results are discussed and deepened in 

a classroom dialogue. The other five teachers make use of short phases of 

independent student work, but they work out the line of argument together with their 

students by way of a classroom dialogue. The content-related illustrative proof 

occurs in all classes before the formal-deductive one. In the five classes without 

presentation of the students‘ own solutions, the content-related illustrative proof is 

raised on the next level of generalisation in a further step and the formal-deductive 

proof is developed. Also this case can be considered as a genetic procedure. It is, 

however, more structured and more systematic than in group A. In group B, it is not 

only the weakness of the procedure which is demonstrated by means of the content-

related illustrative proof. Moreover, a way of preparatory thinking and a didactic 

guidance to formal-deductive proving on the basis of the now transparent and 

understood inherent structure is presented. 

Group C: Experimental and content-related illustrative: In one class of the highest 

track (―Gymnasium‖) an experimental and a content-related illustrative proof occur. 

This class works out the two types of proof in a questioning-developing classroom 

dialogue with the teacher collecting the students‘ suggestions regarding the 

procedure. In doing so, he first carries through an experimental proof together with 

his class and then demonstrates that this proof is limited in its validity claim. 

Afterwards, he applies a content-related illustrative proof to a concrete example. 

Also in this case we are dealing with a genetic procedure, though in a different way. 

The experimental approach is discussed with regard to its weaknesses, and thereafter 

it is complemented by a content-related illustrative proof. 

DISCUSSION 

It is not very surprising that in the vast majority of classes a formal-deductive proof 

is implemented. This can be put down to the fact that strictness of a proof is 

characteristic of mathematics seen as a science. What is more astonishing, on the 

other hand, is the fact that the choice of one of the types of proof does not depend on 

the type of school. Formal-deductive proofs do not occur more often in classes of the 

highest track (―Gymnasium‖) than in classes of the middle track 

(―Sekundarschule‖/―Realschule‖). This dominance of formal-deductive proof in both 

types of school indicates that teachers think that proving is necessarily tied up with a 

strictly formal-deductive procedure. For this reason, the potential of the different 

types of proof with regard to specific, content-related support is still underused to a 

great extent. 

It is interesting that a special group of teachers can be characterised who differ from 

the other teachers in their use of multiple proving and thus in various supportive 

features. As far as this group is concerned, it can be assumed that the instruction with 
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respect to proving and reasoning displays a clearly higher quality than in the other 

groups. The reason for this assumption is that different approaches to a given fact are 

opened up, and that the focus is not one-sidedly on formal-deductive proving, thus 

preventing a hasty reference to the strictness of the proof. Rather, we are dealing 

with a genetic procedure which implies a real guidance to formal-deductive proving 

by means of a supportive arrangement of the argumentation. This is why in the 

training of mathematics teachers it should be carefully made sure that they do not 

only know about the strictness of a proof, but also, at the same time, that they are 

able to regard this formal strictness as an aim of instruction and not as a prerequisite 

for the implementation of a proof. 

However, the chosen type of proof alone does not state anything about the quality of 

the understanding-oriented support. Rather, it solely describes a predominant 

practice. In order to investigate the quality of the understanding-oriented support and 

of the fostering of argumentation there is need for further in-depth analyses which 

are currently undertaken. It is examined, among other things, whether and under 

which circumstances the choice of a certain type of proof is functional, to what 

extent this choice has effects on the students, and which impact the teachers‘ beliefs 

have in this respect. Moreover, further content-connected aids by means of which 

teachers support their students in understanding and arguing are of interest. Finally 

there is an interest in the way of student participation while arguing and proving. 

These analyses are under way as well. 

NOTES 

[1] We thank the Swiss National Science Foundation (SNSF) for supporting the project. 

REFERENCES 

Balacheff, N. (1991). Benefits and limits of social interaction: The case of teaching 

mathematical proof. In A. Bishop, S. Mellin-Olsen & J. Van Dormolen (Eds.), 

Mathematical knowledge: Its growth through teaching (pp. 175-192). Dodrecht: 

Kluwer Academic Publisher. 

Blum, W., Drüke-Noe, C., Hartung, R. & Kôller, O. (Eds.). (2006). 

Bildungsstandards Mathematik: konkret. Sekundarstufe I: Aufgabenbeispiele, 

Unterrichtsanregungen, Fortbildungsideen. Berlin: Cornelsen Scriptor. 

Blum, W. & Kirsch, A. (1989). Warum haben nicht-triviale Lôsungen von f‘ = f 

keine Nullstellen? Beobachtungen und Bemerkungen zum inhaltlich-

anschaulichen Beweisen. In H. Kautschitsch & W. Metzler (Eds.), Anschauliches 

Beweisen (pp. 199-209). Vienna: Hôlder-Pichler-Tempsky. 

Boero, P. (1999). Argumentation and mathematical proof: a complex, productive, 

unavoidable relationship in mathematics and mathematics education. International 

Newsletter on the Teaching and Learning of Mathematical Proof, 7/8. Retrieved 



Working Group 1 

CERME 7 (2011) 139 

 

August 2010 form: http://www-didactique.imag.fr/preuve/Newsletter/990708 

Theme/990708ThemeUK.html. 

EDK Generalsekretariat. (2010). Basisstandards für die Mathematik. Unterlagen für 

den Anhôrungsprozess. 25. Januar 2010. Bern: EDK. 

Freudenthal, H. (1977). Mathematik als pädagogische Aufgabe. Volumes 1 & 2. 

Stuttgart: Klett. 

Hanna, G. (1997). The ongoing value of proof. Journal für Mathematikdidaktik, 18 

(2/3), 171-185. 

Healy, L. & Hoyles, C. (1998). Justifying and Proving in school mathematics. 

Technical Report on the Nationwide Survey. London: University of London, 

Institute of Education. 

Hefendahl-Hebeker, L. & Hussmann, S. (2003). Beweisen – Argumentieren. In T. 

Leuders (Ed.), Mathematikdidaktik. Praxishandbuch für die Sekundarstufe I und II 

(pp. 93-106). Berlin: Scriptor. 

Heintz, B. (2000). Die Innenwelt der Mathematik. Zur Kultur und Praxis einer 

beweisenden Disziplin. Vienna: Springer.  

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in 

Mathematics, 24 (2), 389-399. 

Jahnke, H. N. (1978). Zum Verhältnis von Wissensentwicklung und Begründung in 

der Mathematik. Beweisen als didaktisches Problem. Bielefeld: Institut für 

Didaktik der Mathematik.  

Klieme, E., Pauli, C. & Reusser, K. (2006). Dokumentation der Erhebungs- und 

Auswertungsinstrumente zur schweizerisch-deutschen Videostudie 

―Unterrichtsqualität, Lernverhalten und mathematisches Verständnis‖ (3 

Volumes). Materialien zur Bildungsforschung, Band 13-15. Frankfurt a.M.: dipf. 

Klieme, E., Pauli, C. & Reusser, K. (2009). The Pythagoras Study. In T. Janik & T. 

Seidel (Eds.), The power of video studies in investigating teaching and learning in 

the classroom (pp. 137-160). Münster: Waxmann. 

Krauthausen, G. (2001). ―Wann fängt das Beweisen an? Jedenfalls, ehe es einen 

Namen hat.‖ Zum Image einer fundamentalen Tätigkeit. In W. Weiser & B. 

Wollring (Eds.), Beiträge zur Didaktik der Mathematik für die Primarstufe. 

Festschrift für Siegbert Schmidt (pp. 99-113). Hamburg: Dr. Kovac. 

Leiss, D. & Blum, W. (2006). Beschreibung zentraler mathematischer Kompetenzen. 

In W. Blum et al., Bildungsstandards Mathematik: konkret. Sekundarstufe I: 

Aufgabenbeispiele, Unterrichtsanregungen, Fortbildungsideen (pp. 33-50). 

Berlin: Cornelsen. 

http://www-didactique.imag.fr/preuve/Newsletter/990708%0bTheme/990708ThemeUK.html
http://www-didactique.imag.fr/preuve/Newsletter/990708%0bTheme/990708ThemeUK.html


Working Group 1 

CERME 7 (2011) 140 

 

NCTM. (Ed.). (2000). Principles and standards for school mathematics. Reston: 

NCTM (National Council of Teachers in Mathematics).  

Reiss, K. (2002). Argumentieren, Begründen, Beweisen im Mathematikunterricht. 

Projektserver SINUS. Bayreuth: Universität. 

Reiss, K., Hellmich, F. & Thomas, J. (2002). Individuelle und schulische 

Bedingungsfaktoren für Argumentationen und Beweise im Mathematikunterricht. 

In M. Prenzel & J. Doll (Eds.), Bildungsqualität von Schule: Schulische und 

ausserschulische Bedingungen mathematischer, naturwissenschaftlicher und 

überfachlicher Kompetenz. 45. Beiheft der Zeitschrift für Pädagogik (pp. 51-64). 

Weinheim: Beltz. 

Reiss, K., Klieme, E. & Heinze, A. (2001). Prerequisites for the understanding of 

proofs in the geometry classroom. In M. van den Heuvel-Panhuizen (Ed.), 

Proceedings of the 25
th

 Conference of the International Group for the Psychology 

of Mathematics Education Vol. 4 (pp. 97-104). Utrecht: Utrecht University. 

Reusser, K. (1984). Problemlôsen in wissenstheoretischer Sicht. Problematisches 

Wissen, Problemformulierung und Problemverständnis. Dissertation (reprinted 

1994). Bern: University. 

Reusser, K. (2005). Problemorientiertes Lernen – Tiefenstruktur, Gestaltungsformen, 

Wirkung. Beiträge zur Lehrerbildung, 23 (2), 159-182. 

Villiers, M. de (1990). The Role and the Function of Proof in Mathematics. 

Pythagoras, 24, 17-24. 

Wittmann, E. C. & Müller, N. (1988). Wann ist ein Beweis ein Beweis? In P. Bender 

(Ed.), Mathematikdidaktik – Theorie und Praxis. Festschrift für Heinrich Winter 

(pp. 237-258). Berlin: Cornelsen. 



 

CERME 7 (2011) 

EVERYDAY ARGUMENTATION AND KNOWLEGDE 

CONSTRUCTION IN MATHEMATICAL TASKS  

Julia Cramer 

University of Bremen 

The aim of this study is to gain insights into relations between knowledge 

construction and argumentation. This paper presents a case study showing an 

analysis that combines different tools: the Toulmin´s scheme to reconstruct the 

argumentation structure, a collection of topical schemes to characterize different 

types of inferences including everyday inferences and an epistemic action model to 

describe processes of knowledge construction. Some preliminary results of this case 

study will illustrate how the combination of these different tools can shed light on 

relations between argumentation and knowledge construction. 

Key words: Everyday argumentation, knowledge construction, topical schemes. 

INTRODUCTION 

The aim of my research is to gain insights into relations between knowledge 

construction and argumentation. Arguing is an important learning goal for two 

reasons. Schwarz (2009) distinguishes between learning to argue and argue to learn. 

Referring to Andriessen et al. he clarifies this distinction:  

„`Learning to argue´ involves the acquisition of general skills such as justifying, 

challenging, counterchallenging, or conceding. In contrast `Arguing to learn´ often fits a 

specific goal fulfilled through argumentation, and in an educational framework, the 

(implicit) goal is to understand or to construct specific knowledge.‖ (Schwarz 2009, 92) 

Some researchers like Krummheuer & Brandt (2001) even assume a constitutive 

function of arguing for learning mathematics in school: Students learn mathematics 

by participating in argumentation that means practicing argumentation within social 

interaction as a collective activity. In addition, learning to argue is stated as a goal in 

many curricula all over the world (e.g. see NCTM 2000). Nevertheless, students have 

difficulties to learn how to reason in a deductive way. Research shows that everyday 

argumentation predetermines their way of reasoning in mathematics. For example, 

many students infer general rules from just some examples (Martin & Harel 1989), 

just like they would do in everyday situations, without feeling the need to prove their 

inference. Furthermore, Galbraith (1981) has shown that students often do not realize 

that one counterexample disproves a mathematical statement because in everyday life 

an exception does not mean that a rule is not valid. These findings show that students 

bring experiences of everyday argumentation with them into math classes interfering 

with the learning of mathematical reasoning. The question is how to use these 

everyday experiences as a foundation for mathematical reasoning. Efforts in this 

direction are complicated by the fact that we do not exactly know how mathematical 
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argumentation emerges out of everyday argumentation and how this is connected to 

knowledge construction. This is exactly the point on which I will focus in my study. 

The leading questions are: 

 What elements of everyday argumentation do students use when solving 

mathematical problems and how does this lead to mathematical 

argumentation? 

 How is knowledge constructed through argumentation? How can the epistemic 

function of arguing be described?  

 How can we describe the relation between argumentation and knowledge 

construction? 

 What components of argumentation processes foster or hinder processes of 

knowledge construction? 

ARGUMENTATION 

Schwarz et al. (2003) state that  

―constructing knowledge is a never-ending process of marshalling evidence that the 

chosen belief is (a) supported by the available evidence and (b) more warranted than 

plausible rival beliefs‖ (Schwarz et al. 2003, 222).  

Following this statement, I assume that arguing is an epistemic action, i.e. an 

intentional action to gain knowledge. The construction of new knowledge arises 

from reasoning or checking the validity of claims. Therefore, arguing has two 

epistemic functions: Constructing new knowledge and/or convincing others of the 

validity of one‘s own hypothesis. The epistemic function of convincing others 

means: The more people one can convince, the more likely one‘s own hypothesis 

will be. In this sense, an argument is a statement that makes a hypothesis more or 

less likely.  

The Toulmin‘s scheme is an appropriate tool to reconstruct the structure and depth of 

argumentation processes (Krummheuer 1995, Knipping 2004) or to characterize 

abductive and deductive types of arguments (Pedemonte 2002). But how can we 

grasp the students´ more intuitive methods of concluding? Looking at philosophy 

and at rhetoric is worthwhile. A collection of topical schemes has the potential to 

identify the starting point of how mathematical inferences develop. These two tools, 

the Toulmin‘s scheme and a collection of topical schemes, will be presented in the 

following paragraphs. 

The Toulmin´s scheme 

To analyze processes of argumentation, Toulmin (1958) developed a scheme that 

classifies elements of an argumentation with regard to their function into data, 

conclusion, warrant, backing and qualifier. The conclusion is the statement that has 
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to be reasoned. Data are unquestioned facts the conclusion is led back to. Data and 

conclusion are part of every argumentation. The step of inferring from data to 

conclusion can be explained by a warrant that sometimes is implicit. To ensure the 

practicability of a warrant, the warrant can be backed up by additional statements. 

Qualifiers or exceptions specify the validity of a conclusion.  

In processes of argumentation with more than one step, conclusions that are already 

accepted by (most of) the other participants of the process can turn into new data. If 

backings, warrants or data are questioned, these elements have to be reasoned in a 

separate process of argumentation before they can be used in the primal 

argumentation. In complex processes of argumentation, Krummheuer & Brandt 

(2001) name these separate processes of argumentation as lines of argumentation.  

A collection of topical schemes 

Topical thinking means that someone has access to some basic ideas for generating 

arguments. These basic ideas for concluding methods are called topical schemes. In 

this sense, topical schemes are facilities to create steps of an argumentation or to 

ensure persuasively the power of argumentation steps. Ottmers (2007) presents a 

collection of topical schemes that is divided into two prime classes: everyday logical 

schemes and convention-based schemes. The everyday logical schemes contain five 

types: causal-based, comparison-based, contrast-based, classification-based and 

example-based conclusions. The first four types conclude from general to special 

statements (schemes of inferential nature), the last type concludes from special cases 

to general statements (schemes of inductive nature). Everyday logical schemes are 

redolent of formal logical rules. Causal-based conclusions use causal relations to 

ensure plausibility. Causal relations are those between cause and effect, between 

reason and consequence of human activities or between means and end. Comparison-

based conclusions relate different parameters. They refer to equality, diversity, or 

more or less probable cases. Contrast-based conclusions refer to relevance between 

contrasts. These contrasts can be absolute, relative, or alternative. Classification-

based conclusions use relations between parts and the whole issue, between species 

and genus, or between definition and the defined issue. To come to example-based 

conclusions, either a set of examples or just a single example is used as a 

(model/prototype/as evidence) of a general rule. A general example that is 

appropriate for reasoning in the direction of generalization is called an inductive 

example. An example that just shows that a rule is valid in this case is called an 

illustrative example. 

Convention-based conclusions do not use any kind of logical structures but 

concluding methods that are established within a group. Therefore it is not possible 

to present a complete collection of convention-based concluding schemes. Ottmers 

presents two topical schemes as examples for this prime class: authority-based 

conclusions and metaphor-based conclusions. Authority-based concluding means 

referring to another person (a special group/special institution/etc.) that is accepted 
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as an authority in the relevant field. Metaphor-based conclusions are similar to 

example-based or comparison-based conclusions. They relate the conclusion to other 

similar cases for plausibility. There are two important differences between these 

concluding methods. Metaphor-based conclusions refer to one example. In contrast, 

example- or comparison-based conclusions regard an amount of similar cases or 

examples. Furthermore, the similar cases in this concluding method stem from 

another field and explain the conclusion in a more metaphorical way [1]. 

Knowledge construction 

Bikner-Ahsbahs (2005) developed an epistemic action model to analyze the 

epistemic process in interest-dense situations in comparison to other learning 

situations [2]. This model consists of three epistemic actions that shape epistemic 

processes. These epistemic actions are gathering mathematical meanings, connecting 

mathematical meanings and structure-seeing. Gathering means assembling similar 

mathematical entities; connecting means linking a limited amount of these to other 

entities; structure-seeing means constructing or reconstructing a mathematical 

structure that refers to an unlimited number of mathematical entities. 

METHODOLOGY AND METHODS 

This study is embedded into the research project ―Effective knowledge construction 

in interest-dense situations‖ that investigates processes of in-depth knowledge 

construction and its background conditions by linking two theories of constructing 

mathematical knowledge. This project is a joint study between two research teams 

from Israel and one team from Germany and it is supported by the German-Israeli 

Foundation for Scientific Research and Development (Grant 946-357.4/2006). 

Within this project, three different tasks have been developed that offer an 

opportunity to construct mathematical knowledge. In each country, three pairs of 

students (grade 10 in Germany, grade 11 in Israel) are video- and audiotaped when 

solving these tasks in a varying order. There is no teacher, however, in some 

instances an interviewer takes over the role of a teacher. The audio- and videodata 

are transcribed and translated into English to exchange them between the research 

teams. Including some transcripts of the project‘s pilot phase, there are currently 11 

German transcripts and 12 translated transcripts at my disposal.  

The transcripts will be analysed interpretatively in turn-by-turn-analyses and in 

several steps according to the leading questions above. The kind of student‘s 

involvement and the epistemic process is reconstructed through interpretation on 

three levels: the locutionary, the illocutionary and the perlocutionary level. The 

locutionary level consists of what is said. On this level, the construction of 

mathematical knowledge is reconstructable. The illocutionary level consists of what 

is said through an utterance (the underlying subtext) and the perlocutionary level 

contains the people‘s intentions and the impact of utterances (Davis 1980). 
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Reconstructing the illocutionary and the perlocutionary level shows how 

mathematical knowledge is constructed socially (Arzarello et al. 2009). 

The analyses of the argumentation processes and of the epistemic processes will be 

done in separate steps. First, the epistemic processes will be reconstructed by 

identifying the epistemic actions gathering, connecting and structure-seeing and 

some social actions like asking for an explanation, valuing, initiating and 

contrasting. A diagram will illustrate the processes of knowledge construction as 

well as the social processes in a nutshell. Secondly, the structure of the 

argumentation is reconstructed with the aid of Toulmin‘s scheme, and the kind of 

warrants the students use is characterized by means of Ottmer‘s collection of topical 

schemes. The results will be shown in a diagram as well. In a last step, these 

diagrams will be compared and contrasted (Prediger, Bikner-Ahsbahs & Arzarello 

2008). The comparison of the results of the different analyses will shed light on 

relations between argumentation and knowledge construction. However, the problem 

to compare a diagram showing a process (the epistemic actions) with a diagram 

showing products (argumentation) is not solved yet. Hence, some elements of the 

diagrams will be developed and modified in the study. 

PRELIMINARY RESULTS 

Two high-achieving students (grade 10 of a German Gymnasium), Tim and Matthias, 

solve a task asking them to interpret the continued fraction 
2

1
2

1
2

1
2

1
...

. The task is 

structured into two parts. In the first part, the students are asked to find the first 7 

elements of the sequence, reflect on how they computed them, extend the 

computation to 20 elements and write them as simple as well as decimal fractions. In 

the second part, the students are asked to make a conjecture on the sequence from the 

first part and justify their conjecture.  

In the case of Tim and Matthias, the transcript can be divided into main three parts 

according to the task. The first main part of the transcript corresponds with the first 

part of the task (line 31 – 718). In this part, Tim and Matthias compute the elements 

of the sequence very accurately always checking that they made no miscalculation. 

Their accurate and precautious way of solving the task becomes apparent in the 

following parts as well. In the second main part, Tim and Matthias make conjectures 

on the sequence (line 719 – 1465); in the third main part (line 1466 – 2630) they try 

to justify their conjectures with the interviewer directing the students´ focus on some 

aspects. This paper presents the analysis of the second main part of the transcript that 

can illustrate some interesting relations between argumentation and knowledge 

construction. 
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When Tim and Matthias are asked to make conjectures on the sequence, they focus 

on the decimal places. They look at the elements of the sequence from f(7) on and 

observe that the amount of same decimal places increases. 

729 Matthias: […] ,wait here were only three zeros (points at the following on the 
sheet) ,then three nines ,then three zeros again ,then four nines ,then 
four zeros ,then four nines again ,so always after […] 

731 /Matthias: always after- ,always after three. ,it becomes ,it becomes one more. 

Matthias gathers information of their previous work (three zeros, three nines ...). This 

information is unquestioned and can be used as data later on. When gathering the 

information, Matthias uses words like ―only‖, ―then‖ and ―again‖. This is a hint that 

he already connects these data in order to make a conjecture. Matthias infers 

example-based that after every third element of the sequence the amount of nines 

respectively zeros behind the decimal point increases by one. Tim starts counting the 

amount of nines respectively zeros behind the decimal point from the first element of 

the sequence on. He realizes that the results are not in line with Matthias´ conjecture. 

But instead of abandoning this conjecture now, they first check if they have made 

any mistake. They find that they did no miscalculation, and therefore they change the 

conjecture a bit: 

744 Tim: yes at least ,one notices that always (.) ,always three nines ,three zeros 
,the amount of nines and zeros is identical ,and then it always switches 
after three or four. 

The whole second main part of the transcript (line 719 – 1465, approximately 30 

minutes) consists of making conjectures on the sequence and sharpening the 

formulation of these conjectures. All the conjectures are associated. They do not 

contradict, but deal with different aspects of the sequence. For lack of space it is not 

possible to show all diagrams of the second main part. Some selected parts are 

presented to illustrate important observations. Figure 1 shows how Tim and Matthias 

develop a new aspect concerning their conjecture. 

   

Figure 1: diagram of line 768 - 803 
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Tim and Matthias start gathering a lot of data. Some data is modified. They connect 

the data immediately what is shown by words like ―then‖, ―here again‖, etc. They 

realize that f(8) till f(10) have two nines or zeros behind the decimal point, f(11) till 

f(13) have three nines or zeros and f(14) till f(17) have five nines or zeros behind the 

decimal point. F(8) till f(10) and f(11) till f(14) are rows of three elements with the 

same amount of nines or zeros behind the decimal point. F(14) till f(17) is a row of 

four elements with the same amount of nines or zeros behind the decimal point [3]. 

From these data, they infer example-based. 

796 Tim: I would say ,ohm- ,as soon as it is a row of three four five whatever 
,ohm- ,lets just say a row of five ,o- or no ,lets say a row of four ,and 
twenty-five is inside of it ,so five squared ,from then on ,are ,five nines 
,five times 

They sharpen their formulations and even create a new term in order to specify what 

they mean. The term ―space of places‖ describes a space (some following elements 

of the sequence) where the amount of nines or zeros behind the decimal point is the 

same. For instance, f(4) till f(7) is a space of places as there is one nine respectively 

one zero behind the decimal point. F(8) till f(10) is the following space of places. 

With the aid of this term, they develop and clarify their conjectures.  

During the whole second main part of the transcript, Tim and Matthias write down 

their conjectures in a very accurate and careful manner. They always discuss their 

formulation and do not note it down until both agree on it. Here is what they wrote 

down as their conjectures: 

―The amount of zeros or nines behind the decimal point is the same in a particular space 

of places. If you go from one to another space of places, the amount of nines or zeros 

increases by another nine or zero. If there are nines or zeros behind the decimal point, 

depends on the x-value. If the x-value is even, there are nines behind the decimal point 

and a one in front of it. If the x-value is odd, there are zeros behind the decimal point and 

a two in front of it. The length of the space of places changes to c as soon as the space of 

places contains c².‖ 

All of these conjectures are inferred example-based. Before a new aspect of a 

conjecture arises, Tim and Matthias gather a lot of data. In the following, they 

sharpen and modify this conjecture. A characteristic argumentation line during this 

part is shown in figure 2.  

 

Figure 2: characteristic argumentation line in part 2 of the transcript 
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Obviously, several data in the form of examples are necessary for example-based 

inferences. However, such argumentation lines with a high concentration of data do 

not seem to be characteristic only for example-based inferences. In another case 

study (see Cramer 2010), the first argumentation lines contained a lot of data as well. 

The conclusions in this case were inferred causal-based. This could be a hint, that in 

general a high concentration of data is characteristic for argumentation lines in the 

beginning. This result corresponds with the finding of interest-dense situations, that 

gathering phases until a certain saturation level are necessary to provide a basis for 

further increases of knowledge. 

The fact that conjectures arise example-based is obvious as well. It is a heuristic 

strategy stemming from everyday life and the way how discovery learning works. 

The question is how to encourage students to justify their conjecture in a 

mathematical way. Tim and Matthias insist several times that their conclusions are 

conjectures. They believe that they are valid, but they are not sure. The way they 

become more and more sure in the second part of the transcript stems from everyday 

life as well. When they observe that nines and zeros behind the decimal point 

alternate as well as one and two in front of the decimal point, they take the 

alternation as an argument for the validity of their conjecture. 

1000 Tim: Yes ,that always switches ,thats why it is logical 

The implicit argument is based on previous experiences. The students are asked to 

look for patterns and regularities. Something alternating is a pattern, therefore it is 

more likely that their conjecture is true. Ottmers does not mention experience-based 

conclusions. It could be a type of example-based conclusions in the sense that 

previous experiences are kind of examples. But the related examples are not 

mentioned explicitly. Therefore it is not possible to check the relevance of these 

experiences, and for this reason I would describe it as a convention-based scheme. 

Another example of this concluding scheme appears later on. Tim and Matthias 

realizes that the space of places from f(4) till f(7) has a length of four. This is not in 

line with their conjecture that the length of the space of places changes to c as soon 

as the space of places contains c². Tim would like to solve the problem in this way:  

1345 Tim: Yes exc- ,exception ,or then write exceptions prove the rule next to it 

This is an everyday proverb that even contradicts with mathematical argumentation. 

This finding shows that, on the one hand, Tim and Matthias are influenced by 

everyday argumentation; but on the other hand they show that they are aware of the 

fact that mathematical argumentation works differently by insisting that their rule has 

the status of a conjecture. A little episode of the third part of the transcript illustrates 

this awareness. At the end of the second part they mentioned that the sequence tends 

towards two. They are now working on a justification. Matthias remembered that 

0,9 1 and justified this fact authority-based referring to his teacher.  

1446 Matthias: So one found out that ohm- ,on(e)- one say ,our teacher told us that 
ohm- ,one point nine period equals two. 
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Such a convention-based conclusion seems to be insufficient or unsatisfactory, 

therefore Matthias justifies it classification-based.  

1449 Tim: [...] ,because one plus nine ninth is precisely two ,but nine ,one ninth 
,is zero point one one one one one 

Tim and Matthias use convention-based schemes seldomly. However,  when they use 

these schemes, they give up these argumentations lines quickly. This is a hint that 

they regard these concluding methods as insufficient or unsatisfactory as convention-

based schemes do not lead to deeper understanding why a conclusion is valid. 

CONCLUSIONS 

The combination of the Toulmin´s scheme and a collection of topical schemes turned 

out to be an appropriate tool to describe argumentation and to identify elements of 

everyday argumentation. In this case, everyday argumentation was the starting point 

to develop mathematical conjectures. Everyday logical schemes can turn into 

strategies to come to conjectures and to create ideas of how to justify them. The 

analysis of the episode presented in this paper focuses on this aspect. To find out 

more about typical argumentation structures and relations between knowledge 

construction and argumentation, analyses of different episodes have to be compared. 

A first hint concerning relations between knowledge construction and argumentation 

is that argumentation lines with a high concentration of data prevail in the beginning 

of epistemic processes. This corresponds to phases of gathering and combining in 

terms of the epistemic action model. In structure-seeing phases, argumentation lines 

occur where warrants and backings are formulated and sharpened. In the future, 

several case studies will be compared to deliver deeper insights into relations 

between argumentation and knowledge construction. 

NOTES 

1. Ottmers calls these metaphor-based conclusions analogy-based ones. His example for such an analogy-based 

conclusion makes clear that these analogies are metaphorical. As analogy is understood in a different way in 

mathematics, I decided to call these conclusions metaphor-based ones. 

2. In this study, Bikner-Ahsbahs´ epistemic action model is used to describe processes of knowledge construction. The 

emergence of interest-dense situations will not be analysed. Therefore, I do not enlarge upon this term here. For further 

information about the theory of interest-dense situations see Bikner-Ahsbahs 2004. 

3. To follow the excerpts of the transcript, here are the elements of the sequence presented as decimal fractions: 
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ANALYZING THE PROVING ACTIVITY OF 

A GROUP OF THREE STUDENTS  

Patricia Perry, Óscar Molina, Leonor Camargo and Carmen Samper 

Universidad Pedagñgica Nacional, Bogotá, COLOMBIA 

We present an analysis and outline an evaluation of the proving activity of a group 

of three university level students when solving a geometrical problem whose solution 

required the formulation of a conjecture and its justification within a specific 

theoretical system.  To carry out the analysis, we used the model presented by Boero, 

Douek, Morselli and Pedemonte (2010) that centers on the arguments and rational 

behavior.  Our analysis indicates that the student‘s proving activity is close to the 

one we used as a reference. 

Key words: evaluation, proving activity, rational behavior, type of argument 

INTRODUCTION 

Producing and reading proofs are complex mathematical practices because they 

require being able to articulate many and diverse, not necessarily routine, actions; 

therefore mastering them is not an easy or direct process. Understanding this has 

recently impelled research and reflection of a didactic character of the different 

methodological approaches used to teach proof and proving in the tertiary level, and 

to subsequent innovations which could lead to satisfactory results in students‘ 

learning (see Selden, 2010). 

In this regard, since 2004, we have been engaged in consolidating and implementing 

a curricular innovation whose primary scenario is the Euclidian geometry course that 

takes place in the second semester of a pre-service teacher program at Universidad 

Pedagñgica Nacional (Colombia). The innovation aims to deliberately support 

students‘ learning to prove and seeks to have students conform an ample idea of 

what proving activity consists of (Perry, Samper, Camargo, Echeverry, & Molina, 

2008). Presently, we are interested in finding different types of evidence that will 

permit us to evaluate, in a long term, the effectiveness of the curriculum design and 

development achieved with the innovation. We start by undertaking the evaluation of 

the students‘ performance in specific tasks that were assigned in the third semester 

geometry course.   

The purpose of this paper is to analyze and evaluate some excerpts of the proving 

activity displayed by a group of three students when they solve a given problem 

without the teacher‘s intervention. In the task, a conjecture must be found, based on a 

dynamic geometry exploration, and justified deductively. In order to analyze the 

students‘ proving activity, we shall use the integrated model presented in Boero et al. 

(2010). To evaluate the analyzed activity, we shall consider a list of key actions, that 

we designed in the light of the model, which we consider conform a successful 
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performance; naturally, the actions are coherent with the learning goals set in the 

innovation and the learning experiences promoted by it. Thus, we first contextualize 

the study indicating what we mean by proving activity and by learning to prove, and 

we mention three key characteristics of the methodological approach to teaching 

used in the course. Secondly, we expose our interpretation of Boero and his 

colleagues‘ model which will guide our analysis. Thirdly, we describe aspects of the 

experimental design; we include information about the course the students belonged 

to, state the problem we proposed, present some components of a successful 

performance to which we compare the students‘ proving activity, and give details of 

the data treatment for the analysis. Fourthly, we analyze the evidence that provides 

elements to evaluate their proving activity. Finally, we expose the evaluation. 

STUDY CONTEXTUALIZATION  

The purpose of our innovation is to support learning to prove. Thus we promote 

student participation in proving activity that is carried out as a means to develop the 

geometric course content. For us, proving activity includes two processes, not 

necessarily independent or separate. The first process consists of actions that support 

the production of a conjecture; these actions generally begin with the computer-

based exploration of a geometric situation to seek regularities, followed by the 

formulation of conjectures and the respective verification that the geometric fact 

enounced is true. Hereafter, the actions of the second process are concentrated on the 

search and organization of ideas that will become a proof. This last term refers to an 

argument of deductive nature based on a reference theoretical system in which the 

proven statement can be a theorem (Mariotti, 1997). Learning to prove is a process 

through which students gradually become more able to participate in proving activity 

in a genuine (i.e., voluntarily assuming their role in achieving the enterprise set in 

the course), autonomous (i.e., activating their resources to justify their own 

interventions and to understand those given by other members of the class 

community), and relevant form (i.e., making related contributions that are useful 

even if erroneous). 

Three characteristics of our methodological approach to teach proof and proving are 

the key roles of: (i) the student geometrical problem solutions as a means to provide 

elements that contribute to the  development of the course content; (ii) the 

interaction between teacher and students or among students to develop the course 

content and to support individual learning; (iii) the use of a software of dynamic 

geometry (e.g., Cabri) in the feasibility of an autonomous, genuine and relevant 

student participation; this resource provides them with an environment in which 

actions such as empirical exploration, communication and validation of statements 

are propitiated.   
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ANALYTICAL TOOL  

Boero‘s et al. (2010) integration of the Toulmin argumentation model and the 

Habermas rational behavior model highlights some of the elements that must be 

articulated to face the complexity of proof; we therefore find it useful for our 

purpose. In what follows, we present our interpretation of their proposal. 

Type of argument: Accepting that proving activity involves arguments of different 

nature, describing it requires focusing on the different types of arguments (i.e. 

inductive, deductive, abductive) that students formulate during the problem solving 

process. Every argument, according to Toulmin, has three basic components
1
: a 

statement whose validity is argued by someone (claim), premises that motivate 

concluding the claim (data) and the statement considered as valid that connects data 

to claim (warrant). More precisely, the analysis is centered on how the three 

components are connected, that is, what the structure of the argument is, because our 

methodological approach induces it and requires it. 

Teleological aspect: Considering proving activity as a special case of problem 

solving, an important part of it is focusing on the goal which must be reached, so that 

the different actions carried out have a clear purpose. Also included in this aspect are 

the formulation of a plan to reach the goal, the determination of the strategies that 

can contribute to following it and reaching the goal, and the control of the latter. 

Epistemic aspect: Considering proof as an object that must satisfy epistemic 

requirements established by the community of mathematical discourse in which it is 

being constructed or presented, when describing it and evaluating it, the focus is on 

if there is or not conscious validation of the statements, taking into account shared 

premises and legitimate forms of reasoning. 

Communicative aspect: Considering proving activity as a sociocultural practice, it 

is natural to take into account the care students have in the way they communicate 

their arguments, and how conscious they are of the elements, associated to proof, that 

affect communication. 

EXPERIMENTAL DESIGN  

The problem proposed to the students  

In a one and a half hour class session, the students, in groups of three, worked 

collaboratively on the following problem. As usual, they were asked to hand in a 

group document that reports: details of the Cabri construction and exploration, the 

conjecture formulated as the result of empirical exploration, and its proof.  

With Cabri, construct a circle with center C and a fixed point P in its interior. 

For which chord AB of the circle, that contains point P, is the product AP × 

PB maximum? 
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The teacher informed the students that they had to work without his intervention. 

The teacher and the members of the research group acted as non participative 

observers in some of the student groups, with the intention of registering in video the 

solution process and intervening, only if necessary, to favor the exposition of ideas 

by students and thus obtain as complete information of the process as possible. 

The students and the course content 

The students were registered in the third course of the geometry trend of the pre-

service program. They had participated of our methodological approach since their 

first semester. With respect to the geometrical content covered up to the moment of 

the proposed task, congruency of triangles, parallelism of lines, and quadrilaterals 

were given a thorough treatment. With respect to similarity of triangles, the 

definition, the criteria to determine it, and theorems such as Ceva and Menelao were 

established. The students had experience in proving properties that are deduced from 

the similarity of two triangles, and in using the similarity to prove other geometrical 

properties. The existence of chords, diameters and secant lines was discussed from a 

theoretical point of view. The Theorem of the interior point of a circle, which 

establishes that a line which contains a point in the circle‘s interior, intersects it in 

two points, was proved. The special relations between angles and circles had not 

been studied. Precisely, with the proposed problem these were expected to be 

introduced. In this article, we concentrate on the analysis of the activity of just one 

group (henceforth NAF) that, for the purpose of this research, had no special 

characteristics with respect to the other groups.  

Components of a successful performance 

The students perform relevant intentional actions towards the final goal or the 

recognizable sub-goals throughout the solution process (teleological aspect), such as: 

modeling the situation in Cabri appropriately; exploring by dragging and measuring; 

detecting the regularity; producing different and relevant types of arguments 

(inductive, abductive, deductive) in the different phases of the solution process; 

enriching the figure with an auxiliary construction, if necessary, to favor a search 

process of key ideas for the proof. Specifically, to solve the proposed problem, the 

students construct another chord containing point P to verify that the result obtained 

with the first chord is also true for the second one or as a mechanism to prove the 

thesis. They use the two chords to determine two triangles, visualize or conjecture 

their similarity, establish a path to obtain the equality of the two products involved, 

and justify such invariance within the theory of similar triangles. They also carry out 

empirical explorations with Cabri to identify the corresponding angles that are 

congruent, and to discover the theorem that establishes that inscribed angles that 

subtend the same arc are congruent, that can be used provisionally as a justification 

since it is not yet part of their theoretical system. 
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The students perform general actions associated  with the requirements of the 

mathematical discourse of proof related to the production of appropriate arguments 

in the different phases of the solution process (epistemic aspect): every statement 

that is part of the arguments must be justified; every justification must come from the 

theoretical system in which they are working; the representation system used 

provides information only based on the conventions previously established in class; a 

warrant can be used to obtain a conclusion only if the conditions required in its 

antecedent have been established before; in a deductive chain the premises change 

their operative status (i.e., a premise obtained as a conclusion, in one step, can be 

data in a posterior step); between two deductive chains that lead from the same 

premises to the same conclusion, the one that presents a simpler path is preferred. 

Specifically, they look for possible warrants to validate the congruency between at 

least two pairs of angles, and recognize that in the theory available to them they can 

only show the congruency of the vertical angles. 

The students communicate their ideas carefully: formulating the conjecture as a 

conditional statement; reformulating the conjecture, if needed, to facilitate the 

construction of the proof; using the terminology established in the classroom 

appropriately; and using the format established in class to expose their final proof.  

Data treatment for the analysis 

The video of the group‘s work was transcribed, and the observer‘s figures and notes 

were included in the margins, so that reading the transcript permitted following the 

students‘ detailed activity comprehensively. The transcription was divided in phases, 

each one covering an important sub-activity of the complete process. The different 

types of arguments were identified, typified and outlined, and the interventions 

analyzed to determine signs of the other three aspects of the integrated model. Due to 

space limitations, we shall present emblematic episodes that well represent the 

activity we are evaluating.  

It is necessary to make two comments. Firstly, when the data for the study was 

collected, using the model to analyze the activity was not part of the plan; therefore, 

no questions were designed to promote student allusions to the epistemic and 

teleological aspects. Secondly, we are not analyzing finished reports made 

retrospectively, but student conversation when carrying out the task. Thus the 

arguments are mostly a collective construction, although, occasionally, the 

observer‘s questions impel one of the group members to synthesize the discussion 

and thus assume the responsibility of exposing the co-constructed argument. This is 

why we evaluate the group‘s proving activity and not that of individuals.      
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EVIDENCE TO EVALUATE NAF‘S PROVING ACTIVITY  

NAF detects that the product is constant, writes the conjecture and sketches a 

way to prove it  

Alejandro reports the result of their first exploration: ―I am measuring AP  and PB  to 

multiply them and check if the maximum is when it is a diameter, or if it is in some 

other place […] The product remains the same always […] even if the measure of the 

chords change; the product will be the same rotate it wherever we rotate it.‖ 

In this fragment, we see signs of an inductive argument. The students, using Cabri, 

generate innumerable positions of chord AB together with the respective products  

AP PB  and thereof detect the invariance. The premises that provide evidence (data) 

to affirm that the product is constant (claim) come from the conditions found in the 

problem statement and of the numerous cases that are offered by dragging the chord. 

The warrant is the conjecture that suggests that for any chord that contains P, the 

product is constant. On the other hand, in Alejandro´s verbalization we find an initial 

plan to answer the question asked in the problem, plan that he carries out in Cabri as 

he talks, and that is evidence of the presence of the teleological aspect.  

The students become involved in writing the conjecture as a conditional statement. 

To start with they mention the if-then format as the proper one to express the 

conjecture. With Fabian‘s intervention: ―Shall we put given or must we construct it?‖ 

they evaluate if they can assume the existence of chord AB as given or if they must 

include, in their proof, statements and justifications that theoretically validate the 

construction of the chord. Afterwards, they agree on a first statement: ―Given a circle 

with center C, a fixed point P which belongs to the interior and a given chord AB 

which contains P, then the product AP × BP is constant.‖ However, Nancy manifests 

inconformity: ―No, look, you know what? ... It‘s better, given a circle with center C 

and a fixed point P such that P belongs to the interior of the circle, for any chord AB 

of circle C such that P belongs to AB, then the product such and such.‖ Alejandro 

points out that the purpose of changing the word is to bring out the generality of the 

fact: ―…we had said one, only one chord; then, it was saying that only one chord AB 

exists; now we are saying that for any chord that passes through point P, then it‘s 

going to be constant.‖ 

The epistemic aspect appears when they ask themselves if they must justify the 

existence of chord AB; this suggests that they see the difference between a chord that 

exists, because it is given in the statement‘s premises, and a chord whose existence is 

justified theoretically; they are obeying the class norm of justifying the existence of 

the geometric objects that are being used. We also see the communicative aspect 

when they write their conjecture; on the one hand, because they know they have to 

formulate it as a conditional and, on the other hand, because they note that their first 

formulation is incorrect since it does not express the detected generality, reason why 

they include the universal quantifier. 
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When they are rewriting the conjecture, Alejandro asks: ―In the proof we can 

construct another chord, right? To have similar triangles.‖ and explains, ―…because 

what we need to prove is a ratio.‖ When the observer asks him the reason for the 

auxiliary construction, he answers ―Because we see that the product will always be 

the same, right? Then another chord can give us similarity or ratio between this side, 

the segment that we would create new and this...‖ Nancy amplifies Alejandro‘s idea: 

―We would have that the ratio of… or that by ratios we get that AP times BP is going 

to be the same for both chords. That way we would confirm that it would be for any 

chord… not only the given one but also the one we compare it with.‖ 

NAF has set the goal: proving that the product is constant for any chord. This leads 

them to construct two chords that contain P with the purpose of obtaining similar 

triangles, to thereof work with ratios that will lead to equal products. This goal 

motivates an auxiliary construction without which, as we know, it is practically 

impossible to prove the conjecture. We recognize the teleological aspect in the 

conversation because they sketch a plan to reach their goal and propose an auxiliary 

construction as a tool to obtain it. 

NAF examines how to justify the existence of another chord  

As they start writing the proof, they consider how to justify theoretically the 

existence of both chords that contain P, which they have represented in Cabri.  They 

establish that the first chord is given and that they only have to justify the existence 

of the other chord. Alejandro points out that they must guarantee the existence of a 

line through P, maybe motivated by the construction done in Cabri. Nancy mentions 

that the line must also contain a point of the circle. Fabián says: ―To create the line 

we need the Line Postulate
2
 and it requires the two points. What shall we do?‖ 

In the summarized interchange, the existence of the other chord containing P can be 

seen as the claim of a possible abductive argument that does not take shape because 

the warrant is not explicit (i.e., the chord is a subset of the line). In contrast, the 

existence of the line containing P (and not the given chord) becomes the claim of an 

abductive argument when Nancy indicates the necessity of having two points (data) 

and Fabián completes it by mentioning the Line Postulate
 
(warrant). The goal they 

establish, due to this argument, is to justify the existence of the two points; it guides 

their next actions. Thus the teleological aspect is present. With respect to the 

epistemic aspect, it is worth noting that in the first case the warrant is not mentioned 

while in the second it is.  

Trying to justify the existence of two points that determine the line whose existence 

they want to show, Nancy suggests using the Interior Point of a Circle Theorem, and, 

due to Alejandro‘s petition, she says: ―if we have a circle and a point of it and a line, 

ah! no, but we need a line anyway, that is we have to construct it.‖ When Nancy 

discards this possibility, Alejandro proposes a plan: ―The best would be to construct 
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a line by the Line theorem [Postulate] and then we can say that the points intersect 

the circle.‖ NAF eventually realizes that neither way is useful for their purpose.    

The claim of the argument in the conversation is the existence of two points, P and a 

point on the circle; the failed warrants are the Interior Point of a Circle Theorem and 

the Line Postulate together with its intersection with the circle. The data required is 

the existence of a line that intersects the circumference in two points. The epistemic 

aspect is evidenced when Nancy realizes that they do not have the elements of the 

hypothesis of the theorem they want to use, and that, therefore, they must discard it.    

NAF discards the established path to validate the existence of a pair of 

congruent angles  

The students have two chords that contain P (Fig. 1). Alejandro 

declares the congruency of FPB and APE because they are 

vertical angles. Nancy questions: ―And, from there, where are we 

going?‖ As an answer, Fabián proposes the following plan: ―We 

construct the triangles and then we talk about the angles to talk 

about similarity.‖ Alejandro adds that with the Angle-Angle 

Criteria they would already have similarity. Nancy objects: 

―And, where is the other [pair] angle? Okay, we already have these two angles, and 

the others, where are we going to get them? We need another one.‖ Once they have 

the triangles, Fabián discards parallelism as a way to reach their goal: ―There are no 

parallels. Because if we had them, this would facilitate finding alternate interior 

angles, and we already have the other angle and similarity would be the result.‖    

We find two abductive arguments. In the first one, the claim is the existence of 

similar triangles, the warrant the Angle-Angle Similarity Criteria, and the data 

required the congruency of two pairs of angles, of which one is already guaranteed. 

In the second one, the claim is the existence of another pair of congruent angles, the 

warrant is the theorem that guarantees that alternate interior angles between parallel 

lines are congruent, and the data required is assuring that two lines are parallel.   

We point out three issues. Firstly, we can see the control Nancy exerts over the trend 

of the activity they are developing, sign that she is conscious, on the one hand, of the 

necessity of not losing sight of what they want to justify and, on the other hand, of 

the class norm of justifying every statement in the context of the situation they are 

studying. Nancy‘s interventions —the first one of teleological nature and the second 

of epistemic nature— lead them to formulate a plan or discard a possible path. 

Secondly, Fabián‘s argument, with which he discards parallelism as useful to reach 

their goal, makes us think that he tacitly assumes that the congruent angles are EBA 

and FAB or BEF and AFE, which is not correct. Thirdly, we are surprised that, 

during a good part of their activity, NAF refers to similar triangles without explicitly 

establishing the correspondence for the similarity.   Maybe they could have 

established it much sooner than when they actually did if they had allowed 
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themselves to explore the situation numerically with Cabri (angle measurements, 

calculating the proportion) as Fabián suggested: ―The only thing we can do is 

measure this one with…, the ones that are going to determine, form similarity and 

see whether that proportionality remains in the three [angles] and then, with that we 

can then determine that they [the triangles] are similar.‖  Nancy responds: ―[…] we 

find measures and that, but how do we find it here… geometrically?‖, and Fabián 

accepts the veiled objection: ―With the postulates and that.‖ 

NAF determines the proportionality of the measurements of the sides and the 

congruent angles 

After various failures in trying to find the way to validate the congruency of two 

angles, without indicating exactly which pair they are referring to, Alejandro turns to 

the observer: ―Help us. How do we relate another angle?‖ She responds: ―Are you 

sure that the triangles are similar?‖ Nancy explains why they are similar: ―[…] they 

are similar, not because of the angles but… because we have this angle [referring to 

the vertical angles] and as Alejandro showed, having AP times PB is equal to EP 

times PF [she writes AP PB EP PF ] we can make our proportion […] Then AP is 

to PF as EP is to PB [writes
AP

PF

EP

PB
] and that way we have it.‖ Fabián asks 

surprised: ―EP to PB? … This segment is to this segment … which triangles are you 

talking about?‖ Nancy responds: ―Of triangles FPB and APE because as you 

superimpose [moves hand] let‘s say this one [signals APE] over this one [signals 

FPB] we have that this [shows PE ] is to this one [points to PB] as this [shows AP ] is 

to this [points to PF ].‖ Alejandro adds: ―In the calculator I looked at angle PAE […] 

and angle PFB and they are congruent.‖ 

To explain why the triangles are in fact similar (claim), Nancy recurs to the Side-

Angle-Side Similarity Criteria (warrant) which she does not mention. She takes into 

account the empirically found fact when exploring the situation: the constant product 

of the measures of the segments determined by point P on each chord of the circle 

(data). Using that fact, she obtains the proportionality of the measurements 

(intermediate claim). Thus we see that with the purpose of justifying the similarity of 

triangles FPB and APE, Nancy carries out a deductive argument. It must be noted 

that the students are conscious that such reasoning is not the adequate one for the 

situation they are tackling because they use what they want to prove.  

CONCLUSIONS 

As we compare the description of NAF‘s activity with the components established 

for a successful performance, we recognize that NAF sets four sub-goals that lead 

them to the expected goal: detect regularity; formulate a conjecture in the terms used 

by the class community; justify the auxiliary construction of a chord; and prove the 

congruency of two pairs of corresponding angles. Intentional actions to reach the 

sub-goals are evidenced although proving that the triangles are similar is not 
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proposed with the precision required and desired. Only after more than an hour, does 

NAF discover which are the corresponding angles that guarantee the similarity, and 

they never find the relation between the angles and the circle which would permit 

justifying their congruency. Maybe with this deficiency in their proving activity, 

many of their actions to search for the justification could be considered as not 

relevant. Related to the former is the fact that NAF prefers using the theory as 

resource more than the empirically obtained information; this shows an undesired 

unbalance between exploratory actions and justification actions. Yet, the abductive 

arguments that arise show that NAF has enough knowledge of the theme to allow 

them to make connections that are not incongruent with the situation they are 

studying; these arguments impulse and guide their actions. Although in the whole 

process we evidence skill in handling the teleological, epistemic and communicative 

aspects, they still lack the mastery needed to perform as an expert. Or maybe we 

cannot expect the students to act as if they were already writing a report of successful 

arguments, in the course of the proving activity process. 

NOTES 

1 In fact, Toulmin‘s model presents six components of an argument: claim, data, warrant, backing, 

qualifier and rebuttal. 

2 The Line Postulate states that given two points there exists a unique line containing them. 
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The purpose of this paper is to theoretically examine the role of looking back at 

proof-planning processes in school mathematics from the perspective of 

argumentation. Various research studies have elaborated the significance of proof 

and proving in school mathematics. A particular focus of this paper is on what 

students can gain by looking back at proving processes that do not appear explicitly 

in the presentation of proof. Examples of hypothetical proof-planning processes are 

chosen to illustrate that two kinds of ideas can occur by looking back at the 

processes. In particular, the ideas are related to how to identify why the statement is 

true and how to prove the initial statement and another related statement. 

Keywords: proving, looking back, proof-planning, argumentation, changing 

condition 

INTRODUCTION 

Proof and proving should be central to students‘ school mathematical experience 

(Yackel & Hanna, 2003). Many research studies have addressed to the question: 

what students can/should gain through proof and proving. Several studies among 

them focus on various functions of proof from a theoretical perspective (de Villiers, 

1990; Hanna, 1990) or using empirical evidence (Miyazaki, 2000). In addition to the 

issue of verification of truth of a statement, these studies have pointed out the need to 

investigate what roles proof can/should play, and how we can apply such functions. 

On the other hand, more recently, Hanna & Barbeau (2008) have focused on another 

role of proof, inspired by Rav‘s (1999) philosophical work, as a way to convey 

mathematical methods, tools, strategies and concepts. Their discussion is based on 

what has been underestimated in the mathematics education literature when this 

literature ―seem to have dealt primarily with the logical aspects of proof and with the 

problems encountered in having students follow deductive arguments‖ (Hanna and 

Barbeau, 2008, p.347). 

As to the discussion on the functions, Hanna & Barbeau emphasize the role of 

proving as a process, over the role of proof as a product. For example, Hanna and 

Barbeau describe how students can obtain the technique of ‗completing the square‘ 

by illustrating how it can appear in proving the formula for the solution of a 

quadratic equation. Then they mention that this technique ―does not stem logically 

from a previous statement or axiom‖ but ―is a topic-specific move‖ and useful for 

their on-going mathematical learning (ibid, p.349). 
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This study focuses on the educational significance of proving processes. Moreover, 

the motive of this study is to design teaching material to promote improvement in 

students‘ proving abilities and habits and to encourage further mathematical inquiry 

from the side of the students by reflecting on past proving processes. For example, 

students will try out various approaches in a process of proving. If they are promoted 

to reflect the past process to see how well each approach worked or not, they can be 

expected to obtain typical ways of proving which are useful not only for the 

statement at hand but also for many other statements which they will meet in the 

future. Since many students have difficulties in reaching ideas concerning how to 

establish a proof, acquisition of such ways can be considered valuable. However, the 

value of promoting students‘ reflection on the past processes to extract general ways 

of proving has been underestimated in the existing related literature. Therefore, it is 

necessary to answer the question: what can students gain through proving processes? 

This paper examines this question theoretically as a platform for future empirical 

studies. 

LOOKING BACK AT PROOF-PLANNING PROCESSES 

Literature review and research questions 

To gain something through proving processes, students need at least to reflect and 

clarify what they have done in the processes. In relation to these activities, Polya 

(1957/2004) refers to the act of ―looking back‖, which involves not only checking 

errors or the insufficiency of one‘s own activities or their outcomes, but also finding 

new problems or ideas based on the activities or outcomes (pp.14-16). 

About the aspects of looking back, checking errors and identifying insufficiency are 

discussed in Heinze et al. (2008) in terms of ―coordination‖. In addition, the studies 

on the roles and functions of proof (e.g., de Villiers, 1990; Hanna, 1990) discuss 

finding new problems or ideas based on a product of proof, although they do not use 

the term of looking back. Tsujiyama (2010) also analyses how mathematicians from 

the ancient Greek era and beyond could find, by examining proposed proofs, not 

only aspects of insufficiency in the proofs but also ideas which were applicable to 

other related proofs. 

These studies focus on the part of proving processes related to a product. In contrast, 

Hanna & Barbeau (2008) focus on obtaining general ideas based on processes of 

proving rather than products. To reconcile the perspectives appearing in the 

literature, this paper focuses on looking back at processes that are not evident in a 

product. 

Among other aspects, this paper especially focuses on proof-planning processes. 

Polya (1957/2004) listed the following four phases of proving: understanding a 

problem; devising a plan to establish a proof (this paper refers to this as ―proof-

planning‖); constructing a proof; and looking back. Shimizu (1994) proposed, 

through a hypothetical process, that proof-planning in particular involves important 
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ideas that are not apparent from a product. Further, Thurston (1994) states that 

informal elements occur even when professional mathematicians are engaged in 

producing a proof and these elements promote their understanding of proof and their 

on-going work. 

Therefore, this paper proposes to examine the following research questions: ―by 

looking back at proof-planning processes, what kinds of new problems or ideas can 

students obtain?‖; ―what is the significance of the problems or ideas?‖ 

Ways of proof-planning 

Proof-planning is to find deductive connections between the statement and other 

known theorems, in order to establish a proof of the statement. Nevertheless, in 

processes of proof-planning, even mathematicians do not necessarily think only in a 

formal or deductive way. In order to capture students‘ activities, we need to widen 

our awareness of different ways of proof-planning. This paper takes a wide 

perspective in analysing ways of proof-planning by distinguishing three components: 

order (i.e. how to proceed from the premise to the conclusion); objective (i.e. the 

statement to be proved); and manner (e.g. formality). 

First, about order, it is extensively pointed out in the literature that not only forward 

reasoning but also backward reasoning are useful in proof-planning. In recent years, 

Heinze et al. (2008) have analysed complex processes of constructing multi-step 

proof from the logical point of view. They focus on how to deal with intermediary 

conditions/conclusions obtained by backward/forward reasoning; then they point out 

an essential aspect of proof competence that they call ―coordination‖ (p.445). 

According to their study, this kind of looking back during a proof-planning process 

plays a role in choosing the most propitious deduction available. 

For the second component, Polya also suggests that changing the statement can be 

useful in proof-planning. When backward and forward reasoning do not work well, it 

is important to find special, general or analogous problems and ―try to solve first 

some related problem‖ (Polya, 1957/2004, p.10) by changing the initial statement. 

Proof-planning by changing the condition is important for the following two reasons. 

First, especially in geometry, students tend to spontaneously consider only special 

cases. For example, when students prove the statement: ―diagonals in any 

parallelogram intersect at their midpoints‖, they usually draw diagrams and judge if 

the statement seems to be true or not. Intentionally or not, through such activities, 

they may consider special cases such as a rhombus, rectangle or square. 

Another reason to consider changing the condition is that it is an effective way to 

find a useful problem for solving the initial problem in mathematics. Particularly, in 

regard to specialization, Polya (1954) refers to using ―a leading special case‖: 

restricting the initial problem to a simpler case; after, utilizing a solution of the 

simpler case in order to solve the initial problem (p.25). This kind of proof-planning 
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is seen in several articles but its value has been underestimated in mathematics 

education literature. 

For example, Hanna and Barbeau (2008), note that students can extract the technique 

often referred to as ‗completing the square‘ through considering how to obtain the 

formula for the solution of the quadratic equation ax
2
 + bx + c = 0. In the discussion, 

they refer to an instance where students restrict their attention to an easy case of the 

equation, x
2
 = k  where k is positive. Then the students consider why it is easy to 

solve x
2
 = k and realize that the key lies in the absence of the linear term (pp.348-

349). Starting with this illustration, Hanna and Barbeau argue that the technique of 

completing the square that students possibly can obtain through the above process 

―does not stem logically from a previous statement or axiom‖ (ibid, p.349). From the 

focus of this paper, it is remarkable that neither the equation x
2
 = k nor its solution 

appears explicitly in the presentation of proof. Moreover, in the discussion, Hanna 

and Barbeau do not analyse or even mention the role of the specialization to x
2
 = k. 

The third component deals with ‗manner‘. In contrast to a formal manner towards a 

product of proof, processes of proof-planning have informal aspects. Especially in 

geometry, students can use a diagram for proof-planning. For example, Douek 

(1999) considers the references used in proof and proving as involving not only 

mathematical theory but also diagrams or visual evidence and other kinds of 

representation. Using empirical evidence she points out that semantically routed 

arguments including diagrams or numerical examples play an important role in 

proving. 

Thus, this paper focuses on the following three ways of proof-planning: 

backward/forward reasoning; changing the condition; referring to diagrams. 

PROOF-PLANNING PROCESSES BASED ON ARGUMENTATION 

Since students do not know how the product of proof should be, they may make 

errors in directing their proof-planning processes. Thus, in analysing proof-planning 

processes, it is necessary to consider that the processes may have plausibility. That 

means, an intermediary condition/conclusion obtained by backward/forward 

reasoning is not necessarily used in the proof; reasoning obtained under the changed 

condition is not necessarily applicable for the initial condition; an idea found based 

on diagrams does not necessarily work generally. Therefore, this paper focuses on 

the concept of argumentation, that is, a process of making arguments that may 

include plausibility and of examining already made arguments. An argument is 

logically connected (but not necessarily deductive or formal) reasoning (Douek, 

1999). 

In this section, first, we briefly summarize the literature on proof/proving and 

argumentation. Second, we characterize proof-planning processes according to the 

nature of argumentation. Third, based on the characterization, we illustrate two kinds 
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of hypothetical proof-planning processes. This illustration is used to discuss the role 

of looking back at proving processes in the next section. 

Proof/proving and argumentation 

Based on mathematicians‘ accounts of informal elements as made by Lakatos (1976) 

or Thurston (1994), studies on proof/proving and argumentation mainly analyse how 

students can (or cannot) construct a proof by utilizing argumentative activities. 

Several studies point out connections between argumentation and proof (e.g. Douek, 

1999), while other studies point out the gap between them (e.g. Balacheff, 1991). 

Prompted by the findings of these studies, Pedemonte (2007) focuses not only on 

―content‖ but also on ―structure‖ and introduces Toulmin‘s (1958/2003) ―layout of 

arguments‖ for a methodological tool to analyse relationships between them. 

These studies focus not only on processes of making arguments that may include 

plausible content or structure, but also on processes that can remove the original 

plausibility. In addition, for the aims of this paper, we need to focus on reasoning 

that does not necessarily appear in a product, for example reasoning that students use 

in order to obtain an idea of proof but do not use in order to present a proof. 

Therefore, this paper re-examines the nature of argumentation and, by synthesizing 

findings in the above literature, it characterizes proof-planning processes. 

Characteristics of proof-planning from the viewpoint of argumentation 

Making an argument based on observations concerning the conclusion 

The studies on proof/proving and argumentation mainly analyse contents (e.g. 

reference to diagrams) and structures (e.g. abductive reasoning) (Pedemonte, 2007). 

What is common to both is an emphasis on observations concerning a conjecture. For 

example, Pedemonte mentions the role of ―abductive argumentation‖, which ―allows 

the construction of a claim starting from an observed fact‖ (Pedemonte, 2007, p.29), 

and some difficulties related to it. Toulmin (1958/2003) also emphasizes such 

observations and regards that an assertion that is going to be claimed comes first. 

Thus, one aspect of argumentation is to make an argument based on observations 

concerning the conclusion. Even if the proposed statement might be false in general, 

the foci of the literature are on the processes of justifying a conjectured ―fact‖. 

Therefore, this aspect of argumentation is only suitable for the case when the 

conclusion holds. 

Thus, the first characteristic of proof-planning processes is: (i) to make an argument 

for which a claim holds based on observations. 

Uncertainty 

Toulmin‘s ―layout of arguments‖ consists of six related components of an argument: 

three elements ―Data‖, ―Warrant‖ and ―Claim‖ which have similar functions to minor 

premise, major premise and conclusion in syllogism; and three more elements 

―Rebuttal‖, and ―modal Qualifier‖ which are used for ordinary arguments (Figure 1 
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uses abbreviations by their initials). Since the framework can capture logical and 

plausible aspects at the same time, it is an effective tool for the aim of this paper. In 

particular modal qualifier functions to show uncertainty of an argument. This 

element is necessary since we sometimes have to make an argument by limited data 

or warrants (Toulmin, 1958/2003, pp.93-94). 

Thus, the second characteristic is: (ii) to make an argument which may include 

uncertainty. 

Adding the condition 

Rebuttals represent ―conditions of exception‖ and are used when one notices 

exceptional cases or conditions under which the data and the warrant cannot 

implicate  

 

 

 

 

 

 

 

the claim (ibid, p.93). Since such cases are special cases, one needs to consider 

several cases and check if the claim holds or not for each case. This consideration is 

necessary because even having certain data and warrant sometimes cannot implicate 

a claim without a suitable connection between them. 

Thus, the third characteristic is: (iii) based on checking special cases or conditions 

under which a claim does not hold, to make an argument that takes in consideration 

exceptional cases or conditions. In this paper, ―unless‖ in Figure 1 is replaced by 

―under the condition‖, in order to allow usage also in an affirmative form. 

Hypothetical proof-planning processes 

To illustrate hypothetical proof-planning processes based on the characteristics (i)-

(iii) above, we consider Statement α, ―diagonals in any parallelogram intersect at 

their midpoint‖. We neglect possible issues in understanding the statement and 

assume that students ‗translated‘ Statement α to Statement α‘ with the diagram 

shown in Figure 2 leaving the demonstration that OB = OD for later. 

In Japan, 8
th

 graders are expected to be able to tackle proving Statement α. Students 

have already proved several statements such as ―opposite sides in any parallelogram 

are equal‖ or ―opposite angles in any parallelogram are equal‖ based on properties 

concerning parallel lines, alternate angles and triangle congruency. The key idea in 

proof-planning of Statement α‘ is to find an appropriate pair of congruent triangles. 

Figure 1 Layout of arguments    

(Toulmin, 1958/2003) 

Figure 2 Statement α‘ 

Let O be the intersection point of  

diagonals AC and BD 

in parallelogram 

ABCD. 

Then OA = OC. 
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If students use backward/forward reasoning successfully, they can find a pair of 

triangles ADO and CBO or ABO and CDO. However, many of the students seem to 

have difficulties in processing the reasoning. These difficulties seem to be related to 

the lack of students‘ experience of working with such complex diagrams. 

Thus, we assume that students could not find an appropriate pair of triangles; instead 

they refer to the diagram and try to change the condition. Students will consider 

several cases, for example rhombus, rectangle, square, trapezoid and so on. The 

conclusion holds for some cases, but it does not for other cases. 

On examining cases for which the conclusion holds 

In the case of a rhombus, students can easily see many pairs of triangles that seem 

congruent by referring to a diagram. If they focus on a pair of triangles ABO and 

CDO (or ABO and ADO and so on), they can verify that the triangles are congruent 

by the  

 

 

 

 

 

 

 

ASA congruency condition by backward/forward reasoning. On the other hand, if 

they focus on a pair of triangles ABO and CBO (or ADO and CDO), they will find 

that none of the congruency conditions SAS, ASA and SSS can be applied. 

In the latter case, students do not have enough information to make a deduction to 

show the property ―triangles ABO and CBO are congruent‖ (i.e. they only know that 

AB = CB). At this time, students would be uncertain whether they can deduce the 

property. However, if they consider based on observations that the property 

‗probably‘ holds, they can make an argument as shown in Figure 4, due to the 

characteristics (i) and (ii) of proof-planning. 

By changing the condition back to the general case of a parallelogram, students can 

check whether this argument holds for the case of parallelogram. Then they will 

confirm that neither triangle ABO and CBO nor ABO and ADO are generally 

congruent, but they will also feel that triangle ADO and CBO seem to be congruent. 

Thus they arrive at the key idea in proof-planning of Statement α‘. 

On examining cases for which the conclusion does not hold 

If students consider a trapezoid, they can easily find, by referring to a diagram, that 

the conclusion does not generally hold. However, due to the characteristic (iii) of 

Figure 3 Diagram in the 

case of a rhombus 

O     

Figure 4 Argument in the case of a rhombus 

So 

Since 

under the condition W: the corresponding 

sides of congruent 

triangles are equal 

D: triangle ABO and 

CBO seem congruent Q: 

probably 

ABCD is a 

rhombus  

C: AO = 

CO 
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proof-planning, they can look for an additional condition which makes the 

conclusion ―OA = OC‖ hold. If they consider ―AB // CD‖ as such a condition, they 

will find that this idea does not help. On the other hand, if students notice the 

definition of a trapezoid and the relationship between parallel lines and alternate 

angles, they can argue ―angle DAC = ACB‖, as well as ―angle ADB = DBC‖ (Figure 

5). 

 

 

 

 

 

 

 

 

 

 

In the latter case, they have found out that two angles of the triangles ADO and CBO 

are equal. By backward reasoning, they would find out that, if the condition ―AD = 

CB‖ is added, the conclusion ―OA = OC‖ holds by ASA. Due to the characteristic 

(iii) of proof planning, they can make an argument on the lines indicated in Figure 6. 

By changing the condition back to the case of a parallelogram, students will notice 

that ―AD = CB‖ holds by the known proposition ―opposite sides in any 

parallelogram are equal‖. Thus, they can deduce that triangle ADO and CBO are 

congruent. 

THE ROLE OF LOOKING BACK AT PROOF-PLANNING PROCESSES 

Even if students manage to construct a proof of the initial Statement α, the 

presentation of the proof will not show the practices concerning the above processes 

(e.g. Figure 4 or 6) but only show a sequence of deductive reasoning from the 

premise to the conclusion of Statement α. Supposing that students reach a proof by 

going through one of the above processes, we discuss what kinds of new problems or 

ideas could occur by looking back at the process that does not shown in the 

presentation of the proof. 

The sufficient condition of the conclusion 

Let us take the case of a trapezoid, for which the conclusion does not hold. By 

looking back at the proof-planning process related to Figure 5 and 6, students can 

compare the case of considering a parallelogram to the case of considering a 

Figure 5 Diagram in the 

case of a trapezoid Figure 6 Argument in the case of a trapezoid 

So 

Since           

under the condition           W: ASA 

congruency 

condition  

D: angle DAC = 

ACB      

    angle ADB = DBC        

R: ABCD is a trapezoid      

and AD = CB  

C: triangle ADO and 

CBO are congruent 
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trapezoid, that is, cases where the conclusion holds and where it does not. Hence, 

they can discover a sufficient condition that ensures that the conclusion holds, as 

follows. 

The process related to Figure 6 shows that a key condition to implicate the 

conclusion ―OA = OC‖ is ―AD = CB‖. In detail, in addition to ―angle DAC = ACB‖ 

and ―angle ADB = DBC‖ (which hold in the case of a trapezoid as well), ―AD = CB‖ 

holds in the case of a parallelogram (which does not hold in the case of trapezoid). 

The value of this sufficient condition is that students can obtain an answer to the 

mathematically important question: ―why do diagonals intersect at their midpoints 

for parallelograms but not for trapezoids‖. By looking back at the above process, 

students can answer: ―because for parallelograms, not only opposite sides are parallel 

but also these sides have equal length‖. 

What has just been said was made to illustrate the explanatory role of proving 

processes, inspired by the explanatory role of proof as a product discussed in the 

literature. To utilize the explanatory role of proof, students have to identify the 

crucial elements raised from all the deductive connections that appear in the proof. 

This seems difficult for many 8
th

 graders who are not attuned to mathematical logic. 

In contrast, the process illustrated above develops only for the purpose of proving 

Statement α. To utilize the explanatory role of proving, students only have to look 

back at the process. 

A statement which was not proved 

We now take the case of a rhombus, for which the conclusion holds. By looking back 

at the process related to Figure 4, students are able to prove Statement β, i.e. ―in any 

rhombus ABCD triangles ABO and CBO are congruent‖, which they considered to 

be ‗probably‘ true but they were not able to deductively show at that time. After 

proving Statement α, by using it they can easily prove Statement β. 

The value of isolating and proving Statement β lies not only in posing new problems 

(cf. the discovery function of proof) but also in obtaining ideas of how to change the 

condition. In the above process, students obtained ideas how to prove Statement α 

(that concerns parallelograms) by considering rhombi instead. Reversely, in looking 

back at the process, they can obtain ideas for proving a new situation concerning 

rhombi (i.e. Statement β) by considering parallelograms. From both experiences, 

students will appreciate that changing the condition is a useful way for proof-

planning for both the initial statement and changed statement. 

CONCLUDING REMARKS 

The analysis made in this paper suggest that there are other roles of looking back at 

proving processes than those that appear in the related literature such as Hanna and 

Barbeau (2008) or studies on functions of proof. However, the analysis is not based 

on actual students‘ practices but based on hypothetical illustration. Considering the 
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fact that many students have difficulties in constructing proof or looking back at a 

proof, it would be a great effort for them to look back at proving processes. 

Therefore, there is an especial need for empirical studies on how teachers can 

promote students‘ practices of looking back, and on designing situations for which 

students can appreciate the practice. The analysis also suggests that it can be useful 

to give students opportunities to compare different eventualities that can occur in 

proving the same statement. 
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This paper presents an analysis of a teaching experiment with seven high achieving 

upper secondary school students in Sweden focusing on the de Villiers‘ discovery 

function of proof. The aim of the experiment was to test if it is possible for students 

to get insights to, and use, this function. The data consists of a tape recorded 

introductory pass, students‘ group work and the final discussion together with the 

students. The results show that the students did get some insights about the function. 

However, it was difficult for the students to construct the original proofs in order to 

use them to discover new results. The paper also shows that the function of discovery 

needs to be explored and clarified, as there are different interpretations of it in our 

field.    

Key words: mathematical proof, discovery function, transparency, upper secondary 

school mathematics 

INTRODUCTION 

Many mathematics educators have explored and discussed the functions of proof in 

mathematics as science (e.g. conviction, explanation, intellectual challenge) and their 

relevance for the teaching and learning of proof (e.g.  Bell, 1976; de Villiers, 1990; 

1999; Hanna 2000; Weber, 2002) Several studies also apply these functions in 

empirical studies (e.g. Knuth, 2002; Hemmi & Lôfwall, 2009). The discovery 

function was first presented by de Villiers 1990. With this function he refers to 

discovery/invention of new results by purely deductive manner exploring and 

analysing a proof.  

To the working mathematician proof is therefore not merely a means of a posteriori 

verification, but often also a means of exploration, analysis, discovery and invention. (de 

Villiers, 1990, p. 21)  

New results in his examples often refer to generalisation of the initial statement. The 

function of discovery as de Villiers defined it has not been so much in the focus of 

empirical research. Miyazaki (2000) conducted a teaching experiment with tasks 

specifically designed for students‘ engagement with activities connected to the 

discovery function. However, his concept of the function is wider than the one that 

de Villiers (1990; 1999) presents.  

The functions of proof are sometimes interpreted in different ways by researchers. 

There is also some confusion about the difference between the concept of function of 

proof on the one hand and approach to proof on the other hand (i.e. how we work 

with proofs and proving and how we present mathematics) (c.f. Hemmi, 2010). For 
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example, Knuth (2002), although referring to de Villiers, connects the function of 

discovery, not to finding new truths by deductions, but quite the opposite, to 

inductive ways of finding patterns and making conjectures that may be followed by 

deductive proofs. Hence, there seems to be a need to scrutinise and clarify also the 

concept of function in order not to create confusion between different research 

results and, in the end, their consequences to the teaching practice.  

De Villiers (2007) discusses the recent focus on the investigative working manners 

for example in the mathematics textbooks and points out that they do not promote 

students‘ understanding of and skills in using the function of discovery but leads 

rather to the need for verification, the function that has traditionally been in focus in 

mathematics education. We do not question that ―new‖ ways to approach proof 

(investigations-conjectures-proofs) may enhance students‘ understanding and 

appreciation of the verification function in another way than just confronting them 

with complete proofs constructed and verified by others. We also agree with de 

Villiers (2007) when he points out the importance of the balance between 

experimentation and deductive thought. 

The aim of our ongoing explorative study is to develop and test some tasks that could 

enhance students‘ understanding of the discovery function as defined by de Villiers 

(1990). We also take as our starting point that proof sometimes provides valuable 

insights into why something is true and that looking back and reflecting on it can 

enable one to generalise or vary the results in different ways (c.f. de Villiers, 2007). 

We delimit to look at the function of discovery more narrowly than Miyazaki (2000) 

in order to be able to scrutiny some details in this function as well as students‘ 

learning and understanding of it. The earlier studies have mainly focused on 

geometrical problems. In our study, we explore this function and students‘ encounter 

with it within both algebraic and geometrical contexts.  

THEORETICAL STANDPOINTS 

We look at our experiment from the perspective of social practice theory applied to 

proof and proving in mathematical practice (Hemmi, 2008) and consider proof as an 

essential artefact in mathematical practice. Artefacts are tools that mediate 

knowledge between the social and the individual. According to the theory there is a 

balance between how much to focus on artefacts and how much to work with them 

without a focus on them, called the condition of transparency, and a lot of research 

in our field illuminates this balance in different ways (c.f. Hemmi, 2008). According 

to the social practice theory, an important part of learning is experiencing meaning in 

the practice (Wenger, 1998). Understanding the role and functions of proof in 

mathematical practice could enhance students‘ experience of meaning in both 

scrutinising and reflecting on complete proofs and trying to construct their own 

proofs. Teaching is seen to only offer possibilities for learning and we want to study 
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what aspects of the object of learning become visible for the students (c.f. Marton & 

Booth, 1997). 

What we mean by the discovery function 

The example that de Villiers (1990; 1999) gives in order to enlighten the function of 

discovery is about a kite where the midpoints of the sides form a rectangle. The 

perpendicularity of the diagonals is the essential step in the proof and the property of 

equal adjacent sides is not required. Hence, it was possible to generalise the result to 

any quadrilateral with perpendicular diagonals. Recently, de Villiers (2007) presents 

another problem that further enlightens the function of discovery. Miyazaki (2000) 

extends the meaning of the discovery function to concern not only the 

generalisations of the original results by using the proof but also finding tacit 

assumptions, making new mathematical concepts and so on (Miyazaki, 2000, p. 5). 

This is a very wide conception about the discovery function and some of the aspects 

Miyazaki includes in the function (e.g. finding tacit assumptions) have been 

connected to the function of systematisation for example by de Villiers (1990; 1999). 

The aim of our study is to make visible certain aspects of the discovery function for 

upper secondary students in order to enhance their understanding of them and at the 

same time enhance their appreciation of proof as a useful tool in mathematical 

activities. Therefore, we created some special problems the proofs of which could be 

used for finding new results.  

Miyazaki (2000) first let students work with a proving task and analyse the logical 

structure of their individual proofs carefully. Then, the students received an 

additional problem where they would study the conditions of the initial problem and 

find out generalisations. The Swedish students are not as familiar with proving tasks 

as the Japanese students seem to be according to the results of Miyazaki‘s study. We 

also wanted to control the experiment by holding some variables fixed in order to be 

able to look at more limited aspects of the function than Miyazaki did. Therefore, we 

focused on the investigations of the initial proofs in order to find out more general 

statements that the same proof would work for. In Miyazaki‘s experiment, new 

proofs were sometimes needed in order to solve the additional problem. In our 

examples, this is not the case.      

The following examples illustrate our view of the discovery function and were used 

when introducing the students to the topic. We also carefully present the proofs of 

the examples in order to show the possibilities of using the function in different 

ways. 

Statement 1 

In a rectangle the midpoints of the sides are connected. Then one obtains a 

parallelogram.  
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Proof 

Draw the diagonal in the rectangle. We will use the following theorem in Euclidean 

geometry: 

Let P be a point on the line AB and Q a point on the line AC. Then PQ is parallel to 

BC if and only if AP:PB = AQ:QC. 

It follows that the line connecting the two midpoints on the same side of the diagonal 

is parallel to the diagonal: 

 
Figure 1 

The same is true for the side on the other side of the diagonal. Hence these two lines 

are parallel. Also, we find that the other two lines are parallel, by considering the 

second diagonal.  

QED 

Analysing this proof, we see that we have not used the fact that the quadrilateral is a 

rectangle. The proof goes through as it stands for any quadrilateral. Hence, we get a 

new true statement: 

Connecting the four midpoints of the sides of an arbitrary quadrilateral, yields a 

parallelogram.  

In this way we have got a more general result, by realising that the proof for the 

original statement is valid under weaker assumptions.  

It is also possible to obtain new results, by realising that the proof in fact proves 

more than the original statement. In the next example we will see an application of 

this. One can combine these two ways to find new truths by both making the 

assumptions weaker and the conclusion stronger. Formally, this may be illustrated in 

the following way: 

BDCA  

Here  BA   is the original statement and  DC   is the newly discovered 

statement.  

Another way to create new statements is by ―generalisation‖. The proof is perhaps a 

special case of a more general proof. In the above example we see that the proof uses 

a theorem in the special situation where the proportion is 1:1. The proof works 

equally well if we instead divide the sides outgoing from two opposite corners in the 
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same proportion. Hence, we get the following generalisation of the original 

statement: 

In a quadrilateral the two sides outgoing from a corner are divided in the same 

proportion. The same proportion is also used to divide the two sides outgoing from 

the opposite corner. Connecting these four points gives a parallelogram.  

Next, we illustrate what we mean by the discovery function with an algebraic 

example.  

Statement 2 

If two prime numbers greater than 2 are added, then the result is not a prime 

number. 

Proof 

A prime number greater than 2 cannot be divisible by 2. Hence it is 1 greater than an 

even positive number. If two such numbers are added, the result is a number which is 

2 more than an even positive number. This number is greater than 2 and divisible by 

2 and hence it is not a prime number.  

QED 

Analysing the proof, we see the following structure: 

x,y  prime numbers  > 2     x,y  odd  > 1    x+y  even  > 2    x+y  not prime 

We may hence discover a new truth by both weaken the assumptions and draw a 

stronger conclusion: 

                              x,y  odd  > 1    x+y  even  > 2 

Compare with the general picture above, BA   is replaced by . Finally, we remove 

the assumption,  x,y  > 1, and weaken the conclusion to,  x+y  even, to obtain a more 

aesthetic statement.  Hence, we have discovered the following truth by examining the 

proof.  

The sum of two odd numbers is even. 

Is it possible to find generalisations? 

Here is one possible generalisation (with the same proof): 

If the integers a and b, when dividing them with the integer k, have the rests r and s 

and r+s is divisible by  k  then also a+b is divisible by  k. 

The following two problems were left to the students to work with, in two groups 

during about one and a half hour. 

Problem 1 

Let n be an integer which is not divisible by 3. Prove that  nn3   is divisible by 3. 

Problem 2 
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Two circles intersect at the origin of an orthogonal coordinate system. The centre of 

one of the circles is on the x-axis, while the centre of the other circle is on the y-axis. 

The circles intersect at one more point. Prove that they intersect there under right 

angle. 

METHODOLOGY 

This is the first explorative study where we focus on the function of discovery. We 

introduced this function to a group of high-achieving upper secondary school 

students, two girls and five boys. The students were to finish their secondary level 

studies during the time of the experiment. We chose these students because they had 

taken some special courses in mathematics, for example in geometry, so we could be 

sure that they were familiar also with geometrical proofs. In Sweden, not much time 

is usually spent on geometry in ordinary upper secondary school classes.  

During the introduction, we presented the examples above. Clas led the session and 

engaged also the students in the presentation with appropriate questions. The 

students did not need to take notes because we handed out the written presentation to 

them after the introduction. Also their mathematics teacher took part of this session 

together with the students. Kirsti observed the session and she also videotaped the 

presentation. The presentation took about 30 minutes. 

After the presentation we divided the students into two small groups according to the 

recommendations of their teacher and they obtained the written introduction with the 

two tasks that they would work with. We asked the students to read the tasks 

individually and then together discuss and try to solve them. They could come and 

ask for help if needed and Clas visited the groups twice during the session in order to 

offer his help. The group work was tape-recorded. 

After the groups had struggled with both problems about one and a half hour we 

gathered the students together again and asked them to tell us how they had solved 

the problems. This discussion was also tape-recorded. We kept also the notes that the 

individual students had made during the group work session in order to use them as a 

complementary data. We decided to meet after one week and the students could read 

the material we handed out to them and think about two additional tasks. 

During the last meeting we asked the students to tell us if they had obtained some 

new insights concerning the use of proof and proving. Finally, Clas showed the 

solution of one of the tasks they had been thinking about at home. This session was 

tape-recorded as well.    

Data analysis 

We watched and listened the videotaped session to find out students insights during 

the presentation. Then, we listened the tape-recorded group work sessions several 

times and identified the parts that in various ways enlightened the students‘ insights 

concerning the discovery function. We transcribed the relevant parts of the 
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discussions. In parallel, we also studied the notes that the individual students made 

during the group session.  

Ethical aspects 

We carefully informed the students and the teacher about the background and the 

aim of our study and that it was optional to take part of it. We informed also what we 

would do with the data and that the data would be handled in a way that would 

protect their anonymity.  

RESULTS OF THE TEACHING EXPERIMENT 

In the presentation of the Statement 1 above, some students nicely pointed out that 

one even obtains a rhombus and proved that the sides are equal using the 

Pythagorean Theorem. However, to be able to use the discovery function, Clas 

showed them the proof given above. Concerning the algebraic example, one of the 

students seemed to catch the idea of discovery already and suggested a generalisation 

of the statement. 

The analysis of the group sessions shows that students in both groups seemed to 

realize that it was a question about finding new results. Group 1 started their work 

enthusiastically encouraging each other: 

S1: Now, let‘s find new truths!  

They also show that they have understood that it is important to first find a solution 

to the original problem first. 

S2: First, we have to show that we have a solution.  

However, they did not manage to find a proof for the initial statement which was a 

prerequisite for exploring and deriving deductively new results. Instead, they started 

to discuss the possibilities of proving something more general. 

S1: Is it possible to take away some demands in some way? 

S3: I wonder if it works for all odd integers.  

The second group managed to prove the statement by expressing the number n with 

t+1 and t+2 where t was divisible with three. During the proving process they also 

noticed that the expression is always even. However, they did not succeed to put 

their results together and extend the divisibility result from 3 to 6. They did neither 

notice that they could omit the prerequisite that n is not divisible by three. In the 

similar manner as the first group they started to make and test conjectures about 

possible generalizations without reflecting on their proof. 

S4: But the point is that this is a correct proof and we have to go on, and what 

was it we would do, we would generalise or specify… why not just put n
x
 − 

n divided by x?   
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Then they tested the generality of the statement and arrived at a conjecture that n
x
 − n 

is divisible by x if x is a prime. Hence, they did not reflect on the proof they had 

constructed but went on inductively testing new conjectures inspired by the initial 

statement.  

Some students suggested a proof by induction for the first problem and also worked 

a bit with it. However, they did not seem to understand the idea of mathematical 

induction properly.  

S5: The proof by induction, would it work here? 

S4: We can always do it. 

S6:   But I don‘t remember proof by induction. 

S4:  But exactly like we have started now (testing with the conjecture) we start 

by the basic... and then, you know, one first proves that it holds for n and 

then that it works for n + 1. 

S7:  Exactly. 

One student also suggested a proof by contradiction and here also we noticed that the 

student did not really grasp the idea from the logical point of view.  

S4: Shall we do this classical that we assume the opposite that n is divisible by 

three and then look how it works? 

Regarding the geometry task, both groups managed to prove the initial statement and 

also to generalize the statement (the angles are equal in both intersection points). 

When we met the students after one week and posed a question about what they had 

learned the students answered:     

S5: Mm, yes, the key word is I think ‗generalise‘ in these proofs and then it is 

we have learned, or any way I have learned, I think in another way and it is 

that if one can extend the proof and use it and if it works with other 

assumptions. 

S4: The way in which I understood this was that one either generalises or 

specifies that one, as you (Clas) expressed it, strengthens the prerequisites 

of this proof or that one opens it to see what more cases hold.  

Hence, these students state they had got insights in the aspects of discovery function 

that we aimed with our experiment. Yet, the second extract shows that the student 

has difficulties to distinguish between assumptions and conclusions. We also noticed 

that the two problems they would think about at home were too difficult in the light 

of the analysis of the group work.   

CONCLUSIONS AND DISCUSSION 

The students in our study showed in several ways that they caught the idea of the 

discovery function. However, they had great difficulties to construct and analyse 
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their own proofs in a way the students in Miyazaki‘s (2000) study did. Miyazaki 

stresses that it is important for the teacher to let students first themselves prove the 

initial statement, in order to successfully apply the function in the teaching of lower 

secondary school mathematics. Concerning the Swedish students we found out that it 

could be better to also work with complete proofs in order to engage the students in 

exploring the very deductions in searching for further discoveries. One of the 

hindrances for the groups concerning the first problem was the construction of the 

initial proof.  

Our focus was not on the very construction of the proof of the initial statement but 

on the use of it in order to enlighten the discovery function. If the teacher has 

designed a situation that aims to enhance students‘ understanding of certain aspects 

of proof, it can be better to hold some other aspects constant and vary the ones that 

are the object of learning (c.f. Marton & Booth, 1997; Hemmi, 2008). Recent 

international comparisons and national evaluations show that Swedish students are 

not very strong in algebra (e.g. The Swedish National Agency of Education, 2009; 

Brandell et al, 2008). This is confirmed by our study. Although the students were 

considered as high-achieving they had difficulties with some elementary algebra, 

e.g., finding the factorisation )1)(1(3 nnnnn . The students in our study had also 

difficulties to cope with some logical aspects involved in proving. Hemmi‘s (2008) 

study shows that many university students still struggle with them.  

Our aim is to go on conducting a new teaching experiment where we will modify the 

design of it according to the results from this study. The present study shows that 

there are a lot of interesting aspects to explore concerning the function of discovery, 

both theoretically and in applying it in the teaching of mathematics at different 

levels. 
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This report proposes an approach to algebraic proof. It is based on the use of the 

AlNuSet system, a dynamic, interactive system to enhance the teaching and learning 

of algebra, numerical sets and functions in secondary school.This work wishes to 

show in which way AlNuSet can be used in the educational practice to enhance the 

teaching and learning of algebraic proof. The research hypothesis is that 

educational activities performed in AlNuSet favour the combination of the aspects of 

visibility and invisibility in the approach to proof, making it ―transparent‖. 

Key words: Algebra, AlNuSet, transparency, conjecturing and proving 

PROOF IN ELEMENTARY ALGEBRA 

Bibliography on the theme of algebraic proof at secondary school level is sporadic 

(Healy &Hoyles, 2000). A possible reason is that in the secondary school curricula 

of many countries, the approach to proof is still taught in the context of traditional 

geometry (Hanna &Jahnke, 1993). Nevertheless, rigorous proof is generally 

considered a sa sequence of formulae within a given system, each formula being 

either an axiom or derivable from an earlier formula by a rule of the system. This 

kind of proof clearly reveals the influence of algebra (Hanna &Jahnke, 1993).  

Furthermore, some recent studies (Pedemonte, 2008) show that Algebra seems to be 

a good domain to introduce proof. In fact, unlike the geometrical case, in Algebra 

some difficulties students have in the construction of proof seem not to be present. 

This has been observed when students solve open problems requiring the 

construction of a conjecture and the production of a proof. Some Italian researchers 

(Boero, GarutiMariotti 1996, Garuti e al. 1998, Mariotti 2001) showed that open 

problems are suitable for proof learning because cognitive unity between 

argumentation supporting the conjecture and the construction of the proof can be 

realised. According to cognitive unity hypothesis, the argumentation used to 

construct a conjecture can be used by students in the construction of proof by 

organising some of the previously produced arguments in a logical chain. This 

continuity supports the construction of a proof. However, another kind of continuity, 

the structural continuity, exists between argumentation supporting a conjecture and 

proof (Pedemonte, 2007). This kind of continuity occurs when argumentation and 

proof have the same structure (abductive, inductive, deductive). Pedemonte(2007) 

observed that this continuity can be an obstacle for the construction of a geometrical 

proof: some students do not construct a proof because they are unable to transform 

abductive steps of argumentation into deductive ones in the proof. When 

constructing algebraic proof this obstacle seems not to be present (Pedemonte, 2008). 

Since algebraic proof is characterised by a strong deductive structure, abductive 
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steps in the argumentation activity can be useful in linking the meaning of the letters 

used in the algebraic proof with numbers used in the argumentation. Thus, the 

approach to proof in Algebraic domain could be more effective than in Geometry. 

In school practice, however, algebra is not usually considered as a way of seeing and 

expressing relationships but as a body of rules and procedures for manipulating 

symbols. Normally, students can develop manipulations but are not aware of axioms 

and theorems they are using in performing it. Thus, algebra is taught and learned as a 

language and emphasis is given to its syntactical aspects. The actual ―vision‖ of 

Algebra should be modified to introduce it as a domain for proof - algebra should be 

considered as a theoretical system where techniques used to make manipulation 

derive from mathematical axioms and rules. 

This paper proposes an approach to algebraic proof. It is based on the use of the 

AlNuSet system which can be used to propose specific tasks requiring the 

construction of a conjecture and the production of an algebraic proof. AlNuSet was 

developed in the context of ReMath (IST - 4 - 26751) EC project for students of 

lower and upper secondary school (years 12-13 to 16-17). It is constituted by three 

integrated environments: the Algebraic Line, the Algebraic Manipulator, and the 

Functions. In this paper we consider two of them: the Algebraic Line (AL) and the 

Algebraic Manipulator(AM). The AL is an explorative environment to construct 

conjectures through a motor perceptive approach; the AM is a symbolic calculation 

environment to produce algebraic proof. The aim of this report is to show how this 

system can be used to support the teaching and learning of algebraic proof, making 

proof ―transparent‖. 

PROOF HAS TO BE ―TRANSPARENT‖ 

The role of the proof in the educational practice is not well defined and very often 

difficulties emerge because some aspects of proof are not explicit for students and 

they are not well explained by teachers (Hemmi, 2008). Through the notion of 

―transparency‖, in her report Hemmi contributes to solve the dilemma to make more 

or less invisible for students some important aspects concerning proof. The concept 

of transparency (Lave and Wenger, 1991) combines two characteristics: visibility 

and invisibility. Visibility concerns the ways that focus on the significance of proof 

(construction of the proof, logical structure of proof, its function, etc.). Invisibility is 

the form of ―unproblematic interpretation and integration to the activity‖ (Hemmi, 

2008, p. 414). It concerns the proof as a justification of the solution of a problem 

without thinking it as a proof. It has been underlined that ―Proof as an artifact needs 

to be both seen (to be visible) and used and seen through (to be invisible) in order to 

provide access to mathematical learning‖ (Hemmi, p. 425). The lack of visibility in 

the teaching of proof regards the lack of knowledge about proofs techniques, key 

ideas and proof strategies. 
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The hypothesis of this study is that AlNuSet can be used in teaching and learning 

algebraic proofs to make proof more ―transparent‖. The AL can be used to make 

―visible‖some important mathematical concepts that are usually implicit in the 

algebraic manipulation (the variable, the dependence of an expression from the 

variable, the meaning of equation, etc.). The AM of AlNuSet can be used in teaching 

and learning algebraic proofs to make rules and axioms used ―visible‖ in proof 

processes and to let theoretical aspects usually implicit in algebraic manipulation 

emerge.The AL and the AM are briefly presented in the following. A more detailed 

presentation can be found in other reports (Chiappini, Pedemonte, Robotti, 2008; 

Pedemonte, Chiappini, 2008). 

THE ALGEBRAIC LINE OF ALNUSET 

The AL of AlNuSet is constituted by two lines
1
 where it is possible to insert letters 

and mathematical expressions involving numbers and letters. These expressions can 
be inserted (or constructed) and represented as points on the line depending 
on the mobile point of the variable contained in such expressions. Once an 

expression has been inserted, dragging the x mobile point, the expression(s) that 

depend on it move accordingly(i.e. in the figure below the expression 3x moves 

when x is dragged on the line). 

  

This dynamic characteristic is very important to allow students experience important 

algebraic concepts - the dependence of the expression from a variable, the meaning 

of denotation for an expression, the equivalence among expressions, etc. These 

aspects are detailed in the following. 

THE ALGEBRAIC MANIPULATOR OF ALNUSET 

The AM of AlNuSet is a structured symbolic calculation environment for the 

manipulation of algebraic expressions and for the solution of equations and 

inequalities.Its operative features are based on pattern matching techniques. In the 

Algebraic Manipulator pattern matching is based on a structured set of basic rules 

that correspond to the basic properties of operations, to the equality and inequality 

properties between algebraic expressions, to basic operations among propositions 

and sets. These rules are explicit for students. They appear as commands on the 

                                           
1
 The two lines are used to construct expressions through a geometrical model. It is not possible here to explain in which 

way they work. In this report we use these lines as a unique line.  
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interface and made active only if they can be applied to the part of expression 

previously selected.An expression is transformed into another through this set of 

commands that corresponds to axioms and rules. Students can see the transformation 

of an expression as the result of the application of a rule on it.  

TEACHING EXPERIMENT 

In this section student‘s resolution processes of some tasks involving the production 

of a conjecture and the construction of proof in AlNuSet are analysed. They are taken 

from a set of data collected from an experiment carried out in a class of 22 students 

of the Second year of Lower Secondary School (12-13 years old).Empirical data 

were both qualitative and quantitative and were collected according to different 

methodologies: written tests, observations and recording of students dialogs. Data 

were transcribed and translated from Italian into English. The main aim of this 

experiment was to analyse the role of AlNuSet in a teaching experiment centred on 

algebraic expressions and propositions. The experiment lasted 6 weeks, with sessions 

of two hours per week. The first session of the teaching experiment focused on 

algebraic expressions. In this report we present results of this session. Students 

worked in pairs with AlNuSet under the supervision of the teacher and the 

researcher.Students had not used AlNuSet previously. The teacher presents the 

software showing some specific technical features. Then she distributes a paper 

containing the tasks. 

Tasks 

a) Let x be an integer number. Write an expression for the triple of x. 

Represent this expression on the AL. Is your answer correct? Why? 

Write an expression for the consecutive of the triple of x. Represent it on the AL and verify your 

answer.  

Consider the expression x+2x+1. Compare this expression with the previous one. 

Check your answer using the AL and AM of AlNuSet. 

 

b) Let x be an integer number. Write an expression that represents the quadruple of x increased by 3. 

Is there any value of x such that this expression is 27? 

 

c) The teacher asks a student to carry out the following computation:  

Think a number, double it, add 6, divide the result by two, and subtract from it the number that 

you thought initially.  

The teacher says:  

The result is 3 

The teacher proposes the exercise to two other students changing the number to add.  

At the end she proposes the following exercise: 

If x is the initial number, and a is the number to add, write an expression to translate the described 

computation. 

Represent the expression on the AL.  

What can you observe when you move x? What can you observe when you move a? 

What is the result of the expression? Represent the result on the AL and check your hypothesis.  
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Tasks a) requires to construct the expression 3x in the AL and verify that this 

expression represents the triple of x. Moving x on the line the expression 3x moves 

accordingly. Through a perceptive approach students can see that the point 

associated to the expression 3x assumes values that are multiples of 3. In this way, 

what the expression 3x denotes is made more explicit. Furthermore, only moving the 

variable x it is possible to move 3x allowing students to experience the expression‘s 

dependence from the variable x. 

The second part of the task requires to construct the consecutive of the triple of x and 

to compare it with the expression x+2x+1. The aim of this second question is to 

point out the equivalence between the two expressions from a perceptive point of 

view and not from a formal one. In the AL the equivalence among expressions is 

represented by a post-it (see figure below). The two expressions 3x+1 and x+2x+1 

belong to a same post-it for each value the variable x assumes on the line. 

 

 

Students can ―experience‖ the equivalence of the two expressions and then they can 

prove the equivalence in the AM.In the AL, students make visible the equivalence 

between the two expressions. The focus here is not to prove the equivalence but to 

experience it. In the AM proof is made explicit - students are obliged to explicit the 

rules necessary to transform the first expression into the other. This is not obvious 

because this transformation in a paper and pen environment is usually not treated as 

a proof; here proof isin general invisible to students. 

Analysis of tasks a) results 

All students are able to answer the first question: they write the expression 3x. 

However it is interesting to observe that students are not able to justify why 3x is the 

triple of x. 

Some students construct a table, other students tell the 3 times table. Only when they 

can move the expression on the AL they are able to explicit that the expression 3x 

denotes the triple of x because ―the expression assumes only values that are 

multiples of 3... it probably takes all multiple of 3‖ (Sara). 

Another interesting aspect that emerged during the exploration was the dependence 

of the expression 3xfrom the variable x. When students have to move the expression 

3x, they fail because they move directly the expression and not the variable x. Here 
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an example of two students who are not able to move 3x. 

Francesca: 3x does not move 

Danilo: We are not able to move 3x 

Teacher: Why isn‘t it moving?  

Francesca: we are trying but with no results… 

Teacher: Why are you moving directly 3x? 

Francesca: Because I want to move the expression 3x 

Teacher: You should not move directly 3x because this expression is dependent on the 

variable x 

Silence 

Teacher: In which way can you move 3x? 

Silence 

Teacher: you have to move x 

Danilo: x??  

Danilo moves x 

Danilo: Ahh... 3x is dependent on x 

Francesca: Ahhh… it was really too difficult for us… 

All students write the expression 3x+1 and they insert it on the line.Once more some 

students try to move the expression directly on the line. The intervention of the 

teacher is necessary to overcome this obstacle. All students are aware that the two 

expressions x+2x+1 and 3x+1 are equal because a calculus rule (x+2x is equal to 

3x). Proof is invisible here. On the contrary, in AM, the transformation of an 

expression into the other becomes visible: many students feel frustrated when they 

have to prove their calculations with AM. The teacher has to guide them specifying 

properties they are using (distributive property, insertion of the neutral element, etc.). 

In AM proof is not spontaneous for students. As highlighted by Hemmy, visibility 

and invisibility of proof interact in the process of learning and both are needed. It 

was unexpected for the teacher that after the teaching experiment and during the 

usual lessons students could explicit these properties also in a paper and pen 

environment or on the blackboard and when not required. For example, they used to 

say ―we are applying distributive property‖ to replace the usual statement ―we are 

performing a calculation‖. Moreover, the work with AL was important for students 

to make visible the relation between the value of a variable and the value of an 

algebraic expression or proposition.The following statement was written by a student 

―An expression is dependent from a variable, from the letter that is contained in it. If 

in the expression there are only numbers, then the expression is not dependent 

fromthe variable‖ (Carlo).  

Tasks b) is an implicit requirement to solve an equation. In AlNuSet (as shown in the 

next figure) it is possible to solve the equation dragging x to move the expression 

4x+3 in the point 27. When x is situated on the point 6, the expression 4x+3 is on the 

point 27 and the little ball associated to the equation is green. On the contrary, when 

x is moved on the other values, the little ball is red to show that other points are not a 

solution for the equation. As a consequence, AL makes available functionalities to 

solve equations in a non formal way.  
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This feature helps understand the meaning of equation. Students are usually able to 

solve the equation through the manipulation rules but they cannot say that the 

solution makes it true if replaced in the equation. 

Analysis of tasks b) results 

All students are able to solve this task, and a pair of them recognises that they are 

solving an equation. However, it is interesting to observe that many solve the 

equation on the paper before the exploration on the line. Proof is invisible in the 

paper. In the AL some important mathematical concepts useful to understand the 

proof may become visible. Students are not able to move directly x on point 6 to 

obtain the solution. They try to move directly the expression on point 27, and then 

they make an exploration moving x. When they see that the expression 4x+3 is 

situated on point 27 only if the variable x assumes number 6 as values, they seem to 

understand that they are solving the equation in a completely different way. The 

insertion of the equation 4x+3=27 and the different color assumed by the 

corresponding little balls moving the variable on the line, is really effective to 

construct a justification: ―6 is the solution of the equation, for this reason when x is 

on point 6 the expression 4x+3 is on point 27 and the little ball here is green... when 

x is situated on the other values the little ball is red and not green!‖ (Martina). 

The AL is really important to make visible the relationship between the variable and 

the equation. The teacher observed that some students, even after the end of this 

teaching experiment, in spontaneous way, replaced in the equation the value of its 

solution to see if the solving process was correct. 

The proof in AM is constructed on the screen by the teacher supported by students. 

Tasks c) 

Task c) is a real effective task to understand the different meaning between variable 

and parameter. Observe that the expression    is equivalent to the 

expression   .  
x

ax

2

*2

2

a
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As consequence, the teacher may always guess the result of the expression because it 

is not dependent on the value thought by the student.  

In AL, the expression    does not move dragging the variable x. In this 

way, students can experience that this expression is not dependent on x. Students 

may also observe that the value of this expression is always the half of the value of 

a(which is the value that the teacher requested to add). This explains why the teacher 

can always know the value thought by the students. After the production of this 

conjecture, students have to prove it.  

 

On the left the required proof. 

The proof in the AM is more complex 

than in a paper and pen environment. 

Even if a lot of effort is required 

bystudents to prove the equivalence 

between these two expressions, the 

system can make visible the rules and 

procedures of manipulation supporting 

the comprehension of proof as part of a 

theoretical system. 

 

Analysis of tasks c) results 

When the teacher asks to carry out the following computation, all students are really 

surprised when she guesses the results of the calculations―Think a number, double it, 

add 6, divide the result by two, and subtract from it the number that you thought 

initially‖.The teacher proposes the same task modifying the number to be added to 

two other students. She asks to add 4 and then 8.  

The students are not able to explain why the teacher is able to guess always the 

result. The teacher asks to write an expression to translate the computation. 

Two pairs of students write the expression   but the others write the correct 

expression.  

The teacher asks to insert the correct expression on the AL and move alternatively a 

and x to observe the behaviour of the expression. 

In the following a part of the discussion developed in the class. 

Teacher: What does it happen when you move x? 

Alberto: the expression does not move! 

Fabrizio: nothing happens! 

x
ax

2

*2

x

ax

2

*2
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Teacher: are you surprised? 

A lot of students: yesss 

They continue to move x 

Teacher: and when you move a? 

Fabrizio: there are some values that are ok... 

Giuseppe: but not all values... sometimes the expression disappears  

Students speak among them to try to explain why sometimes the expression disappears 

Sara: the expression is dependent only on a 

Teacher: This is an important point! We have seen that if we move x this expression does not 

move accordingly. This expression does not depend on x. On the contrary, we have seen that 

moving a the expression has a particular behaviour. Who can account for this behaviour? 

Carlo: wait... if a is an even number then I can see the expression, but if a is an odd number, 

the expression disappears! I cannot see it!!? 

Dylan: The expression is exactly the half of a 

Teacher: are you sure that it is always the half of a? 

Federico: yes it is true, it is the half of a 

Sara: this is why you guessed the results of the expression... It is always the half of the number 

you required to add.. 

A lot of students: yess! It is true!!! 

Teacher: but why, in your opinion, the expression disappears when a is an odd number? 

Carlo: because an odd number divided by 2 is a decimal number  

Alberto: it is a decimal number  

Carlo: You asked to add only even numbers...otherwise it wouldn‘t have been possible to 

divide by two 

Teacher: Perfect! In a previous case, in the computational task I asked to add 6, then 4 and 

then 8. They are even numbers. I can calculate the half of an even number. This is why I could 

guess the result. Is it clear to all?... But what happens if we change the domain? 

Danilo: the expression does not disappear  

Alberto: it is always the half of a, we cannot see it in the Integer numbers because the integers 

are not decimal numbers! 

Teacher: So the expression is always equal to… 

All students: the half of a 

Teacher: so we can write 

The teacher writes on the blackboard 

Teacher: can you prove it? Try to prove it in the manipulator. 

Only three pairs of students were able to complete the proof by themselves. The 

intervention of the teacher was required for the other students. However, the 

constructed proof obliged them to be aware of axioms and rules that are used step by 

step during the transformation of an expression into another. Only at the end of the 

teaching experiment students are able to use the AM by themselves effectively. 

22

*2 a
x

ax
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CONCLUSIONS 

In this report we have presented AlNuSet to introduce proof in algebraic domain. 

The recent paper (Pedemonte, 2009) it was already shown how the AM of AlNuSet 

makesproof ―visible‖. In AM the transformation of an expression into another one is 

not the result of a calculation, but it is carried out by the applications of ―explicit‖ 

algebraic axioms and rules. Likewise, AL can be used to make ―visible‖ some 

mathematical concepts (the variable, the parameter, the equation, etc.) that have a 

crucial role in understanding an algebraic proof. As a consequence, AlNuSet 

maintains the balance between ―visible‖ and ―invisible‖ in the approach to proof in 

Algebra, where proof in the ordinary educational practice is usually ―invisible‖.  

REFERENCES 

Chiappini, G., Pedemonte, B., Robotti, E. (2008) Using AlNuSet to construct the notions of 

equivalence and equality in algebra. In M. Kendall and B. Samways (eds), Learning to 

live in the knowledge Society, Springer, pp. 345-349. 

Hanna, G., &Jahnke, N. (1993) Proof and application.Educational Studies in 

Mathematics,24, 421-438. 

Healy, L., Hoyles, C. (2000) A study of proof conceptions in algebra. Journal for Research 

in Mathematics Education, 31(4), 396-428. 

Hemmi, K. (2008) Students‘ encounter with proof: the condition of transparency. The 

International Journal on Mathematics education, 40, 413-426. 

Boero, P., Garuti, R., Mariotti M. A. (1996) Some dynamic mental processes underlying 

producing and proving conjectures. Proceedings of the PME 20, vol. 2, (pp. 121 – 128), 

Valencia. 

Garuti, R.; Boero, P.; Lemut, E. (1998) Cognitive unity of theorems and difficulties of 

proof. Proceedings of the PME 22, vol. 2, pp. 345-352. 

Mariotti, M. A. (2001) Justifying and proving in the Cabri environment.International 

Journal of Computer for Mathematical Learning, Dordrecht: Kluwer. 

Pedemonte, B. (2007) How can the relationship between argumentation and proof be 

analysed? Educational Studies in Mathematics, 66, 23-41. 

Pedemonte, B. (2008) Argumentation and algebraic proof.ZDM – The International Journal 

on Mathematics Education, 40(3), 385-400. 

Pedemonte, B. (2009)The Algebraic Manipulator of AlNuSet: a tool to prove Proceeding of 

the CERME 6, Lyon, France. 

Pedemonte, B., Chiappini G.(2008) ALNUSET: a system for teaching and learning algebra 

International Journal of Continuing Engineering Education and Life-Long Learning 

(IJCEELL), Vol. 18, nþ5/6, Inderscience Publishers, pp. 627-639. 



 

CERME 7 (2011) 

A SCHEMA TO ANALYSE STUDENTS' PROOF EVALUATIONS  

Kirsten Pfeiffer 

School of Mathematics, Statistics and Applied Mathematics, National University of 

Ireland, Galway  

Abstract. In this exploratory study I investigate first year mathematics under-

graduates' practice of proof evaluation of alternative mathematical proofs. This 

paper describes the theoretical background which I chose as a basis for developing 

a schema to describe and explore students' proof evaluation performances. This 

schema is illustrated on students' evaluations on one particular example proof. 

Further I demonstrate insights arising from this study about to what degree the 

nature and purposes of proofs are visible to the participating students. 

Key words: proof, proof evaluation, proof validation, artefacts, purposes of proofs. 

INTRODUCTION 

Interested particularly in the students' transition from school to university, I explore 

first year students' behaviour and knowledge when validating and evaluating 

mathematical proofs. Students' proof validation performances have been discussed in 

the research literature, for example by Selden & Selden (2003) and Alcock & Weber 

(2005). With Selden and Selden, I call the readings and considerations to determine 

the correctness of mathematical proofs and the mental processes associated with 

them validations of proof. In a mathematical community the process of accepting a 

proof involves more than its validation. Validation, the determination of the 

correctness of an argument, is a significant part of the process of accepting a proof, 

followed by a more extensive and open-ended process that involves a search for 

understanding as well as correctness, a desire for clarity and an alertness to the 

possibility of adaptation or extension. Seeing learning as assessing and participating 

in the practices of a community, I suggest to widen the context from proof validation 

to the notion of proof evaluation. With proof evaluation I mean two things: 

determining whether a proof is correct and establishes the truth of a statement 

(validation) and also how good it is regarding a wider range of features such as 

clarity, context, sufficiency without excess, insight, convincingness or enhancement 

of understanding. That is, proof evaluation includes assessment of the significance 

and merits of a proposed proof. 

In her doctoral thesis, Hemmi (2006) developed a theoretical framework to describe 

how students encounter proof when studying mathematics at university level in 

Sweden. Her theoretical framework combines a sociocultural perspective with Lave 

and Wenger's (1991) and Wenger's (1998) social practice theories and with theories 

about proof obtained from the mathematical education research. In my study I adopt 

parts of Hemmi's theoretical framework and its terminology and combine it with 

some new ideas for investigating and describing how students validate and evaluate 
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mathematical arguments. A significant aim of my study is to develop and test a 

schema to describe and analyse students' proof evaluation skills and habits.  

In this paper I present this schema and use it in the interpretation of some excerpts of 

interview transcripts. The first part of this paper introduces the theoretical 

framework. I describe Hemmi's view of proof as an artefact in a community of 

mathematical practice, then explain how I employed her ideas in my development of 

a schema to describe and explore how students evaluate mathematical proofs. The 

second part of this paper describes the experiment, in particular one of the tasks I 

used in interviews held in 2009 with eight first year students. The third part of this 

article describes the students' behaviour when evaluating one of the proofs proposed 

in the interviews, using the specialized schema mentioned above. Observations 

arising from this study provide opportunities for researchers to learn about the 

students' views of mathematical proofs. In the final part of this paper I outline some 

of those findings and discuss the value of the suggested framework. 

THEORETICAL BACKGROUND 

1 Students as newcomers in a community of mathematical practice 

Influenced by Vygotsky's theories, Lave and Wenger (1991) established their notion 

of legitimate peripheral participation, a situated learning theory that argues that 

knowledge is distributed throughout a community of practice and can only be 

understood with the 'interpretive support' provided by participation in the community 

of practice itself. I consider the mathematical community, as Hemmi does, as a 

community of mathematical practice and the students as its newcomers. A 

fundamental concept of sociocultural theory is that mental activity is organized 

through culturally constructed artefacts. Becoming knowledgeable or learning 

means increasing membership in the practice which includes the ability to use and 

understand its artefacts. They provide learners with opportunities to enter a 

community.  

Motivated by Adler (1999) and Hemmi (2006) I argue that proofs can be seen as 

intellectual artefacts in mathematical practice. Adler considers talk as an artefact in 

mathematical learning and Hemmi extends this idea to mathematical proof.   

Recognizing that validating and evaluating proofs are crucial activities in a 

mathematical community, I investigate novice students' habits when performing 

these activities. Considering Hilpinen's (2004) philosophical approach towards 

artefacts, I describe how artefacts can be evaluated in general and specialize this to 

the practice of proof evaluation throughout the mathematical community and by 

newcomers such as first year students.  Observation of novice students' behaviour 

when validating and evaluating proofs will give us insights into their existing 

knowledge about the artefact proof.  
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2 Proof - an artefact in the mathematical practice 

An artefact can be described as an object that has been intentionally made or 

produced for a certain purpose. The philosopher Hilpinen (2004) describes how 

artefacts can be evaluated. He distinguishes between the intended character of an 

artefact, its actual character, and its purpose, and evaluates on the basis of the 

relationships among those features. In the following sections I apply this 

philosophical approach to artefacts of the type proof and use it to describe how the 

interview participants evaluate proofs. 

Figure 1 below describes how a proof can be evaluated, applying Hilpinen's 

description of evaluations of artefacts in general. A proof can be evaluated in relating 

the three features of an artefact, its intended character, its actual character, and its 

purposes.  

 

Fig1: Evaluation of the artefact proof 

In this graphic the actual character of the proof means the actual realization of the 

author's intention, whereas the intended character of the proof designates this 

intention. Purposes (or functions) of proofs [1] have been widely discussed within 

the mathematical education literature in the last four decades, considering that a 

broader range of functions of proofs than that of establishing the truth of a statement 

should be recognised. De Villiers' (1999) suggested model for the functions of proof 

has been broadly accepted and applied within the mathematical education 

community. In his model functions of proofs include verification (concerned with the 

truth of a statement), explanation (providing insight into why it is true), 

systematisation (the organization of various results into a deductive system of 

axioms, major concepts and theorems), discovery (the discovery or invention of new 

results), communication (the transmission of mathematical knowledge) and 

intellectual challenge (the self-realization derived from constructing a proof). 

Expansions to this list of functions have been suggested. For example Hanna and 

Barbeau (2008) claim that the list ―stopped short of stating that proof contains 

techniques and strategies useful for problem solving.‖  Acknowledging that those 

purposes of proofs weigh differently, depending on preferences of authors and 

readers and also on the circumstances of the presentation of a proof, I consider in the 

context of proof evaluation particular proofs, not proof in general. In Figure 1 the 
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relationships among the three features are labelled EAI, EIP and EAP, where 'E' 

symbolizes 'Evaluation of a proof'. [2] 

 EAI is concerned with how a proof is a successful realization of the author's intention, 

e.g. whether all steps of the proof are mathematically correct or whether the proof is 

clearly structured. 

 EIP is concerned with how an intended proof, the author's idea of the proof, is suitable 

for its purposes. Is the idea appropriate to prove the mathematical statement? 

 EAP is concerned with how the author was successful in proving the mathematical 

statement as claimed, establishing its truth, potentially convincing a mathematical 

community or regarding other purposes of proofs as suggested above. 

In the interpretation of the transcripts of the conducted interviews I focus on the 

students' proof evaluating habits, in particular on whether and how they reflect on the 

relationships EAI, EIP and EAP among the actual and intended character and the 

purposes of a proof. Figure 2 below demonstrates how the researcher might learn 

about the students' views of proofs through observations of their proof evaluation 

skills and habits. 

 

Fig2: Research questions: how does the student evaluate a mathematical proof? 

THE EXPERIMENT 

The study is based on a series of tests and interviews conducted with first year 

honours mathematics students at NUI Galway. In March 2009 interviews were held 

with eight students. Eighteen students, who had attended a written exercise including 
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an evaluation task in September 2008 as well, were invited to participate in a 

research project. They were chosen carefully in an effort to cover a wide spread of 

performances in the written experiment. All eight students who volunteered 

participated in the project. Each of the interviews took 30 to 45 minutes. Every 

interview was tape recorded and transcribed. The aim of the interviews was to get a 

deeper insight into students' opinions about valuable proofs, students' validation and 

evaluation processes and learning effects during the validation and evaluation 

processes. The students were presented with two mathematical statements and five or 

six proposed proofs of each statement and asked to evaluate and rank them. One 

proof of the first statement was purely visual, one consisted only of a fairly random 

assortment of examples, one was completely wrong but written in "algebraic" 

language, one was more general than required, another was written in text. [2] I will 

now present one of the proposed proofs and reflect on how an experienced reader 

might evaluate it. An interpretation of the students' evaluations and rankings of this 

proof during the interviews will demonstrate how the transcripts were used to learn 

about the students' evaluation habits and their knowledge about mathematical proofs. 

Finally I will outline the results of the analysis of the entire student evaluations of 

the six proposed proofs of Statement I [3].  

Statement I. Consider the following statement. The squares of all even numbers are 

even, and the squares of all odd numbers are odd. 

Anna's answer:  

Even numbers end in 0,2,4,6 or 8.  

0² = 0, 2² = 4, 4² = 16, 6² = 36, 8² = 64. 

When you square them the answer will end in 0, 4 or 6 and is therefore even. 

So it's true for even numbers. 

Odd numbers end in 1,3,5,7 or 9. 

1² = 1, 3² = 9, 5² = 25, 7² = 49, 9² = 81. 

Squaring them leaves numbers ending with 1,5 or 9, which are also odd. 

So it's true for odd numbers. 

An experienced evaluator would probably identify that Anna's argument centres on 

her assertion that the last digit of the square of an integer is determined by the last 

digit of that integer itself. This assertion is correct. It certainly could be argued that 

the assertion needs some justification. If the evaluator is prepared to accept Anna's 

assertion, the actual character of this proof does coincide with the intention and 

therefore the argument does satisfy condition EAI. However, Anna's argument does 

not provide an essential explanation of WHY squaring an integer preserves parity 

(i.e. oddness or evenness). There is no reason to construct a modulo 10 argument 

(based on the last digit - the remainder on division by 10) for a problem in modulo 2 
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arithmetic (the problem is about remainders on division by 2). A reader may well 

complain that by using 10 cases where two would suffice, this proof misses the key 

point. The intended character of this proof, involving 10 different cases, is not a 

good fit to the purpose of explaining why squaring preserves parity. For that reason 

an experienced evaluator might regard Anna's proof not satisfactory concerning EIP 

and EAP. 

3 Example: An Interpretation of some transcript excerpts 

The coding table below (Table 2) provides an overview about the participants' 

evaluations of Anna's proof; the codes in the bottom line refer to how the students 

placed Anna's proof in the ranking of all six proposed proofs. The heading line refers 

to the codes for the students (Students C and D were interviewed together). Table 1 

describes the coding scheme. 

Satisf The student regards the answer as satisfying. 

NotSatisf The student regards the answer as not satisfying. 

Proof? The student is not sure whether the proposed approach is a sufficient proof 

of the statement or not. 

NoProof The student does not regard the answer as proof of the statement. 

NotGeneral The student criticises that the proposed approach is not applicable in general. 

Table 1: Coding Scheme 

A BC/D EF G H 

 

Proof? 

Satisf NotSatisf 

NoProof 

NotGeneral 

 

NotGeneral 

NotSatisfNotSatisf 

 

NotGeneral 

 

NotGeneral 

Satisf 

Proof? 

NotGeneral 

Satisf 

NoProof 

first fourththird fourthfourth 

(jointly) 

(jointly) 

fifth second 

Table 2: Coding Table: Students' evaluation of Anna's proof 

The coding table refers to three groups of comments. 

 Satisf/NoProof: The student is happy with Anna's answer and considers approvingly that 

Anna is using examples. The student considers that Anna's answer is not a proof of the 

statement. ―It's not a proof, but it works‖ or ―It's a good answer. (...) There is no kind of 

proof (...)‖ are responses assigned to this group. 
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 Satisf/Proof?: The student likes Anna's answer because Anna ―gives examples‖ or the 

answer ―is different‖. It is not clear from the interview conversation whether the student 

regards Anna's answer as a sufficient proof of the statement. 

 NotSatisf/NotGeneral: The student does not accept the answer as a proof of the statement 

because it ―is not general‖. 

With the research questions listed in the above diagram (Fig2) in mind I suggest an 

interpretation of the students' evaluations of Anna's proof, occasionally using short 

transcript exemplars to advance certain claims.  

4 How do the student evaluators relate the three features of Anna's proof? 

Two of the five students whose opinions belong to (Satisf/NoProof) or 

(Satisf/Proof?) do not seem to focus on relations EIP or EAP as there is no evidence to 

suggest that they are considering the purposes of mathematical proof. Even though 

the other three of those students (Satisf/NoProof) express the opinion that Anna's 

answer is not a valid proof of the statement and in particular that the argument is not 

applicable in general they acknowledge the unusual approach and the internal 

correctness and rank Anna's proof relatively highly (second or third out of six). Their 

responses to Anna's answer suggest that EAI may be more important to them than the 

relations EIP or EAP: ―It's not a proof, but it works.‖(C/D) or ―There is no kind of 

proof, it's just ---. But it does make sense‖(H). Internal correctness seems to be 

considered more important by this group of students than the purpose of establishing 

the general truth of the statement.  

The three (NotSatisf/NotGeneral)-students do relate the actual proof not only with 

the author's intention but with its purposes and therefore do consider relations EIP and 

EAP as well as EAI. They consider at least one purpose of proof, namely its general 

applicability, criticize the poor relation between the actual or intended proof and its 

purposes, and therefore regard Anna's proof as unsatisfactory, which is indicated by 

their ranking of this proof. These three students seem to regard relations E IP and/or 

EAP as being at least as important as EAI.  

5 Do the student evaluations of Anna's proof indicate what the students 

consider purposes of proofs? 

Five students criticize a lack of general applicability in Anna's proof, which indicates 

that they consider this as one purpose of mathematical proof. One of the 

(NotSatisf/NotGeneral)-students (E) finds the level of justification insufficient ―She 

doesn't prove that 'When you square, the answer will end in 0,4,6...' If she'd proved 

that, it would be ok.‖ Certainly for this student justification of intermediate steps is a 

necessary ingredient of mathematical proof. This student seems to see Anna's answer 

as an attempt at a general argument about the last digit that could be improved to a 

proof. This is similar to how an experienced evaluator is likely to see it, namely as 

more than a collection of examples. In an experienced evaluator's view the examples 

that are included in Anna's proof are not intended as examples but as items in an 
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exhaustive list that covers all cases. The other students who complain that Anna's 

answer is not general and consists of ―just examples‖ interpret this in a different 

way: Student F for example seems to see it as basically the same as another proposed 

proof which consists of a collection of examples, just ―up to ten numbers‖. Student 

B like student F considers Anna's answer as just a selection of examples: ―She took 

the numbers from 1 to 9, but what about all the other numbers? (…) Nice example, 

but that's about it.‖  

6 Do the student evaluations of Anna's proof indicate a learning process? 

Do nature or purposes of mathematical proof become visible to the 

student evaluator? 

Student G's reaction indicates that a learning process is initiated by the task. Her first 

reaction (―Very cool‖, ―different‖) indicates that she admires the unusual approach 

(―I could never think of anything like that, (...) the way she writes it down (...)‖). 

After careful prompting by the interviewer a reflection process is initiated and the 

student is getting more and more unsure, until at some point she almost decides that 

this is not a proof, but is never really sure about this. Student G's comments do not 

show clearly what she considers as a valid or valuable proof, but she certainly thinks 

about it. 

The second proposed proof (Benny's answer) consists of a collection of ten 

examples. Interestingly seven of the eight students commented in the interviews on 

how they compare Benny's answer to Anna's, even though they weren't asked to do 

so. Four students regard the answers as very similar. Two students approve the fact 

that Benny includes examples of negative integers in his answer. Five students, all 

agreeing that neither answer proves the statement sufficiently, mention that Anna's 

answer is more like a proof than Benny's. They identify two aspects of proof more 

present in Anna's than in Benny's answer: 

 the description of general patterns: ―She has this --- with the endings‖ (C/D), 

―In [Anna's answer] there is more thinking in it. She saw this fact, if you 

square an even number, that there is a 0,2,4,6,8 at the end of each one.‖ (E) 

 Anna's answer includes some attempts to explain why the statement is true. 

―She says why the squares are odd, because they end in that. He [Benny] just 

presumes that they are odd numbers.‖ (F) 

Considering Benny's answer in comparison to Anna's, some of the students who have 

interpreted Anna's proof as list of randomly chosen examples when discussing 

Anna's answer now identify some potential in Anna's answer to provide a general 

proof: Student F states that ―Anna's is more of a proof [than Benny's]. She says why 

the squares are odd, because they end in that‖. Likewise Student B regards Benny's 

answer as ―more example than proof than Anna's was‖. These changes in some of 

the students' opinions about Anna's proof indicate a learning effect about proofs 
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through the comparing process. It seems that some purposes of mathematical proof 

became visible to these students. 

SUMMARY AND FURTHER OBSERVATIONS 

Consideration of the interview data with the relationships EAI, EIP and EAP among the 

actual and intended character and the purposes of a proof in mind led to the 

following observations. The students' evaluations of all six proposed proofs of 

Statement I indicate which purposes of proofs they consider relevant. In Student A's 

evaluation the most relevant consideration is how the statement's plausibility is 

verified and demonstrated by the proposed answer. Consequently she favours 

answers consisting of examples. Generality of a proof is an important evaluation 

criterion to most of the students. Five students mention at some point during the 

interviews that they appreciate considerations and explanations about why the 

statement is true in certain proposed answers. Some of the students take into account 

whether the proposed proof emphasizes some mathematical contents or general 

patterns. Some students consider sufficiency without excess in their proof 

evaluations. Some students appreciate a didactical value in a proof, which includes 

how well a reader's interest is stimulated or how well both statement and proof are 

being explained to the reader. The proof idea or method does not seem to play a 

significant role in the students' evaluations of proofs of the first statement, which is 

indicated by three observed phenomena. Firstly, a proposed visual approach is liked 

least considering the ranking of all eight students together. The intrinsic idea behind 

this approach seems unimportant to the students. Secondly the fact that one of the 

proposed arguments proves a more general fact than the facts of Statement I, is rarely 

being recognized and not appreciated by the students. The third surprising fact 

indicating poor appreciation of proof ideas or methods is the relatively high ranking 

score of an irredeemably wrong approach. While some of the students noticed errors 

in this proof, none questioned the basic strategy. 

Interpretations of oral and written proof evaluation exercises so far suggest that the 

developed conceptual framework and schema to interpret student-evaluations are 

beneficial to gain some understanding about students' knowledge and skills about 

proofs and proving. The schema appears to be in particular useful to identify 

students' criteria to accept or value a mathematical proof and also to what extent and 

how first year students consider purposes of mathematical proofs. Proof evaluation 

as an important activity in mathematical practice might carry some potential to 

provide students with opportunities to enter the practice. The suggested schema to 

interpret student-evaluations is appropriate to determine whether that is the case, i.e. 

to what degree proof evaluation performances support learning effects. However, the 

suggested method seems to be less effectual regarding observations about students' 

proof reading habits. I did not gain a lot of noteworthy information about how the 

students try to understand a proposed proof.   
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Overall, results of this study indicate that, considering importance and challenges in 

the teaching and learning of mathematical proof, exploration and practice of 

incoming students' proof evaluation skills and habits are worthy of further attention. 

NOTES 

1. By function of proof I mean with  De Villiers(1999) ―meaning, purpose and usefulness‖ of proof. 

2. Hilpinen (2004) introduced the notation (E1) – (E3) for the relationships of the three features of artefacts, relating to 

three aspects of evaluations, where 'E' symbolizes 'Evaluation'. 

3. Detailed descriptions of the tasks, interview questions and transcripts can be found in my forthcoming PhD Thesis.  
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THE APPEARANCE OF ALGORITHMS IN CURRICULA 

A NEW OPPORTUNITY TO DEAL WITH PROOF?  
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Ouvrier-Buffet Cécile, UPEC & Laboratoire André Revuz, Université Paris 7. 

We deal with the concept of algorithm which is taking importance in curricula in 

many countries. In particular, we develop an epistemological analysis of this 

concept and discuss its place in the mathematical science and the link it has with 

proof. This analysis is enriched by the study of ―how researchers know the 

algorithm‖. We conclude with implications of the changes in curricula on proof 

learning. 

Keywords: algorithm, proof learning, interview of researchers, epistemological 

study. 

Discrete mathematics represents a mathematical field which takes a growing 

importance in our society. In particular, the accessibility of the concepts of this field 

brings new tracks to teach and learn proof (e.g. Grenier & Payan, 1999; ZDM, 2004). 

This paper will deal with one of the concept of this field: the algorithm. Indeed, with 

the omnipresence of computers and technologies in our society, it seems that 

algorithm will take more and more importance in curricula and it raises questions 

that impacts on the teaching of mathematics. Moreover, new types of proofs 

involving computations appear, and with them, algorithmic proofs for instance and 

the philosophical and epistemological questions of the use of computers to create 

and/or validate proofs (Hanna, 2007). The 1998 Yearbook of the National Council of 

Teachers of Mathematics was entirely dedicated to the questions of algorithms and 

was ―an attempt to answer many of [the questions provoked about the place of 

algorithms in today curricula] and to stimulate other questions that all of us in 

mathematical education need to consider as we continually adapt school mathematics 

for the twenty-first century‖ (NCTM, 1998, p. vii). Recently, the studying of 

algorithms got into the class of mathematics in the French curriculum of the 

secondary school. The appearance of the concept ―algorithm‖ in the mathematical 

curriculum questions the role in mathematics of an object which seems, at first look, 

to belong more to computer science. Actually, algorithm is first of all, from historical 

and epistemological points of view, a mathematical concept. 

The links between algorithm and proof are not easy to describe and have not been 

much studied epistemologically. The goals of our study (started in Modeste, Ouvrier-

Buffet & Gravier (2010)) are here twofold: from a mathematically-centered 

perspective, we want to bring an epistemological analysis of the algorithm which 

emphasizes its interplay with proof. The way researchers in mathematics and 

computer science know the concept of algorithm allows a validation of the 

epistemological model we develop in this paper. From a didactical perspective, we 

ask how the concept of algorithm can enhance the curriculum, focusing on links 
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between algorithm and proof (avoiding the ubiquitous computer aspect). We 

ultimately want to build Research Situations for the Classroom (RSC) (Grenier & 

Payan, 1998, 1999; Godot & Grenier, 2004) involving algorithm and proof 

processes. In particular, the design of such situations implies to rely on an 

epistemological analysis and a study of the practises of researchers (see Knoll & 

Ouvrier-Buffet, 2006). Then the concluding session highlights the links between the 

concept of algorithm and the proving process and brings new research tracks in order 

to design and to analyze situations for the classroom.  

EPISTEMOLOGICAL ASPECTS OF THE CONCEPT OF ALGORITHM 

A common definition 

The usual definition of algorithm is presented by Knuth who takes algorithm as an 

object of study (and also questions the differences between mathematical thinking 

and algorithmic thinking):   

―(...) an algorithm is a set of rules or directions for getting a specific output [1] from a 

specific input. The distinguishing feature of an algorithm is that all vagueness must be 

eliminated; the rules must describe operations that are so simple and so well defined that 

they can be executed by a machine. Furthermore, an algorithm must always terminate 

after a finite number of steps.‖ (Knuth, 1996, p. 59) 

This implies that an algorithm solves a specific problem P by returning in the output 

the answer corresponding to the instance of P given in the input. It is important to 

remember that the input and output information are coded and ―algorithms deal 

primarily with the manipulation of symbols that need not represent numbers.‖  

(Knuth, 1996, p. 61) 

The previous definition also shows the effective aspect of algorithm: no ambiguity 

must exist in the instructions so that any operator – most of the time a computer, and 

in this case the algorithm can be described by a program – gets the same output with 

the same steps. The finiteness cannot be dissociated from the notion of algorithm, as 

Chabert notes it in his book on the history of the algorithm: 

―Today, principally because of the influence of computing, the idea of finiteness [1] has 

entered into the meaning of algorithm as an essential element, distinguishing it from 

vaguer notions such as process, method or technique. […] Here we have a finite number 

of operations, a finite number of input values, but also a finite number of solution 

procedures, that is that each step should be able to be carried out by a finite process – 

something which is not possible, for example, in determining the quotient of two 

incommensurable real numbers. We also refer to an effective procedure, that is one that 

will effectively achieve a result (in a finite time).‖  (Chabert et al., 1999, p. 2-3) 

This finiteness raises questions regarding complexity: given an input, how many 

steps does the algorithm take to answer? How much space does it need to store the 

involved information? These questions respectively deal with time complexity and 
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space complexity. This complexity depends on the size of the input and can be 

studied from two points of view: the worst-case complexity, the maximum 

complexity of the algorithm for an input of size n and the average-case complexity, 

the average of the complexity for an input of size n (usually, the inputs of size n are 

considered to have the same probability). Since Knuth, complexity is a specific and 

fundamental aspect of the algorithm which is absent from the other fields of 

mathematics. He says (about Bishop's mathematics [2]) that ―[it] is constructive, but 

it does not have all the ingredients of an algorithm because it ignores the ―cost‖ of 

the constructions‖ (Knuth, 1996, p. 110). Here, we have detailed three important 

aspects of algorithm: the link with problems, the effectivity and the complexity. 

Ambiguity of this definition 

As examples of algorithms, authors often give Euclid's algorithm for gcd, arithmetic 

operations on integers, algorithms for sorting or algorithms for shortest paths in a 

graph... Among all these examples, one strikes us: the method to find the roots of the 

quadratic equation  using the discriminant . 

With more details, the algorithm is the following: 

Input:  

 

if  then return  ,  

else if  then return  ,  

else return  

Judging by the definition we gave above, we could say that it is an algorithm. But we 

find it surprising that such a method was chosen as an illustration of the concept 

―algorithm‖. Indeed, in each case, the algorithm is just a formula. Moreover, from the 

point of view of the ―complexity‖, such an algorithm is not interesting, as the 

complexity is independent of the size of the input (we are not speaking here about 

the complexity of the arithmetic operations involved in the discriminant, which are 

for us better examples of algorithms). This example raises the question of the border 

between algorithmic and non-algorithmic areas and the ―usual‖ definition is 

ambiguous about this. For our study, for a didactical purpose, it would be useful to 

distinguish this kind of formula with ―real‖ algorithms. 

A more theoretical definition 

In the beginning of the 20
th

 century, the quest of foundations for mathematics caused 

mathematicians to give a more theoretical definition of algorithm. 

―The works of Gôdel inspired the research of Alonso Church, Stephen Kleene, Alan 

Turing and Emil Post. These mathematicians attacked Hilbert's Entscheidungsproblem 

and showed that there were, indeed, undecidable problems, that is mathematical 

statements for which no procedure exists by which it can be decided if the statement is 
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true or false. To do this, each of them defined a concept of computability, that is a 

concept of algorithm.‖ (Chabert et al., 1999, p. 457) 

Two of these concepts should be quoted: the Turing machine and the recursive 

functions. This theoretical work leads to a classification of problems depending on 

whether there exists an algorithm to solve them or not (undecidable and decidable 

problems) and if they are ―easy‖ or ―hard‖ problems, which means if they can be 

solved by a polynomial algorithm or not (we refer here to P and NP-hard problems 

[3]). This point of view will constitute a fundamental aspect of algorithm, the 

theoretical models. 

Algorithm and proof 

Algorithm and proof interplay in many ways, it will be another important aspect for 

us. First, an algorithm has to be proved; more precisely, it is necessary to prove its 

correctness (i.e. it gives the expected answer) and its termination (i.e. it always stops 

after a finite number of steps). And, once it is proved, an algorithm can be used as a 

step in another proof. Actually, all the aspects raised previously have a link with 

proof. In particular, correctness and termination correspond respectively with 

problem solving and effectivity. The complexity aspect involves proof too, and 

studying the complexity of an algorithm often needs substantial mathematics. The 

same is true of theoretical models, which only make sense in a proof process. Just 

like any mathematical object, the algorithm raises questions involving proof. But 

some of them are specific and only the algorithm raises the mathematical questions 

previously mentioned. Moreover, the algorithm is not only linked with proof on that 

way. An algorithm can also be a tool for proving a property, and for a given problem, 

an algorithm will give a constructive proof of its resolution (e.g. Euclid's algorithm 

provides a proof of the existence of the gcd of two integers and an effective way to 

compute it). Conversely, an algorithm often lies under a constructive proof and it can 

be interesting to formulate this algorithm clearly. For instance, from any proof by 

induction follow a recursive algorithm.  

Algorithms, seen as proofs, allow to deal with two kinds of problems: existence 

problems and testing a property. 

Recently, a link has been pointed out between proof and algorithm, with the 

computer-assisted proofs, that is the use of algorithms to build proofs which are 

much too long to be verified by a human being. For instance the four-color theorem 

has been proved this way. However, the algorithm has to be proved in order to 

validate the mathematical result. This new kind of demonstration asks philosophical 

and epistemological questions about the nature of proof. 

Tool-Object 

The aspects of algorithms underlined above can be divided into two parts since they 

refer to algorithm as a tool or as an object. Looking at the algorithm as an object 

means studying questions of validity, of complexity and description of algorithms. 
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Looking at the algorithm as a tool is focusing on the use of algorithms to solve 

problems. Among the aspects discussed here, the effective aspect and problem 

aspect refer to the algorithm as a tool whereas the complexity aspect, the 

theoretical models and the link with proof refer to the algorithm as an object. 

MATHEMATICIANS' POINT OF VIEW ON ALGORITHM 

This analysis of the algorithm concept is mainly theoretical and it would be 

interesting to compare it with the reality of mathematics, that is the ongoing research. 

- Are mathematicians' representations in accordance with our epistemological 

study of algorithm? 

- How do algorithms interplay in their practice of research? 

- Which aspects of algorithm are involved in mathematical research and which 

ones are not? 

- Do researchers refer mostly to the algorithm as a tool or as an object? 

- Do these questions depend on their field of research? 

Actually, the main point which interests us is the following: validating our 

epistemological analysis when comparing the descriptions of mathematicians of 

coming to use and to know algorithm and our epistemological model (in the same 

way that Burton did). Here, the form of our interviews does not permit to describe 

the whole conceptions of the researchers in a specific theoretical model. Right now, 

the trends in our results are enough to use this analysis as a preliminary work in 

order to build Research Situations for the Classroom (RSC). 

Interviewing researchers 

To answer the previous questions, we chose to interview researchers both in applied 

and fundamental mathematics. We also interviewed researchers from fields at the 

intersection of mathematics and computer science, like operational research, 

combinatorics, computational geometry... These researchers have a mathematical 

activity too, that is a proof activity, but should have a rich and different vision on the 

algorithm, provided by the links they have with computer science. We interviewed 

22 researchers. From their point of view, they belong to the following fields: 

 Fundamental Applied 

Mathematics 10 7 

Computer Science 5 5 

Table 1: Distribution of the researchers [4] 

In fact, in order to study the practice and the representations of mathematicians, the 

tool of interview seemed to be the most convenient possibility (in the same way as 

Burton, 2004). We have met the researchers face-to-face and the interviews were 
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audio taped. The researchers received a brief questionnaire to provide personal 

information (name, gender, function, discipline (mathematics, computer science; 

fundamental and applied mathematics [5]), research subjects, teaching level at 

university), and an excerpt of the new French curriculum with the appearance of 

algorithms [6]. We followed a list of questions (see above) in conversational style. 

These interviews last between 20 and 30 minutes and the part which interest us here 

makes up around half of this time. 

The interviews 

In the interviews, we chose to bring up three points: 

1) What is an algorithm, how can one define it and recognize it, and what 

examples can be given? 

2) How is it used in mathematics and in the field of the researcher? 

3) The place and the role of algorithms in the researchers‘ work. 

The questions were the following: 

Q1: How would you define what an algorithm is? 

Q2: How can one recognize an algorithm? 

Q3: Give examples of algorithms, of non-algorithms. Is the discriminant 

(presented like above) an algorithm? Where is the border between algorithmic 

and non-algorithmic areas? 

Q4: What are algorithms useful for? What are their roles in your field? 

Q5: Are there algorithms in your personal research? Where? 

The first three questions aim at making the researcher talk about the definition(s) of 

algorithm. Giving examples, counterexamples and thinking about the discriminant 

should make the researchers question their own definition of ―algorithm‖. The last 

two questions aim at making them evoke the role and place of algorithms and more 

particularly in their field. All the questions were reformulated if necessary, so that 

there was no misunderstanding. And as it was an open discussion, these points were 

not been necessarily mentioned in this order. 

Analysis of the interviews 

In order to study the transcriptions of the interviews, we built an analysis grid based 

on our epistemological study. The goal was to find in the interviews which aspects 

were present. The difficulty was to give the grid a good granularity: the purpose was 

to associate each idea of the researcher to one or more precise aspect of algorithm, 

but many aspects were often vaguely mentioned. For example, as far as complexity is 

concerned, most of the time, the researchers just spoke about its importance but did 

not give details about the different kinds of complexities or about the question of 

optimality. After different draft versions of an analysis grid, we finally decided on 

the following: 
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Table2: The analysis grid 

Results 

Validation of the epistemological analysis 

In the interviews, all the aspects we expected researchers to speak about were 

mentioned by them. Obviously the researchers did not all talk about every aspect and 

they did not always give many details. But each aspect has been mentioned enough 

to confirm our study. We will discuss in details how each aspect has been brought 

up. 

Domination of the algorithm as a tool 

The ―effective‖ aspect and the ―problem‖ aspect were mentioned by all the 

researchers. That means that the ―tool‖ aspect is very important in their 

representation of the algorithm. The ―effectivity‖ and ―problem‖ aspects mainly 

appear in the definitions of algorithm researchers gave. The ―effectivity‖ aspect is 

often linked with the use of computer, and many researchers pointed out the 

importance of computers for algorithms (and some of them made the confusion 

between algorithms and programs). 

Definition of the algorithm 

As the definitions researchers gave very often involve the effective aspect of the 

algorithm, we can say that their definitions are very close to the ―usual definition‖ 

we mentioned at the beginning. To illustrate this, here are some definitions of 

―algorithm‖ given by the researchers: 

―A sequence of instructions which enable from an input to produce an output.‖ 

―A finite chain of steps which can be described, and which allows to compute or find the 

solution of a given problem.‖ 

―An effective process which allows to achieve a calculus or an automatic deductive task.‖ 

―An automatic method to solve a problem which does not need any human intervention, 

and which is workable for a machine.‖ 

About the discriminant, most of the researchers answered that, according to their 

definition, it was an algorithm. Some others felt embarrassed that their definition 



Working Group 1 

CERME 7 (2011) 209 

 

encompassed the discriminant and explained that it was an algorithm but had no 

interest: 

―It is not a very rich algorithm, not a good example.‖ 

―We can compute it explicitly. It is just applying a formula.‖ 

―We are between the ―method‖ and the ―algorithm‖. There is no real process. If any time 

we have a formula we consider it as an algorithm, it reduces the meaning of algorithm.‖ 

―The problem has a set size... for me, in the idea of algorithm, there is an aspect of 

variable size, there is the complexity behind...‖ 

The problem of the ambiguity of the definition we underlined seems to be shared by 

some researchers. The ―complexity‖ aspect seems to be closely related to this 

problem. Most of the researchers must not have noticed this because, as we will see 

below, the notion of complexity is not of a big importance for them. 

Presence of the ―proof‖ aspect 

The ―proof‖ aspect, which is for us the most important when looking at the algorithm 

from a mathematical point of view, has been brought up by about half of the 

researchers (12 among 22). There is a link with their field of research: indeed, most 

of the researchers who brought up the proof consider themselves as fundamental 

researchers (in maths or computer science) whereas the majority of the others 

consider themselves as applied mathematicians or computer scientists. We can say 

that the importance of proof activity has a link with fundamental questions. 

Moreover, among all the parts of the ―proof‖ aspect, the most quoted is that an 

algorithm is a tool of proof, that is to say that the algorithm is associated with the 

notion of constructive proof. The notion of proof of an algorithm (correctness or 

termination) has not been mentioned much, and more precisely it is always the 

correctness which was quoted. 

The ―complexity‖ aspect 

The ―complexity‖ aspect was not mentioned by all the researchers, only 11 of them 

spoke about it. In this case, it seems to be linked with the computer science field of 

research: among the 10 (self declared) computer scientists, 8 raised the questions 

regarding the complexity involved by the algorithm. We can infer that the 

complexity is not really important from the mathematicians' point of view (as the 

quotation of Knuth about Bishop's mathematics let us think). 

The theoretical models 

Theoretical models were mentioned by only 8 researchers, not only from 

fundamental research but mainly from fields at the intersection of mathematics and 

computer science (computational geometry and topology, operational research, 

combinatorial optimization, graph theory or cryptology). In fact, theoretical models 

for algorithms have a very important role in these fields. That must be the reason 
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why those researchers mentioned them. However, it should be noted that very few 

researchers from other fields (only two) brought up those theoretical models. It 

seems that this ―recent‖ aspect of the algorithm (but older than the link with 

computers!) is not known by the researchers or does not seem important to them. The 

first possibility is, according to us, the most plausible. As an interviewed 

mathematician underscored: 

―As far as I‘m concerned, I‘m aware of these questions [about algorithm and theoretical 

models] because my husband is a computer scientist. But this is not in mathematicians' 

culture...‖ 

CONCLUSION AND PERSPECTIVES 

Our epistemological analysis has been validated by the interviews. Hence, we can 

ask ourselves what this study implies for the teaching of algorithm and the teaching 

of proof. These questions have their importance at the moment in France, but also 

widely impact on mathematical education. We saw that if one does not want to teach 

algorithm as a tool only, but also as an object, it cannot be separated from the 

―proof‖ or ―complexity‖ aspects. Learning algorithm seems to be a good way to learn 

proof, judging by the connections there exists between these two concepts. 

Learning from these interviews, it seems that researchers in mathematics and in 

fields which link mathematics and computer science, do not have a wide view of the 

algorithm concept. We can say that little is known about this concept. We could 

explain this by the recent development of the study of algorithm, but this still seems 

pretty worrying. We can assume that this lack of knowledge about algorithm is 

shared by teachers of mathematics (at least in France) and their training curriculum 

has to be questioned. 

This study of the algorithm in mathematics should allow us to study curricula and 

textbooks of mathematics of the secondary in order to know if the ―tool‖ and 

―object‖ aspects are involved. 

We would also like to study how the algorithm can be handled as an object by pupils 

and how it can make them enter in a proof process. We already made 

experimentations about this, at the beginning of university and in the training of 

primary teachers, and we obtained promising results (the students and pre-service 

teacher training were able to build several algorithms and their proof, see Modeste, 

Ouvrier-Buffet, Gravier, 2010). Our goal is to carry on these kinds of experiments in 

the secondary level. Schuster (2004) has studied combinatorial optimization 

problems in the secondary and has obtained very positive results about pupils' skills 

in manipulating algorithms and proving. We could work on the ―Konigsberg's 

bridges problem‖ studied by (Cartier, Moncel, 2008) or on other problems studied by 

the ―Maths à Modeler‖ team, but from an algorithmic point of view. The analysis of 

the way one can deal with algorithms and proof in the classroom and the results of 
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such experiments will be the object of a new article, based upon the epistemological 

model developed in this paper. 

NOTES 

1. Bold types added. 

2. In this article, Knuth studied books from many mathematicians and notice that, for him, Bishop's 

mathematics where the most close to the algorithmic thinking. However, even in Bishop's 

mathematics, Knuth noted that the notion of complexity was absent. 

3. The definitions of P and NP-hard problems are not exactly these ones. For more details about 

theoretical models, one can read: Hopcroft, J.E., Motwani, R., & Ulmann, J.D. (2007). Introduction 

to Automata Theory, Languages, and Computation. Pearson Education. 

4. The total number is not 22 because some researchers consider that they have 2 fields of research. 

5. The choice of the researcher is not necessary dichotomous. Indeed, the presentation for their 

choice of the discipline was the following: 

Mathematics 

Fundamental Research 

□□□□ 

□□□□ 

Computer science 

Applied research 

6. The analysis of this excerpt by the researchers and their answers to questions about teaching the 

algorithm will not be discussed here. 
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In this paper, we propose to examine the types of argument that are deemed 
acceptable at tertiary level mathematics and under which circumstances, and why 
the expectancy that a proof is required is sometimes relaxed.  We specialise on the 
status of proof in cases where mathematical modelling takes place, and on tasks 
whose informal resolution rests on two or more mathematical milieu. On occasion, 

can the insistence on a proof be regarded as pedantry?  

Key words: Proof, Credited Argument, Definitional Tautness, Mathematization, 

Modelling. 

INTRODUCTION 

Students attending Mathematics courses at the tertiary level often have difficulty to 

understand the status of proof (Jones, 2000).  Further there is evidence that students 

find the standards applied to proof production somehow arbitrary (Gondek et al, 

2009).  What is the line between a mere argument and a proof?  For this question, 

some would consider a spectrum might be more appropriate rather than a 

demarcation line.  However, such a viewpoint leaves students in the dark as to when 

their work should end, or whether their final product qualifies as a proof.  It is useful 

for the researcher to distinguish a proof itself from an argument where basically all 

the essential ideas behind the proof have been collated but are not articulated in 

terms of ratified mathematical systems. We shall call such an argument a credited 

argument; we will discuss our choice of wording in the next section, contrasting it 

with similar notions employed by other educators.  Also we shall give our position of 

what a proof is in the context of this paper.  

If we acknowledge the notion of a credited argument as well as proof, fairly natural 

educational issues arise, including the following: 

 In what circumstances is credited argument acceptable as a final output?  The 

answer to this question might explain why lecturers can be perceived 

inconsistent in the level of strictness in argumentation they use. 

 We do not say that all proof productions necessarily go through a preliminary 

stage corresponding to a credited argument.  However, for those that do, the 

backing of the credited argument can give support for the student to formulate 

the proof, and to appreciate what the proof gives beyond the credited 

argument.  

  One reason that argumentation may end as a credited argument is that 

translating it into a proof can be deemed not worth the effort.  Reasons for this 
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could be that the undertaking would be messy and/or lacking in giving 

additional insight. Insisting on the proof in such circumstances might be 

considered as pedantry.  However the lecturer might have good reasons to 

persist; these reasons, however, may not be immediately appreciated by the 

students.  

  A task may invite a mathematical treatment whereas the context is not strictly 

‗mathematical‘ itself.  Sometimes, the situation can be resolved at the level of 

a credited argument, where the reasoning retains references to the extra-

mathematical context.  Because of this, it is not a proof.  However, if the task 

is modelled into another format within a recognized mathematical framework, 

a proof of the model may be available.  Is such a proof, though, to be 

considered as a proof of the original version of the task?  

 The solution of a task may ‗import‘ tools from another mathematical 

perspective from the one that is most natural to assume.  The fitting together 

of different mathematical perspectives sometimes can be made at a perceptual 

level and as a result aspects of argumentation can be glossed over.  In such a 

case, we have a credited argument but not a proof. 

 The aims of the paper are rather wide and illustrative in character.  The main part 

consists of descriptions of three tasks that demonstrate the difference between a 

credited argument and a proof, and the particular issues raised above.  In particular, 

we discuss whether a ‗translation‘ from a credited argument to a proof is always 

merited.  Before doing this, we include a more theoretical section where our 

terminology is put on a firmer basis, with reference to other related research. 

BACKGROUND DISCUSSION 

This section will define and situate the notion of credited argument that we introduce 

in this paper.  To do this we first consider the notion of ‗truth status‘ vis-à-vis proof.  

There are many perspectives put forward in the literature concerning how different 

types of (mathematical) argumentation could be contrasted to proof, or (on the other 

side) identified with proof.  We do not have the space or the expertise to be 

expansive here. We specialize straight away to consider models of argumentation 

that are not considered as proofs but in a sense embrace all the central ideas on 

which a proof would be based.  There is a sense of certainty but a lack of usage of 

the requisite mathematical tools in order to present a proof.  Hence, the 

argumentation attains a ‗truth status‘ but is not completely verified as a proof.  

Intuition can play a large part in the truth status; Fischbein (1987) says that ‗the 

concept of intuition …expresses a fundamental, very consistent tendency in the 

human mind: the quest for certitude‘.  In the past, an argument that carried 

conviction both personally and for others was taken as a qualification for proof 

(Hersh, 1993), or at least conviction is often a prerequisite for seeking a proof (De 

Villiers, 1990); today, a consensus on conviction could be accepted as an indication 
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of truth but not necessarily of proof (c.f., Segal, 2000).  Another notion that 

educators employ is a warrant.  According to Rodd (2000), a warrant is a justification 

/ rationale for the belief in mathematical propositions; a warrant acts ‗as the lever for 

(mathematical) knowledge‘, where ‗knowledge generally entails ―truth‖ ‘. Durand-

Guerrier (2008) considers the difference of truth and validity via logical aspects in 

mathematical proof.  In particular, she quotes Tarski: ―the truth of a proposition lies 

in its agreement (or correspondence) with reality; or a proposition is true if it 

designates an existent state of things‖.  

All the models or positions mentioned above are attributive (rather than operative); 

they characterize argumentation in terms of a completed output of thought.  In this 

paper, we stress the possibility that argumentation that promotes confidence in the 

truth status also can be a basis to form a proof.  In this case, care is required both in 

specifying what argumentation conveys ‗truth‘ and in one‘s stance of what proof is. 

We consider proof first.  We take a line similar to Thurston (1995) purporting that 

proof production takes place in the milieu of a certain mathematical language; its‘ 

vocabulary is technical but also allows a generous allowance of informal expression 

in using technical terms.  It is difficult for students to attain this language, and ‗the 

language is not alive except to those who use it‘.  The technical vocabulary is based 

on explicit mathematical definitions (Section 2.1, Mamona-Downs & Downs, 2005). 

If an argument in the mathematical language is challenged, then one always has the 

recourse to argue more rigorously in terms of first - principle definitions and their 

known logical consequences.  We characterize an argument as a proof if it has this 

recourse; we then say that the argument has ‗definitional tautness‘.  

Now we consider the situation of having a line of reasoning lacking definitional 

tautness but satisfactorily conveys the truth status; we shall call this a credited 

argument.  This begs the question how we regard the truth status in this context.  We 

find difficulties in confronting this issue directly. The direction we take is to imagine 

an expert to examine the argument and recognise channels that would allow it to be 

translated into the mathematical language. This stance has unsatisfying aspects; in 

particular, one would like to say that an individual can feel certainty in his or her 

argument without exterior authority.  However, the reference to a proof clearly is the 

most reliable source to merit the truth status of an argument.  A student, then, might 

believe that his/her reasoning determines the truth; but this belief must be justified 

itself, perhaps requiring external ratification. The word ‗credited‘ carries allusions to 

both ‗confidence felt in the veracity in a body‘ and endorsement, explaining our 

choice in wording of the term credited argument.  

The forming of a credited argument always indicates a lack in the usage of relevant 

mathematical tools.  Sometimes the tools are not available simply because the 

student has not been introduced to a requisite mathematical theory. This has led some 

researchers to make a distinction between what is called 'disciplinary proof' (i.e., 

proof as viewed by professional mathematicians) and 'developmental proof' referring 
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to the stages of learning where different types of tools pertinent to proof making are 

realized. (See ICMI Study 19, discussion document.)  The interest of this paper, 

though, is when the students are familiar with the tools needed; this means that 

potentially the student is equipped to ‗convert‘ a credited argument into a proof.  

This suggests a two-stage process in producing a proof, leading to the issues 

mentioned in the introduction. (There are other models for which two stages are 

identified in forming a proof; for example, ‗pre-conjecture‘ and ‗post-conjecture‘ 

stages are discussed in Pedemonte, 2007, but conjectures are not stressed in this 

paper.  Other papers, such as Mamona-Downs & Downs, 2009, and Zazkis, 2000, 

consider students‘ ability to convert mental argumentation into a proof presentation.) 

One of the issues brought up in the introduction was modelling; this might need 

some clarification. A credited argument might be available within the context (i.e., 

prior to modelling), whilst the proof only verifies the model (and arguably not the 

actual act of modelling).  Another term that is often used by educators is 

‗mathematization‘, that seems to convey the same kind of purpose of rendering a 

non-mathematical situation into a controlled mathematical environment.  However, 

we regard that an act of mathematization retains a closer reference to the intuitive 

reasoning available in the context (compared to an act of modelling), so it is easier to 

accept that a credited argument can act as a ‗template‘ for the proof.  This point will 

be illustrated later in the paper. 

EXPOSITIONAL EXAMPLES 

Here we illustrate some issues concerning the difference between credited argument 

and proof, as raised in the introduction.  

The first task is widely known, but we go further in its solution than is usual. The 

task is: 

For a unit square 8  8 array, the bottom-left square and the top-right square are 

removed.  Show that the resultant figure cannot be covered by rectangular tiles all of 
dimension 1  2. 

The usual way to demonstrate this is as follows.  Suppose that for the 8  8 array, the 

squares are painted white or black like a chessboard.  Then there are 32 squares 

painted white, the other 32 squares black.  Now the opposite corner squares removed 

will have the same colour, white say. Hence the resultant configuration has 30 

squares painted white, 32 black.  But each tile must cover one white square and one 

black.  So for a tiling, a necessary condition is that there are an equal number of 

white tiles as they are black.  Hence a tiling cannot exist.  

The argument is highly contextual, however carries a strong sense of conviction. 

What is remarkable is the assertive character it has.  Every claim made reads like a 

fiat; 'it is so'.  There could be an objection in that its declarative manner rests much 
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on perception and in this way seems to be at odds to deductive reasoning.  At the 

same time, it seems difficult to get around this. How can you introduce 'definitional 

tautness' in such a physical situation? This problem seems to be compounded when 

in the argument itself the notion of colours is brought in; even in the process of 

solving the problem, another undefined notion is introduced.  

Despite this, we believe that many mathematicians would accept the solution as 

being a valid answer.  However, if one were to ask whether it constitutes a proof, the 

response likely would not be so unanimous.  If you gave them time, some probably 

would say that the problem lies in the task rather than the method: "the task, if you 

want a fully grounded argumentation, should have been…‖.  Below, we suggest a 

plausible candidate for such an alternative form of the task: 

 Let S: = {1, 2, …, 8}.   

 Let T: = S
2
 \ {(1, 1), (8, 8)}. 

 Let W be the set of subsets of T of two elements of the form: 

  {(u, v), (u + 1, v)} or {(u, v), (u, v + 1)}. 

 Prove that there cannot be a subset R of W satisfying both 

  r1, r2 are different elements of R   r1  r2 =   

 and 

  {t  T : t  r for some element r of R} = T. 

At first sight, the second task might seem radically different to the original.  In a 

way, indeed it is; where are the objects and actions understood on a physical level 

that motivated the exercise in the first place?  Moreover, if you were presented the 

second task independently, it would seem highly contrived; which eccentric would 

dream up such a convoluted seeming creature?  No, there is no motivation unless the 

tasks are regarded as a pair, and it is not so difficult to see how the two are 

(isomorphically) connected. The sets and the conditions that appear abstractly in the 

second task are readily 'lifted' to the environment of the first with contextual 

meaning.  Hence, the set T represents the depleted array, W the potential positions in 

the array that one tile can take, R a tiling of T: the two conditions explain what we 

mean by a tiling in the set theoretical setting. To prove the proposition, one 

constructs the sets: 

 T1 : = {(u, v)  T : u + v is odd} 

 T2 : = {(u, v)  T : u + v is even} 

that accounts for the colouring.  By showing that | T1|  | T2|, one proves that R 

cannot exist. The details here are left to the reader. 
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Psychologically, one can either 'identify' the two tasks regarding them essentially the 

same, or separate the two whilst acknowledging they have completely consonant 

structure.  In the first case, one might say that an act of 'mathematization' has taken 

place, whilst for the second an act of modelling. By the word mathematization the 

second version of the task would be regarded as a channel to give the appropriate 

tools to prove the first task, whereas the modelling viewpoint would suggest that the 

proof status holds only for the second task. As a central construction transfers in the 

solution (i.e., the notion of colouring to the sets T1 and T2) we regard that here 

mathematization is the more appropriate term to use of the two, as insight is given 

why the original contextual argument works. 

Suppose that a teacher presented the original task; after expounding the credited 

argument, what would be the pedagogical advantages in converting it into a form 

that permits a proof? Well, the decision whether to stop at the more intuitive and 

contextual level or to go further depends on the teachers' own aims. By continuing, 

though, students have an opportunity to judge whether an argument is a proof or not, 

and to see that problem solving is not only for obtaining results but also has a role in 

the forming of mathematization or mathematical modelling. (Obtaining the phrasing 

of the second task is the result of considerable reflection.) Further, a sense of 

structural commonality is conveyed, as is the recourse to fundamental mathematical 

ideas such as a set.  Finally, aspects of the modelling or mathematization used in one 

task could be emulated in other tasks (for example, other problems involving 'arrays' 

could be susceptible to treatments involving Cartesian products). 

Let us now proceed to another example: 

Let A, C be points of the plane. Let l be any line parallel to AC.  Let S be the set of 
triangles ABC where B is a point on l. Show that the triangle of S that has the least 
perimeter is isosceles. 

This task is conducive to conventional calculus tools for optimization of functions. 

However we discuss a solution that retains its basis in geometry. We consider the 

following diagram: 

  

 

 

 

 A C 

l 
B 

D 

B  
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What prompted us to make this diagram? Well, B  is a point on l such that the 

triangle AB C is isosceles. The triangle ABC is drawn as a generic object satisfying 

the conditions. As the two triangles share the same basis, the problem reduces to 

show that: 

 2|AB |  |AB| + |BC|      for all B  B  on the line l. 

To show this, we construct the triangle B DB that represents the reflection of triangle 

B BC in the line l.  As a reflection preserves lengths, we have from the resultant 

triangle ADB: 

 |AD| = 2|AB |  |AB| + |BD| = |AB| + |BC|.             (1) 

This argument is certainly persuasive, however there are points of awkwardness in it. 

It rests mostly on Euclidean geometry, for which the recourse to reflection is made 

mostly on a perceptive level; for instance the fact that the points A, B  and D are co-

linear is assumed or regarded obvious in the argument.  The reflection is not treated 

according to definitional tautness. 

A little shift in how to read the constructive elements of the diagram removes these 

difficulties.  Now we suppose that D is the point for which B  is the mid-point of AD. 

Consider the triangles B DB and B CB.  The lengths of two sides are shared as the 

angle between, so they are congruent.  This means that |BC| = |BD| and we are in the 

position to state the inequality (1) on a firmer ground.  

Hence we have demonstrated the proposition via procedures that are in common 

currency in Euclidean Geometry, and thus we have crafted a proof.  We succeeded to 

circumvent the problem of introducing a reflection.  But we have paid a price in 

doing this. The first argument involving a reflection is more influential in forming 

the diagram; the second just exploits it. 

This example, we contend, illustrates an almost universal phenomenon in 

formulating a proof; there are 'opposite forces' in basing an argument conceptually 

against concerns about means of full explication. When elements are introduced that 

are ‗foreign‘ to the mathematical field in which the task environment is set, either 

these elements have to be assimilated or have to be sidestepped as in the example 

above.  Obviously it is preferable to have a proof that seems transparent once it has 

been exposed, and this sentiment has been passed on by many mathematicians as 

well as educators.  The phrase " A good proof is one that makes you wiser", 

accredited to the eminent mathematician Yu. I. Manin, has become almost a maxim.  

However, the situation in reality is more complicated.  The advantage in 

distinguishing a credited argument from a proof is that a teacher or student can gauge 

which of the two 'makes you wiser'.  
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AN EXAMPLE THAT SHOWS ASPECTS OF STUDENTS‘ BEHAVIOUR 

The example recounted here concerns a student activity.  The eight students are, at 

the time of writing, participants of a master‘s program in Didactics of Mathematics; 

all the students had recently graduated from a Mathematics department.  For the 

activity, a task with a 'realistic' context, an informal argument and a mathematical 

model is the material given to the students; what was left for them to do was to 

produce an argument in terms of the model.  (The example serves as an indicator of 

issues rather than an empirical analysis, so details of methodology are omitted.)  

The givens:  

Task: Let g(n,k) denotes the number of ways of placing k indistinguishable lions in n 

cages (in a row) such that no cage contains more than one lion and no two lions are 

put in consecutive cages.  Show that g(n,k)
n k 1

k
 (i.e., the number of ways 

we can choose k things out n-k+1) .
 
 

An informal argument:  Suppose that we have a legal positioning of the lions.  Then, 

except possibly for the k
th

 lion, there is an empty cage to the immediate right to each 

cage containing a lion.  Imagine removing these k-1 cages. Then we have n-(k-1)  

cages remaining and k lions, but now lions can be put into adjacent cages. Hence we 

are free to place the k lions wherever we want into the n-k+1. 

Mathematical modeling of the task: Let S: = {0, 1}. Let Sn,k be the subset of the 

Cartesian product S
n
 where an element of Sn,k has exactly k of its components taking 

the value 1. Suppose that Tn,k  Sn,k  is defined by: 

 (x1, x2, … ,xn)  Tn,k  i  {2, 3, … ,n-1}, if ai=1 then ai-1 =0 and ai+1=0; if 

 a1=1, then a2=0; if an=1, then an-1=0. 

What the students were asked to do was to prove that |Tn,k| equals |S n-k+1, k| . 

There are two options for a student to approach this assignment.  The first is to 

translate the sets of the model back to the contextual families of objects and 

properties (e. g. lions, cages, in a row…) found in the original task environment.  

Then the set theoretical task is treated through the less precise but more semantic 

setting of its ‗isomorphic‘ realistic-like task.  The disadvantage is not only that you 

shift from a situation that avails the tools allowing proof to one that does not, but you 

also have the problem to explicitly express the grounds of the transfer itself.  The 

second option is to keep your work within the set theoretical setting, using the 

contextual version rather like a ‗template‘ to guide the argument but keeping its 

influence implicit in the exposition.  In this case, the direction would be to construct 

a bijection between that |Tn,k| and |S n-k+1, k|.  The advantage here is that you are in a 
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position to give a direct proof; a disadvantage is that what seems immediate in the 

other task can transfer to messy constructions mathematically.   

Of the eight students that participated, seven students clearly took the first option 

with various degrees of success in expounding the consonant structure between the 

two tasks.  Their reasoning was in terms of the physically understood objects that 

appear in the description of the original task.  Just one student adopted the second 

option; in his work, clearly the sets were the central actors, with just a few aside 

references to the context of the first task.  

What is the significance of this in educational terms?  The authors designed the 

assignment wishing to test the students‘ ability to argue in the environment of a 

model or a system arising from an act of mathematization.  The aim was to push 

forward students‘ working from a credited argument to a proof via a structurally 

isomorphic setting.  This aim backfired in the way described above.  In fact this was 

anticipated by the teacher (one of the authors); the assignment was set as homework, 

and the next class was devoted to open debate about the differences between credited 

argument and proof, and in what circumstances is it useful to try to render a credited 

argument into a proof.  (Such a class debate was possible because it took place 

within a course, on problem solving and proof, which was part of a master‘s program 

in Didactics of Mathematics.)  We do not have the space to describe the dialogue that 

took place, but the overall opinion was that the process of bringing up the 

mathematical model, or mathematization, was over pedantic.  But in forming this 

opinion, we would have to accept that, in some cases, argumentation without the 

definitional tautness to qualify it as a proof can give an acceptable mathematical 

result, even at the tertiary level.  

CONCLUSION 

Mathematics students at university are often confused about the nature of proof, and 

worry whether what they write for a solution is in an acceptable form from the point 

of view of their teacher.  Such confusion is natural because teachers can be 

inconsistent in what they accept.  (For example, the notion of diagrammatic proof is 

accepted by some mathematicians, not by others.)  Subtle hints of the level of 

deductive reasoning expected can be conveyed; for example, if the directive of a task 

is in the form ‗show that‘, rather than ‗prove that‘, there is an expectancy that a more 

relaxed argumentation is allowed.  There is a lot of ‗etiquette of standards‘ that 

students are supposed to pick up by themselves: this clearly pertains to the notion of 

didactical contract, due to Brousseau (1984).  In reality, perhaps mathematicians on 

their own are not equipped to convey to their students what standards are demanded 

for different circumstances; educators should take the initiative to assist. 

In this paper, we aimed to explain why for certain types of tasks an argument 

naturally ends even when its form falls below the level expected for a proof.  Here 

we did not insist on formal proof, which we regard as an ideal that in practice is 
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rarely respected.  However, we did insist that a proof is put on a firm mathematical 

basis where all objects and actions concerned can be explicitly defined.  We pointed 

out and illustrated some situations where the need for a proof is debatable.  In 

particular, we considered problems that are far from being trivial but are conducive 

to mental argumentation embracing perceptual elements; also we considered cases 

where the most natural approach involves more than one mathematical tradition or 

theory.  Are we obliged to model in the first case, and alter the argument such that it 

fits within a consistent mathematical setting in the latter?  We leave this question as 

an open issue, but we stress that, for students, there is a danger of seeming to be 

engaged in a game that only a pedant would be interested in.  This problem is 

aggravated in the case where we model one task by another; are we proving the 

model or the original? In this respect, we raised the issue of the relative meanings of 

the terms ‗mathematical modelling‘ and ‗mathematization‘ that deserves more 

research inquiry.     
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TWO BEAUTIFUL PROOFS OF PICK‘S THEOREM 
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We present two different proofs of Pick's theorem commonly held to be beautiful and 

attempt to identify features that give rise to the sensation of beauty. In particular, we 

discuss two concepts, generality and specificity, that appear to contribute to beauty 

in different ways. We also discuss possible implications of this work for the teaching 

of mathematics, especially in countries in which discussions of beauty and aesthetics 

are notably absent from curricular documents. 

Keywords: Beauty, Aesthetics, Proof, Pick's theorem, Motivation 

INTRODUCTION 

The claim that mathematics contains elements of deep beauty seems uncontroversial. 

The literature abounds with references to this beauty and characterizations of it.  For 

instance Chandrasekhar, a Nobel prize winning physicist, once wrote that ―a 

discovery motivated by a search after the beautiful in mathematics should find its 

exact replica in Nature persuades me to say that beauty is that to which the human 

mind responds at its deepest and most profound‖ (Chandrasekhar, 1987).  And 

Hardy, in his so-called apology for mathematics, asserted, ―The mathematician's 

patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colors or 

the words, must fit together in a harmonious way‖ (Hardy, 1940). We even see 

references to the beauty of mathematics in poetry, such as Edna St. Millay's famous 

line,  ―Euclid alone has looked at beauty bare‖ (Millay, 1941).  

What it is less clear is why mathematics appears to us as beautiful.  Hardy claimed 

that the sense of beauty comes, at least in part, from a sense of surprise (Hardy, 

1940). Rota refutes this view. He gives an example of Morley's theorem which states 

that adjacent angle trisectors of an arbitrary triangle meet in an equilateral triangle 

(see Figure 1), claiming that this theorem while surprising is not beautiful (Rota, 

1997). Rota suggests instead that what characterizes beauty is enlightenment, an 

admittedly fuzzy concept which he claims mathematicians do their best to avoid 

(Rota, 1997).  

Another answer to the question of why mathematics appears as beautiful comes from 

Scarry, a professor of English at Harvard, whose work has recently gathered 

attention even in mathematical circles.  In her book ―On Beauty and Being Just,‖ she 

claims that beauty is, in essence, compelling. It draws us to itself. This claim 

resonates with Poincaré who said, ―The scientist does not study nature because it is 

useful to do so.  He studies it because he takes pleasure in it; and he takes pleasure in 

it because it is beautiful‖ (Poincaré, 1908). The strong claim is that beauty has some 
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sort of allure, similar to that of pollen to the bee, which draws people‘s interest, 

allows it to replicate, and secures its future. 

 

Figure 1:  Morley‘s theorem 

PREVIOUS RESEARCH AND MOTIVATION 

If beauty is compelling, then it seems natural to ask whether it can play a 

motivational role in the teaching of mathematics.  However, there has been 

surprisingly little research about this question, and related questions, in the area of 

mathematics education (ESM, 2002). Most of the work done on this area falls under 

the broader, related notion of aesthetics, which involves a host of affective 

components in addition to the experience of beauty, such as the experience of 

pleasure.  One recent example comes from Sinclair (2002) who created a model to 

describe three important functions that aesthetics play in the working lives of 

mathematicians: generative, motivational, and evaluative
1
. Burton (2004) used this 

framework to study the aesthetic judgements of mathematicians, looking at the 

connections between affective experiences of mathematics and intuitions and/or 

insight that the pursuit of mathematics often provides. Other examples, both from 

philosophy and mathematics education, include Mack (2006), Tymoczko (1993), and 

Wang (2001).  

This study differs from the previously mentioned in that it specifically investigates 

the notion of beauty; we are not concerned in this paper with the affective responses, 

or in fact any other psychological processes related to the aesthetic experience.  

Another feature of the current study that differs from those previously mentioned is 

that the main source of data is the mathematics itself, though we draw on pilot data 

from an interview with one mathematician to help support our analysis, and in a 

future study will look more closely at interview data.  We do not depart from a 

particular theoretical position, but rather hope to build such a position through a 

systematic examination of the mathematics, as demonstrated in the analysis below. 

A brief look at how beauty is treated in curricular documents in different countries 

provides some motivation for the eventual outcomes of this project
2
. In some 

countries, such as China, the aesthetic nature of mathematics is actively researched 

and explicitly mentioned in the curriculum (e.g. Fu, 2004; Li, 2003; Ministry of 

China, 2008)
3
. However, in other countries, such as the United States, Sweden, and 
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Finland, there is little or no mention of beauty. In Sweden, there is some explicit 

mention of beauty at the compulsory level, but not at the high school level 

(Skolverket, 2000).  Moreover, little or no information is given about how beauty 

should appear in details such as task selection or teaching practices. In the United 

States, beauty is not listed among the five content and process strands that affect all 

K-12 levels (NCTM, 2000).  Similarly, we found no mention of beauty in the Finnish 

curriculum (which does stress many affective qualities, such as ``courage'' in solving 

problems)
4
. The kind of work done here could eventually serve a purpose both in 

raising awareness of beauty in countries that do not currently emphasize it and in 

articulating some of the features of beauty that could be operationalized in curricular 

documents. 

CURRENT PROJECT 

The research described here is in its initial stages.  The ultimate goal, similar to that 

described in Burton (2004), is to develop a theoretical model for beauty against 

which we can compare the views held by working mathematicians.  To begin 

creating this model, we have proceeded fairly simple-mindedly. We looked through 

the literature to find proofs that are commonly held to be beautiful (e.g.  Aigner et 

al., 2010; Wells, 1990). We wanted to choose theorems that would be fairly 

uncontroversial but not overly discussed (such as a proof of e
πi

 = -1). We chose to 

focus on the beauty found in the proofs, not in the theorems themselves (though the 

two are often linked). We also asked mathematicians to suggest proofs that they 

consider beautiful, and now have a small collection of these.   

One theorem that appeared both in our literature search and as a suggestion from a 

mathematician was Pick's theorem, which provides a simple formula for finding the 

area of a lattice polygon. This theorem is simple enough to be understood and 

verified by middle schools students, while the statement and proofs of the theorem 

have relevance for research mathematicians
5
. This feature makes the theorem 

particularly useful for our study, since on the one hand it is challenging enough to 

present to mathematicians to obtain data, but on the other hand it is accessible 

enough to allow us to investigate whether school age children appreciate beauty (or 

have capacity to appreciate beauty) in similar ways. 

Below we will examine two proofs of the theorem, the first suggested by a 

mathematician in our pilot study, and the second found in Aigner et al., 2010
6
. These 

two particular proofs were chosen because they are similar in many respects, except 

for one which we would like to highlight, namely a respect that potentially gives rise 

to a sense of beauty. The two features of beauty that we will highlight (among many 

more that could be chosen, with other proofs, or even considering different parts of 

these proofs, such as the lemmas that support them) are those of generality and 

specificity. We suspect that these are two features that appear in many instances of 
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mathematical beauty and that they will show up as important features when we 

interview mathematicians about their judgements of these two particular proofs
7
.  

PICK'S THEOREM 

Pick's theorem gives a simple formula for calculating the area of a lattice polygon, 

which is a polygon constructed on a grid of evenly spaced points. 

Theorem: Let A be the area of a lattice polygon, let I be the number of interior 

lattice points, and let B be the number of boundary lattice points, including vertices.  

Pick's theorem says that A = I + B/2 -1. 

For example, in the lattice polygon given in Figure 2a there are 16 boundary points 

and 1 interior point, so the area is 1 + 16/2 - 1 = 8. (One can confirm this is correct 

by counting the number of squares and triangles inside the polygon.) 

 

                                       

Figure 2a:  Lattice Polygon               Figure 2b: Triangulated Lattice Polygon  

Below we give two different proofs of Pick's theorem, which we claim are beautiful 

in different ways. Both proofs use a method of double counting based on a 

triangulation of the polygon (see Figure 2b). In the first proof, we count the angles 

inside the triangles in two different ways.  In the second proof we interpret the figure 

as a graph and count the number of edges, using Euler's formula to relate the 

numbers of edges, faces, and vertices of the figure.  We will draw on the following 

three lemmas, which we state here without proof.  

Lemma 1: Any lattice polygon can be triangulated by elementary triangles. 

Lemma 2: The area of any elementary triangle in the lattice Z
2
 is 1/2. 

Lemma 3: Let f be the number of faces, e be the number of edges and v the 

number of vertices in a connected plane graph. Then v – e + f = 2. 

Proof 1 (using angles).  We begin by partitioning the polygon into elementary 

triangles, which is possible by Lemma 1. (See Figure 2b.)  We now sum up the 

internal angles of all these triangles in two different ways.  On one hand, the angle 

sum of any triangle is π so the sum of all the angles is S = N π.   

On the other hand, at each interior point i, the angles do not add up to π, but if we 

add the interior angles of the vertices, we get k·π – 2π, where k is the number of 
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vertices, since the sum of the exterior angles is 2π (see Figure 3).  Let I be the 

number of interior points and B be the number of boundary points.  In all, the sum of 

the angles at the boundary points is B·π – 2π, and the sum of the angles at interior 

points is I· 2π.  Therefore, S = I·2π + B·π – 2π. 

We conclude that N·π = I·2π + B·π – 2π, so cancelling π we get N = 2·I + B – 2.  

Since by Lemma 2 the area of any elementary triangle is ´, we have A = ´·N and 

thus A = I + ´B – 1.  ☐  

 

 

Figure 3: Polygon with one exterior angle marked 

Proof 2 (using Euler‘s Formula). We begin by partitioning the polygon into 

elementary triangles, which is possible by Lemma 1. (See Figure 2b.) We then 

interpret the triangulation as a graph (network), where vertices in the graph are 

vertices of the triangulation, and edges in the graph are edges of the triangles in the 

triangulation. This graph subdivides the plane into f faces, one of which is the 

unbounded face (the area outside the polygon), and the remaining f - 1 of these are 

the triangles inside the polygon. By Lemma 2 the area of each triangle is ´, and thus 

A = ´ (f - 1). This of course proves nothing; it is a simple consequence of how we 

defined f. 

An interior edge borders on two triangles (the blue edges marked in Figure2b), and a 

boundary edge borders on a single triangle and forms part of the boundary of the 

polygon itself. 

Let eint be the number of interior edges, and ebd be the number of boundary edges. 

Counting the number of edges in two different ways, we get  

3(f - 1) = eint+ ebd (*) 

(Here we are overcounting to get the total number of edges of the collection of 

triangles. The left hand side counts these edges using the fact that each triangle has 3 

edges. The right hand side counts them using the fact that each interior edge 

contributes to two triangles while each exterior edge contributes to one.) 

We can also observe that the number of boundary edges is the same as the number of 

boundary vertices, B = ebd and that the number of vertices in the network is the sum 

of all the interior and boundary points, v = I + B.  
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Using Euler‘s formula and substituting for v, we get that (I + B) – e + f = 2, or by 

rearranging, e - f = (I + B) - 2, where e = eint + ebd is the total number of edges. With 

some clever algebraic rearrangements, starting with (*), we get 

f = -2 f + 3 + 2eint + ebd 

= -2f + 3 + 2e - ebd 

= 2(e – f) - ebd + 3 

= 2(I + B – 2) – B + 3 

= 2I – B – 1. 

Thus we get A = ´(f – 1) = ´((2I – B – 1) – 1) = I – ´ B -1. ☐ 

ANALYSIS AND DISCUSSION 

To what extent are each of these proofs beautiful?  We begin with some data from a 

mathematician who thought the first proof was beautiful. One way in which the proof 

is beautiful to him is that it gives meaning to the terms I, B/2, and -1.  He explains, 

"In particular, I like that you can see that each boundary lattice point contributes half 

as much total angle as each interior lattice point."  He also said that he likes proofs 

that get information by counting things in different ways.  The particular choice of 

counting angle measures, though, both contributed and detracted from the sense of 

beauty in this proof.  He says, "The fact that the proof involves angles is beautiful in 

the sense that it is unexpected, but also ugly in that it breaks some symmetry." Pick's 

theorem, as stated, holds for any lattice polygons, regardless of whether the lattice 

itself is transformed in a way that preserves area.  However the argument involving 

angle measures does not.  If you sheer the triangle, the angle measures change.  Thus 

the introduction of the new quantity does not have the same property as the figure 

itself, which this mathematician referred to as "unnatural."   

In contrast, the second proof, using Euler's formula, uses only quantities that are 

invariant under transformation. What seems beautiful about it is that it turns out be 

an application of Euler's formula.  One gets a sense of ``even here, this method can 

apply!'' But whereas the second proof is more general than the first (we introduce no 

auxiliary concepts) it is much less intuitive.  The first proof, besides the sophisticated 

application of double counting, is fairly elementary.  Even a grade school child can 

count the angle measures in both ways described above.  However, the second proof 

requires a bit more machinery to understand.  First one must conceptualize the plane 

in such a way that Euler's formula applies (which includes the somewhat strange step 

of considering the complement of the polygon in the plane as a face in itself.)  Also, 

in applying Euler's formula, one is resting on a result which by itself is not obvious.  

Even if one really believes Euler's formula and feels comfortable using it to get the 

result, one doesn't get a full understanding of the proof if one doesn't in turn 
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understand why Euler's formula is true. This reliance on heavy theory seems to be an 

aspect which detracts from the beauty of the second proof. 

We see then that in each of the proofs there is some feature that contributes to the 

beauty and some feature that detracts.  It turns out in this case that the features are 

complementary.  The feature that contributes to the beauty of the first proof is 

missing in the second and vice versa. For instance, in the second proof, what makes 

it beautiful is some sort of generality. This particular proof fits into a family of 

proofs all of which are instances of Euler's formula. In the first proof, what makes it 

beautiful is some sort of specificity. The surprising use of angle measures in the 

double counting introduces some unexpected element, which on the one hand breaks 

the harmony of the proof, but on the other hand– perhaps because of that breaking– 

becomes a compelling feature of the argument. 

Both proofs appear to contain an element of surprise, but the nature of that surprise is 

almost opposite. In the first case the surprise arises from the specificity.  We contend 

that the pleasure one gets from reading the proof is similar to the feeling of finding a 

specific tool, like the correct size hexagonal screwdriver for one particular screw.  In 

the second case the surprise comes from the feeling of generality.  The sense of 

fitting in arises from there being a set of objects that have a similar property. It is a 

wonderful, unexpected finding that this second proof is one of those kinds of proofs. 

To continue the tool analogy, Euler's formula is the monkey wrench, that is suitable 

for a great number of different situations. 

CONCLUDING COMMENTS AND NEXT STEPS 

To claim that generality and specificity contribute to the beauty of these proofs 

through some element of surprise, we must return to Rota's criticism that beauty 

arises out a feeling of enlightenment rather than surprise. His critique was grounded 

on the fact that there are proofs that are surprising, but nonetheless not beautiful. For 

now we leave this as an open question, with the possibility that surprise might be a 

necessary (or at least contributing) but not sufficient condition for beauty. We note, 

however, that what seems similar about surprise and enlightenment is some sort of 

allure, something that grabs the mind's interest.  And it might be this allure, or 

``compelling''-ness referring back to Scarry again, that is the defining characteristic 

of beauty.   

It seems fairly obvious to say that for a proof to be compelling, it must on the one 

hand be not too simple, and on the other hand not too complex for the mind to grasp. 

It might be that the features of generality and specificity are what keeps these two 

particular proofs appropriately compelling.  The specificity of the first one makes the 

proof technically accessible. The generality of the second one imparts a certain 

status.  Another striking characteristic of these two features is the fact that they play 

mirrored roles with each other– they are in a sense duals– and the way in which they 
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mirror each other is that one contributes to beauty in exactly the way that the other 

detracts.   

At first the fact that two seemingly opposite characteristics could both give rise to 

beauty might seem contradictory, but we offer another interpretation: that beauty 

arises from the interplay of a sort of access and restraint. A potentially beautiful 

object which was completely accessible might not appear beautiful, just as a 

potentially beautiful object that is completely hidden would never be able to be 

experienced as beautiful. The proof based on Euler's theorem brings out some sort of 

hidden structure; the proof based on angle measures provides a specific instantiation 

of an otherwise seemingly common sort of mathematical tool.   

Generality and specificity might not be just two features of beauty– they might turn 

out to be exactly the aspects of mathematical expression which provide the needed 

tension to give rise to the sense of beauty. We do not rule out that there might be 

other features that give rise to beauty, but from our preliminary analysis, we are 

willing to commit that the fact that we found these two particular features here is not 

surprising, nor idiosyncratic. 

This study was meant as a first step into a rather large inquiry domain.  The goal was 

to make the pursuit of a study of beauty in mathematics tractable, both in terms of 

methods and potential results.  This study gives rise to a few hypotheses that we 

would like to investigate (and invite others to investigate!) in future studies. These 

include: 

(i) The features of generality and specificity are not idiosyncratic. They appear in a 

wide number of proofs commonly held to be beautiful. 

(ii) There is consensus among mathematicians, not just about which proofs and/or 

theorems are beautiful, but also about what gives rise to the sense of beauty. 

(iii) The fact that generality and specificity are related, as duals, is also not a 

coincidence.  If there are other features that give rise to beauty, they will also be 

related in a way that creates some sort of tension, and the sense of beauty that 

arises will be related to this tension. 

NOTES 

1. A description of these functions is given in Sinclair (2002): ``The most recognized and public of the three roles of the 

aesthetic is the evaluative; it concerns the aesthetic nature of mathematical entities and is involved in judgments about 

the beauty, elegance, and significance of entities such as proofs and theorems. The generative role of the aesthetic is a 

guiding one and involves non-propositional modes of reasoning used in the process of inquiry. I use the term generative 

because it is described as being responsible for generating new ideas and insights that could not be derived by logical 

steps alone. Lastly, the motivational role refers to the aesthetic responses that attract mathematicians to certain problems 

and even to certain fields of mathematics." 
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2. Thanks to the following people who provided information on statements about beauty and aesthetics in curricular 

documents: Antti Viholainen (Finland), Kirsti Hemmi (Sweden), Aihui Peng (China). We welcome examples from other 

countries, especially those that incorporate beauty in a meaningful way. 

3. Some examples of curricular statements include ``appreciate the aesthetic value of mathematics theorems and 

mathematics methods'', ``experience the flexibility, the elegance (similar to the beauty, but higher than beauty, and 

ingenuity of mathematical proof'', ``experience the beauty of figure''. 

4. See http://www.oph.fi/english/publications/2009/national_core_curricula_for_basic_education. 

5. See http://www.cut-the-knot.org/ctk/Pick_proof.shtml for a web application of a classic way of introducing the task to 

middle school students. And see Sally & Sally (2007) for a lovely exposition of how this task can be made relevant to 

people of all ages, from school children to research mathematicians, not just in terms of verfiying the theorem, but in 

terms of really understanding the underlying ideas. Yet another proof of the theorem, using a heat model, can be found 

in Hanna & Jahnke (2007). 

6. These two proofs correspond closely to the two proofs given in Sally & Sally (2007). 

7. To be clear, our goal here is not to establish that these two features capture all aspects of mathematical beauty, but 

rather to suggest that they are two features that could give rise to the sensation.  The argument presented in the paper is a 

sketch what a mature argument about beauty in mathematical proof might look like, using the mathematics itself (rather 

than psychological or sociological data) as our primary data source. 
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This paper is a combination of a theoretical paper and a case study. The theoretical 

purpose is to introduce the concept of multimodal proof into the context of algebra 

in mathematics education. The case study follows two teacher training students 

conjecturing and proving results in an environment of visual and physical number 

patterns. The case study is used both to discuss what multimodal proof can be in this 

environment and to show some of the potential of such reasoning in the learning of 

proof.   

Key words: multimodal proof, proof environment, algebra, physical number patterns. 

INTRODUCTION 

The interest in visual proof and visual reasoning has been increasing over the last 

decades. This is the case both inside mathematics and in mathematics education. 

Several references are given in Bardelle (2009). Barwise and Etchemendy (1994) has 

developed a computer based proof environment called Hyperproof. Logic students 

carry out proofs with this program that combines sentential formal logic rules with 

visual reasoning related to positions and sizes of boxes and pyramids. Barwise and 

Etchemendy (1996) use the phrase heterogeneous proof for this kind of proofs. This 

name points to the two distinct kinds of reasoning involved. Oberlander, Monaghan, 

Cox, Stenning and Tobin (1999) characterize hyperproofs as multimodal, because of 

the use of both graphical and sentential methods. We think that also other modalities 

are relevant for mathematical proof. In the context of mathematics education it is 

possible to involve students in proof like activities which not only uses the sentential 

and visual modality, but also the tactile, speech and motor action. We introduce a 

general concept of multimodal proof that intends to cover both formal proofs, visual 

proofs and proof like student activities. We are not claiming that multimodal proof 

should be seen as legitimate rigorous mathematical proof. The phrase ―visual proof‖ 

is widely used even if many mathematicians do not accept such reasoning as part of 

rigorous proof. In the same way multimodal proof may be seen as a kind of intuitive 

proof.  

This paper analyzes one empirical case study with teacher training students to show 

what multimodal argumentation and proof can mean. The learning of proof is 

difficult for students, especially if their background in formal mathematics is weak. 

Proving in the context of visual and physical number patterns gives meaning and 

allows for the students‘ intuitive thinking. Seeing the conjecturing and arguing 
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process with number patterns as multimodal proof, makes clearer the potential this 

kind of activity has for proof learning. This uncovers structure in the students‘ 

thinking similar to traditional proof but in other modalities. Those similarities 

explain why we use the term ―proof‖, and not just multimodal argumentation. 

THE CONCEPT OF MULTIMODAL PROOF 

In traditional formal proof, the emphasis is on the modality of written symbols and 

sentential reasoning. A multimodal proof is a generalized proof which beside written 

symbols and sentential reasoning can also include the visual modality, speech, the 

tactile and motor action. Gestures are included in the latter. Multimodality means 

that more than one modality is involved. Barwise and Etchemendy (1996) make a 

point that visual and non-visual proofs are not separate worlds. Visual proof is, of 

course, highly dependent on the visual modality, but the mathematician looking at 

such proofs invokes both language and mathematical concepts in his thoughts. 

Moreover, proofs not mentioning any picture or diagram have visual aspects. The 

first argument is that written mathematical symbols by themselves are visual 

(Rinvold, 2007). Secondly, mathematicians almost always relate intuition to their 

proofs. This intuition is very often connected with visual ideas, for instance see Sfard 

(1994). 

It is not the intention of this paper to give a precise definition of what a multimodal 

proof is. This has to be done in forthcoming papers. At the moment we make a first 

step. In order to increase precision, attention can be restricted to subclasses of the 

general concept. The concept of proof environment may be useful. The proof 

environment is the available and allowed resources, objects, operations and 

modalities. In a sense we have one concept of multimodal proof for each possible 

proof environment. 

A formal proof can be seen as symbols on paper. Multimodal proofs can also be 

mediated by books, as for instance in Nelsen (1993, 2000). The inclusion of gestures, 

speech and motor action, means however, that multimodal proof has to be linked to 

human cognition. More specifically, we are talking about sensuous cognition, cf. 

Radford (2009). We adapt the semiotic-cultural perspective. ―Thinking is considered 

a sensuous and sign-mediated reflective activity embodied in the corporeality of 

actions, gestures, and artifacts.‖ (p. XXXVI). In the environment of our case study, 

gestures, tactility and motor action is considered both to be genuine parts of 

cognition and multimodal derivation.  

A difference between text based proof and multimodal proof is the non-linearity of 

the latter. In the ―proofs without words‖ of Nelsen (1993, 2000), some proofs are 

given holistically by diagrams with limited guidance to the reader. Traditional proofs 

are given step by step. Numbering of formulas and names of applied theorems are 

ways to guide the reader. When the carriers of information are physical, gestures are 

an important way of directing the attention. More specifically, pointing gestures are 
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used for this. The research literature uses the name deictic gestures. According to 

Sabena (2008) ―deictic gestures: indicate objects, events, or locations in the concrete 

world‖ (p. 21). Some words in written language or oral speech have a similar 

function. Radford (2009) gives the examples ―top‖ and ―bottom‖ (p. XLI). These 

kinds of words are called ―spatial deictics‖, (p. XLI). Other pointing phrases are ―this 

one‖ and ―that one‖. Both linguistic and non-linguistic deictics are central to 

multimodal deduction. In classical proof we use mathematical deictics as ―equation 

25‖ or ―theorem 4‖, which means that neither this kind of deduction is completely 

linear.  

ALGEBRAIC THINKING IN MATHEMATICS EDUCATION 

In mathematics education the multimodal perspective has been used to analyze 

student thinking, especially in algebra and functions. Radford, Edwards and 

Arzarello (2009) introduce what they called ―construction of mathematical meaning 

from the perspective of multimodality‖:  

... taking into account the range of cognitive, physical, and perceptual resources that 

people utilize when working with mathematical ideas. These resources of modalities 

include both oral and written symbolic communication as well as drawing, gesture, the 

manipulation of physical and electronic artefacts, and various kinds of bodily motion. 

(Radford, Edwards and Arzarello 2009, p. 91) 

Our use of the word multimodal is inspired by and compatible with the perspective 

of those researchers. Radford (2009) have used a multimodal approach to the 

introduction of students to the elementary parts of algebra. We share the context of 

visual number patterns in algebra with Radford, but our focus on proof is new.  

Radford classifies algebraic thinking into three forms, factual, contextual and 

symbolic. Following Radford, contextual thinking acknowledges a general figure 

through the concept of figure number, but ―still supposes a spatially situated 

relationship between the individual and the object of knowledge...‖ (p. 9). The 

students‘ reasoning depends on the particular context and perspective. When the 

students start to use symbols for variables, but still think contextually, Radford 

observed a phenomenon which he called iconic formulas or formulas as narratives. 

Formulas are not simplified, but divided into parts. Each part tells a story about the 

corresponding part of the pattern described by the formula. We identified both the 

use of contextual thinking and iconic formulas by the students in our case study. 

Contextual algebraic thinking is not necessarily a low level of thinking, but the 

students also need to master the symbolic form in order to use multimodal thinking 

in a mature way.  

LEGITIMACY OF MULTIMODAL PROOF 

In pure mathematics, visual proofs are still not widely accepted as legitimate part of 

rigorous proof. However, arguments have been put forward that may change this in 
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the future. Barwise and Etchemendy (1996) have done work in mathematical logic 

which argue for the legitimacy of some kinds of visual reasoning. In philosophy of 

mathematics Brown (2008) argues for the possible validity of pictures in proofs. 

Jamnik, Bundy and Green (1997) and other studies in the field of automated 

reasoning have also indirectly provided good arguments for the case of visual proof. 

They have shown that typical diagrammatic proofs can be formalized with recursive 

ω-logic and automated. This is an argument for the legitimacy of a wide class of 

visual proofs. These proofs are based on generic reasoning. In such proof the general 

is proved through special cases. One or two instances are used to describe how to 

carry out the proof for any instance. Recursive ω-logic is an alternative to the 

classical induction approach, but equally valid. In ω-logic a formula is proved if you 

have a proof for each instance of the formula. A recursive ω-proof also has an 

algorithm to find the proof of each given instance. The use of physical figures and 

number patterns in our case study are confined to generic reasoning. The validity of 

multimodal reasoning in these kinds of environments thus rests on the correctness of 

generic arguments.  

Conditions for legitimate formal reasoning are well developed. Similar analyses of 

visual reasoning are still in an early phase. The work of Barwise and Etchemendy 

(1996) is relevant also for multimodal proof, but the possible legitimacy of 

multimodal proof is not yet analysed in depth. An idea of Barwise and Etchemendy 

(1996) that can be useful for such analysis is the concept of information. ―Valid 

deductive inference is often described as the extraction of making explicit of 

information that is only implicit in information already obtained.‖ (p. 4). 

Mathematical formulas and written text contain information. Classical proofs show 

how the information given by a theorem is already implicit in axioms and established 

mathematical results. Also pictures, diagrams and physical patterns contain 

information. A map, for instance, contain lots of information. If you know the use of 

a map and compass, you can deduce how to get from A to B. As in classical proof, 

some deductions are valid and others not. You do not get from A to B if you do not 

use the map and compass in legitimate ways. 

METHODOLOGY 

The paper uses one single successful case study with teacher training students to give 

examples and to discuss what multimodal argumentation and proving can mean. The 

students are in a problem solving process leading to derivation of formulas. We do 

not see a straight line of reasoning, but also some mistakes and dead ends. As such, 

the students are proving, not presenting a proof. The data gives examples of 

multimodal proving, but much of the argumentation could with some refinement be 

part of a multimodal proof. We thus see continuity between proving and multimodal 

proof. Within a traditional proof paradigm, more radical changes are needed to go 

from the students‘ argumentation to proof. However, we do not claim that this kind 
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of continuity between argumentation and proof is always the case within the 

multimodal paradigm. 

In the spring of 2009 five pairs of teacher training students took part in a study 

conducted at Hedmark University College and NLA University College. All of the 

students were following a course in number theory at one of the two colleges. The 

pairs were asked to investigate number patterns represented by visual and physical 

figures. Their work is immediately followed by an interview by one or both 

researchers. Both the student investigations and the interviews were videotaped. One 

episode from one of the pairs is chosen for analysis. The selected pair clearly was the 

most successful. We observed a complex interplay between the students and between 

visual diagrams, physical figures, speech, gestures and formulas.  

THE START OF THE CASE STUDY 

 

 

 

The students Erik and Jon are given a problem sheet with two equivalent visual 

number patterns B and C and asked to find out as much as possible about the 

sequence. Also included is a figure D. The latter figure results when the four figures 

in C are joined. In front of the students are physical versions of C and D built from 

plastic cubes. More cubes are available so that they may build their own figures. 

Each student also has a personal note sheet. Before we come into the story, the 

students have spent about 20 minutes. Among other things, they have derived an 

explicit formula for the sequence in B by decomposing each figure into a square and 

a triangle on top of it. They also observed that B and C give the same sequence.  

THE FORMULA TO BE PROVED 

We will follow the derivation of a recursive formula for the sequence in B. The 

students were not asked to prove such a formula. They discovered and proved the 

formula themselves. In the problem solving process the given recursive formula was 

the end product. They first wrote the square part of the formula and then added the 

triangle part. As can be seen, Fn-1 was written at a later stage. 
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Fn refers to the n‘th figural number from the left in B or C. The formula is a 

combination of standard mathematical symbols, curly brackets and drawn figures. 

The latter signify the square and triangle part of the formula. The formula to be 

proved is not part of standard notation. The drawn square and triangle link the 

formula to the multimodal context of the activity. Following Radford (2009), the 

formula could be seen as iconic or as telling a narrative. This means that the formula 

mirrors the division of each figure into a square part and a triangle part.  

In the following analysis, we use the students‘ argumentation to show what a 

multimodal proof can be. Deictics has a central role. We also look for generality in 

the students‘ thinking. One example is the use of indices. It is not mature, but 

nonetheless they think generally through them. 

THE BEGINNING OF THE DERIVATION 

The start of the derivation is an oral description of the task:  

105 Jon: We are going to find a formula to find the next one when we know this 
one. 

Descriptions, definitions and reformulations are often the start of direct proof. No 

deictic gestures are used in 105. This may be interpreted as generality in the 

students‘ reasoning. Then they enter a journey outside the main path, but after a 

while Jon reformulates 105 with gestures and symbols on his note sheet. He has 

already written ―Fn = Fn-1 + ‖. 

139 Jon: To find Fn [pointing at the sign Fn on his note sheet] it‘s the last one 
[circular pointing gesture around Fn-1] plus something more [points to 
the right of +]. 

Both deictic gestures and deictic speech turn up already at this juncture when 

standard mathematical symbols appear. The last deictic gesture is abstract pointing. 

According to Sabena (2008), abstract pointing is ―when there is no actual physical 

pointed object, rather the pointed empty space houses an introduced reference, ...‖ (p. 

22). Then Jon introduces the visual B-pattern on the problem sheet. The second and 

third figure in this pattern are denoted F2(B) and F3(B). 

141 Jon: It becomes this [circular pointing gesture around F2(B)] plus 
something more [points in direction of F3(B)]. 

The deictics shows the connection when 141 is derived from 139. Note the striking 

similarity between gestures linked to corresponding terms, for instance the circular 

pointing gestures used both for the sign Fn-1 and the visual figure F2(B).  

THE LEMMA 

At this juncture both students start to manipulate the physical figures. Jon puts F2 

and F3 together and then takes one of these figures in each of his hands. After a short 

period of silence Jon expands what he wrote in 139 to this formula: 

146 Jon: Fn = Fn-1 + (Kn – Kn-1) + (Tn – Tn-1) 



Working Group 1 

CERME 7 (2011) 239 

 

Kn and Tn refer to the n‘th square numbers (‗Kvadrattall‘ in Norwegian) and 

triangular numbers.  

147 Jon: This one is nice [smiling]! But, is it correct? 

The question about correctness means that 146 at this stage is a conjecture or a 

lemma to be proved. The lemma splits the problem of 105 into two parts. Jon‘s smile 

and description of formula 146 as ―nice‖ may be an indication that this is the kind of 

answer which is expected in mathematics. But, we will see that the formula is used 

more as a vehicle of thought than in the standard way. Careful readers may have 

noticed that the indices for the triangular number part are wrong. The students, 

however, do not comment on this ―mistake‖, but get it right when  

Tn – Tn-1 is replaced by n – 1. The indices n and n – 1 at this stage seem to have the 

operational meaning ―the next one‖ and ―this one‖. One argument for this is the 

complete similarity between Jon‘s derivations of the triangle part and the square part 

of 146. Because of this similarity we only show Jon‘s derivation of the square 

number part: 

 

149 Jon: From this one [pointing to physical F2] to this [pointing to F3], this 
square number is added [lay his fingers down on F3] minus the square 
number we had earlier [makes a circular pointing movement around 
the bottom of F2]. K-n minus K-n minus one. 

In fact, Jon uses 141, but he has replaced the visual B-patterns with the physical 

figures. 149 is the first time physical figures are explicitly used in the derivation. 

Deictic gestures now have a vital place in the derivation to show which part of the 

figures which is in focus. Note how the physical figures give possibilities for clearer 

and more precise gestures compared with the visual B- and C-figures. 

THE FINAL PART OF THE DERIVATION 

Now we come to a striking example of multimodal proving involving physical 

objects and gestures. The lemma (146) is proved, and the students return to the 

derivation of the recursive formula. They are going to replace each part of the lemma 

with a simplification. 

152 Jon: [Laughs] I doubt the formula should look like this.  

153 Jon: It isn‘t very nice, but [smiles and laughs] [silence] 

154 Jon: Yes, gets right, yes, but probably has to be rewritten in one way or 
another. 

At this moment Jon realizes that the lemma can be simplified and starts to think how. 

We will follow the simplification of the square number part. The reasoning for the 

triangle part is similar. Jon has changed his mind and does not find the formula 
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―nice‖ anymore. Jon‘s question is trigging Erik to make a contribution. He takes the 

physical F3 and puts it on top of F4: 

  

159 Erik: What is added then? It is the sides, the sides of the first quadrilateral 
number plus one. [He moves his finger along the side while talking.] 

160 Erik: Like quadrilateral numbers... 

161 Jon: n minus one then 

162 Erik: Two times minus one plus one. [He writes a formula on his note 
sheet.] 

 

163 Erik: The corner is included. [He points to the corner between the 
mentioned sides.] 

Erik locates the square numbers as the bottom part of the physical figures. He 

physically compares the bottom squares of F4 and F3. The way the figures are 

relatively placed allows him to show one of the added sides with a sliding finger 

gesture. The plus one is explained by pointing to the corner below the triangular 

number part of the white physical F4.  

This explanation by Erik is an example of reasoning which can be refined. His idea is 

good, but the triangular number on top of the bottom square obscures the reasoning. 

In fact, Jon does not understand, and Erik follows up by an improvement. Erik takes 

off the triangular parts of F2 and F3 and places K2 on top of K3. 

  

Then he shows a sliding finger movement along each of the two sides and points 

with a finger to the corner. Now it is obvious to Jon what is going on.  

THE GENERALITY OF THE REASONING 

The interview indicated that the concept of figure number was a safe ground which 

resolved potential dangers in general reasoning. Again, this corresponds to the 

contextual form of reasoning in the classification of Radford (2009). 

341 Jon: We noticed by looking at the drawing that the square number equals 
the figure number. 
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342 Researcher: Yes. 

343 Jon: And the triangle number is one less.  

Except for the non-standard use of indices in the lemma, they always related figure 

numbers correctly to symbolic variables. This indicates that the students were aware 

of the generality of their reasoning. Their switching between different values of n 

when relating to physical figures strengthens that conclusion. In ―The final part of 

the derivation‖ Jon uses n = 3 and Erik n = 4, but they do not comment on the 

difference. Jon and Erik behave as if they are talking about the same thing. A few 

minutes later Erik repeats his sliding finger gesture argument with n = 3, also with no 

comments. Jon was convinced that the reasoning done for a particular value of n 

could be done for all other values as well. They have tested the formula in the 

theorem for n = 4, but not for n = 5. When the researcher asked for reasons to trust 

the formula, Jon repeated the derivation from the third and fourth physical figures. 

Then the following dialog ends the interview relating to the recursive formula: 

428 Jon: You really see that it‘s logical both from the figures and from the 
plastic cubes.  

429 Researcher: Yes, you could have built something similar if we considered number 
five from four, for instance? 

430 Jon: Yes! [Looking convinced] 

CONCLUSION AND QUESTIONS FOR RESEARCH 

Traditional proof has been thought to consist only of sentential reasoning. Visual 

proof in an active way uses visual information. Multimodal proof can also include 

the use of physical objects, the tactile, gesture and other kinds of motor action. 

Especially the latter modalities transcend the traditional concept of proof.  

The analysis of data has shown that quite advanced multimodal proving is possible 

for students even if their form of algebraic thinking is partly contextual and only to 

some extent symbolic. There is a form of structure in their proving even if they are 

not trained in formal proof methods. A possible explanation is the resources of 

intuitive thinking which is opened by this approach. A conclusion is that this kind of 

proof activities has a potential in proof learning. The data analysis has also shown 

the important role of deictics in multimodal reasoning. 

The concepts of multimodal proof and derivation need further clarification and 

development in order to discern valid proof from other kinds of activity and 

presentation. We think that the concepts of proof environment and extraction of 

information will be helpful in this. Further research is needed both to find conditions 

for valid reasoning and to investigate the role of deictics in multimodal proof. The 

latter may also be a key to better understanding of visual proof. In mathematics 

education more empirical studies are necessary, combined with development of 

better design and teaching approaches. A question of research is how to support the 

development of students reasoning to include a symbolic form of thinking. 
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The view of mathematics affects how the role and function of argumentation is seen. 

If mathematics is considered as an axiomatic system, arguments have to be based on 

definitions, axioms and previously proven theorems, and the function of 

argumentation is mainly to verify and systematise a statement. On the other hand, if 

mathematics is seen as thinking and learning process, which requires conceptual 

and holistic understanding, then arguments based on more concrete representations 

are important. In this latter case, the function of argumentation is to engender 

understanding by explaining. These two types of argumentation provide a 

framework, which could also be applied in the design of teaching.  

Key words: argumentation, formal and informal reasoning, mathematical views, 

representation. 

INTRODUCTION 

What kinds of arguments should be favoured in mathematics education? What kinds 

of arguments should students learn to understand, produce and present? These are 

important questions in design of teaching practices, teaching materials, assessment 

etc. In this paper some aspects to these questions will be presented on the basis of 

different views of mathematics and results of some earlier studies about 

mathematical reasoning. 

Arguments can be seen both as elements and as products of a mathematical reasoning 

process. Often an aim of a reasoning process is to construct an argument. This 

process may include inductive, deductive or abductive reasoning, use of intuitions, 

making conjectures and testing of them etc. Both cognitive and affective factors 

influence this process (Furinghetti & Morselli, 2009). It may also include 

construction of sub-arguments, which are needed in other parts of reasoning. Also, 

different kinds of representations may be used in the reasoning process. 

Toulmin‘s (2003) model of argumentation in mind, it can be said that the aim of 

argumentation is to construct an explanation (a warrant) for why the information 

concerning the initial state (the data) necessitates the statement which is argued (the 

conclusion). In some cases, a justification for the authority of the warrant (backing) 

is also needed. The same conclusion can often be argued by using different kind of 

arguments. 

In order to answer to the question why proofs are needed in mathematics, the 

following functions are often presented: verification, explanation, systematisation, 

discovery and communication (Hanna, 2000; de Villiers 1999). Argumentation has a 
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broader meaning than the term proof, but it can be thought to have these same 

functions too. In the following, more specifically the functions of verification, 

explanation and systemisation are evaluated with respect to different views of 

mathematics. 

DIFFERENT VIEWS ABOUT MATHEMATICS AND ARGUMENTATION 

Mathematics can be considered either as a toolbox, as a system or as a process 

(Tôrner & Grigutsch, 1994). The toolbox-view means that mathematics is seen as a 

set of skills, the system-view means that mathematics is a logical and rigorous 

system and according to the process-view mathematics is a constructive problem 

solving process (Tôrner, 1998). Ernest (1989) has presented a corresponding division 

by defining the instrumentalist view to mean that mathematics is seen as ―an 

accumulation of facts, rules and skills to be used in the pursuance of some external 

end‖ (p. 250), the Platonist view to mean that mathematics is ―a static but unified 

body of certain knowledge‖ (p. 250), and the problem solving view, for one, to mean 

that mathematics is ―a dynamic, continually expanding field of human creation and 

invention‖ (p. 250). 

The toolbox/instrumentalist view and argumentation 

The view of mathematics has an influence on how teaching and learning of 

mathematics are seen. On the basis of several studies, Beswick (2005) has connected 

the instrumentalist view to content-focused teaching in which emphasis is on 

performances and learning is seen as a passive reception of knowledge. At least, the 

toolbox/instrumentalist view alone is neither sufficient nor desirable, because deep 

understanding, knowledge construction and learners active role have been omitted 

from it, and mathematics as such is not seen interesting. Therefore, the role of 

argumentation is only to ensure the correctness of facts and rules, that is, only 

verification can be considered as a function of argumentation. 

The system/Platonist view and argumentation 

The Platonist view is often connected to an objectivistic worldview. According to 

Ernest, the Platonist view involves understanding mathematics as a consistent, 

connected and objective structure. Mathematical objects are seen to be real and exist 

independently of human (Brown, 2005). Mathematical statements are considered to 

be objectively true or false and their truth-values are also seen to be independent 

from human. In addition, mathematical knowledge is seen to be non-empirical. This 

kind of objectivistic view of knowledge implies easily that, in the classroom, the 

teacher is seen as an explainer and the learning is seen as a reception of knowledge. 

According to Beswick (ibid.), the Platonist view also implies content-focused 

teaching. However, the emphasis is on understanding: Learning is seen as an active 

construction of understanding, but through assimilation of received knowledge. 



Working Group 1 

CERME 7 (2011) 245 

 

On the other hand, the view about mathematics as a system is so salient that it cannot 

be omitted. The building of an axiomatic system can be seen as an essential goal in 

mathematics [1]. Systemisation means that various known results are ordered into a 

deductive system, and it has usually been considered as one important function of 

proof and proving (Hanna, 2000; de Villiers, 1999). According to De Villiers (ibid.), 

systemisation is useful, because it ―helps to identify inconsistencies, circular 

arguments and hidden or not explicitly stated assumptions‖ and because it ―unifies 

and simplifies mathematical theories by integrating unrelated statements, theorems 

and concepts with one another, thus leading to an economical presentation of results‖ 

(p. 277). In addition, de Villiers mentions a global perspective and easiness in 

applications as benefits of systematisation.  

Mathematics can yet be considered as a consisted and connected structure without 

any global or objective meaning. It may be seen either as a personal or socially 

shared construction, which works as a frame of reference in mathematical reasoning. 

It is not seen as an objective system, but the wideness in which the system is socially 

shared may vary. This kind of view is well compatible with the problem solving 

view, which is discussed in the next section. 

If mathematics is considered as an axiomatic system, an important function of 

argumentation is to connect a statement to the system. Therefore, it is important that 

the argument is based on the elements of the existing system. By applying Toulmin‘s 

model, the concept of a formal argument can be defined in the following way: 

An argument is formal, if its warrants are based on definitions, axioms and 

previously proven theorems, i.e. the elements of an axiomatic system. 

Usually formal arguments are rigorous and detailed, and, thus, they remove all 

doubts and uncertainty about the truth of a statement. Therefore, in addition to 

systemisation, verification is their important function too.  

The process/problem solving view and argumentation 

According to Beswick (ibid.), the problem solving view can be connected to learner-

focused teaching, in which learning is seen as autonomous exploration of the 

learner‘s own interests. Beswick sees the process/problem solving view to be in 

accordance with the principles of the constructivist learning views. If mathematics is 

looked from this point of view, it is important that the learners understand the 

content conceptually and holistically and that they can connect it to their earlier 

experiences, either inside or outside of the field of mathematics. In addition, 

invention of new creative ideas is important. According to de Villiers (ibid.), the aim 

of an explanation is to help an individual to understand the reasons, why a statement 

is true, in other words, to provide an insight into why the statement follows from the 

given data. This function of argumentation is crucial when mathematics is seen from 

the process/problem solving view. 
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Weber and Alcock (2004) have presented a categorization for proof production, 

which contrasts the functions of verification and explanation. According to their 

categorization, a syntactic proof production refers to reasoning in which inferences 

are drawn using only symbolic manipulation in a logically permissible way and a 

semantic proof production means that different kind of internally meaningful 

representations or mental images (Weber and Alcock use the term instantiations) are 

used to guide the reasoning [2]. Weber and Alcock regard the semantic proof 

production primarily as a support for the syntactic proof production so that it guides 

the process of choosing proper facts and theorems to apply. By the semantic proof 

production an individual can in a meaningful way make sense of the claim, get 

suggestions about inferences that could be drawn and become convinced at an 

intuitive level about the truth of the claim.  

A similar contrast between the functions of verification and explanation is observed 

in Raman‘s (2002; 2003) categorisation of arguments into private and public ones. 

According to her a public argument has to be sufficiently rigorous for a particular 

mathematical authority, like a teacher at school, and it has to reveal step-by-step the 

progress of inference and justifications for each step. Instead, a private argument is 

an argument engendering understanding and having an essential role in facilitating 

conceptual and holistic understanding of relationships between concepts. According 

to her, private arguments are often based on empirical or visual data.  

Construction of mental images is important for understanding explanations but also 

to construct explanations. According to Presmeg (2006a), a mental imagery may 

occur in various modalities, such as sight, hearing, smell, taste or touch, but in 

mathematical thinking the visual modality is the most prevalent one. Therefore, it is 

understandable that the role of visual representations in learning of mathematics and 

in mathematical reasoning is an issue that has widely aroused interest and vivid 

discussion among mathematics educators (Presmeg, 2006b). 

The following definition of an informal argument emphasises the need for 

explanations as a function of argumentation:  

An argument is informal, if its warrants (cf. Toulmin‘s model) are based on concrete 

interpretations of mathematical concepts, which may be based on visual or other 

illustrative representations. 

According to this definition, the characteristic of informal arguments is that 

mathematical concepts are interpreted by using illustrative representations. Perhaps, 

visual representations are the most important ones, but, in addition to them, 

mathematical concepts can be illustrated, for example, by relating them to some 

physical context. However, the illustrative effect of representations and the 

explanatory effect of arguments based on them may depend on personal experiences, 

situational factors and the field of mathematics. In the next section, an example 

concerning the concept of derivative is presented.  
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FORMAL AND INFORMAL ARGUMENTS 

An example: Formal and informal reasoning concerning the concept of 

derivative 

The formal definition of derivative in the case of a real-valued function of a single 

variable is based on the concepts of function, limit and real numbers. If these 

concepts have been defined earlier in teaching, then the aforementioned formal 

definition connects the concept of derivative to the axiomatic system. [3] 

By using visual representations, the meaning of the derivative can be described by 

referring to the steepness of the graph of a function. It can be explained that the sign 

of the derivative reveals whether the graph is going up or down, and the absolute 

value describes how steep the uphill or downhill of the graph is. It can also be said 

that the derivative at a given point is the slope of a tangent line drawn to the graph at 

this point. For more dynamic visualisation the derivative can be illustrated by sliding 

a pencil along the graph from left to right so that the pencil always lies on the tangent 

line, and the nib of the pencil points in the direction of the movement (Hähkiôniemi, 

2006). 

An instantaneous rate of change can be regarded as a physical interpretation of 

derivative. For example, instantaneous speed is the derivative of the total distance 

travelled as a function of time, instantaneous acceleration is the derivative of the 

speed as a function of time, and the electric current is the derivative of the flowing 

electric charge through a surface. 

Next the theorem stating that the derivative of a constant function is everywhere zero 

is considered. By implementing the formal definition of derivative, this theorem can 

be proven through a short calculation. Visually, the same result can be reasoned by 

explaining that because the graph of a constant function is a horizontal straight line, 

it does not have any uphill or downhill and, therefore, the tangent drawn to the graph 

is everywhere a horizontal straight line, whose slope is zero. Physically, the same 

thing can be reasoned by explaining that if a quantity is constant, its value does not 

change, and thus the rate of change is everywhere zero. 

Relationship between formal and informal arguments 

Previous examples illustrated how formal arguments usually serve for the functions 

of systematisation and verification, and how informal arguments often serve for the 

function of explanation. However, this categorization is not absolute: A formal 

argument may be explanative, but this requires that its overall central ideas are 

recognised. On the other hand, an informal argument may in some cases be general 

and rigorous enough so that it is sufficient to verify a statement. Especially, the role 

of visual arguments has occasionally raised vivid discussion among researchers of 

mathematics education (Presmeg, 2006b). Several researchers have proposed that 
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visual arguments should be considered as an intended and accepted form of final 

arguments (Arcavi, 2003; Dreyfus, 1994; Rodd, 2000). 

Construction of formal arguments often requires exact and detailed analytic 

reasoning based on symbolic representations and procedural skills to carry out 

calculations and other technical procedures. However, informal arguments may 

reveal holistic features and wider trends, which, yet, may also be very important in 

the construction process of the argument, by simplifying and concretising the 

problem situation. Experienced mathematicians are often able to utilize informal 

elements, like visualization, in an effective way in their reasoning. Stylianou (2002) 

noticed that mathematicians use visualization in a very systematic way, so that in 

their reasoning the visual and analytic steps were very closely connected and they 

interact with each other. Also Raman (2002; 2003) found that mathematicians 

considered visual and formal arguments closely connected so that the visual 

arguments in an essential way contributed to inventing ideas in construction of the 

formal argument. Mathematicians were able to use and construct heuristic/informal 

and procedural/formal ideas simultaneously so that both ideas clarified each other. 

Instead, students could not recognise connections between visual and formal 

arguments. Stylianou‘s and Silver‘s (2004) study revealed that mathematicians also 

saw a wide variety of problems where visualization could be used, whereas students 

considered visual representations useful mostly in geometrical problems. 

The importance of formal and informal arguments is dependent on personal and 

institutional needs. As well, they may have different roles depending on the field of 

mathematics. Especially, students may have different tendencies with respect to 

formal and informal reasoning depending on the field of area. Weber and Alcock 

(ibid.) found that in the case of algebra students‘ reasoning was too much restricted 

around the formal definitions of the concepts, but in the case of analysis several 

studies have reported students‘ tendencies to use informal approaches without 

sufficient connections to the formal theory (Juter, 2005; Pinto, 1998; Viholainen, 

2006; 2007; 2008; Vinner, 1991). 

The use of the division of arguments into formal and informal ones 

On the basis of the aforementioned definitions, it could be possible to categorize 

arguments into informal and formal ones. According to these definitions, the decisive 

difference between formal and informal arguments is in the natures of the warrants. 

It is not decisive, how much and what kinds of representations have been used in 

reasoning, when the arguments are constructed. For example, the use of visualization 

as an aid of thinking in reasoning does not make the argument informal. On the other 

hand, in construction of an informal argument, the applied visual or physical 

interpretations may be justified by using formal definitions, but this does not make 

the argument formal. In this latter case, the definitions work only as a backing (cf. 

Toulmin‘s model) for the used informal interpretations. Therefore, the categorisation 

of arguments based on these definitions has to be made on the basis of the final 
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forms of the arguments, not on the basis of the reasoning processes. In this way the 

categorisation presented in this paper differs in an essential way from Weber‘s and 

Alcock‘s and Raman‘s categorisations. 

Weber and Alcock see the semantic proof production, as well as Raman sees the 

private arguments, as important element of a reasoning process, but not as a final 

goal. Instead, the definitions of formal and informal arguments make it possible to 

consider any of them as a final goal of argumentation. No mutual order between the 

types of arguments with respect to importance follows from the definitions. 

Therefore, this division provides a framework for design of teaching, especially, for 

design of argumentation tasks, in which both the need of systematisation and 

verification based on the view of mathematics as a system and the need of 

explanation based on the view of mathematics as a problem solving process are 

equally taken into account. Traditionally, only formal arguments are considered as 

intended and desirable in mathematics, but in order to consider the need of 

explanation in the design of teaching, opportunities to exercise both understanding 

and producing more explanative arguments should also be provided for the learners. 

CONCLUSION 

The presented division of arguments into formal and informal ones can be used as a 

starting framework in determining what kinds of arguments students should learn to 

understand and produce. However, this division does not cover all features of 

mathematical reasoning: It concerns mainly deductive arguments, but it does not 

cover, for example, inductive and abductive arguments and arguments, whose 

warrants are based on some authority. These kinds of arguments may have an 

important role in mathematical reasoning, especially, in the affective level. The 

broad variety of different forms of reasoning comes out, for example, in Harel‘s and 

Sowder‘s (1998) classification of proof schemes. It is possible to extend the 

presented framework on the basis of Harel‘s and Sowder‘s classifications.  

In addition, it should be noted that the nature of mathematics as an axiomatic system 

is explicit mostly in the tertiary-level. As well, aforementioned studies about 

mathematical reasoning concern mainly the tertiary level. Therefore, more studies 

about applicability of this division into the lower levels of mathematics education are 

needed. In addition, the nature and the purpose of informal arguments may differ 

depending on the field of mathematics and this difference could be investigated 

further. 

NOTES 

1. In 1931, Gôdel proved incompleteness theorems, which showed that it is impossible to construct 

a complete and consistent axiomatic system, in which all theorems concerning natural numbers 

could be proven. Due to that, an ambitious attempt to build a complete and consistent axiomatic 

system including all mathematics proved to be impossible. 
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2. Alcock and Inglish (2008; 2009) and Weber (2009) have later modified these definitions. 

3. In practice, the concept of real numbers is rarely defined properly before presenting the definition 

for the concept of derivative. 
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This paper reports some results from a case-study on five Swedish upper secondary 

school teachers‘ views of proof. We describe the teachers‘ views of what constitutes 

proof and focus particularly on their views on the role and relevance of proof in 

teaching mathematics. We identified two basically different ways of relating to the 

teaching of proof in our data that consists of interview transcripts and protocols of 

observations of lessons. We discuss these views from a socio-cultural perspective on 

learning and Wenger‘s concepts of community of practice, reification and 

participation. 

Keywords: Mathematical proof, teachers‘ views, community of practice, reification, 

participation. 

INTRODUCTION 

The proposed new curriculum for upper secondary school mathematics in Sweden is 

manifesting a more explicit focus on proof and proving (Swedish National Agency 

for Education, 2010). The same trend is visible in curricula also in other countries. 

The guidelines from NCTM already in 2000 recommend that every student from pre-

kindergarten through grade 12 experience proof and proving in different ways in 

their school mathematics (NCTM, 2000). Proof has also recently obtained a stronger 

status in curricula in Italy (Furinghetti & Morselli, 2010) and Estonia (Hemmi et al., 

2010). Common to many of these curriculum reforms is the emphasis on the 

relevance of proof for all students. However, it is not clear to what extent this 

emphasis is coherent with teachers‘ views of proofs and the role of proof in teaching 

mathematics.   

The American secondary school teachers in Knuth‘s qualitative interview study 

(2002) express the view that formal and less formal (Knuth‘s classification) proofs 

are not something beneficial for all students. Instead the teachers mainly find this 

kind of proof appropriate for students studying science or other mathematically 

intensive educations. This view is contrary to the visions put forth in NCTM 2000. 

Informal proof – i.e. explanations or empirically based arguments – is not considered 

as valid proofs but regarded by the teachers in Knuth‘s study as a vital part of the 

education for all students. The view that proof – in the traditional sense (c.f. Reid, 

2005) – is not something for all students is also present in the teachers‘ responses in 

a multinational pilot study carried out in Sweden, Estonia and Finland (Hemmi et al., 

2010). Although distinguishing several functions that proof can serve (c.f. de 
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Villiers, 1990; Hanna, 2000; Hemmi, 2006), the teachers mainly consider proofs and 

proving relevant for students studying courses that prepare the students for university 

studies in programs that include mathematics, for example technology and natural 

science. Both studies actualise the question of what constitutes proof in upper 

secondary mathematics as well as what kind of proofs and proving activities are 

appropriate and relevant for different kinds of students.  

Research suggests that the way that curricular guidelines are implemented in the 

classrooms is greatly influenced by the teachers‘ experience, views and conceptions 

(Corey & Gamoran, 2006; Remillard, 2005). This underlines the fact that school 

reforms are never launched into a vacuum. Rather they are introduced into a 

community of teachers with their own conceptions of proofs and about what role 

proofs can or should play in teaching mathematics. To understand how reforms are 

going to be implemented and, on a larger scale, what role proofs play in the teaching 

of mathematics, it is important to understand teachers‘ conceptions of proof and 

proving. This is not the least true in Sweden, where the national curriculum leaves 

substantial space for local interpretation and appliances.  

In this paper we report parts of the results of a case-study about five Swedish upper 

secondary school teachers‘ conceptions of proof (Reuterswärd, 2008). We discuss 

the teachers‘ views on what constitutes proof in upper secondary school mathematics 

and analyse the ways in which the teachers talk about the role and relevance of proof 

in their teaching.  

We focus in particular on the following questions: 

 What constitutes proof according to upper secondary school teachers? 

 What are upper secondary school teachers‘ views on the role and relevance of 

proof in teaching mathematics?  

Theoretical stances 

The analysis is based on a socio-cultural perspective where learning is considered to 

take place through active participation in a community of practice. Proof is according 

to this perspective seen as an artifact that can mediate mathematical knowledge. 

Wenger‘s (1998) concepts negotiation of meaning, reification and participation are 

used as central tools of analysis to understand and discuss teachers‘ talk about proof 

(c.f. Hemmi, 2006; Reuterswärd, 2008). 

By a community of practice we mean people who share experiences and have a 

common goal or purpose of some kind. Both a group of teachers at an upper 

secondary school as well as a group of students studying mathematics fall under this 

definition. Every community of practice has its artifacts, or reifications; tools like a 

calculator, a mathematical formula or a proof, mediating mathematical knowledge. 

They create focus points around which teaching can be organized. But the symbol for 

pi (π) or the proof for the Pythagorean Theorem do not carry any meaning of their 
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own. Without people participating in negotiating their meaning, they are mute, 

meaningless (c.f. Wenger, 1998, p 52-54). It is when people engage in a 

mathematical practice and participate in negotiating the meaning of proofs that they 

can be meaningful and convince, explain and communicate mathematics.  

The meaning of reifications must be negotiated within the community of practice. 

Hence, proofs taken from a mathematical practice must be renegotiated, within upper 

secondary school. It is therefore not self-evident that proofs will play the same role 

in school as they do within the mathematical science. Pushing to extremes, the role 

of proof needs to be renegotiated within every single classroom. The aim of this 

paper is to shed light on how teachers renegotiate the meaning and role of proof 

within an upper secondary school context.  

Method  

The paper is based on a case-study aimed to describe what constitutes proof in upper 

secondary mathematics from a teachers‘ perspective (Reuterswärd, 2008). The case-

study had a phenomenographic approach and hence sought to qualitatively describe 

teachers‘ views and conceptions, believing that a concept can only be perceived in a 

number of qualitatively different ways. The study was conducted at one ordinary 

Swedish upper secondary school that includes the Social- and Natural Science 

Programs. Five teachers were chosen to participate in the study. They were of 

different ages, both genders, with different teaching background and at the moment 

of the data gathering teaching different groups of students. Such a heterogeneous 

selection of participants can represent qualitatively different views (Marton & Booth, 

1997).  

The data was collected using semi-structured interviews. In order to enhance the 

richness of the data the teachers were given an outline of what themes were going to 

be discussed during the interview. Hence, they had the chance to reflect on the 

questions beforehand. Several days before the interviews they also received a 

questionnaire with statements chosen from a questionnaire that was piloted by 

Hemmi during the time of the data gathering. By choosing a number 1-4 the teachers 

stated to what degree they agreed with the statements. Thus, we had written material 

to come back to during the interviews and thereby inconsistencies or uncertainties 

could be resolved. In the beginning of every interview the teachers were asked to 

describe how they defined a mathematical proof. The interview focused on the 

following themes: how the teachers perceived student attitudes toward proofs, how 

the teachers worked with proof and proving in their teaching and how they viewed 

proof in general. Every interview was tape recorded and transcribed. Unstructured 

observations of lessons, at least two with every teacher, were also used to further 

triangulate the method and validate the results. 
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RESULTS 

Teachers‘ views of proof 

There is a broad consensus among the teachers about what constitutes mathematical 

proof. Proof is something specific for mathematics that from certain premises, 

through logical argument, step by step, deduces the truth of a statement. Some of the 

teachers stress that the premises should be axioms or theorems that have previously 

been proved. The characteristics of proof are a mathematical language, an 

unassailable logic and a specific structure. The teachers hereby distinguish between 

proof and other types of arguments. Proofs for them are more formal: 

Teacher: It [a proof] is that one, from certain premises, with given presuppositions, 

can strictly, step by step so to say, that is totally true, arrive at something 

that has to be general.  

Teacher: If someone says proof you feel that it is a bit heavier piece, so to say. 

Teacher: It follows that, hence, implies, is equivalent with. It‘s a bit of those things. 

You use some of those words that are associated with proofs. That‘s when I 

think it‘s a real proof.  

Emphasizing that proof through logical derivation, structure and formal language 

deduces the truth of a statement, these teachers can be said to embrace a traditional 

concept of proof (c.f. Reid, 2005). This view of proof was also represented in 

Knuth‘s (2002) study by American teachers, referred to as formal or less formal 

proof. 

Although the teachers see the formal mathematical language, structure and logic as 

distinguishing proofs from other types of arguments, there is some uncertainty as to 

where to draw the line. Tasks like ―show that left hand side equals the right hand 

side‖ and using general methods to solve problems are examples of areas that the 

teachers mean ‖are in the vicinity of proof‖ but for which the term ―proof‖ is not 

used. This view is coherent with the view that Knuth calls less formal proof: a 

general argument that lacks a rigorous mathematical structure. 

One teacher also gives a slightly more informal definition of what proof can be in 

upper secondary school: 

Teacher: Proof in the sense that they [the students] should understand that it‘s not 

arbitrary, then you do it most every day. To make them understand that 

mathematics is a logically built system, and it‘s not a coincidence that we 

have to do things in a certain way. 

This can be compared to what Knuth calls informal proof i.e. justifying by 

explanations or examples.  There is, however, no doubt that examples and empirical 

investigations are not considered valid proof, neither in Knuth‘s nor in 

Reuterswärd‘s study, and the concept informal proof is therefore somewhat 

unfortunate.  
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The difficulty to draw the line to what counts as proof is not a problem reserved to 

school. Instead it is a forever ongoing discussion for which different answers are 

given within separate mathematical disciplines and historical contexts (Hanna & 

Jahnke, 1993). In Wenger‘s (1998) terms we can say that the meaning of an artifact 

has to be negotiated within every practice.  

The role of proof in the classroom 

Common to all the teachers in this study is that they all think of proof as central to 

mathematical thinking, and that they distinguish several functions that proof can 

serve in teaching mathematics. They see proving as a desirable competence and as a 

suitable challenge for the well achieving students. They also agree that the role of 

proof in the classroom must be determined in relation to every single student group. 

Their views on how this valuation should be made, especially considering the low 

achieving students or students in the Social Science Program, are however different. 

Two separate views were distinguished in the study. This should not be understood 

in a way that the teachers can be said to solely support one view or the other. On the 

contrary, the teachers‘ ambivalence might be the most prominent feature of their 

views on the role of proof in teaching mathematics. 

One view embraces the thesis that proof is something for all students and that it is 

important that the teacher takes the step from examples and informal reasoning to 

proof. The explanatory function of proof, in particular, motivates that proof is 

something for all students, even the low achieving ones.  

Teacher: I don‘t really think that you should assert anything to students without in 

some way proving it. If it is sometimes easier to make a geometric proof or 

a purely theoretical proof… /…/ I definitely don‘t think you should just 

state it: now you do like this. Why should you do like that?  

Teacher: With the students I‘ve got I know that there are many who think that, if 

there is anything you should leave out, it‘s proof. And then I have to say that 

I don‘t quite agree because that could be what gets them back on track. 

The underlying idea here is that understanding why something is the way it is in 

mathematics, is a vital condition for the students to experience mathematics as 

meaningful, and to be able to use it in the right way. As a teacher you therefore run 

the risk of losing students if you don‘t take the step to more formal arguments. The 

basic assumption is that students can and want to understand.  

Furthermore, according to this view, proofs don‘t have to be difficult. There are 

abstract and concrete, easier and more difficult proofs, and according to this view it‘s 

up to the teacher to present them in a way that can appeal to every student.  

The other view is characterized by the idea that proof is not necessarily something 

for all students. The teachers share the basic positive attitude towards proof, (―I am 

pro proof, I really am.‖) but mean that the students lack the necessary qualities to 
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realize the meaning potential of proof in the classroom. The students lack sufficient 

mathematical knowledge or sufficient experience of proof: 

Teacher: If you can hardly calculate the area of a triangle it‘s really hard to explain 

what it [proof] is. 

Teacher: It will be really difficult because they‘ve hardly done it at all before. They‘ll 

only scream when I do it. 

Teacher: If they don‘t accept the proof it‘s because they have gaps in their 

[mathematical] knowledge. Then it‘s really hard to accept proofs. 

According to this view, the students‘ insufficient previous knowledge makes it 

impossible for them to participate in negotiating the meaning of proof. The teachers 

mention, for example, that the students need to know the quadratic rule in order to 

understand the proof of the quadratic formula, and master similarity to understand 

one of the most common proofs of the Pythagorean Theorem. As a teacher you 

therefore run the risk of losing students if you conduct general or algebraic 

reasoning. 

The basic assumption here is that proof generally is something advanced that only a 

few students have the ability to master. According to the teachers some students are 

also not interested in proof; they are content with examples and only want to know 

‗what to do‘. Proof is not necessarily something that is relevant for all students, in 

many cases it‘s enough to explain through examples:  

Teacher: These Social Science students for example, I don‘t know if they have any 

use of it later, when they graduate, because it‘s probably not too many of 

them who‘ll choose a mathematical education. 

Reification, participation and negotiation of meaning 

Some of the teachers‘ statements express that understanding mathematics makes the 

students more capable of using it correctly, more inclined to thinking math is fun and 

more apt to remembering what they have learned. In Wenger‘s terms: understanding 

mathematics enhances the students‘ inclination and ability to participate in the 

community of practice of mathematics as it is exercised in the classroom.  

This is the leading idea in the view that we have called proof is something for all 

students. According to this view, understanding why something is the way it is in 

mathematics is a requirement if the students are to experience mathematics as 

meaningful and to be able to use it in the right way. As a teacher you therefore run 

the risk of losing students if you do not take the step towards such general arguments 

as proofs. In other words: Without reifications like proofs, the students may 

experience mathematics as meaningless or hard to understand. The reification offers 

a necessary structure, an abstraction to tie the knowledge to. The other view, which 

we have called proof is not necessarily something for all students, means instead that 

some students lack both the motivation and the knowledge to be able to participate in 
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negotiating the meaning of proof. According to this line of thought, one runs the risk 

of losing the students if one does take the step towards such general arguments as 

proofs. Thus, the reasoning is turned over, and it is claimed that without possibility 

to participate – without previous knowledge or motivation – the reification is 

meaningless anyway. In line with this idea, Hanna and Jahnke (1993, p. 434) point 

out that the students need well-founded previous knowledge to be able to negotiate 

the meaning of proofs.  

We can see that both views express the same main goal; to make the students 

understand mathematics. The different views can be described as different answers to 

the question of what proportion between reification and participation that is the most 

meaningful to the students. This can be compared to Wenger‘s (1998, p. 65) remark 

that the proportion between reification and participation always has to be negotiated, 

and that different proportions lead to different possibilities to create meaning. An 

abundance of mathematical artifacts such as symbols, formulas or proofs do not 

create any meaning without the possibility of participation. But in the same way 

participating without reifications can seem meaningless. The sole use of examples, 

empirical investigations and lots of time can be experienced as useless without 

mathematical reifications to focus the practice on; without concepts, symbols or 

formulas to structure the mathematical knowledge. It is in the tension between 

reifications and participation that meaning can be created in the community of 

practice.  

All the teachers in this study express that proof and general arguments are something 

desirable. But like we have described above, some of them state that empirical 

investigations or examples can replace proof in groups where the students are not 

susceptible to formal reasoning. Even those teachers who in principle mean that 

proof is something for all students, point out that using informal methods is a good 

first step towards proof. Informal methods can include letting the students see 

examples, investigating certain cases (empirical investigation) and trying to find 

patterns. We can interpret these methods as strategies to increase the students‘ 

motivation and ability to take active part and engage in understanding reifications 

like proof.  

Although the teachers express understanding as the main goal of their teaching, it is 

not self-evident that all students identify with the community‘s goal to understand. 

Above all, not all of them are interested in proof. ―Some students are only like ―what 

to do?‖ as one of the teachers in this study put it.  We can interpret it as if the 

students simply are not interested in identifying with the goal of the community of 

practice.  Maybe they want to practice law and do not see any use in specifically 

mathematical reifications like proof. It is also possible that they want to understand, 

but that they through years of failure have developed an identity of non-participation 

(Wenger, 1998, p. 165) – ‗I don‘t know mathematics‘. That means that they have 
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developed an identity where they do not see themselves as participants in the 

community of practice. 

The concept community of practice can also help us to see that the teachers have 

several different practices to consider when they value the role of proof in their 

teaching. Some teachers point out, for example, that one reason not to deal with 

more proofs is that ―the students haven‘t experienced them before, in compulsory 

school.‖ This is in turn probably related to the fact that proof is not at all 

mentioned in the Swedish steering documents for compulsory school (Swedish 

National Agency for Education, 2000). But also future practices play a role in the 

teachers‘ views. Upper secondary school is meant to prepare for higher education 

and future professions. Which these are likely to be, matter to some teachers.  

DISCUSSION 

In this paper we have reported parts of the results of a case study of five Swedish 

upper secondary school teachers‘ views of proof (Reuterswärd, 2008). We have 

particularly focused on the teachers‘ conceptions of proof and the role and relevance 

of proofs in the context of upper secondary school mathematics. In doing so we have 

presented two different views on the role of proof in upper secondary mathematics 

that we‘ve called proof is something for all students and proof is not necessarily 

something for all students.  

In the beginning of the paper we drew attention to the fact that many curricula 

around the world manifest a revaluation of the role of proofs in teaching 

mathematics. Common to the guidelines in the NCTM (2000), Italy (2003) and the 

proposed new curriculum for upper secondary school in Sweden
2
 (2010), is the 

emphasis on the relevance of proofs for all students. This rhyme well with the view 

that we have called: proof is something for all students. But how will these reforms 

turn out in a community of teachers where one of the views is that proof is not 

necessarily something for all students? This question is not the least relevant 

considering that this view is expressed not only by the teachers in this study but also 

by American teachers (Knuth, 2002) and other Swedish teachers (Hemmi et.al, 

2010). These results raise the need for these new curricula to be anchored in the 

community of teachers supposed to realize these visions.  

We can only speculate as to what has been the driving force behind more focus on 

proof and proving in the curricula. We find it likely that it has something to do with 

the extensive functions – such as explanation, verification, communication and 

transfer (c.f. de Villiers, 1990, Hanna, 2000, Hemmi, 2006) – that proofs can serve in 

teaching mathematics. It is therefore important to notice that the teachers in Knuth‘s 

(2002) study seem to regard proofs mostly as a topic to study, rather than using them 

                                           

2
 Vocational programs not included. 
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to teach mathematics. This view is not shared by the Swedish teachers in this study. 

They chiefly see proof as a tool that can mediate mathematics. This is probably partly 

due to the fact that proof is hardly mentioned in the present mathematics curriculum 

in Sweden. Yet, one can ask whether a sudden focus on proofs in the new curriculum 

has the effect that the teachers start viewing them first and foremost as a topic to 

teach, rather than a gateway to mathematics. Yet, both approaches are needed in the 

teaching of mathematics (c.f. Hemmi, 2008). This highlights once again the need for 

the curriculum reforms to be anchored in the community of teachers. This can be 

done by making the teachers aware of the arguments behind the new guidelines, and 

offering them the tools to introduce proofs also in groups of students lacking 

motivation or prior knowledge. 

This being said one can wonder what the implications are if proofs become part of 

the mathematics education for all students. It is well documented that many students 

find it difficult to understand, conduct and value proofs (e.g. Healy & Hoyles, 1998; 

Selden & Selden, 2003). The teacher in this study who says ―If you can‘t calculate 

the area of a triangle, it‘s really hard to understand what a proof is.‖ expresses a 

point not to be taken lightly. Introducing proofs to these students could possibly 

further their identity of nonparticipation in the mathematics classroom (c.f. Wenger, 

1998). On the other hand, experiencing the derivation of the area formula for a 

triangle could help students to find proving as meaningful. One way to proceed 

might be to gradually formalize the use of justifications throughout the curriculum as 

is the case in the American guidelines from NCTM (2000). However, it certainly 

calls for research studies about how these reforms are being implemented and what 

effects the focus on proofs has in different student groups. It also underlines the need 

for research exploring different ways of teaching proofs to different kinds of 

students.  
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Stéphane Cyr
 

Université du Québec à Montréal, Canada 

This paper presents the results of a study regarding the development of deductive 

reasoning among elementary school students. We have experienced a sequence of 8 

teaching and learning lessons in order to develop their primary skills of writing 

proof in a geometrical context. This sequence, over a 4 months period, was tested 

with two classes of 26 students aged 11-12 from a single school in Quebec (Canada). 

Results showed an important increase in most of the students, between the beginning 

and the end of the sequence, in their ability to reason deductively and validate 

geometric statements by using theoretical properties rather than measurement.  

Keywords: Proof, teaching, mathematics, primary school, geometry. 

RESEARCH PROBLEM 

It is now a well-established fact in research circles that teaching proof in secondary 

school is undeniably important. The significance of it may be explained particularly 

through the many roles that proof-writing plays in the mathematics education of 

students (Arsac & al., 1992; Duval, 1990; Houdebine, 1990). Among other things, 

writing proofs, being explanatory by nature, fosters students‘ comprehension (Hanna, 

1995) and helps them develop deductive reasoning (Reid, 1995), critical thinking as 

well as an ability to support lines of argumentation (Houdebine, 1990). 

Key to children‘s education, proof-writing is also one of the most complex activities 

and one which secondary students experience the most difficulty with (Houdebine, 

1990 ; senk, 1985). The difficulties encountered and the reasons for them are 

manifold. Amongst the problems observed, two seem to preoccupy experts in current 

mathematics education research. 

The first one relates to the difficulty for students to fully understand the fundamental 

structure within deductive proof reasoning (Duval, 1991 ; Tanguay, 2005). When 

writing proofs, students often err in sequencing the inferences constitutive of their 

demonstration. All they see in it is a discourse, a line of argumentation where 

propositions are simply added and organized according to relevance only. 

The second problem, in connection with the first one, lies in the way secondary 

school students perceive and use the representations of geometric shapes to write 

proofs. At the elementary school level, geometry is deemed practical (Perrin-

Glorian, 2003), as it is linked to spatial sense, visual perception, and shape-building 

activities. Validating formal geometry statements implies empirical work on figures, 

whereas in secondary school it relies on theory and very specific axiomatic systems. 

Thus redefined, and as Muller (1994) mentions it, shapes constrain secondary school 
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students to reason through concepts rather than drawings; and this is an obstacle for 

them. Indeed, this alternative justification based on a deductive approach that 

excludes any conclusion drawn from measurements and observations of geometric 

figures, seems to generate a lot of difficulties for students. Research in various 

countries, including Canada, the United States, and France, supports that claim 

(Chazan, 1993 ; Muller, 1994 ; Paul, 1997). As for Balacheff (1987), he assessed that 

the switch from practical geometry to more theoretical geometry caused a breach in 

the didactic contract agreed upon by both teachers and students, which, he adds, is 

the main source of learning difficulties when students are introduced to proof-

writing. This problem has raised an important question among many researchers: 

How can students be taught that a practical validating approach based on empirical 

observations may no longer be reliable when the time comes to write deductive 

proofs?  

THEORETICAL FRAMEWORK 

For Perrin-Glorian (2003), solving the problem could imply taking action before 

proof-writing is being taught in secondary school. She regards the end of the 

elementary curriculum and the beginning of the secondary cycle as the right time of 

transition from practical to theoretical geometry. According to her, carefully selected 

situations could facilitate the switch from one kind of geometry to the other. 

However, she observes that there is no consensus amongst researchers on how to 

include the relation between practical and theoretical geometry in the elementary 

curriculum. We consider that her recommendation seems worth looking into for the 

following two reasons: 

1 – When students are introduced to proof-writing in secondary school, not only are 

they faced with a new and more rigorous validating procedure like proving, as well 

as with a new axiomatic system, but they must also learn deductive reasoning in a 

context of theoretical geometry. And yet, this context of proof-writing is already a 

problem in itself for students, for acquiring the previously-mentioned elements may 

not ideally prepare students for deductive reasoning nor to the switch to theoretical 

geometry. Rather, students should be learning deductive reasoning in more familiar 

everyday situations the way they do with geometric shapes in validation situations. 

2 – Introducing deductive reasoning and more theoretical geometry in elementary 

school would reduce the breach in the didactic contract described by Balacheff 

(1987), which is the main source of difficulties for students when first coming to 

grips with proving. In addition to reducing this breach, a more gradual approach to 

those elements certainly allows for greater continuity between elementary and 

secondary school curricula in mathematics. 

From practical to theoretical geometry: construction of abstraction 

According to Parzysz (1991), geometry activates two types of space: physical space 

(surrounding space and concrete objects) and abstract space (idealized object). The 
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first is associated with a more practical geometry while the second is developed 

through a more theoretical geometry. Objects in a physical space are concrete and 

they can be observed by the senses, while objects defined in an abstract space exist 

only in theory or in the form of ideas: they are a mental construct (figures whose 

existence is ensured by statements as definitions, properties or characteristics). So 

the transition from a practical geometry to a more theoretical geometry implies that 

students develop a degree of abstraction. Indeed, a close link exists between 

understanding of these properties and the use of mathematical abstraction, as pointed 

out by several authors. 

According to Rosh (1978) abstraction may focus on the properties of perceived 

objects. Piaget, for his part, believes that abstraction can take several forms. He 

distinguishes in fact between construction of meaning through empirical abstraction 

(focusing on objects and their properties) and pseudo-empirical abstraction 

(focusing on actions on objects and the properties of the actions). He associated to 

these tow kind of abstraction the idea of reflective abstraction witch occurs through 

mental actions on mental concepts (Piaget, 1972, p. 70). Reflective abstraction is 

then seen as an activity applied to mental entities rather than physical objects. For 

Gray and Tall (2007), who also discuss the idea of abstraction, mathematical 

concepts are the result of a process of abstraction that takes place on a given 

situation. This abstraction may take the form of « a mental image of a perceived 

object (such as a triangle), a mental process becoming a concept (such as counting 

becoming number) and a formal system (such as a permutation group) based on its 

properties, with the concept constructed by logical deduction » (2007, p. 23).  

If we accept that one of the main purpose of teaching geometry in primary school is 

to gradually bring students from a physical space to a more abstract space based on 

the properties of objects, then, we have to consider the importance of the 

development of abstraction in students and thus, the internalization of properties of 

mathematical objects and operations on them. This guidance also highlights the 

importance of taking into account the existence of different forms of geometric 

perspective, as called by Houdement and Kuzniak (2006): geometric paradigm. 

Geometrical paradigms  

Houdement and Kuzniak (2006) have defined three geometrical paradigms through 

which thinking patterns develop differently. Each paradigm is defined by the 

following components: objects, methods and problems, and therefore each is strongly 

link to a didactical contract (Houdement, 2007). Each of these paradigms reflects a 

sophisticated form of geometry and can thus define a specific geometric framework 

Kuzniak (2006, p.170). It should be noted that the three paradigms are not 

hierarchical in the sense that they all allow to solve geometry problems properly and 

efficiently. One is not better than the other, their use will depend on the context. 



Working Group 1 

CERME 7 (2011) 266 

 

- Geometry I or Natural Geometry is the first paradigm whose validation originates 

in the real, sensible world, according to Houdement and Kuzniak (2006), and where 

drawing plays a central role in validation. In this context, deduction is exercised 

primarily through the perception and the manipulation of objects. 

- Geometry II or Natural Axiomatic Geometry is the second paradigm whose link to 

reality is not as strong as it is for the first one. It actually aims at understanding 

reality through axioms, and with the help of which tangible problems may be solved. 

However, axiomatization is not formal since syntax is not cut off from semantics, the 

latter referring to reality. In this regard, the source for validation is no longer the 

sensible, but indeed an hypothetico-deductive process in which intuition and 

experience still play a role, but to a lesser extent than deductive reasoning does.  

- The Geometry III or Formalist Axiomatic Geometry paradigm is very different from 

the two previous ones, insofar as it is disconnected from reality. The source for 

validation is based on logical reasoning only, and not on the sensible world or 

perceptions. 

Deductive reasoning in elementary school 

Coppe, Dorier, and Moreau (2005) hold that in order for teachers to demonstrate that 

proving is meaningful and useful, they have to ―force on students the transition to 

deductive reasoning‖ (p. 35). Indeed, elementary students are more likely to develop 

a proper ability for it if they can enjoy teacher‘s support, even if that reasoning mode 

remains an integral part of the human procedural system (English, 1997). For 

English, textbooks and elementary school curricula must take reasoning processes 

into account and include informal deduction problems. Furthermore, current research 

shows that deductive reasoning could be within elementary students‘ grasp (Braine 

and O‘brien, 1991; Daniel, 2005; English, 1997).  

RESEARCH GOALS 

With this research, we wish to encourage in students a more gradual approach to 

acquiring preparatory abilities when it comes to proof-writing. We believe that these 

abilities should be taught as early as elementary school in order to minimize the 

previously-mentioned breach-related problem. In this light we intend to: 

1 – Encourage deductive reasoning in elementary students when dealing with 

mathematical situations. 

2 – Building from their ability to reason deductively, encourage students to transition 

from practical geometry (Geometry I) to more theoretical geometry (Geometry 

II); also, gradually bring them to become aware of the limits of empirical validation 

for geometric figures and realize how effective more deductive reasoning (Geometry 

II)-based theoretical geometry can be. 
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We expect the results of our research to be manifold: For one, it should facilitate the 

creation of activities for the elementary mathematics curriculum in order to later 

foster proof-writing skills in secondary students. In fact, no other study has ever 

looked closely into including basic proof-writing skills acquisition in the elementary 

curriculum so far. Finally, our research is in line with the general views of the MELS 

aimed at encouraging in students the gradual and ongoing acquisition of 

mathematical skills and knowledge between elementary and secondary school. 

Hypothesis 

We postulate that if we altered students‘ relation to figures as well as the role played 

by properties in the validation process, we would observe in students a spontaneous 

form of deductive reasoning. Indeed, the change of status for figures could induce 

new validation processes, no longer based on perceptions or measurements, but on 

theoretical properties which may only be resorted to through some sort of deductive 

reasoning. Note that the spontaneous use of deductive reasoning is based on the 

principle of accommodation in the sense of Piaget. 

METHODOLOGY 

To meet our objectives, we have opted for a design-based research methodology 

(Edelson, 2002). This method is cyclic in nature and each cycle consists of 5 stages: 

1) Teaching sequence writing; 2) In-class testing of the sequence; 3) Retrospective 

analysis of experimental data; 4) In light of this analysis, reassessment of theoretical 

hypotheses, didactic choices, and anticipated learning paths; 5) As a result of 

reassessment, adjustments are made in the design of the teaching sequence and a new 

cycle may begin. Also, we have created activities based on works by Coppe and al. 

(2005), Perrin-Glorian (2003), and Houdement and Kuzniak (2006).  

Participants 

Two Montreal elementary classes of 25 sixth-graders (11-12 y.o.) were selected for 

this study prior to which none of the students had ever validated geometric 

propositions through deductive argumentation. When doing geometry activities, they 

would only validate geometric situations using measuring instruments. 

Tasks 

For the first stage of the design-based research methodology, we designed eight tasks 

that would elicit the spontaneous emergence of deductive reasoning in sixth-graders, 

as well as spur the transition from practical geometry (Geometry I) to theoretical 

geometry (Geometry II). The tasks focused on the essential knowledge as identified 

in the Quebec elementary education program literature, so that they would be easily 

merged into regular teaching planning and would not add new subject content.  
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Observation and measurement-based argumentation doubting procedure 

The tasks were designed to cast doubt in students on their level of certitude they 

might reach observing and measuring figures and show them the limits of an 

argumentation based on that procedure. To this end, we first proceeded to use 

geometric shapes that made accurate measuring difficult, that is either drawn with 

exact measures yet in thick and bold lines, or free-hand thus yielding very 

approximate results. Students could use any chosen method to do each task. Then, 

they had to answer questions designed to have them process their results which they 

also had to compare with those of other peers. As an example, here are two questions 

asked to students: 

Activity 1 

Length of side AB = 6.2 cm 

 

  

 

 

1. a) Measure angle D and segment CD. Write down how you proceed and explain 

how you reason. 

b) Proceed differently to make up for missing measurements. Write down how you 

proceed and explain how you reason. 

c) Is there a discrepancy between results 1.a) and 1.b)? If yes, explain why. 

2. Compare your results with those of another team. 

a) Have you got the same results as the other team? If not, explain why. 

b) Did you proceed as the other team did? If you proceeded differently, indicate 

which is the more appropriate procedure. 

Activity 2 

A student draws free-hand the figure below where ABCD is a square whose 

diagonals AC and BD intersect at O. Then, he draws a triangle ABE on top of the 

square. Finally, he claims that the quadrilateral AEBO is a 

square. 

Note: The diagonals of a square always intersect in the 

middle and are perpendicular.  

 

Is the student right? Explain your answer. 

In the second step of the methodology (In-class testing of 

60° 

D 

60° 30°

°°

° 

A 

B C 
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the sequence), we scheduled our experimentation to take place over a period of two 

months, one hour per week. We filmed the activities in progress so that we might 

later analyze how they were performed and how students reacted to them. Finally, 

students worked in pairs which aimed at prompting debate on validation procedure. 

For the retrospective analysis of experimental data (methodological step 3), we 

observed the students' reactions to the tasks. We also analyzed their understanding of 

these tasks by using paper trail on written questionnaires, video of two teams in the 

tasks and the analysis of a logbook of our observations during the experiments. Our 

attention was also focused to the type of procedure used during the implementation 

of the tasks (use of measuring equipment or use of theoretical properties). 

In the fourth step of our methodology, our objective was to evaluate both the type of 

geometric paradigm in which students could be located but also to assess how the 

task favored in the student the shift from paradigm 1 to paradigm 2. To support our 

analysis, we examined how students used the geometric figure which was provided 

to support their reasoning. For example, is that students based their answer and 

justification on intuition, observations or visual estimation, measures or geometric 

properties and deduction. The results of these tests have allowed us to edit questions, 

delete or add others to always promote the passage of natural geometry to a natural 

axiomatic geometry and thereby promote the use of geometric properties and use of 

deductive reasoning (methodological step 5). Since this experiment took place over a 

period of three years, we had the opportunity to repeat this sequence of activities on 

two other occasions with different student groups and thus make each time, 

adjustments to our work. 

PARTIAL RESULTS 

At first, more than three-quarters of the students (40 students out of 50) used 

measurement as the only method to work out missing data for this kind of problem 

(pré test where they have to find missing data on a geometrical figure with the 

strategy of their choice). Some used mixed strategies (6 students) whereas two teams 

(4 students) only spontaneously resorted to a deductive approach using theoretical 

properties. What we mean by mixed strategies is a crossover approach that uses 

measurement and theoretical properties. For instance for Activity 1 above, some 

students used theoretical properties in simple contexts like working out the measure 

of the 60 degree angle inside the triangle (they used the property of the sum of angles 

inside any triangle), yet they turned to measurement or visual perception for the more 

complex areas of the situation, such as working out the length of segment CD. Most 

students noted that triangle ACD was isosceles, relying on their perception, then 

concluded that segment AC was the same length as segment AB, that is 6.2 cm. 

After the first four sessions, we noticed that students had clearly improved upon their 

justification procedures. In simple situations where they had to work out the missing 

measure of an angle in a triangle or a quadrilateral, 42 students out of 50 
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spontaneously turned to theoretical properties using a deductive approach. In more 

complex situations, we also observed some improvement when more than 50% of the 

students used a deductive approach appropriately. This improvement is partly due to 

the constraints imposed by the situations in which students were getting inaccurate 

results with measurements, thus forcing them to resort to mathematical properties 

and deduction to find the missing data. We also led the students to compare results 

between them and tried to explain the differences from one team to another. The 

students' comments were in line with the imprecision of the measure (which in our 

case was strengthened by the bold line that accentuates the vagueness on measure or 

the hand drawing figures). 

At the end of our experimentation, all students were able to identify spontaneously 

the limits and lack of precision of a measurement and observation-based approach, as 

well as call on theoretical properties to validate simple geometry statements 

(problems where only one data is missing in a simple geometric figures). However, 

this result does not suggest that all students have acquired the ability to produce 

simple proofs or arguments based on properties using deductive reasoning 

appropriately. Besides, more complex situations remained difficult for some students 

leading them to use mixed strategies (measurement and deduction); and so did 

situations requiring validation, and where data were not provided. For example, in 

order to solve the problem below, students were able to use measurement as well as 

theoretical properties, which they knew well by then. However, the absence of 

numerical data significantly hampered task completion and caused students‘ 

strategies to revert to measurement and observation. 

Let ABCD be a rhombus and let D be the midpoint of segment AE. 

We know that the sum of the four angles of a rhombus is 360 degrees. 

1. a) Find the measure of angles A, B, and E. 

 

 

 

 

 

DISCUSSION 

The eight sessions that we had scheduled over a period of two months allowed us to 

bring most students to switch from practical (G1) to theoretical geometry (G2) 

spontaneously. In doing so, we had set for students an environment conducive to the 

use of deductive reasoning in validation situations. And yet, our experimentation 

validated our initial hypothesis, that is deductive reasoning shows to be a demanding 

process that requires time and extensive experience to be exercised properly. In fact, 
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C 
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it had taken four sessions before students started showing some improvement in 

reasoning deductively. Yet, the students who improved the least were still able to 

grasp the geometry concepts and skills in the tasks given in the course of our 

experimentation. We believe that this type of activity can be very productive when it 

comes to teaching and learning the geometric properties of given figures; it could 

also apply with most geometric concepts covered in class during the school year. 
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DESIGNING INTERCONNECTING PROBLEMS THAT SUPPORT 

DEVELOPMENT OF CONCEPTS AND REASONING  

Margo Kondratieva 
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In this paper I illustrate the process of designing a problem which can be repeatedly 

used by teachers in different mathematical courses and at various levels of 

complexity. The same problem can support reasoning appropriate for the context in 

which the problem is presented. Gradual increase of the requirements for rigor from 

one level to the next supports the learner‘s development within her natural sequence 

of learning modes from experimental to theoretical. The course of formalization of 

reasoning also affects the conceptualization process related to the object of the 

problem.  

Keywords: multiple-solution problem, development of mathematical thinking, 

necessary and sufficient conditions, dynamic geometry software, geometry of 

isosceles triangle. 

INTRODUCTION  

Development of reasoning skills and formation of concepts is a life-long process. In 

particular, many mathematical concepts emerge from a child‘s earlier experiences in 

a primitive form and develop further as the child has a chance to perceive and act on 

physical objects, to form mental images and models, and eventually reflect, 

categorize, and hypothesize further properties expressed in a symbolic form.  At each 

level of concept development, a child exhibits reasoning behaviour with the degree 

of rigor appropriate to the level of concept maturity. According to Bruner (1968) the 

sequence of learning modes, enactive-iconic-symbolic, characterizes not only grade 

school students but also an older learner. This idea is also consistent with van Hiele‘s 

theory of learning geometry by advancing through the stages from visualization to 

analysis, to informal or formal deduction and finally to rigor.   

In mathematical instruction, one way to reflect this long-term continuous 

development of mathematical thinking is to consider the notion of an interconnecting 

problem.  An interconnecting problem is characterized by the following properties 

(Kondratieva, 2011): (1) It allows simple formulation; (2) It allows various solutions 

at both elementary and advanced levels; (3) It may be solved by various 

mathematical tools from distinct mathematical branches, which leads to finding 

multiple solutions, (4) It is used in different grades and courses and can be discussed 

in various contexts.   

It is proposed (Kondratieva, 2011) that a long-term study of a progression of 

mathematical ideas revolved around one interconnecting problem is useful for 

developing a perception of mathematics as a connected subject by all learners. Due 
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to the wide range of difficulty levels of its solutions, the same interconnecting 

problem may appear at the elementary school level, and then in progressive grades at 

the secondary or even tertiary level. The students, familiar with the problem from 

their prior hands-on experience, will use their intuition to support more elaborate 

techniques presented symbolically in the upper grades.  

This article aims to discuss the process of creating an interconnecting problem with 

particular attention to the development of reasoning skills and the notion of proof. 

Here a Problem Designer is a mathematics teacher or mathematics curriculum 

developer who proceeds via the following stages: (A) choosing an initial question; 

(B) tailoring questions to elementary approaches; (C) upgrading to more advanced 

techniques; and (D) finding contexts suitable for the identified approaches and 

techniques within the overall curriculum.  

The key point is that a problem becomes interconnecting as the Problem Designer 

herself experiments with the problem, identifies the types of reasoning emerging 

from her experiments, and starts to see different facets of its implementation in the 

classroom.   

THERETICAL FRAMEWORK 

Knowing and proving are synonyms in mathematics (Rav, 1999; Balacheff, 2010). 

On one hand, proof, as mean for validation, reinforces precise and highly logical way 

of thinking based on axioms, definitions, and statements, which link and describe the 

properties of mathematical objects. On the other hand, proofs include mathematical 

methods, concepts, and strategies also applicable in problem solving situations 

(Hanna & Barbeau, 2010). Despite their central role in mathematics, it was observed 

that proofs receive insufficient appreciation and epistemological understanding from 

grade school students (and even their teachers), who often rely on empirical evidence 

rather that on formal deductions of mathematical theorems (Coe & Ruthven, 1994). 

This situation identifies the needs for ―problems and mathematical activities that 

could facilitate the learning of mathematical proof‖ and ―designing the situations so 

that … the theoretical posture demonstrates all its advantages.‖ ―The challenge is to 

better understand the didactical characteristics of the situation and propose a reliable 

model for their design‖(Balacheff, 2010, p. 133). One possible approach ―is centred 

around the idea that inventing hypotheses and testing their consequences is more 

productive … than forming elaborate chain of deductions‖(Jahnke, 2007, p.79).  The 

process of making conjectures and inventing hypotheses requires mathematical 

intuition, which develops through students‘ experiences not only in formal logical 

manipulations but also in experimental explorations of objects and ideas (De Villiers, 

1999). Thus collecting empirical evidence (e.g. constructing and measuring) is an 

important part of the mathematical education of students, and it should not be 

rejected as such. Instead, a productive way of incorporating experimentation and 

proving needs to be found so that ―proofs do not replace measurements but make 
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them more intelligent‖ (Janhke, 2007, p. 83).  The students should gradually move 

from everyday thinking in terms of ―open general statements‖ (whose domains of 

validity are not completely specified) towards mathematical thinking where precision 

is achieved at the price of cutting ties to empirical reality. This move is possible due 

to several roles (besides validation statements) that proofs may play in mathematical 

thinking (Hanna, 2000; De Villiers, 1999). First, at the informal deduction stage, 

proof as explanation of empirical observations is most appropriate. Next, students 

―should build a small network of theorems based on empirical evidence‖ and become 

accustomed to ―hypothetico-deductive method which is fundamental for scientific 

thinking‖ (Jahnke, 2007, p. 83). At this stage, the proof functions as a 

―systematization (the organization of various results into a deductive system of 

axioms, major concepts and theorems)‖ and ―construction of an empirical theory‖. 

These two stages prepare students to move towards rigorous proofs aiming at 

establishing truth by deduction or ―incorporation of well-known facts into a new 

framework‖ (Hanna, 2000, p. 8).  

The development of reasoning skills by the proposed scenario has an essential 

contribution in concept formation. As discussed in an upcoming publication (Tall et 

al), a child‘s conceptual system evolves from the stage where several properties of an 

object occur simultaneously to the stage where these properties are linked by cause-

effect relationship. This process results in developing crystalline concepts (e.g. 

platonic objects) with equivalent properties linked by mathematical proofs. Thus the 

process of maturation of reasoning skills both leads to and requires the use of more 

formal and structured conceptualizations of empirical objects.  

From the perspective of this paper, two further ideas are of particular importance. 

First, learning to prove is a gradual process which requires years of mutually 

enhancing empirical and theoretical practices leading to concept formation as more 

properties, representations and relationships are being understood over time. If this 

structure is imposed on a learner in its final form, the effect of concept formation by 

the learner may not be achieved (Freudenthal, 1971). Second, teachers‘ 

epistemological beliefs and their abilities to model the process of proving are 

decisive for students‘ growth in this respect. Thus, teachers‘ professional 

preparation, which facilitates them in transitioning from empirical arguments to 

proof, is essential (Stylianides & Stylianides, 2009). With this in mind, we now 

examine an example of designing an interconnecting problem. 

AN EXAMPLE OF INTERCONNECTING PROBLEM DESIGN 

In Euclidean geometry an isosceles triangle is often defined as a triangle which has 

two equal sides.  It is well known that there are many equivalent characterizations of 

an isosceles triangle, such as ―two angles are equal‖, ―an angular bisector is also a 

median‖, ―two altitudes are equal‖, ―two bisectors are equal‖, each of which reflects 

the axial symmetry of the triangle. Proofs that the properties are pair-wise equivalent 



Working Group 1 

CERME 7 (2011) 276 

 

constitute problems of various levels of difficulty and contribute to building the 

conceptual understanding of the object by the learner.  

Some properties of an isosceles triangle do not characterize it, however. It is an 

important exercise to recognize when this happens. For instance, think about the 

following Problem: 

Observation:  Consider any isosceles triangle ABC, where AB = AC. Let D be a 

point on BC such that AD is the angular bisector of BAC. Let M and N be midpoints 

of sides AB and AC respectively. Then DM = DN. 

Question: In a triangle ABC with angular bisector AD and midpoints M and N of 

sides AB and AB, let the segments DM and DN have equal length. Does this 

property imply that ABC is isosceles?   

In further subsections I discuss how to make this problem interconnecting in view of 

properties (1)-(4) and stages (A)-(D) of the design process outlined in the 

introduction.  

A. The initial choice of problem 

The choice of the problem may be justified by several factors such as how 

fundamental are the objects involved in the problem, the importance of the problem 

in the development of strands prescribed by the curriculum, or motivational aspects 

(e.g. surprising result). 

For instance, our Problem was chosen by the Problem Designer because it deals with 

isosceles triangle, the object that appears in many problem-solving situations in 

geometry. The Problem poses a concrete question which prepares the learner to 

distinguish between equivalent statements and implications, and further between 

necessary and sufficient conditions in more abstract theorems. This problem calls for 

a proof involving construction of a counter-example. When such an example is 

constructed, it may surprise the students and produce a cognitive shift towards 

understanding the concept of isosceles triangle in a wider space of its examples and 

non-examples.  

A problem must allow a simple formulation in order to become an interconnecting 

one. The students should understand the question and be able to specialize and 

exemplify the statement of the question (Mason et al 1982). For example, in our 

Problem we start with an Observation which can be justified by the symmetry 

argument or even by simply folding the paper triangle along its axis of symmetry. In 

order to answer the Question students may try other examples of triangles. They will 

quickly realize that they have to either find an example of non-isosceles triangle with 

given property or proof that such a triangle does not exist. It is clear what one has to 

do, but not obvious how one can approach this problem. A systematic search for an 

example needs to be initiated by the solver.  
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B. Making the problem Interconnecting: elementary level 

First, the Problem Designer puts herself in the position of problem solver. She starts 

from thinking how she can approach the problem at the most elementary level. 

According to Bruner‘s classification, this corresponds to enactive representation of 

the problem and involves the use of real objects and manipulatives. For a modern 

learner equipped with a computer, thinking at the elementary level also involves the 

access to virtual manupulatives, and experimentations within dynamic geometry 

software (DGS) environments. Through the use of dragging function, the learner 

receives a visualization of her problem as continuum of options. The example she is 

looking for may be just one static picture in this continuum.  

Construction of such a continuum requires understanding of many basic 

mathematical ingredients of the problem as well as the properties of the software 

tools. Here is a protocol from a problem designer‘s attempt to solve the problem.  

First, I examined initial configuration. I have an isosceles triangle ABC, where AB = AC. 

Here M is the midpoint of AB, N is the midpoint of AC. Line AD is the angular bisector 

of angle BAC.  We know that in this case DM = DN due to symmetry argument. I draw 

this triangle on the screen (Fig. 1). Points M and N lie on the circle with centre at D. But 

this circle also intersects the extension of side AC at point L, which means that DM=DL. 

Aha, I have an idea: point L could be the midpoint of the side of the required non-

isosceles triangle. Now I place point F on the extension of AC such that AL = LF and 

look at the triangle ABF. Denote by E the intersection point of BF and the extension of 

angular bisector AD. If I could drag points and change the figure in such a way that D 

coincides with E then I will complete the task. 

The Problem Designer experiments with this figure but unfortunately it does not 

seem to be possible to complete the task 

within this particular construction and 

she proclaims: 

Maybe there is no such example at all. But 

then I have to explain why. Perhaps I 

should try to construct something else. 

Maybe I should not start with an isosceles 

triangle at all.  

 

Figure 1: Unsuccessful attempt to build an example. 

Meantime she also learned that the software has an option ―reflect a point with 

respect to another point‖ which she uses to place a vertex, knowing the position of a 

midpoint. She continues to build her example. Finally, she succeeds in doing so, still 

employing the idea that the second point of intersection of the circle with the angle 

side is the key of the construction. 
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I start with an arbitrary angle with vertex at A. I place two arbitrary points M and K one 

on of each of the sides (see Fig 2, left). Now I place point B on one side such that AM = 

MB and place point C on the other side such that AK = KC. The intersection of BC with 

the angular bisector is called D. I draw the circle with centre at D and radius DM. This 

circle intersects side AC at points N and L. Now I want to make K coinciding with either 

N or L. I conjecture that the former case gives me an isosceles triangle and the latter, if 

this is possible, will produce the required example. 

 

Figure 2: A successful attempt to build an example: dragging K along the side AC. 

By dragging point K along the side AC I can interchange the positions of point K and L 

on the side of the triangle (see Figure 2, right). Thus, by dragging K along the side I 

achieve that points K and L coincide. (See Figure 3, left). And now I confirm that if K 

coincides with N then we indeed obtain an isosceles triangle (Figure 3, right). 

 

Figure 3: A successful attempt to build an example of a triangle where DM = DN = DK. 

Once the problem is understood at the elementary level, the Problem Designer thinks 

how this can be used for introduction of more advanced techniques. 

C. Connecting a problem to more advanced mathematics 

Now, the Problem Designer aims to use intuition developed through the visualization 

of a solution for constructing a symbolic solution, which would correspond to the 

highest stage in Bruner‘s classification. In secondary school students learn equations 

of lines and circles. They also learn the idea that solving a system of two equations 

representing these curves gives the coordinates of the points of intersection of the 

curves. Thus to make the problem interconnecting one may try to represent 
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previously obtained geometric solution algebraically. Here is what the Problem 

Designer does next. 

I was looking at the Figures 2 and 3 and understood that to make an algebraic 

representation I need to introduce Cartesian coordinates. Let the side AC lie along the x-

axis with A at the origin. Then point K has coordinates (k,0). I introduce a general 

equation of the sides and the bisector; I fix coordinates of M and B and find how change 

of k affects the coordinates of D, C and L. I will set coordinates of L and K equal and 

find k from this equation. This is a plan. … But its implementation becomes very 

cumbersome! I do not think that students will benefit from it. 

Then she introduces another approach aimed at easier ―algebraization‖.  

In a coordinate system I draw two rays starting from the origin and symmetric with 

respect to the x-axis (see Fig 4, left). I pick an arbitrary point M on the upper ray and 

point G on the x-axis. The circle with centre at G and radius GM intersects the lower ray 

at two points. I devote by N the one which is not symmetric to M with respect to x-axis. 

Now I place point B on the upper ray such that AM=MB, and point C on the lower ray 

such that AN=NC. The segment BC intersects x-axis at point D. I can drag point G along 

the x-axis in the position of point D and thus I obtain the example (see Fig. 4, right). 

 

Figure 4: A successful attempt to build an example, which allows ―algebraization‖. 

Now I construct an algebraic model. The two rays have linear equations in the form 

mxy and mxy , where the slope m  can vary. Point G has coordinates )0,(g  and 

the circle has equation 222)( rygx , where r GM. In order to find points of 

intersections of the ray and the circle we need to solve the quadratic equation 
222 )()( rmxgx , that is to express roots 21,xx  via g  and r . Once I find the roots, I 

obtain coordinates of all points in terms of them: M ),( 11 mxx , B )2,2( 11 mxx , N ),( 22 mxx , 

C )2,2( 22 mxx . Now, I want point G belong to the segment BC. Equating slopes of BC 

and BG gives the condition:
21

214

xx

xx
g . But from the quadratic equation I find that 

12

22

21
m

rg
xx  and 

1

2
221

m

g
xx , thus I obtain the relation between the radius and the 

coordinate of the centre of the circle rg 2 . From this relation I find integer 

coordinates for the vertices of a non-isosceles triangle for which the property DM = 
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DN can be verified. For instance, if A(0,0), M(3,1), B(6.2), N(15,-5),  C(30,-10), 

D(10,0) then DM=DN= 50 .  

D. Identifying levels and context suitable for problem 

Once several approaches to solve our Problem are identified, the Problem Designer 

needs to summarize and identify all possible places in the curriculum where this 

problem potentially belongs. For example, the teacher may give students complete 

freedom in the choice of approaches to the question. Then the teacher may introduce 

a DGS and let students to try to build their examples from scratch. During this 

activity students rethink their task in view of tools available in the computerised 

environment. For example, the process of constructing angular bisector or a midpoint 

of a segment may be an automated part of a DGS, and then the major construction 

pertinent to the problem is conceptualized in terms of these operations.   

Alternatively, the teacher may give the students an applet such as shown in Figures 

2-3, which forces the students to explain already prefabricated construction. The 

students may be asked to state their observations about what constrains are preserved 

in the applet and how important they are for building the example, or what objects 

are introduced and what role in the solution they play. The students shall articulate 

their conjectures about observed relationships, for instance ―What kinds of examples 

are possible (e.g. acute, obtuse, right angle)?‖ They also may be asked to explain 

why the example they construct with the applet is not just a visual illusion or an 

approximation; how do they know that the real example with all required 

characteristics exists. (The role of misleading diagrams in Geometry in relation to 

proofs is discussed in Kondratieva, 2009).  

The problem may appear in the view of the students again when they study the 

coordinate approach. This time an applet from Figure 4 will be useful because the 

drawing explicitly reveals the coordinate system and equations on the side suggest a 

more general algebraic approach. Here the students may be asked to use concrete 

equations of the lines and circle and then generalize them and analyse the situation in 

an algebraic form, returning to concrete examples provided by the applet for a 

verification of their general course of reasoning. Consideration of various cases may 

be supported by the applet as well. 

The problem may be recalled once again when the analysis of quadratic equations is 

discussed, and the existence of two real roots may be related to the existence of two 

points of intersection of the circle with the side of the angle. Since traditionally the 

number of real roots is said to be defined by the discriminant of a quadratic equation, 

the students may be asked to investigate the connection between the parameters of 

the figure (radius of the circle in Fig 4) and the resulting coefficients affecting the 

sign of the discriminant, and draw their conclusions with justification. 

Finally, the problem can serve as an illustration in the study of conditional 

statements (implications) and their converses, inverses and contrapositives in formal 
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logic, as well as a study of proofs by counter-example. Now the emphasis can be 

made on the logical structure of the statements because the details of building the 

example are familiar to the students from previous encounters with the problem. 

CONCLUSION.  

In this paper, I illustrate the process of designing an interconnecting problem by 

using an example from Euclidean geometry. While making our Problem 

interconnecting, a variety of instances supporting the development of reasoning and 

proving skills has occurred. Being placed in the domain of mathematical activity the 

Problem deals with concrete objects, their properties and relationships. The 

experimentations with dynamic geometry software especially when the students 

interact with figures that are constrained to retain certain properties, forces the 

students to explain their actions and observations, to make and justify their 

conjectures. This activity accompanied by the requirement to systematise observed 

results pushes the learner towards the hypothetico-deductive stage of reasoning.   

An algebraic approach is introduced after geometrical meaning of the model has 

been understood. While at this stage the focus is on setting and solving equations and 

development of algebraic thinking, the experience within DGS environments 

supports students‘ reasoning as they visualize the situation hidden behind variables 

and equations. These visualizations contribute into development of learners‘ 

intuition as well as in forming algebraic-geometric connections and perhaps a more 

holistic view on mathematics itself. 

Behind concrete problems in mathematics often there is a more general and far-

reaching agenda. For example, our Problem aims at grasping the general notion of a 

universally valid statement by making sense of the proclamation ―For every isosceles 

triangle the segments DN and DM are equal.‖ This statement has the same form as 

―For every isosceles triangle with AB=AC the angles B and C are equal.‖ However, 

the Question is posed to identify whether this property of an isosceles triangle 

necessarily defines an isosceles triangle. It invites students to realise that not every 

property of an object in fact defines the object. This fact should be brought to the 

students‘ attention forcing them to distinguish between equivalent conditions, such 

as ―equal sides‖ and ―equal angles‖, and those for which implication works only one 

way and not both ways. By solving this problem students not only advance their 

concept of an isosceles triangle, but also build their understanding of the statement‘s 

generality, the nature of implication, the notions of necessary versus sufficient 

conditions, and the idea of proof by counter-example. Thus, the design of an 

interconnecting problem discussed above aims at fostering reasoning skills at both 

visual-empirical and symbolic-theoretical levels within the same mathematical 

question in the background. Further research on teaching practices that involve 

adoption or design of interconnecting problems and their affect on students‘ 

reasoning abilities will show to what extent this would indeed be possible to achieve.  
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Working Group 2 has newly been formed for CERME 7 as a forum for presenting 

and discussing theoretical and empirical research on the teaching and learning of 

number systems and arithmetic (including models for operations in the number 

systems, ratio and proportion, rational numbers and number-theoretical aspects). The 

group intensively discussed on twelve papers and two posters addressing research for 

different ages, ranging from children of age 3-5 years up to pre-service teachers, with 

a focus on grade 2-6.  

The thematic emphasis was put on   

2 research-based specifications of domain-specific goals of what should and can be 

learned and in which priority;  

3 analysis of learning processes and learning outcomes in domain-specific learning 

environments and classroom cultures; 

4 new approaches to the design of meaningful and rich learning environments and 

assessments.  

DIFFERENT CONSTRUCTS FOR CONCEPTUALIZING DOMAIN-

SPECIFIC GOALS 

The domain-specific goals comprised knowledge and competencies on numbers and 

operations in basically three areas: intuition, understanding and calculation. 

Whereas the participants of the working group agreed on the theoretical constructs to 

conceptualize competencies in calculations (procedures and flexible strategies), they 

used different constructs for conceptualizing understanding and intuition.  

The figure attempts to give an idea on the landscape of different constructs that were 

used in the papers for conceptualizing different aspects of understanding, intuition 

and calculation. One intensively discussed example is the construct number sense 

that is widely used but conceptualized in different ways. 
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DIFFERENT TYPES OF RESEARCH QUESTIONS 

The research questions studied in the working group give an interesting insight into 

priorities of some of the current research in the domain of teaching and learning 

arithmetic. Most papers concerned research on students‘ thinking, but with a 

different focus.   

Focus on status quo of students‘ thinking:  

 describing selected phenomena, e.g.  

 Which strategies for subtracting do students apply? (Peltenburg & van den 

Heuvel-Panhuizen, Rezat)  

 Which typical difficulties appear, e.g., while solving problems? (Voica et al.)  

 searching for internal connections, e.g.  

 How is students‘ use of strategies connected to their number sense? (Ferreira 

et al)  

 To which models do students refer for explaining their strategies? (Rezat)  

 How are different components of students‗ knowledge on fractions connected? 

(Nicolaou et al.) 
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 searching for external connections, e.g.  

o How are students‗ strategies related to their preference to refer to structures in 

representations (spatial imagery)? (Chrysostomou et al.) 

Focus on means for supporting students‘ thinking and its development:  

 describing the development of students‘ thinking, e.g.  

 How does students‗  use of strategies develop over a certain time? (Ferreira et 

al., Murphy) 

 specifying aspects or means that support or hinder students‘ thinking, e.g.  

 What mathematical / linguistic structures might hinder students in applying 

number concepts? (Ejersbo/Misfeldt)  

 What means (representations, models, ...) support the use of different 

strategies? (Peltenburg et al.) 

 investigating means / conditions / contexts to support the development of 

students‘ thinking, e.g.  

 How can explorative talk in small group situations help students to develop 

their strategies? (Murphy)  

 How can the use of calculators contribute to developing number sense? 

(Meissner)  

 How do textbooks support or hinder the development of multi-facetted 

concepts of proportions? (Lundberg)  

 How can the double number line be used for developing multiplicative 

reasoning? (Kuechemann et al.)  

 Which activities helped kindergarten children to develop symmetric 

conceptions of equivalence? (Kourapatov et al.) 

This wide spectrum of research questions reflects a large number of open points in 

the teaching and learning of number systems which need further research.  

The discussion in the group raised some new awareness and questioned some 

positions that were taken for granted. Especially the following questions need further 

research: 

5 What balance and what interplay between developing conceptual understanding 

and procedural skills for number operations can and should we aim at while 

designing learning environments? And in what order should we teach students 

understanding and procedural skills? 

6 What does it mean to operate flexibly with numbers? What knowledge and skills 

are required to operate flexibly with numbers?  
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7 What roles do models and teaching strategies play in operating with numbers 

flexibly?  

8 What aspects of number theory should and can be taught in the primary school 

grades and how can these be taught? 

9 How can long-term learning processes from grade 1 to grade 10 be supported and 

analysed?  

10 What aspects of the number curriculum in the higher grades can support the 

transition to tertiary mathematics study? 

These questions  include so-called what-questions that are on the one hand crucial 

for didactical research and development, but, on the other hand, are often neglected 

in research papers because of a lack of established standards how to treat them 

scientifically. The working group will continue to search for ways of systematically 

tackling them, for example by math-didactical analysis (van den Heuvel-Panhuizen 

& Treffers, 2009), by referring to general educational goals (e.g. Heymann, 2003) 

and by specifying needs of the society (Meissner in this volume).  
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The purpose of the present study was to examine the relationship between 

individuals‘ cognitive style and their mathematical achievement and strategies 

used while solving number sense and algebraic reasoning tasks. A mathematical 

test on number sense and algebraic reasoning and a self-report cognitive style 

questionnaire were administrated to 83 prospective teachers. The results indicated 

that spatial imagery, in contrast to the object imagery and verbal cognitive styles, 

is related to the achievement in algebraic reasoning and number sense. The study 

also revealed that as prospective teachers‘ spatial imagery style increases, the use 

of conceptual strategies in solving the tasks also increases.  

Keywords: cognitive styles, number sense, algebraic reasoning, procedural and 

conceptual strategies 

INTRODUCTION 

The relationship between various cognitive style dimensions and mathematical 

achievement attracted the attention of several researchers worldwide for many years 

(Pitta &Christou, 2009b; Presmeg, 1986a). A  number of recent studies (Anderson, 

Casey, Thompson, Burrage, Pezaris&Kosslyn, 2008; Kozhevnikov, Hegarty& 

Mayer, 2002) examined the effects of students‘ cognitive styles on their 

mathematical learning, utilizing a new approach to the visual-verbaliser cognitive 

style dimension. These studies, supported the view that there exist three different 

cognitive style dimensions, a verbal style as well as two types of visual cognitive 

styles, the spatial imagery and the object imagery. Despite the fact that there have 

been suggestions for improvements concerning the cognitive style dimensions, 

research so far (Anderson et al., 2008; Pitta-Pantazi&Christou, 2009b), focused 

mainly on the investigation of the relationship between cognitive styles and 

achievement in geometry and measurement concepts. What is absent in mathematics 

research, is the investigation of a possible relationship between cognitive styles, 

number sense and algebraic reasoning. Consequently, the purpose of the present 

study was to examine the relationship between cognitive styles, achievement and 

strategies used while solving tasks that involve number sense and algebraic 

reasoning. 

THEORETICAL FRAMEWORK AND RESEARCH GOALS 

Cognitive styles  

Cognitive style is an individual preferred and habitual approach to organizing and 

representing information, which subsequently affects the way in which one perceives 
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and responds to events and ideas (Riding and Rayner, 1998). A number of 

researchers have proposed a wide variety of cognitive style dimensions, such as 

visualisers-verbalizers (Paivio, 1971), impulsivity-reflectiveness (Kagan, 1965), field 

dependency-field independency (Witkin& Asch, 1948a). In the field of mathematics 

education, the verbaliser/imager distinction was the one that attracted most attention 

(Pitta &Christou, 2009). According to this view, visualisers rely primarily on 

imagery when attempting to perform cognitive tasks, whereas verbalizers rely 

primarily on verbal-analytical strategies. However, in a recent study,Blazhenkova 

and Kozhevnikov (2009)suggested that there exist two distinct imagery subsystems 

that help individual process information in different ways (Pitta &Christou, 2009), 

the object imagery system and the spatial imagery system. Therefore, research 

provides evidence for two types of visualisers, the object visualisers and the spatial 

visualisers. Object visualisers have low spatial ability and use imagery to construct 

vivid high-resolution images of individual objects, while spatial visualisers have 

high spatial ability and use imagery to represent and transform spatial relations.  

Cognitive styles and mathematics 

A number of studies have investigated the relationship between cognitive styles and 

mathematical achievement (e.g. Kozhevnikov et al., 2002; Presmeg, 1986a). 

However, their results are often conflicting. Some studies have shown that spatial 

imagery is an important factor of high mathematical achievement (Kozhevnikov et 

al. 2002) whereas other studies showed that students classified as visualisers do not 

tend to be among the most successful performers in mathematics (Presmeg, 1986a). 

Moreover, findings from such studies revealed also certain areas of mathematics for 

which spatial imagery is important. For example, Kozhevnikov et al. (2002), 

conducted a study to compare the use of mental images by the two types of 

visualisers in solving problems with graphs of motion. Students with object imagery 

style interpreted the graphs as pictures while students with spatial imagery style 

constructed more schematic images and manipulated them spatially. In another study 

of Anderson et al. (2008), on geometry problems with geometry clues matched to 

cognitive styles, both spatial imagery and verbal cognitive styles were important for 

solving geometry problems, whereas object imagery was not. 

Cognitive styles, number sense and algebraic reasoning 

Some studies examined mental representations or imagery in arithmetic and revealed 

differences between high and low achievers (Pitta & Gray, 1996; Gray, Pitta & Tall, 

1997). Low achievers had a tendency to highlight surface details and emphasized the 

concrete qualities within situations (focused to the descriptive qualities of numbers) 

and their responses to a range of addition and subtraction combinations involved 

mainly counting procedures. On the other hand, mathematically high achievers 

concentrated more on the relationships and abstract qualities of numbers (Pitta & 

Gray, 1996) and in the addition and subtraction combinations they seemed to have a 
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better sense of the concept that enabled them to compress the long sequences of 

procedures (Gray et al., 1997). According to Gray et al. (1997), different perceptions 

of the objectsare at the heart of different cognitive styles that lead to success and 

failure in elementary arithmetic.  

The aforementioned strategies used by high and low achievers refer to procedural 

and conceptual understanding, respectively. According to Hiebert and Carpenter 

(1992), procedural knowledge is a sequence of actions and conceptual understanding 

is the knowledge that is rich in relationships. In this study, the terms conceptual and 

procedural strategies emerge from these definitions and are used to describe the way 

that prospective teachers solved the tasks. Procedural strategies involve typical and 

time-consuming strategies, application of formulas and generally a ―sequence of rote 

or senseless actions‖. On the other hand conceptual strategies are those that reveal 

insightful ―understanding‖ regarding the concepts that are studied and the ability of a 

person to make mathematical judgments and to use more flexible strategies. What 

must be noted, is that the term ―cognitive style‖ was treated in an ―informal‖ way in 

the abovementioned studies (Gray et al., 1997; Pitta & Gray, 1996), since no use of a 

tool for measuring the cognitive styles was evident. However, their suggestions 

about a possible relation between cognitive styles and arithmetic are in accord with 

some older studies‘ results (Navarro, Aguilar, Alcalde& Howell, 1999; Blaha, 1982). 

Navarro et al. (1999), found that field independence style relates to achievement in 

arithmetic and the study conducted by Blaha (1982), showed that reflective cognitive 

style, relates to achievement in arithmetic problem solving. However, these studies, 

did not take into consideration an appropriate cognitive style questionnaire, that is 

rooted in more general theory of human information processing (Kozhevnikov et al., 

2002). 

Despite the fact that there has been a limited number of studies examining the 

relationship between cognitive styles and arithmetic operations, there is a lack of 

studies examining the relationship between cognitive styles, number sense and 

algebraic reasoning. Number sense refers to a person‘s general understanding of 

number and operations along with the ability and inclination to use this 

understanding in flexible ways to make mathematical judgments and to develop 

useful strategies for handling numbers and operations (Mcintosh, Reys&Reys, 1992). 

Algebraic reasoning is a process in which students generalize mathematical ideas 

from a set of particular instances, establish those generalizations through the 

discourse of argumentation, and express them in increasingly formal and age-

appropriate ways (Kaput, 1999). The interrelation of number sense and algebraic 

reasoning is reported by several researchers (Carpenter, Levi, Berman &Pligge, 

2005; Steffe, 2001). Moreover, number and algebra constitute together the strand 

―Number and Algebra‖ in the mathematics curriculums of many countries e.g. New 

Zealand, Singapore, Hong Kong. For these reasons, number sense and algebraic 

reasoning were jointly considered in this article and were not separated. 
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The development of both, number sense and algebraic reasoning is crucial for 

mathematics learning. However, results from some studies (e.g. Johnson, 1998), 

revealed that prospective teachers‘ general number sense is not sufficiently 

developed. For these reasonsit is important to investigate whether some cognitive 

variables (such as cognitive styles) will enable us better to understand individual 

differences in solving problems and tasks that involve these concepts, something that 

is not evident in the mathematics literature review.  

As a result, the purpose of the present study was to investigate whether mathematical 

achievement in number sense and algebraic reasoning tasks and strategies used for 

solving these tasks, are related to specific cognitive style. More specifically, we 

sought answers to the following questions: (a) Do cognitive styles (verbal, spatial 

and object-imagery) predict prospective teachers‘ achievement in number sense and 

algebraic reasoning tasks? (b) Does prospective teachers‘ achievement in the 

aforementioned tasks differentiate in accordance to their cognitive style profile 

?(here participants were grouped into eight different cognitive style profiles) (c) Is 

there a relation between prospective teachers‘ cognitive style and the strategies they 

adopt in solving algebraic reasoning and number sense tasks? 

METHODOLOGY 

Participants 

The participants were 83 prospective elementary school teachers. All participants 

have taken mathematics lessons during their lower and upper secondary education. 

At the university level, they attended three mathematics courses where one of them 

was mathematics education. A mathematical test and a self-report cognitive style 

questionnaire were administrated to participants during two sessions.  

The mathematical test 

The mathematical test on number sense and algebraic reasoning included 10 tasks. 

Examples of tasks are provided in Figure 1. A verbal and a pictorial task were 

employed to examine students‘ abilities in each content area (calculation-estimation, 

patterns, number divisibility, relations among numbers and problem solving with 

unknowns). Using two different representations (verbal and pictorial), we attempted 

to achieve a balanced test among the three cognitive styles that were examined in this 

study. Two codes were given to each answer. First, the answer was coded as correct 

(success=1) or incorrect (success=0). Then, a second code was given for the strategy 

used by the participant to complete the task. In the initial stage of the analysis many 

strategies were generated which were later grouped into two general categories. The 

first category (strategy=1) contained conceptual strategies (i.e. flexible strategies that 

revealed deep understanding of relationships among numbers and symbols) and the 

second category (strategy=2) included procedural strategies (i.e. strategies that 

followed step by step procedures or memorization of formulae and rules). For 
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example, a prospective teacher gave the following answer when asked to solve task 1 

―Yes, (there is there a number divisible by 7 between 12 358 and 12 368) because the 

difference between the two numbers is ten and there must be at least one number that is 

divisible by 7‖ (strategy=1). On the other hand, another participant answered as follows: ―I 

believe that the numbers 12 357 and 12 363 can be divided by 7 because the numbers 57 

and 63 can be divided by 7‖ (strategy=2).  

Figure 1: Sample Tasks of the mathematical test 

The cognitive style questionnaire 

The cognitive style questionnaire that was a translation of the Object-Spatial Imagery 

and Verbal Questionnaire (Blazhenkova&Kozhevnikov, 2009) contained 45 

statements and examined participants‘ differences in spatial imagery (15 items, e.g. 

My images are more schematic and they are not colourful), object imagery (15 item, 

e.g. My images are colourful and bright) and verbal cognitive style (15 items, e.g. 

My verbal skills are excellent). These items were statements about qualitative 

characteristics of the images, special favours to specific types of visual images or 

verbal thinking, learning and habitual preferences, preferences to certain 

professionsand individuals‘ assessments of their skills in using spatial or object 

imagery or verbal processing. Participants rated the items on a 5-point Likert scale 

with 1 indicating total disagreement and 5 indicating total agreement. For each 

participant, the spatial imagery, the object imagery and the verbal scale scores were 

created by calculating the average score of the fifteen items of  each cognitive style. 

The data were analysed using the statistical package SPSS and multiply methods of 

analysis were performed, including regression analysis, multivariate analysis of 

variance (MANOVA), pearson correlation and descriptive statistics. The results of 

this study are presented in two sections. The first section deals with the relationship 

between cognitive styles and achievement in number sense and algebraic reasoning, 

whereas the second is concerned with cognitive styles and their relationship to the 

strategies that prospective teachers adopt in solving the tasks.  

Cognitive styles and achievement in number sense and algebraic reasoning 

In order to answer research question 1 correlation and regression analyses were 

conducted. Firstly, to investigate the relationship between cognitive styles and 

achievement in number sense and algebraic reasoning, we examined the correlations 

between prospective teachers‘ cognitive styles and their achievement, which are 

presented  in Table 1. As it appears from Table 1, spatial imagery cognitive style 

significantly correlates with prospective teachers‘ total achievement score, with their 

Task 1 (number sense) 

Is there a number divisible by 7 

between 12 358 and 12 368? 

(Zazkis& Campbell, 1996) 

Task 2 (algebraic reasoning) 

 
Find the value of one star. 

Task 3 (number sense) 

Calculate the sum of 

numbers between 1 and 

100. 
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achievement in verbal tasks as well as with their achievement in pictorial tasks. 

However, the other cognitive styles (object and verbal) did not correlate with 

prospective teachers‘ achievement. 

*Correlation is significant at the 0.05 level (2-tailed). 

Table 1: Correlations among achievement and spatial imagery, object imagery and 

verbal cognitive styles. 

Then multiple regression analyses were conducted with criterion (dependent) 

variables the total achievement score, the achievement in verbal tasks and the 

achievement in pictorial tasks, and predictors (independent) the spatial imagery, 

object imagery and verbal cognitive styles. The results of the multiple regressions are 

presented in Table 2 and provide more information about the nature of the 

relationships between teachers‘ achievement and cognitive styles. It is obvious that 

only the spatial imagery cognitive style is a statistically significant predictor of 

prospective teachers‘ achievement in number sense and algebraic reasoning, 

regardless of the mode of representation of the tasks, and it explains a respectable 

proportion of variance (more than 20%) in achievement in number sense and 

algebraic reasoning. In other words, as prospective teachers‘ spatial imagery 

cognitive style increases, their total achievement in the test, and their achievement in 

verbal and pictorial tasks also increase. Moreover, in order to answer research 

question 2 and investigate possible differences between the different profiles of 

cognitive styles, participants were grouped in eight different groups with respect to 

their spatial imagery, object imagery and verbal cognitive styles as follows: high/low 

Spatial, high/low Object and high/low Verbal. The mean scores of each group with 

regard to their total achievement score are presented in Table 3.The highest mean 

score corresponds to prospective teachers with high preference in spatial 

visualization processing and low preference in object visualization and verbal 

processing (group 6). 

*Statistical significance p<0.05 

Cognitive styles 
Total 

achievement 

Achievement in verbal 

tasks 

Achievement in 

Pictorial tasks 

Spatial Imagery    .401*    .358*    .345* 

Object Imagery -.165 -.216 -.075 

Verbal -.176 -.190 -.118 

Cognitive styles Total achievement Achievement in verbal 

tasks 

Achievement in 

pictorial tasks 

 b p b p b p 

Spatial imagery 1.339          .001*     .660       .002*   .679 .003* 

Object Imagery  -.495           .222    -.390       .093  -.106          .661 

Verbal   -.199           .593    -.140       .510  -.059          .790 
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Table 2: Multiple regression analyses with dependent variables total achievement, 

achievement in verbal tasks and achievement in pictorial tasks, and independent variables 

spatial imagery, object imagery and verbal cognitive styles. 

Also, prospective teachers with high preference in spatial processing (groups 1,3,4,6) 

have higher scores than those with low preference in spatial processing. 

To further investigate the impact spatial imagery has on achievement, prospective 

teachers were assigned to high and low spatial imagery groups. A multivariate 

analysis of variance (MANOVA) was conducted with the achievement scores in 

verbal and pictorial tasks as dependent variables and the preference in spatial 

processing as independent one.The results of the multivariate analysis showed that 

there were significant differences between prospective teachers achievement 

according to their preference in spatial processing (Pillai‘sF(1,81) = 3,882, p<0,05). 

More specifically, prospective teachers with high spatial imagery have significantly 

better achievement scores on verbal and pictorial tasks than prospective teachers 

with low spatial preference. 

Cognitive style 

profiles 
N x  SD  Cognitive style 

profiles 
N x  SD 

     S*  O* V*          S* O* V*    

1.  H H H ** 18 3.89 1.78  5.  L H H 13 3.08 1.80 

2.  L L L ** 7 3.14 1.35  6.  H L L 9 5.56 2.65 

3.  H H  L 11 4.36 2.58  7.  L L H 9 3.22 1.39 

4.  H L  H 11 4.82 2.72  8.  L H L 5 4.00 1.23 

*S=Spatial, O=Object, V=Verbal, ** H= High, L=Low 

Table 3: Means of achievement score for each cognitive style profile. 

Cognitive styles and strategies used in solving the tasks 

To answer research question 3, correlation and regression analyses were conducted. 

The correlations among prospective teachers‘ strategies and cognitive styles are 

shown in Table 4. It appears that the spatial imagery cognitive style significantly 

correlated with the use of conceptual strategies (r=.310, p<0.05) and not procedural 

strategies, while the rest of the cognitive styles did not correlate with any type of 

strategies.  

Cognitive styles Conceptual strategies Procedural strategies 

Spatial imagery    .310* -.021 

Object Imagery -.124 -.092 

Verbal -.152 -.101 

*Correlation is significant at the 0.05 level (2-tailed). 

Table 4: Correlations among strategies used in number sense and algebraic reasoning 

tasks and spatial imagery, object imagery and verbal cognitive styles. 
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To further investigate the nature of these correlations, we analysed our data using 

multiple regression analysis with criterion (dependent) variables the ―conceptual 

strategies‖ and the ―procedural strategies‖ and predictors (independent) variables the 

cognitive styles. The results are presented in Table 5. As it can be seen, the spatial 

imagery cognitive style is a statistically significant predictor of prospective teachers‘ 

use of ―conceptual strategies‖ for solving tasks with numbers concepts and algebraic 

reasoning and it explains the 20% of the variance in the adoption of strategies.We 

can conclude that as prospective teachers‘ spatial imagery increases, the use of 

conceptual strategies in solving various tasks, also increases. On the other hand, 

none of the cognitive styles can predict the use of ―procedural-conventional‖ 

strategies.  

Cognitive styles Conceptual strategies Procedural strategies 

 b p b p 

Spatial imagery .864 .009* -.137 .681 

Object Imagery -.299 .402 -.299 .529 

Verbal -.184 .576 -.268 .424 

*Statistical significance p<0.05 

Table 5: Multiple regression analyses with dependent variables the strategies 

prospective teachers use and independent variables spatial imagery, object imagery 

and verbal cognitive styles. 

DISCUSSION 

Several studies revealed the important role that spatial imagery cognitive style plays 

in mathematical creativity, geometry and problem solving (see e.g. Pitta &Christou 

2009; Anderson et al., 2008; Kozhevnikov et al., 2002). The present study moves 

one step further and provides evidence that spatial and object imagery may have 

different effects on the achievement and on the strategies that children adopt for 

solving tasks that involve number sense and algebraic reasoning. The results 

indicated that spatial imagery is the only significant predictor of prospective 

teachers‘ achievement in number sense and algebraic reasoning tasks and that 

teachers with high preference on spatial processing had significantly higher scores 

on both verbal and pictorial tasks, than the teachers with low preference on spatial 

processing. This finding is in line with other studies‘ results that examined cognitive 

styles in relation to mathematical problem solving (Kozhevnikov et al., 2002) and 

mathematical creativity (Pitta-Pantazi&Christou, 2009).  

The present study also revealed that spatial imagery is a significant predictor of 

prospective teachers‘ ―conceptual strategies‖ adoption. It appears that as prospective 

teachers‘ preference to spatial processing increases, the adoption of conceptual 

strategies for solving the number sense and algebraic reasoning tasks also increases. 

We can say that prospective teachers with high spatial imagery tend to ―see‖ 

relations between numbers that others do not and consequently they are ―in favour‖ 
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in using quicker and conceptual strategies that involve ―understanding‖ or ―insight‖. 

This is in accord with previous research by Gray et al., (1997),who suggested that 

individuals may approach mathematics tasks in different ways, depending on their 

cognitive styles. On the other hand, none of the cognitive styles could predict the use 

of procedural-conventional strategies that involve ―rote‖ or ―senseless‖ actions. The 

latter might indicate that the adoption of ―procedural-conventional‖ strategies is 

more of a result of formal instruction in schools and prospective teachers, regardless 

of their cognitive style, adopt the aforementioned strategies only when they cannot 

efficiently use the ―conceptual-short strategies‖. However, from these results it 

cannot be generalised that spatial imagery is the only cognitive style that is beneficial 

for number sense and algebraic reasoning, since the samplewas of limited size and 

from a certain age group.The replication of the present study with a different and 

larger sample is necessary in order to inform us whether the same pattern appears in 

younger students. 

Concluding, an interesting proposal for future research could be the investigation of 

in-service teachers‘ cognitive styles and their relation to the strategies they teach to 

students for solving several mathematical problems that involve different concepts. If 

a certain cognitive style (e.g. spatial imagery) relates to specific strategies, then 

possible growth of teachers‘ spatial processing could improve teachers‘ strategies, 

which in turn could enhance students‘ conceptual understanding concerning several 

concepts. 
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DANISH NUMBER NAMES AND NUMBER CONCEPTS 
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This paper raises some questions concerning the relation between Danish number 

names and digits in the canonical base 10 system. Our hypothesis is that in Danish, 

number names are more complicated than in other languages, and for this reason, 

Danish children have more difficulties learning and working with numbers. From 

this point of view, we make a theoretical investigation among different languages 

and how the names influence the conceptual understanding of numbers. We compare 

Danish, English and Japanese number names and show from semiotic and cognitive 

perspectives how the qualitative differences in how the first 100 numbers are named 

may give rise to linguistically determined differences in children‘s concept of 

numbers and in the cognitive load of arithmetic processes.  

Keywords: Base-10 system, two-digit number names, semiotic, cognitive 

perspectives 

INTRODUCTION 

In this paper we investigate theoretically the Danish number names and their 

influence on how children may conceptualize numbers. We look at the interplay 

between the words we use to denote numbers and the way numbers are written in the 

canonical base-10 system(from here onbase-10). In the Great Danish Encyclopedia, 

Danish number names are described as ―Very old and reflecting a number concept 

that is primitive in relation to mathematical thinking‖ (Talord, 2009–2010/Our 

translation). 

Danish number names are very complex, deriving from old number systems using 

base-12 and base-20. In our investigation, we are especially interested in how the 

Danish number names can help or hinder the development of a practical concept of 

numbers and arithmetic competence. 

Denmark is one of the Scandinavian countries, and Danish is so similar to Swedish 

and Norwegian that the three languages are mutually intelligible– except for the 

number names. In both Swedish and Norwegian, the system for number names is 

similar to the English one. 

Comparative investigations between different linguistic communities provide 

examples of how a preschool child‘s mother tongue influences his or her concept of 

numbers and understanding of place value (Miura et al., 1989; Miura et al., 1993; 

Miura et al., 1999). The focus of several investigations has been the connection 

between number names from 10–100 in different languages and the understanding of 

the place value in base-10. Denmark has never participated in such comparative 

studies. 
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Our hypothesis is that the Danish names for the first 100 numbers are more 

complicated than those in other languages, and that for this reason Danish children 

have more difficulties learning and working with numbers.In this paper we test this 

hypothesis from three different types of theoretical perspectives: comparative 

perspectives involving the analysis of the number names in Danish, English and 

Japanese, semiotic perspectives, and cognitive perspectives. 

COMPARING NUMBER NAMES 

The following table contains number names in Danish, English and Japanese. The 

table shows how some Danish names for numbers use 20 as the base reference, while 

the numbers written with digits follow base-10.  

 Danish Explanation English Explanation Japanese Explanation 

1 En 1 One 1 Ichi 1 

2 To 2 Two  2 Ni 2 

3 Tre 3 Three 3 San 3 

4 Fire 4 Four 4 Shi 4 

5 Fem 5 Five 5 Go 5 

6 Seks 6 Six 6 Roku 6 

7 Syv 7 Seven 7 Sichi 7 

8 Otte 8 Eight 8 Hachi 8 

9 Ni 9 Nine 9 Kyu 9 

10 Ti 10 Ten 10 Juu 10 

11 Elleve 11 Eleven  11 Juu-ichi 10 + 1 

12 Tolv 12 Twelve 12 Juu-ni 10 + 2 

13 Tretten 13 Thirteen 13 Juu-san 10 + 3 

14 Fjorten 14 Fourteen 14 Juu-shi 10 + 4 

15 Femten 15 Fifteen 15 Juu-go 10 + 5 

16 Seksten 16 Sixteen 16 Juu-roku 10 + 6 

17 Sytten 17 Seventeen 17 Juu-sichi 10 + 7 

18 Atten 18 Eighteen 18 Juu-hachi 10 + 8 

19 Nitten 19 Nineteen 19 Juu-kyu 10 + 9 

20 Tyve 20 Twenty 20 Ni- Juu 2x10 

21 Enogtyve 1 + 20 Twenty-one 20 + 1 Ni- Juu-ichi 2x10 + 1 

30 Tredive 30  Thirty 3x10 or 30 San-Juu 3x10 

32 Toogtredive 2 + 30 Thirty-two 30 + 2 San- juu-ni 3x10 + 2 

40 Fyrre 40 Forty 4x10 or 40 Si- Juu 4x10 

43 Treogfyrre 3 + 40 Forty three 4x10 + 3 Si- Juu-san 4x10 + 3 

50 Halvtreds 50 (2.5x20) Fifty 5x10 Go-Juu 5x10 

54 Fireoghalvtreds 4 + 50  Fifty-four 5x10 + 4 Go- Juu-shi 5x10 + 4 

60 Tres 60 (3x20) Sixty 6x10  Roku- Juu 6x10 

65 Femogtres 5 + 60 Sixty-five 6x10 + 5 Roku- Juu-go 6x10 + 5 

70 Halvfjers 70 (3.5x20) Seventy 7x10 Sichi- Juu 7x10 

76 Seksoghalvfjers 6 +70 Seventy-six 7x10 + 6 Sichi- Juu-roku 7x10 +6 

80 Firs 80 (4x20) Eighty 8x10  Hachi- Juu 8x10 

87 Syvog firs 7 + 80 Eighty-seven 8x10 + 7 Hachi- Juu-sichi 8x10+7 

90 Halvfems 90  (4.5x20) Ninety 9x10  Kyu- Juu 9x10 

98 Otteoghalvfems 8 + 90 Ninety-eight 9x10 + 8 Kyu- Juu-hachi 9x10 + 8 

100 Hundrede 100 Hundred 100 Hyaku 100 

Table 1: Number names between 1 and 100 in Danish, English and Japanese, combined 

with the underlying calculation ‗explained‘ through these names. 
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In comparing Danish and English and Japanese, we look at two main issues: 

1. The number of words that must be learned by rote in each language 

2. The regularity of the spoken number system; that is, the degree to which the 

spoken number system corresponds to the written base 10 system 

We can simply count the number of rote learning instances that are required to count 

to one hundred. The first 100 numbers of spoken Danish can be viewed as a system 

containing 28 basic signs, 1–9, 10–20, 30, 40, 50, 60, 70, 80, 90, 100, whereas the 

written base 10 contains 10 signs and a system. In that sense it takes 28 different 

words to count to 100 in Danish while in Japanese it only takes 11. In English, it is 

debatable whether there are 13, 20 or 28different words to be learned by rote. If we 

accept that the three different forms often (ten, -teen and -ty) are the same, then there 

are only 13 words; if we accept only that –ty is equal to ten, then there are20; and if 

we do not accept that -teen and –ty are the same as ten, then there are 28 words – as 

in Danish. In Danish, all the numbers from 13–19 end with a-ten, but the initial 

syllable does not sound like the numbers (from 3–9)that they refer to and we 

therefore count them as different words. The Danish decade number names from 20 

to 90 are not directly connected to the numbers from 2–9 and must therefore be 

learned by rote without a system. Compared to English, the Danish number names 

are harder to systematize. In English, there is a system whereby all decades start with 

the number (e.g. twen-, thir-, four-, …) and end with a -ty. In Japanese there is 

regularity in the oral counting system exactly as in base 10 and in addition, the 

names for numbers between 0–9 are very short. 

Danish and English have the same regularity as base-10starting with the number 

twenty (in Danish tyve): we start counting from 1–9 between each decade. In 

Japanese, this regularity starts already at 10, as inbase-10. The English and Danish 

numbers between 10 and 20 follow another system. In both languages eleven (elleve 

in Danish) and twelve (tolv in Danish)do not follow the same system as the numbers 

between 13 and 19; in fact they are reminiscences of an old base-12 system. The 

numbers from 13 to 19 are combinations of an ordinal number with a -ten in Danish 

and a -teen in English. In both languages, the numbers between 13 and 19 are named 

in reverse order from the digits. This irregularity continues for the Danish numbers 

up to 100. For instance, the Danish name for 83 is ―three and ‗fours‘‖ or in Danish 

"tre-og-firs" where ‗tre‘ is Danish for ‗three‘, ‗og‘ is Danish for ‗and‘, and ‗fire‘ is 

Danish for ‗four‘(the inflection ‗firs‘ means eighty); in numbers: 3 + 80.In English, 

this irregularity in the sequence of the syllables constituting the number words only 

exists in the numbers from 13–19. 

In summary, the Danish spoken number system is in reverse order from 10–100, the 

English spoken number system is reversed from 10–20 and regular from 20–100, 

while the Japanese system is regular from 10–100. 
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COMPARATIVE PERSPECTIVES 

Several studies (Miura et al., 1989; Miura et al., 1993; Miura et al., 1999) comparing 

English-speaking American, Japanese, Chinese and Korean first graders‘(aged on 

average 6–7 years) cognitive representation of and understanding of place value 

confirmed that the Asian language speakers showed a preference for using base 10 

representations to construct numbers, whereas English speakers showed a preference 

for using a collection of units. Note that a significant difference between American 

and Asian number names appears between 11 and 19; exactly when the base-10 

system starts to use two digits. In the investigation, children were asked to construct 

the numbers 11, 13, 28, 30 and 42 from sets of wooden blocks (ten blocks and unit 

blocks). The results showed that 91 % of the American first graders used unit blocks 

to represent the numbers on their first try. In contrast, about 80 % of the Asian 

children used ten-blocks when representing the numbers on their first try. These 

differences in cognitive representation were mainly ascribed to language (Miura et 

al., 1993).Still, the validity of this conclusion is challenged by the many other 

cultural and educational differences between Asian and Western children. Yet, 

children who share similar cultures and belong to similar school systems but have 

different mother tongues have also been investigated. For example, Dowker et al. 

(2008)compare English and Welsh students. These students have the same cultural 

conditions, but Welsh names for numbers are as regular as the Japanese. They 

conclude: 

No statistically significant differences were found between schools or age groups on the 

scaled score on either test (arithmetic and number skills). […] However, there were group 

differences in a specific area of arithmetical ability, notably, in ability to read and judge 

numbers pairs. 

Because their investigation can more or less eliminate the cultural and educational 

differences we can conclude that the results indeed show an effect of linguistic 

differences:  

Welsh-speaking children find it easier than English-speaking children toread and compare 

two-digit numbers, suggesting that they are better at using the principles of place value. 

This raises the question of why and how different languages influence number 

concepts and perhaps even the ability to learn simple arithmetic. 

SEMIOTIC PERSPECTIVES ON NUMBER NAMES  

The empirical studies show that some languages seem to support the development of 

concepts of numbers better than other languages, and our initial comparison of 

Danish, English and Japanese shows that the differences maybe related to the degree 

to which the number names and the written numbers are ‗alike‘. 

In order to view this case from a semiotic perspective we use the concept of iconicity 

(Stjernfelt, 2007), which describes the likeness of a sign to what it signifies, and the 
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epistemological triangle (Steinbring, 2006), a model describing the relation between 

mathematical signs and mathematical concepts. 

Iconicity of the base-10 number system 

In the case of an iconic sign, the token relates to the object by similarity. Signs with 

strong iconicity typically ―look like‖ their objects in some sense. For example, the 

roman number iii, which represents three, is typically considered iconic, because the 

three i's correspond to the cardinality of the number three.  

In order to describe how thebase-10 numbers can be considered iconic we use 

Stjernfelt‘s description of operational iconicity(Stjernfelt, 2007). The operational 

criterion for iconicity denotes the way a sign or a system of signs allows us to 

experiment and learn about what the sign signifies by extracting information from 

the sign that was not deliberately included by the producer of the sign. Base-10 has 

some qualities that make it reasonable to consider written numbers as partially iconic 

signs. In particular, it is possible to build any number in a position based system 

using only the number of different digits given by the base. It is one of the genius 

aspects of here the base-10, but this aspect is spoiled if the names don‘t follow the 

numbers. A base-10 number tells us how many of each power of 10it contains. The 

system allows us to create increasingly larger numbers from the ten basic numbers; 

furthermore, the system allows us to easily decide which one of two given natural 

numbers is largest. Written base ten numbers fully reflect the system. Using the 

operational criterion of iconicity we can say that written numbers are iconic in the 

sense that it is easy to determine which one of two given (natural) numbers is largest; 

it is easy to create larger and larger numbers; and the written base-10 numbers 

support a range of arithmetic algorithms (addition, subtraction, multiplications 

etc.).There is in principle nothing to prevent spoken number names from resembling 

this kind of iconicity. As simple examples of iconic spoken numbers, the additive 

―bum bum bum‖ can represent ―three‖ in the same way as the roman number iii, and 

saying ―four times ten and 3‖ to represent 43 is iconic in the same way as writing 

―43‖ in base-10. As we have seen, this is the situation in Japanese and for some 

numbers in English, but not at all in Danish. 

Epistemology and the signification of numbers  

In order to understand how written numbers, spoken number names and concepts of 

numbers relate to each other we use the ‗epistemological triangle‘, which connects 

conceptual entities to the signs that represent them and to mathematical objects in a 

reference context(Steinbring, 2006). Steinbring notes that there is in some cases 

exchangeability between the reference context and the sign/symbol, because the 

same sign can serve as a reference context for a mathematical concept (left side of 

the triangle) in some cases and as a representation of a mathematical concept (right 

side of the triangle) in other cases (Steinbring, 2006).  
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We can apply the epistemological triangle in order to understand how mother tongue 

influences number concepts, by viewing spoken words and written signs as reference 

contexts for each other. Taking point of departure in the epistemological triangle, we 

can represent the situation as shown below: 

 

Figure 1: The influence of written and spoken numbers on the number concept. The 

written numbers reflect the base-10 system completely. 

The epistemological triangle shows that the relations between the written number 

and the spoken number in terms of how the written number signifies the spoken 

number and how the spoken number signifies the written number, can influence the 

number concepts that individuals develop. Since these relations, as we have argued, 

differ from language to language, we should expect a difference in the number 

concepts arising from the different number names.  

In English and especially in Danish, the signifying relations between spoken and 

written numbers are more complicated than in Japanese. The specific effect on the 

number concepts for English and Danish speaking children cannot be inferred from 

this analysis, but to hypothesize that this leads to more complicated concepts of 

numbers and possibly even to problems in learning numbers seems reasonable.  

Using the concept of iconicity and the epistemological triangle for mathematical 

signs, we have seen that the written numbers resemble base-10, and using an 

operational criterion of iconicity, can be said to be iconic. We have also seen that 

different languages respect this iconicity in the spoken numbers to different degrees. 

What we have previously described as regularity between written base 10 numbers 

and spoken number names are cases in which the operational iconicity of the base 10 

numbers are reflected in the spoken numbers as well. 

Furthermore, we have applied the epistemological triangle to a situation in which 

written and spoken signs for numbers are considered as reference contexts for each 

other.We infer that these two representations of numbers affect the number concept 

 

 
   

Number concept  

Written number Spoken number 

Base-10 system 
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that pupils develop and hypothesize that this leads to more complicated number 

concepts for native speakers of languages in which the operational iconicity of the 

written numbers is less reflected in the spoken number names.  

COGNITIVE PERSPECTIVES 

Learning to count and understand base-10 are cognitive challenges involving many 

small steps. We have chosen to focus on the following three aspects: 

1. Oral counting 

2. The cardinal principle of combining a name with a cardinal value 

3. The combination of words for a number, its cardinal value and the digit sign  

Oral counting 

Developing familiarity with the symbolic number system begins with oral counting. 

Children start oral counting quite early, and it is not clear if they understand what 

they are doing when they count. Counting appears to be learned first as a linguistic 

routine through which the number names are perceived as ‗sign systems‘ or cultural 

semiotic systems that enable the symbolic representation of knowledge (Goswami, 

2008). 

We have seen that Japanese number names are brief and regular. English number 

names are somewhat longer and the regularity of the number system starts more or 

less at 20. In Danish, number names are generally even longer and the system has 

many irregular numbers. Studies of numbers and language (Sousa, 2008) show that a 

language with short number names loads the working memory (WM) less than a 

language with longer number names. There are no differences in the ability to count 

and numerate sets from 1 to 12 among Asian and American children, but from 13 to 

100 Asian children are much better (Sousa, 2008). The development from being a 

novice to being an expert by gaining automaticity with numbers bigger than 12 

seems to take longer if the language used has an irregular number system. Danish 

children have to learn many different and meaningless number words by rote, and we 

can now conclude that Danish number names load the children‘s WM considerably 

when they are learning to count; in addition, there is clear evidence that syllables 

rated as more meaningful are easier to recall (Baddeley et al., 2009).A Danish 

investigation of children‘s ability to count (N=140) at the age of 6 showed that more 

than40 % of the children stopped counting at a number ending with 9 (Lyngsted& 

Knudsen, 2007). We suspect that this is due to the irregular Danish system for 

naming decade numbers. 

The cardinal principleof combining a name with a cardinal value 

At 3–5 years of age, children understand more or less the five counting principles at 

least until the set of 10, even when they err in their counting. The five counting 

principles are (Gelman and Gallistel, 1978, hereSiegler, 2003):  
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1. The one-one principle: Assign one and only one number word to each object. 

2. The stable order principle: Always assign the numbers in the same order. 

3. The cardinal principle: The last count indicates the number of objects in the set. 

4. The order irrelevance principle: The order in which objects are counted is 

irrelevant. 

5. The abstraction principle: The other principles apply to any set of objects. 

Children typically learn the names of numbers as a long list of words and 

demonstrate knowledge of the stable order principle by almost always saying the 

number words in a constant order and saying the last number with emphasis (ibid). 

The names are developed as sounds connected to the number of objects in the sets. 

The developmental shift to understanding the number name as a cardinal value 

requires a qualitative shift in children‘s representation of numbers. The cardinal 

principle requires an understanding of the logic behind counting (Goswami, 2008) 

and the ability to judge the size of a set. It relies on a representation of quantitative 

information in which the coding of smaller quantities is different from the coding of 

larger quantities (ibid). Children are born with the capacity to cognize magnitudes 

(Halberta et al., 2008) and distinct numerical difference in small number values, 

called subitization (Dehane 1997). This means that when comparing two different 

sets, children are for the most part capable of pointing out which set is biggest, 

depending on the size of the sets and the differences between them; but counting and 

telling the number in words seem to be harder, especially with bigger numbers.  

Children‘s conceptual understanding of numeration depends on their being able to 

make a connection between a number name and its cardinal value, which they learn 

to do by grouping and quantifying sets of objects (Thomas et al., 2002).To group a 

set means to divide the set into smaller equal groups. Miura et al. (1993) showed 

how American, French and Swedish children used units instead of ten sticks 

representing two-digit numbers, and we know from our own experiences that Danish 

children do the same; it seems that certain languages facilitate grouping in tens 

whereas others do not. 

The combination ofwords for a number, its cardinal value and the digit sign 

Learning how to connect the number word, its cardinal value and the digit sign is 

another challenge. As discussed, two different systems must be combined with 

different representations. Becoming an expert at combining these two systems means 

developing rapid access to an automatic use of written numbers and at the same time 

being able to multitask to solve other problems in parallel. If the two systems are 

iconic and support each other, the difficulties the child encounters in learning this 

skill will be minimized, as is the case for Japanese-speaking children. If the two 

systems are irregular and therefore conflict with each other, the child will have 
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greater problems understanding and remembering the connection between the name, 

the cardinal value and the sign. Duval (2006) describes this situation as a conversion 

between registers, and observes that the conversions that seem to be easiest for 

students are the ones that are congruent, meaning that the representation in the 

starting register is transparent to the target register.  

From preliminary observations of Danish first graders, we have seen that if the task 

is to say the name of a written number, say 63, children often repeat the ten, twenty, 

thirty-rhyme and use their fingers. The children stop when they get to their sixth 

finger and then they know the word. This may be seen as a kind of interfering 

process, which in cognitive terms means that two parallel processes are in conflict 

with each other. The semantic treatment demands too much attention, and therefore it 

is not possible to multitask and complete both processes at the same time (Baddeley, 

2009).This interfering effect means that learning to combine spoken and written 

numbers takes Danish children much longer time to automate. The logic in the base-

10 disappears in the Danish language, and therefore the combination of the names 

and the written digits has more or less to be learned by rote. 

CONCLUSION 

In this article we have theoretically investigated our hypothesis thatDanish number 

names are more complicated than those of other languages, and therefore, that 

Danish children have more difficulties learning and working with numbers. We have 

shown throughcomparison of number names in different languages, combined with 

semiotic and cognitive arguments, how the differences in naming numbers may give 

rise to linguistically determined differences in how children learn number concepts 

as well as in the cognitive load of arithmetic processes. 

We have argued that the Danish number names create comparatively great cognitive 

load in relation to number comparison, counting and basic arithmetic. Furthermore 

we have shown how number concepts are influenced by the names of numbers, and 

that number concepts are especially simple when the iconicity in the written base-10 

numbers is also present in the words used to signify numbers. In Danish there are 

two main reasons that this iconicity is not present in the number names:(1) the order 

of digits is reversed in the numbers between 11-99, and (2) the names of the number 

decades do not correspond to the number of tens they represent.  

We conclude from this first stage of our investigation that comparatively, Danish 

children find learning numbers difficult, due to the system of naming numbers in 

Danish. Our next step is to make empirical approaches where we intend to set up a 

comparative investigation of numeracy performance, comparing numbers written 

with digits and with words, a design research project about ‖School numbers‖ and 

finally investigate language reforms, with an example from the Norwegian numbers. 
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This paper analyses the procedures and strategies used by Daniel, a second grader 

student, when solving a set of problems, using addition and subtraction of positive 

whole numbers, under a classroom teaching experiment. This is a qualitative and 

interpretative case study, with data collection through participant observation, 

interviews and documents, namely, reports of classroom episodes, tasks and 

student‘s involvement in classroom activities. The results suggest that Daniel‘s 

preference for certain mathematical procedures and strategies depended on the 

context of the problems, namely the types of situations and the size and the structure 

of numbers involved. 

Keywords: procedures, strategies, number sense, addition and subtraction. 

INTRODUCTION 

During the last decade, the goals and content of elementary mathematics education 

have changed internationally (Kilpatrick, Swafford, & Findell, 2001; Verschaffel, 

Greer, & De Corte, 2007). The development of number sense is now an essential 

aspect of learning mathematics in the first school years, enabling students to solve 

problems involving addition and subtraction with positive whole numbers 

(McIntosh, Reys, & Reys, 1992). In the 21
st
 century, ―helping children develop 

number sense is being considered on a global scale as a key task in mathematics 

education‖ (Yang, Li, & Lin, 2008, p. 805). 

This paper reports part of a study which  main aim is to describe and analyse how 

students develop their number sense in a problem solving context using addition and 

subtraction of positive whole numbers, considering problems of real world addition 

and subtraction situations (Fuson, 1992). In particular, understanding the strategies and 

procedures they use in solving subtraction problems under a classroom teaching experiment. In this 

paper will be analysed the strategies and procedures used by Daniel, when compared with those 

described in the literature in the field. 

THEORETICAL FRAMEWORK 

What is number sense? This is a question which the answer is not easy to obtain. 

Greeno (1991) states that ―number sense is a term that requires theoretical analysis 

rather than a definition‖ (p. 170) and he suggests that ―it may be more fruitful to 

view number sense as a by-product of other learning than as a goal of direct 

instruction‖ (p. 173). Dolk (2009) considers that developing number sense in the 
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class setting ―implies giving students the opportunity to think with numbers and 

operations, guiding them in the way they look at numbers, and helping them to 

construct an active network of number relationships‖ (p. 5). Developing number 

relations also implies that students see numbers as mathematical objects. 

McIntosh et al. (1992) define number sense as ―a person‘s understanding of number 

and operations along with the ability and inclination to use this understanding in 

flexible ways to make mathematical judgements and develop useful strategies for 

handling numbers and operations. It reflects an inclination to use numbers and 

quantitative methods as a mean of communicating, processing and interpreting 

information‖ (p. 3). They propose three strands to number sense: (i) knowledge of 

and facility with numbers, (ii) knowledge of and facility with operations and (iii) 

applying knowledge of and facility with numbers and operations to computational 

settings. This definition encompasses the behaviour defined by other authors as 

strategy use, and on the belief that promote strategy flexibility is important for all 

children, including younger and mathematically weaker children (Kilpatrick et al., 

2001;Verschaffel et al., 2007; Verschaffel, Greer & Torbeyns, 2006). 

Thus, strategies are seen as embedded within number sense. Strategies for solving 

particular types of problems are often presented as procedures that are followed in 

response to the stimulus problem. For Beishuizen (1997) strategy is the ―choice out 

of options related to problem structure‖ and procedure is ―the execution of 

computational steps related to the numbers in the problem‖ (p. 127). 

The discrepancy between formal and informal computation procedures is currently 

seen as an impediment to the initial learning and understanding of mathematics 

(Blôte, Klein, & Beishuizen, 2000) as well as a hindrance in the development of 

number sense and the use of flexible number operations at the end of primary school 

(McIntosh et al., 1992; Treffers, 1991). The study developed by Yang (2003) 

demonstrates that students‘ number sense can be effectively developed ―through 

establishing a classroom environment that encourages communication, exploration, 

discussion, thinking and reasoning‖ (p. 132). 

Many of the studies of children‘s strategies and procedures consider mental 

computation methods very important in solving addition and subtraction problems 

(Beishuizen, 1993; 1997; Blôte et al., 2000; Buys, 2001; Klein et al., 1998; 

Torbeyns, Verschaffel, & Gesquière, 2006; Verschaffel et al., 2007). Such problems 

can be solved by three types of procedures: one type is the split method (1010); the 

second is the jump method (N10) and the third type is called varying, compensation 

or short jump. In the 1010 procedure numbers are decomposed in tens and ones 

which are processed separately and then put back together. The 10s (1010 stepwise) 

is a 1010 procedure that conceptually can be located between the 1010 and the N10 

procedure. The N10 computation procedure (also the variant of N10C) starts with 

counting by tens up or down from the first, unsplit number. The A10 (adding-on) 
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procedure also starts from the first, unsplit number and goes from there to the next 

ten. The varying, compensation or short jump refers to bridging the difference in 

subtraction problems, like ―71 - 69‖ in one or two steps instead of subtraction the 

second number from the first one (Blôte et al., 2000, p. 222) or 86 - 25 = 85 - 25 + 1 

= 60 + 1 = 61 (Torbeyns et al., 2009, p. 80). 

All these three procedures belong to ―direct subtraction or indirect addition 

strategies‖ (Torbeyns et al., 2009, p. 80), when solving subtraction problems. 

Solving a subtraction problem by indirect addition means ―that the problem is solved 

by adding on from the subtrahend‖ (Van den Heuvel-Panhuizen & Treffers, 2009, p. 

108) and ―direct subtraction means that the subtrahend is subtracted from the 

minuend (e,g., 71 - 29 = ?)‖ (Torbeyns et al., 2009, p. 80). 

Apart from the nature of the numbers, Van den Heuvel-Panhuizen & Treffers, (2009) 

consider that there is more reason to calculate subtraction as an addition and so make 

use of the complement principle. It is important to consider subtraction as taking 

away (direct subtraction) and as determining the difference (indirect addition). The 

same authors say that ―in the subtraction problems the context opened up the indirect 

addition strategy‖ (p.109) 

The relationship between subtraction and addition is a big idea that children need to 

develop. Eventually, it is important that children know either strategy can be used. 

―Children need to understand the connection between addition and subtraction. 

Furthermore, they need to understand that comparison and removal contexts can both 

involve subtraction‖ (Fosnot & Dolk, 2001, p. 90). Traditionally teachers have often 

told learners that subtraction means ―take away‖. This is a superficial, trivialized 

notion of subtraction, if not erroneous (Fosnot & Dolk, 2001). 

When students exhibit number sense, they apply efficient mental strategies and they 

are able to manipulate numbers mentally (Heirdsfiled & Cooper, 2004). Some 

research (Blôte et al., 2000; Kamii & Dominick, 1998) has contended that mental 

computation promotes number sense if students are encouraged to formulate their 

own mental computation strategies.  

METHODOLOGY 

The aim of the research is to understand how students develop their number sense in 

a problem solving context using addition and subtraction of positive whole numbers. 

In particular, to understand the strategies and procedures children use in solving 

addition and subtraction problems under a classroom teaching experiment. The aim 

of this classroom teaching experiment is to promote the development of the number 

sense in solving addition and subtraction problems involving different situations and 

different numbers. In this case, a sequence of instructional tasks was elaborated with 

the main goal of promoting children‘s mathematics development  
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In the selection of tasks, we focused on four aspects: (i) context problems; (ii) 

selection of problems with ―good‖ numbers to promote the use of different strategies 

and procedures to facilitate the discussion and permit students to ask questions. 

Numbers that allow multiple combinations, whose structures go further beyond the 

level of calculation by counting; (iii) sequence of the problems; (iv) 

adaptation/modification of this sequence after the analysis of each observation. In 

addition instructional tasks, we also considered the classroom culture and proactive 

role of the teacher. In the classroom culture we accounted the nature of classroom 

norms, social and socio-mathematical norms (Yackel & Cobb 1996) 

The object of this study is a group of four children in elementary school integrated in 

a second grade classroom. The data collection was done during the school year 

2007/2008, with observations of nine classes, where the students resolved two 

problems, one of addition and other of subtraction. Data collection included (i) 

participant observation, with reports from several lessons, one or two each month, 

during the school year, concentrating on the way children solve addition and 

subtraction problems with different structures (the sequence of instructional tasks 

mentioned above). All the lessons mentioned were videotaped; (ii) interviews, 

conducted by the first author, with the four children three months after finishing the 

classroom teaching experiment, which were audiotaped and transcribed; (iii) written 

documents, namely, reports of classroom episodes, tasks and students‘ involvement 

in classroom activities.  

The principal source of data is participant observation with writing of researcher 

reports and collection of documents (Yin, 1989; Patton, 2002), by the first author of 

this paper, completed by the transcripts of video-taped classrooms. Each observation 

lasted at least two hours, and included observing children solving problems and 

listening to their explanations (Bogdan & Biklen, 1994; Erickson, 1986; Guba & 

Lincoln, 1994). According to the research plan, data analysis began simultaneously 

with data collection, in order to identify students‘ strategies and procedures and how 

they were developing them. The videotaped of classroom lessons were an important 

source of data. The lessons were analysed according to the sequence of problems 

presented by the teacher, and  for each one the strategies and procedures used and 

discussed by the students. 

In this paper, we describe Daniel‘s strategies and procedures for four subtraction 

problems during classroom teaching experiment. 

RESULTS 

During classroom teaching experiment Daniel solved several real world subtraction 

problems (take away, complete, compare difference unknown and compare referent 

unknown). In this section we present the resolutions of one subtraction problem 

compare difference unknown and three subtraction problems compare referent 

unknown. 
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Problem one (compare referent unknown). Stamps problem (figure 1) 

 

 

 

 

 

 

 Figure 1: Stamps problem 

This was the first problem compare referent unknown during classroom teaching 

experiment (3.
rd

 observation). Daniel uses a direct subtraction strategy and he uses a 

mixed computation procedure, N10/A10. He starts from the first unsplit number and 

after he takes away 32 (figure 2)  

 

 

 

 

 

Figure 2: The way Daniel solved problem two 

First, he takes away 30 and he gets 52. Then 52 – 2 (from decomposition 5 into 2 + 

3), and, finally, he takes away 3 and he gets 47, the answer of the problem. 

Problem two (compare difference unknown). In the cinema, Room 1 has 215 seats. 

Room 2 has 98 seats. How many more seats does Room 1 have compared to Room 

2? (4.
th

 observation). 

Daniel uses a direct subtraction strategy and he uses A10 computation procedure. He 

starts from the first unsplit number and then he takes away 98 (figure 3):  

 

 

 

 

 

Figure 3: The way Daniel solved problem 

one 

Portugal 

82 stamps Spain 

..? stamps 

? stamps 

 

 Portugal‘s box has 35 more 

stamps than Spain‘s box. How 

many stamps does Spain‘s box 

have? 
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When he explains how he carried out the computations, he says: 

Daniel: I did 215 – 15 (from 98 decomposed into 15 + 80 + 3) and I got 200. 

After, 200 minus 80 is 120. As I had taken away 95, there was still 3 missing 

so 120 – 3 is 117. 

Problem three (compare referent unknown). 303 students from Eleanor‘s school 

went to the cinema. These are 45 more students than from John‘s school. How many 

students from John‘s school went to the cinema? (8.
th

 observation) 

Daniel uses an indirect addition strategy and he uses a mixed computation procedure, 

N10/A10. He starts from the first unsplit number and after he adds 245 and he gets 

290. He says ―I already knew in my head that 45 + 45 is 90‖ (a basic fact that he had 

already automated), and plus 200 is 290. After he adds ten and gets 300, a 

benchmark number (A10). Finally, he adds 3 and reaches 303(figure 4). 

 

 

 

 

 

 

 

Figure 4: The way Daniel solved problem three  

Problem four (compare referent unknown). For lunch, Peter ate a Big Mac which 

has 490 calories and Antonio ate a piece of salmon fish. The Big Mac has 295 more 

calories than the fish. How many calories does the fish that Antonio ate have? (9.
th

 

observation). 

This is the last problem with this context during classroom teaching experiment. It is 

very interesting because first Daniel 

uses indirect addition strategy and a 

mixed computation procedure, 

N10/A10 and after he uses direct 

subtraction strategy and the same 

computation procedure (figure 5), that 

is, Daniel says that he can use both 

strategies for solving subtraction 

problem. 

 

Figure 5: The way Daniel solved problem four 
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DISCUSSION 

The results presented above show that Daniel is able to justify his computations 

using appropriate strategies and procedures. It seems that this is related to his mental 

computation ability, that is, to his flexibility with numbers and their manipulation. 

This seems to be related with the understanding of the meaning of numbers and 

operations, how he uses the reference numbers and how he recognises the 

reasonableness of the results. This understanding also enabled Daniel invent their 

own procedures. These findings are consistent with other studies (Heirsfield & 

Cooper, 2004; Blôte et al., 2000) 

The findings of this study also indicate that Daniel used most frequently N10 e 

A10 procedures and this may be related to the way subtraction problems are solved. 

Another finding of this study indicates that there is a connection between the use of 

indirect addition and the context of the subtraction problems they have to solve. This 

seems to happen in problems of complete, compare difference unknown and compare 

referent unknown, as the context of these problems help Daniel, to understand the 

relationship between addition and subtraction and to use addition operation. The use 

of additive strategy also helped Daniel to use more efficient procedures, inventing 

his own procedures. Also there seems to be a relationship between the chosen 

strategy and effectiveness of procedures that Daniel was able to use. 

 Those findings also present empirical evidence, that the development of strategies 

and procedures on solving multi-digit addition and subtraction problems were 

influenced by social and socio-mathematical settings that Daniel were involved in a 

classroom environment that encourages communication, exploration, discussion, 

thinking and reasoning. These findings are consistent with other studies, namely, 

Kilpatrick et al. (2001), Verschaffel, et al. (2007) and Yang (2003).  
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Anatoli Kouropatov                   Dina Tirosh  

Tel Aviv University 

Mathematical concepts and symbols are often introduced at first in a narrow mean-

ing. The harmful consequences of such initial presentation are widely reported in 

mathematics education. The present paper asks the following question:  Is it 

essential to introduce the equal sign in a narrow meaning as an operation and not in 

its broader meaning as a relation? We found that preschool children are capable of 

addressing changes simultaneously made to two quantities (adding or subtracting 

the same or even a different number of elements to/from two groups of objects), a 

capability needed when handling relations. These findings call for looking more 

closely at the possibility of introducing the equal sign in its broader meaning, as a 

relation ("the same"). 

Keywords: preschool, quantities, models, equality, equivalence 

EQUALITY AND SCHOOL MATHEMATICS 

The meaning of a sign in mathematics is often determined by its context. This 

phenomenon is evident also in the mathematics studied in elementary and middle 

schools. For example, the minus sign has at least three uses: a negative number, a 

binary operator that indicates an operation of subtraction, and a unary operation, 

acting as a demand to replace the operand by its opposite.  

The equal sign continues to attract considerable attention in elementary and middle 

school education (e.g., McNeil & Alibali, 2005; Vassiliki & Philippou, 2007; Mark-

Zigdow & Tirosh, 2008; Molina & Ambrose, 2008; Molina, Castro & Castro, 

2009). Consider the following expressions: 

(a) 2 + 3 = 5                                (b) 2 + 3 = 4 + 1 

Various studies have reported that elementary school students tend to assign only the 

meaning of the expressions of type (a) to the equal sign, namely, ―How many does it 

make together?‖ It has also been reported that children experience difficulty with 

expressions of type (b) (MacGregor & Stacey, 1999; Baroody & Benson, 2001; 

Keilpatrick, Swafford & Findell, 2001), which require calculating each side and 

verifying that the two sides are equal.  

The equation of type (a) can be interpreted as a demand to perform an operation, 

whereas in type (b) the sign is interpreted as a relation between the two parts.  The 

mathematical term ―relation‖ is broader than the term ―operation.‖ Because operation 

is a special case of relation, viewing equality as a relation covers both situations. 

Nevertheless, instruction often starts with assigning a relatively narrow meaning to a 

http://en.wikipedia.org/wiki/Subtraction
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term, and the broader interpretations are introduced only later. For example, the term 

―number‖ is often introduced with reference to non-negative whole numbers, and 

only later to broader sets of numbers, such as rational, irrational, and real numbers. 

Is it necessary to narrow the interpretation of the equal sign to that of an operation, 

or is it preferable to introduce the symbol in its broader meaning of a relation? This 

issue is of both theoretical and practical importance because the common pedagogic 

approach today is to initially introduce the equal sign only in the context of 

performing an arithmetic operation (Herscovics & Kieran, 1980; Saenz-Ludlow & 

Walgamuth, 1998; MacGregor & Stacey, 1999; Baroody & Benson, 2001; 

Keilpatrick, Swafford & Findell, 2001). Moreover, researchers have noted that the 

initial, narrow meaning assigned to the equal sign may have a long-lasting effect, and 

that children aged 5-12 tend to perceive the equal sign only as a request to calculate 

and not as a sign of relation (Herscowics & Kieran, 1980; Behr, Erlwanger 

&Nichols, 1980; Molina, Castro & Castro, 2009). The narrow interpretation of the 

equal sign dominates and often blocks other interpretations and references that are 

more general and are essential in various branches of mathematics (e.g., equations in 

algebra, identities in geometry and in trigonometry). There is some evidence that 

specific interventions can promote the interpretation of equality as a concept that 

expresses a relation among children aged 5-7 (McNeil & Alibali, 2005).  

Two research questions arise naturally from the above description:  

11 What is the understanding that children 3-5 years old have about equality 

before instruction? Specifically, do young children understand which 

manipulations can and cannot be performed on two quantities to maintain the 

equality relation?  

12 What types of responses are evident when young children are presented with 

tasks that address the basic properties of an equivalence relation?  

METHODOLOGY 

Sample  

Seventeen children from an upper-middle class neighbourhood in the central region 

of Israel participated in the study. The children were divided into two groups. Group 

1 ("Older Children") included nine children aged 4-5, with an average age of 4 years 

and 8 months. Group 2 ("Younger Children") included eight children aged 3-4, with 

an average age of 3 years and 10 months. Ten boys and seven girls participated in the 

study.   

Research tools  

Interviews 

We used task-based interviews (Goldin, 2000) as the primary research tool because 

they are well suited for the age of the participants. The interviews involved the 
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interviewee, the interviewer, and the tasks. Interviews were pre-planned, but there 

was room for ad hoc changes initiated by the interviewer based on the interviewee's 

responses. This procedure allowed us to focus both on the correctness of the 

responses and on the thought processes involved (Steffe, Nesher, Cobb, Goldin & 

Greer, 1996). Each interview, conducted separately with each child by the authors of 

the paper, lasted about 50 minutes, in two sessions of approximately 25 minutes 

each. The duration matches the concentration span of most children of this age, 

although some children required additional sessions. The interviews took place in the 

children's preschool, in a separate room, in a calm and pleasant environment. All 

interviews were audio recorded and transcribed. 

Tasks 

Two sets of tasks were developed, each addressing one of the two research 

questions: manipulation of two quantities (research question 1) and properties of 

equality as an equivalence relation (research question 2). The majority of the tasks 

were developed based on the ideas of Morris (2003), with some necessary 

adaptations to the young age of the participants. Note that no written symbols were 

used in the design of the tasks and in the communication with the participants. 

1. Manipulation of Two Quantities 

We focused on two types of manipulations: reciprocal (manipulations that must be 

applied to both sides of the equation simultaneously), and non-reciprocal 

(manipulations that can be applied to one side of the equation).   

Reciprocal manipulations  

1a. Equal Addition. The researcher places two boxes on the table. In each box he 

inserts 5 marbles in a way that the child can see the marbles in the boxes. The child 

is asked to compare the quantities in the boxes. The researcher says, "Let's check 

what we have in our boxes. Do we have the same number of marbles, or does one of 

us have more?" After the child and the researcher agree that the quantities in the 

boxes are equal, the researcher takes the same number of marbles (3) into each hand 

from a pile of marbles. He shows the marbles to the child and inserts the marbles 

from one hand into one box and from the other hand into the other box. The 

researcher says, "I put these marbles in your box and these marbles in my box. What 

do you think? Do we have the same number of marbles in our boxes or does one of 

us have more?" 

1b. Different Addition.  The researcher places two boxes on the table. In each box he 

inserts 5 marbles in a way that the child can see the marbles in the boxes. The child 

is asked to compare the quantities in the boxes. The researcher says, "Let's check 

what we have in our boxes. Do we have the same number of marbles, or does one of 

us have more?"  After the child and the researcher agree that the quantities in the 

boxes are equal, the researcher takes a different number of marbles from the pile of 
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marbles in each hand (3 marbles in one hand and 2 marbles in the other).  He shows 

the marbles to the child and inserts 3 marbles in the child's box and 2 marbles in his 

box. The researcher asks, "I put these marbles in your box and these marbles in my 

box.  What do you think? Do we have the same number of marbles in our boxes or 

does one of us have more?" 

1c. Reverse of Different Addition. Following the Different addition (1b) task, the 

researcher removes the amount of marbles that were added to each box, leaving 

equal quantities in each box. The child is asked to compare the quantities in the 

boxes. The researcher says: ,"Do we have the same number of marbles in our boxes, 

or does one of us have more?"  

1d. Equal Subtraction. This task is identical to Equal addition (1a), but instead of 

adding marbles the researcher removes the same amount of marbles from the two 

boxes. 

1e. Different Subtraction. This task is identical to Different addition (1b), but instead 

of adding a different number of marbles to the boxes the researcher removes a 

different number of marbles from the boxes (3 from the child's box, 2 from his box). 

1f. Reverse of Different Subtraction. Following the Different subtraction (1e) task, 

the researcher returns the marbles that were removed and asks, "What is in the boxes 

now? Do we have the same number of marbles in our boxes, or does one of us have 

more?"  

Non-reciprocal manipulations  

1g. Violation of Equality. The researcher gives an equal number of marbles to the 

child and to himself and validates with the child that the amounts are equal. 

Additional marbles remain in a pile on the table. The researcher asks, "Can we do 

something so that we won‘t have the same number of marbles?"  

1h. Creation of Equality. The researcher distributes a different number of marbles to 

the child and to himself (5 marbles to child, 3 to himself). Additional marbles remain 

in a pile on the table. The researcher asks, "What do you think, do we have the same 

number of marbles or does one of us have more? Is it possible to do something so 

that we will have the same the number of marbles? "  

2. Properties of Equality as an Equivalence Relation 

The equality relation is an equivalence relation. As such, it is reflexive, symmetrical, 

and transitive. Designing tasks to diagnose young children's comprehension of these 

properties (especially the reflexive property) is challenging. We developed the 

following three tasks to attempt to address these properties: 

2a. Reflexivity. The researcher points to the marbles in his box and says, "I don‘t 

want these marbles in my box, but I don't want to have less or to have more. Please 

help me." The child is expected to substitute one or more marbles with the same 
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amount of marbles, taken from the pile on the table. This task examines the 

substitution aspect of reflexivity. It appears that this aspect can be formulated in a 

meaningful way to young children. The task examines whether the child can ignore 

such factors as colour, shape, etc., and at the same time consider only the numerosity 

aspect and keep the same number of objects for both parties.  

2b. Symmetry. The researcher places two boxes on the table and inserts 5 marbles in 

each box. He validates with the child that the boxes contain the same number of 

marbles and closes the boxes. The researcher then swaps the places of the boxes, 

without opening them. The researcher asks, "I showed this to two children: Guy and 

Shay. Shay said that the boxes still have the same number of marbles. Guy said that 

there are more marbles in one of the boxes. Who is right?" 

2c. Transitivity. The researcher places two boxes on the table and inserts 4 marbles 

in each box. He validates with the child that the boxes contain the same amount of 

marbles, closes the boxes, takes one box, and gives the other box to the child. He 

then places a third box on the table and says, "Your box and my box contain the 

same number of marbles. Let's prepare a box for Sigal (a preschool teacher) with the 

same number of marbles that is in your box. What do you think, will Sigal and I have 

the same number of marbles or will one of us have more?‖  

The order of the presentation of the tasks was carefully planned to avoid creating a 

fixed pattern of responses that would accidentally lead to correct answers. For 

example, after several tasks for which the correct answers were "equal amounts," the 

child was presented with a task or a group of tasks for which the correct answer was 

"different amounts,‖ and vice versa. 

MAJOR FINDINGS 

1. Manipulation of Two Quantities  

Reciprocal Manipulations of Two Quantities 

In two of the six tasks grouped under this category (Equal Addition (1a) and Equal 

Subtraction (1d)) the same changes (addition/subtraction) were carried out 

simultaneously on two equal quantities. Eight Older Children and 5 Younger 

Children solved the addition task correctly, and 9 Older Children and 7 Younger 

Children solved the subtraction task correctly. The explanations of all of the older 

children were based on the idea that ―when you add the same thing to the same thing 

you get the same thing."  

At first, 3 of the 5 Younger Children who provided correct responses to the Equal 

Addition (1a) task were mistaken in their judgement, but after reducing the initial 

amounts of marbles in both groups from 5 to 3, two more Younger Children provided 

correct answers and used the concept ―when you add the same thing to the same 

thing you get the same thing‖ in their explanations. It is likely that the reduction of 
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quantities enabled the children to recognize the quantities. This behaviour may be 

related to subitizing (Dehaene, 1997).  

In the Different Addition (1b) and Different Subtraction (1e) tasks, different numbers 

of marbles are added or subtracted simultaneously to/from equal quantities. Eight 

Older Children solved the Different Addition (1b) and 7 the Different Subtraction 

(1e) task correctly. The Younger Children, however, encountered difficulties 

especially with the Different Subtraction (1e) task: 6 solved the Different Addition 

(1b) and 2 the Different subtraction (1e) task correctly. Those who solved these tasks 

correctly used the concept: ―If we add more to one side, this side gets more." 

Analysis of the interviews shows that 3 Younger Children mistakenly argued that 

―you took away more from me so now I have more.‖ It is possible that for these 

children addition is a dominant prototype of an operation, and therefore the term 

"more," whether adding or taking away more, is conceived as resulting in a higher 

number.   

In the four tasks discussed above, single changes were made on each of the 

quantities. The success rate of the children on these tasks was relatively high. But 

this was not the case for the Reverse of Different Addition (1c) and for the Reverse 

of Different Subtraction (1f) tasks. Only 8 children (4 in each group) succeeded in 

the Reverse of Different Addition (1c) task, and 6 children (5 Older Children and 1 

Younger Child) succeeded in the Reverse of Different Subtraction (1f) task. The 

most common, incorrect response was: "If we add more to one side, this side gets 

more," referring only to the latter change. A possible explanation of the difficulties 

that children faced with these tasks is related to the sequence of actions being carried 

out. The children were asked to follow two-stage manipulations on both sides and/or 

to understand that the process of adding/subtracting the same amount to a set does 

not change its numerosity (A=B, C<D A C < B D  (A C)\С=(B D)\D). It is 

likely that such tasks require a relatively advanced computational capacity, an ability 

to perceive quantities as partial sets and as wholes, and a capability to memorize the 

different steps that were carried out. Our findings suggest that children at this age 

have not yet developed these abilities, and consequently, in most cases they consider 

only one of the changes (the last one). 

Non-reciprocal Manipulations of Two Quantities 

Violation and Creation of Equality (1g/1h) are two facets of the same task. Nine of 

the older children and 7 of the younger ones succeeded in these tasks. The most 

common method used by the children to solve this task was to add marbles from the 

pile either to themselves or to the researcher. All but three children used the pile of 

marbles to create or violate the equality. Three children from the older group used 

another method: they transferred marbles from the researcher's box to their own or 

vice versa. Except for these three older children, the participants insisted on using 

the pile of marbles to create or violate the equality, and objected to attempts to form 
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or violate the equality without extra marbles.  This resistance may be related to 

young children's tendency to conceive the quantities in each box as a ―whole‖ from 

which parts are not to be taken away (e.g., Piaget & Szemirska, 1952). 

2. Properties of Equality as an Equivalence Relation 

Two of the three tasks included in this category were Symmetry and Transitivity. The 

Symmetry task was correctly solved by 8 Older Children and 6 Younger Children, 

and the Transitivity task by 8 Older Children and 5 Younger Children. The 

participants who succeeded in solving the Transitivity task used a strategy that may 

be represented schematically as follows: A = 4, B = 4, C = 4 and therefore C = A 

(―The same number in all the boxes‖), and not the classic transitive strategy of A = 

B, B = C  A = C. 

To examine reflexivity we chose a "substitution‖ activity (the number of elements 

does not change if one or more elements are substituted by the same number of 

elements). Such a substitution may be considered reflexive. The distribution of 

responses to this task (3 Older Children and none of the younger ones solved the task 

correctly) and the nature of the accompanying explanations suggest that the majority 

of the children failed to understand the task. Common responses were: "If you don‘t 

want these marbles, you can add others," "Take more," and "You can throw them 

away." The children‘s difficulty may have been the result of the phrasing of the task, 

but it seems that an inherent difficulty with reflexivity is the need to relate to equality 

within only one set. In their concrete world, the children find it challenging to relate 

to equality without the presence of at least two objects (how can one perceive that 

something is equal to itself if there is only one "thing" there).  

This complexity manifests later in the difficulties that students often experience 

when asked to relate to equalities such as 5=5 and x=x (e.g., Herscovics & Kieran, 

1980; Saenz-Ludlow & Walgamuth, 1998; Morris, 2003). It appears, however, that 

in the case of equality, the construction of meaning of symmetry, transitivity, and 

even reflexivity do not seem to indicate an inherent, epistemological obstacle. 

DISCUSSION 

The present study addressed two mathematical concepts that are unequivocally 

defined: equality and operation. Equality is defined as a relation (equivalence) and as 

an operation (in the context of this paper, a binary relation applied to a pair of natural 

numbers). Formally, the concept "operation" is a special case of the concept 

―relation.‖  

The formal terms can be translated into common language familiar to children using 

two well-known models. In the context of equality, the term "relation" may be 

interpreted as: "What can be said about two quantities (more than, less than, equal to, 

the same)?‖ (Model 1). The term "operation" may be introduced by asking: "How 

many are there together?‖ (Model 2). The study focused primarily on examining 
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young children's knowledge of Model 1. Two major considerations for focusing on 

Model 1 were that (a) Model 1 is more general (Model 2 is a special case of Model 

1), and (b) in reports of difficulties that students encounter when facing situations in 

which Model 1 must be applied, the barriers are often attributed to the primacy effect 

of introducing Model 2 first and using it excessively in elementary schools, while 

almost neglecting the use of Model 1 (e.g., Fischbein, Deri, Nello & Marino, 1985). 

In the present study we attempted to examine preschool children's capability to 

address various manipulations of two quantities ("two sides of the equal sign") and 

the properties of equivalence relation. Knowledge of young children's conceptions 

can assist educators in decisions about introducing Model 1 at an earlier age, 

possibly as the model to be presented first to young children. As noted above, many 

mathematical symbols and concepts carry several meanings, both narrow and broad. 

Often, a narrow interpretation of a concept is introduced first, assuming that it is 

easier to grasp (for example, multiplication is introduced only as ―number of times‖). 

Such narrow presentation often results in conceptual blockages that are widely 

reported in the research literature (e.g., Fischbein, 1993). A related question is: What 

information is needed to determine whether a concept should be presented in a 

narrow or in a broad meaning? In the present context, the question is: Are preschool 

children ready for the introduction of the concept of equality (and the equal sign) as 

an equivalence relation?  

The findings of the current study suggest that preschool children are able to correctly 

solve tasks involving reciprocal and non-reciprocal manipulations of two quantities, 

and some tasks that draw upon the properties of equality as an equivalence relation. 

It seems that young children are capable of addressing some changes that are made 

simultaneously on two quantities (adding or subtracting the same or even a different 

number of elements to two groups of objects). This capability is necessary for 

handling relations. Our findings call for a closer examination of the effectiveness of 

introducing the concept of equality and the equal sign in its broader form, as a 

relation ("the same"). The findings of our study suggest that in the case of equality, 

many of the substantial properties of this concept are acquired at a very early age 

without any intentional intervention.  

To summarize, the present study suggests that young children are capable of 

performing tasks involving comparison of quantities. The findings support the 

implementation of instructional sequences that attempt to present equality and the 

equal sign, from the earliest stages of instruction, in its broadest sense, as a relation 

and not only as an operator. In other words, the study calls for a re-examination of 

the common practice of introducing equality and the equal sign only as an operation 

("How many are there together") and not as a relation ("What can be said about two 

quantities‖). More research, on a larger sample of children, is needed to validate 

these findings.  Additionally, some of the tasks that are included in the interview 

protocol should be modified (especially those that attempted to address reflexivity), 
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to critically examine the findings reported in this study and the feasibility of the 

approach that we propose. 
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USING THE DOUBLE NUMBER LINE 

TO MODEL MULTIPLICATION 
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As part of the research of the ICCAMS project, we have been exploring Year 8 

students‘ (age 12–13 years) understanding of multiplicative structures and 

developing materials to enhance this understanding. In this paper we discuss some 

of our work related to the double number line and its use as a model for 

multiplication. 

Keywords: models, multiplication, double number line 

INTRODUCTION 

Vergnaud (2009) argues that a concept‘s meaning arises from a variety of situations 

and puts forward the notion of a conceptual field, as a way of binding situations and 

concepts together. In the case of multiplicative structures, this conceptual field is 

extremely complex, as can be seen, for example, from the myriad of models put 

forward by the Rational Number Project (eg Behr et al, 1991), or from the intricate 

‗learning trajectories maps‘ woven by Confrey et al (2009). Anghileri and Johnson 

(1992) identify 6 key aspects of multiplication (and division), which they list as: 

equal grouping, allocation/rate, number line, array, scale factor, Cartesian product. 

They argue that ―children will need to become familiar with the different situations 

that embody these aspects‖ (ibid, p170).  

Davis (2010) describes how ‗concept study‘ can be used to draw out and develop 

teachers‘ mathematical knowledge for teaching. He discusses how a group of 

teachers worked on the concept of multiplication. One of their activities was to 

produce a list of ‗realisations of multiplication‘, which included these items: 

grouping process; repeated addition; times-ing; expanding; scaling; repeated measures; 

making area; making arrays; proportional increase; splitting; skip counting; 

transformations; stretching/compressing a number line.  

Of course, this list of realisations is in no sense definite and Davis makes the 

important point that the teachers‘ conceptions of multiplication (and how it might be 

engaged with in the classroom) was continually shifting over time. We would argue 

that the same will apply to school students, though depending on the extent to which 

they are allowed to engage with these ideas. In this regard, it is interesting to note the 

guidance on multiplication offered by the National Numeracy Strategy, which was 

set up by the UK government to offer advice on the teaching of mathematics. In the 

Strategy‘s Framework document for primary schools (DfEE, 1999), it is suggested 

that students as early as Year 2 (6–7 year olds) should understand multiplication in 
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terms of repeated addition and rectangular arrays. Similar advice is offered for Year 

3 students, and it is suggested that the idea of scaling should also be introduced. 

Some advice on understanding multiplication is also given for older students, but this 

is subordinated to advice on performing calculations. Thus the use of models such as 

the array is not mentioned again in this document, nor in the Strategy‘s subsequent 

Framework document (DfEE, 2001) for early secondary school (Years 7, 8 and 9). 

One gets the impression that by the time students reach secondary school, 

multiplication is somehow meant to be ‗understood‘ and no longer needs to be 

supported by models. So for example, it is stated that Year 7 students should 

understand that ―multiplication is equivalent to and is more efficient than repeated 

addition‖ (ibid, Section 4, p82), but there is little indication of what ‗multiplication‘ 

means here, ie in what situations it might be modeled or realised. Unfortunately, the 

paucity of models in the Framework documents is mirrored in most current 

secondary school mathematics textbooks in the UK. 

Extensive work on the didactical use of models has been undertaken in Holland, 

from the perspective of RME (see eg Van den Heuvel-Panhuizen, 2002). This work 

makes an interesting distinction between ‗models of‘ and ‗models for‘, whereby the 

development of a more formal mathematical understanding is seen as a shift from the 

construction and use of the former to the latter.  

THE DOUBLE NUMBER LINE 

As part of the work of the ESRC-funded ICCAMS project
1
 we have been exploring 

Year 8 students‘ (12–13 year olds) understanding of multiplicative structures, with 

the aim of developing teaching materials to enhance this understanding. From our 

work so far, including group interviews and short teaching sequences, but also the 

large-scale use of written tests, it is clear that many secondary school students have a 

very shaky understanding of multiplication, based in only a very limited way on 

models that could support and develop their understanding. 

We think that one interesting and important model for multiplication is provided by 

the double number line, and it is this model that we focus on in this paper. The 

double number line also serves as a model of a variety of contexts that should be 

reasonably accessible to students (eg scales on a map; a one-way stretch; 

conversions, such as £ to €). An attraction of this model is that it offers a fairly gentle 

way of departing from an additive approach to multiplication. Repeated addition 

(perhaps modelled by skips along a number line) provides a salient and reliable (and 

quite efficient) model for the multiplication of (small) whole numbers (eg 3×7 can be 

thought of as 3 skips, each of 7 units, along the number line, starting at 0). However, 

even in situations that involve multiplication by simple rational numbers, eg ×1.5, we 

have found that many students stick to an additive strategy (in this case, ‗rated 

addition‘). 
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Consider the item in Fig 1 (below), taken from the CSMS Ratio test (Hart, 1981). 

This was answered correctly by 14 % of a representative sample (N=309) of Year 8 

students in 1976, and by a similar proportion (12%) of a representative sample 

(N=754) of Year 8 students in 2008. When we have interviewed students on this 

item, we have found that many students use an inappropriate ‗addition strategy‘ 

(Karplus & Peterson, 1970) arguing along the lines of ‗8+4 = 12, so RS = 9+4 = 13‘. 

Those who do solve the task successfully tend to use an argument of this sort: ‗8 + 

half of 8 = 12, so RS = 9 + half of 9 = 9 + 4.5 = 13.5‘. Students tend not to go for the  

more direct approach of scaling by ×1.5, 

along the lines of ‗12 = 8×1.5, so RS = 

9×1.5 = 13.5‘. It is worth pointing out that 

this scaling approach is actually more 

appropriate here, since rated addition does 

not fit the geometric situation: one can‘t 

really add a curved line of length 8 units to 

a smaller version of the line of length 4 

units, and thereby make a larger  version 

of the line of length 12 units! It is perhaps 

for this reason that the task is so difficult.  

 

Fig 1: Curly Ks item (Hart, 1981) 

Thus, in a study using items derived from Hart (1981) but with the numbers more 

closely matched, Küchemann (1989) found that while a Ks item was answered 

correctly by only 25% of students (N=153), a recipe item, where rated addition 

makes perfect sense, was answered correctly by 64% of students from a comparable 

sample (N=154). 

The double number line provides a neat way of representing (or indeed embodying) 

multiplicative relations, such as ×1.5. Consider the pair of lines A and B in Fig 2a, 

where 0 and 8 on line A are lined-up with 0 and 12 on line B.  

  

Fig 2a Fig 2b 

We know that 12 is 8×1.5, and we can thus make the number lines represent the 

mapping ×1.5 (or x → 1.5x, or y = 1.5x, etc.) by drawing linear scales on each line 

(Fig 2b): any number on line A is now mapped onto a number positioned directly 

below it on line B that is 1.5 times its value. The great strength of this representation 

is that it is not just mapping 8 onto 12, but showing the mapping ×1.5 regardless of 

any particular pair of numbers that we may be considering. Thus the operation ×1.5 

is brought to the fore. Of course, this may not be perceived in this way by all 

students. The diagram can, for example, be read as showing a move along a number 

line from 0 to 12, in 8 skips of 1.5 units (with line A representing the number of 
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skips and line B the distance skipped); in other words the diagram can also be 

interpreted as showing repeated addition. 

Scales on a map are well known examples of double number lines. One kind shows 

distances on the map (measured in cm, say) and corresponding distances on the 

object depicted by the map (measured in km, say). The ruler in Fig 3a is of this sort. 

Another kind shows how distances represented on a map can be read in different 

units (eg feet and metres). Fig 3b shows a scale of this sort used by Google Maps. 

  

Fig 3a: A ruler for scaling feet to mm Fig 3b: A scale used by Google Maps 

A double number line can also be used to represent an enlargement, or more 

specifically, a one-way-stretch. An example is shown in Fig 4b, which shows the 

result of stretching scale A in Fig 4a by a factor ×1.5. (Note the similarity to Fig 2b.) 

  

Fig 4a: Two identical scales, A and B Fig 4b: A ×1.5 stretch applied to scale A 

RELATED WORK 

Our approach to the didactical use of models is perhaps similar to the Dutch 

approach, as embodied by RME, though we would not be as strict about not handing 

ready-made models to students. Van den Heuvel-Panhuizen (2002), in describing 

RME, gives a nice illustration (ibid, Fig 11, p12) of how the number line can be used 

to support students‘ learning. She adds that 

The number line begins in first grade as (A) a beaded necklace on which the students can 

practice (sic) all kind of counting activities. In higher grades, this chain of beads 

successively becomes (B) an empty number line for supporting additions and 

subtractions, (C) a double number line for supporting problems on ratios, and finally (D) 

a fraction/percentage bar for supporting working with fractions and percentages. (p12) 

The fraction/percentage bar and, to a lesser extent, the double number line, feature 

strongly in materials developed by RME, as can be seen in the TAL-project materials 

in the Netherlands (eg, Van Galen et al, 2008) and in the Mathematics in Context 

materials in the USA (eg, Keijzer et al, 2006). The use of the double number line is 

not yet widespread in the UK, although the ‗fraction wall‘, which has similarities to 

the fraction bar, has been around for a long time (eg, Watt et al, 1967, p103). 

However, since the introduction of the National Numeracy Strategy (DfEE, 1999) the 



Working Group 2 

 CERME 7 (2011) 330 

single number line has been used extensively in UK primary schools, which may 

partly explain the dramatic rise in facility of the CSMS Decimals item (Brown, 1981) 

shown in Fig 5. When we gave this to a 

representative sample (N=294) of Year 8 

students in English schools in 1977, it had a 

facility of 37%, but with a similar sample 

(N=767) in 2008/2009 this had risen to 

78%
2
. 

 

Fig 5: CSMS Decimals item 6e 

TASKS AND FINDINGS 

Our data on Year 8 students‘ use of the double number line are still exploratory. 

However, we have sufficient data to give a sense of some of the affordances of the 

double number line and of some of the difficulties that students encounter. Put 

another way, our current data suggest that the development of classroom activities 

involving the double number line is worth pursuing for us, but that learning to 

construct and use the model may be far from trivial for students. We report informal 

data from three sets of tasks involving students from two classes. The first task asks 

students to use a double number line to represent equivalent fractions or to evaluate a 

percentage. The second task involves a one-way-stretch, while the third asks students 

to convert information on a map from metres to feet. 

Fractions and percentage tasks 

The task in Fig 6a gives some indication of whether students can, in certain 

circumstances, appreciate the need for a linear scale (although it clearly tests much 

more than this). The task in Fig 6b can be solved in a variety of ways. One approach 

is to see the double number line as representing a mapping, whose value (leaving 

aside the units, or in this case the %) is given by ×100’40, ie ×2.5. We gave these 

tasks to an above-average attaining Year 8 class as a homework. The tasks were 

given cold, i.e. without any kind of introductory work.  

For the task in Fig 

6a, most students 

made effective use 

of the given scale 

(of 12ths) to mark 

off the required 4ths 

(as in Fig 7a). Some 

partitioned the line 

into 4 parts but 

seemed to ignore 

the given scale (Fig 

7b), while a few 

 

Fig. 6a 

 

Fig.6b 
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students tried to use the given scale but did so erroneously (Fig 7c).  

   

Fig 7a Fig 7b Fig 7c 

Fig 8 shows responses to the percentage task shown in Fig 6b. Fig 8a shows a 

successful response to the item, but it seems likely that the student achieved this by 

making use of his (impressive) knowledge of fractions, decimals and percentages, 

rather than making use of the structure embodied by the double number line. On the 

other hand, the students giving the responses in Figs 8b and 8c do seem to have made 

use of the double number line and interpreted it successfully as representing the 

mapping ×2.5 or, in the case of Fig 8c, seeing this in terms of the more grounded, 

rated addition approach of ‗double and add a half‘.  

  
 

Fig 8a Fig 8b Fig 8c 

Elastic strip task 

Part of the elastic strip task is shown in Fig 9. We tried the task as a starter activity 

with several Year 8 classes and also interviewed small groups of students on the task. 

In one Year 8 class of roughly average attainment we displayed the task on the 

whiteboard and also acted it out using a long elastic strip. The demonstration was 

quite dramatic and intriguing but the 

task still proved very demanding for 

this group. After some small-group 

discussion, three possible solutions 

emerged for the new distance of the 

red mark from the left hand edge, 

namely 16cm, 12cm and 9cm. The 

class teacher wrote these on the 

board and asked for a vote. The 

three responses received 12, 4 and 9 

votes respectively. The 16cm 

response comes from using the 

addition strategy (either ‗the end has 

moved 30cm–20cm=10cm, so the 

6cm mark will move 10cm‘, or, less often, ‗the 6cm mark is, and will remain, 14cm 

from the right hand side‘). We were aware of only 3 students who had themselves 

Fig 9: The elastic strip task 
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come up with the correct value of 9cm, though there might of course have been 

others. Two had used rated addition (‗The stretched strip is half as long again; 6cm + 

half of 6cm = 9cm‘) while one student had used an argument based on the idea that if 

the strip was 10cm long the red mark would be 3cm from the end (this is quite a 

sophisticated argument since it would not be possible to enact this in practice).  

Fig 10 shows a drawing that arose during an interview with 4 students (A, B, C and 

Z) from the previously mentioned above-average Year 8 class. The drawing of the 

20cm strip and the 30cm stretched version was done by the interviewer. The vertical 

marks labelled A, Z, B, C, on the 30cm strip were drawn by the students. We started 

by considering the image of a line 5cm from the left hand end of the 20cm strip after 

the strip had been stretched to 30cm. Reading from the left, the first set of vertical 

lines (labelled A, Z, B and C) on the 30cm strip were students‘ estimates of the 

position of the image of the 5cm line. [The second set of lines labelled C, B, Z and A  

 

Fig 10: Interview responses to the elastic strip task 

were their initial estimates for the image of the central dot drawn 10cm along the 

20cm strip.] Student C justified his mark in terms of the addition strategy (ie the right 

hand end of the strip had moved 10cm, so the 5cm mark would move 10cm). Other 

students thought it would move a bit less than this (and hence drew their images to 

the left of C‘s image). However, initially their estimates were purely qualitative, 

though eventually, after considering the image of the midpoint, they adopted a 

successful rated-addition approach (the 5cm mark moves half this distance, ie 2.5cm, 

so it ends up 7.5cm from the left hand end).  

A map task: Westgate Close 

Our third task was based on a map of a short private road, Westgate Close. One 

version of the task is shown in Fig 11. As with the elastic strip task, we used this as a 

starter with some Year 8 classes. We would argue that it is more obvious in this task, 

than with the elastic strip, that the scales are linear (it would be very odd if for part of 

the road, a given number of feet matched a certain number of metres but that 

somewhere else on the road the same given number of feet matched a quite different 

number of metres!). Nonetheless, the addition strategy was still common here, with 

students calculating that the distance of El‘s house along Westgate Close was 107 ft  
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from Roman Road (50–15=35, 

35+72=107, or 72–15=57, 

50+57=107). However, the task 

also provoked an interesting 

variety of correct, or partially 

correct strategies. For example, 

several students in a low 

attaining Year 8 class, 

estimated the distance by 

marking-off 50 ft lengths.  

Often this lead to quite good 

 

Fig 11: Westgate Close 

estimates (Fig 12a), of between 200ft and 250ft (the actual answer is 240ft). Though 

these students simply ignored the information about the distances in metres, their 

estimates might stand them in good stead once they do try to calculate, especially if 

they use an inappropriate strategy. 

 

 

Fig 12a Fig 12b 

As with Elastic Strip, the task proved difficult for the average-attaining Year 8 class. 

One student (Fig 12b) used what might be called a ‗function‘ approach to arrive at 

the multiplier 3.3 (50 ≈ 15×3.3), and used this to calculate 72×3.3 (but as can be 

seen, he made arithmetic and transcription errors to arrive at a widely-off answer of 

91.87ft). Another student used an effective rated-addition strategy to move along the 

road in steps of 15m/50ft, to arrive at 75m=250ft; however, having thus overshot the 

72m distance by 3m, she then subtracted 3 from 250 to arrive at 247ft.  

In the above-average attaining Year 8 class, one pair of 

students used a ‗scalar‘ approach; they determined that 

72 is 4.8 times 15, and used this multiplier to calculate 

the distance of El‘s house in feet: 50ft × 4.8 = 240ft. 

This pair also made use of a ratio table (Fig 13) which 

may well have helped them structure their work. 

 
Fig 13: Ratio table 

However, not all students in this class were immune from using the addition strategy, 

and one pair used a hybrid scalar/addition strategy to come up with an answer of 

212ft, based on the observation that 72 can be expressed as 15×4 + 12 (leading to 

50×4 + 12 = 212). 
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DISCUSSION 

The findings reported above suggest that some students can make productive use of 

the double number line as a model of contexts that involve multiplication-as-scaling, 

even when they may have had little or no prior experience of using it in this way. But 

equally, there are students who do not readily see the multiplicative structure of the 

contexts (or of the model), which suggests that developing this insight is not a trivial 

matter. Nonetheless, we would argue that it is worth giving students experience of 

the model (both as a model of multiplication-as-scaling contexts, and as a model for 

multiplication-as-scaling concepts), since scaling is an important aspect of 

multiplication, and since it is important to be able to discern whether a context 

involves scaling. Also, the model is well suited to showing the contradictions 

inherent in the addition strategy when applied to scaling contexts (for example, in the 

case of a ×1.5 stretch applied to a 20cm elastic strip fixed at one end, if students use 

the addition strategy to argue that points on the strip will move 10cm further from 

the fixed end, it is fairly easy to provoke a contradiction by asking what happens to 

the mid-point of the strip, or to a point very near the fixed end).  

The double number line also links nicely to other powerful representations and we 

should help students develop these, in particular links with ratio tables, and with 

mapping diagrams and Cartesian graphs (the latter are also based on number lines, 

but in the case of Cartesian graphs the lines are orthogonal rather than parallel). At 

the same time the double number line may not always be the most appropriate model 

for representing and/or solving multiplication tasks, and we would argue that 

students, including those at secondary school, need extensive and ongoing 

experience of other models of multiplication, in particular arrays and the area model. 

NOTES 

1. ICCAMS (Increasing Student Competence and Confidence in Algebra and Multiplicative Structures) is a 4-year 

research project funded by the Economic and Social Research Council as part of a wider initiative aimed at identifying 

ways to participation in Science, Technology, Engineering and Mathematics (STEM) disciplines. Phase 1 of the project 

consists of a large-scale survey of 11-14 years olds‘ understandings of algebra and multiplicative reasoning in England. 

This is followed in Phase 2 by a collaborative research study with two teacher-researchers in each of four secondary 

schools. The aim is to examine how formative assessment can be used to improve attainment and attitudes, and finally 

how the work can be disseminated on a larger scale. 

2. In 2008/2009, we re-administered three of the CSMS tests that had been developed in the 1970s - Algebra, Decimals, 

and Ratio. In general performance on the tests was very similar to the 1970s; the most notable exceptions were some 

Decimals items that related to measurement, where performance improved in 2008/2009. 
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PROPORTION IN MATHEMATICS TEXTBOOKS IN UPPER 

SECONDARY SCHOOL 

Anna L. V. Lundberg 

Linkôping University, Sweden 

Proportional reasoning and knowledgeof proportion are prerequisites for success in 

higher studies in mathematics. The aim of this paper is to investigate what 

possibilities Swedish upper secondary school textbook tasks offer students to develop 

knowledge about proportion during the first course in mathematics. The 

threetextbooks investigatedin this paper show a variation in ―know – how‖ of 

proportional reasoning but less variation regarding knowledge about proportion. 

Keywords: Proportion, Textbooks, Upper secondary school, Anthropological Theory 

of Didactics. 

BACKGROUND 

To understand and use calculations with proportionality isone of the learning goals 

for grade nine in Swedish compulsory school (Skolverket, 2001). However, results 

from TIMSS 2007 show that 50% of the students in grade eight have difficulties 

solving tasks about proportionality (Mullis, 2008). But what about the students at 

upper secondary school? How are they managing proportions? International research 

also shows a predominance to use the linear model in solving proportion tasks in 

upper secondary school (De Bock, Vershaffel, &Janssens, 1998). My ongoing study 

attempts to shed light on various aspects of how proportion and proportional 

reasoning are exposed in textbooks at upper secondary school level in 

Sweden.According to several studies (e.g. Johansson, 2006),Swedish mathematics 

teachers rely on textbooks mainly in terms of exercises, making the textbook a 

critical factor in the classroom to study. 

The aim of this paper is to present the first results from an investigationinto what 

possibilities Swedish upper secondary school textbook tasks offer students to 

develop knowledge about proportion during the first course in mathematics. 

THEORETICAL FRAMEWORK 

This section will present the theoretical background from which the analytical tool 

used for this study was developed by first discussing how the notions of proportion 

and proportional reasoning were interpreted, then shortly outlining the theory linked 

to the tool, and finally presenting the tool as constituted by its four main parts. 

Proportion and proportional reasoning 

The term proportionis used when two quantities x and y are related by an equation 

y=kx , where k is a constant. Then y is said to be (directly) proportional to x, which 

may be written xy (The Concise Oxford Dictionary of Mathematics, 2009). It is 
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also common to use the term proportion for some specific relations such as direct 

proportion xky , square proportion 2xky , inverseproportion
x

k
y ,inverse 

square proportion 
2x

k
y andinversesquare rootproportion

x

k
y . 

I am also investigating proportional reasoning tasks thoughit is difficult to set up 

ageneral definition of proportional reasoning, maybe because proportion is such a 

complex concept. I will here use the description of proportional reasoning found in 

Lamon (2007, p. 638). 

According to Cramer and Post (1993) and several other studies there are three central 

types of problem situations in proportional reasoning: numerical comparison, 

missing value, and qualitative prediction & comparison. In numerical comparison 

problems, the answer does not call for a numerical value. The student compares two 

known complete rates, as in Noelting´s (1980) well known orange juice 

problem.Lybeck (1986) among others, found that there exist two different main 

solution strategies: the A-form or the so-called Within Comparison, where quantities 

of the same unit are compared, and B-form, a Between Comparison across different 

units. In missing value problems three objects of numerical information in a 

proportion setting are specified with a fourth number to be discovered. A popular 

suchtask is the tall-man short-man problem (Karplus, Karplus, & Wollman, 1974). 

The third problem situation, qualitative prediction & comparison, does not demand 

memorized skill. These types of problems force the students to gain knowledge about 

the meaning of proportion with qualitative thinking (Cramer & Post, (1993). 

Knowledge and know-how related to proportion tasks 

As this study is focused on how a specific mathematical notion is treated in the 

school institution in terms of types of tasks and strategies, The Anthropological 

Theory of Didactics, ATD; (see e.g. Bosch & Gascon, 2006)offers a useful approach. 

The ATD postulates an institutional conception of mathematical activity, starting 

from the assumption that mathematics, like any other human activity, is produced, 

taught, learned and diffused in social institutions. Mathematical work can be 

described in terms of mathematical organisation. A mathematical organisation(MO) 

is constituted by two levels, the know-how(task & techniques) and the (discursive) 

knowledge(technology & theory) related to a given task (Chevallard, 2006). Task – 

different kinds of tasks to be studied, Techniques – how to solve tasks, Technology – 

justification and explanation of the techniques, Theory – founding technology and 

justification of technology.In this study, there are influences from two MO‘s, one 

where proportion is defined as a 'dynamic' notion MO1 and one where proportion is 

defined as a 'static' notion MO2(see below). 

In order to study a phenomenon a Reference Epistemological Model (REM) should 

be created by the researcher(Bosch & Gascñn, 2006). Otherwise it is difficult to be 
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independent in relation to the educational institutions understudy and the result may 

be a model that is implicitly imposed by the educational institution. The REM is a 

corresponding body of mathematical knowledge that is continuously developed by 

the research community and connected to the different steps of the didactic 

transposition. The transposition process describes how the mathematical knowledge 

is transformed from the institution of knowledge production through the educational 

system to the classroom (Bosch & Gascñn, 2006). 

The knowledge of proportion 

As a REM and theory category, the two MO‘s of describing proportion in textbooks 

was used. MO1 was observed in a pilot textbook study(Lundberg & Hemmi, 2009), 

where it was found that a frequent way to present proportionis by the relationship 

y = k 
.
x, where y is dependent of x and k is a fixed constant. This has been named 

adynamic notion of proportion(Miyakawa & Winsløw, 2009), as we have different 

values of x as input producing specific outputs as y depending on the value of k.  

Another way to describe proportion is static(Miyakawa & Winsløw, 2009). It is 

possible to identify this phenomenon in Euclid‘s definition of proportion(Euklides & 

Heath, 1956), where it is regarded as static in nature because it deals with pairs of 

―magnitudes‖ rather than numbers. A magnitude could be a length, like the diagonal 

of a square. For the Greeks it could not be measured in centimetres, but nevertheless 

multiplied in a geometric sense (e.g. enlargement).The static way of defining 

proportion is more general in comparison with the dynamic notion because it can be 

defined in n-tuples of real numbers and does not constrain proportion to pairs. 

An example from a Swedish textbook (Gennow, Gustafsson, Johansson, & Silborn, 

2003, p. 314) will serve as an illustration of static and dynamic definition: 

―An electric radiator influences by power P (the thermal energy emitted per second) of 

voltage the U that the radiator has been connected to. The table shows some values of U 

and P that belong together. Check if there is a relation between P and U represented by 

P k U 2 and if so calculatek. The power has the unit Watt (W) and the voltage Volt (V).  

U (V) 120 160 200 240 

P (W) 144 256 400 576 

Solution: To investigate k
P

U 2
 we put a new row in the table. 

P/U
2 

(W/V
2
)
 

0,010 0,010 0,010 0,010 

We obtain the same result for all pairs. This implies that the relation can be written as 

P k U 2 and k 1,0 10 2W /V 2. In electricity the unit W/V
2
 is denoted S (Siemens). The 

relation can be also be written P
U 2

R
 where k

1

R
 and R has the unit  (Ohm).‖ 

Auth transl. 
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In the beginning of the example the static definition is found in the table where the 

given data are n-tuples of Uand P. In the solution it is necessary to switch to a 

dynamic definition because it is eligible to calculate kin order to check if there is a 

proportionality that can be expressed by the general formula P k U 2. 

The know-how in calculating proportional tasks 

To investigate solution techniques for proportion tasks a study by Hersant (2005) 

was used because it had a lot of similarities with this study. She found six different 

types of techniques in her analysis of solved proportion examples in French 

textbooks.To show the differences between these categories of solution techniques 

(1-6 below, Auth. transl.) I will use the following task provided by Hersant: 

If 18 meters of fabric costs 189 francs, how much will 13 meters cost? 

1 Reduction by unit  

If 18 meters cost 189 francs, 1 meter will cost 18 times less or 
18

189
 , and 13 meters 

will cost 13 times more than one meter or 
189

18
13 where x

189 13

18
. The answer will 

be 136.50 francs. In the context of the theory of proportionalities, it will be justified 

by the characteristic of the property proportion expressed here as part of quantities. 

Two quantities U and V are proportional so when U is multiplied by 2, 3, 4…λ (and 

λ real), V is multiplied by 2, 3, 4,…. λ.  

2 Multiplication by a relationship 

Now consider the following solution: If 18 meters cost 189 francs, then 13 meters 

will cost 
13

18
189. Pay attention to that neither ratio nor proportion are used here. The 

technique of within measures proportion is used.  

3 Use of proportion 

If we let the price for 13 meters of fabric be x francs then the price should be in 

proportion to the length of the fabric
189

18

x

13
 so, 189 13 18 xand x

189 13

18
. This 

technique differs from the earlier two when the proportion involves two different 

measures, length and price (between measures proportion). 

4 Cross multiplication 

Now consider the resolution that follows: Let x be the price of 13 meters of fabric. 

(1) 
189

18

x

13
then (2) 189 13 18 x  and x

189 13

18
 that can be summarized as follows in 

a table: 
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So 189 13 18 x  and x
189 13

18
. In the spirit of this 

technique, the equality (1) does not match proportion 

but more rather a technique with a formal setting of 

the magnitudes and detached from the theories of 

proportions. 

5 Use of coefficient 

Another way of arguing is as follows: The fabric costs 
189

18
 francs/meters, so 13 

meters of fabric cost 13
189

18
 francs. Here again a reduction technique to unit is used 

but with no connection to proportion.  

6 Other possible techniques 

It is also possible to solve the task with a graphical solution method. However, if 

only one value is calculated it seems to be a waste of energy to use graphical 

technique unless you don‘t have access to a graphic calculator then it is very easy to 

sketch a graph. 

RESEARCH METHODOLOGY 

To investigate what possibilities textbooks offer upper secondary students in Sweden 

to develop knowledge about proportion during the first course in mathematics, the 

following research questions were set up (in terms of the ATD): What types of 

textbook tasksinvolve proportion? What techniques are used in the given solutions of 

proportion tasks? What explanations and justifications (technologies/theory) are 

presented in the proportion tasks? To answer these questions, an analytic tool was 

developed to investigate a selection of textbooks. 

Inastudy about proportion in textbooks,da Ponte and Marques (2007) used the Pisa 

Assessment Framework as an analysing tool. In the pilot study (Lundberg & Hemmi, 

2009) this tool was evaluated but for my purpose the categorisation at a cognitive 

level was problematic, so there was a need to develop an analytic tool better suited 

for text analysis. 

The textbooks selected for this paper are from the A-course at the Swedish upper 

secondary school. The A-course is a special case because it is mandatory for all 

students at upper secondary school (Skolverket, 2001), selected here because it is the 

beginners‘ course for all further studies at both the theoretical and the vocational 

programs of upper secondary school. In Sweden there is an open market for 

textbooks without regulations from the authorities. There are several textbooks on 

the market for this course, among which I have selected the three most commonly 

used in my region (three municipals). The bookchapters analysed were those where 

proportion was expected to be one of the key notions: arithmetic, geometry and 

functions. There was also a limitation in the geometry chapter. Only tasks about 

  

 Table 1: Cross product table 

 189 x 

 18 13 
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similarity, scale and trigonometry in the geometry chapter were analysed. The 

textbooks were investigated concerning both the knowledge and the ―know-how‖ of 

proportion. The textbooks were analysed to determine what type of taskswere given 

(missing value, numerical comparison and qualitative prediction & comparison) and 

what kinds of proportionwere used (direct proportion, inverse proportion, square 

proportion, and square root proportion). Finally, solution techniques presented in the 

textbooks and the knowledge of proportion (theories and technologies) related to the 

tasks found were investigated. Thus, in terms of the ATD, the analytic tool used for 

this study was comprised by the following categories: Task – missing value, 

numerical comparison, qualitative prediction and comparison, static or dynamic 

proportion, direct proportion, square proportion, inverse proportion, inverse square 

proportion, and inverse square root proportion. Technique – how to solve tasks, the 

six categories by Hersant are used here. Technology – justification and explanation 

of the techniques. Theory – the two definitions of proportion static and dynamic are 

used as categories here. 

FIRST RESULTS 

The study is still ongoing but this paper will report some first results from the 

textbooks that have been analysed. In this section, the first most significant 

observations arepresented, quoting selectively from the textbooks toillustrate the 

main findings. In all the textbooks, the definitions of the notions are introduced by 

solved examples and the examples presented in this section will therefore be 

structured by taking the technique used as the overarching categorisation principle, 

before type of task and knowledge (justification) are identified. 

The number of examined tasks in total for all three textbooks were 3073(1157, 1093 

and 823). 24% (757) tasks were classified as proportion tasks. The preliminary data 

indicate that missing value tasks (43%) occur three times as much as numerical 

comparison (14%) and qualitative prediction & comparison tasks (12%). The static 

definition was used most often in the geometry chapter (32%) and the dynamic 

definition of proportion was predominant in the chapters about arithmetic (81%)and 

functions (72%). There were only a few justifications found in the textbooks in the 

geometry section. The most prevalent type of proportion was direct proportion but 

some examples about other kind were mentioned in the textbooks. However, all 

types of techniques described above were found, as shown by the following 

illustrative examples. 

1 Reduction by unit 

In Swedish textbooks this solution strategy is easy to find in the chapter about 

arithmetic. The following example is taken from Alfredsson et al,(2007, p. 45):  

In a municipality the number of citizens is increasing by 8% over one year to 70 200. How many 

citizens were there in the municipality before the increase? 
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108% is equivalent to 70 200. 

1% is equivalent to 
70200

108
. 

100 % is equivalent to 
100 70200

108
65000 Auth. Transl. 

This type of example is found in two of the textbooks(5%) and missing in the third 

book. The task is categorized as a proportional reasoning task called missing value 

and is also in favour for this solution technique. The MO represented is dynamic 

(MO1) and direct proportion.This technique is missing in the function chapter in all 

three textbooks. 

2 Multiplication by a relationship 

This solution technique is found in the chapter about arithmetic in several Swedish 

textbooks, here Liber Pyramid (Wallin, Lithner, Wiklund, & Jacobsson, 2000, p. 43):  

Anna has a salary of 17 250 SEK. She got a rise in salary with 4 %.  How much is her new salary?  

The new salary is 100% of the old salary and the salary rise of 4 % of the same salary. The new 

salary will be: 104% of 17 250 SEK and that will be 1,04 17250 SEK 17940 SEKAuth Transl. 

This is a very typical kind of example in all three textbooks (18%). I interpret this 

solution technique to use the same technique as in Hersant's example but here 

different data is used. The tasks is categorized as a missing value task and the notion 

of proportion is dynamic (MO1) and direct proportion.  

3 Use of proportion 

This special solution technique is to be found in general in the geometry chapter. An 

example from a Swedish textbook (Wallin et al., 2000, p. 122): 

The pentagon ABCDE is similar to the 

pentagon FGHJK.  

Calculate the length of the sides a, b, c,  

and d.  

From the similarity it follows, 
a

6

b

4

c

10

d

4

1

5
 From the first and last 

equality we get 
a

6

1

5
, a

6

5
1,2. In the same way we get b = 0,8, c = 2,0 and d = 0,8. 

Auth. Transl. 

This is the most frequently used technique overall (34%) and found in all three 

books.The example is analysed as a missing value task and the notion of proportion 

is static (MO2) and direct proportion.  
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4 Cross multiplication 

This particular solution technique is found in the chapter about geometry 

(Alfredsson, et al., 2008, p. 153): 

 

In the figure the angles are marked with the same sign if they are in 

the same size. Calculate the length of x. The triangles are equal in 

two angles then they are similar and the ratio between two sides is 

equal.                          Auth. Transl 

x

12

24

16

x 18

. 

This is a very unusual solution strategy (2%) and it is only found in one textbook in 

the geometry chapter and static proportion. The task is analysed as a missing value 

task and the notion is represented as a static notion (MO2) and direct proportion. 

5 Use of coefficient 

This category can be found in the function chapter (Gennow et al., 2003, p. 301): 

In an experiment in physics, the students were measuring mass and volume for different amounts 

of aluminium tacks. First, the students weighed the tacks and then they poured them into a 

graduated measuring glass with water. The findings from one group were: 

Volume (cm
3
) (V) 12 17 22 29 38 

Mass (g) (m)  32 46 59 78 103 

Determine the density (i.e. mass/volume) of aluminium if it is in proportion. 

For this proportion to be valid k have to be k
m

V
. We chose a pair of numbers far away from the 

origin of coordinates to increase the accuracy, draw lines to x and y axis.  

Reading gives  

V= 40 cm
3
, m = 108g, k

108 g

40 cm 3
2,7 g /cm3

Auth. Transl. 

This category is found in all the textbooks and is the next most frequent technique 

(26%) used especially used in the arithmetic chapter. Thetask is categorized as a 

missing value task and the notion is static (MO2) and direct proportion. 

6 Other possible techniques 

An example of this solution technique comes from the chapter about 

functions(Wallin et al., 2000, p. 164): 
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The graph is showing how the cost of apples depends on the weight. 

The graph is a ray with its origin in zero.  

This means that we have a proportion. How much for: a) 1kg? b) 2kg? 

Answer: a)10kr b)20kr.Auth. Transl. 

This type of solution is found in all analysed textbooks (15%) and usually used in the 

function chapter with dynamic proportion. The example is categorized as a missing 

value task and the notion is dynamic (MO1) and direct proportion. 

DISCUSSION 

The three textbooks investigated offer variations in types of tasks and techniques but 

the predominant task is missing value and some tasks could be exchanged for more 

qualitative tasks. Technique 1 and 4 are also missing completely in some of the 

textbooks so the techniques also have some limitations. The two notions of 

proportion (dynamic and static) are both represented but justifications are rare. Thus 

two MO‘s are presented in different chapters (arithmetic, functions and geometry) 

with no link pointed out between them, which can be misleading for both teachers 

and students in their practice and might result in a predominance of the dynamic 

notion. It appears that the static notion is represented to a higher extent in the 

chapters about geometry and the dynamic notion more used in the chapter about 

arithmetic and functions. The theoretical description of proportion appearsto be 

similar in all the textbooks and not presented in different approaches in parallel 

which is preferable. Proportion is also represented mainly as direct proportion with a 

few exceptions, which may be problematic as for example also inverse proportion is 

important for the further mathematics studies. Justifying technologies are very often 

missing. The explanation might be that justification is not a learning goal in the 

curriculum for this first basic course (Mathematics A). This study has also illustrated 

how the particular analytical tool developed for investigating tasks can be used as an 

instrument for what types of ―knowledge‖ and ―know-how‖ are represented in 

mathematics textbooks. This might be a benefit also for teachers in their practice by 

providing principles for the selection of tasks. However, if the students really use the 

techniques presented in the textbook is another research issue which will be 

investigated in a follow-up paper about students' solutions of proportion tasks. 
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TEACHING ARITHMETIC FOR THE NEEDS OF THE SOCIETY 

Hartwig Meissner 

Westf. Wilhelms-Univ. Muenster, Germany 

In the newly formed Working Group 2 it may be allowed not only to discuss the 

research already done or the research in progress, but also to develop perspectives 

on the future needs of the society and how to approach these needs. This 

programmatic view into the future will not only summarize experiences from 

different research fields in learning arithmetic. It will also sketch necessary changes 

and suggest establishing a project within the European Union to face the common 

needs of arithmetic education in our technology based countries. 

Keywords: Number sense, estimation, calculators, paper and pencil techniques. 

INTRODUCTION 

The author of this paper worked with calculators and computers in schools since the 

seventies. He was also a panelist at the ICME-3 Panel Discussion in 1976 on ―What 

May Computers and Calculators Mean in Mathematical Education in the Future?"  

Now, several decades later, it is interesting to see what really has happened in 

mathematics education in schools since the seventies. A state-of-the-art view is given 

in the17th ICMI Study on Mathematics Education and Technology – Rethinking the 

Terrain (Hoyles & Lagrange 2010). But the experts at this ICMI Study discussed 

only briefly if the use of simple calculators had changed or if there were mental 

changes in the students‘ computation abilities and skills. This paper will discuss 

some more aspects.  

In 1984, after ICME-5 in Adelaide, 15 specialists from 10 countries from the Theme 

Group The Role of Technology summarized in their CALCULATOR REPORT: 

 ―Research investigations since 1980 have not produced dramatic new insights or 

results, they mainly confirm the findings of previous investigations. 

 The overwhelming majority (greater than 95%) of investigations indicate that the 

use of calculators does not harm mathematics achievement in terms of the 

traditional curriculum and traditional tests.  

 There are many countries with the ability rate of calculators to children of more 

than 80% where the school curricula ignore the existence of calculators or where 

the calculator use in mathematics education is not allowed for many grades‖ 

(Mohyla 1984, p. vii). 

Since ICME-5 ―simple calculators are no longer a central theme at congresses or 

conferences on mathematics education. Computers … are the hits at the moment‖ 

(Mohyla 1984, p. 3). In the eighties investigations on the use of technology in 

mathematics education changed their focus. A shift can be observed from simple 
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calculators via scientific calculators and programmable calculators to computers. 

This shift also includes a shift in the age groups, from investigations related to all 

grades to investigations related to upper secondary grades. 

But what has happened in primary schools since then? We cite some of the questions 

from Karlsruhe (see Athen & Kunle 1977, p. 291 ff) and sketch the answers: 

ICME-3 Questions  

(Karlsruhe 1975) 

Answers in 2010 for Primary Schools 

(not only in Germany) 

What to do with calculators today? In most of the European countries there are no systematic 

curricula for using calculators. 

How will calculators … influence 

teaching mathematics? 

Regarding the reality in schools till now there is almost no 

influence calculators have on teaching mathematics in 

primary grades. 

Is there a danger that numeracy will 

suffer if such calculators are 

introduced, … 

YES – in the eyes of parents, teachers, and school 

administrations 

NO – according to almost every research report 

… or may numeracy be improved 

by using simple calculators? 

YES – according to many project groups, but 

a large scale investigation is necessary 

to convince parents, teachers, and school administrations 

for implementing appropriate curricula. 

PAPER AND PENCIL TECHNIQUES 

Which will be the future of paper & pencil algorithms for the four basic operations in 

the primary school curriculum? Already in the seventies Hans Freudenthal was 

warning: "We will run into a catastrophe when we today teach topics which one or 

two decades later will be done by calculators
3
.‖ Nevertheless still in 1998 Schipper 

summarized that "sometimes up to 50% of the time from mathematics lessons in 

grades 3 and 4 is used to introduce and to train paper & pencil algorithms
4
." And 

Kaput (2002) continued warning: „The importance of the ability to serve as a poor 

imitation of a $4.95 calculator is rapidly declining
5
.‖ In daily life situations and for 

business purposes everybody uses a calculator. Simple calculators for the four basic 

operations are cheap and exist everywhere, they dominate our calculations in daily 

                                           
3
 The text originally in German: "Wenn unser Unterricht heute darin besteht, dass wir Kindern Dinge eintrichtern, die in 

einem oder zwei Jahrzehnten besser von Rechenmaschinen erledigt werden, beschwoeren wir Katastrophen herauf― 

(Freudenthal 1973, p. 61). 

4
 The text originally in German: "... in den Klassen 3 und 4 ... [werden] manchmal bis zu 50% der gesamten 

Unterrichtszeit dem Einueben der Algorithmen gewidmet." (Schipper 1998, p. 10). 

5
 conference note 
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life. But in mathematics education in primary schools calculators are forbidden in 

almost every country, worldwide. Here we spend up to more than 100 hours in the 

classroom to teach and to train computing techniques as if there were no calculators. 

Why do we waste so much time of our children to teach them things which after 

primary school they will not need any longer? 

We see an emotional dichotomy. Despite the research results from many research 

projects in many countries there is still the fear that the use of calculators in primary 

grades will harm mental arithmetic and estimation skills. To explain and to overcome 

that fear we will reflect the nature of number sense and of paper & pencil skills more 

carefully. We realize that the development of number sense is an intuitive and 

unconscious mental process while the ability to get an exact calculation result must 

be trained consciously. To overcome the above dichotomy we must solve the hidden 

dichotomy number sense versus precise calculation result. We need a new balance. 

Different types of examples will be given how we can further the development of 

number sense in a technology dominated curriculum. 

DICHOTOMY NUMBER SENSE VERSUS ALGORITHMIC SKILLS 

Specialists from many research projects know that the use of calculators in primary 

grades does not necessarily harm mental arithmetic and estimation skills. But these 

―logical‖ arguments do not count. There still remains an emotional component 

against the calculator use which cannot be eliminated logically. Thus it is too simple 

just to claim to replace paper & pencil skills through the calculator. We need more 

than the ability to get a quick and exact calculation result. To remain mentally 

independent from the calculator we also must concentrate on automatic mental 

arithmetic and estimation skills. How do these skills develop? And which changes 

will we get when we change from paper & pencil skills to calculators?  

A more profound view of mathematics learning is necessary to identify the nature of 

number sense and of paper & pencil skills. Learning and understanding mathematics 

is based on two different types of mental processes, on logical and conscious 

arguments (cf. precise calculation results) as well as on intuitive and unconscious 

mental processes
6
 (cf. number sense). These two systems interfere. 

1. Precise Calculation Results 

There are three techniques to get precise calculation results: Paper & pencil 

techniques, using a calculator or computer, and mental arithmetic. Teaching and 

training of paper & pencil skills is time consuming and the results are less safe than 

                                           
6
 For example,  Vygotsky (1978) talks about spontaneous and scientific concepts, Ginsburg (1977) compares informal 

work and written work, or Strauss (1982) discusses common sense knowledge vs. cultural knowledge. He especially has 

pointed out that these two types of knowledge are quite different by nature, that they develop quite differently, and that 

sometimes they interfere and conflict (―U-shaped‖ behavior). 
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via pressing the calculator keys. It is obvious why the calculator technique dominates 

outside from school. 

2. Mental Arithmetic 

Mental arithmetic is a challenge for teachers to ―teach‖ and for students to ―learn‖ 

because of the two mental modes which are involved. On the one hand the students 

should be able to explain logically and analytically how they get the result. But on 

the other hand we also expect that for specific problems they can react immediately 

in a stimulus response style (stimulus response knowledge for e.g. 1+1 table and 1×1 

table). Furthermore, we also expect such an unconscious and intuitive stimulus 

response reaction when the student gets confronted with computation mistakes. 

Either he/she spontaneously notices a conflict with his/her intuitive individual 

stimulus response knowledge or there is a spontaneous reaction like ―this is too big‖ 

or ―this is too small‖. The latter describes a conflict between the computation result 

and the individual personal experiences. 

3. Estimation Skills 

Estimation is a challenging activity. Before starting computing we ask for the 

approximate result of a possible solution. Either the computation task is already 

given in the classical mathematical symbolic notation or we have to solve a word 

problem. For the first type of problems the estimation result can be found more 

easily. Here we must round the numbers and compute with rounded numbers. 

Estimation in this case is a special analytical and logical approximation technique (in 

German Ueberschlagen).  

For word problems we usually first analyze the situation described. We then need a 

modeling process to get a ―translation‖ of the word problem situation into a 

mathematical notation of a computation problem where we can get an estimation 

result via approximation. But there is an alternative strategy to estimate the result for 

a word problem.  

Analyzing a word problem can and should stimulate also subjective domains of 

individual experiences related to the situation given (Subjektive Erfahrungsbereiche, 

cf. Bauersfeld 1983). Intuitively and spontaneously non-mathematical knowledge 

and personal experiences get stimulated, too. Estimation may then become a 

spontaneous and intuitive reaction like ―Oh, this must be about ….‖. 

4. Estimation and Sachrechnen 

To estimate spontaneously and intuitively an approximate result for a given word 

problem we need special experiences, environmental and daily life experiences and 

experiences in comparing and measuring objects. To develop these experiences the 

German arithmetic curricula include a special topic called Sachrechnen (aspects of 

environmental and domestic sciences). In Sachrechnen we compare objects 

according to their length, time, weight, etc. (direkter / indirekter Vergleich in 
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German) and we measure objects: Select a unit und try how often that unit fits into 

the object. Estimation in Sachrechnen is then quite a different mental activity, it is 

the internalized process of comparing or measuring (Schaetzen in German)
7
. 

5. Concept of Numbers 

In traditional German curricula for primary schools we introduce step by step the 

―number spaces‖ [0 - 20], [0 - 100], [0 - 1.000], and [0 - 1.000.000]. Thus also step 

by step, the ―object number‖ gets reduced into a sequence of digits and the 

computation with big numbers gets reduced into manipulations with sequences of 

digits. Outside from school, numbers have a different meaning. Here a number is 

mainly a measurement number (Groesse in German) which describes the size (value, 

magnitude, …) of an object. It consists of two parts, a quantity number and the 

appropriate unit like 345 km or 2 830 hours or 562 048 cents. The quantity number 

(Masszahl in German) tells us how many units we need to represent the size of that 

object. 

6. Number Sense  

We have summarized important aspects which are touched when we talk about 

number sense: ―Number sense refers to an intuitive feeling for numbers and their 

various uses and interpretations; an appreciation for various levels of accuracy when 

figuring; the ability to detect arithmetical errors, and a common sense approach to 

using numbers. ... Above all, number sense is characterized by a desire to make sense 

of numerical situations‖ (Reys 1991).  

Number sense not only refers to numbers but also to both, to conscious and to 

unconscious techniques to manipulate numbers, and it also includes a feeling about 

possible outcomes of these techniques. With a good number sense we can roughly 

predict the result of calculations, sometimes spontaneously (intuitively) and 

sometimes consciously (by approximating). Number sense also includes an intuitive 

feeling for additive and multiplicative structures. A central question for future 

curricula must be if we can develop a more effective number sense by the use of 

calculators than we momentarily do in our traditional curricula.  

CALCULATORS AND ARITHMETIC LEARNING 

One of the first major projects to integrate the calculator use into a primary school 

curriculum was the Calculator-Aware-Number Project (CAN) in 1986 – 1989 in 

England and Wales (Ruthven 1999). But ―during the 1990's, [the] curriculum and 

assessment system [became] much more 'calculator beware' as a result of criticism 

of calculator use by mathematicians and politicians‖ (Ruthven 2007 in a personal 

                                           

7
 Sachrechnen also includes the topic money and problem solving activities (problems from real life situations like 

shopping, planning an excursion, constructing a bird-cage, etc.). 
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communication). Thus we will start our analysis here with a warning. An 

unreflecting use of calculators in primary schools may damage some of the 

traditional goals of arithmetic education. The uncontrolled use might provoke two 

problems: 

 Pressing keys is so easy. Why shall I still learn mental arithmetic? 

 Pressing keys is so safe. Why shall I still check my calculator result? 

A calculator curriculum must face these problems. But in this paper we will not 

discuss the PROs and CONs of the use of calculators in primary schools and how 

paper & pencil techniques could be replaced by a calculator use. Here we will reflect 

how arithmetic teaching in primary schools may benefit from the use of calculators 

and how the use of calculators may help to further the traditional mathematical goals. 

Of course, the calculator is an excellent tool to get quick and safe calculation results. 

But besides this property it also may serve as a didactical tool to stimulate intuitive 

and spontaneous ideas and activities in the teaching and learning processes. The 

possibility to handle a big bunch of quick calculations without any efforts allows a 

new working style in the class room which was not possible without calculators or 

computers. We will summarize and analyze some activities (for detail see Meissner 

2006). 

7. Stimulus Response Learning 

Calculators allow and facilitate stimulus response learning. This can be used in 

competitions to train mental arithmetic. The basic idea is to compute very quickly a 

given calculation problem to get an immediate feedback: correct or wrong. We 

developed several tasks starting with problems from the 1+1 and 1×1 table: 

 Individual worksheets, individual training: Type the problem into the calculator 

and calculate the result in your head. Then press the ―=‖ and see if you were 

right. If YES write down the result, if NO do the next problem. Later on work on 

the still open problems. 

 Competitions mental computation versus calculator, who is the first? At the 

beginning each student wanted to be in the calculator group, later on almost 

nobody wanted to be there because "I am quicker in my head". 

 Each student gets a worksheet, the use of calculators is allowed. Who has 

finished the worksheet first? There may be different worksheets according to the 

students‘ abilities. 

8. Operators 

Simple calculators with a constant facility are very important for primary schools. 

They can be "programmed" to work as an operator " k" where  stands for the four 

basic operations. Calculators with a constant facility allow for developing a feeling 
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for additive and multiplicative structures. We hide an operator k and others must 

find out which operator we hid:  

         

         k 

X                Y 

Select a value for X, press the calculator keys, and interpret Y. Guess 

what  k  might be. If necessary select another value for X, etc. 

Finally select additional values for X and predict the results. 
 

9. Calculator Games 

There are several calculator games which use the constant facility to detect numbers 

and operations and to develop a feeling for additive or multiplicative structures. We 

will present an example with the calculator game Hit the Target.  

Example: 

 

                         x 17 

                                     [800,801] 

 

input      display 
  

  

  

  
 

Hit the Target:     Find via guess and test a 

number z that z 17 is in the interval [800,801]. 

Write a protocol of your guesses.  

More general: An interval [a,b] is given and a 

factor k. Find a second number z via guess and 

test that the product "z k" is in the interval 

[a,b].  

For primary schools we suggest to concentrate 

on integers k,z < 100. 

More than 1000 guess-and-test protocols show that the students after a certain 

training develop excellent estimation skills. They guess a very good starting number 

and they develop an excellent proportional feeling. For more details on calculator 

games see Lange & Meissner (1980), Lange (1984), and Meissner (1987). 

10. One-Way-Principle 

Guess and test or trial and error are not considered to be a valuable mathematical 

behavior in mathematics education classrooms. But these components are necessary 

to develop spontaneous and intuitive ideas. Our experiences show that a systematic 

use of guess and test activities enriches creative and flexible thinking. So we 

developed a specific teaching method called One-Way-Principle (Meissner 2003). 

The One-Way-Principle is a method to use calculators or computers to explore 

intuitively and/or consciously many functional relationships of the type 

              
X                 Y 

or in case of the four 

basic operations  

        k 

X                Y. 

The basic idea of the One-Way-Principle is to use not reverse functions or algebraic 

transformations but to experience the set of variables as a ―unit‖, as a global entity, 

which gets explored via guess and test. 

Concentrating on the four basic operations in primary schools we can explore with 

simple calculators additive or multiplicative structures of the type "a  b = c". Here 

the One-Way-Principle implies not to switch from addition to subtraction (or vice 

?         
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versa) or from multiplication to division (or vice versa). Instead we have to guess "a" 

(or " " or b or " b") to use again the originally given key stroke sequence. 

Regardless of which variables are given and which are wanted, there is only the ONE 

WAY to solve all problems: Always use the same simple key stroke sequence of 

your calculator. The goal for the learner in the guess and test work is to discover 

intuitively the hidden relations between the variables and to develop a feeling how to 

get a good first guess (estimation) and how to reach a given target with only a few 

more guesses (additive resp. proportional feeling). Thus applying the One-Way-

Principle furthers some of the intuitive and unconscious skills described above in no. 

2 and 3. 

REDUCING PAPER & PENCIL TECHNIQUES 

Again, in this paper we will not discuss how paper  &pencil techniques could be 

replaced by calculators. We will reflect how the traditional teaching and training of 

paper & pencil skills could be reduced. We think the main question is not how to 

calculate all possible sequences of digits but to ask first for the importance of each 

technique.  

11. Expanding Mental Arithmetic 

Mental computations are usually done with small numbers. We suggest to expand the 

meaning of ―small‖ and to concentrate the four basic operations "a  b =" on all a 

and b where a and b are one-digit- or two-digit-numbers. Adding and subtracting 

two-digit-numbers is already part of traditional curricula. For the multiplication of 

two-digit-numbers let the students themselves invent appropriate techniques. Paper 

and pencil should be allowed to write down results from intermediate steps.  

12. Proportional Feeling 

In parallel to the conscious techniques from no. 11 the students should also get an 

opportunity to develop an intuitive feeling for possible results. Playing Hit the Target 

would be an excellent addendum. The students can select themselves appropriate 

numbers for Hit the Target (small or big intervals [a,b], no integer solution for z, …). 

13. ―Large‖ Numbers 

―Large‖ numbers in this paper are integers with at least 3 digits. Most of these multi 

digit numbers are unimportant in daily life because we prefer rounded numbers: Size 

of a swimming pool or a garbage container, distance between two cities or between 

the earth and the moon, weight of a lion, etc. Putting important rounded numbers on 

the number line we do not get an equidistant pattern. The larger the number space is 

the more unimportant numbers it will have. Do we still need for all these unimportant 

numbers the traditional paper & pencil techniques? We suggest concentrating only 

on calculating with ―important‖ numbers. 

14. Calculating with Rounded Numbers 
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Rounded numbers are similar to measurement numbers (Groessen, see no. 4 and 5). 

They consist of two parts, a one or two digit quantity number (Masszahl) and a unit 

(―thousands‖, ―millions‖, etc.). To calculate with rounded numbers we can separate 

the two parts. We can then calculate with one or two digit numbers and apply 

techniques about what to do with the units. This approach also furthers Sachrechnen 

goals: 

 Changing the unit implies converting the related quantity number. Getting 

experiences in changing units also furthers the development of spontaneous and 

intuitive reactions as described in no. 3. 

 For addition and subtraction both numbers must have the same ―unit‖. 

 For multiplication and division there are easy rules how to compute with the 

units. The students themselves might discover these rules. 

15. Number Spaces 

Reflecting the topics above, we also should rethink the concept of introducing num-

bers. It is fine to start in the first grade with [0 - 20] and then [0 - 100]. But when we 

start using calculators the number space gets suddenly unlimited. We need a spiral 

approach in which the students themselves can discover numbers and number 

properties in individual own subjective domains of experiences and where they can 

discuss their experiences. A spiral approach would also help to develop a much 

broader number sense. 

16. Decimal Numbers 

When we introduce calculators in primary schools, we must be aware that the 

students will discover very soon decimal numbers in the display. But they already 

have a basic knowledge of writing decimals. According to our experiences they are 

just happy to learn that 23.5 can be interpreted as 23 cm and 5 mm, or 12.69 as 12 € 

and 69 ct or 3.125 as 3 km and 125 m. And when there are more digits behind the 

―point‖? Usually the children accept the simple answer ―just ignore those digits‖ 

which corresponds to the view from above to distinguish between important and 

unimportant numbers. Adding or subtracting decimal numbers also becomes easy 

with this view. With the decimal grid problem it is even possible to develop intuitive 

experience about the multiplication of decimals (Barbeau & Taylor 2009, p. 210f). 

SUMMARY 

There is a worldwide resistance in using calculators in primary schools, emotionally 

dominated by parents, teachers, and school administrations. And the experts in 

mathematics education are split. Teaching ―only‖ arithmetic is in the domain of 

―educators‖, while the use of technology is in the domain of ―mathematicians‖ (cf. 

17th ICMI Study). There is no real lobby for the needs of our primary school kids. 

To bridge this gap we need a new concept how to teach arithmetic in primary schools 

in a technology based country in the 21st century. 
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ANALYSING CHILDREN‘S LEARNING IN ARITHMETIC 

THROUGH COLLABORATIVE GROUP WORK 

Carol Murphy  

University of Exeter 

The paper presents an example of collaborative group work with three children aged 

6-7 years old, as part of a project to promote cooperative learning situations in 

young children‘s arithmetic. The premise of the project is that participation in 

collaborative group work will support children‘s cognitive development in number.  

Process-object duality models and the notions of reification, encapsulation or 

‗procept‘ have provided a way of examining the use of processes and objects in 

learning mathematics. These notions are used in relation to participation in a 

mathematical activity. This entails the use of two different theoretical perspectives, 

neo-Piagetian and neo-Vygotskyan, in examining the children‘s mathematical 

thinking within a social context.  

Keywords: arithmetic, collaboration, participation, process-object duality 

INTRODUCTION  

Much research has been dedicated to the development of early arithmetic and 

children‘s progression in the use of calculation strategies (for example Gray, 1991). 

Such studies have indicated that there are ‗milestones‘ that show progression from 

simple counting strategies (‗count-all‘ and ‗count-on‘ strategies) and the use of 

commutativity (‗counting-on from the larger number‘) to the use of number facts 

(additive components) and place value. It has been suggested that lower attaining 

children rely on counting strategies in addition and subtraction (Gray, 1991) and that 

a reliance on such strategies could hinder children‘s progression to more 

sophisticated, flexible strategies. The use of flexible strategies requires that children 

have a conceptual understanding of number and their relations.  

Several studies have looked at developing children‘s generic thinking skills through 

cooperative group learning. Key to these are studies that have taught children to talk 

together effectively (Mercer, Wegerif & Dawes, 1999). These have shown that 

explicit teaching of talk strategies or exploratory talk can increase performance in 

non-verbal IQ tests and in tests for academic subjects including mathematics (Mercer 

& Sams, 2006). This paper presents work from a project funded by the Esmee 

Fairbairn Foundation and carried out with colleagues at the University of Exeter. The 

project introduced strategies for effective talk to young lower attaining children 

(ages 6-7). Our premise was that such an intervention would support children‘s 

learning in arithmetic and our aim was to examine the mechanisms of talk in relation 

to children‘s conceptual understanding of number.  
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CONSTRUCTION OF MATHEMATICAL OBJECTS 

Research has seen conceptual understanding of number as the cognitive construction 

of objects (such as number, relations and functions) and many researchers, including 

Dubinsky (1991); Sfard (1991); Gray & Tall (1994), have modelled this construction 

in terms of a process-object duality. Tall, Thomas, Davis, Gray & Simpson (2000) 

provided a thorough examination of the differences between these duality models but 

key to these is the notion of encapsulation (Dubinsky, 1991) or reification (Sfard, 

1991).   

In particular Gray and Tall‘s (1994) and Sfard‘s (1991) work points towards an 

initial focus on counting processes in children‘s learning in arithmetic. Sfard (1991) 

described a reliance on ‗count all‘ where children count out each set. For example 3 

+ 4 becomes 1,2,3 add 1,2,3,4. That is each number is seen as a process. This is 

distinct from a ‗count-on‘ strategy, for example 3 + 4 becomes 3 ‗count-on‘ 4,5,6,7. 

In this strategy three is seen as a cardinal number or object that can be ‗counted-on‘ 

from. From Sfard‘s perspective, three is reified as an object. From Gray and Tall‘s 

perspective children see the symbol for an operation as both a process and a concept, 

or, in other words, as a procept.  

It is proposed that, in order for children to progress in their use of calculations, they 

need to see this dual nature. This becomes key to children‘s development of flexible 

strategies beyond counting, and children‘s use of known facts to derive solutions to 

other calculations. This requires the knowledge of a small set of memorised facts that 

can be used flexibly.  Gray and Tall distinguished between a proceptual known fact 

and a rote learned fact and how this knowledge is based on the notion of 

encapsulation or reification. In this way children will see the example 3 + 4 not only 

as a process, but also as a known fact that can be used as a reified object to derive 

new facts.    

Much of the work on process-object duality has been based on neo-Piagetian 

constructivist theories. These theories are concerned with ―the building (of the 

notion) of a mathematical object as a cognitive process that involves the learner‘s 

construction of adequate cognitive structures‖ (Dorfler, 2002, p.340). The project 

that this paper refers to examined the introduction of a didactical tool based on 

exploratory talk and collaboration in mathematics tasks.  Such an intervention is 

based on neo-Vygotskyan socio-cultural theories and a participatory perspective of 

learning in mathematics (Sfard, 2001).   

Within a constructivist perspective discourse is seen to describe mental images of 

objects. It is possible to ―ascertain whether an individual has constructed a mental 

object‖ and how the use of language indicates if an individual is conceiving the 

object (Tall et al., 2000, p.230). Within a socio-cultural perspective the focus is on 

cognition as discourse rather than on the use of discourse to understand specific 

examples of cognition.  Speech is not only seen as a window to the inner mind to 
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look at the representations stored there, but speech and thought are seen as 

inseparable (Sfard, 2001).   

The examination of the use of collaborative group work as an appropriate didactical 

approach in mathematics would require the investigation of how an individual 

develops thinking within a social context. This suggests working between socio-

cultural theories that relate to participation and neo-Piagetian theories that relate to 

the individual. Cobb proposed the notion of bricolage, adapted from Gravemeijer 

(Cobb, 2007), where ideas are used from different theoretical perspectives to study 

diversity in children‘s mathematical thinking within the social context of a 

collaborative activity. Such an approach would seem appropriate in this study.  

THE STUDY 

The project was based on a design experiment (Cobb, Confrey, diSessa, Lehrer & 

Schauble, 2003). It aimed to set up an intervention based on exploratory talk (Mercer 

et al, 1999) as a didactical tool with young children (ages 6-7) who were seen as low 

attainers in mathematics. Exploratory talk is typified by ―a way of using language 

effectively for joint, explicit, collaborative reasoning‖ (Mercer et al., 1999, p. 97).  

Participants negotiate their understanding through constructive challenging 

discourse. It was anticipated that the use of exploratory talk would support children‘s 

participation in mathematics through collaborative reasoning and negotiated 

understanding.  

Twelve teachers worked with the research team over two school terms to develop 

strategies to introduce exploratory talk and to trial mathematical tasks. Our aim was 

to analyse the group interactions and the learning of arithmetic that took place 

through the introduction of exploratory talk. The teachers were asked to select six 

focus children in each class and to engage the six children in talk and mathematics 

activities at least twice a week. This was managed in small groups of three children.  

This paper presents excerpts from a group activity of one of the triads: Eric, Lydia 

and Amy. None of the children were recognised officially as bilingual learners but 

the teacher had identified them as lower attaining, with low confidence in their 

mathematics and poorer communication skills than other children in the class. 

Diagnostic tasks, based on those developed by the Shropshire Mathematics Centre 

(1996), were carried out with the focus children pre- and post-intervention. The pre- 

and post-tasks for addition carried out with the three children are shown in Table 1.  

In the pre-tests Eric relied on ‗count-all‘ strategies. Amy used a combination of 

‗count-all‘ and ‗count-on‘ but also used an incorrect strategy. Lydia used ‗count-on‘ 

strategies but did not always use these accurately.  The post-tests indicated that the 

children still had a reliance on counting strategies but that there was some 

progression in accuracy and in the use of count on strategies and known facts. Lydia 

was more accurate in her use of strategies, she used known facts and made less 



Working Group 2 

 CERME 7 (2011) 359 

errors. Eric used more efficient count-on strategies. Amy used a more efficient 

strategy of counting on from the larger number. There is no attempt to present these 

results as evidence that the use of talk has supported children in their calculation 

strategies in a general sense. We have to acknowledge that the teaching may have 

benefited the children even if the talk strategies had not been introduced. However it 

does indicate that the children made some progression and in this respect it is worth 

looking at the mechanisms involved in a cooperative group activity.   

Table 1: Calculation strategies in pre- and post-intervention diagnostic tasks.  

This paper presents an example of one group activity with the three children. The 

activity took place towards the end of one term‘s intervention. The task was to 

construct a rectangle of sixteen dominoes where each join gave a total of six. An 

example of a possible solution is shown in figure 1.  

It had been found that tasks with little or no recording supported collaborative work 

better. The dominoes provide a set of manipulatives that could be used by the group 

to arrive at a solution together. The dominoes themselves present arrays of dots that 

can help children in using counting and patterning 

ability to develop conceptual subitising as a basis for 

addition (Clements, 1999).  Through the familiar 

patterns numbers can be seen as both composite parts 

and as a whole. The arrangement of the dominoes in 

a rectangle also gave a geometric problem to solve. 

The children were given a worksheet with the outline 

 Lydia pre-

task 

Lydia 

post-task 

Eric pre-

task 

Eric post-

task 

Amy pre-

task 

Amy post-

task 

5+7 Count-on Count-on Known 

fact 

Count-on Count-all Known fact 

7+8 Count-on 

with error 

Count-on Count-all Count-on Count-all Count-on 

from larger 

number 

6+9 Count-on Use of 

known 

fact 

Count-all Count-on Count-on Count-on 

from larger 

number 

10+8 Count-on 

with error 

Known 

fact 

Count-all Count-on Count-on Count-on 

8+13 Count-on 

with error 

Count-on 

with error 

Count-all Count-on Incorrect 

strategy  

Count-all 

15+6 Count-on 

with error 

Count-on 

with error 

Not given Count-on Not given Count-all 

Figure 1: Domino activity.  
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of blank dominoes and they used this as a template to help them organise the 

structure of the rectangle.  

The transcript from the activity is presented in excerpts.  Excerpt 1 shows the teacher 

modelling how to complete the task. The children are asked to agree on which 

domino to use next. Amy and Eric both predict a two, apparently without counting 

the dots and Amy selects a domino with a two.  Lydia changes Amy‘s (correct) 

domino with her own. Amy then sits back from the task whilst Lydia places the next 

dominoes. Amy continues to observe the activity but does engage again later (see 

excerpt 4).  Eric predicts the dominoes that are needed next. He states ‗And four, 

there‘s four‘ and also ‗Then we need a six‘. Lydia expresses disagreement with a 

defiant ‗No‘ or ‗No, no, no...‘ It would seem she is checking the domino is correct by 

counting the dots. However, she counts all the dots on the dominoes and not just the 

joins. In the last line she realises the need to count the joining dots and agrees that 

the join makes six. 

Transcript excerpt 1: 

Teacher:  The next one you‘ve got to put 

sideways like that. So the four 

needs a what to go with it? It‘s 

got to go down there but what 

will it need?  

Amy: Two. 

Eric: A two. 

Teacher:     See if you agree then what one to  

                      put.    

Lydia:      No (Amy inaudible), two.  

                      Five and one more.  

 

 

Eric:    And four, there‘s four.  

 

 

Eric:             Then we need a six  

 

Lydia:           No, no, no, no ... I think 

                     1,2,3,4,5,6,7. That‘s seven. Ah... 

                     5,6...1,2,3,4,5,6. Yeah that‘s 

                     right.  

 

 

 

Teacher points to show position on 

the table 

 

 

Amy places domino with a two.  

 

Lydia removes the domino and 

replaces it with another domino (two 

and five). Lydia places the next 

domino (one and two). 

Eric points to domino (four and 

zero). Lydia places the domino. 

 

Eric refers to the next domino 

needed.  

Lydia counts the previous domino 

(one and two) with the four of the 

current domino. She then changes to 

count the two and the four.  

In excerpt 2 Eric, again, predicts the next domino but Lydia ignores this and selects 

an incorrect domino.  Eric challenges this by saying ‗You think that is going to make 

a six with a zero?‘ and offers a correct domino. Eric does not justify his choice and 

Lydia does not appear to question the use of the six or count the dots to verify.   
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Transcript excerpt 2 

Eric:  We need a six, we need a six. 

 

Lydia: Another zero. 

 

Eric: That one I think. 

 

Lydia:     We need a one. 

 

    Eric:     You think that‘s going to make a  

                          six with a zero? (Lydia shakes  

                          head). Well get a six then, get a 

                          six like that.  

Eric refers to the next domino to go 

with the zero.  

Lydia handles a domino but rejects 

it.  

Eric points to two different 

dominoes that have a six.  

Lydia places a domino with a one 

next to the zero.  

 

 

Eric holds up a domino (six and 

five).  Lydia places the domino.  

In excerpt 3 this routine is almost repeated as Eric predicts the next domino, Lydia 

ignores this and selects an incorrect domino. Eric challenges this and presents Lydia 

with a correct domino. Again the error is when one addend is zero and we can only 

speculate that this causes confusion for Lydia. Lydia does not appear to verify that 

the six is correct by counting and accepts Eric‘s offer of a solution. 

Transcript excerpt 3: 

Eric:             One. 

 

Eric:             Six. 

    Lydia:    Now we need a three. 

Eric:             You mean that‘s going to make a 

                     six with a zero?  

Lydia:     No. (Shakes head).  

Eric:             Two.  

Lydia has placed domino (one and 

zero).  

Eric picks up domino with six but 

Lydia places a domino with three. 

Eric holds up domino (six and four).  

Lydia removes domino with three 

and Eric places domino (six and 

four).  

In excerpt 4 Amy has rejoined the activity. She predicts the correct number of dots 

and checks by counting them. Eric also confirms the ‗two and a four‘ but does not 

count these out. When Amy places the next domino this is challenged by Lydia using 

a similar question to Eric‘s. In this case her challenge is not supported by Eric or 

Amy.  

Transcript excerpt 4: 

Amy:  Ahhh, I know... two, four. 

1,2,3,4,5,6 

 Eric:             Two, four. Two and a four. 

     Amy:     Ahhh, three  

Lydia: You think that‘s going to make a 

six?  

Eric:             Yeah.  

Amy picks up domino with four and 

counts the two dots and the four. 

Amy places domino (four and three). 

Amy places domino (three and zero).  
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In excerpt 5 the children complete the rectangle. Lydia counts all the dots on both 

dominoes in trying to decide if the correct domino has been used and arrives at the 

total of 12. Eric then counts the dots that are joining and Lydia accepts this.  As the 

children place the last domino in the rectangle Amy states that ‗the two is on there‘. 

It may be that she is referring to the final join (a two has been placed next to a one). 

Eric points to the use of a two elsewhere to suggest that this is possible.  

Transcript excerpt 5: 

Eric:             We need a six again  

 

 

Eric:              Now we need a three  

 

Lydia:           That‘s twelve.  

 

Eric:             1,2,3...4,5,6. 

 

     

    Amy:            But the two is on there. 

    Eric:             Yeah but look.  

 

Refers to the zero on the current 

domino. Eric points to domino (six 

and three). Lydia places domino. 

Eric picks up domino with three and 

two.  

Lydia counts all the dots on both 

dominoes.  

Eric counts the two lots of three 

dots. Lydia places domino (three and 

two).  

 

Eric points to another domino in the 

rectangle that has a two.   

ANALYSIS AND DISCUSSION 

The use of discourse in analysing children‘s mathematics presents problems in how 

to ‗read off‘ or interpret what learners are thinking (Barwell, 2009). In the transcript 

from this study it is not entirely clear how the children have understood the task and 

if they are involved as the teacher intended. The task presented a geometric problem 

as well as arithmetic and at times it seems the focus of the discourse is on making the 

rectangle rather than finding the complements to six. The children miss the final join 

(although it is possible that Amy noticed this) so do not find a complete solution. 

However an assumption is made that the children follow the rule of making joins that 

add to six, at least up to the final join.  

In analysing the transcript in relation to collaboration there are occasions that 

suggest lack of cooperation, for example when Lydia rejects Amy‘s selection of 

domino in excerpt 1, but the children do work together to complete a rectangle 

following the rule. Analysis from a linguistic perspective does not indicate the 

children‘s engagement with the characteristics of exploratory talk (cooperating, 

challenging and justifying) explicitly. For example, only the teacher uses the word 

‗agree‘ and there is little evidence of words indicating justification, for example the 

word ‗because‘ is not used. However the children do appear to justify the use of 

dominoes by predicting or pointing to an example.  At one point the phrase ‗Yeah 

but look‘ is used alongside pointing.  The children also verify the use of a domino by 
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counting the dots. The children do offer solutions and Eric is particularly proactive in 

this. He uses the term ‗We need a six‘ and also ‗That one I think‘. There is evidence 

of children challenging ideas and Eric uses the terms ‗You think‘ and ‗You mean‘ 

when challenging Lydia‘s choice of domino.   

Participation in a social context suggests the establishment of routines (Sfard, 2008).  

In the transcript we can see development of routines. For example, a problem is 

initiated ‗So the four needs a what to go with it?‘ There is the offer of a possible 

solution ‗A two‘, ‗We need a six‘. The children then select the appropriate domino. 

In some cases the selection is verified through counting, on other occasions the 

selection is challenged.  In effect the challenging also becomes a routine and Lydia 

attempts to imitate this (albeit at an inappropriate point).  It is noted that participation 

may not always involve active engagement in the discourse. Amy sits back from the 

task in excerpt 1 and does not rejoin until excerpt 4. However from the video data 

she can be observed watching the other children until she comes in with her 

prediction ‗Ahhh, I know, two, four...‘ 

How much can we see children working with numbers as processes and objects? In 

selecting the appropriate domino the children are finding an unknown number, the 

number that complements to make six. In this way the number is held as an object. 

This is modelled by the teacher as she asks ‗So the four needs a what to go with it?‘ 

Here the teacher uses the indefinite article ‗a‘ and refers to the unknown number as a 

noun.  The term ‗We need a...‘ (for example ‗we need a six‘) is used frequently by 

the children, and maybe they are following the model of the teacher.   Dorfler (2002) 

has suggested that the use of language provides means to express something as an 

object, such as the use of nouns. Dorfler also notes the use of actions on objects, 

such as the use of verbs.   The children are often engaged in the action of counting 

and also use the phrase ‗You think that is going to make...‘ suggesting that there is a 

use of actions on objects.   

In determining the correct domino the children appear to use two strategies, either 

prediction, commonly used by Eric, or checking by counting, as used by Lydia. The 

dominoes allow the use of conceptual subitising as an early form of addition. It is 

possible that Eric, who is able to predict the next domino without counting, is using 

this strategy.  Amy also shows some ability to predict but then counts to check. Lydia 

does not appear to use conceptual subitising as she does not predict any domino and 

relies on counting to verify any domino‘s correct use.  
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SUMMARY 

It would seem that the use of exploratory talk as a didactical tool has enabled the 

three children to work together with a level of cooperation and that this cooperation 

leads to participation in mathematical routines. Collaboration and participation has 

engaged the children in solving a problem related to finding complements as an 

unknown number. This number is often referred to as a noun or object and the 

children use processes in determining and verifying the object.  The familiar arrays 

represented on the dominoes can support the use of conceptual subitising and this is 

particularly evident with one child.   

The premise of the study was that collaboration and participation in mathematical 

activities would support cognitive structures and in particular a proceptual 

knowledge. By reviewing the children‘s mathematics within the social context of the 

collaborative group work we have been able to consider the diversity of their 

approaches (Cobb, 2007).  However this is not to say that each child‘s acquisition of 

the strategies can be determined from their participation. When a child used a 

process of counting it could be as a means of justification to others, not that they 

needed to count.  The diagnostic pre- and post- tests aimed to acknowledge the 

children‘s diverse use of strategies. From these we can see how the children differ in 

their reliance on procedures in relation to concepts and this would seem to be 

reflected in the children‘s individual approaches. It may be too big a leap to suggest 

that such collaborative strategies have supported these changes but there is some 

initial evidence to show that the children were participating in arithmetic that 

involved both processes and objects and asked them to work with number in a 

proceptual way.  
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In the present study we propose a theoretical model for understanding a concept of 
elementary school mathematics. We selected fractions for examining our model. Our 
theoretical model consists of six factors: inductive reasoning, explanations, 
justifications, conception for the magnitude of fractions, representations and 
connections with other concepts. The fit of the model was tested in a sample of 344 

fifth and sixth grade elementary school students using confirmatory factor analysis 
and it was found to have very good fit with the empirical data. The results suggest 
that the proposed model is much comprehensive of the factors suggested for 
understanding fractions at the elementary school. 

Keywords: theoretical model, understanding fractions. 

INTRODUCTION 

Various theoretical models have been proposed for the learning and understanding of 

fractions (Kieren, 1976; Behr, Lesh, Post, & Silver, 1983;Lamon, 1999; Pirie, 1994; 

Mack, 1990). Kieren (1976) proposed a model with five interrelated subconstructs of 

fractions: part-whole, ratio, operator, quotient and measure. Later on Behr et al. 

(1983) further developed Kieren‘s ideas, proposing a theoretical model linking the 

different interpretations of fractions to operations on fractions, fraction equivalence 

and problem solving. Lamon (1999) also studied fraction understanding from the 

perspective of fraction subconstructs. Pirie and Kieren(1994) proposed a dynamic 

model with levels of understanding and described key features of the model they 

proposed. They then used the concept of fractions to justify and explain the levels 

they proposed. Mack (1990) in a similar manner proposed a "more general" model 

which stresses the importance of students' informal knowledge towards 

understanding mathematical concepts, and she then examined how students' informal 

knowledge can be used to give meaning to fractions symbols and procedures. What 

we attempt in this study resembles more to the work of Pirie and Kieren (1994) and 

Mack (1990), i.e. we first developed a model of what constitutes mathematical 

understanding at the elementary school and we then examined the proposed model 

specifically for the concept of fractions. For the purpose of this study, we consider 

the term ―understanding‖ to include conceptual understanding as well as procedural 

understanding. 

What this study adds to the existing research on fraction understanding is that it 

seeks of those crucial factors that constitute understanding of fractions. By the term 

crucial factors we refer to those competencies that students must possess in order to 

understand fractions. At the same time, we encompass in the proposed model a 

sufficient number of factors so that they explain as much proportion of mathematical 
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understanding as possible. It must be noted that the proposed model lays in the 

cognitive, epistemological and semiotics domains, therefore we seek of crucial 

factors in the context of those domains. Of course we admit that it is impossible to 

include all the factors that are required for mathematical understanding. The added 

value of the proposed model is also situated in that it encompasses factors of 

mathematical understanding that were considered important by the mathematics 

education research and were included in national curricula (e.g. NCTM, 2000).In the 

section that follows the rationale for formulating the proposed model and the 

selection of the specific factors is explained in more detail. 

 

THEORETICAL BACKGROUND AND AIMS 

The proposed theoretical model  

We consider that the factors that constitute understanding of fractions are: inductive 

reasoning, definitions and mathematical explanations, argumentation and 

justification, students‘ conception about the magnitude of fractions, representations 

and connections of fractions with other concepts. There are two reasons for selecting 

those factors. The first reason is that researchers in the field of mathematics 

education stress the importance of factors such as inductive reasoning (de Koning, 

Hamers, Sijtsma, & Vermeer, 2002), mathematical explanations (Levenson, Tsamir, 

&Tirosh, 2007; Niemi, 1996), argumentation and justification (Duval, 1992/1993), 

conception about the magnitude of fractions (Clarke & Roche, 2009), representations 

(Newstead & Murray, 1998;Niemi, 1996;Gagatsis, Michaelidou, &Shiakalli, 

2001;Lesh, Post, &Behr, 1987) and connections of fractions with other concepts 

(Sweeny & Quinn, 2000; Oppenheimer & Hunting, 1999) for fraction understanding. 

The second reason is that national curricula (e.g. NCTM, 2000) refer to processes 

such as reasoning, communication, representations, and connections with other 

concepts that students should acquire in order to understand mathematical concepts. 

It should also be noted that all the aforementioned factors refer to fraction 

understanding both conceptually and procedurally. For example, inductive reasoning 

refers to processes (finding similarity, dissimilarity and integration attributes) that 

students need to apply (procedural knowledge), but at the same time, students should 

know why they apply those processes (conceptual knowledge), and these processes 

should be meaningful to students (Hiebert&Lefevre, 1986). 

In the space below, we provide description of each factor with special reference to its 

importance for fraction understanding. 

1. Inductive reasoning 

Inductive reasoning is defined as the process that permits the extraction of general 

conclusions or rules from specific cases(Demetriou, Doise, & van Lieshout, 1988). 

Consequently, via inductive reasoning generalization can take place, the role of 

which is essential for understanding mathematics and the world. Especially for 
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understanding fractions at the elementary school level, where students‘ thought is at 

the concrete level and they use a plethora of manipulatives and materials, inductive 

reasoning is essential, since it permits the extraction of general rules and conclusions 

from specific examples. For example, the equal partitioning of a piece of chocolate, 

of a surface or of a group of objects can lead to the identification of the concept of 

fraction (de Koning, et al., 2002). 

2. Definitions and mathematical explanations 

The ability of communication and use of language is very important according to 

NCTM Standards (NCTM, 2000) for understanding fractions. A lot of researchers 

have stressed the importance of definitions and mathematical explanations for 

learning and understanding mathematical concepts (Levenson, et al., 2007;Niemi, 

1996). Literature review did not reveal any information as regards definitions of 

fractions by elementary school students. We will consider for the purpose of the 

present study that elementary school students can ―define‖, but by defining we do not 

mean the formal definition that is required by elder students. We will consider that 

students can define fractions if they can express in their own words what is the 

meaning of the fraction, e.g. what a fraction is. Students can define either verbally or 

with the use of drawings, symbols and diagrams. Also, apart from those tasks that 

require definitions (e.g. what is a fraction), students might use more than one ways to 

explain other issues regarding fractions, e.g. when two fractions are equivalent.  

3. Argumentation and justification 

Reasoning and proof are considered important factors of what constitutes 

understanding mathematical concepts (NCTM, 2000). According to NCTM 

(2000),elementary school students should be able to develop and evaluate 

mathematical arguments and proofs and select various types of reasoning and 

methods of proof. Since formal proof cannot be the case for elementary school 

mathematics, argumentation and justification could ―substitute‖ what we call formal 

proof in the upper level of education.  

Argumentation can be defined as students‘ ability to recognize the truth or the 

falsehood of a mathematical statement (Duval, 1992/1993). At the same time, 

students have to justify their answer. Argumentation and justification are very 

important because they can reveal students‘ conceptions about fractions, their 

knowledge of fractions and their errors. For example, an argument referring to what 

happens to the size of a fraction when increasing or decreasing the numerator and the 

denominator could serve as an indicator of students‘ understanding of fractions. 

Students‘ answers in this case will show if they understand that a fraction is a 

relation and not see the nominator or the denominator as two different numbers 

having no connection between them. We will consider that for the purpose of the 

present study students can justify their answer by providing numerical examples or 

by means of a ―more general rule‖. More sophisticated levels of justification would 

provide an insight into students‘ understanding of fractions.  
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4. Conception for the magnitude of fractions 

Students‘ sense for the magnitude of fractions is crucial for understanding, since in 

the case a student cannot perceive that 1/4is smaller than 1/3, then he/she probably 

does not understand the meaning of these fractional numbers and fractions in 

general. It is very common for some students to consider the nominator and the 

denominator of a fraction as two different numbers that do not constitute a unique 

entity, i.e. the fraction. Conception about the magnitude of fractions is essential for 

comparing and ordering. According to Clarke and Roche (2009), a number of 

researchers have highlighted the importance of students being able to give meaning 

to the size of a fraction and the many difficulties associated with doing so. 

5.Representations 

Representations are very important for understanding the concept of fraction(Lesh et 

al., 1987;Newstead& Murray, 1998;Gagatsis, et al., 2001).In the context of teaching 

fractions, children come across a great variety of representations. Further to the 

recognition and flexible use of various representational systems, a basic goal of 

teaching and learning fractions should be the development of ability to translate from 

one form of representation to another(Lesh, et al., 1987).Gagatsis et al. (2001) 

claimed that the ability to shift from one kind of representation to another is 

especially important for fraction understanding.  

For the purpose of developing the proposed model, we consider that a student 

understands the concept of fraction if he/she is able to translate to iconic, symbolic 

and verbal representation and if he/she is able to construct drawings for fractions. 

6.Connections of fractions with other concepts 

Students face serious difficulties in connecting the various forms of rational numbers 

(Sweeny & Quinn, 2000). It is argued that students‘ ability to convert from one kind 

of rational number to the other is an indicator of understanding rational numbers 

(Oppenheimer & Hunting, 1999). Moreover, it seems that students‘ ability to see 

fractions as division of the numerator by the denominator is an indicator of 

understanding fractions (Newstead& Murray, 1998). Newstead and Murray (1998) 

have reported students‘ difficulties in doing so, thus their difficulties in 

understanding fractions. 

For the purpose of this study, we consider a student to be adequate in connections, if 

he/she is able to link the concept of fraction with the concepts of decimal numbers, 

percentage and division of integers (division of the numerator by the denominator). 

Aim 

The aim of this study was to develop and empirically test the theoretical model for 

understanding a concept of elementary school mathematics described in the previous 

section. The concept of fractions was selected for testing the model in a sample of 

students at the upper level of elementary education (fifth and sixth grade students). 
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METHODOLOGY 

A test was developed for measuring the six factors considered to constitute 

understanding of fractions. The test was broken into two parts, since 65 tasks were 

needed for measuring all the factors and students would need a large amount of time 

to solve all the tasks at one administration. All students solved the two parts of the 

test. In Table 1 below, we give an example of an item for each of the six factors.  

Tasks 1-7 (task 4 had two sub-tasks 4a, 4b) were used to measure inductive 

reasoning and were similar to the tasks developed by Christou and Papageorgiou 

(2007) for finding similarity, dissimilarity and integration attributes and relations. 

Tasks 8-13 were used to measure definitions/mathematical explanations and some of 

them were used by Niemi (1996) for measuring explanations as regards the concept 

of fraction. In tasks 14-20 statements about fractions were presented to students and 

they had to judge them as right or wrong and explain their way of thinking. We 

considered that in this way students would provide an argument about their choice 

and justify their choice to judge the statement as right or wrong. Some of the tasks 

for argumentation/justification were similar to tasks proposed by Lamon (1999) 

while discussing reasoning with fractions and some other tasks were used by Niemi 

(1996). Tasks 21a-21f and task 22 were used to measure conception about the 

magnitude of fractions. Tasks 21a-21f referred to fraction comparison, whereas in 

task 22 students had to put four fractions in the right order starting from the smallest 

one. Similar tasks were used by Clarke and Roche (2009) for comparing and 

ordering fractions. Tasks 23, 25 and 26 were previously used by Niemi (1996) and 

involved recognizing fractions in iconic form. Tasks 24, 30, 32 and 33 referred to 

writing problems that have a fraction as an answer, from an equation or on the basis 

of a drawing (translating to verbal representation). Tasks 27, 31, 35 and 37 asked 

students to construct their own drawings to show a fraction, for an equation of 

adding fractions and for two problems involving fractions. Tasks 28a-28f asked 

students to select the right fraction that could be represented by pictures (translation 

to symbolic form, similar tasks were used by Niemi, 1996). In tasks 29a-29c number 

lines were presented to students and they had to select the right fraction for each. In 

tasks 34 and 36 students had to solve two problems of addition and multiplication of 

fractions and they had to write the equation for each. Finally, in tasks 38a-38f 

students were asked to convert fractions to decimals, in tasks39a-39f they had to 

convert fractions to percentages, while tasks 40a-40c and 41 were about the relation 

of fractions with the division of integers.   

The test was administered to 344 fifth and sixth grade students (119 fifth grade and 

225 sixth grade) from 11 different schools in Cyprus (both urban and rural areas 

were represented). The time period for administration was the end of the school year, 

so that both fifth and sixth grade students had covered the notions included in the 

model. The test was administered by the classroom teachers who were requested to 

provide no further clarification and ask students to work on their own. 
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Table 1: Examples of items for each of the six factors 

Inductive reasoning One of the following fractions differs from the 

others. Find that fraction and circle it. 

7

2
 

2

3
 

49

14
 

35

10

14

4
 

Definitions/mathematical explanations Imagine that your teacher asked you to explain to 

one of your classmates what a fraction is. Use as 

many different waysyou can. 

Argumentation/Justification If I double both the numerator and the 

denominator of a fraction, then the formed 

fraction has twice value compared to the initial 

one. 

Justify your answer: . 

………………………………………………….  

      T F 

Conception about the magnitude of 

fractions 

Put the fractions       ,      ,      ,     in order starting  

from the smallest one.  

Representations  Write a problem that could be solved by the  

equation + = n 

Connections of fractions with other 

concepts 

Convert the following fractions to decimals. 

a)
4

1
=        b) 

5

2
 =         c) 

10

3
 =       d) 

20

1
=  

The answers were coded on the basis of a coding scheme. Some tasks were marked 

either with 0 or 1 (categorical variables), whereas in other tasks the score could vary 

from 0 to 1. 

For testing the fit of the proposed model, confirmatory factor analysis using MPLUS 

software was used with WLSMV estimator, since this kind of estimator is the most 

appropriate for categorical variables(Muthén&Muthén, 2004). More than one fit 

indices were used to evaluate the extent to whichthe data fit the theoretical model 

under investigation. More specifically, thefit indices and their optimal values were: 

(a) the ratio of chi-square to itsdegrees of freedom, which should be less than 1.96, 

since a significant chi-squareindicates lack of satisfactory model fit, (b) the 

Comparative Fit Index(CFI), the values of which should be equal to or larger than 

0.90, and (c)the Root Mean Square Error of Approximation (RMSEA), with 

acceptablevalues less than or equal to 0.06 (Muthén&Muthén, 2004). Moreover, 

confirmatory factor analysis was used to examine construct validation and ―evaluate 

2

1

3

4

3

2

4

1

2

1

4

1



Working Group 2 

 CERME 7 (2011) 372 

the extent to which particular instruments actually measure one or more latent 

variables they are supposed to assess‖ (Marcoulides&Kyriakides, 2010, p. 279). 

RESULTS 

After subsequent model tests, the model shown in Figure 1 proved to have very good 

fit to the data (x
2
=338.478,df=198, x

2
/df=1.71, CFI = 0.971, and RMSEA = 0.045) 

From Figure 1, we verify that the factors we consider to constitute understanding of 

fractions do so very well (the fit indices are very good).Three of the factors and more 

specifically inductive reasoning, definitions/mathematical explanations and 

argumentation/justification seem to constitute a second order factor whichcontributes 

to understanding fractions. We will call this second order factor as ―reasoning and 

informal proof‖ at the elementary level. Figure 1 also confirms that verbal, symbolic, 

iconic representations and students‘ ability to construct their own drawings for 

fractions constitute the factor ―representations‖ which in turn constitutes 

understanding fractions.In the same manner, connections of fractions with decimals, 

percentages and division constitute the factor ―connections of fractions with other 

concepts‖ which also constitutes understanding of fractions.  

Figure 1: The proposed model for understanding fractions 
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Figure 1 shows that representations have the highest contribution towards 

understanding fractions, followed by the conception about the magnitude of 

fractions, connections of fractions with other concepts and ―reasoning and informal 

proof‖. The coefficients could serve as an indicator of the importance of each factor 

for understanding fractions. Moreover, the square of the coefficient shows the 

percentage of variance of fraction understanding that is explained by the 

corresponding factor. For example, representations account for about 88% of the 

variance of fraction understanding. As regards the validity of the instrument used in 

the present study, this is ensured by the results of the confirmatory factor analysis, 

since all fit indices had optimal values (x
2
/df=1.71<1.96, CFI = 0.971>0.9, and 

RMSEA = 0.045<0.06). The optimal values of the fit indices provide evidence that 

the instrument measures the latent variables it is supposed to measure and overall 

provides a means for assessing fraction understanding (Marcoulides&Kyriakides, 

2010). 

DISCUSSION 

The results of the statistical analysis confirmed our theoretical model and suggested 

that the six factors constitute understanding of fractions. Moreover, three of these 

factors constitute a second order factor which we call ―reasoning and informal proof‖ 

at the elementary school. Therefore, we claim that for a student to understand 

fractions he/she should be able to engage to ―reasoning and informal proof‖ as 

regards fractions, he/she should possess a conception about the magnitude of 

fractions, he/she must be fluent in representations and the translation from one kind 

of representation to the other and he/she must be able to connect fractions with other 

concepts.  

The contribution of the factors was high (all loadings were greater than 0.7) showing 

that all factors had a considerable contribution towards understanding fractions. 

However, the contribution of representations was the highest (0.938), showing the 

great importance of this factor for understanding fractions, as other researchers have 

also claimed (Lamon, 2001;Lesh et al., 1987). The second factor in importance was 

conception about the magnitude of fractions with also very high loading, followed by 

connections with other concepts with a little bit less contribution. Therefore, both 

factors are considered important for understanding fractions. ―Reasoning and 

informal proof‖ had the lowest contribution among the factors but it was high 

enough to stress the importance of this factor as well.  

The findings of the present study are also important for assessment purposes as we 

have developed a validated test for assessing fraction understanding. Moreover, the 

present study provides a way for assessing representations and connections of 

fractions with other concepts. As shown in Figure 1, translation to verbal, iconic, and 

symbolic representations and the ability to construct drawings to show fractions 

comprise representations. In a similar manner, Panaoura, Gagatsis, Deliyianni, and 

Elia (2009) developed a model for understanding fraction addition. As regards 
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connections of fractions with other concepts, it can be claimed that for the 

elementary level, this can be assessed by measuring students‘ ability to convert 

fractions to decimals and percentages and by the relation of fractions with the 

division of integers (division of the numerator by the denominator). 

The results indicated that inductive reasoning, definitions/mathematical explanations 

and argumentation/justification are highly correlated forming a second order factor. 

The relation of definitions/mathematical explanations and argumentation/ 

justification was expected since terms such as explanations and justification are used 

interchangeably for reasoning at the elementary school and a relation of the two has 

been reported from other studies (Niemi, 1996). Explanations and justification can 

also provide a kind of   ―informal proof‖ at the elementary school. The relation of 

inductive reasoning to the other two factors can be explained by the fact that 

inductive reasoning is also necessary for reasoning at the elementary school. 

The importance of the present study is situated in that it proposes a theoretical 

framework with factors that constitute understanding a concept of elementary school 

mathematics. In this study, fractions were selected as the concept under study. The 

results of the present study support our claim that we have ―decomposed‖ 

understanding in factors that can be directly measured. Additionally, we believe that 

we have provided a sufficient number of factors to describe understanding.  

Although the sample is high enough, in future the proposed theoretical model could 

be tested again, enhancing the validity and the reliability of the results. Moreover, 

from a teaching perspective, an intervention could take place for improving students‘ 

ability in the factors found to constitute understanding of fractions. Finally, the 

proposed theoretical model can be tested for other concepts beyond fractions. 
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We analyze the statistical distribution of the answers given by 2
nd

 to 10
th

 graders to a 

set of number line problems. To structure our analysis of students‘ misconceptions, 

we identified three clusters of problems related to the number line. Our analysis 

shows that neglecting one of the main features of the number line can be a potential 

cause for misconceptions. By further exploring the students‘ mistakes, we found that 

children ignore either the geometric or the algebraic nature of the number line, 

making inappropriate decisions within the problem context. The errors in the 

problems treated within this paper seem to originate from students‘ lack of 

understanding of the dual nature of the number line, and are persistent over time.  

Keywords: number line, cardinal, distance, origin, direction.  

INTRODUCTION 

There is a large body of literature that discusses children‘s early capacity of learning 

the numbers (e.g. Griffin & Case, 1997; Karmiloff-Smith, 1992; Singer, 2007). 

Children have strong primary perceptions related to the number line (Singer & 

Voica, 2008). Another category of neuroscience studies seems to conclude that the 

human mind possesses analogical representation of quantities, more precisely: 

numbers are automatically associated with positions in space, thus supporting the 

metaphor of a spatially organized internal ―number line‖ (Dehaene, 1992, 1997; 

Dehaene & Cohen, 1995; Gobel, Walsh & Rushworth, 2001). However, beyond 

some native predispositions, students of various ages show deep conceptual 

difficulties in understanding the number line properties. 

Formally, the number line concept includes the ―empty number line‖ (see e.g. 

Beishuizen, 1999), which is filled in by taking into account three essential elements: 

direction, origin and unit measure. These three elements emerge from the combined 

nature of the number line: on the one hand, the geometric nature of its representation; 

on the other hand, its algebraic properties connected with the order relation on R. 

Ordering and direction have intuitive support from everyday experience. We acquire 

a basic level of understanding them by polarized descriptions of the type: bigger – 

smaller; taller – shorter; up – down, etc. In contrast, the origin is a theoretical 

construct: it is the „nodal point‖ that allows the construction of a reference system, 

endowed with a measuring unit conventionally chosen. This allows associating a 

number („algebraic object‖) to a segment („geometrical object‖). Thus, by 
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introducing the distance function, the number line (a geometric representation) is 

algebrized. 

Because the number line is a basic concept, some of its features are neglected in 

teaching, being considered obvious. However, Booth & Siegler (2006) concluded 

that individual difficulties in learning the number line are correlated with lower 

achievement in mathematics. Their result suggests that there might be a long-term 

impact of these difficulties. 

This paper emerged from the following questions: To what extent does the neglect of 

one of the three elements of the number line determine children‘s misconceptions in 

problem solving? Do these misconceptions appear in different grades? 

METHODOLOGY 

The data reported in this study come from the statistical results of a large contest that 

takes place every year in Romania. At this contest, of multiple-choice type, there is a 

yearly participation rate of around 250,000 students from grades 2 to 12, in total.  

The tests in this competition consist of a range of 24 to 40 problems, depending on 

the school grade. The tests cover the whole school curriculum and present students 

with a considerable variety of problems. In order to limit guessing, wrong answers 

are penalized. In this way, children who do not know the correct answer to a question 

are in advantage if they do not answer that question, since the no-answer choice is 

not scored at all. For this reason, we consider that the statistical analysis of the 

answers can be highly informative about children‘s reasoning during the test.  

For our study, we have chosen problems related to the number line that have 

(relatively) similar text or are based on similar solving mechanisms, and grouped 

them in clusters. Given the focus of our first question, the clusters have been built 

from mathematical considerations. We thus identified three clusters of number line 

problems and we looked at the distribution of the students‘ answers to the distracters 

of these problems.  

In the present paper, we analyze the statistical distribution of the answers given by 

2
nd

 to 10
th

 graders to a set of number line problems. We have chosen this vertical 

extension of the analysis in order to see changes in misconceptions as function of 

age. This vertical analysis helps us to see if the errors are influenced by a certain 

instructional focus. Although the curriculum recommends the frequent use of the 

number line, it is not a common practice in the Romanian classrooms in primary 

grades. The classical use of the empty number line happens in grade 4, when a 

diagram segment is used for solving some word problems (that usually leads to the 

use of equations). Frequently, this is learned as an algorithm. The formal number line 

is used by the math teachers starting with the 5
th

 grade. 
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RESULTS 

Our primary interest was to understand the mathematical sources of the students‘ 

mistakes. We looked especially at the problems in which the errors related to the 

properties of the number line (eventually cumulated) were higher than the percentage 

of correct answers. In the next sections of the paper, we focus on these problems to 

structure our analysis of students‘ misconceptions. 

The ―cardinal cluster‖ 

The first cluster contains problems that request the finding of the cardinal of an 

ordered set; we call it the cardinal cluster. 

Problem 1.1. (Grade 2, 38,917 respondents): From my story book some pages are 

missing. Where pages are missing, I see number 12 on the left page and number 15 on the 

right page. How many pages are missing? 

(A) 1;    (B) 2;    (C) 3;    (D) 4;    (E) 5. 

Problem 1.2. (Grades 3-4, 124,641 respondents): Ana found an old book from which 

some pages are missing. At the place where the pages were missing, there was the 

number 24 on the left page; while, on the right was 45. How many pages were missing?  

(A) 9;    (B) 10;    (C) 19;    (D) 20;    (E) 21. 

Problem 1.3. (Grades 5-6, 42,439 respondents): How many integers are there between 

19.03 and 2.009?  

(A) 0;    (B) 17;    (C) –17;    (D) 19;    (E) 17,021. 

Problem 1.4. (Grades 7-8, 26,827 respondents): Harry brings the mail on Long Street. He 

has to distribute a letter to each house having an odd number. The first house has number 

15 and the last 53. To how many houses did Harry give the mail? 

(A)    19;    (B) 20;    (C) 38;    (D) 39;    (E) 53. 

The problems from this cluster are alike since they ask to find out the length of a 

finite arithmetic progression of ratio 1 (problems 1.1, 1.2, 1.3), or of ratio 2 (problem 

1.4). We noticed that, for each of these problems, the most frequent chosen answer 

refers to the computation of a length. In problem 1.1, answer (C) comes up as the 

difference between 15 and 12; similarly in problem 1.2, the wrong answer with the 

highest percentage is the one obtained from 45 – 24. In the same way, in problem 

1.3, the distracter with the highest percentage has been generated by performing a 

subtraction. A special discussion is worth for problem 1.4. While answer C is 

obtained by computing 53 – 15, some of the students observed that the ratio is 2 and, 

therefore, they divided the result, thus obtaining answer A. Consequently, the answer 

A is also based on a reasoning that relies on the difference between two numbers. For 

this reason, we refer to the total of A and C choices as belonging to the same type of 

mistake. The statistical results are presented in Diagram 1. 
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Diagram 1. Correct answers and maximal distracter for the cardinal cluster   

Because students showed an obvious preference for the distracters based on 

subtraction, we wondered in what situations these subtractions are yet relevant to the 

problem solving process. In general, such operation leads to the determination of the 

distance between two points situated on an axis (that is, when the points are 

identified by their coordinates on the axis). Thus, for Cluster 1 problems, the unit 

measure becomes important: most of the students do not realize that they should 

work with a „discrete‖ unit (the number of integers) instead of a „continuous‖ 

measure (distance). 

Consequently, we interpret these errors as due to the confusion children make 

between cardinal and distance. By further exploring the nature of this error, we 

concluded that the children‘s mistake consists in adopting a geometrical solution 

(emphasized by the distance between the points) for a situation in which the answer 

is algebraic (based on ―discrete‖ counting). 

The ―distance cluster‖ 

To go deeply into this hypothesis, we focused on the second cluster, which we called 

the distance cluster. This second cluster contains problems in which one needs to 

find the distance between two points. 

Problem 2.1. (Grades 3-4, 77,294 respondents): On the right side of an alley there are 9 

street lamps. The distance between two neighbour street lamps is 8 m. John ran on the 

alley, from the first until the last street lamp. How many meters did John run? 

(A) 48 m;   (B) 56 m;   (C) 64 m;   (D) 72 m;    (E) 80 m. 

Problem 2.2. (Grades  5-6, 50,024 respondents): There are nine bus-stations, at equal 

distances, on a bus line. The distance between the first and the third bus-station is 600 m. 

What is the distance between the first and the last station? 

(A) 1200 m;   (B) 1500 m;   (C) 1800 m;   (D) 2400 m;   (E) 2700 m. 

Problem 2.3. (Grades 9-10, 19,327 respondents): The 

supermarket chariots are arranged in two lines. On the first 

line, 2.9 m long, there are 10 chariots, while on the second 

line, which is 4.9 m long, there are 20 chariots. What is the 

length of one chariot? 
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(A) 0,26 m;   (B) 0,9 m;  (C) 1 m;  (D) 1,1 m;  (E) 1,4 m 

(At the contest, the problem 2.3. had an illustration of the type seen above.) 

The statistical results to the three above problems are presented in Diagram 2. 

 

Diagram 2. Correct answers and maximal distracters for the distance cluster 

The problems of this cluster are similar, each of them requiring the computation of a 

distance between two points of the number line. We can observe that in each of these 

cases, the most frequent error refers to the extrapolation of a proportionality relation 

between the discrete information (the ordinal of the „marking points‖ – street lamp/ 

bus stop) and data that are of a continuous nature (distance). 

Because the proportionality-based reasoning was frequent in the sample population, 

we wondered in what situations this reasoning is certainly correct. The typical 

example for such situation would be the Thales‘ theorem, where one can transfer the 

ratio of segments situated on a line to segments situated on another line in conditions 

of homogeneity, meaning: the same unit of measure and, especially, the same origin 

(see figure 1). 

 

 

 

Fig. 1: A representation for the Thales‘ theorem  

Obviously, in the cases of the analyzed problems, we work with different origins. 

Why the origin is so important? When computing the length of a segment situated on 

the number line, we choose an origin (usually one of the end of the segment) 

corresponding to 0. Therefore, when we position one of the segment‘s endpoint over 

0, we perform a translation, which can be expressed through a single algebraic 

operation (i.e. subtraction). On the other hand, in order to find the cardinal of a 

(finite) set, we count its elements starting from 1; in other words, we chose the origin 

in 1. This positioning has no algebraic correspondent: if the reference points (initial 

and final) of the interval are a and b, then to position a in 1 means to change the 

coordinates of b into b – a + 1. Consequently, here we have two translations (first we 
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take a to 0, then to 1), but children have difficulties in understanding how this 

succession of translations could be performed. The analysis of the second cluster 

shows that neglecting an essential element of the number line – namely the adequate 

positioning of the origin – can be a potential cause for misconceptions in algebra. 

The ―directions cluster‖ 

What happens if children ignore another essential element of the axis? We look at 

the next cluster in order to find an answer. The third cluster was called the directions 

cluster given that the selected problems in this category require to handle two origins 

and, consequently, different directions for counting.  

Problem 3.1.  (Grades 3-4, 63,059 respondents):  Radu and Maria went on a trip by train. 

Radu got his place in the 17th car from the beginning of the train; while, Maria got hers in 

the 14th car from the end of the train. They were surprised to see that they travel in the 

same car. How many cars did the train have? 

(A) 28;   (B) 29;  (C) 30;   (D) 31;   (E) 32. 

Problem 3.2. (Grades 5-6, 36,293 respondents):  A staircase has 21 stairs. Mike and Nick 

count the stairs, the first from the bottom and the second from the top. They meet on the 

step that is the 10th for Mike. What is the number of this stair in Nick‘s counting? 

(A) 21;   (B) 31;   (C) 11;   (D) 12;   (E) 10.  

Problem 3.3. (Grades 9-10, 16,692 respondents): Sally was in the 50th position on the list 

of the Kangaroo contest results when counting both in increasing and decreasing order. 

How many children participated in the contest? 

(A) 50;   (B) 75;   (C) 99;   (D) 100;  (E) 101. 

The statistical results of the three above problems are presented in Diagram 3. 

 

Diagram 3. Correct answers and maximal distracters for the directions cluster 

These problems involve the relationship between the cardinality of a set and one of 

its subsets. From this perspective, the second problem is slightly different since we 

have the cardinality specified here and the task requests finding the number of 

elements when counting from two different origins. The typical error is given by 

performing a simple addition (or subtraction for the second problem) and it is linked 

to the idea that cardinality of a set can be obtained by summing up cardinalities of 

subsets. This type of reasoning is correct only for disjoint sets and children seem to 
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forget that. Nevertheless, at a deeper level, their error is linked, once again, to the 

confusion between distance and the cardinal of the set of the marking points, thus to 

the geometrical and algebraic nature of the number line. When children sum up or 

subtract numbers, they work with distances on the number line, since the number is 

represented by its distance from the origin. But, in the above problems the questions 

focus on the marking points (in this sense, these problems are the opposite of the 

ones from Cluster 2) and play on the fact that one of the marking points is common 

to the two ―countings‖, therefore it does not define a new distance.   

Most of the above tasks are of a special kind, which for many students can be 

understood as a trap. However, the pattern of wrong answers shows that the ―trap‖ is 

not enough to explain the error. It is possible to consider that the trap invites the 

mistake, but actually the mistake is made by a misconception.  

We conclude that, in general, the above problems cause difficulties to children 

because they request to see the dual nature of the number line, which is not explicitly 

highlighted by the information given in the texts. For example, in Cluster 2, the 

information is given by using ―marking points‖, which induces a mental image based 

on the geometrical interpretation of the line, but the question focuses on distances, 

which add an algebraic dimension. For the correct solution, one should be able to 

make a transfer, but for most of the children this is not evident. Therefore, they 

―continue‖ to reason in the frame that is induced by the problem text. We can see the 

same pattern of answers in Cluster 3: briefly, the source of errors consists in 

operating with distances and not with cardinals, therefore, in not being able to switch 

from algebraic to geometric properties.  

NEW RELEVANT CASES  

In order to get confirmation of the above assertions, we looked at two more problems 

where this switch between algebra and geometry is not necessary for the successful 

solution. The most common case for this is when an early algebraic transcription is 

possible or the problem needs to be treated algebraically. If the cause for the errors in 

these problems is geometry-algebra analogical transfer, then in problems that are 

similar to the ones discussed above, but, for some particular reason, do not require 

the interplay between algebra and geometry, we should have a different pattern of 

answers. We will analyze two such problems. The first discussed problem involves 

both distance and the cardinality of a set. 

Problem 4. (Grades 7-8; 29,288 respondents): On both sides of a 20 m long alley, I 

planted roses. The distance between two neighbouring roses is 2 m long. How many roses 

did I plant? 

(A) 22;    (B) 20;   (C) 12;   (D) 11;   (E) 10. 

This problem is a „geometrical version‖ of problem 2.1. In both cases, we have a 

movement of length 2 and the computation of a cardinal. In opposition to the 
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problem 2.1, in which 34.80 % of students answered correctly, the statistical results 

to this problem are the ones presented in Diagram 4.  

 

 

 

Diagram 4. Statistical results to Problem 4. (The correct answer is (A). The remaining 

percents correspond to non-answers.) 

We can interpret answer D as „half correct‖, with the mistake coming from 

neglecting a constraint of the problem‘s text (that the roses are on the both sides of 

the alley). This is why we consider that the students who had chosen the answers (A) 

or (D) made a correct judgment. Similarly to the problems discussed above, we 

group answers B and E as belonging to the same category: here the errors come from 

the duality marking points – segment (distance). We can observe that we have a 

strong polarization here: almost 28% correct answers versus 60% typical error. We 

consider that the range of children‘s answers to this problem can be explained by 

their different level of algebraic reasoning. More precisely, once the student manages 

to transfer from geometry to algebra, he/she can make use of both the number sets 

properties and an algorithmic thinking to solve the task. In order to check this 

hypothesis, we looked at the answers to the next problem. 

Problem 5. (Grades 9-10; 17,620 respondents):  2 009 participants in a cross country race 

have arrived at the finish line. The number of persons behind John is three times bigger 

than the number of persons in front of John. In what position did John finish the race?  

(A)  503;  (B) 2009;  (C) 1005;  (D) 4;  (E) 1507. 

The statistical results to this problem are presented in Diagram 5.  

The problem 5 is similar to problem 3.3. However, while for problem 3.3 the main 

distracter was chosen by 36.81 % of the respondents, here the maximal distracter (E) 

was chosen by only 14.98 % of the students. The percent of correct answers is 

relatively similar. What is the source of these differences? In the case of problem 5, 

one needs to transcribe the information into equations and the solution does not 

require switching between algebra and geometry. Once the equation is written, we 

can proceed in a purely, algebraic way. This can explain the differences in results. 
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Diagram 5. Statistical results to Problem 5. (The correct answer is (A). The remaining 

percents correspond to non-answers.) 

CONCLUSIONS 

As a support-representation for the real numbers, the number line has a dual 

conceptual structure that consists of a geometrical component that allows 

visualization and an algebraic component, given by the introduction of distance. 

Consequently, in order to understand the number line with all its properties, we need 

a bi-directional transfer between geometric and algebraic viewpoints. Children seem 

tempted, even from the very beginning, to make this shift in an involuntary manner 

for problems that ask for length/ continuous measure (so, in which the origin ―is 

situated‖ at 0) and cardinal/ discrete measure (in which the origin ―is situated‖ at 1). 

The change of the origin seems to be more natural in the first case, given that there is 

a corresponding algebraic operation (subtraction). In the second case we have the 

composition of two translations; therefore, the algebraic correspondent is more 

complex. The problems in the third cluster belong to the first case mentioned here, 

but with an additional complexity related to the fact that the final results need to be 

„reinterpreted‖ through a switch between algebra and geometry. In conclusion, the 

answer to the first question of our study: ―To what extent does the neglect of one of 

the three elements of the number line determine children‘s misconceptions in 

problem solving?‖ becomes more complex. It seems that the problem is not only in 

neglecting one of the elements of the number line, but also in the quality of the 

connections made between various representations (algebraic or geometrical) of 

some abstract concepts.  

We have seen that the errors in the problems treated above originate from the duality 

of the number line. Similar errors appear in different grades. One reason for this 

persistence over time can be the fact that school curriculum does not explicitly focus 

on the number line duality. In younger grades, children work, mostly, with the 

geometric interpretation of the number line, just using an intuitive algebraic 

structure. Once the algebraic structure is formally introduced, students are not 
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reminded of the geometric aspects, and the structure remains, most often, in the 

realm of abstraction, lacking an intuitive interpretation.  

This study is based on a statistical analysis. It allowed us to identify students‘ 

difficulties in solving number line problems and to launch some research hypotheses. 

Although these hypotheses were statistically validated, a qualitative study focused on 

these aspects could reveal more detail of students‘ thinking.  
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In this study we examined special education students‘ use of indirect addition for 

solving two-digit subtraction problems. Fifty-six students (8- to 12-year-olds), with a 

mathematical level of end Grade 2, did an ICT-based test on subtraction. Although 

most students had not been taught indirect addition they frequently applied this 

procedure spontaneously. For about two-thirds of the problems that have an adding-

on context and for about half of all the problems with a small difference between the 

minuend and subtrahend indirect addition was used. The main prompt for using 

indirect addition were the item characteristics. Indirect addition was identified as a 

highly successful procedure for special education students and the best predictor of 

a correct answer was found in combination with a stringing strategy. 

Keywords: special education, indirect addition, information and communication 

technology (ICT), assessment, empty number line 

INTRODUCTION 

At the end of primary school many special education (SE) students are considerably 

behind on the topic of subtraction with numbers up to 100 compared to their peers in 

regular education (Kraemer, Van der Schoot, & Van Rijn, 2009). To improve the 

achievements of SE students in solving subtraction problems, it is suggested to teach 

them one particular way of solving calculations (see e.g., Milo & Ruijssenaars, 2002; 

National Mathematics Advisory Panel, 2008). 

There are several reasons for challenging this advice. Firstly, the idea of teaching 

only one method goes against the goal of developing numeracy in students. This goal 

implies that students should be able to choose a suitable strategy when solving 

number problems (see e.g., Van den Heuvel-Panhuizen, 2001; Warry, Galbraith, 

Carss, Grice, & Endean, 1992). Secondly, teaching one method implies that for 

solving particular problems students may have to follow an unnecessary long way to 

come to an answer (see e.g., Torbeyns, Ghesquière, & Verschaffel, 2009). Thirdly, 

using prescribed methods can lead to ‗didactical ballast‘ (Van den Heuvel-

Panhuizen, 1986) for students. This means that students have to become skilled at 

following the given recipes, which may not always be easy for them, because the 

ownership is completely on the side of the teacher or textbook author. 

Despite these disadvantages, the idea of teaching students with mathematical 

difficulties one solution method is still often advocated nowadays. This plea 

results from the assumption that weak learners do not have the necessary 
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insights to choose an approach that suits a particular task (see e.g., Milo & 

Ruijssenaars, 2002; Timmermans & Van Lieshout, 2003). In the study 

reported in this paper the tenability of this claim is investigated by means of an 

Information and Communication Technology (ICT)-based assessment. The 

focus of the study is on using an addition procedure for solving subtraction 

problems up to 100. 

Strategies and procedures for solving subtraction problems 

For solving addition and subtraction problems with numbers up to 100 generally 

three different types of strategies can be distinguished: splitting, stringing, and 

varying (Van den Heuvel-Panhuizen, 2001). These idealized strategies of which 

examples are given in Figure 1 have in common that they describe how we deal with 

the numbers involved (in splitting both numbers are decomposed in tens and ones, in 

stringing one number is kept as a whole number, and in varying one or both numbers 

are changed in order to get an easier problem). 
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Figure 1. Relation between procedures and strategies illustrated with problems 

A different way of describing a calculation is by focusing on how the operation is 

carried out. From this perspective, two main procedures for solving subtraction 

problems can be distinguished: (1) direct subtraction (DS), which means taking away 

the subtrahend from the minuend (e.g., solving 62–58=_ by 62–50=12; 12–2=10 and 
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finally 10–6=4), and (2) indirect addition (IA), which means adding on from the 

subtrahend until the minuend is reached (e.g., solving 62–58=_ by 58+2=60 and 

60+2=62). Together the strategies and the procedures offer a complete framework for 

describing how students solve subtractions up to 100. See Figure 1. DS is likely to 

go together with splitting or stringing. For IA and IS, stringing is the most obvious 

strategy, although splitting can be applied as well. Finally, when a varying strategy is 

applied multiple operations are required. 

Solving subtraction problems by indirect addition 

In connection to the earlier mentioned chasm between opposing ideas about whether 

or not to teach one solution method to students who are weak in mathematics, there 

is also debate on whether SE students are able to flexibly solve subtraction problems 

up to 100 by applying an IA procedure. For example, a few recent intervention 

studies have revealed that even students in regular primary education have great 

difficulty to incorporate IA for solving subtraction problems up to 100 (De Smedt, 

Torbeyns, Stassens, Ghesquière, & Verschaffel, 2010; Torbeyns, De Smedt, 

Ghesquière, & Verschaffel, 2009). 

However, these studies are contradicted by other intervention studies that do support 

the claim that already in the first grades of primary mathematics education, students 

of different ability levels in mathematics can learn to flexibly solve subtraction 

problems by applying IA (Blôte, Van der Burg, & Klein, 2001; Menne, 2001). 

Factors influencing students‘ procedure use 

Important factors that may influence students‘ procedure use when solving a 

subtraction problem are: (1) student characteristics, such as their general 

mathematics level, (see e.g., Torbeyns, De Smedt et al., 2009), (2) teaching 

characteristics, for example, whether or not students‘ have been taught a particular 

procedure (see e.g., Menne, 2001), and (3) problem characteristics. With respect to 

the latter, the influences of the following three features of a subtraction problem are 

discussed: (a) the numbers involved, (b) the problem format (context problems or 

bare number problems), and (c) the available auxiliary tools. 

Influence of the numbers involved 

Several studies (e.g., De Smedt et al., 2010; Torbeyns, De Smedt et al., 2009) have 

indicated that subtraction problems that require crossing the ten and have a small 

difference between the minuend and subtrahend may evoke the use of IA. However, 

IA may also be an efficient procedure in solving large-difference problems with a 

small difference around the tens and requiring crossing the ten. For example,  

82–29=_ may be easily solved by IA (i.c., 29+1=30; 30+50=80 and 80+2=82, so 

1+50+2=53). Finally, research suggested that small-difference problems that do not 

require crossing the ten (e.g., 47–43 =_) may also evoke the use of IA (Gravemeijer 

et al., 1993). 
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Influence of the problem format 

Two didactical phenomenological interpretations of subtraction are: (1) subtraction 

as taking away, and (2) as determining the difference. In the first interpretation, the 

matching operation is that of taking away the subtrahend from the minuend, whereas 

in the second interpretation bridging the difference between the subtrahend and 

minuend by adding on is also an option. Both interpretations need to be addressed if 

we want students to learn subtraction in a more complete way (Freudenthal, 1983; 

Van den Heuvel-Panhuizen & Treffers, 2009). 

To contribute to this broad understanding of subtraction students should not only be 

presented bare number problems. Different studies (e.g., De Smedt et al., 2010; 

Torbeyns, De Smedt et al., 2009) revealed that bare number problems hardly evoke 

the use of IA. Context problems, on the contrary, have the possibility to open up both 

interpretations of subtraction (Van den Heuvel-Panhuizen, 2005). 

Influence of the auxiliary tools 

To support students in carrying out calculation problems up to 100, different models 

can be used. Basically, two main models can be distinguished: group models and line 

models (Van den Heuvel-Panhuizen, 2001). Group models, such as rods of ten and 

blocks of one, are particularly appropriate to represent a splitting strategy together 

with DS. Line models, such as the empty number line, are mostly suitable to support 

a stringing strategy in combination with either DS or IA. The empty number line thus 

has the possibility to represent both interpretations of subtraction: taking away by 

jumping backwards and adding on by jumping forwards. 

The present study 

The present study was set up to investigate whether and under which conditions SE 

students are able to use IA for solving subtraction problems up to 100, and whether 

they can solve subtraction problems correctly when applying this procedure. The 

purpose of the study was to clarify the role of the numbers involved, the format of 

the problem (context or bare number problems), the presence of a digital empty 

number line as an optional auxiliary tool, and the occurrence of prior instruction in 

IA. The study has two foci (I) students‘ spontaneous use of IA, i.e., applying IA 

without being asked to use this procedure, and (II) students‘ success rate when 

applying IA. 

METHOD 

Participants 

In total, 56 students from fourteen second-grade classes in three Dutch SE schools 

participated in the study. The participating students (39 boys, 17 girls) were 8 to 12 

years old, with a mean age of 10 years and 6 months (SD=10.4 months). All students 
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had a mathematical ability of level C or lower at the CITO Monitoring Test for 

Mathematics End Grade 2 (Janssen, Scheltens, & Kraemer, 2005). 

Materials 

ICT-based test on subtraction problems 

An ICT-based test¹ was developed that contains a collection of items in which item 

characteristics are varied systematically. These characteristics include number 

characteristics and format characteristics. 

The number characteristics refer to the size of the difference between the minuend 

and subtrahend (small means <7 and large means >11), whether or not the tens have 

to be crossed (e.g., 61–59=_), and whether or not the minuend and the subtrahend are 

close to the ten (<3). The format characteristics refer to whether or not the items are 

presented as a bare number problem (BN) or as a context problem. The latter can 

describe a taking-away situation (ConTA) or an adding-on situation (ConAO). 

Figure 2 shows a screen shot of one of the context problems that reflects an adding 

on situation.). 

 

Figure 2. Train ticket item; the read aloud instruction is: ―A train ticket costs 41 euro. 

Father has already paid 29 euro. How many more Euros does he need to pay?‖ 

The ICT-based test is divided into two parts. The first fifteen items do not feature the 

number line tool, whereas the last fifteen do. This digital empty number line operates 

by touch-screen technology. After a short introduction, the students worked 

individually on a touch-screen notebook. Students were told that they were 

completely free in choosing a particular solution method. As well as giving an 
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answer they had to report verbally how they solved the items. The students‘ on-

screen work was recorded by means of Camtasia Studio software. 

Online teacher questionnaire 

To collect data about the students‘ prior instruction on subtraction problems an 

online teacher questionnaire was developed. The link for the questionnaire was sent 

by email to the fourteen teachers responsible for teaching mathematics to the 

students that participated in the study. All fourteen teachers filled in and submitted 

the questionnaire. The questionnaire contains two questions on the topic of 

‗subtraction up to 100‘ to collect data about (1) the models and materials the teachers 

have used for teaching subtraction up to 100, and (2) the procedures (DS and/or IA) 

they have taught their students for solving subtraction problems up to 100. 

RESULTS 

In the analysis of the data we included all the cases in which the students gave an 

answer to an item. Of the 1680 possible cases (56 students each doing all thirty 

items) 147 cases were missing. This resulted in 1533 cases to be analyzed. DS and 

IA were clearly the most frequently applied procedures. DS was applied in 64% of 

the total cases and went together almost equally often with a stringing and splitting 

strategy. IA was applied in 32% of the total cases; in almost 90% IA was applied in 

combination with a stringing strategy.  

 

 

Different conditions and SE students‘ spontaneous IA use 

Numbers involved 

IA was most frequently applied in small-difference problems, i.e., in 50% of the 322 

cases involving items with crossing the ten and in 43% of the 324 cases 

involving items without crossing the ten. DS was most frequently applied in 

large-difference problems, i.e., in 90% of the 282 cases involving items with 

crossing the ten, in 78% of the 306 cases involving items without crossing the 

ten, and in 66% of the 299 cases involving items with a small difference 

around the tens and requiring crossing the ten. 

Problem format 

We found that an adding-on context generally goes together with IA, whereas a 

taking-away context mostly resulted in a DS procedure. That is, IA was 

applied in 68% of the 509 cases involving an adding-on context and DS was 

applied in 75% of the 510 cases involving a taking-away context. When 

solving bare number problems the students also had a strong preference for 

DS. That is, in 91% of the 514 cases involving bare number problems, DS was 
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applied. 

Prior instruction 

The teachers‘ responses to the online questionnaire revealed that two different 

textbook series were used in the fourteen classes. Although these textbook series 

each contain some missing addend problems, they do not explicitly address the 

inverse relation between addition and subtraction. Because teachers might have 

given attention to IA without it being addressed in their textbooks we also asked 

them which procedures for solving subtraction problems they taught their students. 

Their answers made it clear that all teachers taught DS. Only three teachers 

responded that they have taught both DS and IA. This means that in total fifteen 

students were taught both procedures. These students applied IA in 32% of the total 

419 cases they had solved; the students who were not taught IA applied this 

procedure in 32% of the total 1114 solved cases. 

Use of the empty number line 

According to the data that were retrieved from the online teacher questionnaire all 

students were familiar with the empty number line for doing subtraction. For fifteen 

out of the thirty items, the students had the optional digital empty number line for 

solving the subtraction problems available. The fifteen items resulted in 778 cases of 

processed items. In 131 of these cases the empty number line was actually used for 

finding an answer. The students used IA in 15% of these 131 cases. In the 647 cases 

in which the students saw the empty number line but did not use it, IA was applied in 

33% of the cases. 

Multilevel analysis with IA use as dependent variable 

A cross-classified multilevel model was carried out with IA use as dependent 

variable. This analysis revealed, among other things, that the random item effect 

(SD=2.41) was quite large compared to the random student effect (SD=.85), 

indicating that IA use is mainly an item characteristic. This means that the 

application of IA is more strongly elicited by the nature of an item than by the 

specific preference of a student, which implies that students applied IA in a flexible, 

item specific way. 

SE students‘ success rate in IA and DS use 

In 70% of the 489 cases in which the students applied IA their answers were correct. 

In the 976 cases in which they applied DS their answers were correct in only 48% of 

the cases. 

Different conditions and success rate in IA and DS use 

Numbers involved 

Small-difference subtraction problems were solved with the highest success rate 

when IA was applied. Of the 162 cases involving items that required crossing the 
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tens, the students solved 86% correctly with IA and of the 139 cases that did not 

require crossing the tens, the students solved 88% correctly with IA. When students 

applied DS, the highest percentage of correct answers was found in small-difference 

subtraction problems without crossing the ten. Of the 176 cases involving such 

items, the students solved 67% correctly by DS. 

Problem format 

In all three problem formats (ConAO, ConTA and BN) the students solved more 

problems correctly than incorrectly when they applied IA. The highest percentage of 

correct answers was found in solving items that reflect taking away, i.e., 82% of the 

108 cases involving taking-away items were solved correctly. When using DS, we 

found that in all three problems format the students solved about half of the items 

involved correctly. When not taking into account the procedure used and comparing 

the three problem formats, students appeared to be most successful in solving context 

problems that reflect adding on (ConAO) and least successful in solving bare number 

problems (BN). 

Other conditions 

The students who had received IA instruction correctly solved 76% of the 134 total 

cases they had solved by IA. The students who did not receive IA instruction 

correctly solved 68% of the 355 total cases they had solved by IA. Moreover, the IA-

instructed students correctly solved 54% of the 270 total cases they had solved with 

DS. The students who did not receive IA instruction correctly solved 45% of the 706 

total cases they had solved with DS. 

Of the 778 cases in which the empty number line was available in the items IA was 

applied in 235 cases. In twenty cases the students actually used the number line and 

in 215 cases they did not. It appeared that the percentage of correct answers in both 

groups was about the same, namely 75% and 73% respectively. 

Multilevel analysis with success rate as dependent variable 

A cross-classified multilevel model was carried out with success rate use as 

dependent variable. This analysis was focused on revealing the influence of strategy 

use and procedure use on students‘ success rate in applying IA. It was found that 

only the use of a stringing strategy increased success rate significantly (b=.52, 

SE=.19, p<.05). The best predictor of a correct answer appeared to be the 

combination of a stringing strategy together with the IA procedure (b=.96, SE=.37, p 

<.05). 

CONCLUSIONS 

Our study was limited in scope, and therefore further research with more students 

covering more schools is needed. Moreover, we did not carry out a detailed 

inventory of the students‘ prior instruction in IA. Therefore, information on the 
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quality of the instruction was missing. This might explain why we did not find any 

influence of prior instruction on the students‘ success rate in applying IA. 

In general, more student characteristics and more details about their prior instruction 

should be taken into account to acquire a deeper understanding of SE students‘ 

potential in solving subtraction problems. Nevertheless, the present study has 

revealed three striking outcomes: 

1. SE students are able to use IA spontaneously, i.e., without being asked to do so. 

2. SE students are rather flexible in applying IA to solve subtraction problems. 

3. SE students are quite successful when solving subtraction problems by IA. 

We think these findings argue in favour of a reconsideration of the approach to 

mathematics education in SE which advocates only teaching the straightforward 

taking-away procedure. Such an approach clearly underestimates SE students‘ 

mathematical ability. Finally, this study has shown that solely focusing on strategies 

(splitting, stringing, and varying) or solely on procedures (DS and IA) is a too 

restricted way of investigating students‘ ability to solve number problems. Both 

should be taken into account, as our study showed that the best predictor of a correct 

answer is the combination of IA and stringing. 

NOTE 

¹ The ICT-based test was developed by the authors of this paper and programmed by Barrie 

Kersbergen, a software developer at the Freudenthal Institute. 
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MENTAL CALCULATION STRATEGIES FOR ADDITION AND 

SUBTRACTION IN THE SET OF RATIONAL NUMBERS 
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Justus-Liebig-University, Giessen 

Studies on mental calculation strategies usually focus on elementary school students 

and accordingly on problems in the set of natural numbers. But, mental calculation 

is also an issue at secondary school in the context of other number sets. In the paper 

an exploratory study of eight eighth grade students‘ mental calculation strategies for 

addition and subtraction problems in the set of rational numbers is presented. The 

study focuses on the analysis of the used strategies and on students‘ adaptive 

expertise in the choice of the strategies. 

Keywords: mental calculation strategies, adaptive expertise, rational numbers, 

didactical models of rational numbers 

RATIONALE 

A considerable body of research investigated issues related to mental calculation of 

elementary school students in the set of natural numbers. This body of research 

mainly focuses on three aspects: Firstly, strategies students are using are identified 

(Reys, Reys, Nohda, & Emori, 1995; Selter, 2001). Secondly, the issue of adaptive 

expertise, i.e. flexible and adaptive strategy use, is addressed (Blôte, Klein, & 

Beishuizen, 2000; Threlfall, 2002; Torbeyns, De Smedt, Ghesquière, & Verschaffel, 

2009; Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009). Finally, factors affecting 

different aspects of mental calculation, e.g. performance or adaptive expertise are 

analysed (Heinze, Marschick, & Lipowsky, 2009; Heirdsfield & Cooper, 2004).  

The development of mental calculation strategies and their flexible and adaptive use 

by students in secondary school related to other number sets than the natural 

numbers has been rarely investigated so far. This is surprising, because on the one 

hand students in secondary school have had the opportunity to gain more experience 

in the number system. In Germany the set of natural numbers is extended to the 

integers, the rationals, and the real numbers in secondary school. Getting familiar 

with new numbers and their computation might possibly have positive effects on the 

development of number sense. Besides, metacognitive and affective factors number 

sense is regarded as one of the main influential factors on mental calculation 

performance and adaptive expertise (Heirdsfield & Cooper, 2004). On the other 

hand, mental calculation is a subject that is addressed in secondary school standards 

and national curricula. The NCTM-Standards expect that ―In grades 6–8 all students 

should [...] select appropriate methods and tools for computing with fractions and 

decimals from among mental computation‖. The call for mental calculation is 

continued in the upper grades: ―In grades 9–12 all students should […] develop 

fluency in operations with real numbers, vectors, and matrices, using mental 
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computation or paper-and-pencil calculations‖ (National Council of Teachers of 

Mathematics, 2000). Similar expectations can be found in the English National 

Curriculum (Qualifications and Curriculum Development Agency, 1999) and the 

German ‗Bildungsstandards‘ (Ständige Konferenz der Kultusminister der Länder in 

der Bundesrepublik Deutschland, 2005).  

In this paper an exploratory study of eight eighth grade students‘ mental calculation 

strategies in the set of rational numbers is presented.  

THEORETICAL FRAMEWORK 

Mental calculation strategies 

Research on mental calculation for addition and subtraction problems in the set of 

natural numbers has identified numerous strategies that can be divided into different 

groups. Threlfall (2009) firstly distinguishes ―approach strategies‖ and ―number-

transformation strategies‖. He defines an approach strategy in mental calculation as 

―the general form of mathematical cognition used for the problem—for example 

counting, or recall, or application of a learned method, or visualisation of a 

procedure, or exploiting known number relations‖ (Threlfall, 2009, p. 541). A 

number-transformation strategy in mental calculation is ―the detailed way in which 

the numbers have been transformed to arrive at a solution‖ (Threlfall, 2009, p. 542). 

In the literature varying conceptualizations of these strategies can be found (see e.g. 

Threlfall, 2002 for an overview). In this paper Threlfall‘s terminology is adopted. 

‗Mental calculation strategy‘ is used as an overarching term whenever it is referred 

to both, an approach and a number-transformation strategy. 

In this section an a priori analysis of possible approach- and number-transformation 

strategies in the set of rational numbers is presented.  

From a mathematical point of view an analysis of mental calculation strategies for 

addition and subtraction in the set of rational numbers might focus on different 

aspects:  

13 Addition and subtraction with integers 

14 Addition and subtraction with fractions 

15 Addition and subtraction with decimals  

Addition and subtraction with fractions (2) is carried out by treating the nominator 

and the denominator separately. Therefore, it is likely that the number-transformation 

strategies students use for solving addition and subtractions problems with fractions 

are the same as with natural numbers and integers. Furthermore, in everyday life 

mental calculation with fractions is hardly needed in contrast to mental calculation 

with integers and decimals (Profke, 1991). Therefore, the study reported in this paper 

focuses on mental calculation strategies related to integers (1) and decimals (3).  
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Besides the occurrence of negative numbers a major novelty in calculating with 

integers is a zero-transition, i.e. crossing the zero-point in either direction – from 

positive to negative or vice versa – during the calculation process. In order to avoid 

the zero-transition, addition and subtraction of integers can be reduced to addition 

and subtraction of natural numbers either by definition or by proving the following 

rules: For any integers n, m  

(-n) + n = 0 

(-n) + m = m – n, if m > n 

(-n) + m = -(n – m), if n > m 

(-n) + 0 = -n 

(-n) + (-m) = -(n + m) 

0 – n = -n 

(-n) – 0 = -n 

0 – (-n) = n 

(-n) – (-m) = (-n) + m 

(-n) – m = -(n+m) 

m – (-n) = n + m 

Therefore, mental addition and subtraction of integers can be approached by 

applying these definitions / rules combined with number-transformation strategies 

for natural numbers.  

Another way of approaching mental addition and subtraction problems with integers 

is by referring to the mental image of the number line. In Germany a common way of 

introducing negative numbers is the extension of the number line. This geometrical 

model is sometimes derived from temperature, altitudinal, or monetary (bank-

account-balance-model) contexts (Vollrath & Weigand, 2007). Table 1 summarizes 

the 5 different approach strategies that were identified in the a priori analysis: 

transformation number line  bank-account-

balance model 

(b-a-b-m) 

temperature 

scale model 

altitude model 

refers to an ap-

proach strategy 

where the origi-

nal problem is 

transformed into 

an equivalent 

problem in the 

set of natural 

numbers 

according to the 

above stated 

rules 

refers to an 

approach 

strategy where 

students solve 

the problem 

with reference 

to an internal 

image of the 

number line. 

refers to an 

approach 

strategy where 

students solve 

the problem 

with reference 

to monetary 

contexts of 

deposit, 

withdrawal and 

depts.  

refers to an 

approach 

strategy where 

students solve 

the problem 

with reference 

to a temperature 

context.  

refers to an 

approach 

strategy where 

students solve 

the problem 

with reference 

to an altitude 

context. 

Table 1: Idealized approach strategies for addition and subtraction problems in the set 

of rational numbers. 
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Decimals are introduced in Germany according to two major approaches: They are 

either regarded as a special kind of common fractions, e.g. 23,45 = 2345/100, or they 

are introduced via an extension of the place-value-system (Padberg, 2009). In the 

former case, addition and subtraction of decimals is reduced to addition and 

subtraction of fractions, which is – as we have seen earlier – just a special case of 

addition and subtraction with integers. In the latter case, the number-transformation 

rules for decimals are traced back to the number-transformation rules of natural 

numbers.  

In summary, all addition and subtraction problems with rational numbers can be 

approached by reducing them to equivalent problems with natural numbers. 

Therefore, it is likely that the actual transformation of numbers in order to arrive at a 

solution is carried out with number-transformation strategies for natural numbers.  

In this paper I will refer to the conceptualization of idealized number-transformation 

strategies for addition and subtraction in the set of natural numbers that is put 

forward by Heinze et al. (2009), because it is appropriate for the German situation in 

the way that it comprises the strategies that are well known in German arithmetic 

literature. An overview of the different strategies is given in table 2.  

Stepwise 

strategy 

Split strategy Compensation 

strategy 

Simplifying 

strategy 

Indirect addition 

(ind. add.) 

45 + 12 =57 

45 + 10 = 55 

55 + 2 = 57 

45 + 12 =57 

40 + 10 = 50 

5 + 2 = 7 

50 + 7 = 57 

16 + 38 = 54 

16 + 40 = 56 

56 – 2 = 54 

59 + 11 = 70 

60 + 10 = 70 

53 – 49 = 4 

49 + 4 = 53 

Table 2: Idealized number-transformation strategies for addition and subtraction 

according to Heinze et al. (2009). 

Whereas the stepwise strategy, the split strategy, the compensation strategy, and 

indirect addition can be applied to integers and to decimals without any modification 

a variation of the simplifying strategy is specific to the set of integers: Problems like   

–47+23 can be solved by simplifying into –(50–3) + (20+3) = –50+20+6.  

Flexible and adaptive strategy use 

The use of the terms flexibility and adaptivity is not consistent in the literature 

(Selter, 2009). Based on a literature review Verschaffel et al. suggest that flexibility 

refers to ―switching (smoothly) between different strategies‖ and adaptivity puts 

more emphasis on ―selecting the most appropriate strategy‖ (Verschaffel, et al., 

2009, p. 337). As a working definition they suggest that an adaptive choice of 

strategy is characterized by ―the conscious or unconscious selection and use of the 

most appropriate solution strategy on a given mathematical item or problem, for a 
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given individual, in a given sociocultural context‖ (Verschaffel, et al., 2009, p. 343). 

This definition implies that strategies can be adaptive related to different aspects: 

they can adapt to task characteristics as well as to individual or sociocultural 

conditions. Furthermore, adaptivity seems to imply flexibility. This is even more 

evident in Selter‘s slight variation of Verschaffel et al.‘s definition: ―Adaptivity is 

the ability to creatively develop or to flexibly select and use an appropriate solution 

strategy in a (un)conscious way on a given mathematical item or problem, for a given 

individual, in a given sociocultural context‖ (Selter, 2009, p. 624). Whereas 

flexibility might be operationalised by showing at least a certain number of different 

strategies, the question when a strategy is considered to be appropriate and which 

criteria are relevant to this are ―critical and challenging […] fundamental theoretical 

questions in this context (Heinze, Star, & Verschaffel, 2009, p. 536). Therefore, a 

normative perspective is usually taken in order to decide whether a strategy adapts to 

a given problem or not.  

The findings of studies on students‘ mental number-transformation strategies for 

addition and subtraction problems in the set of natural numbers indicate that 

elementary school students hardly choose among different strategies with respect to 

task characteristics, but favor one or two strategies that they apply to every problem 

(Selter, 2001; Torbeyns, et al., 2009; Torbeyns, Verschaffel, & Ghesquière, 2006). 

Based on the discussion of mental calculation strategies and adaptive strategy use the 

following research questions are addressed in the study presented in this paper: 

 Which approach and number-transformation strategies do students use for 

mental calculation in the set of rational numbers? Do students use strategies 

that are specific to the rational numbers or do they refer to strategies that they 

are familiar with from the set of natural numbers? 

 Do students in secondary grade use mental calculation strategies adaptively 

according to tasks characteristics? 

STUDY DESIGN AND METHODOLOGY 

Data on students‗ mental calculation strategies were collected in video recorded 

interviews. The tasks were read out loud to the students and the students were asked 

to solve the tasks mentally without using any notes. Afterwards the students were 

asked to explain the way they solved the task [1]. 

Eight eighth grade students from a German comprehensive school took part in the 

study. The school is located in a rural area in Germany. According to their grades in 

mathematics the students are considered to be medium-achieving students.  

The problems posed in this study can be grouped into three different categories:  

 Addition and subtraction problems with natural numbers (tab. 3: P1 – P4) 
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 Addition and subtraction problems with integers (tab. 3: P5 – P8) 

 Addition and subtraction problems with positive and negative decimals (tab.3: 

P9 – P14) 

Whereas addition and subtraction problems with natural numbers (category 1) were 

included in order to get an idea which mental computation strategies students use in 

the set of natural numbers, problems of categories 2 and 3 relate directly to the main 

aims of the study. Since there are hardly any findings about students‘ mental 

calculation proficiencies with decimal numbers only numbers with one decimal were 

included in order to keep the numbers simple. Since a zero-transition is a major 

novelty when students are introduced to calculating with rational numbers two 

problems containing a zero-transition (P7, P14) were included.  

In this study adaptivity is investigated related to task characteristics (research 

question 2). A normative perspective is taken in order to decide if a strategy adapts 

to a task or not. Therefore, problems suggesting the application of different number-

transformation strategies were included. From a normative perspective the stepwise 

or the split strategy are most appropriate for problems P1, P2, P3, P9, P10, P11, P12. 

The compensation strategy is appropriate for problems P3, P7, P8, P13, P14. P13 is 

also suitable for applying the indirect addition strategy. P4 and P5 might be solved 

by a variation of the simplifying strategy, since e.g. 53-27=(50+3)-(30-3)=50-30+6.  

FINDINGS 

Table 3 provides an overview of used approach and number-transformation 

strategies related to problems P1-P14.  

The analysis of the eight students‘ approach strategies reveals that the main strategy 

applied to problems containing negative numbers was the transformation into 

equivalent problems with natural numbers using laws for addition and subtraction of 

integers, e.g. -11 + 28 = 28 – 11. Only the problems containing a zero-transition (P7 

and P14) were approached by referring to a mental image of the number line or to the 

bank-account-balance-model. Student 1 approaches problem P4 through the number 

line model: 

Interviewer:  Minus 11 plus 28?
8
 

Student 1: Plus 17! 

Interviewer:  Correct! 

Student 1: I subtracted 11 from 28 so that I will be at 0 and then I added the rest. 

Interviewer:  And how exactly did you subtract? 

Student 1: I took 28 minus 11 so that I am at 0, is 17, then 0 plus 17 is 17. 

                                           

8
 The language of the original interview data is German. All translations were carried out by the author. 
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Table 3: Approach and number-transformation strategies used by students S1-S8. 

                                           

9
 Whenever students use the approach strategy ‚transformation‗ the actual transformation will be specified in the table. 
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Student 4 refers to the bank-account-balance-model in order to calculate the 

algebraic sign of the result of problem P14: 

Interviewer:  0.8 minus 2.9? 

Student 4: makes minus 2.1, right? 

Interviewer:  Yes! 

[...] 

Student 4: I subtracted 0.8 from 2, makes 1.2, then I add 9, 8 are missing up to 2, and I 

have got 9, makes 2.1, it‘s minus, because I am plus 0.8, when I have got 8 

Cent deposit on my account and I make a withdrawal of 2.9 Euro, it‘s 

negative. 

Regarding number-transformation strategies, the analysis reveals that all the 

problems were solved using familiar number-transformation strategies from the set 

of natural numbers. No strategies specifically related to rational numbers were 

observed. Six of the eight students solved problems with decimal numbers by 

applying either the stepwise strategy or the split strategy. Two of them (S1, S2) used 

the stepwise strategy for every problem, no matter if it was a problem with natural 

numbers, integers or decimals. S8 almost exclusively used the split strategy. Three 

students (S3, S4, S5) used the stepwise and the split strategy. Only two students (S7, 

S8) apply other strategies than the stepwise or the split strategy: S7 transformed 

some of the problems to problems with natural numbers by leaving the decimal point 

out and setting it correctly after the calculation. S6 also applied the indirect addition 

strategy once to a subtraction problem with decimals.  

In terms of adaptive strategy use, the analysis of the used number-transformation 

strategies reveals that students do not apply a variety of strategies to the posed 

problems: Three of the eight students (S1, S2, and S8) use the same number-

transformation strategy for almost all problems. The rest of the students use mainly 

two strategies. Although the compensation strategy would have been appropriate for 

problems P3, P7, P8, P12, P13, P14 none of the students used this strategy. 

However, the three students using the stepwise and the split strategy (S3, S4, and S5) 

show the tendency to solve problems with integers using the stepwise strategy and 

problems with decimals according to the split strategy. This might be an indication 

for adaptive strategy use. But, the reasons for the strategy choice cannot be derived 

from the data. 

DISCUSSION AND CONCLUSION 

In the present study all problems from the set of rational numbers were solved 

according to number-transformation strategies that students are familiar with from 

the set of natural numbers. No strategies specific to the set of rational numbers were 

observed. Furthermore, no problems calculating with decimals were observed. This 
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might be due to the fact that no problems containing numbers with a different 

number of decimal places were included, e.g. 1.23-2.5. This is a shortcoming of the 

present study and should be approached in further research.  

The students in the present study hardly choose adaptively among different 

computation strategies with respect to task characteristics. In none of the cases where 

a compensation strategy would have been appropriate the students applied this 

strategy. Furthermore, students in the study favour the stepwise and the split strategy. 

Regarding the small scope of the study these results cannot be generalized. Further 

research is needed to support the findings from this study.  

In terms of approach strategies, it is remarkable that students only refer to didactic 

models of negative numbers (number line, bank-account-balance-model) associated 

with problems that contain a zero-transition. This might indicate that problems with 

zero-transition present particular difficulties to students. This hypothesis could be 

approached in further research. Furthermore, the role of didactical models in mental 

calculation is an issue which has not been investigated very much so far. 

The findings from the present study reflect results from previous studies on mental 

calculation in the set of natural numbers: students apply only one or two strategies to 

almost all problems without choosing strategies adaptively to task characteristics. To 

investigate factors affecting adaptive expertise in mental calculation is therefore not 

only an issue for further studies related to the set of natural numbers, but also related 

to the set of rational numbers.  

NOTES 

1. Data was collected by Jens Hubert in the context of his final thesis for earning a teaching degree in secondary school. 
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In CERME7, WG 3 ―Algebraic thinking‖ continued the work carried out in previous 

CERME conferences (Ainley, Bagni, Hefendehl-Hebeker, & Lagrange, 2009).  

The 13 papers were considered in four themes: 

The transition to algebraic symbolisation 

Caspi and Sfard investigate the discourse of 7th grade Israeli students as they move 

from informal meta-arithmetic toward formal algebra. By examining a historical 

example, they show how students‘ discourse, whilst informal and ambiguous, 

contains some algebra-like features, not normally found in everyday discourse. 

Dooley examines a group of primary pupils in Ireland aged 9-11 years. She uses the 

epistemic actions of recognising, building-with and constructing to analyse and 

describe the development of algebraic reasoning amongst the pupils. She argues that 

in some case the use of ―vague‖ language facilitated this development. Drawing on a 

design science approach, Gerhard uses interviews with secondary students in 

Germany to exemplify the use of an analytic tool examining the transition from 

arithmetic to algebra. She argues that it is important to distinguish the transition from 

arithmetical to algebraic thinking and that from numbers to variables. Pytlak analyses 

a child‘s solution to a matchstick sequence task drawing on a wider study of primary 

children in Poland. She demonstrates how relatively sophisticated algebraic thinking 

can be achieved with geometric and numeric approaches but without the use of 

symbols. 

Equations and symbolisation 

In an intervention study of 135 primary children in Cyprus, Alexandrou-Leonidou 

and Philippou found that the children were capable of developing the dual meaning 

of the equal sign. This understanding, in turn, enabled the children to solve equations 

in multiple representation formats. By conducting a survey of 113 students in 

Turkey, Didiş, Baş and Erbaş examine students understandings and errors in relation 

to the solving quadratic equations. Their findings add further weight to the literature 

highlighting the ubiquity and problems of a purely instrumental, or procedural, 

understanding. 

Technology  

Drawing both on the historical development of mathematics and on examples of 

Italian students, Chiappini demonstrates how AlNuSet software can enable students 

to overcome crucial epistemological obstacles in the move from arithmetic to 
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algebra, specifically negative numbers and the equivalence of different algebraic 

forms.  

Hewitt discusses the work of a group of 9-10 year olds in England as they engaged 

with formal algebra for the first time using the software Grid Algebra. He outlines 

six perspectives from the literature on algebraic activity and uses these to analyse the 

students‘ activity in order to examine what constitutes algebraic activity. 

Working in Italy, Maffei and Mariotti use Aplusix CAS to examine the interplay 

between different representations of algebra: standard (symbolic) representation, tree 

representation and natural language. They demonstrate that natural language has a 

dual role as a representation in itself and in describing the other representations. 

Nobre, Amado, Carreira and da Ponte show how a generic spreadsheet, Excel, can 

enable students to engage with algebraic structure without the need for algebraic 

symbolisation. Indeed, the three Grade 8 Portuguese students, were able to model 

and solve a complex problem involving simultaneous equalities and inequalities.  

Generalisation 

A. Barbosa reports on her analysis of the strategies used by 54 Portuguese students in 

6th Grade working on generalization tasks as they participated in an intervention 

study. Students achieved better results with near generalisation than with far 

generalisation problems. Reporting on a survey of 359 Spanish Secondary students, 

Caðadas, Castro and Castro outline the different approaches to generalisation 

adopted. They find that students use graphical approaches infrequently and generally 

only when the problem was presented graphically. Chua and Hoyles discuss 

differences in the generalisation strategies used by 13 year old students in Singapore 

from the Express (higher attaining) course and from the Normal course. Express 

students were more flexible, adopting a numerical approach for a linear problem, but 

using a constructive approach for a quadratic problem. 

GENERAL REFLECTIONS 

Algebraic thinking is a ―mature‖ domain within mathematics education research 

(Kieran, 2006). Indeed, alongside multiplicative reasoning, algebra is perhaps the 

most extensively researched area in mathematics education. The papers and posters 

reflect this and all the papers and posters drew on this body of research. 

Unsurprisingly given this research history, there were many aspects of consensus 

across the group, but there were also significant differences. 

Points of consensus 

In relation to the practice of teaching and learning algebraic thinking, there was 

general agreement that: 
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 Doing algebraic thinking provides considerable insight into school 

mathematics, but translating these insights into general classroom practice is 

not straightforward. 

 Classrooms around Europe and elsewhere tend to be dominated by procedures 

and manipulation. Skemp‘s (1976) seminal work is still of considerable 

relevance. 

 The promise of technology has largely yet to be realised in most classrooms. 

 There are many approaches to algebra and learners should acquire many ways 

to look at and work with algebra.  

All participants agreed on the importance of multiple perspectives, of talk and 

discourse, of rich tasks and of children‘s existing and naïve (mis-)understandings [1]. 

Reflecting the three plenary lectures at CERME-7, key overarching issues in the 

group discussions included a recognition of the importance of the teacher 

(Sierpinska), the importance of pupils experiencing ―surprise‖ (Hannula) and the 

relationship between arithmetic and algebra (Mariotti). 

Points of difference 

The issue of ―early algebra‖ and the relationship to / transition from arithmetic 

continues to be a thorny one, which generated much debate. The question as to 

whether there is a clear cognitive gap between (generalised) arithmetic and algebra 

remains an open one. Similarly, there was disagreement on whether there exists one 

best or ideal learning trajectory or whether there are several good-enough learning 

trajectories or whether learning is inevitably somewhat idiosyncratic. An 

international conference inevitably (and usefully) highlights issues of language and 

meaning. Working Group 3 was no exception. For example, whilst all agreed on the 

importance of talk and discourse, some participants preferred the more general term 

of ―talk‖ and others preferred the more specific and theory-laden ―discourse‖. 

Related to this, theory was used differently by different participants. Some opted for 

a pragmatic use of theory to solve and illuminate research problems as and when 

they occurred. Others attempted to draw synergies between different theoretical 

approaches in order to inform research. 

ISSUES FOR FUTURE RESEARCH 

We have already noted the concern with early algebra. Whilst this concern in part 

reflects a current theme in the literature (Kaput, Carraher & Blanton, 2007), it also 

responds to the policy context in which some countries (such as Portugal) are 

introducing algebra earlier. This policy imperative highlights several important 

issues for Working Group 3 and CERME more generally. Re-contextualisation – the 

translation of ―existing‖ knowledge into new settings and contexts - is a valid and 

important field of study and we note that the replication of existing research has been 
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somewhat undervalued in mathematics education as a field generally. However, in 

re-contextualising or replicating existing work, researchers need to demonstrate the 

contribution they make to the field as a whole through stronger literature reviews.  

The issue of translating research knowledge into practice in general was a concern 

for almost all participants. The mismatch between what can be achieved in 

experimental settings and the general practice in the majority of classrooms is a 

serious concern. So, for example, in considering how to realise the potential of 

technology, the group discussed how technology can help children do something that 

they would not otherwise do and then how teaching can enable children to 

understanding ―independent of‖ technology. Similarly, the group identified a need 

for further research into understanding group dynamics specific to algebraic 

thinking. 

LOOKING FORWARD TO CERME-8 

Finally, in looking forward to CERME-8, the group discussed ways of continuing 

and extending existing studies by: 

 Identifying research collaborations with a view to replicating studies in 

different national / cultural contexts. 

 Reporting follow-on studies to CERME-7 papers and posters. 

 Examining the same research problem / dataset using different theoretical 

lenses and methodologies. 

We hope that the majority of the participants will return the CERME-8. 

NOTES 

1. However, the issue of children‘s understandings was conceptualised differently with some using the notion of 

misconceptions and others rejecting this as too cognitive. 
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CAN THEY ―SEE‖ THE EQUALITY? 
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The concept of equality is basic and common in mathematics, but primary school 

students have limited understanding (operational meaning only) of the symbol used 

to represent it. The present study focuses on primary school students‘ abilities to 

recognize equality in different representation formats (iconic, verbal and symbolic) 

and reports on a teaching experiment that aimed at helping primary school students 

develop the dual meaning of the equal sign (operational and relational). Analysing 

data from 135 3rd to 6th grade Cypriot students who participated in the teaching 

experiment, we found that they are capable of developing the dual meaning of the 

equal sign and that this understanding has a significant effect on their ability to 

solve equations in multiple representation formats. 

THEORETICAL FRAMEWORK AND RESEARCH GOALS 

Deep understanding of the notion of equality is a necessary prerequisite for primary 

school students in order to proceed to upper school mathematics. Likewise, the equal 

sign (=), although is one of the most basic ones along with the numbers and the 

operation signs, it becomes a serious obstacle, if students do not understand it‘s 

meaning. However, research in developmental psychology and mathematics 

education over the last 20 years has indicated that many primary school students 

(ages 7 to 11) have an inadequate understanding of the equal sign (Behr, 

Erlwanger&Nichols, 1980; Carpenter, Franke&Levi, 2003; Jones, 2008; Kieran, 

1981; McNeil &Alibali, 2005; Rittle-Johnson &Alibali, 1999). As has been 

documented, instead of interpreting it as a relational symbol of mathematical 

equivalence, most students interpret it as an operational symbol, meaning ―find the 

total‖ or ―put the answer‖. 

Linking multiple representations of the same concept may help students enhance 

their learning, as it helps them express generality, an asset that, according to Mason, 

Drury and Bills (2007), gives students powerful understanding of a concept. Radford 

(2003) argues that generalisation develops through three levels: factual, where the 

generalisation focus remains at the level of the material to be generalised; contextual, 

which is more abstract and descriptive and where explanations of generalisation are 

language driven; and symbolic, where algebraic notation (including letters) is used to 

describe the generalisation. Generalisation is a necessary objective of every 

mathematics lesson (Mason et al., 2007). Hence, the opportunities and the frequency 

that learners are given to express generalities through actions and words may 

facilitate their appreciation of what algebra can do for them. 

As it has been stated a long time ago, every learner who arrives at school, walking 

and talking, has displayed the power to perceive and express generality (Whitehead, 
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1932;Gattegno, 1970). The critical issue is that the extent to which learners manage 

to use these powers depends on methods and the approaches adopted by the teacher 

in the mathematics classroom. Thus, the need for experimental intervention studies 

appears in order to practically improve the situation and document certain 

methodology and appropriate teaching approaches. 

In this respect, the main goal of the present study was to describe primary school 

students‘ abilities to recognize equality in different representation formats (iconic, 

verbal and symbolic) and to develop and test a teaching experiment (TE) that aimed 

at helping learners understand the dual meaning of the equal sign (operational and 

relational), as a mean to foster their ability to recognize equality in different 

representation formats. 

METHODOLOGY 

The TE aimed at helping students understand the concept of equality and the 

structure of different representation formats of equality. It also aimed at developing 

students‘ understanding of the dual meaning of the equal sign, that is, its operational 

and its relational meaning. Practically, the TE was planned to give students the 

opportunity to work in activities involving multiple representations of the concept of 

equality. The effective involvement in such activities was expected to help them link 

the representations of this concept and proceed to generalize on the idea of equality. 

Specifically, the planned activities involved working with objects(such as the 

number scale), with icons (such as with a picture of a scale with different weights), 

with words (such as with equivalent word expressions), and with symbols (such as 

with equivalent number sentences).Students were asked to complete missing weights 

or numbers on a scale to make it balance, to match and produce equivalent 

expressions in words and symbols and to identify and make equivalent vectors. They 

were also asked to match and produce verbal expressions of a symbolic expression 

and vice-versa, in order to link different representation formats. In addition, they 

were asked to use the equal sign to show equivalency of expressions in multiple 

representation formats, such as words, symbols and vectors. Students were given the 

opportunity to express general statements about the use of the equal sign, i.e. ―it is 

used when we want to show that two things are equal‖ or ―whatever exists on the left 

hand side of an equal sign should be equal to what there is on the right hand side‖. 

Data were collected through two tests. Test 1 (T1) was designed to measure students‘ 

understanding of the equal sign and Test 2 (T2) was designed to measure ability to 

solve equations of similar structure, which were represented in different formats. T1 

comprised of three parts and aimed to grasp the type of the students‘ understanding 

of the equal sign. The first part of T1 required students to write an informal 

definition of the equal sign in three contexts (the sign on its own, the sign at the end 

in a mathematical sentence and the sign between two equivalent mathematical 

sentences). These tasks were used in Knuth et al. (2006) study in a similar way. The 
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second part of T1 required students to complete equalities of different structure, that 

is, different number of operations, with the equal sign and the unknown at different 

positions, i.e. a + b = __ + d, a + b + c = a +__. Only single digit numbers were used 

in the first and the second part of T1, to avoid students‘ difficulties with the 

operations‘ algorithms. The first four tasks in the third part required that students 

used the four operations and their own numbers to create a given result (These tasks 

were originally used by Saenz-Ludlow &Walgamuth (1998)). The remaining tasks in 

this part asked students to construct equalities with four numbers of their own, using 

all four operations, i.e. __ + __ = __ + __. (This task was originally used by 

Witherspoon (1999), while the rest were developed for the purposes of this research 

work (i.e. __ ’ __ = __ × __). 

T2 included equations in two different syntax, three different structures and six 

different representation formats. The two types of syntax used were the ―start 

unknown‖ type (the unknown quantity was prior to the equal sign, i.e. 7 + x + 6 = 

20) and the ―result unknown‖ type (the unknown quantity was after the equal sign, 

i.e. 26 - 9 - 7 = p). The three structure types were a + b + c =, a – b – c = and a  b + 

c =. The six representation formats used were word descriptions (i.e. ―When I add 5 

to 8 and subtract 3, what is the answer?‖), word problems (i.e. ―Chris gathered 9 

shells from the beach, he put them in his collection and he now has 17 altogether. 

How many shells did he have at the beginning?‖), pictures (see Fig. 3 in Appendix), 

diagrams (see Fig. 4 in Appendix), symbolic equations with an unknown quantity 

shown with a shape (i.e. 21 - 6 -  = 10) and symbolic equations with a letter(i.e. 8 

 m - 6 = 18). 

Participants in the study were 135 students (66 male and 69 female) from two 

primary schools in Nicosia district in Cyprus, 30 were 3rd graders, 38 were 4th 

graders, 38were 5th graders, and 29were 6th graders. The TE lasted for four months. 

Students participated in a 40 minute lesson every week. All teaching was undertaken 

by the first author. The students completed T1 three times, at the beginning, in the 

middle and after the end of the TE. They also completed T2 twice, before and after 

the end of the TE.  

Data were analyzed qualitatively and quantitatively. The definitions, provided by the 

students in the first part of T1, were analyzed qualitatively, as they were categorized 

according to the content of the definition. The definitions were coded as ―relational‖, 

if students indicated that the equal sign represents a relationship of equivalence, and 

as ―operational‖, if they indicated that it announces the result or it gives the direction 

to do the operations. No response or unclear responses were coded as ―other‖. Data 

from the remaining tasks from T1 and from T2 were analyzed quantitatively. Correct 

responses to the tasks of T1 and T2 were coded as 1 and wrong responses were 

coded as 0. Each student‘s score for each representation format of the equations in 

T2 was estimated by the sum of correct responses to the four equations of each 

format. 
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SPSS was used for descriptive and inferential statistical analysis of the data. 

Descriptive analysis was used to describe students‘ abilities to understand the double 

meaning of the equal sign and to handle algebraic tasks in different syntax, structure 

and representation format. Inferential analysis was used in order to evaluate the TE 

outcome, that is, whether it succeeded to help students develop relational 

understanding of the equal sign and whether it enhanced their ability to solve 

equations. 

RESULTS 

The number of students with relational understanding of the equal sign (when 

presented on its own/T1-Task 1) increased at the end of the TE (Fig. 1). A paired t-

test for the whole student population showed a statistically significant difference 

{t(134)=-4,91, p=0,001} between the first (M=1,85, SD=0,69) and the second 

(M=2,26, SD=0,77) measurement.  
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Figure 1. Percentage of students with relational understanding of the equal sign (T1-

Task 1) by grade level 

This indicates that on the total more students gave definitions indicating relational 

understanding at the second measurement (Fig. 1). Significant differences 

{t(134)=5,32, p=0,001} were also observed between the second and third (M=1,79, 

SD=0,81) measurement. This outcome indicated that the number of students giving 

relational understanding decreased. As shown in Figure 1, more third and sixth 

graders kept the relational understanding at the end of the TE than fourth and fifth 

graders whose definitions with relational understanding were even more limited. 

Kruskal-Wallis criterion revealed statistically significant differences in the students‘ 

Mean Rank by grade in the first (K-W=19,78, df=3, p=0,001) and the second (K-

W=18,04, df=3, p=0,001) measurement of the level of understanding of the equal 

sign when it was presented on its own. Mean Rank increased from lower grades to 
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higher ones, suggesting that the percentage of students with relational understanding 

increased the higher their grade was. There were no statistically significant 

differences between the Mean Rank in the third measurement. This can be explained 

by the fact that students from all four grades participated in the same TE and had 

developed analogous understanding for the equal sign. 

The third task of T1 asked students to give a definition for the equal sign when it was 

presented in an equation. The context of this task, as opposed to the first one, was 

expected to lead students to the relational meaning of the symbol and to the 

structural characteristics of an equation. At the end of the TE, more students gave 

definitions of the equal sign as a relational symbol in this context (Fig. 2). A paired t-

testbetweenthefirstmeasurement (M=1,85, SD=0,88) andthesecond (M=2,29, 

SD=0,93)showed statistically significant difference [t(134)=-4,72, p=0,001]. The 

difference between the second and third measurement (M=2,07, SD=1,07) was also 

significant[t(134)=2,05, p=0,042]. It was also found that more students showed 

relational understanding of the equal sign in the middle of the TE than at the end of 

it. 
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Figure 2. Percentage of students with relational understanding of the equal sign (T1-

Task 3) by grade level 

The Kruskal-Wallis criterion revealed statistically significant differences of the level 

of understanding of the equal sign when presented in an equation in the students‘ 

Mean Rank by grade in the first measurement (K-W=8,65, df=3, p=0,034). The 

Mean rank increased by grade, suggesting that the percentage of students 

understanding the equal sign relationally increases as according to their grade level 

(age). No statistically significant differences were found between understanding of 

the equal sign by grade level in the second and third measurement. This can be 

explained by the fact that all students, irrespective of grade, participated in the same 

TE and therefore had developed similar understanding of the equal sign. 
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Multivariate analysis of variance has shown that there was statistically significant 

effect (F3, 126 = 4,04, p=0,009) of ―time‖ and ―grade level‖ on the students‘ level of 

understanding of the equal sign among the three repetitive measurements [before TE 

(M=46,81, SD=18,88), in the middle (M=56,73, SD=16,54) and at the end 

(M=57,87, SD=16,73) of TE]. This can be due to the students‘ exposure to the 

content of TE, although maturation may have played a role. Students‘ ability to solve 

―result unknown‖ equations in different representation formats, different syntax and 

different structure was found to improve significantly [t(134)=-5,98, p=0,001] 

between the measurement before (Μ=12,79, SD=4,56) and after the TE (M=14,94, 

SD=3,11). Equations presented in pictorial and symbolic format were easier than 

word descriptions, word problems and diagrams, even after the end of the TE. 

Statistically significant differences were found in each one of the six different 

representation formats of the equations before and after TE, as shown in Table 1. 

Overall, the analysis has shown that the students‘ performance in solving ―result 

unknown‖ equations improved in all representation formats. The largest mean 

difference was observed in diagrams. 

Table 1: Comparison of mean performances at the ―result unknown‖ equations (beginning 

and end of the TE) by representation format and overall 

Table 2: Comparison of mean performances at the ―start unknown‖ equations (beginning and 

end of the TE) by representation format and overall 

Representation format M at the start M at the end t df p  

Picture 2,46 2,75 -3,74 134 0,01  

Diagram 1,37 2,08 -5,91 134 0,01  

Symbol (Shape) 2,46 2,71 -3,05 134 0,01  

Symbol (Letter) 2,40 2,67 -3,17 134 0,01  

Word description 2,06 2,33 -3,08 134 0,01  

Word problem 2,04 2,39 -3,87 134 0,01  

Total 12,79 14,94 -5,98 134 0,01  

Representation format M at the start M at the end t df p  

Picture 2,26 2,59 -3.59 134 0,01  

Diagram 1,30 2,08 -6,77 134 0,01  

Symbol (Shape) 2,00 2,24 -2.52 134 0,01  

Symbol (Letter) 1,87 2,22 -3.95 134 0,01  

Word descriptions 1,67 2,12 -4,28 134 0,01  

Word problem 1,73 1,98 -2.46 134 0,02  

Total 10,83 13,23 -5,98 134 0,01  
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Comparison of students‘ mean performance in solving ―start unknown‖ equations 

before and after TE has shown statistically significant differences (before TE 

M=10,83, SD=5,09, after TE M=13,23, SD=4,31, t(134)=-5,98, p=0,001). Variation 

in the level of difficulty of the six different types of representation formats before 

and after TE was found. In particular, at the end of TE diagrams were found to be the 

second easiest types of equations after pictures, whereas at the beginning they were 

the most difficult. 

Table 2 shows comparisons of students‘ mean performance before and after TE in 

solving ―start unknown‖ equations in different representation formats. Results show 

that in each one of the six representation formats of the equations students‘ 

performance improved after TE, especially at diagrams and symbolic equations (with 

letter). 

Table 3: Regression coefficients of independent variables predicting students‘ ability to solve 

―start unknown‖ equations after the TE 

 In order to examine which variables could predict students‘ ability to solve ―start 

unknown‖ equations at the end of TE, linear regression analysis was performed. 

Table 3 shows the values of each independent variable when it was examined 

separately. In the next step, in order to control multi collinearity, a linear regression 

analysis was performed stepwise with all independent variables together. In the final 

regression model (F3, 130 = 45,4, p=0,001, 51%)only three variables were included: 

Performance in T1 – 3
rd

 measurement (β = 0,50, p=0,001), Grade level (β = 0,22, 

p=0,001) and Ability to construct equalities – 2
nd

 measurement (β = 0,23, p=0,001).  

Independent Variable β p F df R2  

Gender 0,06 0,52 0,40 1,134 0,00  

Grade level 0,32 0,00 15,50 1,134 0,10  

Equal sign level of understanding – 1
st
meas. 0,06 0,51 0,40 1,134 0,00  

Equal sign level of understanding – 2
nd

 meas. 0,20 0,02 5,60 1,134 0,04  

Equal sign level of understanding – 3
rd

 meas. 0,39 0,00 23,60 1,134 0,15  

Ability to construct equalities – 1
st
 meas. 0,38 0,00 22,70 1,134 0,15  

Ability to construct equalities– 2
nd

 meas. 0,55 0,00 57,30 1,134 0,30  

Ability to construct equalities – 3
rd

 meas. 0,64 0,00 90,40 1,134 0,41  

Performance in T1 – 1
st
 meas. 0,51 0,00 47,70 1,134 0,25  

Performance in T1 – 2
nd

 meas. 0,56 0,00 59,80 1,134 0,31  

Performance in T1 – 3
rd

 meas. 0,65 0,00 99,60 1,134 0,43  

Performance in T2 – 1
st
 meas. 0,50 0,00 45,20 1,134 0,25  
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It is shown that improvement of students‘ ability to use the equal sign relationally to 

construct equalities helps their ability to solve ―start unknown‖ equations. Also, it is 

suggested that their ability to solve such equations is improved by studying relevant 

subjects through their school years, since grade level has been found to play an 

important role. Finally, the values of the regression coefficients demonstrate that, 

when students develop relational understanding as opposed to operational 

understanding only, are more capable of solving ―start unknown‖ equations.  

Generally, results support the idea that equation solving ability can be improved 

through the development of the dual meaning of the equal sign. More specifically, it 

is suggested that a teaching program can help students understand that the equal sign 

represents a relation and subsequently improve their ability to solve equations in 

different structure, syntax and representation format. 

DISCUSSION 

Understanding the concept of equality is an important prerequisite for students‘ 

abilities to solve equations. As was documented by the outcome of the TE, when 

students are able to construct equalities with their own numbers using all four 

number operations, they are more successful at solving equations in multiple 

representations. Although primary school students‘ (grade 3-6) understanding of the 

equal sign is generally limited to its operational meaning, they are capable to develop 

its dual meaning when they are exposed to teaching that aims at developing the 

relational meaning of the symbol. Thus the concept of equality needs to be 

emphasized in primary school math curriculum, in order to help them build robust 

knowledge for further algebra study in later years. 

The teaching of the relational meaning of the equal sign does not happen during the 

years of primary schooling and this omission of the mathematics curriculum leads 

students to a limited understanding of it. Besides, its pervasive use as an operational 

sign helps them build strong misunderstandings of its meaning. Consequently, the 

sooner in their school life students become aware that the equal symbol is both an 

operational and a relational symbol, the fewer misconceptions they will have. 

Limited understanding of the equal sign (that is, only operational meaning of the 

sign) may hamper the development of important algebraic ideas, such as the concept 

of equality and their ability to solve equations. 

As it has been suggested by the outcome of the implementation of the teaching 

experiment discussed above, it is helpful for primary school students to both 

understand the dual meaning of the equal sign and use multiple representation 

formats for the concept of equality. The use of multiple representations of equivalent 

expressions gives students an insight of the concept of equality and helps them 

generalize. The order in which different representation formats of equality can be 

used seems to be an important issue for the teaching of the concept of equality. 

Pictures and symbolic expressions have been found to be easier for primary school 
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students than verbal expressions and diagrams. Thus, a teaching program aiming at 

developing the concept of equality to students of these ages needs to be designed on 

the basis of students‘ abilities to handle certain representation formats. 

Primary school students need to understand the concept of equality and to be able to 

use correctly the symbol that represents this relation, in order to be able to recognize 

equality during the process of equation solving. The process of generalization is an 

important element of a teaching program that may help them ―see‖ the equality in 

multiple representation formats and use it to solve equations when they begin the 

study of formal algebra in high school. 
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APPENDIX 

Examples of tasks included in T2 

 

Figure 3. Picture (Start unknown) 

 

Figure 4. Diagram (Start unknown)   

 Km 3 Km 

16 Km 

Barber‘s shop Park School 

How far is the Barber‘s shop from the Park? 

 

18 

kg 

 

12 

kg 

 

 

How many kilograms is 
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PATTERNING PROBLEMS: SIXTH GRADERS‘ ABILITY TO 

GENERALIZE 

Ana Barbosa, School of Education of Viana do Castelo, Portugal 

This paper analyses the performance of fifty-four 6th grade students when solving 
visual patterning tasks. The main goal is to understand the following features: type 
of generalization strategies used; difficulties that emerged from students‘ work; and 
the role played by visualization on their reasoning. In this paper I will focus on the 
results related to the implementation of two particular tasks. 

Keywords: Mathematics, problem solving, patterns, generalization. 

INTRODUCTION 

Since the 1980s problem solving has been recognised as a fundamental part of the 

teaching and learning process in mathematics (NCTM, 2000). This prerogative is still 

current in the recent curricular guidelines of several countries. However, 

international studies (SIAEP, TIMSS, PISA) show that Portuguese students perform 

badly problem solving (Amaro, Cardoso & Reis, 1994; OECD, 2004; Ramalho, 

1994). These results along with similar difficulties observed in classroom 

experiences, are a matter of serious concern to the researchers and educators‘ 

community in Portugal. This study approaches problem solving through the 

exploration of visual patterning tasks: (1) pattern generalization may contribute to 

the development of abilities related to problem solving, through emphasising the 

analysis of particular cases, organizing data in a systematic way, conjecturing and 

generalizing. Working with numeric, geometric and pictorial patterns may be helpful 

in building a positive and meaningful image of mathematics and contribute to the 

development of several skills related to problem solving and algebraic thinking 

(NCTM, 2000; Vale, Barbosa, Barbosa, Borralho, Cabrita, Fonseca, et. al., 2009); (2) 

Geometry is considered a source that can help students to develop abilities such as 

visualization, reasoning and argumentation. Visualization is essential but its role has 

not always been emphasized in students‘ mathematical experiences (Healy & Hoyles, 

1996; Presmeg, 2006). Portuguese teachers privilege numeric aspects over geometric 

ones in classrooms. This study aims to understand how 6
th

 grade students (11-12 

years old) solve problems involving visual patterns, addressing the following 

research questions: (a) how can we characterize students‘ generalization strategies? 

Which difficulties do 6
th 

grade students have when solving pattern exploration tasks? 

(b) Which difficulties do 6
th 

grade students have when solving pattern exploration 

tasks? (c) What is the role of visualization on students‘ reasoning? 

THEORETICAL FRAMEWORK 

The mathematics curricula of many countries include significant components related 

to patterns, including: searching for patterns in different contexts; using and 

understanding symbols and variables that represent patterns; and generalizing. 

Curricular guidelines reflect an enthusiastic view about the role of patterns in 
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mathematics. Some mathematicians go even further to define mathematics as the 

science of patterns (Devlin, 2002; Steen, 1990), highlighting the centrality of this 

theme. The Portuguese curriculum considers the importance of developing abilities 

like searching and exploring numeric and geometric patterns, as well as solving 

problems, looking for regularities, conjecturing and generalizing (ME-DGIDC, 

2007). Pattern generalization can be achieved through a given strategy, but different 

students may use diverse approaches to accomplish generalization. There are 

significant works concerning  students‘ generalization strategies, from pre-

kindergarten to secondary school. The revision of several researchers‘ frameworks 

(Lannin, 2005; Lannin, Barker & Townsend, 2006; Orton & Orton, 1999; Rivera & 

Becker, 2005; Stacey, 1989) led me to develop the categorization (Barbosa, 2010) 

shown in Table 1. 

Strategy Description 

Counting (C) Drawing a figure and counting the desired elements. 

 

 

Whole-object 

No adjustment (W1) Considering a term of the sequence as unit and using 

multiples of that unit. 

Numeric adjustment 

(W2) 

Considering a term of the sequence as unit and using 

multiples of that unit. A final adjustment is made 

based on numeric properties. 

Visual adjustment 

(W3) 

Considering a term of the sequence as unit and using 

multiples of that unit. A final adjustment is made 

based on the context of the problem. 

 

 

Difference 

Recursive (D1) Extending the sequence using the common difference, 

building on previous terms. 

Rate - no adjustment 

(D2) 

Using the common difference as a multiplying factor 

without proceeding to a final adjustment. 

Rate - adjustment 

(D3) 

Using the common difference as a multiplying factor 

and proceeding to an adjustment of the result.  

 

Explicit (E) 

Discovering a rule, based on the context of the 

problem, that allows the immediate calculation of any 

output value given the correspondent input value. 

Guess and check (GC) Guessing a rule by trying multiple input values to 

check its‘ validity.  

Table 1: Generalization Strategies Framework 

These categories will be clarified in this paper, through some examples. 

Patterning activities can be developed in a variety of contexts (numeric, geometric, 

concrete, visual) and may promote the use of different approaches. Gardner (1993) 

claims that some individuals recognize regularities spatially or visually, while others 

notice them logically or analytically. This duality has caused much controversy. 

Many investigators stress the importance of visualization in problem solving 

(Presmeg, 2006; Shama & Dreyfus, 1994), while others claim that visualization 

should only be used as a complement to analytic reasoning (Goldenberg, 1996; Tall, 

1991). Those perspectives reflect the importance of using and developing visual 

abilities, enhancing students‘ mathematical experiences. Nonetheless, teachers must 

consider that seeing an image can lead to different interpretations depending on the 
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individual. A figure can be apprehended perceptually when the image is interpreted 

as a whole, or discursively, if the individual identifies the spatial disposition of the 

elements that compose the figure (Duval, 1998). Considering patterning tasks and the 

generalization process, the discursive apprehension of a pattern can be of different 

nature. Either by seeing sets of disjoint visual cues that form the initial figure 

(constructive generalization) or by identifying overlaps, whose elements are counted 

more that once involving a subsequent subtraction (deconstructive generalization) 

(Rivera & Becker, 2008). 

Depending on the type of task, some strategies may be more adequate than others 

and, on the other hand, can even lead students to difficulties or incorrect answers. It 

is fundamental that students understand the potential and limitations of each 

approach. 

METHOD 

I performed a qualitative approach (Erickson, 1986) with a case study design (Yin, 

1989) with fifty four sixth-grade students (11-12 years old), from three different 

schools in the North of Portugal, over the course of a school year. These students 

solved seven tasks during six months, working in 27 pairs. Two pairs from each 

school were selected for clinical interviews. The tasks used in the study required near 

generalization (the order of the term allows the use of strategies like making a 

drawing or using a recursive method) and far generalization (the use of recursive 

methods is not adequate, implies the finding of a rule) and featured increasing and 

decreasing linear patterns as well as non linear ones. This paper reports results 

related to the application of two tasks.  

RESULTS 

Generalization strategies 

The first task was Pins and Cards. It involves an increasing linear pattern, illustrated 

with a visual representation of the third element of the sequence. Table 2 shows the 

strategies used to solve the problem and its connection with the level of 

generalization. Following Table 1, the strategies were abbreviated. No answer or 

imperceptible strategy was categorized as NC. The first column of Table 2 

summarizes the number of pairs of students that used a given strategy in each of the 

three questions of this task, based on the categories described in Table 1.  

 C W1 W2 W3 W D1 D2 D3 D E GC NC Total 

1. 16 8 - 1 9 1 1 - 2 - - -  

27 2. - 3 2 1 6 3 1 - 4 12 - 5 

3. - 2 1 - 3 - 4 3 7 9 - 8 

Table 2: Summary of the strategies used by the 27 pairs of students 

The first question of this task requires near generalization (students must find the 6
th

 

element of the sequence). It can be solved using recursive reasoning, either by 

making a drawing of the requested term of the sequence and counting its elements, 
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using the counting strategy, or by extending the sequence through the identification 

of the common difference (recursive strategy). A counting strategy was the 

predominant approach in near generalization tasks and it always leaded to a correct 

answer. Figure 1a reflects one example of counting strategy.  

  

Figure 1a, 1b. Counting strategy and W3 strategy to solve question 1 

The whole-object strategy also emerged in some pairs of student. This approach is 

associated to direct proportion situations and the problem does not fit this model. For 

this strategy to be adequate, students had to make a final adjustment based on the 

context. Eight pairs of students used proportional reasoning, doubling the number of 

pins associated to the three cards. Only one pair adjusted the result obtained 

duplicating the number of pins of the three cards (see Figure 1b).  

Only one pair of students extended the sequence using the common difference and 

achieves a correct answer. This is astonishing because this kind of task tends to 

promote recursive thinking (e. g. Orton & Orton, 1999; Stacey 1989), especially 

when near generalization is involved. We found another case in which the difference 
strategy was employed but in an incorrect way. These students used a multiple of the 

common difference, without adjusting the result. The explicit and guess and check 

strategies were not applied to solve this question. 

Although both questions 2 and 3 require far generalization, the third question of task 

1 involves reverse thinking. As expected, when approaching far generalization 

students revealed more difficulties and  can be seen by the increasing number of NC 

answers in Table 2. We can also notice that students dropped the counting strategy 

when solving these two questions. Some pairs of students started using this strategy 

but gave it up, claiming that ―there were too many cards‖. As an alternative, explicit 
strategies prevailed. Those who relied on this approach, identifying an immediate 

relationship between the two variables, presented a high level of efficiency, making a 

discursive apprehension of the image. Some students saw that each card needed three 

pins and the last one four, deducing that the rule was 3(n-1)+4 (n, number of cards). 

Other pairs of students saw the pattern differently, considering that each card had 

three pins adding one more at the end. The rule was 3n+1 (n, number of cards). This 

fact reinforces that individuals might see the same pattern differently (Rivera & 

Becker, 2008), originating equivalent expressions. In spite of finding varied forms of 

representing the same pattern, these generalizations were all constructive. Two pairs 

of students performed this strategy inadequately in the last question, mixing pins and 

cards. The whole-object strategy remained in this question. Some students 
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considered multiples of known terms of the sequence (Figure 2). Students used 

proportional reasoning to determine the number of pins and when adjusting the 

result, they neglected the problem context,, and using only numeric properties, they 

obtained an incorrect answer.  

 

Figure 2: W2 strategy used to solve question 2 

Comparing the first question with the other questions the use of the difference 

strategy increases. Some students gave up counting, as the order of the term 

increased, and started by the common difference between terms. In the third question 

of the task, we noticed that three pairs of students applied a strategy that had not 

been used before (D3). The difference between consecutive terms is three pins, so 

students used this fact to approach the number of pins. Knowing the structure of the 

pattern, they were able to criticize the result, adjusting it correctly. 

It is important to note that nearly 25% of the responses to questions 2 and 3 of the 

first task were not categorized. This is because these two questions imply far 

generalization, involving a more abstract reasoning. 

The Sole Mio Pizzeria task was solved four months later. This problem is very 

similar to the first one, exhibiting an increasing linear pattern and involving near 

generalization (question 1) and far generalization (questions 2 and 3), with a visual 

representation of the third and fourth terms of the sequence. The strategies used by 

the students are shown in Table 2, using the same structure of Table 1: 

 C W1 W2 W3 W D1 D2 D3 D E GC NC Total 

1. 21 - - - - 4 - - 4 2 - -  

27 2. 1 - - - - 3 - 1 4 22 - - 

3. - - - - - 2 3 - 5 14 5 3 

Table 3: Summary of the strategies used by the 27 pairs of students 

There was a lack of preference for the whole-object strategy in this problem. A 

linear pattern is involved but the use of proportional reasoning is not adequate, 

unless an adjustment is made based on the context. This adjustment is more complex 

in this problem than in the previous one. This might justify the absence of this 

approach. Counting was once again the predominant strategy in near generalization 

(question 1), leading to the students to a correct answer. It was applied by most of 

the students and this preference increased comparing to the previous task. Other 
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strategies emerged in this first question but were used only by a minority of the 

students. Four pairs choose recursive reasoning to extend successfully the sequence 

to the 10
th

 term and two pairs applied an explicit reasoning. We highlight that in the 

first task explicit strategies only appeared when students were dealing with far 

generalization so it is surprising that they used it at this stage, showing that they 

immediately discovered the structure of the pattern. As in the first task, when 

dealing with far generalization, students did not recognize the usefulness of 

counting and that is why it has no expression in Table 3, as they progress to far 

generalization. On the other hand, explicit reasoning prevailed being implemented 

by even more students in a successful way. All of them described the pattern as 

2n+2, n being the number of pizzas. They frequently referred that ―in front of each 

pizza there are two people and one more at each end of the table‖, describing the 

pattern in a constructive way. As an alternative, some students adopted a recursive 

approach, through the extension of the sequence using the common difference. 

Similarly to what happened in the first task, there were three pairs that considered 

multiples of the common difference but neglected to adjust the result, basing their 

work just on numeric relations. Table 3 also shows the use of the new strategy guess 

and check was only applied in far generalization, when reverse thinking was 

involved. Students identified the relation between the two variables and then tried 

some numbers until they achieved the intended result (Figure 3). 

 

Figure 3: Guess and check strategy used to solve question 3 

Difficulties emerging from students‘ work 

When solving the first task some students struggled with cognitive difficulties that 

led to incorrect answers. In pairs of students who made false assumptions about the 

use of direct proportion, attention tended to focus only on numeric attributes with no 

appreciation of the sequence structure . The use of strategies based on recursive 

reasoning was not always adequate, particularly when far generalization questions 

were involved. The recursive approach through the use of D2 lacked a final 

adjustment based on the context of the problem, because students only considered a 

multiple of the common difference. Also, when students used explicit strategies, the 

model was not always correctly applied. These errors might be linked to the 

extensive students‘ experience manipulating numbers without meaning, making no 

sense of what the coefficients in the linear pattern represent. Results from the second 

task show that the level of students‘ efficiency increased. They displayed a greater 

level of awareness in the selection of the proper strategies. For example, the 
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inadequate use of direct proportion was no longer observed. In spite of these 

differences, questions that involved reverse thinking provoked a shift on the type of 

approaches used by the students. 

The role of visualization in students‘ reasoning 

Presmeg (2006) states that a strategy is of visual nature if the image/drawing plays a 

central role in obtaining the answer, either directly or as a starting point for finding 

the rule. In this sense the following strategies are included in this group: counting 

(C), whole-object with visual adjustment (W3), difference with rate-adjustment (D3) 

and explicit (E). Counting was always a successful strategy but only useful in solving 

near generalization questions. Drawing a picture of a certain object and counting its 

elements was an action used in near generalization questions and does not lead to a 

generalized strategy. Strategy W3 was only used by one pair of students, when 

solving the first task. They had only applied it correctly in near generalization. This 

type of reasoning involves a higher level of abstraction in visualization. In spite of 

not being one of the most frequent strategies, students who used D3 always reached a 

correct answer. This fact enhances the relevance of understanding the context 

surrounding the problem. Finally, the application of an explicit strategy leads to a 

high level of efficacy. Students based their work on sequence structure, referring to 

the relation between the variables. Only a few pairs of students ―disconnected‖ the 

sequence from the context and used a mix of different variables.  

DISCUSSION AND CONCLUSION 

In this study, patterning tasks were selected to set an environment to analyse 

students‘ generalization strategies, difficulties, as well as the impact of the use of 

visual strategies when solving this type of problems.  

Concerning the research questions posed, some significant findings are: (a) a variety 

of strategies were identified, although the frequencies observed were different; (b) 

students achieved better results in near generalization questions than in far 

generalization questions and, even with some experience with patterning activities 

acquired along the study, reverse thinking was still complex for many of them; (c) 

some of the pairs worked exclusively on number contexts using inadequate strategies 

like the application of direct proportion, using multiples of the difference between 

consecutive terms without a final adjustment and mixing variables. As a result of the 

study, this tendency was gradually inverted as most students understood the 

limitations of some of those strategies; (d) in some cases, students revealed 

difficulties in finding a functional relation, frequently generalizing rules that were 

verified for particular cases or showing a fixation for a recursive strategy; (e) 

visualization proved to be a useful ability in different situations like making a 

drawing and counting its elements, to solve near generalization tasks, and ―seeing‖ 

the structure of the pattern, finding an explicit strategy to solve far generalization 

tasks; (f) the application of visual strategies allowed students to find different 
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expressions to represent the same pattern; (g) it was also evident that they privileged 

constructive generalizations, seeing the structure of the pattern as a set of disjoint 

elements.  

To conclude, it is important to provide tasks which allow the application of a 

diversity of strategies and to encourage the students to use and understand the 

potential of visual strategies, establishing a relationship between the number context 

and the visual context to better understand the meaning of numbers and variables. 

The connection between parallel approaches and the exploration of the potentialities 

and limitations of each strategy can contribute to the development of a more flexible 

reasoning, essential to problem solving. 
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For a significant percentage of students, the current teaching of algebra is unable to 

develop skills, knowledge and forms of control that are necessary to fully master  

this domain of knowledge. This paper builds on Peacock argument that the 

difficulties of teaching and learning are due to epistemological obstacles rooted in 

the development of the Symbolical Algebra during the 19th century. The paper shows 

the role of AlNuSet system, particularly its two environments named Algebraic Line 

(AL) and Algebraic Manipulator (AM), in the conceptual development of Symbolical 

Algebra.  

INTRODUCTION  

Moving from arithmetic to algebra, students must overcome many obstacles that can 

be correlated with those that mathematicians have faced during the 18th century and 

the first half of the 19th century, with the development of Symbolical Algebra. In 

fact, the definitive overcoming of a vision of algebra as Universal Arithmetic, where 

the meaning of symbols is legitimated by the semantic references of numerical 

nature, dates back to that time. In 1830 Peacock distinguished between Symbolical 

Algebra and Arithmetical Algebra (Peacock, 2004a, 2004b). According to Peacock, 

Arithmetical Algebra differs from Arithmetic for the use of letters that allow 

operation on indeterminate quantities, namely on quantities whose value is not 

specified. In this algebra, however, the operations are those of Arithmetic, with the 

same natural limitations that they have in this knowledge domain, so that an 

expression like a-b has a sense only for b<a (Peacock, 2004a). With Symbolical 

Algebra, the meaning of symbols becomes operational, namely defined according to 

the operation (and its properties). In Symbolical Algebra, symbols can represent any 

kind of quantity that is incorporated into them through specific operations. The 

extension of the operational field, however, is not only the result of a process of 

generalization, but it marks a real change in terms of principles and culture of the 

discipline. Peacock established two principles from which the algebra becomes 

operational and deductive (Peacock, 2004b).The first principle states that the result 

of an operation that is impossible for arithmetic, as a-b for b>a, can be regarded as a 

mathematical reality. The second principle is the principle of permanence of 

equivalent forms. It attests that the equivalence between two expressions can be 

deduced from the properties of operations that are combined in their form, and this 

guarantees the equality of the results of calculations of the two expressions, for each 
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value assigned to the variable. Peacock's work can be very useful for understanding 

and framing epistemological obstacles encountered in teaching algebra. 

NATURE OF THE OBSTACLES IN LEARNING ALGEBRA 

A reflection on the work of Peacock for educational purposes was performed by 

Menghini (1994). In this work the author stresses the importance of presenting 

algebra as a tool to quantitatively interpret real-world situations. She also highlights 

the need for an axiomatic approach to allow students to internalize the principles 

developed by Peacock, to understand the jump that takes place in the passage from 

arithmetic to algebra and to develop knowledge and meta-control skills that are 

specific of the Symbolical Algebra after Peacock. For example, moving from 

arithmetic to algebra, it is important to understand that algebraic symbols can 

represent not only the numbers used in arithmetic, but also other numbers, such as 

negative numbers. That is, it is important to understand that the operations of 

arithmetic are not only transferred into the new system of signs of algebra, but in the 

context of algebra their meaning and their operational field may be extended. It is 

also important to understand that if two expressions are equal to each other for any 

value of their variable, this can be demonstrated through the use of transformation 

rules that guarantee the preservation of equivalence in transformation. Note that, in 

building the described knowledge and skills, it is necessary that students learn to 

perform various forms of control, and more precisely: the control of an algebraic 

expression on the numeric level, i.e. the ability to control what the expression 

denotes when the value of the variable is modified (Arzarello et al, 2001); the control 

of the expression at a syntax level, i.e. the ability to transform it by applying rules 

which guarantee the equivalence in the transformation (see Kieran, 2006); the 

control of transformation of the expression at a theoretical level, i.e. the ability to 

justify the algebraic transformation of an expression as logical-deductive activity 

within an axiomatic framework (Cerulli & Mariotti, 2002; Pedemonte, 2010). Using 

the terminology of Peacock, the first control level is typical of the Arithmetical 

Algebra, while the other control levels are specific of the Symbolical Algebra. 

NEED FOR A NEW TEACHING OF ALGEBRA 

The current teaching of algebra is not able to promote the conceptual development 

described above with a significant percentage of students. The causes are certainly 

different. I believe that this development cannot be achieved through the mechanical 

and repetitive exercises of the traditional didactics of algebra. It is necessary to allow 

the students to make meaningful experiences of contents and algebraic concepts in a 

sort of Didactical Laboratory of Mathematics that only the use of appropriate tools 

can help to structure (Chiappini & Reggiani, 2003). In the following I shall refer to 

the system AlNuSet to highlight some practices centred on its use which can 

facilitate the development of the two principles developed by Peacock concerning 

Symbolical Algebra. AlNuSet is a system that was developed at ITD-CNR in the 

ReMath EU project to improve the teaching and learning of algebra (Chiappini & al, 
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2008; Pedemonte & Chiappini, 2008; Chiappini & Pedemonte, 2010). AlNuSet 

consists of three environments: the Algebraic Line (AL), the Algebraic Manipulator 

(AM), the Function Environment (FE). ). In a previous paper presented at CERME 6 

(Chiappini & Pedemonte, 2010) the main ideas underlying the development and 

design of these three components of AlNuSet have been presented and its design has 

been illustrated and justified theoretically within the anthropological framework. In 

that paper it has been shown that the instrumented techniques available in the three 

environments of AlNuSet structure a new phenomenological space where algebraic 

objects, relations and phenomena are reified by means of representative events that 

fall under the visual, spatial and motor perception of students and teachers. 

Moreover, it has been evidenced that in the phenomenological space determined by 

the use of the instrumented technique of AlNuSet, algebra can become a matter of 

investigation. 

In this article I will present some teaching practices supported by the use of the AL 

and of the AM in the construction of knowledge, skills and abilities concerning the 

extension of the operational field of the subtraction (with the construction of 

different meanings that the sign "-" assumes in algebra) and the principle of 

equivalent forms (within the development of a deductive and axiomatic vision of 

algebra).   

THE HISTORICAL ROOTS OF THE DIFFICULTIES REGARDING THE 

USE OF THE SIGN "-" 

In the early development of algebra and the solution of equations with negative 

roots, a broad debate took place among mathematicians about the nature of negative 

numbers. The transformation of the negative number into a mathematical entity, 

well-founded at conceptual level, overcome considerable disagreements in the 

community of mathematicians. Many mathematicians of the 17th and 18th century 

referred to these numbers as "false" or "absurd" because they could not conceive a 

quantity that was "less than nothing" and therefore had great difficulty 

conceptualizing it as a number, namely as an ideal entity with specific properties. 

Indeed, for a long time, numbers as +4 and -4 were defined as a quantity respectively 

to add and to subtract, as an operational value and no predicative value was assigned 

to the signs ―+‖ and ― – ―. It took a long time to achieve consensus about validity of 

the different meanings to the sign "-" in writing as -4 or a-b for b> a. The work of 

Peacock has played a crucial role in this development. The difficulties that students 

face extending subtraction to negative numbers reflect the difficulties that 

characterized the conceptualization of these numbers on the historical level. In fact, 

many students have difficulties interpreting the meaning of the sign ―-― placed before 

a number, as in -3. It is not easy for the teacher to help them overcome these 

difficulties. Below I will highlight the role of mediation provided by the AlNuSet in 

developing these specific meanings. 



Working Group 3 

 CERME 7 (2011)  432 

 

THE EXPERIENCE OF THE EXTENSION OF THE OPERATIONAL FIELD 

OF SUBTRACTION  

In AlNuSet, the Algebraic Line (AL) is a normal number line empowered with new 

operative and representative opportunities of algebraic nature through the 

exploitation of digital technology. The starting point of the transformation of the 

number line into the AL is the possibility to associate a letter to a point on the line. 

The figure below shows two states of the AL of AlNuSet after the editing of the 

letter x. In this environment the letter x becomes something very concrete and 

tangible - a mobile point on the line that can be dragged with the mouse. If the point 

is not moved, x assumes a definite value on the line. Dragging the point with the 

mouse, the value that x assumes on the line changes. 

  

Fig 1: Two states of the Algebraic Line  after the editing of the letter x 

This environment offers different operative and representative possibilities of 

quantitative nature to operate with algebraic expressions, among these are the 

possibilities of : 

 editing algebraic expressions that are automatically represented on the line 

associated with points that indicate the value of the expression according to 

the value assumed by their variables on the same line, 

 dragging the mobile point corresponding to algebraic variables, whilst 

maintaining the relationship between points, expressions and values. 

In addition, the AL can be instantiated in various numerical domains, including 

natural numbers, integers, rational numbers and real numbers. On the line only 

numbers and expressions that are compatible with the choice made are visible. These 

features have great importance at didactical level. Consider this didactical situation: 

Working with natural numbers, associate the variables x and y with mobile points on 

the line, and edit the expressions x+y and x-y (first image of the Fig. 2). Drag the 

points x and y. Can you explain what happens? Repeat working with the integers. 
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Fig 2: Three images highlighting crucial representative events of the didactical 

situation  

Working with natural numbers, mobile points x and y can be dragged only to 0 or 

positive integers. By dragging points x and y, it is easy to verify that the expression 

x+y is always represented on the line, whatever the value of x and y is, while when 

y>x, an important representative phenomenon occurs: the expression x-y and the 

point associated to it disappear from the line (second image of Fig 2). This 

experience can be used to reflect on the domain in which an expression is defined, to 

investigate and clarify the conditions under which the subtraction is closed in N. 

When the domain is extended to include the integers, however, the expression is 

defined for any value of x and y (third image of Fig 2). In other words, it is possible 

to make a concrete experience of the principle of Peacock according to which the 

expression x-y assumes a status of mathematical reality when y>x, through the 

extension of the operational domain of the subtraction to the relative integer. These 

features make the AL an important educational tool for learning to control the 

domain of existence of expressions through new types of activities such as:  

Under what conditions will the following expressions will be represented on the AL if 

you select the domain of natural numbers: 6·x-y; 2·x-4·y; 2-x-8·y.  

It is important to note that through tasks such as these, the AL becomes a kind of 

laboratory where it is possible to explore the domain of existence of an expression, to 

make conjectures on the conditions of its existence and to validate these hypotheses.  

OPPOSITE AND EQUIVALENT EXPRESSIONS: THE EXPERIENCE WITH 

THE ALGEBRAIC LINE OF ALNUSET 

Consider the following assertion: ―The two expressions -x and -x
2
 considered in the 

domain  of relative integers always represent a negative number‖. What do you think 

about this statement? Justify your answer. Construct the two expressions on the AL and 

verify your answer using what is displayed on the AL during the interaction. Is there any 

difference among the following expressions: - x
2
 and (-x)

2
 and -(- x)

2
? 

Solving this task in an experimentation with AlNuSet, many students aged 15 

answered that ―-x is a negative number and -x
2
 is always a positive number because 

the even power of a negative number is positive‖. This answer shows that these 

students are not able to control either the use of the ―-― sign with the meaning of 

opposite and the connection of the algebraic notation with their referential objects. 
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Then these students represented the expression -x and -x
2
 and the other algebraic 

expressions indicated in the task on the algebraic line of AlNuSet (see Fig 3).  

  

Fig. 3: Two images of the exploration of the didactical situation on the AL 

They dragged the variable x and observed that the point corresponding to -x
2
 on the 

algebraic line is always located on negative numbers while the point corresponding 

to -x is positive when x is negative and vice-versa ―We have verified with AlNuSet 

that what we have written is false, so the assertion reported in the text that -x
2 

is 

always negative is true‖. ―With AlNuSet we have verified that -x
2 

is a negative 

number, (-x)
2
 is a positive number and -(-x)

2
 is a negative number coincident with -

x
2
‖ Some students were quite amazed by these result. A pair of students wrote: ―-x

2
 

and (-x)
2
 are the same thing because making the square you always obtain a positive 

number…‖ and after the verification with AlNuSet ―…Ah, hence they are not the 

same thing, because in one expression the minus sign is inside the parenthesis while 

in the other it is not‖. 

The features of AlNuSet have been exploited both to destabilize students‘ wrong 

conceptions regarding the connection of the algebraic rules used in a sign and its 

referential object and to develop new appropriate conceptions of this connection.― 

Through the observation of the line it emerges that, except at 0, x and –x are opposite 

on the line. Moreover -x
2
 and (-x)

2
 are not the same thing, they are opposite while –x

2
 

is always equal to -(-x)
2
‖. The example shows the mediating role of two important 

features of the algebraic line, namely that: 

 two expressions are opposite when their respective points on the line are 

always symmetric about the point 0,  

 two expression are equivalent when they are always associated with the same 

point on the line.  

These features have been exploited to mediate both the comprehension of the 

symbolic function of the sign ―-― and the development of the notions of equivalent 

and opposite expressions. Concerning the notion of equivalent expression, let me 

consider another task:  

Explain what the expression 3·x+1 represents, considering x as natural number. Write an 

equivalent expression and use the Algebraic Line to verify their equivalence. 
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A pair of students wrote, ―The expression 3·x+1 represents the triple of x+1, and 

stated 3·(x+1) to be an equivalent expression to 3·x+1. However, when they 

represented the two expressions on the AL, they observed that they are not 

equivalent because they do not refer to the same point on the line while dragging the 

variable x along the line. The emergence of a contradiction between the performed 

hypothesis and the results visualized on the algebraic line helped them reflect on the 

structure of the two expressions through the connection of the two expressions to 

their referential objects on the AL. ―Using AlNuSet we have seen that the triple of 

x+1 is (x+1) ·3 while 3x+1 is 3 times a natural number plus 1‖. Successively they 

conjecture 2x·x +1 to be equivalent to the expression 3·x+1. They verify with 

AlNuSet that also this hypothesis is wrong, they produce 2x+x+1 as equivalent 

expression, that successively transforms into (2+1)·x+1 and verify that this is 

equivalent to the given expression (see next paragraph). The two reported examples 

highlight the mediating role of AlNuSet in the appropriation of the algebraic 

symbolism through the comprehension of how algebraic operations characterize the 

expressions and determine what they denote. In particular the last example shows the 

construction of the notion of equivalent expressions through a quantitative approach. 

In the successive sections I will analyze the role of AlNuSet in the development of 

equivalent expressions through an operational approach coherent with the Peacock‘s 

principle of permanence of equivalent forms. 

DEVELOPMENT OF KNOWLEDGE, SKILLS AND ABILITIES TO 

CONTROL THE ALGEBRAIC MANIPULATION 

Much of current algebraic educational practice is unable to promote the 

comprehension of the notion of equivalent expressions through an axiomatic and 

deductive vision of the algebraic transformation coherent with Peacock‘s principle of 

permanence of equivalent forms. This is evidenced by the large number of students 

who, despite years of work with literal expressions, are not aware that the algebraic 

manipulation preserves the equivalence in the transformation, that equivalence 

between two expressions can be inferred from the properties of operations combined 

in their form, and that through the use of such properties more complex 

transformation rules can be proved. In this regard we note that in ordinary 

educational practice, the properties of operations are presented to students, but these 

properties are not used to perform algebraic transformations. The steps of 

transformation based explicitly on the properties of operations do need to be 

―condensed‖ into more powerful transformation rules. In ordinary educational 

practice, teachers tend to this too early in the students‘ learning. This occurs because 

teachers consider the basic steps of transformation as ―obvious‖, and because the 

costs of their explicit use (in terms of cognitive effort, time, and even consumption 

of paper) are not considered compatible with the constraints of schooling. For these 

reasons, the approach to algebraic transformation, centred on a long-term use of the 

basic properties of operations, is not commonplace in ordinary teaching practice. To 

promote the development of appropriate skills in algebra, both at the operative level 
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(ability to follow the rules) and at the conceptual level, a transformation in the 

educational practice is necessary. I believe that a new educational approach should 

be based on the use of the properties of operations and should not be separated from 

a deductive, properly mediated axiomatic approach. 

THE ALGEBRAIC MANIPULATOR OF ALNUSET 

The AM of AlNuSet was designed to approach algebraic transformation according to 

the perspective outlined above. Figure 4 below shows the interface of this 

manipulator. It is divided into two distinct spaces: the space where symbolic 

manipulation commands available for the transformation activities are reported (in 

the figure only a part of the commands is visible); the space where the algebraic 

expression or proposition is inserted to be manipulated and where the transformation 

is realised (in the figure, an example of algebraic transformation).  

In the interface Algebraic Manipulator (AM) (see Fig. 4) makes available commands 

for the algebraic transformation that correspond to the basic properties of operations, 

to the equality and inequality properties between algebraic expressions, to basic 

operations among propositions and sets. When a sub-expression is selected, only the 

commands of the interface that can be applied to it are automatically activated and 

highlighted to the user. This feature is very important from an educational standpoint 

because it allows students to explore the connection among the rules of 

transformation available in the interface, how they may be applied and the result that 

the application of a rule produces. 

 

Fig 4: The interface of the Algebraic Manipulator of AlNuSet 

Another feature of this AM allows students to create new transformation rules, once 

these have been demonstrated using the available commands. These new rules can be 

saved and included in the interface to be used in subsequent transformations. This 

feature is essential to mediate a didactic of algebraic transformation based on 

axiomatic and deductive approach, centred on the use of some basic axioms 
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(properties of operations) and the demonstration of progressively more complex rules 

for the algebraic transformation (theorems). 

EXAMPLES OF USE OF THE AM OF ALNUSET IN AN AXIOMATIC AND 

DEDUCTIVE FRAME OF ALGEBRAIC TRANSFORMATION  

These are the commands concerning the operation of subtraction that are available in 

the interface of this AM. 

    

These commands correspond to properties of the subtraction that students previously 

explored on the AL through the quantitative approach of this environment. In the 

Algebraic Manipulator these properties become operational tools to manipulate 

numerical and/or literal expressions, preserving the equivalence in the 

transformation.  

In the following example, the commands used to perform the transformative steps 

are reported in the second column. These transformative steps are unlikely to emerge 

in the standard educational practice. On the contrary, this approach is important to 

learn to work consciously with the transformation rules of algebra. Often these rules 

are not entirely clear even to those who seem able to solve correctly. For example, 

several students who in the ordinary practice of algebra successfully transform 5∙x-x 

into 4∙x, very often are not aware of the fact that behind their result there is the 

application of the neutral element of the product and the distributive property of 

product with respect to the sum. Not to mention those for which 5∙x-x=5. 

 

 

  

 

The following examples concern the proof of the equivalence respectively between  

–x
2
 and -(-x)

2
 and between 3x+1 and 2x+x+1 after the activity performed on the 

Algebraic Line. 
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The activity with the AM  allows students to experience that the transformational 

algebraic activity is the demonstration of equivalence of different algebraic forms. 

The characteristics of the manipulator allow the teacher to introduce abstract notions 

in the algebraic activity such as those of proof, axiom, theorem, equivalent 

expressions exploiting what the system exhibits in the interaction to construct an 

idea of these notions. 

CONCLUSIONS 

In this article we have shown that when moving from arithmetic to algebra, 

technology can help to overcome some crucial epistemological obstacles. It has been 

shown that AlNuSet can be easily exploited to allow students to experiment with the 

two principles developed by Peacock and to grasp the axiomatic and deductive 

nature of symbolic Algebra. It has been highlighted that the two environments of 

AlNuSet allow students to interact with algebraic objects and concepts, of abstract 

and formal nature, in a concrete and tangible way. This is possible because digital 

technology allows to create phenomena related to algebraic concepts that can be 

controlled through a visual, spatial and motor experience. In this way, it is possible 

to have a direct and concrete experience with mathematical objects and concepts. 

This favours the construction of sense for these objects and concepts and the 

development of forms of control needed to master the language of algebra at the 

symbolic level. 
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This paper reports a study whose aim was to examine secondary school student 

choices of generalising strategy to determine what they would judge as the most 

helpful strategy for expressing generality. Data were collected from 45 Secondary 

One students through administering a questionnaire which contained one linear and 

one quadratic generalising tasks. The students had to select and justify the strategy 

that they believed would best help them to establish the rules. The data were 

analysed and revealed differences in the judgements of the more able and the less 

able students regarding the best-help strategy. The more able students‘ choices of 

best-help generalising strategy seemed to vary across the two different types of tasks 

whereas those of the less able students appeared to remain unchanged. 

Keywords:  Pattern generalisation, student beliefs, generalising strategy 

BACKGROUND 

Modelling mathematical problems as examples to demonstrate how the problems in 

question can be worked out is an important teaching activity that features strongly in 

most mathematics lessons. When illustrating examples, teachers tend to introduce 

their methods to show students the way to deal with these problems. They could have 

picked these methods based on their beliefs about what students are capable of 

understanding and how they will learn best (Chua & Hoyles, 2010b). All this is done 

with the good intention of wanting to help students experience some success. And 

students generally accept and follow the teachers‘ methods. But some teachers may 

go as far as to enforce their methods and get students to comply. So the big issue 

here is what students think of their teachers‘ methods. Do the teachers‘ methods help 

them understand the examples and learn mathematics better? 

For generalisation of number pattern, the literature identified several kinds of 

generalising strategies used by students to establish a rule between the term and its 

position in the pattern(Drury, 2007; Lannin, 2005; Lee & Freiman, 2006; Rivera & 

Becker, 2008; Steele, 2008). In some of these recent studies, the students were even 

presented with different–looking rules that could be used to describe the same 

underpinning pattern and asked to justify how these rules could all be equivalent to 

one another (Drury, 2007; Lee & Freiman, 2006; Rivera & Becker, 2008). Suchan 

activity challenges them to use different strategies to come up with multiple ways of 

seeing the same pattern. However, none of these studies went further to ask students 

for the kind of strategy that they believe will best help them to construct those rules. 

Thus the present study sought to fill in this gap by examining secondary school 
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student choices of generalising strategy to ascertain what they would judge as the 

most helpful strategy to establish the functional rule for deriving any term in the 

pattern. It is hoped that the findings of the present study could provide valuable 

insights for teachers, teacher educators and curriculum developers. 

THEORETICAL FRAMEWORK 

Pattern generalising tasks are a common feature of school mathematics in many 

countries.Generally, researchers concur that such tasks are a powerful vehicle not 

only for introducing the notion of variables (Mason, 1996) but also for developing 

two core aspects of algebraic thinking: the emphasis on relationships among 

quantities like the inputs and outputs (Radford, 2008) and the idea of expressing an 

explicit rule using letters to represent numerical values of the outputs (Kaput, 2008). 

Apart from these merits, pattern generalising tasks are also useful for developing the 

notion of equivalence of algebraic expressions as well. A typical generalising task 

involves facilities like identifying a numerical pattern, extending the pattern to make 

a near and far generalisation, and articulating the functional relationship 

underpinning the pattern using symbols. 

There is a wealth of research that examines students‘generalising strategies and 

reasoning when they deal with pattern generalising tasks.Students had been found to 

use a variety of strategies for constructing the functional rule underpinning the 

pattern depicted in the tasks. For instance, Rivera and Becker(2008) established three 

types of strategy that students employed: (1) numerical, which uses only cues 

established from any pattern that is listed as a sequence of numbers or tabulated in a 

table to derive the rule, (2) figural, which only applies in generalising tasks that 

depict the pattern using diagrams, and relies totally on visual cues established 

directly from the structure of the figures to derive the rule, and (3) a combination of 

both the numerical and figural approaches. 

Different types of strategies do exist even within the numerical solutions. Bezuszka 

and Kenney (2008) identified three such strategies that involve recursion: (1) 

comparison, where the terms in a given number sequence are compared with 

corresponding terms of another sequence whose rule is already known, (2) repeated 

substitution, where each subsequent term in a number sequence is expressed in terms 

of the immediate term preceding it, and (3)the method of differences, also known as 

finite differences in Mathematics, which is an algorithm for finding explicit formulae 

that are polynomial equations.  

The figural solutions were further distinguished into two different categories by 

Rivera and Becker (2008): (1) constructive generalisation, which occurs when the 

diagram given in a generalising task is viewed as a composite diagram made up of 

non-overlapping components and the rule is directly expressed as a sum of the 

various sub-components, and (2) deconstructive generalisation, which happens when 

the diagram is visualised as being made up of components that overlap, and the rule 
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is expressed by separately counting each component of the diagram and then 

subtracting any parts that overlap. 

Apart from these two kinds of figural strategy, Chua and Hoyles (2010a)introduced 

two other strategies into the existing classification scheme developed by Rivera and 

Becker (2008). One of them occurs when one or more components of the original 

diagram are rearranged into something more familiar. This newly reconfigured figure 

then unveiled the pattern structure and facilitated the construction of the functional 

rule. The other happens when the original diagram is viewed as part of a larger 

composite figure, from which the functional rule is generated by subtracting the sub-

components from this composite figure. 

To sum up, the literature review leads us to recognise the diverse ways of 

constructing the functional rule that represents the pattern in a generalising task. 

Hencethis present study aims to add to the body of work on pattern generalisation by 

seeking to answer some of these questions: Which strategies would students believe 

would best help them to work out the rule? How would more able students‘ choices 

of best-help strategies compare with those of the less able students? If the rule 

underpinning the pattern were to change from a linear to a quadratic relationship, 

would the best-help strategies that students considered for the former case change to 

suit the latter? 

METHODS 

Student data were collected through a questionnaire administered to 45 Secondary 

One students (aged 13 years) from a secondary school. 29 of the students came from 

the Express course and 16 from the Normal (Academic) course. The students were 

placed in these courses based on their performance at a national examination taken at 

the end of their primary education when they were 12 years old. These students, 22 

boys and 23 girls, were selected by the school according to their Mathematics grade 

in the national examination. Amongst the Express students who were considered 

academically more able than the Normal students, 15 scored an A or A* (high 

distinction) for Mathematics while the remaining 14 scored a B or C. All the 16 

Normal (Academic) students scored a B or C because no one obtained A or A*. 

These students had already learnt the topic of number patterns, which is part of the 

Singapore mathematics curriculum, before participating in this study. So they should 

be able to continue any pattern, whether presented as a sequence of either numbers or 

figures,for a few more terms, make a near and far generalisation and derive the 

functional rule in the form of an algebraic expression for predicting any term. 

Further, they should also be far more familiar in dealing with linear patterns than 

with non-linear ones, which are less common in their mathematics textbook. 

Before administering the questionnaire, a worksheet comprising the two generalising 

tasks that were used in the questionnaire was distributed to every student. The two 

tasks, High Chair and Christmas Party Decoration, are presented in Figures 1 and 2 
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respectively below. The first task involves a linear rule whereas the latter involves a 

quadratic rule. These two tasks differ from the typical textbook tasks in that they are 

less structured, thus allowing a greater scope for exploring the pattern structure. The 

students were asked to individually work out the functional rules in terms of the size 

number using any strategy that they were familiar with. The purpose was to prepare 

and familiarise them with these tasks so that they could better understand the 

questionnaire tasks that they had to do later. 

 

 

 

 

 

 

 

 

 

Figure 1. High Chair 

 

 

 

 

 

 

 

 

Figure 2.Christmas Party Decoration 

 

Subsequently, the questionnaire containing those two generalising tasks, each 

accompanied by four possible student solutions, was distributed to each student. 

Figures 3 and 4 below show the four distinct student solutions for the two respective 

tasks. Set in a context of a discussion amongst four students, each student solution 

represented a different way of constructing the rule based on the classification 

scheme described above. Take, for instance, the solutions in High Chair. Method 1 
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involves rearranging the original figures into something more familiar (S3). In 

Method 2, the original figures are viewed as part of a larger rectangle with four 

missing cards (S4).Method 3 uses a numerical strategy (S1) known as the repeated 

substitution strategy (Bezuszka & Kenney, 2008) while Method 4 employs a 

constructive strategy (S2). For Christmas Party Decoration, Methods 1, 2 3 and 4 

correspond to S4, S2, S3 and S1 respectively. The students were asked to choose the 

method that they believed would best help them to construct the functional rule. In 

addition, they had to provide justifications for their choices of the best-help method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Student solutions to High Chair 

 

All 45 questionnaires were collected and analysed to determine the student choices 

of method that they thought would best help them to work out the rule. The 

frequencies of the four student methods for each generalising task were then counted. 

The student justifications were looked into to gain a better understanding of the 

reasons behind their choices of best-help strategies. 
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Figure 4. Student solutions to Christmas Party Decoration 

RESULTS 

This section presents the findings to the following twoquestions that guided this 

study. 

1. Which strategies would students believe would best help them to work out the 

rule for High Chair? 

Table 1 shows that the numerical solution S1 was the top choice of best-help 

strategies amongst the Express students in this study, with 13 of them selecting it. 

Following it, in descending order, are S2, S4 and S3. There were nearly an equal 

number of students choosing S2 and S4, with another three preferring S3. Taking 

these numbers of students collectively, 16 of the 29 Express students believed that a 

figural method would best help them to derive the rule. Similarly, a significant 

number of the Normal (Academic) students (69%) also found the numerical method 

S1 most helpful. As for the rest, three chose S2, two selected S3 and none opted for 

S4. 
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 Best-help Method to students 

High Chair S1 S2 S3 S4 Total 

Express Students (n = 29) 13 7 3 6 29 

Normal (Academic) students (n=16) 11 3 2 0 16 

S1: Numerical; S2: Constructive; S3: rearranging the original figures; S4: viewing the original figures as part of a larger 

rectangle 

Table 1: Student Choices of Best-help Method for High Chair 

 

2. Which strategies would students believe would best help them to work out the 

rule for Christmas Party Decoration? 

As Table 2clearly shows, the Express students‘ choice that topped the list of best-

help strategies for this quadratic generalising task was S2, with as many as 13 

students choosing it. This was then followed in descending order by S1, S4 and S3. 

Of the remaining number of students, seven picked the numerical solution S1 and 

nearly the same number of them selected S3 and S4. Collectively, over 75% of the 

Express students believed that a figural method would best help them to derive the 

rule. On the other hand, 75% of the Normal (Academic) students found the numerical 

method S1 most helpful. For the rest of them, two each chose S2 and S3, and none 

opted for S4. 

 Best-help Method to students 

Christmas Party Decoration S1 S2 S3 S4 Total 

Express Students (n = 29) 7 13 4 5 29 

Normal (Academic) students (n=16) 12 2 2 0 16 

S1: Numerical; S2: Constructive; S3: rearranging the original figures; S4: viewing the original figures as part of a larger 

rectangle 

Table 2: Student Choices of Best-help Method for Christmas Party Decoration 

DISCUSSION 

For the less able Normal (Academic) students, their choices of best-help strategy did 

not seem to vary very much between the linear generalising task and the quadratic 

task. Their top choice was the numerical strategy S1, followed in descending order 

by S2 and S3. S4 was not picked by them at all. The high frequencies of these 

students choosing the numerical method in both generalising tasks clearly suggest 

that a substantial majority of them prefer to work out the functional rule using this 

method compared to any of the other three given figural methods. An examination of 

their justifications revealed that its popularity lies in its simplicity for them to 

represent the changes across the different cases without having to draw any 

diagrams, thus making the workings easier to understand. In addition, some students 
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found that using the table of values is a well-organised and systematic way for them 

to detect the pattern and derive the rule.  

Unlike the Normal (Academic) students, the numerical method emerged the top 

choice for the Express students only for the linear generalising task but slipped to the 

second position for the quadratic task. What is interesting to note about this finding 

is that some of these students seemed to be more aware of the applicability of this 

strategy to the quadratic task than their Normal (Academic) peers. They might have 

realised that while the numerical method shows how the pattern grows clearly in a 

table, the derivation of the quadratic rule is not as straightforward and easy as it 

appears. In fact, it is anticipated that such a method would pose a real challenge to all 

the Secondary One participating students if they were asked to use it to establish the 

rule. Therefore, it is not at all surprising to find some of these Express students 

abandoning the numerical strategy for a figural one in Christmas Party Decoration, 

thus causing a dip in its frequency by nearly one-half as compared to that for High 

Chair. As for the Normal (Academic) students who are regarded academically 

weaker, it is rather expected of them to not recognise the real difficulty of employing 

the numerical strategy to obtain the quadratic rule.  

The popularity of the numerical strategy could also be traced to another plausible 

reason as suggested in a few students‘ justifications. The students explained that the 

numerical method was picked as the best-help strategy because it was the only 

method demonstrated by their mathematics teachers. This student revelation is 

consistent with evidence from another recent study of ours, which showed that the 

majority of the participating secondary school mathematics teachers would use the 

numerical strategy in class to show students how to work out the rule underpinning a 

pattern (Chua & Hoyles, 2010b). The student revelation also highlights a precarious 

situation students could be facing when they are only taught, in particular, what 

Bezuszka and Kenney (2008) called the repeated substitution strategy and lack 

exposure to other types of generalising strategies. They could be misled to think that 

such a strategy is an effective method that can work easily for all types of 

generalising tasks.  

Some valuable insights have also emerged from the students‘ justifications of their 

choice of strategy. There were students who preferred the numerical method due to 

its clarity and simplicity, which made pattern detection and understanding easy. 

Subsequently, this led to the ease of obtaining a rule, a view which Bezuszka and 

Kenney (2008) had also pointed out. Those who eschewed this method generally 

found it time consuming, confusing and tedious to set up a table of values. To those 

who opted for figural methods, the pattern structure was easier to visualise because 

the explicit link between the size number and the number of cards used was more 

noticeable. That was why figural methods were found to be more helpful in deriving 

the rule quickly. Despite the evidence that figural methods can offer insight to 

pattern structure, some students still shunned such methods in favour of the 
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numerical method because they found them tiresome to draw and difficult to 

visualise the diagrams. 

CONCLUSION 

The present study provides a window for teachers, teacher educators as well as 

curriculum developers to understand which generalising strategies would facilitate 

student visualisation of the structure underpinning the pattern. The findings showed 

that the Normal (Academic) students seemed to prefer the numerical method to the 

figural method for working out the functional rule whereas the Express students 

tended to favour the figural method. Such research-based knowledge is useful to the 

teaching and learning of number patterns, teacher training as well as curriculum 

design.For instance, teachers seeking an idea of what might be an appropriate 

generalising strategy to employ in class when demonstrating examples can use the 

findings to help them make informed decisions. Aligning their choices of 

generalising strategies with that preferred by students can support the efficacy of 

teaching and learning outcomes. 

Looking from another perspective, the findings of this study also draw attention to a 

few implications for teachers. First, teachers will need to look into the assumptions 

that they are making when deciding on the kind of strategies to use in class. For 

pattern generalisation in particular, teachers will need to be keen observers of how 

their students express generality to find out how they process the strategies. Second, 

teachers will also need to be familiar with the different generalising strategies so that 

they can lead students to work out the functional rule.Finally, while the findings may 

be preliminary since the present study is still on-going, they appear to hold promise 

of creating a greater awareness amongst teachers, teacher educators and curriculum 

developers of what students are actually capable of doing and learning. By making 

an attempt to understand how students visualise patterns can help teachers and 

teacher educators in planning more effective teaching and learning experiences, and 

curriculum developers in curriculum design to improve students‘ ability to make 

generalisations. 
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In this paper, the epistemic actions of recognising, building-with and constructing 

(RBC) are used to analyse and describe the development of algebraic reasoning by 

primary pupils in a whole-class setting. The lesson concerned finding the sum of 

positive integers, 1-100. On the basis of mathematical principles developed for the 

lesson, transcripts of whole-class discussion were coded using the RBC framework. 

Some of these epistemic actions were inferred by the language used by pupils – for 

example, they tended to use linguistic hedges when conjecturing (‗building-with‘) 

but used language of greater certitude when ‗constructing‘. It also emerged that the 

use of ‗vague language‘ facilitated collaborative construction of mathematical ideas.  

INTRODUCTION  

Blanton and Kaput (2008) argue that algebraic thinking, which they describe as 

―purposeful generalization of mathematical ideas and the expression of generalities 

with increasingly sophisticated symbol systems‖ (pp. 362 – 3) should lie at the heart 

of classroom mathematical practice. They go on to say that  

[a]lgebraic thinking thrives in an instructional context that both elicits students‘ 

thinking and uses it to build a climate of conjecture and argumentation so that 

conjectures can be established or rejected as valid mathematical claims, especially 

conjectures regarding the generality of claims. (p.363) 

In this paper, I describe a framework that can be used to analyse and describe the 

growth of algebraic reasoning in the context of whole-class discussion. In particular, 

it shows that a ‗conjecturing atmosphere‘ (Mason, 2008) is central to such growth. 

THEORETICAL FRAMEWORK 

RBC Epistemic Actions 

A theoretical framework that has been used to describe the construction of new 

mathematical ideas is ‗Abstraction in Context‘ (AiC) (Schwartz, Dreyfus, and 

Hershkowitz, 2009). Related epistemic or observable actions are ‗recognising‘ (R) 

(using a familiar structure), ‗building-with‘ (B) (using available structural knowledge 

to deal with the problem at hand) and ‗constructing‘ (C) (building more complex 

structures from simpler structures). These three epistemic actions are not linear but 

nested. In other words, ‗recognising‘ (R) and ‗building with‘ (B) do not precede the 

process of ‗constructing‘ (C) but, rather, are nested within it. While the RBC model 

has been used for the analysis of a variety of mathematical topics, C-actions often 
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concern the generality of claims (e.g., Schwartz et al., 2009). As such it is pertinent 

to algebraic thinking as described above. The RBC model of abstraction described by 

Hershkowitz, Schwartz, and Dreyfus (2001) was based on data derived from a 

teaching interview with one student who had a computerised tool at her disposal. 

However, they suggested that epistemic actions might be distributed among 

participants. In a paper that I presented at CERME 5, I suggested that, in the context 

of whole-class discussion, ―[o]ne pupil‘s ‗recognising‘ led to ‗building with‘ by 

another and to ‗construction‘ of new ideas and strategies by others‖  (Dooley, 2007: 

1658). Hershkowitz (2009) has since described the process where different 

individuals contribute different building blocks to the construction of new 

mathematical knowledge as one of ‗collective abstraction‘.  

A partial construct (PaCC) obtains if a C-action only partially matches elements of 

underlying mathematical principles, that is, intended constructs such as concepts, 

methods, or strategies (Ron, Hershkowitz, and Dreyfus, 2008). PaCCs are apparent 

in cases where a student‘s incorrect answer overshadows meaningful knowledge s/he 

has constructed or, conversely, where a correct answer masks a gap in knowledge. 

The RBC model has been found to be an effective tool for tracing these partial 

constructs (Schwartz, et al., 2009).  

In order to investigate the construction of new mathematical ideas by pupils I 

conducted a ‗classroom design experiment‘ (Cobb, Gresalfi, and Hodge, 2009) in 

three different primary schools in Ireland. I taught 32 lessons, some of which 

extended over a few class periods, in all. Data collected included field notes, 

audiotapes of whole-class and group interactions, pupils‘ written artefacts, digital 

photographs, interviews with teachers and, in two of the schools, pupil diaries and 

post-lesson interviews with small groups of pupils. Data collection and data analysis 

were interwoven. Retrospective analysis was conducted on micro- (between lessons) 

and macro- (between and after cycles of research) levels. For each lesson I identified 

‗mathematical principles‘, that is, the constructs that pupils might be expected to 

develop over the course of a lesson, and these informed a hypothetical learning 

trajectory. Other principles arose a posteriori and were included in the analytic 

framework. Using the computer aided qualitative data analysis software package, 

Nvivo, I first coded all pupils‘ turns as ‗R‘, ‗B‘ or ‗C‘ with reference to these 

principles. Thus I was able to trace the mathematical constructions of (some) 

individual pupils.  A difficulty I encountered was that I had to infer the epistemic 

action from pupils‘ verbal protocol
1
. Their use of ‗hedges‘ and ‗pronouns‘ facilitated 

this process. 

Hedges and Pronouns 

Rowland (2000) developed a taxonomy of hedges with reference to the discourse of 

mathematical conjecture. The first major type of hedge, a ‗shield‘ indicates some 

uncertainty in the mind of the speaker in relation to a proposition. In the statement, ―I 

think that the last digit of an even number is 0, 2, 4, 6, or 8‖, the speaker injects a 
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level of vagueness into his/her mathematical assertions and thus implicitly invites 

feedback on his/her conjecture about a method of identifying an even (or non-even) 

number. There are two types of shield: (a) a ‗plausibility shield‘ (e.g. ‗I think‘, 

‗probably‘, ‗maybe‘) which can suggest some doubt on the part of the contributor 

that the statement will withstand scrutiny and (b) an ‗attribution shield‘ (e.g. 

‗According to‘) in which some degree or quality of knowledge is implicated to a 

third party. The second major category of hedges are termed ‗approximators‘. The 

effect of the approximator is to modify the proposition rather than to invite comment 

on it. One subcategory of the approximator is the ‗rounder‘ which comprises adverbs 

of estimation such as ‗about‘, ‗around‘ and ‗approximately‘. The second type of 

approximator is the ‗adaptor‘ – it indicates vagueness concerning class membership 

such as ‗somewhat‘, ‗sort of‘, e.g., ―Zero is sort of an even number‖.  

In the analysis of lesson transcripts, it emerged pupils tended to use vague language 

(e.g., ‗probably‘ ‗might‘ ‗I think‘) when conjecturing, an action coded as ‗building-

with‘. In turn, the language of a constructing action was marked by certitude – in 

particular, pupils often used pronouns such as ‗it‘ or ‗you‘ to signify generalisation 

(Rowland, 1999, 2000). There follows an account of a lesson on the Story of Gauss 

that took place with a group of pupils
 
aged 9 – 10 years. An overview of this lesson 

was given at CERME 6 where my role in the constructing processes of a number of 

pupils was described using an improvisational metaphor (see Dooley, 2009). In this 

paper there is a more fine-grained analysis of the development of new ideas by one 

pupil, Anne. However, her construction had embedded within it the contributions of 

others in the class and thus their input is also described and analyzed. 

THE STORY OF GAUSS 

The young Gauss astounded his teacher when, as a school pupil, he rapidly 

calculated the sum of numbers from 1 to 100. He did so by adding 1 to 100, 2 to 99 

and so on and thus found fifty 101s. The power of this story, according to Rowland 

(2001), is that it provides a means of finding the sum of the first 2k integers for any 

integer 2k (that is, k (2k + 1)). A ‗generic example‘ is an example that is 

representative of a class of objects (Balacheff, 1987). What makes Gauss‘ story 

special in the view of Rowland (2001) is that it is ―generic among generic examples‖ 

(p.43), that is, it elucidates the nature of a generic example. 

Mathematical Principles 

The Gauss lesson that is the focus of this paper followed a lesson on the 

‗Handshakes‘ problem. The pupils had developed an explicit formula for this 

problem, that is, that the number of handshakes could be determined by application 

of the formula, ´ n(n-1), where n is the number of people. Some pupils were able to 

verify this formula structurally. Since they had calculated the number of handshakes 

in the case of 100 people, I anticipated that they might be able solve Gauss‘ problem 

with relative ease (that is, 4950 + 100).  I also thought that they might make use of 
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the formula although I expected that this would pose a challenge since the number of 

handshakes for n people is ´ n(n-1), the formula for 1 + 2+ 3 + … + (n – 1).  Pupils 

of this age could also be expected to use ‗flexible computation methods‘ (Greeno, 

1991). One of the ways they might do this is to add numbers that pair to 100 (a 

method that is referred to in future as ‗compatible pairs‘)
2
, i.e., 100 + 0, 99 + 1, 98 + 

2 …  

In order to use this method to solve the sum of the first n positive integers, pupils 

have to observe that if n is even, (a) the number of pairs is ´ n and (b) that ´ n (‗50‘ 

in the example above) does not have a ‗compatible partner‘. An interesting pattern 

emerges when sums of decades are examined. Using the notation s(m, n) = m + (m + 

1) +… + n, s(1, 10) = 55; s(11, 20) = 155 (that is, s(1, 10) + 100); s(21, 30) = 255 

(that is, s(1, 10) + 200) etc. Similarly, s(1, 100) = 5050; s(101, 200) = 15050 (that is, 

s(1, 100) + 10000) etc. One of the conflicts that pupils have to overcome in order to 

use either of these patterns effectively is the ‗illusion of linearity‘ (De Bock, Van 

Dooren, Janssens, and Verschaffel, 2002), that is, s(1, kn) = ks(1, n). For example, 

pupils might assume that s(1,100) = 10s(1,10), that is, s(1,100) = 10 (55). On a more 

global level, another principle that pupils might be expected to attain is the extension 

of this example to other classes, such as the sum of the first n-hundred integers. 

A summary of a possible learning trajectory is as follows: 

(i) Formation of an association with  ‗Handshakes‘. 

(ii) Finding a solution by adding compatible pairs/decades or by transforming the 

formula for ‗Handshakes‘; noticing that linearity does not apply.  

(iii) Expanding the solution method into a more general structure. 

ANALYSIS OF ANNE‘S CONSTRUCTION OF INSIGHT 

Early in the lesson, Anne suggested that the sum of the first 100 integers might be 

found by doubling the sum of one to five (that is, fifteen) and then multiplying 30 by 

ten, that is, 

56 Anne: If you add one to five, that‘s fifteen… 

57 TD: Hm, hm. 

58 Anne:  … and then fifteen and fifteen is thirty, so then if you multiply that by 
ten. 

Her insight about the inefficacy of this strategy occurred a short while later and was 

prompted by an observation made by Alan. The turns chosen for analysis are 

therefore turns 66 – 86 and 91 – 95 since they provide the trace of her constructions
3
. 
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 Pupil Action Epistemic 

Action 

(RBC) 

66 Alan: Em, well, I don‘t think Anne‘s one is right. Alan evaluates 

idea proposed 

by Anne in 

Phase 2. 

Building-

with 

67 TD: Why not?   

68 Alan: Cos ninety-nine plus ninety-eight plus ninety-seven plus ninety-six 

to ninety would be around over five hundred and when … 

Estimation of 

sum of ‗90s‘ 

Recognising 

69 //Ch: Oh! Exclamation  

70 TD: Ok, so you are thinking that, you think, you disagree with Anne 

because you are thinking, what Alan is doing now … Alan is thinking ninety - I 

haven‘t forgotten you now, Enda, alright, I will be with you in a moment - you are 

thinking ninety plus ninety-one plus ninety-two plus ninety-three would give you 

approximately how much? 

  

71 Alan: Em, I don‘t know.   

72 TD: But it‘s…   

73 Alan: But it would probably be over five hundred. Estimation of 

sum of 90s 

Recognising 

74 TD: It would be over five hundred, so in that section, if you are thinking 

about all those numbers there that would give you about, even just adding ninety to 

a hundred so you are thinking that would give you about five hundred - I will be 

with you in about one minute alright. Barry? 

  

75 Barry: Eh, well, I disagree with Anne as well because eh I counted, I 

counted up all the numbers up to ten and I got fifty-five. 

Further 

evaluation of 

Anne‘s idea 

Building-

with 

76 TD: You counted, ok so actually in your head, so you went, so ok so you 

added, Barry, you went one plus two plus three and so on up to ten (writes on 

blackboard) and you just counted that section there and you said that‘s about fifty-

five. And then Alan was saying that ninety plus ninety-one (writes on blackboard) 

up as far as a hundred would give you. About how much what would that give you 

if you just added those numbers there, ninety, about how much, you don‘t have to 

give the exact answer, about how much would that be if you went ninety, ninety-

one, ninety-two, ninety-three added all those numbers there, what would that be 

about? Barry? 

  

77 Barry: A hundred and eighty one.   

78 TD: It would be about a hundred and eighty one, that‘s if you went ninety 

plus ninety-one plus ninety-two plus ninety-three … 

  

79 Barry: No eh…   

80 TD: … plus ninety-four plus ninety-five plus ninety-six plus ninety-seven 

plus ninety-eight plus ninety-nine plus a hundred? About how much would that be? 

  

81 Barry: Eh … a thousand. Estimation of 

sum of 90s 

Recognising 

82 TD: It could be yeah, it could probably be a thousand.   

83 Ch: Ah!   
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84 TD: Ok, so that would give you about … Do you agree with that, that that 

would give you about a thousand? 

  

85 Barry: No around nine hundred because there‘s not really a hundred in the 

nineties. 

Estimation of 

sum of 90s 

Building-

with 

86 TD: In the nineties, so you‘re thinking that that would be around nine 

hundred. Ok. So this is now what we are thinking now, alright that eh this number 

here is about nine hundred and Enda what you might do for me if you just take out 

... is just write down your idea in your diary for me please. Alright? 

  

[   ]
4
   

90 TD: Yes, so it‘s not just, and as Barry said that if you were going ninety, 

or Alan made this point, that ninety, ninety-one all the way up to a hundred gives 

you about nine hundred, who else said about, oh yes and Barry was saying that one 

up as far as ten gives you fifty-five. And we are thinking all the numbers one plus 

two plus three plus four plus five plus six plus seven plus eight plus nine plus ten 

plus eleven plus twelve (speaking quickly) ... counting up, adding up all the 

numbers from one up to a hundred. Anne? 

  

91 Anne: I don‘t … my answer wouldn‘t work. Anne re-

evaluates her 

early input. 

Building-

with 

92 TD: What were you thinking your answer was?   

93 Anne: I thought it would be thirty multiplied by a hundred but it wouldn‘t 

work. 

Anne repeats 

earlier idea. 

 

94 TD: Why would it not work?   

95 Anne: Em, because you would have to em … cos I did eh one plus two 

plus three plus four plus five and then em I got fifteen and then I added fifteen and 

fifteen equals thirty but then it would be more em … because you would have to 

add six, seven and that … 

Anne 

rationalises why 

her earlier idea 

would not work. 

Constructing 

 

Epistemic Actions (RBC) 

I classified Alan‘s input in turn 66 as ‗building-with‘ since he was reflecting on a 

process. The use of the words ‗Well, I think…‘ in this instance can be explained by 

‗politeness theory‘ described by Rowland (2000: 86) as follows: 

[P]oliteness theory is constructed to account for some indirect features of 

conversation: it claims that speakers avoid threats to the ‗face‘ of those they address 

by various of vagueness, and thereby implicate their meanings rather than assert 

them directly. 

It seems that Alan was reasonably certain that Anne was incorrect but he may not 

have wanted to threaten her ‗positive‘ face (that is, her desire for approval). Use of 

the discourse marker, ‗Well‘ and of the plausibility shield, ‗I think‘ represent a form 

of redress (Bills, 2000; Rowland, 2000). In other words, he may have wanted to 

inject some vagueness into his criticism of her conjecture. His justification for this 

criticism was quite fuzzy as he was unsure about the sum of the numbers in the 90s. 

In turn 68 he used the rounder, ‗around‘ followed immediately by a second rounder, 

‗over‘, to suggest that ‗five hundred‘ was an estimate. When I endeavoured to get a 
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more precise solution from him he used a plausibility shield to signify his 

uncertainty: ―It would probably be over five hundred‖.  

Barry has also built-with in turn 75. It seems that he too has reflected on Anne‘s 

input and has rejected it on the basis that the sum of one to ten is 55. He spoke with 

some conviction about this sum and, like Alan, his use of the word, ‗Well‘ at the 

beginning of this turn suggests that he was being polite, in a technical sense, to 

Anne. In turn 76, I reviewed both of their ideas and wrote them on the blackboard. In 

turn 91, Anne changed her mind about her earlier idea and stated emphatically that 

―it wouldn‘t work‖. Interestingly, her rationale for this was neither of the 

justifications provided by Alan and Barry. It has now occurred to her that the sum of 

six to ten is greater than the sum of one to five. It is possible that she has reflected on 

the fact that the sum of one to ten (55) is less than the sum of 90 to 100 (which has 

been estimated by Barry in turn 85 to be ―around nine hundred‖). She used the 

pronoun ‗it‘ twice in turn 93, that is, 

93 Anne: I thought it would be thirty multiplied by a hundred but it wouldn‘t 
work. 

The first ‗it‘ is a referent to the solution (although in error she described it as ‗thirty 

multiplied by a hundred‘ rather than ‗thirty multiplied by ten‘) but the second ‗it‘ 

seems to be a referent to the solution method. This is reinforced by her input in turn 

95 in which she described her initial strategy: 

95 Anne: Em, because you would have to em … cos I did eh one plus two plus 
three plus four plus five and then em I got fifteen and then I added 
fifteen and fifteen equals thirty but then it would be more em … 
because you would have to add six, seven and that … 

The ‗it‘ in the latter part of this sentence is most likely a referent to the sum of six to 

ten. She built-with her reflection (turn 93) and constructed the idea of the ‗non-

linearity‘ of partial sums of consecutive integers within ten. Although turn 95 is 

coded as ‗constructing‘, the construction action occurred over turns 66 – 86 and 91 – 

95 and had nested within it recognising and building-with actions. 

During group-work Anne worked with Fiona. Although the task assigned was to find 

the sum of 1 - 100, they extended this investigation to the sums of the first 200 and 

300 positive integers. In the final plenary session both she and Fiona discussed their 

(shared) strategy:  

237 Anne: I got five hundred and fifty, for two hundred I got ten…for one 
hundred I got five thousand and fifty. For two hundred I got ten 
thousand one hundred, em and for three hundred I got fifteen thousand 
one hundred and fifty. (…) 

240 Fiona:  Every time you are just adding five thousand and fifty to get another 
hundred. 

In subsequent turns, attention was given to different storylines but I returned to that 

expressed by Anne and Fiona towards the conclusion of the lesson: 



Working Group 3 

 CERME 7 (2011)  457 

 

290 TD: … I just wonder if you know, Fiona says that to add up to 200, if the 
answer is 5050 to add up to 200 would you just add another 5050 on to 
that? Would that give you the right answer … Anne? 

291 Anne: I think it … em actually no ... eh no because … em it would probably 
... should there be hundreds em in the five thousand and … and fifty so 
you would have to … so probably there would be five ... there would 
probably be five thousand nine hundred and fifty.  

292 TD: It could be. Yeah 

‗Self-repairs‘ (false-starts and self-corrections) proliferate her reasoning – this is 

common, according to Rowland (2000), when people are asked to make a 

justification or to give some kind of explanation. In this instance it seems that Anne 

has constructed a new idea. Her construction relates to the fact that the sum of 101 to 

200 contains more ‗hundreds‘ than the sum of 1 to 100. Her explanation abounds 

with plausibility shields, in particular ‗probably‘, which is a means of presenting this 

idea without fully committing to it (Rowland, 2000). Although her estimate of the 

sum (101 to 200) was incorrect, this line of reasoning indicates that she has built-

with her earlier ‗local‘ construction (the non-linearity of partial sums of consecutive 

integers within ten) and has extended her thinking to other consecutive sets. 

Evidence for this building-with can be found in the language she used. Concerning 

the sum of six to ten, she said, in turn 95, that ―it would be more‖ (than the sum of 

one to five). Concerning the sum of 101 to 200, she suggested, in turn 291, that there 

might be ―hundreds … in the five thousand‖. The connection she seems to have 

made is that, just as there is ‗more‘ in the sum of six to ten than in the sum of one to 

five, there is also ‗more‘ in the sum of 101 to 200 than in the sum of one to 100. 

Her construction is coded as ‗partial‘ because her solution was incorrect (Schwartz, 

et al., 2009). However, this incorrect solution masks some meaningful knowledge 

she appears to have constructed: in her endeavour to find, unsolicited, the sum to 200 

and to 300, there is an indication that she has seen the power of Gauss‘ story as a 

generic example.  

DISCUSSION 

This paper provides further evidence for the notion of collective abstraction, that is 

R-, B- and C-actions were distributed among a few pupils. Furthermore, Anne‘s C-

action had nested within it R- and B-actions both of her own and of others. This 

paper builds on that which I presented at CERME 5 by focusing on the role played 

by vague language. It appears that the use of such language is at the core of 

construction because it is intrinsic to conjecturing and the ‗trying out‘ of ideas by 

pupils. Mason (2008: 65) describes this as follows: 

Mathematicians work best in a conjecturing atmosphere in which conjectures are 

articulated in order to try them out, see how they sound and feel, to test them and so 

to see how to modify them as and when necessary. This is the sort of atmosphere in 

which mathematics thrives, and it can be established in any classroom at any age. 
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Linguistic hedges allow learners to test ideas without fully committing to them. The 

verbalization of these ideas enables both the contributor and other ‗listeners‘ to 

scrutinize them. It is in this way that the use of vague language facilitates 

construction of new mathematical knowledge.  

Another aspect of language that proliferated the conversation described in this paper 

was that of politeness. Many pupils prefaced their input with ‗Well‘ as a means of 

‗face-saving‘. Holton and Thomas (2001) suggest that one of the reasons that a 

child‘s peers act as an effective source of cognitive conflict is that feedback from 

other children is often less emotionally threatening than that from an adult. The fact 

that Anne remained engaged in the lesson after critical evaluation of her input by her 

classmates suggests that this may indeed have been the case for her. The climate of 

‗conjecture and argumentation‘ that was evident in this lesson facilitated the 

generalization of a mathematical idea, that is, the non-linearity of sums of 

consecutive integers. What this indicates is that pupils are capable of developing 

algebraic thinking if conjecturing, argumentation and the production of counter-

examples are accepted classroom norms. 

NOTES 

1. My stance as researcher derives from an interpretive perspective and therefore the conclusions that I draw 

are partial and tentative (Usher, 1996). 

2. The usual summation given is 100 + 1, 99 + 2, … 50 + 51. Such a pairing does not involve a ‗lone‘ ´ n 

(50 in this case). However, the pairing method given in this paper (100 + 0, 99 + 1, … 50 + 0) was that 

proposed by the pupils in the lesson described. 

3. There were 298 turns in total the whole-class discussion.  

4. Turns 87 - 90 concerned interaction that is not relevant to the analysis of this paper. 
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IN SEQUENCES PROBLEMS  
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In this paper we present different ways used by Secondary students to generalize 

when they try to solve problems involving sequences. 359 Spanish students solved 

generalization problems in a written test. These problems were posed through 

particular terms expressed in different representations. We present examples that 

illustrate different ways of achieving various types of generalization and how 

students express generalization. We identify graphical representation of 

generalization as a useful tool of getting other ways of expressing generalization, 

and we analyze its connection with other ways of expressing it. 

INTRODUCTION 

The number of works focused on the relation between the algebra and the expression 

of generalization has increased since the work of Mason, Graham, Pimm, and Gowar 

(1985). Some of this work deals with the idea that this connection does not seem to 

be direct for secondary students (e.g. Lee, 1996; Lee & Wheeler, 1987). Algebraic 

language is not the only way of expressing a generalization. For example, Mason and 

Pimm (1984) consider that natural language has a fundamental role in the 

generalization process, and Radford (2002) shows how some students used verbal 

and gestural means to express generalization. Currently we are engaged in a project 

in which some of the aims are related to the relation among generalization, and ways 

of achieving and expressing it.  

In this paper, we focus attention on the generalization developed by students in a 

problem solving context and on the different representations used by students in 

generalization problems with different characteristics. In particular, this paper 

extends previous work by reporting on ways of achieving generalization through an 

inductive process, its relation with representations used, and how students in our 

investigation express generalization when they work on a written questionnaire 

constituted of problems involving sequences. 

We first present the main ideas concerning our approach to generalization and 

different representations, focusing on different types of generalization. Secondly, we 

present our research questions. Then we present a general description of the 

methodology used. After this, we outline our findings and interpretations. We finally 

present the conclusions.  

ALGEBRAIC THINKING AND GENERALIZATION  

Taking a semiotic approach, we consider that students are thinking algebraically 

when they ―act in order to carry out the actions required by the generalizing task‖ 
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(Radford, 2002, p. 258). From this perspective, generalization is achieved when 

students are able to identify a common pattern that arises from some particular cases 

and to apply this commonality to other particular cases.  

We refer to empirical generalization following Dôrfler (1991). This type of 

generalization starts from work on particular cases and is very close to pattern 

identification. Caðadas and Castro (2007) developed a model to describe Secondary 

students‘ inductive reasoning. This model is comprised of seven states, of which 

generalization is one. From our viewpoint, inductive reasoning is equivalent to what 

Pñlya (1967) called induction. Different authors, including Pñlya, assert that 

generalization is a key state in the process of acquiring mathematical knowledge 

(Neubert & Binko, 1992; Mill, 1858).  

Thus generalization can be seen as ―pattern generalization‖, which is considered one 

of the prominent routes for introducing students to algebra (Mason, Graham, Pimm 

& Gowar, 1985; Radford, 2010, p. 37). However, it is assumed that algebra is not the 

only way of expressing a pattern nor is algebraic thinking the only way of forming a 

generalization. 

REPRESENTATIONS 

There is a general agreement amongst researchers of the need to distinguish between 

external and internal representations of students‘ knowledge. In our research, we 

focus on external representations. These representations allow the students to express 

concepts and ideas, since ideas must be represented externally in order to 

communicate them (Duval, 1999; Hiebert & Carpenter, 1992). In this paper, we pay 

attention to the external representations produced by students that have a trace or 

tangible support even when this support has a high level of abstraction. 

We also consider multiple representations (e.g. van Someren, 1998). Multiple 

representations have benefits on schema construction processes; but it is not always 

beneficial for learning (Kolloffel, Eysink, Jong, & Wilhelm, 2009). Figueiras and 

Caðadas (2010) distinguish two different kinds of multiple representations: (a) 

combined representation, which concerns the use of different representations (as 

mentioned by previous authors); and (b) synthetic representations, which are 

multiple representations but under the additional condition we must consider them as 

a whole to give sense to the student‘s response (p. 3).  

WAYS OF EXPRESSING THE GENERALIZATION 

Algebra is one way of expressing a pattern, but it is not the only one. We concur with 

Radford‘s idea of algebraic generalization. ―It rests on the noticing of a local 

commonality that is then generalized to all the terms of the sequence and that serves 

as a warrant to build expressions of elements of the sequence that remain beyond the 

perceptual field‖ (Radford, 2010, p. 42). This author distinguishes this kind of 

generalization from arithmetic generalization, which is characterized by staying in 
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the realm of arithmetic (p. 47). Students who generalize arithmetically have 

identified the pattern and are usually conscious that this pattern is unpractical for 

other terms of the sequence.  

In the context of analyzing the generalization process in problems involving 

sequences in a written problem solving test, Caðadas and Castro (2007) distinguish 

between algebraic and verbal representations as two ways of expressing the general 

term of a sequence. The first way concerns the use of symbols and numbers, in which 

each term of the sequence can be obtained by substituting the symbols with concrete 

numbers; and the second one refers to the use of natural language to express the 

generalization. These authors left an open question related to the role of graphical 

representation in the generalization procedure and the expression of such 

generalization. We tackle this question in this paper.  

RESEARCH QUESTIONS 

We break down our research interests into three research questions for this paper, 

which concerns two central aspects of the generalization: (a) generalization process, 

and (b) generalization expression. These questions are:  

- What is the role of graphical representation in the generalization process? 

- How do the students express the generalizations achieved? 

- What are the features of graphical expression of the generalization? 

METHODOLOGY 

Students 

We took 359 students in years 9 and 10 of four State Spanish Schools whose teachers 

were close to us.  

We obtained information about students‘ educational experiences related to 

generalization, problem solving, sequences, and algebra from four sources: (a) 

Spanish curriculum, (b) informal interviews with students‘ teachers, (c) mathematics 

textbooks used by students, and (d) students‘ notebooks.  

Spanish Secondary curriculum does not include the generalization process explicitly. 

It includes reasoning as one of its main objectives. However, it contains just some 

actions related to inductive reasoning, such as: (a) to recognize numerical 

regularities, (b) to find strategies to support students‘ own argumentations, and (c) to 

formulate and to prove conjectures (Boletín Oficial del Estado, 2003). 

Students had previously studied sequences. They had worked on problems using 

inductive reasoning, usually involving sequences, on occasion. These kinds of 

problems are usually presented with particular cases expressed numerically and are 

most of them de-contextualized. Students had begun the study of algebra between 

one or two years before the research commenced (depending on the year they studied 
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by the time of this research). These lessons included work related to interpretation of 

formula and algebraic expressions, and first grade equations. We consider that these 

students had the experience required to focus on the research questions posed. 

Specifically, the students had sufficient content knowledge of sequences. On the 

other hand, our analysis of their previous educational experiences demonstrates that 

they were not used to solving the kind of problems posed.  

Problems Posed 

We prepared a written questionnaire with six problems involving linear and 

quadratic sequences. We asked students to work individually on this questionnaire 

for an hour. The problems of the questionnaire were selected according to our 

research objective and using the characteristics that arose through subject matter 

analysis (Gñmez, 2007) of natural number sequences: (a) the order of the sequence, 

(b) the representation used in the statements, and (c) the task proposed.  

In this paper we will focus on three problems which involve linear and quadratic 

sequences [1], and with different representations used in the statements. Each 

problem was focused on a ―far generalization‖ task (Stacey, 1989). So, particular 

cases were presented in the problems statements to lead the students to generalize at 

some point. Each problem had a complementary task consisting of justifying their 

responses [2]. Since sequences are a particular kind of function, we took into account 

the four representation systems traditionally considered for functions: (a) graphical, 

(b) numerical, (c) verbal and (d) algebraic (Janvier, 1987). In accordance with our 

research objectives, problems lead the students to work on information given through 

particular cases expressed in a graphical, numerical or verbal context.  

In what follows, we focus on three of the six problems: problems 3, 4, and 5. The 

first problem, presented in a graphical context through a generic example, is a 

familiar generalization problem that has been presented in many different versions 

since Küchemann‘s study (1981). Problem 4 is presented in a verbal context, and 

problem 5 in a numerical one. 

Imagine some white squares tiles and some grey square tiles. They are all the same 

size. We make a row of white tiles: 

 

We surround the white tiles by a single layer of grey tiles. 

 

-  How many grey tiles do you need to surround a row of 1320 white tiles? 

-  Justify your answer. 

Figure 1: Problem 3 
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We are organizing the first round of a competition. Each team has to play two 

matches against the rest of the participating teams (first and second leg). 

Depending on whether the competition is local or national; we will have 22 or 

230 teams.  

- Calculate the number of matches depending if there are 22 teams and if there 

are 230 teams.  

- Justify your answer.  

Figure 2: Problem 4 

We have the following numerical sequence:  

1, 4, 7, 10, ... 

- Write down the number that should be in position 234 of this sequence.   

- Justify your answer.  

Figure 3: Problem 5 

FINDINGS AND INTERPRETATION 

We first used a quantitative data analysis to identify the stages of inductive reasoning 

model performed by each student in his/her response to each problem. Table 1 shows 

the number of students who expressed generalization using different representations. 

Generalization 

Arithmetic Algebraic Verbal Graphic 

Problem 3 

125 3 57 11 

Problem 4 

174 1 69 0 

Problem 5 

222 57 26 0 

Table 1. Representations used by students when generalizing  

The generalization most frequently used by the students was the arithmetical one. 

They generalized the pattern, got the commonality of the particular cases, and used 

the generalization to calculate the number of grey tiles for the required case. 

However, they were not able to provide an expression of any term of the sequence. In 

what follows, we mainly focus on graphical representation of generalization.  
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The students did not use graphical representation in the solving process except in 

problem 3, where the particular case was graphically presented in the problem itself. 

The use of graphical representation is is strategy is illustrated in one the student‘s 

production in Figure 4.  

 

Figure 4. Generalization arithmetically and graphically expressed [Note: Baldosas 

blancas means white tiles in English] 

We can differentiate two parts in the student‘s drawing. First, the student considered 

the two vertical sides made by grey tiles and identified that these sides remain with 

the same number of grey tiles independent of the number of white tiles. The second 

part of the drawing is the part of the figure that has white and grey tiles, and the 

student interpreted that he needed to double the number of grey tiles to surround the 

white tiles. The student expressed graphically the pattern of the sequence, showing it 

in a different particular case from the one shown in the statement (for six white tiles 

instead of five). The suspension points show this student‘s awareness that the 

commonality applies to other terms of the sequence. In this context, the suspension 

points could be interpreted as ―I should repeat this as many times as necessary‖. The 

student applied the commonality to the 1320 tiles in the arithmetic expression. 

Therefore, on one hand, the graphical representation helped the student to get the 

generalization; and on the other hand, the student identified the commonality in the 

graphical expression beyond the generic example shown in the statement. This is 

why we consider that the generalization is expressed graphically.  

 

―I have to add two to the number of white tiles to the top, and two more to the 

bottom; plus two more to each side‖ (Authors‘ student‘s response translation) 

Figure 5. Generalization graphical and verbally expressed  

Other students went beyond graphical generalization to verbal or algebraic 

generalization. We illustrate this with the example shown in Figure 5.  

As we observe in Figure 5, this student drew a graphical representation which 

represents the common features from the generic example shown in the statement, 

without tracing the lines that separate different tiles. S/he used this generalization to 

calculate the number of tiles that the problem required. Therefore, this is another 
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example of graphical generalization as well as arithmetical. S/he also provided a 

general verbal expression for any given number of white tiles, using natural 

language.  

Moreover, some of the students used graphical and algebraic representation together 

to give sense to the generalization. We present an example typical of these students 

in Figure 6.  

 

Figure 6. Generalization graphical and algebraically expressed  

This student‘s diagram shows how s/he identified the data that remain constant and 

the data that change depending on the number of white tiles considered.  

The three students‘ representations shown in Figures 4, 5, and 6 are typical examples 

of three groups that allow us to classify the eleven students that generalize 

graphically in problem 3. In the first group are the students who used suspension 

points to notice that the drawing would continue in the way indicated. These students 

used combined representation (graphical and arithmetical). In the second group are 

the students who used specific numbers in tiles of different sizes (the size of the tile 

is bigger when the number is bigger). In the third group each tile is represented by 

the number 1 and the number of tiles that depends on the number of white tiles is 

represented by x. Students in groups 2 and 3 used synthetic representations because 

at least two representations are considered as a whole to give sense to the 

generalization.  

Most of the students, who expressed the generalization in problem 3, as well as in 

problem 4, did it verbally. For example, one student‘s response to problem 4 was, 

―The result is the number of matches that play each team against the rest of them, 

multiplied by two‖.  

Most of the students generalized algebraically in problem 5. Some students even 

tried to use a formula which was familiar to them. The students tended to present a 

correct formula and used it to calculate the number in the positions requested 

( dnaan )1(1 ). This indicated that these students expressed the generalization 

algebraically. Some of these students worked on particular cases in the 

generalization process. 

DISCUSSION 

We have identified four ways of expressing the generalization: (a) arithmetical, (b) 

algebraic, (c) graphical, and (d) verbal. Most of the student who got the 

generalization, expressed it arithmetically. This result is consistent with findings 
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from the earlier study of Becker and Rivera (2005) and with what we could expect 

due to students‘ previous knowledge. 

This paper contributes to understanding the use of graphical representation in 

generalization (Mason & Pimm, 1984; Radford, 2002; Caðadas, 2007). This kind of 

representation illustrates what is common to all terms using particular cases but does 

not provide a general expression of any term of the sequence. Students seem 

particularly disposed to using it when the problem was posed using graphical 

representation, but not in other cases. Graphical representation of the generalization 

appeared to help students to generalize algebraically or verbally and thus, using these 

expressions, obtain particular case of the sequences. Generally students who utilized 

this kind of representation used it in combination with other sorts of representation. 

In this sense, we can consider graphical representation as a way of developing 

algebraic thinking and of expressing the generalization verbally or algebraically. 

This idea complements previous work which is mainly focused on other ways of 

generalization. 

Graphical representation is sometimes enough for students to answer the question 

posed because they see the general pattern in the drawing. However, some of them 

revert to verbal generalization when they try to justify the answer, as Caðadas (2007) 

noticed. This is the main reason why verbal generalization is frequent in these 

problems (see Table 1). 

Students generalized algebraically more frequently in the problem where particular 

cases were expressed numerically. This seems to be a consequence of what students 

were accustomed to in class. Only a low number of students generalized 

algebraically in problems where the statements were presented in unfamiliar 

representation. In particular, the lowest frequency of generalization was found in 

problem 4, which was presented in the least familiar way. This suggests that it is 

more difficult for the students to establish a relationship between algebra and 

generalization problems in non-numerical contexts and that, at some point, the idea 

of generalization has not moved from one context to others.  

Unless we and other researchers have made an effort to identify and describe 

different kind of generalizations, one conclusion of this paper is that sometimes it is 

quite difficult to distinguish among them. In most cases where students used 

graphical generalization, they used a combined-multiple representation or synthetic 

representation. Multiple representations in generalization seem to be useful for 

students to express the generalization. The distinction between the two kinds of 

multiple representations of Figueiras and Caðadas (2010) is a powerful way to 

describe how students reach generalization. This paper shows that synthetic 

representation appeared in tasks with graphical representation in the statement. 

Graphical representation can be considered the primary in the sense that it is the one 

that promotes the appearance of the other(s).  
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As a practical consequence, it would be desirable to use tasks in different contexts to 

guide students to algebra as a way of generalization. Work on generalization tasks 

starting from particular cases expressed in different representations would be 

enriching to students and would promote algebraic thinking capabilities because they 

would relate algebra with representations different from the numerical one.  
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NOTES 

1. The questionnaire is reproduced in Caðadas (2007, Appendix B). 

2. This second task allowed us to develop other part of our objectives, which is beyond the scope 

of this paper.  
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THE ENTRANCE TO ALGEBRAIC DISCOURSE: 

 INFORMAL META-ARITHMETIC AS THE FIRST STEP 

TOWARD FORMAL SCHOOL ALGEBRA 

Shai Caspi & Anna Sfard 

The University of Haifa 

Taking as a point of departure the vision of school algebra as a formalized meta-

discourse of arithmetic, we have been following six pairs of 7
th

 grade students as 

they gradually modify their informal meta-arithmetic toward the "official" algebraic 

form of talk. In this paper we take a look at the very beginning of this process. 

Preliminary analyses of data have shown, unsurprisingly, that while reflecting on 

arithmetic processes and relations, the uninitiated 7
th

 graders were employing 

colloquial means, which could not protect them against occasional ambiguities. 

More unexpectedly, this informal meta-arithmetic, although not supported by any 

previous algebraic schooling, displayed some algebra-like features, not to be 

normally found in everyday discourses.   

INTRODUCTION: STUDYING DEVELOPMENT OF ALGEBRA  

The idea that algebra is a language, the language in which science and other 

branches of mathematics are practiced, has been with us for centuries, and so was the 

controversy over this description (Lee, 1996). In our attempts to follow the 

development of school children's algebraic thinking we take as a point of departure a 

definition that responds to some of the concerns voiced by the objectors of the 

algebra-as-language approach: We define algebra as a discourse, that is, a form of 

communication. While preserving the centrality of the motif of language, this 

approach transfers algebra from the category of passive tools to that of human 

activities. This ontological change has important ramifications for how we view the 

development of algebraic thinking and how we investigate it. This paper is a report 

on the initial phase of our ongoing study of this topic. In this project, we have been 

following algebraic discourse of six pairs of 7
th

 graders from its beginnings in the 

form of informal talk on numerical processes and relations, and through its 

subsequent process of its gradual formalization in school.  

SCHOOL ALGEBRA AS FORMALIZED META-ARITHMETIC 

The definition of algebra as a discourse is a derivative of our foundational 

assumption that thinking is an individualized from of interpersonal communication 

(Sfard, 2008). To communicate either with others or with oneself, one has to act 

according to certain rules, implicitly shared by all the interlocutors. Different types 

of tasks and situations may evoke different sets of communicational regulations, that 

is, different discourses. Algebra can be defined as a sub-category of mathematical 

discourse that people employ while reflecting on arithmetical relations and 

processes.  
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Let us take a closer look at the two basic types of meta-arithmetical tasks that give 

rise to algebra. First, there is a question of numerical patterns, which we describe 

formally with the help of equalities, such as, say, a(b+c)=ab+ac. Although nothing 

in this latter proposition says so explicitly, this is, in fact, a piece of meta-arithmetic. 

Indeed, the symbolic proposition a(b+c)=ab+ac is a shortcut for the sentence To 

multiply a number by a sum of other two numbers, you may first multiply each of the 

other two numbers by the first one and then add the results. This type of meta-

arithmetic narrative can be called generalization. The other algebra-generating tasks 

are questions about unknown quantities involved in completed numerical processes. 

This type of task is described in the modern algebraic language as solving equations. 

Indeed, equations, say 2x+1=13, are meta-questions on numerical processes; in the 

present case the question is What number, if doubled and increased by 1, would yield 

13?  

According to this definition, algebraic thinking occurs whenever one scrutinizes 

numerical relation and processes in the search for generalization or in an attempt to 

find an unknown. The narratives (propositions about mathematical objects) that 

result from these two types of activities do not have to employ any symbolic means. 

Here is a rather striking historical example of pre-symbolic algebra taken from the 

Indian text known as Aryabhatiya (499 AD): 

Multiply the sum of the progression by eight times the common difference, add the 

square of the difference between twice the first term, and the common difference, 

take the square root of this, subtract twice the first term, divide by the common 

difference, add one, divide by two. The result will be the number of terms. (Boyer & 

Mertzbach, 1989, p. 211) 

Although this fact is hard to recognize, this lengthy piece presents the solution of an 

equation: it is a prescription for finding a number of elements in an arithmetic 

progression, whose first term, the difference, and the sum are given. While considering 

the communicational shortcomings of this intricate rendering it is easy to understand 

why symbolization of the discourse was one of the major trends in the further 

development of algebra. The symbolization was but a part of the more general historical 

process of formalization of algebraic discourse, the overall transformation that aimed at 

increasing the effectiveness of meta-arithmetic communication. This overall goal 

involved three types of action: disambiguation, that is, prevention of the possibility of 

differing interpretations of the same expressions by different interlocutors; 

standardization, supposed to ensure that all the interlocutors follow the same 

communicational rules; and compression, which turns lengthy statement such as the one 

quoted above into concise, easily manipulable expressions. The response to the need for 

disambiguation was regulation, that is, the constitution of strict, explicitly introduced 

rules of discursive conduct. Compression is attained through reification and 

symbolization. Reification means turning narratives about processes into ones about 

objects; Reifying usually involves introduction of nouns (e.g. sum, product) with which 
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to replace lengthy verb clauses. The above quote from Aryabhatiya, although 

formulated as a description of a process (a sequence of numerical operations; note the 

verbs multiply, add, etc.), includes compound noun clauses, such as "the square of the 

difference between twice the first term, and the common difference," which reify sub-

sequences of computational steps. Symbolization means replacement of nouns, 

predicates, and verbs with ideograms, that is, symbols referring to objects the way 

words do, but without being uniquely tied to specific sounds. To make the replacement 

possible, a change in the grammar of the propositions may sometimes be necessary. For 

example, when a purely processual verbal description is translated into standard 

symbolic expression, the order of appearance of arithmetic operations may no longer 

correspond to the order of their implementation. When presented in the canonic 

symbolic manner, Aryabhatiya's rule reincarnates into the concise expression

d/)da)da(Sd( 2228 2 , the special property of which is that it can be used both as a 

prescription for a calculation and as a result of this calculation.  

The main difference between the two forms of algebraic discourse, informal and formal, 

is in the explicitness and rigorousness of regulation: of the two types of talk, only the 

formal is accompanied by a regulatory meta-discourse that explicitly states its meta-

rules; and only in the this latter case, the meta-rules are the product of deliberate 

legislation, aiming at the prevention of ambiguity. The informal/formal dichotomy 

parallels the rhetoric/symbolic distinction, introduced by the historians of mathematics 

(Boyer, 1985). If we have chosen the word ―parallel‖ rather than ―identical‖ while 

describing these two distinctions, it is because the aspect of symbolization stressed in 

the historical dichotomy, although certainly most visible, is only one of the series of 

change that occurs in the transition from informal to formal algebraic discourse.  

METHOD OF STUDY 

Goal. The overall goal of our study is to contribute to the project of mapping the 

development of algebraic thinking in school. If algebra is a formalized meta-

arithmetic, child's algebraic discourse may be expected to emerge from discourses 

that the child has already mastered and which she can now try to adjust to the meta-

arithmetical tasks of finding numerical patterns and investigating computational 

processes. In our study, therefore, the learning of algebra has been conceptualized as 

a gradual closing of the gap between students' informal meta-arithmetic and the 

formal algebraic discourse to which they are exposed in school. The aim of our 

investigation is to describe this process in as detailed a way as is feasible and useful. 

Our attention to informal algebraic discourse is motivated by its being much less 

researched than its formal counterpart. Although not altogether absent as an object of 

study, it has not been investigated in a sufficiently systematic way, and the cases of 

observations conducted with the eye to the formal-informal co-constitutive processes 

have been particularly infrequent.  
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Participants and procedure. In our longitudinal study we have been following 

middle school students as they progress in their informal meta-arithmetic while also 

making their first steps in the "official" algebraic form of talk. Six pairs of Hebrew-

speaking 12-13 year old 7
th

 grade Israeli students have been interviewed at intervals 

of circa four months, with the first author of this paper serving as the interviewer. So 

far, each round of interviewing consists of 5 to 6 meetings lasting for 60 to 90 

minutes. The first round began just before the students were introduced to algebra in 

school. At the time this paper is being written, two rounds of interviewing have been 

completed, the interviews transcribed and partially analyzed, and the third round of 

interviewing is about to begin. We intend to conduct four rounds altogether, with the 

last one commencing about 18 months after the first.  

Tools. In each round, the interviewees are asked to complete a battery of tasks that 

can be organized in the three-dimensional matrix, with the following binary 

distinctions constituting the three dimensions: 

InF vs. For: the task is stated informally (InF), thus encouraging informal meta-

arithmetical talk; or formally (For), e.g. by using canonic algebraic symbolism, thus 

inviting formal algebraic solution 

Gen vs. Equ: the task invites a generalization (Gen) or solving an equation (Equ) 

ReL vs. Abs: the task is set in real-life (ReL) or abstract (Abs) context 

Each of the resulting 8 categories can be subdivided even further. For example, in 

the case of equations, we included tasks with numerical data (Num) and also tasks 

that ask for parametric (Par) solution (this locates this latter type of task in the 

mixed genre of equation-solving and generalization). Figure 1 presents two samples 

of the tasks prepared for the first, pre-algebraic round of interviews. 

Task 1, Type: <InF, Gen, Abs> Task 2, Type: <For, Equ, ReaL> 

Given the sequence: 4, 7, 10, 13, 16….  

a. Write the next three elements of the sequence  

b. What number appears in the 20
th

 place in the 

sequence? 

c. What number appears in the 50
th

 place in the 

sequence? 

d. Write a rule for calculating the number that 

appears in any place in the sequence  

On the shelf, there are books in 

English and in Hebrew. The 

number of English books exceeds 

the number of Hebrew ones by 8. 

If there are n books altogether, 

how would you calculate the 

number of those in English? (Par) 

Figure 1: Sample tasks from the first round of interviewing 

Analysis.  To map the development of the discourse, we describe and then compare 

samples of students' meta-arithmetic discourse collected in the successive rounds of 

interviewing. The descriptions focus on four defining characteristics of the 

discourse: (a) its keywords (e.g. those that denote variables or unknowns) and their 

use; (b) its visual mediators (icons, algebraic ideograms, graphs), and their use; (c) 

its routines, that is, patterned, recurrent forms of discursive actions; and (d) 
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narratives that the interviewees endorse and label as true. The specific questions that 

guide our examination of some of these discursive features will be presented in the 

next section, along with our sample responses. 

SOME FINDINGS FROM THE FIRST ROUND OF INTERVIEWING 

Our study has only begun, but even so, in this brief paper we can only present a small 

fraction of our findings so far. We restrict this report to the description of the 

students' informal activity of generalization, as observed when they tried to solve 

Task 1 in Fig. 1. The activity of generalization has been investigated by many 

researchers (Zazkis & Liljedahl, 2002; Lannin et al., 2006; Radford et al., 2007). In 

most of these studies the principal focus was on strategies (routines) students used to 

detect and describe patterns. In the present study, while employing techniques of 

discourse analysis, we distribute our attention evenly between all four characteristics 

of the discourse produced in the activity of generalizing: the use of words, visual 

mediators, routines and endorsed narratives. Due to the scarcity of space, we restrict 

our present account to the first two of them. While reporting, we list only the most 

salient of the observed phenomena (the salience is not formally assessed; the 

evaluation of relative frequencies of these phenomena is yet to be completed.)  

Words and their use 

The choice of verbal tools for generalizing. The first question that guides our 

analysis of meta-arithmetic regards the verbal means students use to generalize, that 

is, to perform the necessary saming. This last term, saming, regards the linguistic 

change that is the very essence of the process of generalizing: replacing specific 

numbers (e.g. 3, 5, 7, …) with a single signifier (odd number) so as to turn infinitely 

many similarly structured arithmetic expressions (e.g. the square of 3, the square of 

5, etc.) into a single meta-arithmetic expression (the square of an odd number). The 

saming signifier is called variable, which in formalized algebra usually comes in the 

form of a Latin letter, such as x or y. In the beginning of our study, the participants 

have not yet been introduced to algebraic symbolism, and it is thus not surprising 

that when asked in Task 1, part d, to write "a rule for calculating the number that 

appears in any place in the sequence", they used familiar words as their saming 

devices. This way of dealing with saming is instantiated several times in the 

following rule, written by one of the participants, H (highlighted are noun clauses, 

each of which does the job of saming over a specific set of numbers):    

To find a certain place in the sequence I need the place that I found (it better be 

round) and then 3 (or any other number that is the regularity) times  

what must be added to the number you have now and then to add  

the number you have now and the product of the regularity and what you still need, 

and that's it. (T&H, Task 1(d), [209]; translated from Hebrew by the authors.) 

This rule was written after the girls calculated the 50
th

 element of the sequence (part 

c of task 1) by adding 30·3 to the 20
th

 element, found previously, in response to part 
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b of Task1. Translated into formal symbolic language, it would yield the following 

formula: an= am+(n-m)∙3, or even an= am+(n-m)∙d, where an, n, n-m, an-m and d are 

the traditional symbols for elements of arithmetic progression. In particular, here are 

the formal translations of all noun clauses from the quote: 

a certain place in the sequence is equivalent to an   

the place that I found seems to appear here in the double role of  

- am  (note that H speaks about adding a multiple of 3 to this number) and of  

- m (note the parenthetic remark "it better be round") 

regularity is equivalent to d (the common difference of arithmetic progression) 

what must be added to the number you have now – contrary to what the words seem 

to be saying, the use (it is said to be multiplied by 3) indicates that it is n-m that is 

meant here 

the number you have now is equivalent to am   

This single example alerts us to a number of important phenomena, which we 

observed on many occasions, in the talk of this participant as well as of many other 

students. The phenomena are deemed important because they probably need to be 

considered in planning the further process of formalization of the students' informal 

meta-arithmetic.  

As might be expected, the student opted for generalizing words that hinted at their 

prospective roles in the problem. In the single proposition quoted above, the hinting 

is done in several ways. Some of the words function as metaphors, as is the case 

when the index of an element is called a place. Some other names are metonymies, 

that is, represent the whole by its part. This is the case when the n
th

 element, an is 

called the place I found. Interestingly, there is also the "reverse" of metonymy: In the 

expression what must be added to the number you have now, which is meant to 

signify n-m, the whole (what must be added) appears in the role of its own part: of a 

multiplier with the help of which the addend is to be produced. Finally, the student 

made use of the genus, that is, of a broader category to which the given object 

belongs. This is the case when the common difference of the given progression, 3, is 

called regularity and when the girl refers to an element of the sequence as number 

(admittedly, this latter word was suggested by the designers of the task). To 

overcome overgeneralizations, H uses specifying descriptions, such as the number 

you have now. The term regularity has not been restricted by an additional 

description and this fact has two ramifications: First, the student has achieved a 

higher level of generalization than required by the authors of the task (the authors 

asked for a computational rule for the sequence in which the specific number, 3, 

must be added in the transition from any element to its successor). In a sense, 

therefore, she did even better than expected. Second, however, there is no hint in the 

generalizing word regularity that the regularities considered in the problem are those 

that produce arithmetic progressions. The resulting rule, therefore, is not self-
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explanatory and may even be dismissed by some interpreters as offering only a 

special case of what it promises to present.   

The use of words (syntax). The main question asked with respect to the syntax of the 

participants' informally composed generalizing propositions regards the degree of 

reification: Do the propositions speak about doing (calculations) or about properties 

of objects? Indeed, reifying is the key move toward disambiguation and condensation 

of meta-arithmetic narratives and may thus be seen as a "signature" feature of formal 

algebraic sentences.  

The formerly discussed lengthy proposition from Aryabhatiya, although processual 

in its general tone, contained noun clauses that reified several of its sub-processes. It 

is striking that a similar partial reification appeared in our young participants' 

informal meta-arithmetic sentences. Note, for example, the H's clause the product of 

the regularity and what you still need that speaks about a result (product) of an 

operation (multiplication) rather than about the operation as such. This property is 

even more salient in another version of the rule for calculating any element of the 

given arithmetic sequence, which the same student, H, produced toward the end of 

the session:   

the place times the regularity of the sequence plus one (T&H, Task 1(d), [228]).  

This time, the "rule" does not even sound as a prescription for action: It does not 

contain any verbs (times and plus are not verbs!) and does not constitute a full 

sentence. Unlike in the case of the previous version, no structural change would be 

necessary to translate it into the canonic symbolic formula n∙d+1.  

Visual mediators and their use 

The salient property of our participants' meta-arithmetic was the scarcity of visual 

mediation other than arithmetical (numerical) expressions. Those of the students, 

who did try to express their rules with the help of ideograms, used either letters or 

markers such as boxes or lines. Thus, for example, the two students whose work was 

discussed above presented the simplified version of their rule as  ∙ 3 + 1 (H&T, 

210). It should be stressed that in most cases, the students' interpretation of boxes 

was different from that of letters: Whereas letters functioned mainly as names of 

objects, the box was usually understood as a marker of a physical space for numbers. 

Indeed, unlike in the case of letters, which were supposed to signify the same number 

in all their appearances, identically looking boxes (squares) were often used 

indiscriminately for all the variables in the problem. Thus, in our study, some of the 

students presented rules such as this one in the form  ∙ 3 + 1 = . Interestingly, one 

of the participants wrote x ∙ 3 + 1 = x (A&S, 49), the use clearly inspired by his 

former experience with squares functioning as delineators of a physical space for 

numbers.    
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DISCUSSION: WHERE THE STUDENTS ARE AND WHAT COMES NEXT 

With an eye to the ultimate goal of informing instruction, we focused our efforts on 

identifying dissimilarities between students' informal meta-arithmetic and the formal 

algebra taught in schools. Let us stress that the discussion that follows and the 

tentative answers given in the end are grounded in a body of data much richer and 

more extensive than could be presented in this brief paper.  

Colloquial, informally developed discourses are known for their occasional 

blurriness and vagueness. Therefore, it did not come to us as surprise that upon close 

examination, the texts produced by our participants, although quite impressive in 

their resourcefulness, proved also full of ambiguities. Consider H's complex 

prescription for calculating any element of the arithmetic progression. Here, H used a 

single noun for a number of purposes (see her metaphoric use of the word place for 

the index of an element and the metonymic use of the same term for the element 

itself) and, on another occasion, referred to a single object in a number of ways (e.g., 

note the difference between the expressions the place I found and the number you 

have now, both of which were used with reference to the previously calculated 

element am.) She also used generic names which were all too general and, as such, 

could be easily misinterpreted by her interlocutors. To overcome 

overgeneralizations, H employed specifying descriptions, such as the number you 

have now. However, this type of specification, being context-dependent (note the use 

of the deictic words you and now) could not possibly bar multiple interpretations.   

All this said, our study, so far, has resulted also in some less predictable findings. On 

the basis of our own previous research (Sfard & Linchevski, 1994), we conjectured 

that the students' informal meta-arithmetic would be about processes rather than 

objects. It is because of this prediction that we were careful to formulate the first 

tasks in processual language. For example, in Task 1, part d we asked for the rule for 

calculating any element of the sequence rather than inquiring about what such 

generic element is.We were thus quite surprised to find out remarkable structural 

similarities between the students' verbal meta-arithmetic and the formal reified 

algebra. Two possible explanations come to mind when we try to account for this 

finding. First, structures of algebraic formulas are not unlike those of arithmetic 

expressions, and thus our students might just be building on their knowledge of the 

latter type of structure. Second, it is possible that these days algebra is simply "in the 

air": elements of algebraic discourse may be present in other school discourses well 

before its formal introduction in the 7
th

 grade. With the help of media, algebraic 

forms of expression may even be infiltrating colloquial discourses. To check these 

conjectures, we decided to broaden our study and to conduct similar interviews with 

6
th

 and 5
th

 grade students.  

Whatever the results of these latter investigations, we believe that one of the present 

tentative conclusions from our study is unlikely to change: While much work must 

be invested in formalization of students' informal meta-arithmetic, the resources with 
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which children are coming to their algebra classrooms may be a much better 

foundation for the development of formal algebraic discourse than could be expected 

on the basis of what is known about their mathematical education so far. The more 

knowledgeable we are about these resources, the better our chances for helping the 

students in closing the gap between their informal meta-arithmetic and the formal 

algebra taught in school. Above all, we need this knowledge to be able to teach in 

such a way as to preserve the all-important link between the two discourses.    
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STUDENTS‘ REASONING IN QUADRATIC EQUATIONS WITH 

ONE UNKNOWN 

M. Gözde Didiş, Sinem Baş, A. Kürşat Erbaş 

Middle East Technical University 

This study examined 10
th

 grade students‘ procedures for solving quadratic equations 

with one unknown. An open-ended test was designed and administered to 113 

students in a high school in Antalya, Turkey. The data were analyzed in terms of the 

students‘ foci while they were answering the questions. The results revealed that 

factoring the quadratic equations was challenging to them, particularly when 

students experienced them in a different structure from what they were used to. 

Furthermore, although students knew some rules related to solving quadratics, they 

applied these rules without thinking about why they did so, nor whether what they 

were doing was mathematically correct. We concluded that the students‘ 

understanding in solving quadratic equations is instrumental (or procedural), rather 

than relational (or conceptual).  

Keywords: Quadratic equations, instrumental understanding, relational 

understanding 

INTRODUCTION  

For many secondary school students, solving quadratic equations is one of the most 

conceptually challenging subjects in the curriculum (Vaiyavutjamai, Ellerton, & 

Clements, 2005). In Turkey, where a national mathematics curriculum for elementary 

and secondary levels has been implemented, the teaching and learning of quadratic 

equations are introduced through factorization, the quadratic formula, and 

completing the square by using symbolic algorithms. Of these techniques, students 

typically prefer factorization when the quadratic is obviously factorable. With this 

technique, students can solve the quadratic equations quickly without paying 

attention to their structure and conceptual meaning (Sônnerhed, 2009). However, as 

Taylor and Mittag (2001) suggest, the factorization technique is only symbolic in its 

nature. Since students simply memorize the procedures and formulas to solve 

quadratic equations, they have little understanding of the meaning of quadratic 

equations, and do not understand what to do and why. This can be described using 

Skemp‘s (1976) categorization of mathematical understanding as either instrumental 

or relational. He simply described instrumental understanding as ―rules without 

reasons‖ and relational understanding as ―knowing both what to do and why‖ (p. 20). 

Using the language of Skemp, it can be said that students can perform instrumentally 

to solve the quadratic equations by applying the factorization technique; however, 

few develop relational understanding. 

Although quadratic equations play an important role in secondary school algebra 

curricula around the world, it appears that studies concerning teaching and learning 
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quadratic equations are quite scarce in algebra education research (Kieran, 2007; 

Vaiyavutjamai & Clements, 2006). Therefore, this study was designed to widen the 

research considering students‘ reasoning when engaging in different types of 

quadratic equations in one unknown. In particular, this study investigated students‘ 

processes for solving quadratic equations with one unknown by using the 

factorization technique.  

The findings of this study may provide teachers with insight into the reasoning that 

leads to the common mistakes that students make while solving quadratic equations, 

and hence guide them in creating a more efficient pedagogical design for teaching 

how to solve quadratics. 

Challenges faced by Students in Solving Quadratic Equations  

According to Kotsopoulos (2007), for many secondary school students, solving 

quadratic equations is one of the most conceptually challenging aspects in the high 

school curriculum. She indicated that many students encounter difficulties recalling 

main multiplication facts, which directly influences their ability to engage in 

quadratics. And, since the factorization technique of solving quadratic equations 

requires students to be able to rapidly find factors, factoring simple quadratics (i.e., 

x
2
+bx+c=0 where b, c  R) becomes a quite challenge, while non-simple quadratics 

(i.e., ax
2
+bx+c=0 a, b, c  R and a≠1) become nearly impossible. Moreover, 

students encounter crucial difficulties in factoring quadratic equations if they are 

presented in non-standard forms. For example, factoring x
2
+3x+1=x+4 is 

challenging for students, since the equation is not presented in standard form 

(Kotsopoulos, 2007). Similarly, Bossè and Nandakumar (2005) stated that the 

factoring techniques for solving quadratic equations are problematic for students. 

They indicated that students can find factoring the quadratics considerably more 

complicated when the leading coefficient or constant in the quadratic has many pairs 

of possible factors. 

Skemp‘s (1976) description of instrumental and relational understanding can be used 

as a framework to discuss the difficulties students have with factoring quadratic 

equations. While an instrumental understanding of factorizing quadratic equations 

with one unknown requires memorizing rules for equations presented in particular 

structures, relational understanding enables students to apply these rules to different 

structures easily (Reason, 2003). That is, when students have relational 

understanding, they can transfer knowledge of both what rules (and formulas) can be 

used and why these rules work from one situation to another (Skemp, 2002).  

Lima (2008) found that students may perceive quadratic equations just like they do 

calculations. Since they focus mostly on the symbols used to perform operations, 

they may not be aware of the concepts that are involved. Vaiyavutjamai and 

Clements (2006) explain that students‘ difficulties with quadratic equations arise 

from the lack of both instrumental and relational understanding of the associated 
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mathematics. They found several misconceptions regarding variables which were 

obstacles to understanding quadratic equations. For example, students thought that 

the two x symbols in the equation (x-3)∙(x-5) =0 stood for different variables, even 

though most of them obtained the correct solutions x=3 and x=5. Hence, they 

concluded that students‘ performance in that context reflect rote learning and a lack 

of relational understanding.  

METHODOLOGY 

Participants and the Instrument 

The sample of this study consisted of 113 students in four 10
th

 grade classes, and this 

study was performed in a high school in Antalya, Turkey during the spring term 

2009-2010. 

For the purpose of the study, a questionnaire was developed by the authors since no 

test to specifically explore students‘ errors and understanding was available.  The 

test questions were carefully selected from secondary mathematics textbooks and 

from research regarding quadratic equations (e.g., Crouse & Sloyer, 1977). All 

questions used in this questionnaire were selected to measure the study objective of 

―determine the roots and solution set of [a] quadratic equation in one unknown‖. 

During the selection process, two mathematics educators and a mathematics teacher 

were consulted about whether the content of the selected questions were consistent 

with the objective of the test. In light of their suggestions, seven open ended question 

were developed. Although the format of the all of the questions was open-ended, 

they varied in type so as to be consistent with the objective of the study. Questions 1 

to 4 were in the standard format in which students were expected to ―find the 

solution set of the given quadratic equation‖. These questions were based on 

procedural skills, and they were mostly used to detect students‘ procedural abilities 

in solving quadratic equations in different structures. On the other hand, questions 5 

to 7 introduced a mathematical scenario that included both a quadratic equation and a 

solution belonging to it. In these type of questions, students were expected to 

determine ―whether the solutions [belonging to] the equations were correct or not, 

and to make judgment about their decision‖.  Therefore, in addition to procedural 

skills, these questions were used to detect students‘ understanding of and reasoning 

level when dealing with quadratic equations. 

The mathematics teacher administered the questionnaire during the regular class 

period and the students were given 30 minutes to complete it.  

Analysis of Data 

Initially, the responses given to each question were givens scores of either 1 or 0. A 

score of 1 was given for answers that were mathematically correct in terms of both 

solution process and final answer. A score of 0 was given for answers that were 

either omitted or incorrect in terms of either solution process or final answer. Then, 
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in order to obtain a general view of the students‘ performance, the percentage of 

correct, incorrect and omitted questions were calculated. The aim of this process was 

descriptive analysis. Afterwards, qualitative data analysis was conducted. The 

subjects‘ responses were studied in order to provide substantial information about 

their type of understanding. The aim of this analysis was to identify the common 

mistakes that students made while solving the quadratic equations. Therefore, the 

incorrect answers for all questions have been analyzed item by item with respect to 

the students‘ focus when they solved the questions in the test situation. Students‘ 

types of mistakes were coded by two researchers of this study who worked initially 

separately. Next, the mistakes were both combined and renamed based on their 

common features, and then they were classified by two researchers together. Lastly, 

these mistakes were interpreted in terms of students‘ instrumental understanding and 

relational understanding. 

RESULT 

The first item in the instrument was related to finding the roots of a quadratic 

equation given in standard form (e.g., ax
2
+bx+c=0 where a, b, c  R). Almost all 

students correctly solved this equation by factorization. In the following questions, 

quadratic equations were given in different structures (e.g., ax
2
-bx=0, c=0). In these 

types of questions, just 64% of them solved the equation ax
2
-bx=0, correctly. When 

the solution processes of students who made mistakes (36%) were analyzed, it was 

recognized that their mistakes were based on two different types. 

   

 

Figure 1: Find the solution set of x
2
-2x=0: An example of students‘ first type of mistake 

 

  

 

 

Figure 2: Find the solution set of x
2
-2x=0: An example of students‘ second type of 

mistake  
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―Find the  

 

Figure 3: ―x
2
-2x=12‖: An example of students‘ mistakes when just the form of equation 

changed. 

In the first type of incorrect solution (see Figure 1), students carried the term -2x 

from left side to the right, and then ―simplified‖ by ―dividing‖ both sides of the 

equation by x. Consequently, they ignored one of the roots of the equation, which is 

0. In the second type of incorrect solution (see Figure 2), students tried to factorize 

the equation. Here, students perceived the form ax
2
-bx=0 just like ax

2
+b=0 and 

treated2x as a constant of 2 to be factorised. When the form of the equation was 

changed instead of the structure (e.g., ax
2
+bx=c where a, b, c≠0), 12% of the 

students incorrectly solved the quadratic as in Figure 3. Because the constant term 

was in the right side, they did not perceive that the equation was in standard form. In 

this type of solution, they were able to find only one of the roots, 4.                                               

Table 1: Common examples of students‘ types of responses with their reasoning for 

question 5.  

 

            Statements 

   Question 5 

Students‘ types of responses with their reasoning 

            I.                            II.                    III.                       

IV. 

To solve the 

equation  

―(x-3)∙(x-2) = 0‖ 

for real numbers, 

Ali answered in a  

single line that:    

     ―x=3 or x=2‖                        

 Is this answer 

correct? If it is 

correct, how can 

you show it 

correctness?  

 

“The answer is 

Right” 

Since I wrote 

(x-3)∙(x-2) = 0 

 as  x
2
-5x+6=0 

then I factorize to 

find roots of it.  

from (x-3)=0 and 

from (x-2)=0   

―x=3 and x=2‖ 

 

“The 

answer 

is Right” 

Because 

(x-3)=0 

(x-2)=0   

x=3   x=2 

―The 

answer is 

Right‖. 

Since we 

substitute  

―3 and 2‖ 

into x, the 

equation 

is 

provided. 

(explanati

on made 

only with 

words) 

“The answer 

is Right‖. 

If the x=2 

 and x=3 are 

substituted 

into the 

equation 

(3-3)⋅  (2-

2)=0 

    0.0 = 0 
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Although all of the students stated that Ali‘s answer was correct by choosing either 

one of the statements I, II, III, and IV, their justifications were different. For 

instance, in statement I, students first transformed the factorized expression into the 

standard form, and then factorized the expression again in the same way and found 

the roots by rote. In statement II, students unconsciously applied the null factor law. 

In statement III, the way of justification for solution was based on substitution 

method. In all of these three statements, they could not clearly justify why the 

solution is correct. In statement IV, students substituted x=3 into (x-3) and x=2 into 

(x-2) simultaneously, and concluded that the solution was correct since 0·0=0. 

Namely, they thought that the two x symbols stood for different numbers and did not 

appear to appreciate x as a variable. 

Table 2: Common examples of students‘ types of responses with their reasoning for 

question 6. 

 

               Statements 

Question 6 

Students‘ types of responses with their reasoning 

            I.            II.                   III.                         IV. 

 

A student hands in the 

following work for the 

following problem.            

Solve ; 

     x
2
-14x+24=3 

    (x-12)∙(x-2)=3 

    (x-12)∙(x-2)=3∙1 

     x-12=3    x-2=1 

       x=15      x=3 

       Solution set= {3, 15} 

Is the student correct? 

Explain your answer 

with its reasons? 

 

―The 

answer is 

Wrong” 

Because, 

firstly, 3 

must carry 

the left side 

of the 

equation and 

equalize the 

0. Then, the 

other 

operations 

must be 

done. In this 

way, the 

equation 

should be 

x
2
-

14x+21=0 

―The 

answer is 

Wrong”. 

Because 

when we 

substitute 3 

and 15 for 

x, the 

equation is 

not correct. 

 

―The answer is 

Right” 

Since the result is 

equal to 3, we 

equate 3 rather 

than 0 while 

factoring it. 

Therefore, the 

result is true. 

Students again 

solve as: 

―x
2
-14x+24=3‖ 

(x-12)∙(x-2)=3 

(x-12)∙ (x-2)=3∙1 

x-12=3    x-2=1 

x=15      x=3 

         {3, 15} 

―The answer 

is Wrong” 

 Since the 

equations are 

separated as  

(3,1) there is 

no error when  

(x-12)=3 

however, there 

is error when 

(x-2)=1. 

It must be  

(x-2)=3 then, 

x=5. 

Therefore, the 

solution will 

be {5, 15} 

rather than  

{3, 15}. 
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In statements I and II (see Table 2), students were aware of the error in the solution 

of the given question. However, to explain the reasons for the mistake, they mainly 

referred to procedures in explanations similar to the responses in statements I, II, III 

for question 5 (see Table 1). In statement III, students incorrectly stated that the 

answer was right. Looking at the statement ―since the result is equal to 3, we equate 

to 3 rather than 0 while factoring it‖, it can be said that they wrongly tried to transfer 

the null factor law to this context. That is, they equated the factors of equation x
2
-

14x+24 with the integer factors of 3. In statement IV, students correctly claimed ―the 

answer of the question wrong‖; however, their explanations were fully erroneous. 

Similar to statement III, these students tried to apply the null factor law to the 

equation. Nonetheless, in this case, they only equated the factors to 3 rather than to 

the factors of 3. In both statements III and IV, students did not check whether the 

roots they found were appropriate or not.  

Table 3: Common examples of students‘ types of responses with their reasoning for 

question 7. 

 

                  Statements 

Question 7 

Students‘ types of responses with their reasoning 

            I.                             II.                     III.                     

IV. 

The solution of the  

quadratic equation  

―2 x
2
=3x‖ 

is given in the 

following; 

According to you, is 

this solution correct 

or not? Explain your 

answer with its 

reasons? 

Solution: 

I. step        2 x
2
=3x 

II. step      2∙x∙x=3∙x 

III. step    2∙x =3 

IV. step    x= 3/2 

 Solution set = {3/2} 

―The answer is 

Wrong” 

Because 3x 

must be carried 

the left side of 

the equation 

and equalized 

the 0. Then, 

 2 x
2
=3x 

2 x
2
- 3x=0 

x∙(2x-3)=0 

x=0,    x=3/2. 

―The 

answer is 

Right” 

The 

solution 

is right; 

however, 

it must be 

added 0 

to the 

solution 

set. 

“The 

answer 

Right” 

Because 

when we 

substitute 

the value for 

x, the 

equation is 

satisfied. 

 

“The answer is 

Right” 

2 x
2
=3x and x

2 

is opened. 

2∙x∙x=3∙x
 

Yes the x is 

simplified. 

2x=3 so x=3/2. 
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In statement I (see Table 3), students stated that the answer was correct. They 

explained an appropriate procedure required for solving the equation. Since they 

memorized the rule without its reasons, they could only explain how the procedure 

should be carried out. In statement II, on the other hand, students were aware that the 

roots of the equation were 0 and 3/2. However, they did not recognize that when  was 

simultaneously canceled from both sides, the root 0 disappeared. Furthermore, in 

statement III, the explanation for solution was just based on the substitution method. 

In statement IV, students incorrectly stated that the answer was right. Like in 

statement II, students were not aware of the missing root 0 when canceling an  in the 

equation  

DISCUSSION 

The results indicate that most of the students used the factorization technique to 

solve quadratic equations. This result supports Bosse and Nandakumar (2005), who 

claimed that a large percentage of the students preferred to apply the factorization 

techniques to find the solutions of quadratic equations. Also, in parallel with the 

results of these authors and Kotsopoulos (2007), the result of this study revealed that 

factoring the quadratic equations was challenging when they were presented to 

students in non-standard forms and structures. After looking at the examples of 

students‘ solutions (see Figures 1, 2, and 3), it can be said that the students knew 

some rules (or procedures) related to solving quadratics. However, they tried to apply 

these rules thinking about neither why they did so, nor whether if what they were 

doing was mathematically correct. These results give some clues about students‘ 

instrumental understanding of solving quadratic equations with one unknown. 

However, to make an exact judgment about students‘ relational or instrumental 

understanding as Skemp (2002) defined, in-depth interviews with individual students 

are required. Furthermore, results also indicate that students incorrectly tried to 

transfer some rules from one form of equation to another (e.g., in Figure 2). This can 

be considered another clue to students‘ instrumental understanding (Reason, 2003). 

When students were asked to examine a solution process of a quadratic equation and 

judge whether it was correct (i.e., in questions 5, 6, and 7), the results give additional 

clues about their reasoning in solving quadratics. In question 5, for example, 

although most of the students were aware of the correctness of the result, they did 

not explain the underlying null factor law used to solve the quadratics by 

factorization. The responses also reveal their misunderstanding of the unknown 

concept in a quadratic equation (see the statement IV, in question 5), which is 

consistent with the results of Vaiyavutjamai and Clements (2006). Students were not 

aware that the two‘s in the equation represent a specific unknown when dealing with 

equations in the form       (x-a)∙(x-b) =0. All of these can be regarded as clues to 

students‘ instrumental understanding. As stated by Lima (2008), and Vaiyavutjmai 

and Clements (2006), students knew how to get correct answers but were not aware 

of what their answers represented.  
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Similar interpretations can be made for the responses of students to question 6.  

There are two salient points related to their reasoning in explaining the given 

solution. First, although students were expected to explain the reason(s) why the 

given solution process was wrong, they could not detect the conceptual errors in the 

solution. They just presented some rules or procedures to solve the quadratic. 

Second, as was clear from statements III and IV (see Table 2), due to their lack of 

conceptual understanding of the null factor law in solving quadratics given in 

standard form, they wrongly transferred this principle to a quadratic in a non-suitable 

form. This can also be a clue for students‘ instrumental understanding. Because when 

students relationally understand a rule, they can use it in a different context (Reason, 

2003). Similar inferences can be made for the students‘ responses to questions 7 

where they did not offer any explanation for why canceling s was wrong. In other 

words, they did not recognize that when x was simultaneously canceled from both 

sides, the root 0 disappeared. Also, consistent with the results reported by Bossé and 

Nandakumar‘s (2005) and Kotsopoulos‘ (2007), although students knew the null 

factor law, they could not apply it appropriately when the structure of equation was 

changed.  

Collectively, all these results suggest that in general students attempt to solve the 

quadratic equations as quickly as possible without paying much attention to their 

structures and conceptual meaning (Sônnerhed, 2009). Although we cannot be sure if 

their reasoning was based on instrumental or relational understanding without in-

depth interviews with students, their written answers provide clues to their 

reasoning, and it can be said that their reasoning underlying solving quadratic 

equations was based on instrumental understanding. 

Having instrumental understanding does not generally cause trouble for students. It 

is much easier to obtain and use than relational understanding, simply because it 

requires less sophisticated knowledge, and with instrumental understanding, students 

can generally learn how to obtain the right answers more quickly. However, it 

necessities memorizing, and without relational understanding the learning cannot be 

adapted to new tasks, and students cannot give real reasons for their answers 

(Skemp, 2002). For that reason, greater attention should be given to how the concept 

is introduced to reduce the possibility of students learning by rote. Any solution 

mechanism must allow students to understand the meaning of the process that they 

apply in order to arrive at the correct answer; otherwise, the mechanism they learn is 

likely to be a source of error (Blanco & Garrote, 2007).  

Recommendation 

As a result of this study, several suggestions can be made to contribute to improving 

the teaching of quadratic equations. Since factorizing the quadratic equations was 

challenging when they are presented in non-standard forms and structures, it would 

be better if teachers introduce various kinds of quadratic equations using a variety 

different structures rather than only in one or two standard forms. On the other hand, 
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it would be also helpful for students to understand the factorization techniques as 

relational when teachers clearly emphasize meaning of the null factor rather than 

presenting it just as rule. In addition, because the students can attribute different 

meanings to the symbols (Küchemann, 1981), their understanding of the meanings of 

the algebraic symbols needs to be taken into account. Therefore, if teachers 

emphasize the meaning of the algebraic symbols, it would also useful for students to 

understand what the symbols represent in quadratic equations.  Moreover, when 

teachers encourage students to use different techniques while solving quadratic 

equations, students‘ learning may improve, and they may also gain a conceptually 

understanding. Similar recommendations can also be found in the related literature 

(e.g., Bossè & Nandakumar, 2005; Sônnerhed, 2009).  

Undoubtedly, teachers play an important role in encouraging students to learn 

relationally. We believe that this is the most important part of teachers‘ pedagogical 

content knowledge. However, research studies demonstrate a lack of secondary 

school mathematics teachers‘ pedagogical content knowledge in this respect 

(Vaiyavutjamai, Ellerton, & Clements, 2005). Indeed, there is a need to research 

teachers‘ knowledge about students‘ difficulties concerning quadratic equations. 
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KNOWLEDGE ON THEIR CONCEPT OF VARIABLES BY USING 

AN ANALYSIS TOOL CONSIDERING TEACHING REALITY 

Sandra Gerhard 
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Screening the literature on school algebra one finds various suggestions on how to 

implement algebra in school. But various articles also deal with problems 

concerning the transition between arithmetic and algebra. In order to improve 

school practice, teaching interventions that focus on the question of how algebraic 

knowledge interacts with arithmetic knowledge should be analysed while keeping in 

mind the influence of praxis conditions like mathematical socialisation and the 

didactic contract. The aim of this paper is not to give a final answer to this question, 

but to introduce an analysis tool meeting the above-mentioned requirements and to 

exemplify how such an analysis tool, according to mathematics education as design 

science, may help to identify integral parts of the teaching intervention.   

Key words: variables, previous knowledge, approach to algebra, design research   

INTRODUCTION 

If one talks about school algebra the question is not only how to teach algebra but 

also what students are supposed to learn when they are taught about something 

called ―algebra‖. Since school algebra is a broad subject we first of all have to 

narrow this field. 

THEORETICAL FRAMEWORK 

This doctoral project is based on the perspective that learning to deal with symbolic 

algebra, namely with variables, is important for students (Dôrfler, 2008). There are 

two opposing approaches towards variables. One focuses on practicing algebraic 

thinking without letter variables and introducing letter variables later. Linchevski 

(1995) calls this ‗algebra without letters‘. The associated counterpart is arithmetic 

with letters. A more suitable opposite to algebra without letters is starting algebra 

with letters or to symbolize algebraic reality into being (Sfard, 2000). This 

perception allows different approaches to algebra and is not limited to arithmetic.  

A closer examination of approaching variables via generalized arithmetic reveals 

advantages and disadvantages. On the one hand, variables are numbers replaced by 

letters and the letters can be subjected to the same operations as numbers. At a first 

glance it seems that students simply have to put their ―number template‖ (Sfard, 

2000) onto the letter variables and everything should be self-evident to them. On the 

other hand, students deal with numbers in a different way to the way they are 

expected to deal with letters. After a long term arithmetic education of up to six 
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years, students usually believe that mathematics is all about computing arithmetic 

problems, the equal sign merely being a sign for ―calculate now‖ (Carraher & 

Schliemann, 2007, p. 670). McNeil (2004) emphasises a strong connection between 

children‘s equation learning difficulties and their existing knowledge. An alternative 

may be to avoid long term arithmetic education without algebraic contents. Then 

there would be less time to adopt undesirable patterns and more time to deal 

intensely with variables.  

But teaching variables early is not a panacea either. On looking closely at the various 

problems students have with algebraic thinking and letter variables (Carraher & 

Schliemann, 2007) it becomes evident that one cannot blame long term arithmetic 

education alone. Reasons for the problems can also be found in the nature of algebra 

itself. In order to develop algebraic knowledge with the help of variables, students do 

not simply have to transform concrete-descriptive knowledge into abstract-formal 

knowledge (Malle, 1993), but rather they need to develop a ―flexibility in thought to 

move between the process to carry out mathematical task and the concept to be 

mentally manipulated as a part of a wider mental schema, [an] ‗amalgam of process 

and concepts‘ [called] ‗procept‘ ‖ (Gray & Tall, 1994,p. 1). 

Regardless of the chosen approach to variables, students must and will transfer their 

new knowledge to different contexts at some point. This is the nature of 

mathematics. Thus, the new knowledge will be affected by the student‘s previous 

arithmetic knowledge anyway. So one of the questions to bear in mind while 

designing a learning environment for introducing variables is how the new algebraic 

knowledge will interact with previous arithmetic knowledge. 

METHODOLOGY 

Design-based Research 

Like Wittmann (1995), the author sees mathematics education as a design science. 

Hence this research project is based on the paradigm of Design-Based Research 

which ―blends empirical educational research with the theory driven design of 

learning environments‖ (The Design-Based Research Collective, 2003, p. 5). It has 

to be emphasised that design-based research represents an integrated approach to 

research allowing for all facets of everyday classroom life in contrast to research 

methods focusing on controlling variables. The research product consists of a design-

based theory where the theory explicates when and why the design works. 

The author of this paper is acting in the double role of researcher and teacher. This is 

a critical factor in respect of the authentic setting. This being said, it also offers 

opportunities. First of all as teacher-researcher, the author incorporates her implicit 

knowledge into the teaching process which, according to Design-Based Research, is 

desirable as long the implicit knowledge is the object of research. Secondly, follow-

up interviews have also been conducted by the teacher-researcher. Thus the 

interviews may also provide information about the implicit knowledge of the teacher 
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and the didactic contract (see Pichat & Ricco, 2001) between teacher and student as 

will be shown later in this paper. 

Designing a Learning Environment: the Teaching Intervention 

The aim of the doctoral project is the development of a theory-driven learning 

environment for introducing variables in early grades. The Measure Up–project 

(Dougherty, 2008) was chosen as starting point and redesigned for introducing 

variables in primary school.  

Based on the analysis of a pre-study in lower elementary school (Gerhard, 2009) the 

learning environment was modified for a 5
th

 grade of a grammar school. Focusing on 

the authentic setting, the teacher was included and the design was based on the 

federal curriculum, the curriculum of the mathematics section of the school and the 

textbook. The intervention ―algebra‖ replaced the topic ―calculation of length, area 

and volume‖ whereas this topic was embedded in the topic ―algebra‖. 

The following principles underpinned the teaching intervention. The students were 

told to do mathematics without numbers, to find as many relations as they could, to 

write relations as equations and inequations to convert equations through ―basic 

transformation rules‖ (Malle, 1993, p. 219) and to make auxiliary drawings. 

Developing a Theory: the Interviews 

For the development of theory the research focuses in particular on the question of 

how new algebraic knowledge might interact with previous arithmetic knowledge. 

The findings, by giving important information about how the learning environment 

affects students‘ understanding of variables, are an integral part of the theory-driven 

design. Therefore, additional problem-centred, half-standardised interviews were 

conducted. During the interview students were confronted with problems that were 

designed to challenge their previous arithmetical knowledge and their knowledge 

about variables. Therefore arithmetic rather than algebraic word problems were 

chosen. They were modified by using letters instead of numbers. 

Holiday in France I 

Stefan will have a holiday in France; he wants to hike from Lyon to Lourdes. 

From Buchheim to Lourdes it takes a km. From his home he firstly goes by bus b 

kilometres to Lyon. From Lyon to Lourdes he wants to hike for c days. How much 

kilometres does he have to hike every day at an average?  

Figure 1: Sample problem 

The sample problem (see Figure 1) was designed considering the following aspects: 

 The students have met variables as general undetermined numbers used for 

modelling. The task, an arithmetic word problem with letters instead of 

numbers, uses variables in the same way.  
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 The structure of the word problem (b+ (c • L) = a) was chosen firstly. The 

narrative was developed to go with the structure with L as solution. So the 

students have to conduct inverse operations of addition and multiplication. 

 The students have met variables in a geometric context. The task also includes 

geometric quantities. 

 The structure of the task asks for a multiplication. The students have seldom 

met the multiplication of variables as in area but they are accustomed to 

multiplying quantities by time or money. By choosing the kilometre as the unit 

of measurement for a and b and days as the unit of measurement for c, L 

becomes an intensive quantity with the unit ‗kilometres per day‘. This may 

cause difficulties but, due to everyday life experience, it is most likely that 

students treat c like a natural number without a unit. 

 It is not expected that students will present L = (a-b): c as a solution.  Taking 

into account students‘ previous experience with word problems, it is more 

likely that the students will use sub-steps. 

During the interview the students had to solve this word problem and a similar word 

problem with numbers in place of the variables to find out if there were different 

approaches to the two tasks depending on the previous arithmetical knowledge but 

independent of the chosen context. The interviews were transcribed and the content 

of the transcripts together with the written products created by the students during 

the interview are objects of this analysis. 

THE ANALYSIS INSTRUMENT 

To get a holistic view on the complex epistemic process of how the previous 

arithmetical knowledge interacts with the knowledge about variables taught and how 

these two aspects are connected to become the student‘s new knowledge, different 

parameters have to be taken into account. Therefore an appropriate analysis tool had 

to be developed.  

General Analysis: Malle‘s 3-Step-Model 

 

Figure 2: From text to formula, a 3-Step-Model (Malle 1993, p. 99, own translation)  
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If we look at students working on a task, we look at a solution-oriented process. 

Thus we first need a tool that helps us to describe this process in a way that allows 

identification of important moments of transition. The 3-Step-Model of Malle (1993, 

see Figure 2) fulfils these needs. 

The concept ―knowledge structure‖ is defined as follows: 

―A knowledge structure contains schematic, cross-linked knowledge concerning a 

certain scope, which has been constructed under certain conditions and has been 

optionally stored in the long-term memory where it can be accessed again.‖ (Malle, 

1993, p. 98, own translation)  

Certainly the transition process from text to formula is not as direct as it is shown in 

Figure 2.  In particular steps 2 and 3 are closely intertwined and the respective steps 

can be passed through iteratively. (Malle, 1993, p. 99). Hence, as already remarked 

above, particular attention should be paid to students‘ procepts, in other words the 

interaction of students‘ procedural and conceptual view of the task. 

Detailed analysis: searching for reasons using an interdependence model  

After analysing the interplay of procedural and conceptual knowledge, we have to 

address the issue as to how this interplay is affected by such factors as the actual 

classroom and interview setting. Therefore, we have to tease out the extent of the 

effect of these different influential factors. 

On one hand we have to identify the Previous Knowledge in terms of Everyday Life 

Knowledge and Mathematical Specialised Knowledge. On the other we have to look 

at the New Knowledge in terms of Knowledge the Teacher has taught. This implicit 

knowledge of the teacher has to be identified and related to the Knowledge the 

Teacher intended to teach to reconstruct the students‘ understanding thereof. 

In order to address the authentic setting we additionally have to take into account the 

perspective of social interaction (see Pichat & Ricco, 2001). The notion of Previous 

Interaction represents the Socialisation in the Mathematics Classroom concerning 

the handling of mathematical situations. Previous interaction has become 

independent of the teacher because the student already has internalised these habits. 

The term New Interaction or actual interaction deals with the actual Didactic 

Contract in an interview or classroom situation. The actions carried out here are not 

internalised yet and depend profoundly on those persons with whom the students are 

interacting. Like previous and new knowledge, previous and new interaction may 

interfere with each other producing conflicts from which new integrated knowledge 

may emerge. 

The considerations above lead to a Framework of an Interdependence Analysis 

Model (see Figure 3). 

 



Working Group 3 

 CERME 7 (2011)  495 

 

 

Figure 3: Framework of an Interdependence Analysis Model 

ANALYSIS 

After describing the background of the analysis tool its application will be 

exemplified in the case of Daniela. We start with a description of Daniela‘s 

background followed by a general and detailed analysis. 

Daniela‘s Background 

Daniela attended the algebra lessons at the end of grade 5. She is a good student with 

good marks in mathematics lessons. The evaluation of her arithmetical skills at end 

of grade 5 showed a performance below class average with difficulties with written 

procedures and inverse operations. 

General Analysis 

If one compares Figure 4 to Figure 2, the 3-Step-Model seems to fit perfectly. At first 

(A) Daniela is visualising her concrete-descriptive knowledge about the task by an 

external representation. The three lines match exactly the first three sentences of the 

word problem and contain the relevant information. Then (B) she again is visualising 

the task by means of an auxiliary drawing which contains information about her 

abstract-formal knowledge structure. She tries a (incorrect) generalisation (C, see 

Figure 5) and finally translates her abstract-formal knowledge into a formula (D). 

Fortunately we are able to observe nearly the whole transition process here because 

she is visualising her internal concrete-descriptive and abstract-formal knowledge by 

external representations. 
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Figure 4: First classification of Daniela working with the sample problem 

 

L: Then he has to walk b kilometres, well if, if, if in Lyon...then is exactly in 

the middle. 

I: Is it written there that Lyon is exactly in the middle? 

L: No  (laughs) 

I: Well that would be nice, wouldn‘t it? But you don‘t know. 

L: (quietly) From Lyon that are c days and from Buchheim that are also... 

Figure 5: Transition C  

Allowing for a process-concept-view we can describe the transitions as following: 

A) The variables themselves do not activate a conceptual view on the task. The three 

lines reproduce exactly the (travelling) process that is given with the text. 

B) The suggestion to use a drawing may initiate the transition from a procedural to a 

conceptual view but for the drawing process, conceptual knowledge does not need to 

be applied. She simply translates her concrete-formal knowledge step by step into a 

sketch. She may still be thinking procedurally from within the travelling process: 

Daniela:  Actually this is only an intermediate place, this village. 

C) The drawing itself allows Daniela to develop a conceptual view. Lyon changes its 

state of an ―intermediate place‖ to ―exactly in the middle‖. Daniela‘s statements 

change from ―in Lyon‖ to ―Lyon is‖ back to ―from Lyon‖.  For a moment she moves 

out of the travelling process into a conceptual meta-level and then back into the 

process without actively controlling this interplay. 

D) Now there is a time of 60 seconds where nothing observable happens, before – we 

are tempted to say suddenly – the following is happens:  

Daniela:  (quietly) Oh, minus b kilometre (writes ―a-b‖ and writes ―km‖ in small 

letters above the letters a and b and then writes „= c km―) 
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If Daniela looks at the drawing, the arches that connect Buchheim, Lyon and 

Lourdes may all be seen as distances and she may see b+c=a. This interpretation is 

supported by the fact that Daniela added the unit ―km‖ to all the letters. This is a 

conceptual view on the drawing. But she is writing a km – b km=c km. This result- 

and process-oriented way seem to eclipse the conceptual view on the task. 

Detailed analysis  

       A       B 

  

 

C       D 
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PRELIMINARY RESULTS 

To complete the demonstration of our modus operandi we allow ourselves to draw 

first exemplary conclusions about the interplay of Daniela‘s previous arithmetic 

knowledge and her new algebraic knowledge 

A) The presence of letters as part of an arithmetical task is not strong enough to 

activate Daniela‘s algebraic knowledge. Her arithmetical knowledge is 

dominating. 

B) Using auxiliary drawings is not a self-evident part of Daniela‘s mathematical 

socialisation. But her drawing allows her to change from a procedural to a 

conceptual view and to associate the task with the algebra lessons. The 

drawing acts as a mediator between the arithmetic task and Daniela‘s 

knowledge from her algebra lessons. 

C) The algebraic symbol system allows one generalised description of several 

different cases without requiring a case distinction. But Daniela wants to work 

with a direct relation of the two distances Buchheim-Lyon and Lyon-Lourdes. 

This is easy with number distances, because the order is part of the numbers. 

But here it is impossible, because the direct relation of the two variables is not 

defined.  

D) It took 60 seconds for Daniela to recall how to conduct the required 

subtraction. She may have known that she had to conduct a subtraction but had 

difficulties finding out which letter represented the minuend and which letter 

represented the subtrahend. Later she made the following remark: 

Daniela: ...but with numbers, well, you already know from the beginning, what minus 

what equals what... 

Again Daniela‘s difficulties are a result of the fact that she cannot get the order 

of the variables at first sight. Instead she has to take the information about the 

order of the variables out of the text, something she is not used to. 

PERSPECTIVE 

This passage of Daniela‘s interview was chosen as an example of findings that were 

also present in interviews with other students. A further analysis of the interviews 

will show if students can be categorised according to the interaction of their previous 

knowledge with exposure to variables and if there are differences between students 

with low- and high-achievements in arithmetic. The analysis will also show if the 

analysis tool can meet the claim for which it was designed. 

What we already can see is that we have to differentiate between the transition from 

arithmetical to algebraic thinking on the one hand and the transition from numbers to 

variables on the other hand. The apparent difference of algebraic thinking with 

numbers to algebraic thinking with letters deserves further investigations. 
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This paper tries to rise issues about what constitutes algebraic activity through 

looking at number of episodes from a series of three lessons taught to 9-10 year olds 

using the software Grid Algebra[1]. From different viewpoints the work the students 

achieved could be viewed as anything from impressive algebraic activity after 

relatively short time of teaching, to feeling as if no algebraic activity took place at 

all. The aim of the paper is to raise issues rather than come to a particular position. 

It ends up highlighting the fact that such viewpoints are the result of us considering 

certain things are important and to encourage pursuit of what those are and why we 

give them that significance. 

SOME DIFFICULTIES AND SUCCESSES WITH ALGEBRA 

There has been much research reporting difficulties students have with algebra. 

Küchemann (1981)highlighted the fact that many students had considerable 

difficulty in developing meaning for letters. Difficulties students experience are not 

restricted to letters as Collis (1974; 1975) identified a tendency for 6 to 10 year olds 

to want to replace two numbers connected by an operation with a single number. He 

described this as students struggling with a lack of closure. Sfard and Linchevski 

(1994) talked about the need for students to be able to see an expression as an object 

as well as a process to be carried out. The equals sign has also been shown to have 

meanings for students where certain correct mathematical forms of statements are 

deemed to be unacceptable. Behr et al. (1980) showed that 6-7 year olds viewed the 

equals sign as a  do something signal. Kieran (1981) pointed out that this was not 

just an issue with younger students but something which carried on throughout 

elementary school,  into high school and even college as well. These issues with the 

equals sign still persist as shown in more recent studies(Knuth et al., 2005; Linsell 

and Allan, 2010). 

Over the last 10 years there has been a number of reports on what students are able to 

do, rather than what they are not able to do. Younger children in primary schools 

have been shown to be able to work with algebraic ideas, use letters as unknowns 

and operate on letters without having to know their values (Schliemann et al., 2003). 

An example of this is students of 8-9 years of age being able to explain why N+ 3–

5+4 must be equal to N+2 whatever the value of N(Carraher et al., 2001). Projects 

based on the ideas of Davydov have engaged 6 year old students with relational ideas 

using letters before formal work on numbers (Dougherty and Zilliox, 2003). 

There is an interesting contrast between studies showing the difficulties that students 

have with algebra, and unquestionably continue to have with algebra in many 

secondary mathematics classrooms in particular, and the increasing evidence that 
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young children are able to engage with algebraic ideas and begin to work with more 

formal notation. Within this contrast I feel are questions about what we actually 

perceive algebra to be along with questions about pedagogic approaches which 

might be adopted as a consequence. The terms pre-algebra or early algebra have 

often been used, maybe as a way of being able to avoid contention as to whether 

something a student does might be deemed as algebraic or not. This is something I 

will now pursue by considering some different ways of viewing what it is to work 

algebraically. 

WHAT IS ALGEBRA? 

In jest, algebra has been described as the study of the 24
th

 letter of the alphabet. If 

algebra is not as simple as the appearance of a letter then the issue of when does 

algebra begin is one which has been debated over some time. Mary Boole (1931, p. 

1231)described the move from arithmetic to algebra in terms of acknowledging ―the 

fact of our own ignorance‖ which leads to explicitly labelling an unknown. Filloy 

and Rojano (1989) talked about a didactic cut between arithmetic and algebra, this 

occurring when a letter appears on both sides of an equation. However, Herscovics 

and Linchevski (1994) argued that it was not about the form of the equation but 

about when a student begins to work with the unknown. For example, the equation 

2x+4=19-3x could be solved by trying different numbers for the letter x whereas 

someone might change the equation into the form 5x=15 in which case they have the 

worked with the unknown. For Herscovics and Linchevski, the issue was more about 

the human activity of how someone worked on an equation rather than the form the 

equation took. They talked about a cognitive gap with many students having 

difficulty with working spontaneously with or on the unknown. The shift away from 

symbols themselves onto human activity is one which Radford has followed, looking 

at algebraic activity in terms of semiotics where ―mathematical cognition is not only 

mediated by written symbols, but that it is also mediated, in a genuine sense, by 

actions, gestures and other types of signs" (Radford, 2009, p. 112). He has recently 

argued for attention to shift from our obsession with mathematical symbolism and 

onto what he calls the zone of emergence of algebraic thinking(Radford, 2010a) 

where the expression of general rules can take place with the use of words, actions 

and gestures. Mason has for a long time considered algebraic activity in terms of 

expressing generality (Mason, 1996)and seeing the general in the particular and the 

particular in the general, where the existence of symbols is not central to the 

consideration of when algebraic activity takes place. He has talked about three pairs 

of powers which students bring with them into the classroom: imagining and 

expressing; specialising and generalising; and conjecturing and reasoning (Mason, 

2002) and challenges us as teachers to consider whether we are stimulating these 

powers or trying to do the work for the students. The notion of powers which 

students bring with them has its roots with Gattegno (1971) who argued that we all 

possess powers of the mind, which are attributes of being human. These powers are 

used by very young children in their early learning before they ever enter a school 
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and remain in daily use throughout all our lives. Gattegno (1988) argued that it is 

helpful to consider algebraic activity in a wider sense than only in a mathematical 

context. He spoke of algebra as operations upon operations which can be manifested 

within the learning of language (such as noticing a rule in the way verbs change 

tense) as much as within mathematics. As such, algebraic activity is an attribute of 

the mind and so everyone hasalready worked algebraically and continues to do so. 

The issue is then more concerned with Mason‘s challenge and whether a student‘s 

powers of working algebraically are called upon within a mathematics classroom 

when working on the topic of algebra! 

I have offered a brief summary of different ways in which algebra might be viewed 

and in particular I will analyse students‘ work during a series of three lessons in 

terms of the following perspectives: 

 Algebra as appearance of letters 

 Algebra as working with equations with a letter on both sides of the equation 

 Algebra as working with or on the unknown 

 Algebra as an expression of generality using actions, words and gestures 

 Algebra as seeing the general in the particular and the particular in the general 

 Algebra as an attribute of the mind: operations upon operations 

THE STUDY 

I carried out a series of three lessons with a mixed ability group of 21 9-10 year olds 

in an inner city primary school. These students had never met the use of letters 

formally within their lessons and had never been introduced to formal algebraic 

notation. The students‘ attainment levels were based by their teachers on the UK 

National Curriculum levels where most 6-7 year olds are expected to achieve a level 

2 and most 10-11 year olds are expected to achieve a level 4. The range of teacher 

assessed levels for these students was as follows: 2 (level 2); 13 (level 3); 3 (level 4); 

and 3 (level 5).The lessons were taught by myself and nearly all of the lesson time 

was spent either using the computer software Grid Algebra  with occasional time 

spent on pen and paper activities related to the software. It is important for the reader 

to be aware that I wore three hats during this study; researcher, teacher and also the 

person who had developed the software. As such my comments and analysis have to 

be read with this in mind. One significant aspect about the way of working with the 

students was that at no time was anything explained to the students, including the 

particular appearance of formal notation. Instead, certain actions were carried out 

using the software on an interactive whiteboard, challenges were given to the 

students and questions were asked. 

The teaching sessions were video recorded along with times when individual 

students worked in a computer room with computer generated tasks. Some pairs of 

students‘ work on computers was captured using Camtasia software, which records 

everything they are doing on the computer. Written work was also collected in. 
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These were all analysed through a coding process which was based upon themes and 

links which developed through the analysis process. 

GRID ALGEBRA 

The software is based upon a multiplication grid with the one times table in the top 

row, the two times table underneath that, the three times table underneath that and so 

on (see Figure 1 where only the first two rows are shown). 

 

Figure 1: the first two rows of the grid         Figure 2: some movements on the grid 

A key feature of the software concerns the relationship between numbers in this 

multiplication grid. For example, moving from one number to the next number in the 

one times table would involve adding one and a number such as 2 can be picked up 

and dragged to the next cell and it would show in notation 2+1 (see Figure 2). There 

would now be a peeled back corner in that cell showing that there is also another 

expression in the cell, in this case the original number 3. On each click of the peeled 

back corner the expressions in that cell would be revealed one at a time in a cycle of 

all expressions which have been entered into that cell. Likewise other movements are 

possible with any movement to the right resulting in addition, to the left would result 

in subtraction, a movement down would produce multiplication and up division (see 

Figure 2). Once a movement has taken place the resultant expression becomes an 

object which can be moved once again. Thus in Figure 2 the number 5 in row one 

has been moved one cell to the left, producing 5 - 1, and then that has then been 

picked up and dragged down from the one to the two times table to produce 2(5 – 1). 

Likewise the 6 in the two times table (row 2) has been moved twice to produce 

.There are a large number of other features to the software but only those relevant 

to particular incidents below will be mentioned. 

I will now describe a number of incidents which happened over the three lessons and 

later I will look at these in terms of the different views about what might constitute 

working algebraically. These incidents are chosen so as to get a general sense of the 

development of activities which took place over the three lessons, although it should 

be noted that there were several additional activities to these which took place. 

Episode 1 

At the beginning of the first lesson, students were shown the grid with the times 

tables shown as in Figure 1. After two minutes of them describing what they saw and 

which numbers might come next in each row (the grid could be scrolled so that they 

could see which numbers do appear next), a pre-prepared grid was loaded which 

showed the same grid but with some of the numbers rubbed out. Below the grid was 
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a ‗number box‘ which, when scrolled through, contained the numbers from 1 to 200. 

The students were asked to come up and drag an appropriate number from the 

number box into one of the empty cells in the grid. If it was correct the number 

would stay in the cell. If it was wrong a sign would indicate this and the number 

would drift off into a ‗bin‘. Chris (pseudonyms are used for all the students) dragged 

the number 12 into the shaded cell in Figure 3 and I asked how he worked out that it 

was 12. 

Figure 3: which number should go into the shaded cell and why? 

He said ―If it‘s the one times table it‘s going to be plotting one up or one down so I 

just counted two down from 14 which is 12.‖ As he did this he pointed from 14 back 

to 12. Abbas said that he could explain it differently and said that he halved the 24. 

He came up and pointed from the 24 up to the cell which now had 12 in it. Such 

activities continued with grids having more rows, fewer numbers given and with a 

greater ‗space‘ between any number given and the highlighted cell. 

Episode 2 

Here I will describe a series of incidents where the class were all together using the 

Interactive Whiteboard (IWB). Towards the end of the first lesson I had placed the 

number 15 into a cell in an otherwise empty grid. I made a journey with 15 as 

indicated by the arrows in Figure 4, and rubbed out all the expressions in the cells 

along the route except for the final expression. Note that the arrows did not appear 

on the IWB. They only appear here for clarity of description. 

 

Figure 4: A journey made with the number 15. 

After rubbing out the middle stages I then announced that I had forgotten what I did 

to make that expression and asked them to re-create the journey I had made. During 

this task a student came up to the board and was successfully given the directions of 

how to re-create it by fellow students. However, I noted these directions were in the 

form of across, down, etc. Mathematical operations were not mentioned. The second 

lesson I repeated this task with other journeys but worked on the language so that 

mathematical operations were being used to describe what operations were carried 
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out with increasingly complex expressions such as . 

Collectively the students were successful at re-creating these expressions with very 

few, if any, incorrect movements on the grid. Each time I began a new journey I 

talked about starting with my ―favourite number‖ which changed every time I did 

this activity. Then I continued with a same activity but started with a letter and took 

that letter on a journey rather than a number. So, for example, they were able to tell 

me the order of operations with the expression . 

Episode 3 

Julie (a level 5 student) was working on a computer generated task from the software 

where she was told thatx=4 and had to drag the correct number from the number box 

into the cell which had within it the expression 2(x–2+2)+8.She said: Four. Ex 

equals four. Four take away two plus… that‘s just the same as saying four [pointing 

to x–2+2] times two equals eight, plus eight equals sixteen.She talked through her 

thinking with several of these tasks and she got many of them incorrect as her 

arithmetic was often faulty even though she correctly said what operations had to be 

carried out. 

Episode 4 

Abbas (level 3) was working on a paper exercise where an expression involving a 

letter was written on one cell on a grid and the task was to find which cell the letter 

must have come from. A colleague of mine asked him a question of why he chose to 

undo the dividing first with  but did not do so with the expression  from the 

previous question (see Figure 5, note that both these are correct). 

 

Figure 5: Inverse journey task to find where the letter was originally 

In his explanation he moved his pen rapidly horizontally between  and 2 in the 

expression  saying ―These two are together so it just tells me that I need to do 

these two first. That‘s why I had to do that last because these two had to so I, so I 

knew I had to do that, that, that, um, first.‖ He struggled to express himself in words 

and the action seemed to hold more meaning than the words did. 

Episode 5 

At the end of the final lesson, Julie was working on a sheet of equations to solve. She 

was talking through solving  and was able to express clearly the 

operations she carried out to solve this (no working was written on the paper, just the 
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answer). Having described taking away the 6 she went on to say Now you times by 

two and at the same time she used her pen in a downwards stroking gesture from the 

division line to the 2 underneath it. 

Other students were also able to solve equations, some with support of the grid and 

others without, like Julie. This included one of the level 2 students who could solve 

equations with the aid of the grid and write the solutions in correct notation, such as 

 for the equation . 

ANALYSIS 

All students were working with confidence with formal algebraic expressions of 

reasonable complexityand the fact that students of this age were doing so could be 

viewed as impressive after only three lessons. Many of the students were able to 

solve linear equations, albeit some still needing the support of the grid, and express 

their answers in formal notation. However, it is another matter to consider whether 

they were doing any algebra or not, and if so, when that algebraic work started. I will 

now consider each of the six ways of viewing algebra mentioned earlier with 

reference to theseepisodes. 

Algebra as appearance of letters 

This would mean there was a shift from arithmetic to algebra when I introduced a 

letter in Episode 2. The interesting thing with regard to this viewpoint is that the 

students really did not meet a conceptual difficulty in this transition. There was an 

initial reaction to the idea of a letter but as I did not react to that and moved on to the 

activity quickly, they found they could do the activity just as well as they had done 

earlier when a letter was not present. 

Algebra as working with equations with a letter on both sides of the equation 

This never happened throughout the three lessons and so that would imply that the 

students never began working algebraically and stayed in the realm of arithmetic. 

Algebra as working with or on the unknown 

The students in this study did not manipulate an unknown from one side of an 

equation to the other. However, they did work with the idea of an unknown and this 

was manifested in the particular example in Episode 3 of Julie recognising that x–

2+2 did not change the value of x. Even though she was substituting in a particular 

value for x I argue that her awareness was of the generality of –2+2 and not the 

particularity of x being 4 in this case. So from this viewpoint she might be working 

algebraically even though she struggled with the arithmetic. This is similar to 

Carraher et al. (2001) reporting that their 8-9 year olds were able to articulate why 

N+3–5+4 was equal to N+2. They could account for this irrespective of the value of 

N. Other students in my study were also able to work successfully with the unknown 
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by working out solutions for the linear equations given at the end of the third lesson 

(Episode 5). 

Algebra as an expression of generality using actions, words and gestures 

Here I would like to discuss Episode 4 where Abbas was rapidly moving his pen 

from  to 2 in the expression  when trying to explain why he did not start by 

undoing division in this case. The rapid speed of the pen movement was striking and 

it seemed to be expressing what he was struggling to express in words. I would like 

to argue that he had a sense of generality of which operation he would undo first and 

that this was expressed with a gesture more effectively than words. However, this 

generality concerned a notational convention and as such might be considered 

qualitatively different to Radford‘s (2010b) example of a rule for the number of 

squares in a geometrically arranged sequence. I argue that such a geometric sequence 

is also arbitrary in its nature since there are not reasons why the squares must have 

been arranged how they were. It was a human construct in a similar way to 

mathematical notation. So did Abbas reveal algebraic thinking within that gesture? 

In Episode 5, Julie used a downwards stroke of her pen from the division line to the 

2 below whilst saying ―multiply by two‖. The combination of this gesture on the 

division line whilst saying ―multiplication‖ revealed that she could see one operation 

and think of its inverse at the same time. 

Algebra as seeing the general in the particular and the particular in the general 

In Episode 2 the nature of the activity of re-creating journeys was such that attention 

was placed on the mathematical operations rather than any particular starting number 

I used. This focus of attention allowed a letter to be introduced without causing too 

many issues for the students, since they often never paid attention to the start number 

anyway. I deliberately varied the start number to try todevelop a sense of variation 

and also irrelevance. Fujii and Stephens (2001) talked about the idea of a quasi-

variable where numbers were used to demonstrate a mathematical relationship which 

would be true irrespective of the numbers, such as 78+49-49=78. The particularity of 

the number in both cases is irrelevant. In this way the general can be seen through 

the particular and indeed as the teacher I tried to judge when this was the case for 

most of the students so that I introduced a letter when that sense of generality was 

already present. 

Algebra as an attribute of the mind 

Tahta (1981) has talked about inner and outer meanings of activities. In Episode 1 an 

outer meaning might be to place the correct number into the highlighted cell, 

whereas the inner meaning in the design of such a task for myself was for students to 

begin to form mathematical connections between different cells on the grid (in 

preparation for the later activities involving movements). The students‘ explicit 

attention might have been with the numbers, whereas the work they had to do to 
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achieve placing a correct number was to work out relationships between different 

cells on the grid. I argue that students were working with operations in order to carry 

out these tasks and the awareness of equivalence of different sets of operations was 

certainly operating upon operations. So with this view of algebra, the students were 

working algebraically already with the initial ‗number‘ activity. 

CONCLUDING THOUGHTS 

How we view algebraic activity changes when we feel students have started such 

activity. It might be argued anything from the students in this study not doing any 

algebra at all over the three lessons to them working algebraically from the very first 

activity. Naming is an act to label that which is deemed to be significant and what is 

important is what someone wishes to stress. So the fruits of a discussion about what 

constitutes algebraic activity can come from what each person reveals to be 

particularly significant for them in the developing process students make within their 

work towards algebra and within the algebra curriculum. Not only what is significant 

but why it is significant. That is what I feel is particularly useful in considering the 

question what is algebra? 

NOTES 

1. Grid Algebra is available from the Association of Teachers of Mathematics at 

http://www.atm.org.uk/shop/products/sof071.html 
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The paper is based on a research study aiming at exploiting the potentialities of the 

natural language in the introduction to algebra calculation. By means of activities 

involving both the standard representation of algebraic expressions and the tree 

representation available in the Aplusix CAS, the natural language is used as a tool 

to firstly mediate the meaning of structure of algebraic expressions, and then the 

meaning of some specific structures, i.e. expanded and factorized expressions. After 

a description of the theoretical framework, the design of a teaching experiment is 

presented, and some results are discussed. 

Keywords: natural language, structure, algebraic calculation, Aplusix 

INTRODUCTION 

Many studies deal with difficulties encountered by students (9-10 grade) in 

performing algebraic tasks and explain them as a lack of structural view of algebraic 

expressions (Greeno 1982; Freudenthal, 1983). But, how is it possible to make 

structural aspects emerge? To give a possible answer to this question we propose 

first of all an epistemological analysis of the resources students usually exploit to 

face algebraic tasks. We hypothesize that the usual representation students are used 

to treating algebraic expressions with, could not provide support in highlighting the 

‗structure‘ of algebraic expressions. In this perspective, we agree with Duval‘s claim 

(Duval, 2006) about the need of interacting with different representation systems for 

developing mathematical meanings.  

In the following, we are going to discuss a different type of representation, the tree- 

representation (TR), implemented in the Aplusix CAS (Nicaud & al., 2004).  

According to Morgan & al. (2009), we can classify the difference between the 

standard representation and the tree-representation (TR) as an ‗epistemological 

distance‘, that is, a difference between the affordances of each system with respect to 

specific aspects of the mathematical concept in focus. Such a difference may be 

exploited for developing the meaning of ‗algebraic expression‘ and specifically to 

make the meaning of structure emerge. As it will be discussed below, in the semiotic 

game between the different mathematical representation systems, a crucial role is 

played by natural language (NL). NL may be considered as acting at a meta-level, 

where we observe the emergence of specific ‗linguistic expressions‘, that the teacher 

may use for exploiting the potentialities of TR with respect to the meaning of 

structure of algebraic expressions.  
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The research study
1
 is based on an experiment conducted in the First Year of the 

Upper Secondary School in Italy, when students starts the Algebra course.  

THE THEORY OF SEMIOTIC MEDIATION  

The research is framed within the Theory of Semiotic Mediation (Bartolini Bussi & 

Mariotti, 2008) which allows us to analyse the potentialities of different kinds of 

representations of the same mathematical object (i.e. algebraic expression) with 

respect to a specific meaning (i.e. structural interpretation). Three different semiotic 

systems of representation are used, the standard representation (SR), the tree 

representation (TR) and the natural language (NL), which are considered as artefacts 

according to the Theory of Semiotic Mediation (TSM). TSM emphasizes how the use 

of artefacts to perform specific tasks helps students develop personal meanings 

(Leont‘ev, 1976) related to the actual use of them. Then, through mathematical 

discussions (Bartolini Bussi, 1999) under the guidance of an expert (typically the 

teacher), students' personal meanings may gradually evolve into mathematical 

meanings. In this perspective, the evolution from the personal sphere to the 

mathematical domain strictly depends on the teacher‘s didactical actions. An artefact, 

intentionally used by the teacher, who is aware of her/his crucial role in managing 

this process, is called a tool of semiotic mediation (Bartolini Bussi & Mariotti, 2008, 

p. 754). In this perspective, the functioning of an artefact as a tool of semiotic 

mediation is concerned with the double relationship that such an artefact has both 

with the meanings emerging from its use to accomplish a specific task, and with the 

mathematical meanings evoked in such a use, as they are recognized by an expert. 

This twofold relation is called semiotic potential of an artefact (Bartolini Bussi & 

Mariotti, 2008, p. 754). 

NATURAL LANGUAGE AS A NEW REPRESENTATION SYSTEM: THE 

SEMIOTIC POTENTIAL OF LINGUISTIC EXPRESSIONS 

According to our theoretical frame, both SR and TR are considered artefacts. In fact, 

each of these has a specific semiotic potential with respect to the meaning of 

algebraic expression, in particular TR can be exploited as a tool of semiotic 

mediation with respect to the meaning of ‗structure‘ of an algebraic expression. In 

the semiotic game between SR and TR, NL plays a crucial role in making 

mathematical meanings emerge and develop. Specifically, in the context of 

conversion tasks (Duval, 2006) from SR/TR to NL and vice versa, NL fosters the 

interaction between SR and TR. 

As shown in the following, the repeated use of  specific linguistic expressions, 

develops linguistic patterns which can be viewed, according to Sfard (2001), as 

‗discursive templates‘. The peculiarities of the ‗linguistic expressions/discursive 

templates‘ and their use in the semiotic mediation process allow us to consider them 

as artefacts, that we refer to as discursive artefacts. Moreover, because of their origin 
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in the conversion tasks, these discursive artefacts maintain a tight relationship with 

SR and TR. 

The teacher‘s didactical action consists in making the discursive artefacts serve as 

‗tools of semiotic mediation‘ with respect to the meanings of ‗structure of algebraic 

expression‘, and of ‗expanded/factorized expression‘.  

TREE REPRESENTATION AND STRUCTURAL INTERPRETATION 

We now explain our hypothesis concerning how TR can facilitate a structural 

interpretation of an algebraic expression, and consequently the production of 

linguistic expressions which make the structure of an algebraic expression emerge. 

Within the CAS, students can work with both SR or TR and switch between them 

(Fig. 1). The software automatically gives feedback on the equivalence between the 

algebraic expressions by means of different signs which appear between two 

consequent boxes enclosing the 

expressions. Since TR consists of a bi-

dimensional structure, it can support a 

twofold interpretation. Actually, a tree 

may be interpreted (‗read‘) both from 

the bottom, that is starting from the 

leaves, and from the top, that is starting 

from the root. While proceeding 

bottom-up implies a procedural view of 

the represented algebraic expression, a 

top-down interpretation implies a 

structural view. 

Moreover, when calculating an 

expression in TR, both a procedural and 

a structural interpretation emerge at the 

same time. In fact, according to the 

functioning of the TR representation 

environment, calculation can be 

accomplished only by selecting (sub-) 

trees and substituting them with the resulting values. Algebraically inconsistent 

selections are not allowed, generating an error message. Selection  and substitution 

of (sub-)trees may induce the user to conceive the expression made of chunks (i.e. 

sub-expressions); in other words to conceive it structurally. 

THE TEACHING-LEARNING SCENARIO 

According to the assumptions described above, and focusing on the development of 

the discursive artefacts, the design of teaching-learning process is organized, as 

suggested by the TSM in didactical cycles (Bartolini Bussi & Mariotti, 2008, p.754 

Figure 1. Switching from the standard 

representation and the tree representation of 

an algebraic expression in the Aplusix CAS. 
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). Each cycle starts with activities based on the artefact (in our case,  NL-artefact,  

SR-artefact, TR-artefact), then it continues with written reports, and it ends with a 

classroom discussion guided by the teacher. Discursive templates emerge and 

develop through semiotic tasks assigned to the students; then, in the collective 

discussions, the teacher exploits the semiotic potential of specific discursive 

templates, triggering a semiotic mediation process. In this respect specific discursive 

expressions become discursive artefacts and are used by the teacher as tools of 

semiotic mediation.  

The tasks given in the domain of arithmetic, mainly consisting in conversions 

between different representations, aim at making the discursive template emerge. 

Afterwards, in the introduction to algebra, the design of the tasks is based on 

conversions between SR and NL, and vice versa, with the aim of making the 

discursive templates re-emerge. 

Emergence of discursive template 

The phase in arithmetic starts with an activity  in paper and pencil. Students are 

asked to ‗write at least two different ways of reading each numerical expression 

given‘.  The objective is to collect students‘ NL interpretations of numerical 

expressions.  We hypothesize three different ways of reading, which can reveal three 

different interpretations (Maffei & Mariotti, 2010). The linear interpretation consists 

in translating the inscriptions that the numerical expressions are made of, word by 

word, from left to right; the procedural interpretation consists in translating into 

words the calculation procedure to be accomplished to compute the value of the 

numerical expression; the structural interpretation consists in translating into words 

the structure of the numerical expression and recursively of its sub-expressions. 

The subsequent activities, to be carried out, both in paper and pencil and in the 

Aplusix environment, aim at combining the use of both SR and TR in making the 

structural interpretation emerge. According to our hypothesis, concerning the crucial 

role played by the functioning of TR in Aplusix in making the structure emerge, the 

tasks given at the beginning involve the use of TR, and then gradually do not 

necessarily require its use, although coming back to TR is always possible. In order 

to move towards algebra, we hypothesize the potentialities of ‗empty trees‘, that is 

expressions in TR with internal nodes (i.e. operators) and branches, but without 

leaves (i.e. numbers). The semiotic potential of the empty tree consists in 

representing the relation between terms of an algebraic expression, i.e. its structure. 

Empty trees could emerge either in students‘ solution of tasks, or, in alternative, 

through the teacher‘s intervention in a classroom discussion. In any case, empty tree 

may become a shared sign (Bartolini Bussi & Mariotti, 2008) referring to the 

structure of an expression.  

The main objective of this first phase is to make the different interpretations become 

‗shared templates‘ to be used in analysing and confronting different expressions, and 
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specifically in detecting the structure of expressions given in different representation 

systems.  In other words, the shared templates become ‗discursive artefacts‘. 

Once students are introduced to algebraic calculation they are newly confronted with 

conversion tasks from SR to NL (the plan in the algebra context does not include the 

use of TR). The discursive artefacts originating in arithmetic are exploited by the 

teacher and the students in order to recognize different algebraic expressions having 

the same structure.  

Mediation of discursive artefacts 

The teaching-learning sequence in algebra continues in making the discursive 

artefacts become tools of semiotic mediation with respect to the meaning of 

‗expanded expression‘ and ‗factorized expression‘. More precisely, an expanded 

algebraic expression will be defined as an expression that can be interpreted as a sum 

of monomials, while a factorized algebraic expression as one that can be interpreted 

as a power/product of polynomials. In terms of templates, the first structure can be 

associated with the discursive template ‗the sum of …‘, the second one with ‗the 

product (power) of…‘. The teacher can use these kinds of templates and/or some 

more elaborated ones (e.g. ‗the product of the sum between…and the difference 

between…‘) in order to introduce the meaning of expanding and factorizing. 

SOME RESULTS 

According to the two phases described above, we are going to present some results. 

Namely, the analysis of some students‘ protocols and excerpts from classroom 

discussions that we consider significant to show how discursive artefacts emerge and 

develop, and how they are used by the teacher as tools of semiotic mediation. 

The emergence and the development of the discursive artefacts 

The teaching sequence in arithmetic ends with a discussion which aims at comparing 

the solution given to the following task: ‗Consider the following numerical 

expressions given in SR, in TR and in NL and group those having the same 

structure‘. 

Let‘s now examine an excerpt from the follow-up discussion in which the teacher 

leads students to make the meaning of structure emerge and develop. The teacher 

asks students to explain how they solved the task. The first student who intervenes, 

says that he preferred ―using the trees‖, that is ―converting in TR any expression 

given either in SR or in NL‖, as the teacher states more precisely. Then Marco takes 

part in the discussion. 

Marco: […] I considered only expressions given in standard and in tree and I 

thought how I could put them in natural language. Just some words, not 

only the whole expression, but just some words were enough to make a 

comparison with the expressions given in natural language. 

Teacher: Can you please explain in a clearer way what you want to say? 
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Marco: Let‘s see. If you have a long expression that you can read starting with ‗the 

product of‘ it cannot be structurally equal to an expression given as ‗the sum 

of‘. Well, to be honest I sometimes used trees to compare expressions, but 

even in these cases I put them into words. 

Marco classifies expressions according to the structural interpretations that he 

obtains through converting the numerical expressions, which are given in SR/TR, 

into natural languages. It is evident how Marco uses specific discursive templates as 

artefacts to analyse and compare different expressions. 

After a number of students‘ interventions addressing the use of different discursive 

artefacts; finally, the teacher leads the students to sum up the discussion, and at a 

certain point explicitly asks how they could define the structure of an expression. 

Gabriele: For me it is a tree without leaves. 

Rita: Yes, it can be considered as an empty tree. 

Teacher: So, coming back to the task, how can we determine two or more expressions 

having the same structure? 

Daniele: As I said before, if they have the same tree. 

Teacher:  What does ‗the same tree‘ mean? 

Rita: The trees of the two expressions considered without leaves are identical, 

that is they have the same empty tree. 

At this point, it seems that students refer the structure of a numerical expression to its 

representation as an empty 

tree. It means that they 

seem to be ready to 

substitute to leaves any 

number, that is to be ready 

to place unknowns in the 

leaves. In other words, TR 

has unfolded its semiotic 

potential in ‗converting 

numerical expressions into 

potentially literal 

expressions‘. 

Later in the teaching 

sequence, the discursive artefacts originating within the arithmetic domain re-emerge 

while students are confronted with conversion tasks between different 

representations in algebra. Students produce new discursive artefacts related to 

converting into NL expressions which represent specific formulas used to speed up 

algebraic calculations, i.e. the ‗main products‘ (Fig. 2).  

Figure 2. The formulas of the ‗main products‘. 
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The task given to students consists in obtaining the expanded part of the formulas in 

the Aplusix CAS through following instructions: ‗write an equivalent expression not 

containing parentheses‘. They are also asked to ‗write a conversion into NL of all 

the expressions produced in order to obtain the final expression‘.  

Let‘s now examine the classroom discussion after the task mentioned above. First of 

all the teacher writes on the blackboard all the formulas for the main products (Fig. 

2) and then starts the discussion asking students to read the conversions into NL of 

each algebraic expression written. Most of the NL-expressions offered by students 

are based on structural interpretations. For instance, most of the students interpret the 

fourth expression (Fig. 2) as follows: ―the product between the sum of a and b and 

the difference of a and b is equivalent to the difference between the square of a and 

the square of b‖.  

The discursive artefacts originated in arithmetic, now re-emerge in the algebra 

domain. More precisely, it seems that they mainly consist in structural discursive 

templates, i.e. those originated by the use of TR. 

The discursive artefacts become semiotic mediators 

At this point when students are able to manipulate algebraic expressions, that is to 

produce chains of algebraic expressions (even very long chains) using both 

operations‘ properties and formulas of the main products, the teacher introduces the 

notions of ‗expanded expression‘ and ‗factorized expression‘. She decides to do that 

by exploiting the discursive artefacts that are already available in the class. She starts 

by commenting on the chain that one student has produced in Aplusix, showing it to 

the classroom. 

Teacher: In this chain of equivalence Matteo produced, 

we have two expressions without parentheses. 

Notice that the last expression is shorter than 

the second because Matteo summed together 

two similar monomials. Well, from now on, we 

are going to call ‗expanded expression‘ this 

type of expressions without parentheses and 

which are expressed as ‗the sum of‘ and do not 

contain monomials which are similar. But, we 

have to define another type of expression. So, 

how could we read the expanded expression? 

Matteo: The difference between. 

Teacher: The difference between x raised to the fourth 

and one. Well, let‘s go on. How can you read the first expressions? 

Chorus: The product of. 

Teacher: It‘s ok, the product of. Other suggestions? 

Figure 3. Chain of 

equivalent expressions 

in the Aplusix CAS. 
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Alessandra: The second is a sum of monomials, and the third is easy to read, it is the 

difference of two squares. […] 

Teacher:  Now, suppose I want to produce new expressions which are equivalent to 

those already written, and these expressions should have parentheses. Does 

anyone have an idea? I‘ll put some labels on the expressions in the chain. 

(She puts A, B, C, see Fig. 4). 

Marco: I think one can start from the first expression, namely  from the second 

parenthesis. 

Teacher:  Please Marco, come here and write on the screen what you are saying. 

(Marco goes and writes the expressions in a new box deriving it from the 

first box, the teacher names D the new expression, see Fig. 4). […] 

Teacher:  Have we finished the process or can we go on? 

Marco: The first two 

parentheses have polynomials 

of degree one, the third has one 

polynomial of degree two (the 

teacher highlights it, see Fig. 

4), but we have finished since 

we cannot write this as a 

product of two parentheses of 

degree one. 

Teacher: Ok, then we will 

better clarify what ‗going on‘ 

and ‗stopping‘ mean, do you 

have any other cases in which 

you can go on? 

Valentina: When for instance you have the sum of a squared, two times a and b, and b 

squared. In this case I can write the square of the sum of a and b and then 

nothing else, I would stop. 

Then, all the main products are converted into NL; therefore each SR-formula has its 

counterpart in a NL-formula. 

Teacher: To conclude, in the future I can ask you to produce an expression having the 

form of a sum of non-similar monomials, or to produce an expression 

having the product-power form. So, now I will give you time to work on 

these types of tasks. 

The teacher, on the basis of the discursive artefacts students have used repeatedly, 

creates new discursive artefacts. Specifically, she coins the ‗product-power‘ 

expression and uses it as a tool of semiotic mediation to make the meaning of 

factorizing emerge. The ‗product-power‘ expression  emerges during the discussion 

Figure 4. Chain of equivalence expressions in the 

Aplusix CAS where a sub-expression is 

highlighted. 



Working Group 3 

 CERME 7 (2011)  519 

 

following the factorization task when students produced NL expressions starting 

with ‗the product of‘, ‗the power of‘. The following excerpt shows how the teacher 

introduces the definition of ‗factorized form‘ of an expression using the product-

power as a discursive artefact. 

Teacher: So let‘s go back to the chain we analysed last time. We said that expression 

B has the form of a sum of different monomials, and B and D have the form 

of product-power. So I can definitely call expanded form the first form. 

Now, remember the difference between B and D: in expression B I can go 

on putting it into a product-power form, while in D I have completed the 

process. Well, I will call expression D ‗factorized form‘, while expression B 

does not have a name, we can continue to refer to it as a  product-power 

form. 

 After that, the subsequent task given to students consists in observing a chain of 

equivalent expressions in Aplusix and in deciding which ones are in expanded form, 

which ones are in product-power form, and which ones are in factorized form, 

classifying the different forms of the expressions appearing on the screen. Students 

are also asked to explain how they solve the task‘. Massimiliano gives the following 

comment on the solution he offers. ―As far the expanded form is concerned, I chose 

L because it is the form which is made of a sum of monomials which are different 

and for that reason I did not choose D. As far as the product-power forms are 

concerned I chose A, B, H because if we try to see them as trees then the formula ‗ 

the product between...‘ appears. As factorized forms I chose F and G because they 

could not be simplified anymore.‖ 

Massimiliano justifies his choices (which are correct) in terms of discursive artefacts 

(the ‗product between …‘ for the factorized expression). The explicit  reference to 

TR is significant because it shows the relationship the discursive artefact maintains 

with its origin: the tree representation.  

CONCLUSION 

Our research highlights how the role of natural language goes beyond the necessity 

for teacher and students to communicate in both verbal and written situations. In fact, 

the natural language, on the one hand, is used to focus on the specific features of 

both the standard representation and the tree representation, and, on the other hand, it 

becomes itself a representation system for algebraic expressions, in which the 

emergence of specific templates may be exploited to express and compare different 

algebraic structures. We stress how the semiotic potential of the different artefacts in 

use does not emerge spontaneously, rather it needs a specific didactic organization. 

It‘s only through both the design of specific tasks and the teacher‘s action in 

managing classroom discussions that the different discourse artefacts become tools 

of semiotic mediation to make the structural interpretation of algebraic expressions 

emerge.  
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NOTES 

1. The study has been developed within the European project ‗Representing mathematics with 

digital media‘ (‗Remath‘). 
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This paper describes and discusses the activity of grade 8studentson two word 

problems, using a spreadsheet.We look at particular uses of the spreadsheet, namely 

at the students‘ representations, as ways of eliciting forms of algebraic thinking 

involved in solving the problems ,which entailed dealing with inequalities .We aim to 

see how the spreadsheet allows the solution of formally impracticable problems at 

students‘ level of algebra knowledge, by making them treatable through the 

computational logic that is intrinsic to the operating modes of the spreadsheet.The 

protocols of the problem solving sessions provided ways to describe and interpret 

the relationships that students established between the variables in the problems and 

their representations in the spreadsheet. 

Keywords: algebraic thinking, inequalities, spreadsheet, representations. 

INTRODUCTION  

Representations have a dual role in learning and in mathematical communication. 

These resources serve the purpose of communicating with others about a problem or 

an idea but also constitute tools that help to achieve an understanding of a property, a 

concept or a problem (Dufour-Janvier, Bednarz& Belanger, 1987). This is one of the 

reasons why we consider students‘ use of representations as a lens from which we 

can grasp the meaning involved in the mathematical processes of solving a problem.  

Spreadsheets have great potential for the construction of algebraic concepts, 

including the establishment of functional relationships, the representation of 

sequences or the use of recursive procedures in solving mathematical problems. The 

use of spreadsheets in problem solving has been deeply investigated by several 

authors (e.g., Ainley et al., 2004;Rojano, 2002) and revealed interesting processes in 

the development of algebraic thinking, particularly with regard to the transition from 

arithmetic to algebra. Within a spreadsheet environment, the symbolic representation 

of the relations present in a problem is initiated through the nomination of columns 

and writing of formulas. This is considered a stimulating environment that fosters an 

understanding of the relations of dependence between variables and encourages 

students to submit solutions gradually more algebraic and moving away from 

arithmetical methods (Rojano, 2002).These aspects encouraged us to carry out an 

analysis of how grade 8 students create their representations, how they conceive and 

display the problem conditions on the spreadsheet and how they achieve a solution. 
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PROBLEM SOLVING AND THELEARNING OF ALGEBRA 

Contextual problem solving is an important type of task leading to algebraic activity.  

According to Kieran (2004) the work in algebra can be divided into three areas: 

generational, transformational and global/meta-level activities. Generational 

activities correspond to the construction and interpretation of algebraic objects. 

Transformational activities include simplifying algebraic expressions, solving 

equations and inequalities and manipulating expressions. Finally, global/meta-level 

activities involve problem solving and mathematical modelling, including pattern 

generalization and analysis of variation. 

The nature of algebraic reasoning depends on the age and mathematical experience 

of the students. Students at a more advanced level may naturally use symbolic 

expressions and equations instead of numbers and operations. But for students who 

have not yet learned the algebraic notation, the more general ways of thinking about 

numbers, operations and notations, may be effectively considered algebraic (Kieran, 

2007). Contexts that involve numbers, functional relationships, regularities, and 

other properties, are an essential foundation for the understanding of algebraic 

structures. For instance, writing symbolic numerical relations may favour the use of 

letters. However, the use of technological tools allows other representations for such 

relations, as well as new forms of exploration, which may be seen as analogous to 

generational and transformational activities in algebra. Thus, it seems appropriate 

that such new representations, and the mathematical thinking associated with them, 

are included in the field of algebra (Kieran, 1996).Moreover, Lins& Kaput (2004) 

claim that algebra can be treated from the arithmetic field, since there are many 

properties, structures and relationships that are common to these two areas. 

Therefore, arithmetic and algebra may be developed as an integrated field of 

knowledge.In this study we adopt this perspective, considering algebraic thinking as 

a broad way of thinking that is not limited to the formal procedures of algebra.This 

entails separating algebraic thinking from algebraic symbolism (Zazkis&Liljedhal, 

2002). 

SPREADSHEETS IN THE DEVELOPMENT OF ALGEBRAIC THINKING 

A spreadsheet supports the connection between different registers (numerical, 

relational, and graphical). One feature that stands out in this tool is the possibility of 

dragging the handle of a cell containing a formula along a column. This action 

generates a ―variable-column‖. Using this tool in problem solving emphasizes the 

need to identify the relevant variables and encourages the search for relations of 

dependence between variables. The definition of intermediate relations between 

variables, that is, the breakdown of complex dependency relations in successive 

simpler relations is a process afforded by this tool, with decisive consequences in the 

process of problem solving (Carreira, 1992; Haspekian, 2005). As noted by 

Haspekian (2005) a spreadsheet also allows an algebraic organization of apparently 
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arithmetical solutions and this kind of hybridism, where arithmetic and algebra 

naturally cohabit, becomes an educational option that may help students in moving 

from arithmetic to algebra(Kieran, 1996). 

We want to see how this particular functioning of the spreadsheet is a valid route for 

solving problems where the formal algebraic approach is too heavy for the students‘ 

level. More specifically, we aim to understand how far the spreadsheet, while being a 

means to promote algebraic thinking, can relieve the burden of formal algebraic 

procedures and as such can advance the possibility of solving certain types of 

problems. So far, research has shown the value of the spreadsheet in the transition 

from arithmetic thinking to algebraic thinking, but less is known about the utility of 

the spreadsheet to set up an alternative to formal and symbolic algebra and yet 

allowing the development of students‘ algebraic thinking in problems that are 

formally expressed by inequalities (Carreira, 1992; Haspekian, 2005; Rojano, 2002) 

METHODOLOGY 

This study follows a qualitative and interpretative methodology. The participants are 

three grade 8students (13-14 years). They had some previous opportunities to solve 

word problems with a spreadsheet in the classroom, from which they acquired some 

basics of the spreadsheet operation.Before the two tasks here presented, students had 

worked with the spreadsheet in solving other problems for six lessons. All problems 

involved relationships among variables (usually equations) and only one included a 

simple linear inequality. The detailed recording of student‘s processes was achieved 

with the use of Camtasia Studio. This software allows the simultaneous collecting of 

the dialogue of the students and the sequence of the computer screens that show all 

the actions that were performed on the computer. We were able to analyze the 

students‘ conversations while we observed their operations on a spreadsheet. This 

type of computer protocol is very powerful as it allows the description of the actions 

in real time on the computer (Weigand& Weller, 2001).  

The two problems 

King Edgar of Zirtuania decided to divide their treasure of a thousand gold bars by 

his four sons. The royal verdict is: 

1- The 1
st
 son gets twice the bars of the 2

nd
son. 

2 - The 3
rd

 son gets more bars than the first two together. 

3 - The 4
th

 son will receive less than the 2
nd

 son. 

What is the highest number of gold bars that the 4
th

 son of the king may receive? 

Figure 1: The treasure of King Edgar 

From small equilateral triangles, rhombuses are formed as shown in 

the picture. We have 1000 triangles and we wish to make the biggest 

possible rhombus. 

How many triangles will be used? 

Figure 2: Rhombuses with triangles 
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A possible algebraic approach to the problems is presented in table1.Solving these 

problems by a formal algebraic approach, namely using in equalities and systems 

such as these was beyond the reach of these students. Therefore, it is important to see 

which roads are opened by using the spreadsheet. 
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Table 1: Algebraic approach to the problems 

Problem 1 contains several conditions that relate to each other and the statements― 

gets more‖ and ―receives less‖ involve an element of ambiguity and make the 

problem complex, for understanding it, for translating into algebraic language and 

for solving it. Problem 2entails a pictorial sequence that can be translated 

algebraically into a single condition. However, this condition involves a quadratic 

function that does not arise immediately after reading the statement of the problem. 

These two problems represent instances of global/meta-level activities considered by 

Kieran (2004), insofar as they involve functional reasoning and pattern finding 

strategies. They both have in common the search for a maximum value, leading to 

some difficulties when a purely algebraic approach is envisioned. However, a 

spreadsheet provides alternative approaches to both problems that may make them 

clearer to students, facilitating their solution process and efficiently providing a 

solution. We examine how students approached these problems in the classroom, the 

strategies they used, how they connected the variables involved and expressed that 

on a spreadsheet. Excerpts of Excel computer protocols are offered to further clarify 

the description of students‘ activity.  

In solving problem 1, Marcelo assigned and named a column to each of the four sons 

and a fifth column for the total of gold bars (table 2). Then, he started writing values 

in the cells corresponding to the sons in the following order: 2
nd

, 1
st
, 4

th
 and 3

rd
, as 

follows: choosing a value for the 2
nd

 son, then mentally doubling it for the 1
st
 son; 

subtracting one unit to the 2
nd

 son‘s number of bars to get the 4
th

 son‘s; add the three 

values of the 2
nd

, 1
st
, and 4

th
 sons and calculate the difference to 1000tofind the 

3
rd

son‘s number.In another column, the student entered a formula that gives the total 

of gold bars and served as control for the total number of bars (1000).  
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xls file xls file (command ―show formulas‖) 

Table 2: Print screen of Marcelo‘s representation  

Although Marcelo did not display the relations between the number of bars of the 

four brothers -using formulas or otherwise-he kept them always present in his 

thinking. The task required a greater effort for the student, since in each attempt he 

had to recall the relations, while carrying out the calculations mentally.  

Marcelo:  Teacher, I found the best! [The value 139 was obtained in cell G6]. If I 

choose 150 [for the 2
nd

 son]it won‘t do. I‘ve tried it. 

Teacher:  But this is not the maximum number of bars for the 4
th

 son, is it? 

Marcelo:  I went from 100 to 150, and it turns out that 150 gets worse because the 

other gets over 450 and the last one falls to 99. 

The teacher asked Marcelo to do more experiments to which he replied that he had 

already made some, for example 160 and 170. So she made another suggestion: 

Teacher:  Here you already got an excellent value and it increased significantly from 

130 to 140 [referring to column E]. So, try around these values. 

The student continued to experiment, always doing the calculations mentally. He 

found 141, confirming that it was the best. As an answer the student wrote:―I solved 

this problem taking into account the conditions of the problem, making four 

columns, one for each child, and trying to find a higher number‖.  

In our view, Marcelo has developed algebraic thinking by focusing on dependence 

relationships between different variables to finding the optimal solution. As he 

stated, he took into account the five conditions of the problem and expressed them in 

the spreadsheet columns. From the standpoint of an algebraic approach, the student 

began by choosing an independent variable (the 2
nd

son‘s number of bars) and 

established relationships to express the number of bars for each remaining son. 
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The diagram above summarizes the translation of the student‘s algebraic thinking in 

solving the problem and shows how Excel allowed dealing with simultaneous 

manipulation of several conditions, by means of numbers, rather then with letters and 

symbolic algebra. It is important to note that the condition set for the 4
th

son 

demonstrates an understanding of looking for the highest possible value, given that 

the difference down to the 2
nd

wasonly one bar.  

Maria and Jessica (Table 3) started to solve the problem like Marcelo, with the 

allocation of columns to the number of gold bars for each son and another column 

for the total of bars. Then, they created a column of integers for the number of bars 

of the 2
nd

son; the number of bars of the 1
st
son was obtained by doubling the 2

nd
son‘s; 

the number of bars of the 3
rd

son was found by adding a unit to the sum of the 1
st
and 

2
nd

sons‘ bars; the number of bars of the 4
th

son was obtained by subtracting one unit 

to 2
nd

son‘s; finally, the last column computed the sum of bars of the four sons. 

Table 3: Print screen of Maria e Jessica‘s representation  

At one point the students got a value higher than1000 in the last column and 

concluded that it was necessary to remove a bar from one of the sons. Yet, it was 

necessary to realize that one bar could only be taken from the 4
th

in accordance with 

the terms of the problem. 

Maria:  It shows 1001, it is wrong! 

Teacher:  And now? 

Maria:  Take one out! Take one out from the 4
th

!... The largest number of bars that 

the 4
th

can receive is 141. 

The diagram below shows the relations as they would be expressed symbolically in 

algebraic language: 

 

 

 

These students formulated two conditions intended to obtain the optimal solution: 

first, the difference between the number of bars of the 4
th

and the 2
nd

 son must be one 
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unit and, second, the difference between the number of bars of the 3
rd

and the sum of 

the 1
st
 and 2

nd
must also be one unit. 

In both solutions, the data show that students use relationships between variables but 

they do it with numbers through the use of the spreadsheet. The fact that they are 

working with numbers does not deviate them from the mathematical structure of the 

problem. On the contrary, it helps them to better understand the problem and to deal 

with a set of simultaneous conditions of different nature: equations, inequalities and 

a free variable. We believe that the thinking involved in either approach is consistent 

with the perspective of Kieran (2007) and Lins& Kaput (2004) on genuine algebraic 

thinking development. 

For the second problem, Marcelo (Table 4) started to introduce the inputs 2, 8, 18. 

Then, he selected these three cells as a cluster and tried to drag them (Figure 3), 

noticing that the numbers generated were not all integers.  

 

 

 

 

xls file xls file (command ―show formulas‖) 

Table 4: Print screen of Marcelo‘s representation  

He eventually abandoned the dragging and called the teacher: 

Marcelo:  I don‘t know if this works... How do I do this? Is there an easier way? 

Teacher:        To move from the 1
st
 to the 2

nd
 how much did you add? 

The student writes in cell E4 the number 6.  

Teacher:  And from the 2
nd

 to the 3
rd

how much do you add?  

The student wrote in cell E5 the number 10, followed by 14 and 18. 

Teacher:  What are you going to do now?  

Marcelo:  If I pull it down [referring to column E] and then by adding this column plus 

this one [referring to column C and column E]... 

The student inserted the formula ―=C4+E4‖ (below the first term of the sequence)and 

generated a variable-column: 

Marcelo:  968! It‘s what we will use from 1000. We have 1000, so it can‘t be more 

than 1000 and 1058 already exceeds. 
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The student tried to find a pattern in the number of triangles. The construction of 

additional figures did not help the student to find a pattern based on the figure. One 

useful approach was to look at the differences between the consecutive terms.  

From an algebraic point of view, this student is using a recursive method to generate 

the sequence of triangles with the help of the arithmetic progression which gives the 

difference between consecutive terms. Excel easily allows handling a recursive 

approach. Somehow it was no longer necessary to find n
th

 element to solve the 

inequality, although the mathematical structure of the problem remained visible. 

 

 

 

Maria and Jessica (table 5) addressed the problem with a similar strategy, noticing 

that dragging the values 2, 8 and 18 did not produce the sequence of rhombi 

presented in the problem. At one point they called the teacher:  

 

 

 

 

 

 

 

 

xls file xls file (command ―show formulas‖) 

Table 5: Print screen of Maria and Jessica‘s representation  

Jessica:  From this one to this one it goes 6 and from this one to this one it goes 10. 

Maria:  From 2 to 8 it goes 6…From 8 to 18it goes 10. 

Jessica:  Oh teacher, we don‘t know how to continue. 

Teacher:  Have you already drawn the next figure to see if there is any relation? 

They drew it on paper, but only half of the picture. 

Maria:  14, 15 and 16. Then 16 plus16 is…32 

Teacher:  And now?... How many will the next one have?  

Maria:  50. 

The students were still looking for a relation between the numbers. 

Maria:  I know what that is... Look... The link is… 

nnn

n

yxx

ny

x

1

1

24

2
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Jessica:  The number plus 4. 

This was the decisive moment to build the column with the differences between 

consecutive rhombuses, and then a formula for the number of triangles.  

CONCLUDING REMARKS 

Our main aim was to understand the role of the spreadsheet in solving two word 

problems, which are expressed by inequalities, and examine how the solutions reflect 

students' algebraic thinking, regardless of the use of algebraic symbolism. It was not 

our intention to consider what students have done without the use of technology, 

since any of the problems demanded an algebraic knowledge that was beyond the 

level of students. In any case pencil and paper solutions could certainly come up with 

methods based on trial and error. We interpreted the students‘ processes based on the 

spreadsheet in light of what would be a possible use of symbolic algebra. Thus we 

intended to make clear students‘ algebraic thinking in establishing the relationships 

involved in the problems. In the first problem, four columns corresponded to the four 

sons and the column for the 2
nd

 son was reserved for the introduction of initial values 

(the input), serving as a column for the independent variable. The remaining columns 

were constructed through relations of dependence. For the second problem, the 

students were not able to express the general term of the sequence, but by counting 

the number of triangles in the sequence of rhombuses they used the differences 

between consecutive terms to generate the former sequence recursively. As reported 

in some studies students when confronted with more demanding sequences tend to 

use the difference method (Orton & Orton, 1999).We found that the spreadsheet 

helped the students to establish relations between variables, expressed through 

numerical sequences generated by the computer, and also with the use of formulas to 

produce variable-columns. We claim that algebraic thinking was fostered by the 

affordances of the Excel in generating the rules of the problems. This result resonates 

with other investigations such as Ainley et al. (2004) but it also highlights the 

structure of students‘ algebraic thinking expressed in a particular representation 

system. It provided a clear indicator of how students interpreted the problems in light 

of their mathematical knowledge and their knowledge of the tool. The analysis 

allows us to make inferences about what is gained in using Excel to solve algebraic 

problems, and helps to understand the relationship between the symbolic language of 

Excel and the algebraic language. The use of Excel can be seen as means to fill the 

gap between the algebraic thinking and the ability to use algebraic notation to 

express such thinking. The lack of algebraic notation and formal algebra methods 

does not prove the absence of algebraic thinking. The kind of algebraic thinking that 

emerges from the use of the spreadsheet is the kind that belongs to global algebraic 

activities (Kieran, 2004).We highlight the following features of the spreadsheet in 

algebraic problem solving: (i) It was a way to anticipate complex algebraic 

problems; our study shows how the spreadsheet was a tool that allowed 8
th

 grade 

students to solve two problems that were impracticable from the point view of formal 
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algebra. On the other hand it anticipated forms of algebraic reasoning involved in the 

problems that were elicited by the representation systems embedded in the 

spreadsheet; (ii)It helpedto understand the conditions in the problems; students 

clearly understood the relations between the several variables involved and were able 

to express such conditions and restrictions appropriately. These were not expressedin 

algebraic notation but instead with the language of Excel (iii)It led to a numerical 

approach of an algebraic problem; students found ways to represent the problem 

through numerical variable-columns without loosing the structure of the 

problems.Our perspective of algebraic thinking stresses the distinction between 

algebraic notation and algebraic structures, separated by a gap that is often 

underestimated. We suggest that this gap can be gainfully filled with suitable 

spreadsheet activities. 

Rather than insisting on any particular symbolic notation, this gap should be accepted and 

used as a venue for students to practice their algebraic thinking. They should have the 

opportunity to engage in situations that promote such thinking without the constraints of 

formal symbolism (Zazkis&Liljedhal,2002, p. 400). 
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ALGEBRAIC REASONINGS AMONG PRIMARY SCHOOL 4TH 

GRADE PUPILS  
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University of Rzeszow 

The term ―early algebraic thinking‖ concerns many phenomena connected with the 

introduction to the generalization process on a lower educational level. Algebraic 

thinking does not necessarily consist of formal algebraic symbolism. Young students 

who did not learn formal algebra in school are capable of formalizing a verbal rule 

in which spontaneous algebraic thinking is evident. In my work, I wish to present the 

way in which primary school 4
th

 grade pupils deal with a series of arithmetical-

geometrical tasks that lead to generalization of relations that exist there.  

THEORETICAL FRAMEWORK 

In the Polish mathematical curriculum, we can distinguish two branches: arithmetic 

and algebra. Algebra, as a branch of science, first appears in the 6
th

 grade of primary 

school. So far, in school practice, there has been a conviction that actions on 

algebraic objects such as variables, unknowns, parameters are the central feature of 

algebraic thinking (Polish curriculum: www.reformaprogramowa.men.gov.pl). 

Initially, school algebra is focused on the introduction and use of letters. A letter is 

treated as some kind of a code that abbreviates the recording of a verbal or visual 

situation such as coding the number of carriages in a drawn two-colored train. At 

gymnasium level pupils are very frequently asked to use recordings of algebraic 

notions, regardless of previously formed intuitions.  

I am of the view, that the essence of algebraic thinking is not merely the use of 

algebraic symbolism. Using a letter has been neither a necessary nor a sufficient 

condition for algebraic thinking. It is Radford‘s opinion that ―there is a conceptual 

sphere, where pupils can start their algebraic thinking even if they do not refer (or at 

least in a big extend) to symbolic language‖ (Radford, 2009, p.XXXV). 

Nevertheless, a letter is a generally accepted tool for expressing generality, on a 

certain stage of its understanding. In algebra, thinking is focused on relations 

because objects themselves can be indefinite (Radford 2005, 2009). Using algebraic 

symbolism for writing solutions is an external picture of ―algebraic thinking‖. 

If a student is to use algebraic language (symbolic language) he or she has to 

understand its basic component – a letter. Letters in algebra are used in at least 4 

types of meanings: as general names, changeable values, as unknowns, and as 

constants (Turnau, 1990). Each of these meanings appears in different forms that 

depend on the context. Moreover, the meaning of a letter  in an algebraic record can 

change during the process of solving a task. This poses an additional difficulty in 

mastering and applying algebraic language.  
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Another conviction is that before starting algebra, students need to be competent in 

the sphere of arithmetic ( Hejny and Littler, 2003). Then, algebra appears as 

a ‗superstructure‘ of arithmetic, that is,- arithmetical thinking is a basis for algebraic 

thinking.  

My understanding is different. Arithmetic is, first of all, a science about numbers, in 

particular natural and integral numbers. Arithmetic in this sense is focused on the 

object - a number. Thus, arithmetical thinking concerns mainly numbers and using 

them – it is strictly connected with specific mathematics actions that lead to an 

unequivocal result. Algebra, in my understanding, is mainly a science about 

relations. However, there is an approach which combines arithmetical and algebraic 

thinking. Pupils get a series of tasks in which they have to discover and notice 

certain regularities. Then, they have to formulate noticed rules and finally write them 

down using symbolic language. It is done by generalizing arithmetical reflections 

through modifying constants (which can, according to Turnau, lead to understanding 

a letter as a general name). Then, students move to actions and reasoning typical for 

algebra. Initially, these are ‗early-algebraic‘ thoughts connected with so called ‗early 

algebra‘, which is gaining more and more attention in literature (Mutschler, 2005).  

Developing mathematical thinking is inextricably linked with the process of 

generalization. It is clearly stated in the TGM (Theory of Generic Model) theory 

(Hejny 2002, 2004, 2005). According to this theory, cognition happens on two 

levels: generalization (understood locally, connected with a certain type of situation) 

and abstraction. These levels have a common part – a generic model. For the first 

part it can be treated as an ending stage and for the second as a start.  

The process of building new knowledge starts from gathering experiences which are 

kept in mind as isolated models of certain situations. If this set of experiences is 

large enough, connections among similar isolated models will appear. This net will 

become more and more dense and certain general objects that represent a broader 

group (of concepts, reasoning) will appear. 

The moment when one general model, representing features of all models (a general 

model of a certain situation) replaces a couple of isolated models, students being to 

build mathematical abstract knowledge. Therefore if he/she is not able to create a 

general model for a certain situation, he/she will not be able to develop abstract 

knowledge. 

THE AIM OF THE RESEARCH 

The research shown here is the part of wider research concerning the development of 

students‘ algebraic thinking. The focus is on building their personal web of cognitive 

connections during solving the task connected with discovering mathematical 

regularity. My research question were as follows: 
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 In what way do 9-10 years old students „think‖ about regularities and what are 

their thinking processes while solving tasks in which they have to discover 

and use noticed rules? 

 Do the proposed series of task help to shift attention from arithmetical 

relations to thinking about general relations?  

METHODOLOGY 

The research was carried out in November 2009 among students from the fourth 

grade of a primary school. Twenty 9-10 years old students working in pairs took part. 

The research contained four follow-up meetings, during which pairs of students 

solved tasks. The researcher talked with every group of students while they were 

solving the tasks. All meetings were video-recorded. After the research, the report 

was presented.  

The students had work-sheets, matches (black sticks), ball-point and a calculator. 

Before they started their work, they had been informed that they could solve this task 

in any way they would recognize as suitable; their work would not be graded; the 

teacher would be videotaping their work and that they could write everything which 

they thought was recognize as important on the work sheet. The research material 

consisted of work sheets filled by students, as well as the film recording their work 

and a protocols record from it. 

The research tool consisted of four sheets and each of them consisted of two tasks. 

The tasks were as following: the students make a match pattern consisting of 

geometrical figures – one with time there are triangles and another with time there 

are squares with a side length of one match. In the first two sheets the figures were 

arranged separately, in the second two, they were connected in one row. The 

following sheets concerned: (1) separated triangles, (2) separated squares, (3) 

connected squares and (4) connected triangles. In each of the sheets the problem was 

presented in a frame of two following tasks. They were constructed in such a way in 

order to inspire students to search for and discover occurring rules. 

 

 

 

 

 

 

 

 

 

Figure 1. Research tool – sheet I and sheet IV 

1. How many matches do you need to construct 1, 2, 3, 4, 5, 6, 7 

separated triangles, which length of each sides equals one match? 

Sheet I 

Number of 

triangles 
1 2 3 4 5 6 7 

Number of 

matches 
       

 
2. And how many matches do you need to construct :  

a) 10 triangles  

b) 25 triangles  

c) 161 triangles? 

1. How many matches do you need to construct 1, 2, 3, 4, 5, 6, 7 

connected in one row triangles, which length of each sides equals 

one match? 

Sheet IV 

Number of 

triangles 
1 2 3 4 5 6 7 

Number of 

matches 
       

 
2. And how many matches do you need to construct :  

a) 10 triangles  

b) 25 triangles  

c) 161 triangles? 
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In the first task the students had to give the number of matches needed to arrange 

from one to seven triangles or squares consecutively. The question was, - ‗How 

many matches do you need to construct 1, 2, 3, 4, 5, 6, 7 of  such figures?‘ The 

results were to be written in the table. In the task 2, there was a question about a 

number of matches that would be needed to construct 10, 25 and 161 of such figures 

(Littler, Benson 2005). In order to answer these questions correctly, the students had 

to discover the rule occurring in the first task. 

The focus of this task was to perceive the relevant general rule. According to 

mathematical (algebraic) language the rules were as follows: 3n, 4n, 3n+1, 2n+1. 

The two last rules were equivalent to following statements: 4(n-1)+3, 2(n-1)+3. 

Perceiving these rules was connected with the ability to generalize regularities 

appearing in the initial series (that is an arithmetic sequence; i.e. for the third sheet it 

was 4, 7, 10, 13...) and with ability to draw the conclusion from previous experience. 

The choice of the tasks and the order of the sheets were not random, they were 

clearly inspired by TGM theory of M. Hejny (Hejny 2005). The problem was to 

check if the students would benefit from their earlier experience while solving the 

new tasks. This task and the way of its presentation (four following sessions with 

two-three days break between meeting) were something new for students. So far, 

during maths lessons they had not solved the tasks concerned with the perception of  

the appeared rules and generalization of noticed regularities. 

DEPICTED RESEARCH RESULTS  

In my paper I would like to take a closer look at the work of one of my student. It is 

representative of wider group. Similar reasonings were found in other students. The 

boy, initially, worked together with his friend but his last two sheets were solved 

individually. In my analysis, I will focus on the third and the fourth work-sheets.  

Sheet III - Kacper 

After getting the sheet, Kacper noticed that it concerned squares again. Although he 

arranged a couple of elements correctly, at the beginning he used the strategy of the 

previous sheet. Fortunately, he quickly corrected his mistake and used the rule ‗add 3 

to the previous number‘ for the chart. Physical manipulations (arranging figures from 

matches) were the basis for generalizations.  

12 Kacper: Y… ten squares it will be … 4 [he is writing 4] and three times nine 
[he is writing under 4: 3x9] twenty seven … thirty one 

13 Teacher: How did you count it? 

14 Kacper: Well because the first square has four  [he is showing on the first 
square and moving away others sticks] and then we always attached in 
this way [he is adding three sticks to the first square] and ten times 
like this. [he is talking and in this same time he is counting and 
writing] (…) 
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15  Kacper: Twenty five … four [he is 
writing 4]    three times 
twenty four … [he is writing 
3x24 and he is counting] 
seventy six … and one 
hundred sixty one … four 
plus … one hundred sixty 
times three … four hundred 
eighty four. 

16 Teacher: Ok., and if it will be one 
thousand squares to 
arranging? 

17 Kacper: [he is writing 4] four plus nine hundred ninety nine times three [he is 
writing algorithm of multiplication 999x3, counting and to the result 
he adding 4]. Three thousand one.  

Kacper, on the basis of the arranged pattern, worked out a rule which he had applied 

to calculating the number of matches in task 2. For this, he used an interesting 

record: he did not write down his calculations in a line but in a column. Above each 

column there was a number 4 which was added to the result at the end. In some cases 

this addition took place in the pupil‘s mind, without any record of that. 

27 Teacher:  Good. So if I gave you a certain number of squares, what advice 
would I get from you? How do I count the necessary matches?  

28 Kacper:  First, from this number I subtract one and this is one so it is four. So 
I‘m left with this number and we multiply it by three. 

When asked how to calculate the number of matches if I know the number of 

squares, the boy gave a general rule that shows the process of calculating the 

required number. The pupil could also write down the given rule in words.   

Summary of work on the worksheet III 

Kacper started to work on the task from gathering physical experiences connected 

with arranging the current pattern. Immediately after getting the task, he noticed a 

similarity with the previous one, from worksheet II – the same basic figure. After 

analyzing the content, he noticed the difference in the layout of figures – this is why 

he arranged three elements before recording the data in the chart. Maybe the first 

association with the worksheet II was so strong that, regardless of correctly arranged 

figures, Kacper transferred the previous rule concerning separate squares onto the 

current situation. He quickly noticed his mistake and, after that, he counted correctly 

in the following part of the task.  

Kacper did not need to arrange figures to solve previous tasks (in the first and the 

second worksheet) This time, the boy arranged three elements. It means that in this 

case, arrangement of figures was treated as a means of discovering a rule. While 

arranging, the boy was focused on finding relations. The knowledge he possesses is 

efficient to the extent that arranging even a small part of the pattern enabled him to 

 

Calculations in the column for task 2 

from the sheet no.3  Application of the 

first rule by Kacper.  
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create a general model for the chart. The manipulation he made facilitates a 

geometrical goal – discovering new phenomena.  

From his puzzle, Kacper isolates the first element – a complete square and the others 

– incomplete ones. This observation helps him to generate a new way of calculating 

the number of matches for a specific number of squares. It is strictly connected with 

the way of arranging. The record of it shows the boy‘s thinking structure: 4+(n-1)x3. 

Justification that the pupil gives when asked by the teacher about the way of 

counting the number of matches in task 2 (14) shows that he drew conclusions after 

arranging only 3 elements. He is also aware of the fact that these conclusions will be 

valid later on. Therefore, he has a developed a general model for the situation 

concerning the whole task, and this model works within the limits of a big quantifier.  

Kacper generalizes the noticed relation, and the generalization he makes has the 

power of a big quantifier.  When describing his rule, he interchangeably operates 

with sizes ‗one square‘ ‗four matches‘ and while giving numbers from 1 to 4 he does 

not add determiners such as ‗a square, a match‘. Also in his record, he limits his 

description only to the ‗instruction of dealing with numbers‘ in which 1 is equivalent 

to 4. For him, such a rule is very clear and legible and he does not feel the need to 

specify it. He deals well with operating with two arbitrary quantities (the number of 

matches and the number of squares). Intuitively, he uses proportions. A written 

record that the pupil makes is meaningful in relation to his own actions.  It is not 

objective, it is strictly connected with a description of the situation that the boy 

found himself in. The record that appeared on a piece of paper is actually not the 

record of a general rule but only the description of that situation (Radford 2009). It 

shows that Kacper has a considerable level of algebraic thinking. Since, in this case, 

his thinking concerns a specific. Local situation, it is not at a general level.  

Sheet IV – Kacper 

After reading the task content, Kacper arranged one triangle and, initially, applied 

the worksheet I strategy again (rule ―multiply number of triangles by 3‖). When the 

teacher focused his attention on the way the triangles are arranged (this time they are 

joined together), the boy arranged the following triangles and then, filled in the chart 

correctly (using the rule ―add 2 to the previous number of matches‖).   

13 Kacper: [He quietly reads task 2 content, starts his calculations] eighteen… 
twenty-one  

14 Teacher:  How did you count it? 

15 Kacper: So I left three of them, because I need three for the first one, and then 
two times nine  

In the task 2, he applied a rule which was analogous to the previous task (as in 

worksheet III), but which took into account the current situation.   

He proceeded with this type of work throughout the whole of task two while giving 

answers to additional teacher‘s questions. When the teacher started asking questions 



Working Group 3 

 CERME 7 (2011)  538 

 

about the number of matches for 1000, 10000 and one million squares, Kacper 

surprisingly changed his strategy, which is clearly visible in the following part of 

their conversation. The change of strategy resulted in discovering a new rule in the 

task.   

27 Teacher: Mhm, twenty thousand and one. And what if I wanted to arrange one 
million? 

28 Kacper: [immediately, without any consideration] two million and one  

29 Teacher: How did you count it so fast? 

30 Kacper:  Well, cause when I did that [points at his record] the ending was 
one…so it‘s the same here…because it seems… 

31 Teacher: How did it happen?  

32 Kacper: Because these…I subtracted one from this and multiplied by two, but 
if I add such one but times two, because there is one more match 
added, because it is like a million of squares but one more match  

33 Teacher:  A million of triangles, now we have triangles.  

34 Kacper:  Yes,… [he sighs, takes sticks and starts arranging a triangle ] So, 
like you see here, I arrange further  [‗further‘ hand movement ] and 
then like this first one, it has three and it looks as if two and one more.  

35 Teacher: I see, so when I told you: one million; you multiplied this million by 
two, right? Is there any other way of counting it?  

36 Kacper: Right. 

When justifying the correctness of the newly discovered rule, first, the pupil refers to 

the results of the previous calculations. He shows that all previous results ended in 1. 

Then, he tries to describe the procedure, in which he highlights the meaning of ‗a 

single match‘ (32). Seeing that this explanation is not sufficient for the experiment, 

he refers to the arranged pattern. He unfolds the first element (a complete triangle) 

into two parts: 1(a ―closing‖ stick) 2 (―incomplete‖ triangle ) The multitude of 

explanations indicates that the reconstruction of the previous knowledge took place 

in the child‘s mind. He associated numeral results with previous triangle arrangement 

strategies, which led him to a new puzzle interpretation. He is aware that this way is 

the correct one, so, in order to check the effectiveness of the new rule, he chooses the 

number of triangles from the task 2b).  

41 Teacher: So, let us check if it works for the previous ones [points at the chart 
and task 2] Would it fit here?   

42 Kacper: Yes [he chooses 25 triangles and counts aloud] twenty five times two, 
this is fifty plus one…fifty-one  

Kacper, without any difficulty, could say it for any number of triangles. When asked 

about the rule, he gave the newly discovered rule: multiply the number of triangles 

by 2 and add 1.  
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Commentary – description of Kacper‘s work on worksheet IV  

As the boy was beginning the task, he had knowledge and experience from the work 

of three previous worksheets. He did not analyze the content  of the first task in 

detail. Seeing the word ‗triangle‘, he arranged one figure, and then he started to fill 

in the chart using the rule which was present in the first worksheet. The information 

about the kind of figure that he has now was more important for him than the one 

about the correct position of it. Only the teacher‘s remark and the arrangement of 

three initial elements of the current puzzle helped him to focus on the pattern 

structure. For the chart, Kacper uses the rule ‗plus 2‘ which presents his way of 

arranging the following elements. The boy, while already while filling in the chart, 

created a general model for the situation described in the task. Even while writing 

down the number of matches for 4 triangles he was aware of the generality. 
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While justifying the way of calculating the number of matches, he stresses the fact 

that the operation of adding 2 will be continued until the end (5). Therefore, we 

assume that he possesses a certain level of generality of the situation. The fact that he 

stresses it himself, proves that this knowledge is important for him. Experiences from 

the work on the task from worksheet III are the basis of it. Isomorphism of the task 

and the way of work resulted in creating a general model for the task ( specifically 

for the chart ), even though the boy arranged only 4 triangles. 

As the boy moves to task 2, he uses an analogous method to the one used in the 

previous worksheet. He unfolds the puzzles into two elements: one complete triangle 

and the rest of incomplete ones, consisting of two matches (16) This is a clear 

reference to the worked out method. Because of the task‘s isomorphism, there is a 

shift from the worksheet III to the worksheet IV.  

For Kacper, the whole task is one, coherent entirety. He does not treat particular 

stages (chart, task 2, additional teacher‘s questions) as separate elements. He 

immediately analyses the results. Because of this stance, he could see a new relation 

that appeared between the number of triangles and matches. This relation was 

discovered on at purely arithmetical basis (analysis of results for 1000, 10000 and 

one million triangles), and after he justified it geometrically. The boy could link this 

arithmetical relation to the puzzle. He noticed, that instead of building one, complete 

triangle (isolating the whole element) and then adding two matches at a time, he 

could start from building incomplete triangles and, in the end, ‗close‘ the entirety 

with one single match.    

When asked about one million triangles, the boy, first, looked at the previous results. 

The previous examples were quite suggestive: 10 triangles -21 matches, 1000 

triangles – 2001 matches, 10000 triangles – 20001 matches. The pupil, noticing the 

analogy between the following examples, was able to see regularity, a certain 

arithmetical relation. This relation helped him to get the result much more quickly 

than the previously used rule. It was because of this that he decided to apply this new 

relation. This discovery was very important for him and, therefore, he used this 

newly discovered principle as a general rule for the whole task.  

This discovery would not be possible without the boy‘s willingness to look for new 

solutions. During research, it was clearly seen that the boy uses his previous 

experiences, while solving new tasks and considering the follow-up examples. He 

was not only motivated to getting the result but he constantly analyzed his data. His 

reflective stance was a crucial element for enhancing the process of discovering 

regularities.    

Creating new relations, joining an arithmetical structure with a geometrical 

representation was possible because of the fact that Kacper possesses general, 

geometrical knowledge (in the sense of a big quantifier, objects as classes of 

abstraction). This knowledge is operational and it is not rigid. 
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The pupil is absolutely aware of the fact that this new rule is correct. The 

examination of the rule for the previously obtained quantities is made only for 

external recipients (41). The chosen numbers 25 which are to be checked are also not 

accidental. It proves that only task 2 can be treated as the essence of the matter. The 

chart is only an introduction for him.   

SUMMARY  

The pupil solved the task from all worksheets correctly. He could notice different 

rules that appeared in particular worksheets. Moreover, he could generalize them. 

Generalized rules were written down by him in words. There was no symbolic record 

of it because it is quite difficult for a primary school pupil. It is possible that while 

solving follow-up tasks from the presented series the pupil would try to present long 

descriptions in an abbreviated form. This would consequently lead to application of 

symbolism – initially, his own symbolism, and then, generally established algebraic 

one. We may successfully introduce the world of algebra to pupils, even at the initial 

stage of their education. However, it is very important how we do it.  
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INTRODUCTION TO THE PAPERS OF WG 4: 

GEOMETRY TEACHING AND LEARNING 

Kuzniak Alain (France),  

Philippe Richard (Quebec), Athanasios Gagatsis (Cyprus), Sava Grozdev (Bulgaria) 

Precious help: Kate Mackrell & Carlo Marchini 

The Working Group 4 on Geometry had more than 25 participants from 12 countries 

all over Europe and from Quebec. During the sessions, the participants discussed 17 

papers prepared for the Working Group and selected among 22 initial proposals and 

15 have been retained for publication. In the continuity of the former Cerme 

sessions, some points can be considered as a common background and readers and 

future participants are invited to have a look on the former reports to know more 

about these points.  

Some points have been developed during former sessions favoring a common 

approach and discussions on the following specific topics : Educational goals and 

curriculum in geometry, use of geometrical figures and diagrams, understanding and 

use of concepts and proof in geometry. More than presenting in details the work of 

our group, we will only give some aspects of our final discussion about the main 

trends involved in didactics of geometry. This can be summarized with the following 

colored diagram. 
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REFERENCES AND TOOLS IN RESEARCHES ON GEOMETRY 

TEACHING AND LEARNING 

A characteristics of the group is certainly the attention the participants give to link 

theoretical and empirical aspects of research in geometry education. As mentioned in 

Cerme6 report, two approaches of using theory in research can be distinguished: 

First, theory can serve as a starting point for initiating a research study. For instance, 

the need to empirically validate or extend specific theories may motivate an 

investigation. Second, theory can act as a lens to look into the data. For example, 

different phenomena and behaviors observed in mathematics classes may evoke 

ideas to the teacher or the researcher for starting research. To start from phenomena 

or data is a valid first approach to research. In this case, theory may enable the 

teacher or the researcher to better understand and interpret the collected data. 

The theoretical framework is considered important when designing a research 

experiment. It informs the a priori analysis undertaken before the research is carried 

out. Undertaking an a priori analysis helps the researchers to set up a didactic 

situation and to predict the common mistakes and misconception students could 

make. After the research has been carried out the same theoretical framework is used 

when carrying out the a posteriori analysis. The a priori and a posteriori analyses are 

then compared. Did what we thought would happen actually happen? 

There were a number of theories which were used by the geometry working group 

when analysing the teaching and learning of geometry. Different researchers often 

used the same theoretical frameworks in different ways. For a cognitive and semiotic 

approach, the Van Hiele levels, Fischbein‘s notion of the figural concept and Duval‘s 

registers were used. For an epistemological and didactical approach, researchers used 

the geometrical paradigms and geometrical work spaces described by Kuzniak and 

Houdement. 

It was noted that researchers from different countries tend to use different 

approaches to research and also that teaching practices differ between countries. This 

can be advantageous when sharing experiences but sometimes leads to 

misunderstandings between researchers. 

MANIPULATION, APPROXIMATION AND PROOF 

The reasoning is expressed by manipulating objects (material or informatics objects) 

or by means of the language tools (natural language, mathematical signs, figural 

register), and it can performed as well during approaches of discovered (inductive 

reasoning, experimental proof) as of validation (deductive reasoning, mathematical 

proof). The mutual relations between proof and approximation were highlighted in 

the solving of real-life problems, from the process of modelling towards the 

interpretation of a geometrical solution in terms of the original problem, including 

identifying the limitations of the solution. Approximation raises the question of the 

perceptual information s̓ limits, the reliability of the figural register and the use of 
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discrete models to represent continuous phenomena during some instrumented 

approaches with dynamic geometry software. In addition to the discretization 

processes, the idea of approximation appears as a fundamental tool in the conceptual 

construction of the geometrical objects that use measurements and the variation over 

time, the notion of order of magnitude, the approximate, involutional or recursive 

shape in the modelling to interpretation cycle, and the dynamic equilibrium between 

―local‖ and ―global‖ representation of the objects – for example, to perceive the 

infinity of the strait line with a segment, to visualise a movement with static figures, 

to see a 3D figure on a plane representation, etc. 

Mathematical proof may be a way of facing approximations by sharing new rules for 

validation that are not based essentially of the material contingency or the 

discretization processes, so that one can leave the sensitive experience and control 

the results in the geometrical model. 

The link between proof and manipulation appeared especially in the teaching 

situation and the use of the didactic materials. It is the nature and the quality of these 

materials that were generally approached, in particular: 

• The comprehension of the space of the possibilities with the a priori or the 

experimented use of the material, and its feedbacks when it is interactive; 

• The physical consistency of the manipulative objects, the logical coherence 

of the properties of these objects and the geometrical models that articulate 

them, of which objects defined using a dynamic geometry environment; 

• The semiotic and instrumented domains of validity in the use of the 

manipulated objects and its relations to the geometrical models. 

If the influence of the material in the proving tasks depends strongly of the teaching 

situation and the didactic contract, it is because the interaction of the pupil with the 

material is in the heart of the formation of the geometrical concepts and processes. 

Finally, it seems obvious that the concepts of approximation and manipulation are 

intrinsically dependent of each other insofar as the approximation is used to model 

discrete properties on manipulation, as with measurements, and the manipulation 

gives meaning in the interpretation of approximation on concrete objects. 

To examine manipulation, approximation and proof in the teaching of geometry led 

us to focus on the three interrelated aspects: using representation, the role of these 

representations, and the functions of proof. These three components have a strong 

impact on conceptualization in geometry, and on proving activity. We shall conclude 

that studying these three aspects closely would contribute our better understanding of 

complex nature of mechanisms of the learning and teaching of geometry. 
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COMPETENCIES TO REALITY RELATED TO GEOMETRY 

Under this title, we underline some aspects of the ‗geometrical eye‘ which allows to 

identify geometry in reality and had always justified the learning of geometry. The 

word ‗reality‘ can be discussed, and we must extend it by including the virtual reality 

offered by computers.  

Some papers focus on geometric transformations and its relationships to movement.  

For more than two thousand years movement disappeared from geometry and was 

hidden in the concept of geometric transformation which assumed the role of 

movement in the exploration of a timeless space. In 1872 Felix Klein‘s research was 

focused on the invariance by transformation and properties of geometric 

transformations as organizing principle of all kind of geometries. As a consequence, 

the concept of space depends on possible transformations. If these concepts of 

invariance and transformation are relevant from cultural point of view, they are also 

a structuring elements of geometrical knowledge at school. Various studies show that 

isometries are suitable also for young pupils as an appropriate way for introducing 

geometrical thinking. Non-isometric transformations are important too and can help 

students and teachers to ground their own intuition on change and movement.  

The use of software in geometry (DGS) makes possible continuous and visible 

transformations of a drawing. However this kind of change is often not a geometrical 

transformation in the meaning of Klein. Nevertheless some studies show its 

importance for the exploration of the geometrical domain and for the learning of 

proof and the impact on the geometrical work space especially with impact on 

visualisation and use of appropriate language and representations.  

On geometric transformations 

1. Carlo Marchini and Paola Vighi. Innovative early teaching of isometries. 

2. Edyta Jagoda and Ewa Swoboda. STATIC AND DYNAMIC APPROACH TO 

FORMING THE CONCEPT OF ROTATION 

3. Xenia Xistouri and Demetra Pitta-Pantazi. ELEMENTARY STUDENTS‘ 

TRANSFORMATIONAL GEOMETRY ABILITIES AND COGNITIVE STYLE 

From geometric transformations to teacher training 

4. Xhevdet Thaqi, Joaquin Giménez and Nuria Rosich. Geometrical transformations 

as viewed by prospective teachers  

5. Lina Fonseca and Elisabete Cunha. Preservice teachers and the learning of 

geometry 

Spatial abilities, figure reasoning 

6. Eleni Deliyianni, Athanasios Gagatsis, Annita Monoyiou, Paraskevi Michael, 

Panayiota Kalogirou and Alain Kuzniak. TOWARDS A COMPREHENSIVE 



Working group 4 

 CERME 7 (2011)  546 

 

THEORETICAL MODEL OF STUDENTS‘ GEOMETRICAL FIGURE 

UNDERSTANDING and its relation with proof. 

7. Athanasios Gagatsis, Paraskevi Michael, Eleni Deliyianni, Annita Monoyiou and 

Alain Kuzniak. Secondary Students behavior in proof tasks: understanding and the 

influence of the geometrical figure. 

8. Annette Braconne-Michoux. RELATIONS BETWEEN GEOMETRICAL 

PARADIGMS AND VAN HIELE LEVELS 

On curriculum and general geometrical work 

9. Boris Girnat. GEOMETRY AS PROPAEDEUTIC TO MODEL BUILDING – A 

REFLECTION ON SECONDARY SCHOOL TEACHERS‘ BELIEFS. 

10. Alain Kuzniak. Geometric work at the end of compulsory education 

11. Caroline Bulf, Anne-Cécile Mathé and Joris Mithalal. Language in the geometry 

classroom. 

Reasoning and technology 

12. Taro Fujita, Keith Jones, Susumu Kunimune, Hiroyuki Kumakura and Shinichiro 

Matsumoto. PROOFS AND REFUTATIONs IN LOWER SECONDARY 

SCHOOL GEOMETRY. 

13. Jürgen Steinwandel and Matthias Ludwig. IDENTIFYING THE STRUCTURE 

OF REGULAR AND SEMIREGULAR SOLIDS – A COMPARATIVE STUDY 

BETWEEN DIFFERENT FORMS  OF REPRESENTATION. 

Dynamic environments 

14. Sue Forsythe. Generating shapes in a dynamic environment.  

15. Kate Mackrell. Integrating number, algebra, and geometry with interactive 

geometry software 
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INNOVATIVE EARLY TEACHING OF ISOMETRIES1 

Carlo Marchini & Paola Vighi 

Mathematics Department – University of Parma - ITALY 

By a teaching experiment, we introduced isometries and their practice in an 

experimental sample of 3
rd

 graders (8 years old), assuming that learning and 

training of isometries might affect the standard geometrical understanding in 

primary school. Comparison with a control sample of the same grade supports our 

hypothesis. 

Keywords: Teaching experiment, Plane isometries, Primary School. 

THE ITALIAN PRIMARY SCHOOL SCENARIO ABOUT ISOMETRIES  

In only one learning target of the Italian primary school new ‗curriculum‘, isometries 

are quoted: «To recognize rotated, translated, reflected figures.» (MPI, 2007). This topic 

must be treated in Grade 4 and/or 5, only by observation and recognition. The 

official document does not pay attention to the different difficulties of diverse kinds 

of plane isometries (Xistouri & Pitta-Pantazi, 2011). Practice with these concepts has 

not been suitably developed. The official curriculum fosters a nominalistic approach 

to geometry, by introducing it in grade 3 (more often in grade 4 and 5) as «To 

recognize, to denominate and to describe geometrical shapes» and also «To measure 

segments by the means of both metre or arbitrary units; to connect the measure 

practice to the knowledge regarding numbers and operations».  

THEORETICAL FRAMEWORK 

Felix Klein in 1872 reorganized geometry suggesting that the ‗content‘ of its 

foundation  is the concept of a group of transformations, therefore the learning of 

geometrical transformation is, at least, a cultural target. Nevertheless these subjects 

run into difficulties in Italian schools. Indeed, the topic is assumed to be unrelated to 

‗true‘ geometry (Iaderosa & Malara, 1998); it is perceived as a ‗different kind‘ of 

geometry for which the teacher has neither traditions nor standards for its teaching 

and assessment, hence it is relegated to an occasional and phenomenological 

practice. 

Research literature suggests classroom activities using isometries for middle school 

(e.g. Gorini (2007) and Bulf (2010)) or exploring using  available software. Research 

about the aims,  introduction, and  use of isometries in primary school received little 

attention. Contributions of Swoboda (2005, 2006, 2007), Jagoda (2009) and 

Marchini & Vighi (2007, 2009) show the early presence of intuitions about 

isometries, from kindergarten. Marchini et al. (2008, 2009) analysed the presence of 

intuitions about isometries and continuity. We assume that standard teaching does 

not pay attention to the children‘s attitudes, preferring geometry made by 

computation and formulas.  
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Our teaching experiment in grade 3 proposes an innovation for improving geometry 

learning, starting from Swoboda‘s outcomes. We hypothesize that by enhancing the 

learning of isometries the standard geometry learning will improve.  

From a cognitive point of view, isometries offer a worthwhile training since they 

require mastery simultaneously of static and dynamic aspects (Jagoda & Swoboda, 

2011). Our experiment uses artefacts which are concrete pieces of paper. They 

encourage a continuous development between different cognitive levels: they ‗call 

on‘ geometric figures by the means of the drawings on them, taking into account its 

idiosyncratic features. The same tile can be ‗read‘ differently, depending on a  

pupil‘s attention (Marchini et al., 2009). We think, thence, that our approach should 

develop a kind of ‗flexibility‘, i.e. the use of a variety of strategies and/or the skill of 

adaptive strategy choice to task specific characteristics, as a resource for mastering 

everyday life problems.  

In the 3
rd

 stage of the experiment we verified, by Escher‘s drawings, whether the 

practice with isometries can be extended from simple drawings to complex non-

standard ones.  

THE EXPERIMENT: Aims and planning 

Experiment aims: 1
st
 - Are isometries a suitable topic for grade 3 pupils? 2

nd
 - Do 

plane isometries learning affect the (above) ‗standard‘ Italian school geometry?  

Positive answers to these questions can support our proposal of the innovative 

introduction (1
st
 aim); isometries could play a relevant role for integrating deeply the 

traditional teacher‘s practice in geometry with transformations (2
nd

 aim) as useful 

tools for improving the learning of ‗standard geometry‘ and geometrical culture.  

We planned: an experimental sample (ES) (40 learners), a control sample (CS) (39 

pupils), a pre-test (PT) in both samples, a treatment in ES, and the final test (FT) in 

both samples, one school year later [2]. The time delay between ES treatment and FT 

was necessary since the ‗standard‘ geometry was introduced in grade 4 in the same 

way in both samples, and we need it in order to detect a possible influence of 

isometries on standard problems. Treatment and assessment tests were the 

researcher‘s duty; ES teachers recorded the treatment sessions, assured the discipline, 

and administered tests. We asked ES and CS teachers to continue her/his projected 

teaching, without reference to the PT. In particular, in the second school year, ES 

teachers avoided reference to isometries. This ‗contract‘ aimed at the similarity of 

both samples. 

THE EXPERIMENT: Pre-Test 

Table 1 is the ‗portrait‘ of ES and CS (Table 1) offered us by the PT administered in 

(2008/2009) before treatment. It resumes the rate of success, and the related 

probability of χ
2
-Test for the statistical relevance of the score differences between 
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samples [4]. Test consists in three sheets, here named Shepherds, Pizza and Patterns [3].  

Table 1. Results of the PT: rate of exact answers and χ2-test probability  

Issues employ everyday language, avoid mathematical terms, require only visual 

estimate regarding perimeters and area and isometries.  

Sample No. 

Shepherds Pizza Patterns PT 

Aver. 

score 
σ z 

Aver. 

score 
σ z 

Aver. 

score 
σ z 

Aver. 

score 
σ z 

ES  38 1.82 1.05 
2.49 

1.29 1.05 
4.01 

2.26 1.14 -

2.56 

5.37 2.61 
1.37 

CS  33 1.33 0.53 0.48 0.61 2.88 0.88 4.70 1.40 

Table 2. Results of the PT: statistical test about average scores 

Table 2 aggregates results of Shepherds‘, Pizza and Patterns questions, with the statistic 

‗z‘. Global ‗portraits‘ of the two samples do not show relevant differences (z = 1.37). 

In PT difference in patterns issues is statistically probable favourable to CS children. 

It can be surprising since the right solutions require a ‗sensibility‘ to isometries such 

as intuition of translation for Pa1 and of rotations for tasks Pa2 and Pa4. This ‗feeling‘ 

could be useful for solving tasks Pz1 (translation/symmetry), Sh1 and Sh3 (rotation), 

but the results of these issues show a statistically relevant superiority of ES children. 

THE EXPERIMENT: Treatment for the experimental sample 

The treatment was planned for six sessions of two hours each, one session per week, 

in three stages, with non-quantitative approach. Its realization lasted 16 hours. 

     2A15  1A16      1A17         2A16       Co10 

Figure 1. Treatment protocols in the order of their presentation to ES classrooms 

The 1
st
 stage (6 hours). In sessions 1 and 2, ES pupils discussed in groups the first four 

documents of Figure 1, realized by other  pupils in another experiment (Marchini & 

Vighi, 2007) in which it is possible to individuate the use of isometries;  for each one 

they recorded the worth aspects, they assessed protocol, and they presented orally 

their ‗conclusions‘. Afterwards, Carlo made an ‗institutionalisation‘ activity, drawing 

on the black board four squares as in Figure 2, reproducing by a schematic way the 

four consecutive tiles as they appear in the upper left corner of the document. Carlo 

asked eventual ‗tie-in‘ between two consecutive tiles, for recognizing rotated, 

translated, reflected figures (MPI, 2007). For 2A15, in a class the word trasloco (move) 

Sample 

rates 

Shepherds Pizza Patterns PT 
Tot Sh1 Sh2 Sh3 Sh4 Tot Pz1 Pz2 Pz3 Tot Pa1 Pa2 Pa3 Pa4 Tot 

ES 45 82 32 24 45 55 29 45 32 76 53 74 24 57 49 

CS 12 88 9 24 33 6 0 44 13 79 73 88 48 72 43 

χ
2
-Test 0.21 43 1.76 99  0.00 0.07 96  80 8 13 2.91   
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came out immediately. For 1A16, in both ES classes, the word specchio (mirror) came 

out without difficulty, looking at horizontal tiles disposition. Hence, during the 1
st
 

session the presence of translation (T) and (axial) symmetry (S) in the construction of 

protocols were detected. Pupils realized that T works in 2A15 both from left to right 

and from up to down, in 1A16, S acts from left to right and T going down.  

During the 2
nd

 session, pupils analysed the 3
rd

 and the 4
th

 protocols. In the 

‗institutionalisation‘ phase, they found in 1A17 the application of S in the horizontal 

and in the vertical. Pupils‘ analyses of 2A16 agreed that its author made a ‗mistake‘. 

The protocol was chosen on purpose, for making evident the presence of a rule in the 

construction of the protocol, by the means of its violation. The different appearance 

of protocols 1A17 and 2A16 could hide the fact that the construction rule is the 

same. In the ‗institutionalisation‘ phase this identity came out. In Vigatto school 

pupils suggested that the mistake was the fact that a tile was turned. Carlo seized the 

opportunity to introduce rotation (R - rotazione), avoiding the discussion of Co10. 

During 3
rd

 session, in Vicofertile school, the discussion of Co10 allowed the 

introduction of rotation.  

The 2
nd

 stage (4 hours). It aims at the consideration of 

isometries as mathematical objects. We prepared a card 

game: three ‗playing‘ cards with the letters T, S and R in a 

jar, and the game board of Figure 2 as an array of two times 

two squares (on the blackboard). The four squares 

determine a cross (it is grey in Figure 2). Now the rule is to 

draw, with restitution, four times one card at a time and to write the letter of that card in 

the empty cross arms, in this conventional order: top - left - right - bottom. Finally a tile 

is placed (or drawn) in the top left board square. Pupils copied the stuff in their 

exercise-book. We gave a homework task with the sequence of letters R, S, R and T, and 

a tile of the type used in 2A16. Children proved the task was impossibile. To single out 

simple instances of impossible tasks is an effective way to introduce pupils to control 

procedures. In the homework discussion, pupils suggested possible different rotations 

of multiples of ‗one quarter clockwise rotation‘. Therefore the cards R1, R2 and R3 were 

added in the urn instead of R. The playing with the new card game concluded the 2
nd

 

stage. In this way pupils produced protocols on the basis of simple [5] rules (Marchini 

& Vighi, 2011) showing a good mastery of isometries. The card game with isometries 

could be used in every school environment  to introduce isometries, both as procedure 

and mathematical objects. In our experiment we avoided ‗structural‘ properties of 

functional composition, but these topics can be useful in other grades.  

The 3
rd

 stage (6 hours). Paola recalled plane isometries through Escher‘s paintings: 

Escher‘s 28 (shortly E28) for translations; E79 for rotations and E12 for symmetry. E55 

presents shapes suitable as a summary of previous plane isometries. The aim was to 

attach attractive and affective aspects to transformations. For each drawing Paola 

asked children, in sequence, ―What can you see in this drawing?‖, then to individuate 

Figure 2. The game board 
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with letters or colours many figures obtained from a starting figure by a suitable 

isometry. In particular, for rotation, she required to individuate ‗rotation centres‘. The 

shape complexity hampered only a few pupils. 

THE FINAL TEST: Analysis of FT 

We chose, on purpose, a test which is far enough (in time and topics) from the 

teaching of isometries. The tasks can be considered suitable for children having 

a standard teaching of geometry; nevertheless the issues require geometrical 

thinking since straightforward applications of rules for perimeter and area are 

not enough. 

The FT (in Enclosure) was administered in 50 minutes at the end of grade 4 in school 

year 2009/2010. It was inspired to some PT items. The issues of the test were 

problematic for children, since they learnt perimeters of rectangles and a few 

about area. The leading idea was to assign problems about three roughly 

‗rectangular‘ figures in which we gave the measure of the length for some 

segments (represented in proportion); for solving them the application of 

isometries can be useful or necessary. Some data are missing; they can be found 

by geometrical thinking and arithmetic computation (with an implicit didactic 

contract suggesting that what looks like a rectangular shape is a rectangle, or 

congruent-like parts of the same shape, are congruent). In our opinion, the 

identifying the missing data requires a sort of deduction in a ‗natural 

axiomatic‘. 

For perimeter of Shape1, six data are given and two are missing; for perimeter of 

Shape2, eight data are given and four are missing [6]. Therefore the computation of 

the perimeter involves long addition with decimals. In the first case it is necessary to 

solve the equation x+y = 5.0+1.5; in the second case, the solution is found by the 

means of the equations 6.5 = 3.0+x+1.5 and 1.0+2.0+y = 4.5. The drawings help to 

avoid algebraic computations since evidence suggests solutions with the help of a 

deduction in a ‗natural axiomatic‘.  

For Area1, it could be useful to add 5.0+1.5, and then to make 4.5 6.5. Otherwise the 

shape can be divided into two rectangles. For Area2 and Area3, all the necessary data 

are given, and searching the missing data can only corroborate the hypotheses of 

congruence of some pairs of pieces from the same shape. The difficulty of computing 

Area3 can be solved correctly in two different ways. 

16 The solution can be found only by insight (Divišová & Stehliková, 2010) i.e. by 

an intuition of congruence, similar to the one required in items of PT, since in Shape3 

there is a semi-circular part for which area 4
th

 graders do not know a formula. This 

way requires only the computation of 4.5×6.5. Thence pupil can return back to Area1 

and Area2, recognizing a local isometry [7] which can be applied to small rectangles.  

17 The simplest way of computing areas Area1 and Area2 is to think that all the shapes 
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become equal to a rectangle 4.5 cm × 6.5 cm, by shape suitable decomposition. 

Congruence of parts of each shape can be proved by appealing to local plane 

isometries. The direct computation of Area1 and Area2 could be considered a sort of 

‗distractor‘, even if it, with the sameness of results, can give the good hint for Area3, 

by recognizing the role of local isometries for semicircles.  

A different analysis of the results is in (Vighi & Marchini, 2011). 

THE FINAL TEST: Results of FT 

We assessed FT protocols in various ways. The simplest is to assign the score 1 for 

the correct numerical value and 0 for the wrong or missing numerical value, as a 

measure of the understanding (Kilpatrick, 2009). Another kind of data is the average 

number of children which try to solve the problems. We consider an attempt as a 

positive behaviour towards the topics, so we label it as ‗confidence‘. Lastly we look 

at solving procedures, disregarding possible mistakes, the ‗competence‘ (Godino, 

2003). We considered a right procedure the product 4.5 × 6.5, or for Area1 and Area2, 

a suitable shape decomposition in rectangles with the corresponding products. As to 

perimeters we considered a right procedure when all the missing data are found and 

summed to the given one, or even if one of them was forgotten, for scarce attention, 

but the finding of the other missing data is a sufficient proof of competence.  

Table 3: Results of the FT: Average values and statistical tests 

The low average score in Table 3 results from many mistakes in computations and/or 

in procedures. We aggregate the scores for perimeters, areas and global. Without 

another table of quantitative data, we can conclude by ‗z‘ statistic that differences 

between the scores of the two samples are not statistically significant. 

Table 3 shows a big difference between confidence, competence and understanding of 

the topics, using these names in our meaning. CS children are more confident about 

perimeter, but the difference is not statistically significant. Moreover ES children 

show a greater confidence with area than the CS children, and this difference is 

statistically significant. The χ
2
-test states that this fact is due to the confidence with 

Area2 and Area3. With data aggregation (perimeter+area), samples difference in 

confidence is statistically probable only for Shape2; difference in competence for 

Average  Perim1 Area1 Perim2 Area2 Area3 Perimeters Areas Total 

ES score 0.18 0.13 0.11 0.24 0.18 0.29 0.55 0.84 

CS score 0.27 0.06 0.03 0.09 0.03 0.30 0.18 0.48 
Statistical test χ

2
=37 χ

2
=32 χ

2
=22 χ

2
 =10 χ

2
=4.08 z = -0.10 z = 1.91 z =1.34 

ES confidence 0.82 0.79 0.82 0.76 0.76 1.63 2.32 3.95 

CS confidence 0.94 0.67 0.85 0.39 0.36 1.79 1.42 3.21 
Statistical test χ

2
=12 χ

2
 = 24 χ

2
=71 χ

2
=0.16 χ

2
 = 0.07 z = -1.03 z =3.39 z=2.06 

ES competence 0.32 0.29 0.26 0.39 0.42 0.58 1.11 1.68 

CS competence 0.39 0.12 0.24 0.12 0.06 0.65 0.30 0.91 
Statistical tests χ

2
 =49 χ

2
 =8 χ

2
 =84 χ

2
=0.94 χ

2
=0.05 z = -0.14 z=3.35 z=2.32 
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Area2 and for Area3 are statistically significant.  

THE FINAL TEST: Analysis and interpretation of the FT results 

In school year 2009/2010, in both samples, measure of length, perimeters for 

triangles and rectangles were taught and area was introduced briefly. The CS teacher 

also dealt with isometries. This substantial knowledge ‗sameness‘ of both samples is 

confirmed by the global FT results of Table 3 for Shape1, which is closer to standards.  

ES confidence presents similar results for perimeter and area. For CS, instead, the 

differences about perimeters are statistically significant, both for confidence and 

competence. Moreover there are statistically probable differences for confidence 

with Area1 and Area2, and for Area1 and Area3.  

The greater number of missing data could be an obstacle for determining Perim2: from 

Table 3 it seems that the reductions in average scores should be provoked by 

mistakes in the sum because of the number of addends. Only one protocol seems to 

determine smartly Perim2 by adding 1 cm (or 0.5 cm twice) to Perim1.  

Few protocols used an explicit procedure. We got 7 protocols (6 of them in ES) in 

which pupils obtained the same results all for the three problems with area (even if 

wrong). As regards scores, the number of right computations is lessened: we detect 4 

cases, 1 of them in CS. Equality of Area2 and Area3 only is affirmed by 3 ES pupils and 

1 CS child. 

An ‗isometric thinking‘ can be present in 10 ES pupils since at least one perimeter is 

computed wrongly by the sum 4.5 + 6.5 + 4.5 + 6.5. In fact, 5 of them applied the 

correct procedure at least once for area (4 of them for both areas). They seem to be 

aware of isometries, but unaware that local isometry preserves area, but does not 

preserve perimeters. 

In Area2 and Area3 are involved local roto-translations; for Area1, instead, we can 

consider local translation or local axial symmetry (as stated explicitly by one CS 

pupil). It could be relevant to the  fact that the application of procedure identifying 

Area2 and Area3 is the most frequent (10 ES, 1 CS) and when a pupil individuates the 

equality of Area1 (the simplest) and Area3 (the most difficult), then s/he possibly comes 

back for obtaining the same result for all the shapes. On the basis of the previous 

remarks, of Table 3, and by the fact that children can determine Area3 only by intuition 

of a local roto-translation, we can state that in CS a method based on local translation / 

symmetry is applied more than the one requiring roto-translation. The ‗equality‘ of 

average confidence for Areas in ES could be justified with the previous learning of 

isometries.  

We cannot exclude the point that even if the same school topics were presented in 

both samples, other factors could affect the results. 

COMPARISON BETWEEN PT AND FT 



Working group 4 

 CERME 7 (2011)  554 

 

We can compare the results of FT and PT taking in account the ‗sameness‘ of 

intuition/knowledge necessary for solving the tasks. The relevant differences, mainly 

for area questions, between the two samples in FT can follow from an evident initial 

difference in PT results as regards to problems from which FT issues were inspired. 

Notice that in the PT we did not ask quantitative results, therefore we think as 

unsuitable to compare PT with the FT scores. The difficulties of the passage from 

qualitative to quantitative can justify some results of Table 4. 

A qualitative treatment can be assessed with children‘s confidence and competence. 

Thence we compare the PT and FT looking at the average number of children who 

improved (equalled, made worse) their performance from PT to FT [8]. The last two 

columns of Table 4  are obtained by aggregation of all FT task results the PT task 

results.  

Table 4. Comparison of FT and PT: Average number of change in performance 

Negative sign in Table 4 is a warning: the ‗intuitive‘ test gave a better result than the 

quantitative task. This fact could be a consequence of little attention to a practice 

promoting the evolution of child‘s idea towards a more complete knowledge. 

CONCLUSION AND DISCUSSION 

The research has clear aims, but during its implementation we faced other issues: 

 Does practice with non-conventional shapes help pupils in FT tasks? b) Does the 

treatment improve flexibility in our meaning? c)Does the treatment improve pupils‘ 

performance in FT tasks? 

Research 1
st
 aim had a big number of corroborations, during the treatment (Marchini 

& Vighi, 2011) and also with the permanence of the taught concepts one year later 

e.g. by words or drawings mention of isometries in the 50% of ES pupils. Only 5 CS 

pupils prove their acquaintance with isometries; they testify that the same arguments 

were introduced in their CS class and, by results comparison, the relevance of 

treatment in ES. Therefore the 2
nd

 aim of our research has been achieved. 

Area problems distinguish the most (Table 3) the confidence difference between 

samples. The ‗distance‘ of our shapes from school practice can be measured by the 

Average 
no. 
children 

Perim1 & 

Perim2/Sh4 
Area1/Pz1& Pa1 

Area2 & Area3/Sh1, 

Sh3, Pa2 & Pa4 
FT/PT 

Confid. Comp. Confid. Comp. Confid. Comp. Confid. Comp. 

ES improve 0.66 0.29 0.42 0.11 0.76 0.39 0.82 0.29 

ES equal 0.29 0.53 0.45 0.32 0.08 0.21 0 0 

ES worsen 0.05 0.18 0.13 0.58 0.16 0.39 0.18 0.71 

ES balance 0.61 0.11 0.29 -0.47 0.61 0.00 0.63 -0.42 

CS improve 0.70 0.33 0.64 0.12 0.36 0.09 0.36 0.06 

CS equal 0.24 0.45 0.09 0.21 0.24 0.18 0 0 

CS worsen 0.06 0.21 0.27 0.67 0.39 0.73 0.64 0.94 

CS balance 0.64 0.12 0.36 0.06 -0.03 -0.64 -0.27 -0.88 
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average confidence, which values diminish from Shape1 to Shape3 for CS. The same 

values are nearly constant for ES pupils which show familiarity with complex shapes. 

Perimeter and area of FT shapes cannot be found by application of ‗one‘ rule. They 

could block diligent pupils able to solve standard exercises. The FT tasks require 

insight (Divišová & Stehliková, 2010) or more flexibility and an inventory of 

geometrical tools going far beyond of the simple formulas for rectangles. Flexibility 

also has been helped by practice with isometries and complex and non-regular shapes. 

It is worth the improvement of competence of ES in comparison with CS for area 

questions (Table 3). Therefore issues a) and b) have positive answers.  

Issue c) has a more complex answer. The samples present many differences which are 

favourable to ES versus CS, even if, often, without a statistical relevance. Table 3 

affirms that ES pupils show a greater confidence with FT questions since there was an 

improvement of performance from PT to FT (Table 4). In this sense the treatment had a 

good effect. We can assume ES children were in better position for connecting new and 

treatment knowledge (Mayer, 2002). But the competence performances (Table 4) do 

not support this statement, even if diminution is favourable to ES. Therefore we could 

conclude that there is a wide field of research to be investigated assessing our issue c).  

NOTES 

1. Work done in the sphere of Italian National Research Project Prin 2008PBBWNT at the Local Research Unit into 

Mathematics Education, Mathematics Department, Parma University, Italy. 

2. We thank teachers Ferrarini (Vigatto - PR), Tomasini (Vicofertile - PR) for their participation to ES. and 

Mancastroppa (‗Corazza‘ of Parma) for CS. From PT to post-test (here named final test, for a distinct acronym, FT) the 

samples changed for the absence of some pupils. Our samples for the statistics are reduced to the ES 38 pupils and the 

CS 33 children which took part to all PT and FT activities  

3. The PT presented three sheets (30 minutes each) which were administered in different days. The issues are freely 

inspired from literature: Shepherds from Marchetti et al. (2006), Pizza from Vighi (2010) and Pattern from I.Q. folklore. 

Notice that Vigatto schoolboys treated the original Vighi (2009) issues in the school year 2007/2008 (when they are 2
nd

 

graders). We assume that difference of questions and elapsed time made this previous experience irrelevant. 

4. 

In the tables we single out with boldface 

font the relevance of a statistical test. 

 

5. I.e. the rule which is explicated for the 

first four tiles is extended to the whole protocol (cf. Marchini & Vighi, 2011). 

6. With Perimn (Arean) we refer to the task of computing perimeter (area) of Shapen. 

7. With ‗local isometry‘ we want to consider a bijection such as some part of the figure remains fixed and some other 

parts of the same figure are isometric. Thence a ‗local isometry‘ could be globally an example of a non-isometric 

transformation. The Enclosure examples can explain this concept. 

8. The comparison of FT with PT is realized as follow. For each pupil the change of performance in confidence (in 

competence) is given by the sign of difference between the sum of results of FT task, and the corresponding PT issues, 

both normalized at 1, dividing by the number of tasks. 
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Enclosure 

Calculate perimeter and area of Shapes 1 and 2 (measures are in centimetres). Then explain your 

solution. 

Calculate the area of Shape 3 
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Our research was based on arranging many different didactical situations that could 

be the source of intuitions for different geometrical transformations. In this case 

study, we deal with the concept of rotation. On the basis of different experiences, we 

were looking for the answer to a research question: how should we create a 

coherent picture of a geometrical transformation that enables us to understand the 

concept both statically and dynamically. The analysis of students‘ behavior 

displayed a number of common properties related both to static and dynamic 

understanding of the concept. Our work also reveals that intuitions can contain 

elements which are inconsistent with the definition of rotation 

Key-words: isometries, geometrical intuitions, rotation. 

INTRODUCTION 

According to Piaget, in the case of logical – mathematical concepts, we en-counter 

the interplay of operations, separated not from the perceived objects, but from the 

actions taken on them (Piaget & Inhelder, 1999). In Piaget‘s view, the transformation 

of reality is of fundamental significance and action is the tool for that transformation. 

In accordance with this idea, perception (vision) influences the formation of logical – 

mathematical thinking to a small degree; including geometrical thinking. To support 

such a standpoint, Aebli quotes Piaget‘s views: 

Investigating what activity is itself, we repeatedly verified its great importance contrary to 

the importance of an image. Geometrical view is, indeed, an active one as it mostly 

consists of potential actions, shortened schemata of effective actions or anticipatory 

schemata of future actions: in case of the lack of effective action, the view is inadequate 

(Aebli, 1982). 

Uncritical implementation of Piaget‘s views in the field of geometry methodics raises 

many objections worldwide (Clements, Battista, 1992; Clements at al.,  1999, van 

Hiele, 1986). It is generally believed that the development of geometrical concepts is 

different from that of arithmetical ones (Gray, Pinto, Pitta & Tall, 1999; Hejný, 1995, 

Vopĕnka, 1989). The process of forming geometrical concepts has been the focus of 

a number of theories, of which van Hiele‘s (1986) is the most popular. He describes 

the first level of understanding as ―visual‖, connected with non-verbal thinking. At 

this level the emphasis is placed on the ability to recognize shapes, which are 

perceived as a ‗whole‘ and connected with visual prototypes. Not much is mentioned 

about the role of action, although a didactical conception of the theory suggests 

activities with objects (de Lange, 1987). 
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Static Arrangement Figure To Figure 

If we accept the fact that the visual is of significant importance in the first level of 

geometrical cognition, we also have to consider psychological provisions concerning 

cognition. Results of psychological research (Kaufman, 1979) confirm that in the 

process of grasping shapes pictorial designates are of great importance. In addition to 

that, dominance of the whole over the part is the regularity in perceiving shapes. The 

rules of structuring an image investigated in view of the information analysis system 

suggest that regular, symmetrical forms and shapes are the most easily recognized, as 

one element can be predicted from another (Grabowska & Budohoska, 1992). 

Regularities, groups creating some logical wholeness can be elements of a 

composition regulated through visual perception. 

W. Demidow (1989) gives a broad account of the research conducted by 

physiologists concerning the mechanisms governing the recognition of shapes. We 

can also find there information about invariant transformations conducted by our 

eyesight. For example, pictures of different sizes are invariant (unchangeable) to the 

organ of sight (the eyesight identifies them), and the same happens while changing 

the position of an object - but only up to 15 degrees. The mirror image is not 

invariant even though children are born with such a property of perception; as 

humans develop, the eye loses the invariance of mirror images. 

These remarks have an essential meaning in a geometrical environment, referred to 

as ‗patterns‘. Creating bands or mosaics was unequivocally assessed by van Hiele as 

operating on the visual level that did not require internalization of actions. He refers 

to the structures of the first level as optical, structures of  appearance; they are 

manifested in recognizing regularities or certain wholeness. According to this theory 

all perceived regularities are classified as visual structures. The things that inspire 

children, propel them to action and which undergo control and are reflected upon 

are: rhythm, order and regularity. Such action seems to be in accordance with the 

original meaning of Greek ‗symmetros‘ which stood for ‗harmonious‘, ‗well-

proportioned‘. 

The aforementioned sense of order tends to be verified visually by children. During 

the creation of geometrical compositions, the creative process is regulated by 

perception. Hence, propadeutics of geometrical figure to figure relationships may 

reside in the sense of certain order, harmony - specific arrangement of a surface or 

available fragment of space.  

This leads us to the conclusion that in situations where balance is present, stemming 

from an appropriate arrangement of elements that constitute an image,  there is no 

need to introduce movement. Children working in an environment of visual 

regularities do not resort to the idea of movement, placing one object onto the other. 

This interpretation resembles the assessment of the mosaics that have been created 

by humans from the earliest days of history. According to some historians of this 
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discipline, mathematical relations can already be identified in the geometrical 

decorations of items created by the late ice-age man. In the book by Kordos (2005, p. 

23) we read that:  

It is worth paying attention to the richness of geometrical forms used in decorations. In 

particular, it is worth seeing that the ribbon ornaments from the Neolithic period all had 7 

one-dimensional crystallographic groups on the surface. (…) However, we cannot be 

certain that some kind of geometrical reflection was followed. 

Therefore, it seems that recognition of a specific figure to figure position is only a 

static image of this relationship, not connected with the movement of one object onto 

the other. On a certain level and in a certain context, it will be a rather general 

depiction, adjusted by the perception of certain regularity. 

Dynamic Understanding 

The understanding of relationships between figures as a dynamic arrangement of 

space is placed, so to say, at the opposite pole. Acts of perception are important but 

they are not a sufficient source of geometrical cognition. Szemińska (1991, p.131) 

states that perception gives us only static images; through these we can only catch 

some states, whereas by actions we can understand what causes them. It also guides 

us to the possibilities of creating dynamic images. 

The history of mathematics as a scientific discipline shows the importance of the 

transition from a static to a dynamic interpretation of geometrical objects (Kvasz, 

2000). This can be seen in Greek mathematics, in which the traces of general 

reasoning were based on dynamic object transformations. A significant part of this 

geometry was based on constructions, which – in an indirect way – required the use 

of translations, rotations and mirror reflections. The overt description of symmetry as 

a transformation appeared rather late in mathematics – as it can be linked to the 

Erlangen Programme of F. Klein – but the dynamic approach itself is crucial for 

geometry. Geometrical reasoning requires mental transformation of objects.  

In order to understand translation, rotation or axial symmetry as a transformation it is 

necessary to conceive the specific movement that is transforming the initial figure 

into the final one. From a didactic point of view, it is important that such conception 

stems from mental reflection on the phenomenon of movement. This is the idea of 

transformations as a function. If we want to trace the origins of this concept in the 

realm of physics, physical movement of an object will be suitable. Nevertheless, such 

transformation happens in a given time and while making a movement and we can 

possibly trace the trajectory of an object. Everyday experience does not offer the 

possibility of recording consecutive stages of the object‘s movement. On the other 

hand, Piaget‘s widely known results (Piaget & Inhelder, 1973) show that children 

(on the pre-operational level) have great difficulties in movement reproduction – 

they are not able to foresee a movement of an object in space. The process of 

acquiring such skills is lengthy and gradual (Szemińska, 1991). During 
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manipulations, the child‘s attention should be focused on action, not on the result of 

action. It requires a different type of reflection than the one that accompanies his or 

her perception. 

Such a problem is unnoticeable in school practice. Generally it is stated that creating 

their own patterns is a good starting point for children‘s understanding of 

transformations. In some handbooks for teachers, there are suggestions to do 

exercises with changing the figure position such as drawing patterns, mosaics where 

translation, rotation and mirror symmetry are used... Jones, Mooney, (2003), while 

analyzing school curricula in United Kingdom states, that the link between symmetry 

and the various transformations is not always made explicit. In the ―Framework‖, 

for instance, rotation appears to be considered solely as a transformation and the 

opportunity is missed to extend this to include rotational symmetry, even though the 

latter is specified in the statutory National Curriculum. 

RESEARCH ORGANIZATION 

Our research was based on arranging many different didactical situations that could 

be the source of intuitions for different geometrical transformations. Tiles were the 

basic tool for all situations. Patterns imprinted on tiles were different but they all had 

one general rule: on a piece of paper, one has to create an arrangement of tiles. Pupils 

from different age groups – from 5 year old children to gymnasium students took 

part in the research.  This was a multistage  research that started in 2002 and lasted 

until now. The organization of various stages was different. In some situations the 

work of a large group of students was analysed (more than thousand pupils), in the 

others – we observed lessons with only 20 students. Children worked at groups, 

during their regular activities. Some working sessions were videotaped. We observed 

and analyzed children‘s behavior during their work and we analyzed their 

worksheets. On this basis, we estimated to what level classes that we propose can be 

treated as the basis for creating the picture of specific isometries by children.  

In this case study, we will deal with the concept of rotation. We will present 

examples of results and commentaries connected with the following didactical 

situations:  

18 Creating a tiled floor by 4-6 year old children  

19 Creating a free tile composition by 10 – 13 year old children  

20 ‗Guided puzzle‘ with a suggested subject area and musical background.  

21 ‗Domino‘ task ( 12 year old children )  

The first two situations concerned static situations, and the following two were 

associated with movement.  

Research questions were as follows:  
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1. What intuitions connected with rotation will appear either in static situations  or 

dynamic ones?  

2. Which of those intuitions should we enhance and which should we discourage  

during the further stages of mathematical education?  

3. On the basis of different experiences, how should we create a coherent picture of a 

geometrical transformation that functions as the one that enables us to understand the 

concept both statically and dynamically?  

RESEARCH AND OBSERVATION RESULTS  

In children‘s work, intuitions of rotation appeared in different forms. Each of them 

stressed a different rotation property that together exist in a mathematical 

understanding of rotation on a plane.  

STATIC SITUATIONS  

A. Puzzles – filling the floor  

a) Arrangement of one figure to another using a particular angle.   

  

b) Arrangement of figures around a particular centre. Figures in this arrangement do 

not have to change their positions in relation to privileged  directions. They only 

‗surround‘ one chosen element.  

    

   

Milosz, 6 years old. A four-leaf clover was a 

central figure in his composition. The rest 

stressed the central figure, surrounding it with 

contrasting elements and closing it within 

symmetrical frames.  

 

Julia, 6 years old. The process of gluing started 

from the central part of the paper sheet. Then, 

the girl tried to surround the circle with bells but 

she managed to do it only partially. In the 

following part, she focused on different 

regularities.  

 

Ania, 6 years old. In this work, the child tried to fill the 

plane with congruent figures arranged one to another 

using a particular angle. The size of the angle was 

dependent on the shape of the tool but it is clearly seen 

that the child was interested in a frequent change in the 

basic figure‘s position.  
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c) ‗Along the edge‘ arrangement, directed inwards. In certain places, especially at the 

corners of a sheet of paper, motifs are created. They are directed to a common point 

of the inside – diagonal intersection  

 B. 

Puzzles – free activities 

Older pupils, whose task in the initial stage was to arrange a free tile composition, 

worked in similar ways to those described above. Much of their work spontaneously 

realized  the idea of symmetry –  axial symmetry was the most frequent one. Going 

‗beyond‘ such arrangement did not happen often. In the observed group there were 

only two works where we can find traces of the idea of rotation.  

 

 

 

 

 

 

 

 

 

 

 

 

Both of these works can be classified by categories distinguished in 6 year old 

children‘s work. The first of these reflects the ‗along the edges‘ arrangement idea, 

where the corresponding elements are in the opposite corners of a rectangular sheet 

of paper. Some deviations from the arrangement reflecting real rotations (elements 

marked with an oval) indicate that the child, during her work, did not make any 

manipulations of a sheet of paper to check the arrangement of elements.  

Krzysiu, 13 years old. The pupil started his work 

from circles placed in the opposite corners of the 

paper (but the placement of dots is not correct). 

Then, he diagonally moved inwards. At the end, 

he glued elements at the corners. The placement of 

glued elements shows that point symmetry was 

present in his arrangement strategy.  

 Ala, 13 years old. Her work is an example of a 

perfect rotation, while the parts of the puzzle have 

an opposite orientation (the central part – 

clockwise orientation, circles in the corners – 

anticlockwise orientation).   Rotation was present 

in the girl‘s arrangement strategy from the 

beginning because it is impossible to see axial 

symmetry in her puzzle.  

 

Boy, 7 years old. He started gluing from the frame. 

He managed to construct two elements in the upper 

parts such that they were symmetrical to each other. 

However, despite visible attempts to create 

corresponding elements, he could not repeat the 

same thing for the lower parts. In the central part, 

he only placed a symmetrical figure consisting of 4 

tiles.   
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The second work is dynamic but compositionally close to the ‗around the centre‘ 

arrangement. A closed central composition arranged according to a rotational 

movement by a closed wavy line sticks out in the foreground.  Rotation also 

organizes four smaller sets surrounding the centre, but the direction is different. It is 

clearly seen that movements are local. The whole composition is enclosed within a 

symmetrical area determined by a sheet of paper.  

DYNAMIC SITUATIONS  

C. „Directional puzzles‖ 

In another stage of the project with specially prepared music, the children created 

puzzles with a specific theme. Music functions in a natural way, speaking of a sort of 

transition and changing from moment A to moment B. In the assumptions, we 

referred to building dynamic associations with the visual representations created by 

the child. The suggested theme was merry-go-round—the use of rotation. 

The music and the topic actually inspired pupils to create compositions in which one 

could see relations connected with the idea of rotation.  Placing several tiles required 

many full turns of single elements.  Observation of the process proved very 

interesting. Some of the works started by distinguishing the central element and then 

other elements were arranged around it — rotational arrangement. A two-

dimensional pattern with rotational symmetry was formed. Maintaining only 

rotational symmetry was difficult, as can be seen in the children‘s work (fig. b,c).   

Regardless of the external similarity of these creations to work created in the 

previously described stages, these puzzles tried to represent the idea of a specific 

movement. This results mainly from the way of organizing pupil‘s work. Some 

children added tiles with regard to the rhythm of the music. There was also 

a)    c)    d) 

 

 

b)               e) 

 

 

 

 

work where axial symmetry gradually transformed into rotations. Observation of the 

children‘s work did not pose any doubts that they try to match the constructed 

arrangement with rotation—the pupil would draw an oval line with their finger, 

trying to see if the tiles go round one after another (fig.e). While doing this, the pupil 
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would adjust the tiles and rearrange them in such a way that the dot pattern would 

represent rotational and not mirror symmetry. 

D. ―Dominoes‖ 

The pupils (10-12 years old) had the following task: 

How many different ―domino‖ blocks can be created by using two squared  

tiles with the motif presented in the picture below? 

The first solutions were random. Pupils, sitting close to 

one another, could not recognize whether they had the 

same or different solutions. They also could not say 

whether they had all the possible solutions. Moreover, 

they did not know if the arrangements in front of them 

were actually different from one another or the same.  

Such a situation was a good starting point for 

discussion and for  a more ordered way of looking for 

a solution.   

An ‗unfailing‘ strategy was proposed by a different pupil from the class. Below, we 

present his arrangement.  

    

     

     

      

Here, notions like ‗rotation by 90 degrees, 180 degrees, 270 degrees‘ were appearing 

spontaneously. Although each domino block presented a relation of a rotation of two 

congruent figures, this relation was not the subject of research at this stage. For 

pupils, the way of constructing the whole series of dominos was very important, and 

this construction happened through rotating one of the tiles.   

OBSERVATION CONCLUSIONS 

We conclude, that in the static recognition of rotation certain specific properties can 

be found:  

 Rotation is understood locally.  

 The center of rotation is an element which sticks out in the foreground.  One 

of the figures can serve this function. 

There are elements which are inconsistent with the definition of rotation: 

Analysis of this arrangement was a 

starting point for examining the position 

of one object in relation to another. This 

arrangement had the layout of a column: 

the boy started his arrangement from the 

first tile. A transition from one ‗domino 

block‘ to another happened through a 

conscious rotation of the second tile. 
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 During arrangement on a plane, there may be a lot of figures which are not 

congruent to one another.  

 Figures that determine rotation themselves (around a given centre) are not 

rotated towards one another by a given angle. Their shift is rather parallel.   

At the intuitional level of comprehending rotation, a dynamic approach can be 

characterized by the following:  

 Movement representations are varied, strictly connected with a physical 

movement representative.  

 They express only single definitions of rotation properties.  

 A physical rotation of one figure results in the removal of the rotation center 

from the interest domain.   

SUMMARY 

We believe that regular ways of filling a sheet of paper with tiles can be treated as an 

intuition of geometrical transformations, even though initially they are not connected 

with the interiorization of movement. As far as quality is concerned, this knowledge 

is different from the mathematician‘s knowledge, mainly because of the fact that it 

functions by totally different rules. If we want certain relations to be clear to 

children, we need to introduce a ‗rich structure‘ in which not only two figures (e.g. 

polygons) remain in a particular relationship with each other but a certain fragment 

of space is organized according to this relationship. Introduction to the 

understanding of geometrical relationships that function in mathematics as a science 

is created through the feeling of regularity on a statically organized plane. Here, a 

child can arrange and organize tiles on a sheet of paper and ideas arise at the moment 

of reflection on what he or she sees.  

The exterior effects of the work of pupils who create representations for a rotation 

both in a static and dynamic environment do not vary that much. It does not mean 

though, that these approaches can be identified with each other. In both approaches, 

the organization of pupil‘s work which pointed at different pictures associated with 

the performed activity was different. However, since these works (as a final effect) 

look alike, they give the possibility of building an integrated static-dynamic picture.   

Presented didactical examples are not just ‗clear‘ models of the mathematical notion 

of rotating by any angle. It is consistent with our understanding of the constructivist 

approach towards the creation of mathematical concepts. A pupil should function in 

such a rich learning environment that, through gaining various experiences and 

reflecting upon them, he would be able to create his own understanding of isometric 

transformations.  

In spite of this, the relationship between visual recognition of geometrical objects 

and actions that can lead to the creation of dynamic images of such objects needs 

further investigation. 
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ELEMENTARY STUDENTS‘ TRANSFORMATIONAL GEOMETRY 

ABILITIES AND COGNITIVE STYLE 

Xenia Xistouri and Demetra Pitta-Pantazi 

Department of Education, University of Cyprus 

This study investigated 93 elementary students‘ abilities in solving transformational 

geometry tasks and how they relate to cognitive style. A test was developed to assess 

students‘ transformational geometry abilities, which included translation, reflection 

and rotation tasks. Students‘ cognitive styles were assessed using the Object-Spatial 

Imagery and Verbal Questionnaire (OSIVQ) (Blazhenkova & Kozhevnikov, 2009). 

Results suggest: 1) that the elementary students had average performance in solving 

the transformational geometry tasks, with rotation tasks being the most difficult and 

2) that although both spatial imagery and object imagery cognitive styles relate to 

performance in transformational geometry, highly spatial imagery students perform 

better, because their cognitive style gives them an advantage in the case of solving 

the most difficult tasks, those of rotations.  

Key-words: transformational geometry, cognitive style 

INTRODUCTION 

The growing emphasis on geometry teaching during the last few decades has 

modified its‘ traditionally Euclidian-based content, by introducing new types of 

geometry such as transformational geometry (Jones, 2002). There are several 

suggestions that there is limited research on transformational geometry (Boulter & 

Kirby, 1994; Hollebrands, 2003), which is imputed to its‘ underemphasis in 

mathematics curricula. However, it is considered important in supporting children‘s 

development of geometric and spatial thinking (Hollebrands, 2003) and it is related 

to a variety of activities in academic and every-day life, such as geometrical 

constructions, art, architecture, carpentry, electronics, mechanics, clothing design, 

geography, navigation and route following (Boulter & Kirby, 1994). Performance in 

geometric transformations has been previously connected to the holistic-analytic 

types of processing (Boulter & Kirby, 1994). However, despite its‘ rather obvious 

relation to visual imagery and the fact that it has often been connected to spatial 

abilities in literature, there doesn‘t seem to be a study that examines abilities in 

geometric transformations in relation to the visual-verbal cognitive style. This paper 

will study the relation between abilities in solving transformational geometry tasks 

and a new three-dimensional cognitive style model proposed by Blazhenkova and 

Kozhevnikov (2009) that distinguishes between Object imagery, Spatial Imagery and 

Verbal dimensions. Specifically, the aim of the paper was to investigate nine to 

eleven year old students‘ abilities in transformational geometry tasks of translations, 

reflections and rotations, and to investigate the relationship between these abilities 

and the students‘ cognitive style. 
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THEORETICAL FRAMEWORK 

Transformational Geometry in Mathematics Education. 

The inclusion of transformational geometry in mathematics curricula in the early 

70‘s raised an emphasis around the importance of teaching and understanding 

geometric transformations (Jones, 2002). Early studies focus on providing evidence 

for suggesting that teaching geometric transformations in elementary and high school 

education is feasible and may have positive effects on students‘ learning of 

mathematics (Edwards, 1989; Williford, 1972). Later studies focus on more 

psychological aspects, such as students‘ ability and misconceptions (Kidder, 1976; 

Moyer, 1978), strategies for solving transformational geometry problems (Boulter & 

Kirby, 1994) and configurations influencing students‘ ability in transformational 

geometry (Schultz, 1983). During the early 90‘s, research started to focus on 

investigating a hierarchy that describes students‘ acquisition of transformational 

geometry (Molina, 1990).  

It seems that research in transformational geometry decreased substantially around 

the late 80‘s, leaving unanswered questions on the cognitive development of 

transformations (Boulter & Kirby, 1994). For instance, Moyer (1978) raised 

questions on whether some geometric transformations are more difficult than others 

and emphasized the need to search for a successful sequence of learning activities in 

transformational geometry for children. There were also some issues raised 

concerning individual differences and different types of processing information in 

transformational geometry problem solving (Boulter & Kirby, 1994). It is thus 

important to understand the role that individual differences such as students‘ 

cognitive style may have in their abilities to solve transformational geometry tasks. 

Such information would guide educators in providing further assistance to the less 

able students in transformational geometry to overcome their difficulties. 

The Object-Spatial-Verbal Cognitive Style Model. 

Cognitive styles refer to psychological dimensions representing consistencies in an 

individual‘s manner of cognitive functioning, particularly with respect to acquiring 

and processing information (Witkin, Moore, Goodenough, & Cox, 1977). One of the 

most commonly acknowledged cognitive styles dimension is the Visual–Verbal (e.g. 

Paivio, 1971), which describes consistencies and preferences in processing visual 

versus verbal information, and classifies individuals as either visualizers, who rely 

primarily on imagery when attempting to perform cognitive tasks, or verbalizers, 

who rely primarily on verbal-analytical strategies.  

However, neuropsychological data suggest the existence of two distinct imagery 

subsystems that encode and process visual information in different ways: an object 

imagery system that processes the visual appearance of objects and scenes in terms 

of their shape, colour information and texture and a spatial imagery system that 

processes object location, movement, spatial relationships and transformations and 
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other spatial attributes of processing (Blazhenkova & Kozhevnikov, 2009). The 

distinction between object and spatial imagery has been also found in individual 

differences in imagery (Kozhevnikov, Hegarty, & Mayer, 2002). Recent behavioural 

and neuroimaging studies have identified two distinct types of individuals, object 

visualizers, who use imagery to construct vivid high-resolution images of individual 

objects, and spatial visualizers, who use imagery to represent and transform spatial 

relations (Kozhevnikov, Kosslyn, & Shephard, 2005). Based on these distinctions, 

Blazhenkova and Kozhevnikov (2009) have developed a self-report instrument 

assessing the individual differences in object imagery, spatial imagery and verbal 

cognitive styles, the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). 

Mathematics education researchers have often linked the verbalizers/visualizers 

distinction to mathematical performance (Presmeg, 1986). Nevertheless, the results 

of the relationship between visualisation and mathematical performance are unclear. 

Some studies found that visual–spatial memory is an important factor which explains 

the mathematical performance of students (Battista & Clements, 1998), while other 

studies showed that students classified as visualizers do not tend to be among the 

most successful performers in mathematics (Presmeg, 1986). In the case of 

transformational geometry, although it has not yet been linked to the 

verbalizers/visualizers distinction, it has been connected to spatial ability (Dixon, 

1995; Kirby & Boulter, 1999), thus it is hypothesized in this study that the spatial 

imagery cognitive style will be related to abilities in transformational geometry tasks. 

METHODOLOGY 

The purpose of the study is to investigate elementary school students‘ abilities in 

transformational geometry tasks and the relation of these abilities to the students‘ 

cognitive style. Ninety three students were selected to participate in the study (34 

fourth-graders and 59 fifth-graders), based on their teachers‘ willingness to provide 

access to their classes during school-time. A transformational geometry ability test 

and a self-report cognitive style questionnaire were administered to all students at the 

same week, in groups of approximately 15 students. 

The transformational geometry ability test was used to measure students‘ 

mathematical abilities in the concepts of translation, (axial) reflection and rotation. 

The test consisted of 33 tasks, of which seven were translations, fourteen were 

reflections and twelve were rotations. The test included multiple choice and drawing 

tasks which focused mainly in 1) performing a specific transformation, 2) finding the 

parameters of a given transformation, and 3) identifying the result of a given 

transformation (see Appendix for examples). It is noted that the students were taught 

2-3 lessons on symmetry at every grade, and were informally introduced to the 

concept of transformations but not to the mathematical terms. They were given 40 

minutes to solve the test during normal lesson time. Each correct response to an item 

in each of the tasks was assigned a positive point. Half point was assigned when a 

response was partially correct, for example when a requested transformation was 
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performed correctly, but there was no accuracy in the shapes‘ dimensions or 

orientation. The points were summed up separately for translations, reflections and 

rotations, in order to give the students‘ scores for each type of geometric 

transformation, and also in total to give an overall of each student‘s performance. 

The students were then administered a modified version of the Object-Spatial 

Imagery and Verbal Questionnaire (OSIVQ) to assess the individual differences in 

spatial imagery, object imagery and verbal cognitive style. This is a self-report 

questionnaire, which includes 45 statements with a 5-point Likert scale for students 

to rate themselves on how much they agree with the content of the statement. Fifteen 

of the items measured object imagery preference and experiences, fifteen items 

measured spatial imagery preference and experiences and fifteen items measured 

verbal preference and experiences. Examples of the statements are: ―If I were asked 

to choose among engineering professions or visual arts I would choose visual arts‖ 

(measuring Object Imagery dimension), ―My images are more schematic than 

colourful and pictorial‖ (measuring Spatial Imagery dimension), and ―I usually do 

not try to visualize or sketch diagrams when reading a textbook‖ (measuring Verbal 

dimension). The test was translated in Greek and was modified to be comprehensive 

to elementary students. The students were given 30 minutes to complete the 

questionnaire. For each student, the fifteen item ratings for each factor were averaged 

to create object imagery, spatial imagery and verbal scale scores. 

RESULTS 

The main purpose of the study was to investigate elementary school students‘ 

abilities in transformational geometry tasks of translations, reflections and rotations, 

and how these are related to the students‘ cognitive style. Students‘ means of 

performance were calculated to describe their abilities in transformational geometry. 

The object-spatial-verbal cognitive style dimension was used as predictor variable 

for students‘ performance in transformational geometry tasks. Specifically, through 

multiple regression analyses with criterion (dependent) variable the students‘ 

performance in translation tasks, performance in reflection tasks, performance in 

rotation tasks and overall performance, and predictors (independent) the spatial 

imagery, object imagery and verbal cognitive style scores.  

  SD 

Translations 0.59 0.26 

Reflections  0.54 0.20 

Rotations 0.38 0.21 

Overall 0.49 0.18 

Table 1: Means and Standard Deviations for each type of tasks in the transformational 

geometry abilities test 

Table 1 presents the means and standard deviations for each type of transformational 

geometry task, as well as for overall performance. It appears that students performed 
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slightly better in the translation tasks ( =0.59, SD=0.26), rather than the other 

categories, indicating that these might be the easiest type of tasks for elementary 

school students. Mean performance in reflections ( =0.54, SD=0.20) is next, but 

very close to performance in translation tasks. In order to test these observations, 

students‘ means in translation tasks and in reflection tasks were compared in a paired 

sample t-test analysis, which showed that this mean difference is not significant 

(t=1.842, p=0.069). This finding is in accord with Moyer (1978), who found that 

translations are as easy as reflections. The most difficult tasks for the students seem 

to be the rotation tasks, where this group of students had a much lower mean 

performance ( =0.38, SD=0.21). A paired sample t-test for comparing students‘ 

mean performance in reflection tasks and in rotation tasks revealed this mean 

difference is statistically significant (t=7.266, p=0.000). Students‘ overall 

performance mean in transformational geometry tasks is 0.49 (SD=0.18), which is 

near average, considering zero as minimum value and one as maximum.  

 Translations Reflections Rotations Overall 

Spatial Imagery Cognitive Style .162 .231* .236* .266* 

Object Imagery Cognitive Style .174 .231* .199 .254* 

Verbal Cognitive Style .031 .169 -.097 .050 

* Correlation is significant at the 0.05 level (2-tailed). 

Table 2: Correlations among performance scores and spatial imagery, object imagery 

and verbal cognitive styles. 

The correlations among students‘ cognitive styles and their performance in 

translations, reflections, rotations and overall are presented in Table 2. As can be 

seen from Table 2, the spatial imagery cognitive style is significantly correlated with 

students‘ transformational geometry abilities in reflections, rotations and overall 

performance, while object imagery cognitive style is significantly correlated only 

with reflections and overall performance. The verbal cognitive style dimension did 

not correlate with any of the students‘ abilities in transformational geometry. We 

further examined the nature of these correlations and non correlations between 

cognitive styles and students‘ abilities in translation, reflection and rotation tasks, as 

well as their overall performance in the test. 

Table 3 presents the results of the multiple regressions, using the stepwise method. It 

should be noted that the regression analysis for students‘ abilities in the translation 

tasks did not enter any variables in the equation, which means that none of the 

cognitive style variables - object, spatial or verbal - can significantly predict 

performance in translation tasks. This was expected, as none of these variables were 

significantly correlated to the translation tasks, as seen in Table 2. Therefore, Table 3 

presents the coefficients and levels of significance for predicting performance in 

reflections, rotations and overall. 
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 Reflections Rotations Overall 

 b p b p B p 

Spatial Imagery Cognitive Style 
.154 .209 .327 .005** .266 .013* 

Object Imagery Cognitive Style 
.231 .031* .222 .083 .161 .183 

Verbal Cognitive Style 
.075 .536 -.228 .047* -.068 .554 

* Indicate statistical significant p<0.05 

** Indicate statistical significant p<0.01  

Table 3: Multiple regression analyses with dependent variables reflection tasks, 

rotation tasks and overall performance, and independent variables spatial imagery, 

object imagery and verbal cognitive styles. 

One characteristic that rises from the analysis of the data is that object cognitive style 

can significantly predict performance in reflection tasks (b=0.231, p=0.031). It seems 

that this was the only significant factor for performance in reflection tasks, and it can 

predict more than 4% of the variance of performance in reflection tasks. This means 

that as the object cognitive style of the students increases, their performance in 

reflection tasks of transformational geometry increases also. 

Another important characteristic presented in Table 3 is that spatial imagery 

cognitive style can significantly predict performance in rotation tasks (b=0.327, 

p=0.005) and the verbal cognitive style is negatively related to performance in 

rotation tasks (b=-0.228, p=0.047). The negative sign of the beta in the case of the 

verbal cognitive style means that as the verbal cognitive style increases, students‘ 

performance in rotations decreases. This suggests that students who tend to prefer 

verbal processing are not so successful in solving rotations tasks, while students who 

tend to prefer the spatial imagery processing perform better. Spatial cognitive style 

and verbal cognitive style can explain a proportion of variance of 7.8% in 

performance in rotations tasks. 

In the same way we can interpret the negative relation between the verbal cognitive 

style dimension and overall performance, although it is not statistically significant. 

The last and most important observation form Table 3 is that spatial imagery 

cognitive style is the only significant predictor of students‘ overall performance in 

transformational geometry tasks (b=0.266, p=0.13). The proportion of variance 

explained by this factor is 6%. This means that as far as students tend to prefer the 

spatial visualization processing, their overall performance in transformational 

geometry is higher than those who seem to prefer the verbal and object visualization 

processing of information. This finding is in line with the results in a study by Kirby 

and Boulter (1999), who suggest that performance in transformational geometry can 

mainly be predicted by students‘ score in spatial ability tests.  
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DISCUSSION 

Although transformational geometry is considered important in supporting children‘s 

development of geometric and spatial thinking (Hollebrands, 2003), research in the 

field seems to have left unanswered questions concerning children‘s abilities in 

performing transformations. And despite the rather obvious relationship of 

transformational geometry to visual imagery, it has not yet been related to the visual-

verbal types of processing. This study goes a step further, by investigating students‘ 

abilities in transformational geometry tasks of translations, reflections and rotations, 

and relating them to two distinct types of visual processing – object imagery and 

spatial imagery cognitive style - and verbal cognitive style. 

The results of this study have shown that the students‘overall performance was 

average in these transformational geometry tasks. An important finding of this study 

is an indication of hierarchy in students‘ understanding of transformations: 

translations and reflections are equally difficult to students, while rotations seem to 

be more difficult. This is in accord to Moyer‘s (1978) findings. However, another 

study by Schultz and Austin (1983) suggests that translations are easier compared to 

reflections and rotations, whose level of difficulty is influenced by the direction 

(vertical, horizontal, diagonal) of the transformation. Apparently more studies are 

required in order to clarify the hierarchy of difficulty in different types of geometric 

transformations, by considering configurations such as direction. 

In regard to the relation between transformational geometry abilities and students‘ 

cognitive style, the results of this study show that the spatial imagery cognitive style 

is a significant predictor of performance in rotation tasks, but more important to 

overall performance in transformational geometry tasks. This was expected, 

considering the connection between transformational geometry performance and 

spatial abilities found in the literature (Dixon, 1995; Kirby & Boulter, 1999). On the 

other hand, the object imagery cognitive style seems to be related to transformational 

geometry abilities as well, but only by contributing significantly in predicting 

performance in solving reflection tasks. This was unexpected, since object imagery 

cognitive style is usually more related to visual arts rather than scientific fields 

(Kozhevnikov, Kosslyn, & Shephard, 2005). Perhaps further research with a bigger 

sample of students would help clarify and validate this finding. 

However, a possible explanation for this finding could be that highly spatial 

visualizers were rather more flexible in their strategies and could manipulate both 

reflections and rotations tasks, whereas higly object visualizers were successful in 

reflections tasks, but couldn‘t handle the most difficult tasks of rotations. Object 

visualizers may have been able to see the image be reflected as a whole and then find 

its‘ position analytically over a single axis, but were inhibited in keeping track of the 

orientation of an image in space when rotated. This point of view may lead to the 

conjecture that, although students with high visualization abilities - either spatial or 

object imagery – can perform well in transformational geometry tasks, it is the ones 
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with high spatial visualization abilities that are flexible enough to deal with the most 

difficult tasks, those of rotations, and who eventually outperform others. However, 

since this is a quantitative study, further investigation with qualitative data of object 

imagery and spatial imagery cognitive style students‘ strategies for solving reflection 

and rotation tasks is needed to provide more evidence and deeper insight.  

The fact that verbal cognitive style did not have a significant positive correlation to 

any type of tasks probably means that students with preference to verbal type of 

processing do not perform so well in transformational geometry tasks, and especially 

in the case of rotations, this type of processing preference may somehow raise more 

difficulties to students‘ task solving. It should also be noted that performance in 

translations tasks was not related to any of the three different types of cognitive 

styles. Although this finding was unexpected, it may mean that the concept of 

translation is more comprehensive to students, regardless to their cognitive style. 

Translation tasks can be solved either visually or verbally: one can either visualize 

the image move as a whole, or one can visualize the image move part by part, or one 

can verbally count the steps to the new position and copy the image. Some 

qualitative research could provide information on how students with different 

cognitive styles solve translation tasks and answer how and why it doesn‘t 

differentiate their performance.  

In closing, we note that this study is a first investigation of students‘ abilities in 

transformational geometry and their relation to cognitive styles. The results 

presented in this paper are initial results and there appear to be some discrepancies 

which are not easily explained. There is still no clear picture for the relation between 

abilities in transformational geometry and cognitive styles, since different types of 

transformations seem to be related to different cognitive styles. The important 

finding is that there is some relation, but further investigation with a larger sample 

and more qualitative data is necessary to clarify its‘ nature. Overall, the results of this 

study suggest that it is helpful to know students‘ cognitive styles, especially to 

educators, to facilitate developing flexible methods of teaching transformational 

geometry to accommodate all types of learning, and also in providing appropriate 

assistance to each student to overcome their difficulties. Perhaps students could be 

guided into applying strategies of processing of their less preferred type of imagery 

effectively in tasks when necessary. This could be a challenging question for further 

research.  
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APPENDIX 

Translations Reflections Rotations 

1. Translate 

the shape 

five boxes to 

the right. 

1. Reflect 

the shape 

over the 

given line. 

1. Rotate 

the shape µ 

of a turn 

clockwise 

around A. 

2. Describe the following 

transformation. 

 

2. Find the 

line of 

symmetry. 

 

2. Find the 

centre of 

rotation. 

 

3. Which of the following is a 

translation of       ? 

a.      b.     c.      d.  

 

3. Which of the following 

capital letters will not look the 

same when reflected over a 

vertical line? 

a. A        b. C        c. X        d. T 

3. Which letter will look 

exactly the same when rotated 

´ turn clockwise? 

a. D       b. E       c. M       d. Z  

 

 

. 
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PROSPECTIVE TEACHERS  
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An empirical study is developed to find the meanings attributed to geometrical 

transformations by prospective primary teachers in Kosova and Spain. The study 

reveals that students‘ previous background had more influence than cultural 

differences.  

Key words: Geometrical transformations, prospective teachers, comparative study 

INTRODUCTION 

A new challenge for teacher training in European Higher Education is to reduce 

international differences, considering immigration processes, exchanges, and 

globalization. A continuing interest of the CERME community is to understand how 

mathematical practices are developed by using cultural writings in different countries 

(Stigler et al, 2000) as culturally situated mathematical practices (Llinares & Krainer 

2006). The way in which mathematics is construed by participants is a hidden 

variable in researching mathematic knowledge for teaching (Andrews, 2009). In 

particular, some authors explore differences in the use of geometry: from natural and 

intuitive to axiomatic perspectives (Girnat, 2008), analyzing and reconceptualising 

their geometric ideas, progressing to higher levels of geometrical understanding. 

There is a considerable amount of research about the knowledge and use of 

geometrical transformations in secondary school (Hoyos, 2006) but less research has 

been conducted for primary schools. It has also been shown that difficulties in 

primary students‘ conceptualizations depend on the weak knowledge of teachers 

(Law, 1991, quoted by Yanik & Flores, 2009), in particular about geometrical 

transformations (Pawlik, 2004).  

Such studies reveal that teachers‘ lack of mathematical subject knowledge and 

confidence in mathematics are contributory factors to the low standard of pupil 

mathematics attainment in many countries. It has also been shown by several authors 

that pre-service elementary teachers have difficulties in determining: (1) the correct 

attributes of transformation and motion to move an object from one point to another; 

(2) the results of transformations involving multiple combinations of figures; (3) the 

use of transformations as mathematically-general operations which require the 

specification of inputs, but as particular actions, each with given ‗default‘ or 

prototypic parameters. It has also been observed that the use of technological devices 

has strong advantages in the use of isometries, because of the possibilities of 

variability analysis (Harper 2003).  

A recent study concerning prospective teachers‘ knowledge of translations and other 

rigid transformations (Yanik & Flores 2009) revealed that scholars (1) started by 
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referring to transformations as undefined motions of a single object, (2) followed by 

using transformations as defined motions of a single object, and (3) the 

understanding of transformations as defined motions of all points on the plane.   

In Spain, studies using Van Hiele‘s levels found prospective primary teachers‘ 

difficulties in using symmetrical notions in an isometry task (Jaime & Gutierrez 

1995), but few proposals were made to analyze teachers‘ ideas qualitatively before 

developing professional tasks. Even the term ―transformation‖ is mentioned only at 

the end of secondary school and does not solve the problem of transition from the 

use of natural environmental geometry in primary school into secondary school 

axiomatic perspectives (Kuzniak & Vivier 2008). Therefore, in our research study, 

we focus on analyzing the influences of prospective teachers‘ prior cultural 

background before developing training activities about learning to teach geometrical 

transformations. We studied and compared the results in Kosova and Spain in a 

bridging collaborative international framework (Jaworski, 2006), where we expected 

to find different conceptualizations in their responses. 

METHODOLOGY 

An ethnographical research case study was planned, with two groups of future 

teachers: 13 students from a 2nd year course at the Faculty of Teacher Training at 

Barcelona University (UB) in Spain, with only one prior mathematical/didactical 

course and 15 students from the Faculty of Education at University of Prishtina (UP) 

in Kosova, with two prior geometry courses based on classic Euclidean geometry, 

but no previous didactical training. Students were 18-22 years old. A prior 

curricular-cultural comparative analysis based on textbooks, official curricular 

proposals and teacher training materials showed deep differences between both 

previous preparation and cultural frameworks (Thaqi, 2009), but is not detailed in 

this presentation.  

The results of an initial semi-structured questionnaire are considered in this paper, in 

order to analyze beliefs, meanings, and prototypes from transcriptions of student text. 

Such a questionnaire is the first step in a wider developmental study in which both 

groups of students have the same training about transformations in geometry (Thaqi, 

2009). 

An initial semi-structured questionnaire was designed by using 14 open (mainly 

contextualized) written questions, together with subsequent interviews considered 

necessary to capture students‘ ideas about the topic (see the main ideas in Table 1). 

Some other questions were added to identify reasoning and specific ethnic-cultural 

elements of geometrical transformations, ideas about teaching and learning, and 

student ideas concerning the future teaching of geometrical transformations.  
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Aspect of meaning of geometrical 

transformation 

Identified Activities 

Terminology. Types of transformation. 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14 

Properties. Relations and hierarchies 1, 3, 4, 5, 6, 7, 11, 12, 14 

Transformation as a process or simple change 1, 2, 3, 4, 5, 6, 7, 9, 12 

Others aspects (reasoning, teaching, etc) 8, 10,13,  etc. 

Table 1: Sets of questions related to mathematical ideas about transformations. 

Further analysis about learning to teach transformations and professional activities 

was given from videotaped transcriptions not included in this article. Furthermore, 

the first sessions serve as confirmation of attributed meanings found in the 

questionnaire, about training practices (Stigler, Gallimore and Hiebert, 2000: 87) 

showing us cultural objects with specific languages or symbolic systems. 

Data collected through the developmental process were analyzed using ongoing 

analyses. During the ongoing analysis phase, the researcher tried to understand the 

participant's way of thinking, not presented in this article. After each teaching 

episode, the research team coded and analyzed the video records of students‘ 

interactions during the given tasks. The main purpose was to find patterns and create 

descriptions of the development of students‘ mathematical knowledge over time as a 

hypothetical learning trajectory of participants. During ongoing analyses the 

researcher tested his initial hypotheses and generated new conjectures to be tested in 

the following teaching episodes.  

ABOUT ATTRIBUTED MEANINGS 

Based upon student answers in both countries, we divided the results into three parts: 

(a) the meanings and use of geometric transformations as a mathematical object and 

associated examples; (b) definitions and conceptual structure, and (c) representations 

and non-isometric transformations.  

Transformation as mathematical object   

To identify degrees of knowledge (table 2), we assume students develop more or less 

pseudo-conceptual perspectives (Vinner, 1997) by analyzing their justifications, 

argumentation, properties, and use of examples and counterexamples. It was not 

surprising that none of the students showed consolidated knowledge about the idea 

of transformation or the idea of transformation as a function, even in the case of 

projection (usually defined as a function). The majority (64%) belonged to an 

intermediate level in the case of the University of Prishtina (UP). The main class of 

mathematical objects they identified was symmetry, as we expected. 
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Degree of knowledge about transformation as a math object  Barcelona 

N=13 

Prishtina 

N=15 

22 They are able to build complete images, using terminology and 

justifying interpretations carefully with good statements.  
    

23 They show some conceptual images by using prototypical examples 

including some relevant properties. They identify the transformation of 

the figure without any explicit explanation about properties. 

 46%    64% 

24 No answer or no meaningful explanations. Poor images, based upon 

examples and visual prototypical examples.  

   54% 36% 

25 Blank or without any sense -- -- 

Table 2: Results compare between Barcelona (UB) and Prishtina (UP) 

We analyzed student text by observing their answers to find their ideas about the set 

characteristics and to find semiotic conflicts. 

We deduced that Kosovar students (UP) assume a ―transformation perspective‖ by 

using deep mathematical expressions. When we asked how transparent paper could 

be used to show the rotation, Vj indicated: ―…they draw the part of the figure 
through the paper to be turned in order to obtain the whole figure. Thus, it will show 
the rotation‖ (Vj, p5:3, UP). In some other cases students identified the expression 

―through displacements...‖ as a way for describing the transformation that generates 

figures from a module.  

In the case of the Spanish students, transformation was mainly considered to be a 

simple relationship between objects and their transformed images, in which some 

characteristics of the object are changed (called undefined motion in Yanik & Flores, 

2009). Change in position was not always taken into consideration: ―... the 
movement does not mean a change of form, but only the position, while the 
transformation involves change of the form‖ (Al, p.9: 8, UB).   

A few students told us about the invariant terms of a transformation, and gave 

interesting properties of transformations such as the knowledge of repetition by 

period  T=2π (student Pe in UP group) when they explained the rotation of a door. 

When we asked ―tell us some statement to give a meaning for rotation‖,  several 

students from UP spoke about the invariance of shape and size when talking about 

isometries. They used the expression ―change of a same thing‖, and others used the 

expression ―without changing…‖ even when they talked about projectivity.  

A lot of mathematical inconsistencies appeared with the Spanish students, 

associating rotation with the class of isometries, but then stating that a rigid 

movement was not a transformation. In some cases, the question seemed to promote 

intuitive or pseudo-conceptual knowledge, more than structured knowledge, as in the 

case of tiling, in which students explained rotation as the only isometric 

transformation: ―…I understand a movement to take some object or image and 
displacing it, without any change...∙‖ (Mc, p5: 2 – 3, UB). 
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About definitions, properties and structure  

Only in two cases did we find that the (isometric) transformation was seen as 

defining the motion of all points on the plane. After naming the vertices of the 

triangle, Ad (UP) expressed the functional dependence between their positions: ‖... 

first has been the displacement of point A, and during the movement of point A, 

points B and C takes position presented on figure (see Fig. 1a), so the points have 

changed columns ... the point B has moved to the place of point A …― (Ad, p12: 7-8, 

UP). Few UP students adequately affirmed that the movement was only one type of 

geometric transformation and established the correct relationship between the 

properties of conservation of size and form in isometric transformations. 

    
                                                                b) 

Fig.1 Transformations of triangle A onto triangle B by Ad (UP) and Jo (UB) 

In the case of UB, most of the students identified isometric transformations as 

repetitions, but generally reflection was not identified in that set. Another group of 

UB participants were limited in identification of the visual characteristics of 

symmetry to rotations and translations. The main image for a transformation is based 

upon visual understanding (transforming=deformation), and isometrics movement is 

interpreted as displacement. Few students visually identified the translation vector, 

and confirmed that the translation of a figure is equal to the product of two 

reflections with parallel axes (Figure 2b): ―The translation is the product of two 
reflections because this is the reflection of the reflection….figure a2 is the 

translation of initial figure a.‖ (Jo, p8: 4, UB). 

Many UB students identified similarities as a commonsense word, without 

mathematical explanations. Sometimes they accepted that ―I don‘t know the 
properties of similarity‖. In general in both countries, all the necessary elements for 

definitions were not stated, such as change of direction in relation to some 

movements. When they talk about rotation, only angles were observed but not the 

center of rotation and the invariance of distance. Some Kosovar students (UP) 

established the correct relationship between conservation properties and the 

corresponding transformations, but only one UB student: others talked about 

repetitions or similar figures as commonsense. For example, student Al stated ―It can 
be when you open an orange, because it can appear equal parts, but they are not‖ 

(Al, p5:2, UB), and Jo stated ―The similarity would say that is when something is 
very similar to another but not the same‖  (Jo, p7:1,2 UB).   
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Figure 2. Drawings showing the transformational idea for similarity  

When they tried to establish a functional approach, only a figural perspective was 

used, arguing by means of artefacts such as paper folding, or rays of the sun. Only 

two students from Kosova (UP) identified a functional idea for similarity by using 

conic sections (Figure 2) presenting their previous mathematical knowledge. 

Conservation of shape was observed in almost all UP students, but not UB, as this 

was viewed as a figural phenomenon. A nice description was given by student Ar: 

―the shadow will be different in a human body example,… the focus of light is 

considered the centre of the projection, and light arrows are the right lines for the 

projection.‖  (Ar, p10: 7, UP). 

In UB, some students explained the transformation as a relationship between two 

different stages of an object. Other students saw the transformation as a radical 

change in a physical object. We were really surprised that many of the students 

thought that projections were not transformations as Na comment: ―There are not 

transformations. The shadows are the projections of an image due to the light‖ (Na, 

p10: 4, UB).  

About representations and non-isometric transformations.   

This is not analyzed in many studies. In fact, students are usually trained to visualize 

isometric transformations by using problem solving activities. We have more 

consolidated answers in UB than in Kosova because it is more common for students 

to be confronted with isoperimetric manipulation tasks. It was also expected to find 

that deformations were not considered globally as transformations. Some students 

identified projection as deformation, without considering the conservation of the 

shape. Ol responded to the question ―Is the shadow a transformation?‖ 

with―…when we work with shadows, we say it‘s a work about projections because 

the figures have been deformed. An image is obtained from another, as we see in the 

overhead projector. The projected image is deformed, it stretched or enlarged‖ (Ol, 

10:9, UB) 



Working group 4 

 CERME 7 (2011)  584 

 

Figural explanations were typical in UB, and light/shadows phenomena were only 

explained in terms of dependence, without any explanation about the transformed 

elements. Some UP students told us about dependence, indicating the main variables 

in projective transformation: ―the shadow depends upon the place where is observed, 

because the shadows grow when a light source is incident on a body and this is 

projected on an opaque background. If we would have a light bulb on an opaque 

background, we would have no shadow. It also depends on where we shine the 

spotlight―(Ad, p10:3-5, UP). 

One possible explanation is that Klein‘s perspectives are not introduced in the cur-

riculum  and are hence unfamiliar to many teachers. Figural judgements are based 

upon a few prototypical examples, using incorrect comparative arguments. For 

example Da explained an isoperimetric transformation as follows: ―the trans-

formation converting a rectangle 3cm x 7cm made with a 20 cm string into another 

rectangle using the same string, is a conservation of perimeter and area‖ (Da, p14:5, 

UP). 

CONCLUSION  

The generally low results about transformations in both countries reveal a lack of 

previous background, not only because of a lack of mathematical knowledge, but a 

lack of tasks in which transformations plays usually a restricted mathematical role. 

To enhance performance in geometry, students need to increase their level of 

geometric thinking through increased exposure to informal geometric activities 

throughout their training. To accomplish this goal we need to start with deepening 

geometric content knowledge and increasing the level of geometric thinking of 

prospective primary teachers. Increasing the teacher‘s knowledge and level of 

thinking can only improve the mathematical instruction that students receive.  

The acquisition of the concept of transformation is important for the development of 

spatial reasoning and the geometrical understanding of the immediate environment, 

in which phenomena are encountered that require familiarity with isometric and non-

isometric transformations. Another benefit of studying the intuitive and informal 

aspects of transformations is the dynamic nature of transformation – transformational 

geometry encourages students to investigate geometric ideas through an informal and 

intuitive approach.    

 In Spain, it was found that natural images influenced the development of a 

functional idea of projection, but that there was a lack of deep understanding about 

the role of properties in definition processes. This aspect was better in the case of the 

Kosovar students, as expected due to the German-Russian tradition. In general, the 

fact that similar results appear shows that the background of mathematical content 

knowledge is not enough to develop these concepts. None of the students in either 

country had a complete concept of transformation and structure as a function and 

they showed different figural images in each task.   
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The construct of variability is needed to understand Klein‘s meaning of invariance 

for associating geometries and transformations. It also means that simple 

visualization is not enough to understand such concepts. More emphasis on a wider 

sense of contextualization is also needed to discuss the functional features of 

transformations. Nevertheless, the Euclidean orientation of the Kosovar curriculum 

for lower secondary school gives the possibility that some students can relate their 

prior theoretical framework with their didactical purposes as future teachers. In fact, 

their comments were based not only upon intuitions about transformations, but also 

upon relating these to mathematical knowledge.  

We also found that in both countries students had not enough time to develop 

powerful images about types of transformations, and we suggest the need for 

experiences of transformations other than isometries. During developmental 

activities, we could reinforce such a didactical research conjecture (Thaqi, 2009) by 

doing professional tasks in which we insist on invariance as a phenomenon. 

Representing  transformations with function notation requires more abstract thinking 

and is crucial for understanding transformations as one-to-one mappings of the 

points of the plane. Our results are coherent with the emergent global/punctual 

dialectics (Jahn, 1998) as a semiotic conflict. 

Teaching isometric and non-isometric transformations permits a richer study of oft-

neglected topics, as well as investigation of topics heretofore not studied in the 

elementary school. For example, the shadow is an important but frequently neglected 

topic in elementary school geometry. These visual experiences can help students 

develop the ability to manipulate images mentally - the essence of spatial 

visualization.  

A problem such as "What composition of transformations will move triangle A onto 

triangle B?" necessitates that students formulate and test hypotheses about sequences 

of transformations. This transformation approach makes geometry an appealing, 

dynamic subject that will develop both spatial visualization and also reasoning 

abilities. Properly designed activities could help students bridge the gap between 

informal experiences and later formal study of transformations. We found the 

importance of using interactive environments to analyze invariance (Harper 2003) 

and the need to visualize when doing global transformations. 
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APPENDIX   

Some items of the questionnaire.  

  Observe the typical Kosovar embroidery 

shown in the figure.  There is a repeated part. 

Find it and draw it on the figure. Explain 

how to use transparent paper to show rotation 

as a transformation conserving size. What do 

you call transformations which conserve the 

size and shape of an object but change the 

position of the object?  

  Observe the tiling in the following figure. 

There is one repeated part.  Find it and draw 

it. Explain how to use transparent paper to 

show the translation as a transformation 

conserving size.  What do you call transfor-

mations which conserve the size and shape of 

an object but change the position of the 

object?. 

 

 Present three tasks you can use to explain symmetry and three examples to explain 

similarity (homothetic).   

  Explain the meaning of the statement  ―Translation is a product of 2 symmetries ― 

  Transformation and movement are the same? Explain.  

 

 

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236566%232009%23999719998%231211067%23FLA%23&_cdi=6566&_pubType=J&view=c&_auth=y&_acct=C000012098&_version=1&_urlVersion=0&_userid=145085&md5=39a975214d1600472ae075239eede645
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The purpose of this paper is to share some ideas about an experience in teacher 

training. An issue that mathematics educators need to face is how to adequately 

work methodologies in different mathematical subjects to answer the needs of 

preservice teachers. Often they have little mathematical knowledge and reveal 

negative attitudes towards mathematics learning. In the discipline of Geometry we 

use a dynamic geometry application (DGA) and pattern tasks to work on geometrical 

concepts, to motivate preservice teachers to learn geometry and to encourage them 

to try to change their attitudes towards geometry. 

Keywords: Teacher training, Geometric invariant, Pattern tasks. 

INTRODUCTION 

Nowadays in Portugal, according to Bologna, teacher training for Basic School 

(kindergarten to 6th grade) needs a master degree. All students who have completed 

secondary education and who have carried out successful tests of access to higher 

education can apply to these courses., although, we can have, as preservice teachers, 

students who have studied mathematics for twelve years and others who have only 

studied nine years. Besides their results, most frequently negative, they also 

expressed negative attitudes to learning Maths. In September 2010, a new maths 

programme for Basic Education (grade 1 to 9) (ME, 2007), will be generalized in all 

schools across our country. The goal of this document is to develop mathematical 

knowledge of all students in subjects like Numbers and Operations, Geometry and 

Measure, Algebra, Statistics and Probability, and, at the same time, to develop their 

capacity to solve problems, to communicate mathematically and to reason. These two 

issues set challenges for teacher training, such as deciding which type of 

methodologies to use with future teachers in ways in which they develop knowledge, 

capacities and attitudes which will allow them to work with children, in accordance 

with the new mathematics programme.  

THEORETICAL PERSPECTIVES 

International and national documents (e.g. NCTM, 2000; DEB, 2001) argue that 

during the compulsory education of mathematics students should acquire knowledge 

and understanding of facts and basic procedures of mathematics, develop their ability 

to solve problems, to investigate, to formulate, to test and to evaluate conjectures, to 

argue mathematically, to analyze mathematical arguments presented by teachers and 

peers, to communicate their mathematical ideas and options, thus contributing to the 

organization and systematization of their mathematical thought, should develop a 

positive attitude towards mathematics, and  also to develop their autonomy at work. 
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On the same line the new Maths Programme for Basic Education (ME, 2007) 

maintains that all students should be able to identify and understand facts and basic 

procedures of Mathematics, develop a positive attitude towards mathematics and 

must be able to work with mathematical ideas in diverse representations. They 

should be able to communicate their ideas and interpret other's ideas, organizing and 

clarifying their mathematical thinking, to elaborate maths reasoning, to solve 

problems, to make connections, and be autonomous. Teacher educators need to 

address challenges created by the principles sustained in these documents.  

Mathematics is usually considered as a science of patterns and the study of patterns 

could be a way of motivating the students to learn mathematics (Fonseca, 2009; 

Rivera, 2009). When we observe aspects that repeat themselves in a given situation, 

if you comprehend the means that produce the repetition, if you observe relations 

that remain invariant when everything around them changes, if they try to understand 

and explain the reasons behind those relations, students develop a more profound 

comprehension of the matters worked on. They create a more dynamic conception 

regarding mathematics and can say that the patterns are in fact subjacent to 

mathematics, particularly to geometry.  

In the scope of geometry the resource on a DGA could help students gain many 

experiences focusing on invariants, which allows them to see the general through the 

individual and to establish, analyse and evaluate conjectures and mathematical 

relations (Chazan & Yerushalmy, 1998; Laborde, 1993; Villiers, 2000). We consider 

this important for students‘ motivation for the comprehension and explanation of the 

reasons that justify the relations detected, contributing to the treatment of proof in 

mathematics, helping them to understand the importance of justifications that explain 

(Hanna & Jahnke, 1996; Villiers, 1999). We use many images in geometry connected 

to geometric concepts and, sometimes preservice teachers try to build reasoning 

having as a base mistaken drawings and only visual appreciation, as for example the 

fact that ‗building‘ a triangle in which the side lengths measurement is represented 

by consecutive whole numbers, 1, 2 and 3 cm, by analogy with rectangular triangle 

sides 3, 4 and 5 cm, without having addressed the question of impossibility. This is 

an example that sets them into the geometric paradigm I (GI) (Houdement & 

Kuzniak, 2006), when you aim them to use figures representing a class of 

mathematical objects, they establish general relations and build justifications, even 

though with a resource to local axiomatic, and therefore they would have to be on the 

geometric paradigm II (GII). The passage from one paradigm to the other and the 

paradigm recognition in which they work on turns out to be a difficulty, just as 

referred by Parzysz (2003). 

Some authors (e.g. Malone, 1996; Hefendehl-hebeker, 1998) refer to the difficulty 

that preservice teachers show when embracing the ideas of the proposed reforms to 

mathematics teaching and that those difficulties are rooted in the way their prior 

mathematical education took place and highlighted the beliefs and the attitudes, 
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many times negative, that they relatively manifest to mathematics learning and in 

particular to geometry (Carrillo & Contreras, 2000; Pajares, 1992; Thompson, 1992). 

For that reason, we share Swars, Smith, Smith & Hart‘s (2009) opinion that defends 

the focus on beliefs of preservice teachers during the initial education when new 

programmes are proposed, as is happening at this moment in Portugal. Therefore in 

their teacher training courses, preservice teachers need to be successful through the 

same experiences, which we hope they will develop with their future students. 

Thus, the next question is unavoidable: how do we train future teachers so they can 

develop the principles sustained by international documents and by the mathematical 

national curriculum? 

THE EXPLORATORY STUDY 

As in Portugal, according to the new maths program (ME-DGIDC, 2007), all 

students must develop some mathematical abilities, our problem is knowing ―How to 

work with preservice teachers in geometry in such a way that it is possible:  (a) to 

develop their mathematical knowledge; (b) to develop their reasoning; (c) to develop 

a positive attitude toward mathematics; and (d) to gain more confidence in their 

capacities to do maths?‖. 

The exploratory study was oriented by the following general questions: (a) which 

geometric knowledge do preservice teachers display?; (b) which difficulties do 

preservice teachers display in solving the proposed tasks?; (c) which attitudes do 

preservice teachers display regarding geometry? We focus on an exploratory 

qualitative approach. To obtain more detailed information we selected two future 

teachers per class, from the ones that had only studied up to 9th grade in maths, that 

were available to participate in the study and were willing to share their difficulties. 

Five were between the ages of 20 and 23 and one was 33 years old. Data was 

collected through tasks, sorted out by all students, and even observations and semi-

structured interviews with the six case students. The interviews were managed with 

the objective to know which geometrical knowledge was acquired, which difficulties 

they had in the task resolution and which attitudes they expressed regarding the 

study of geometry. Data analysis was in a holistic, descriptive and interpretative way. 

Context and participants 

The exploratory study was developed in the 2009/2010 school year in a semester 

course (16 weeks) of geometry, with a weekly workload of four hours. Topics 

worked in Geometry are: plane geometry, triangles, congruent triangles and 

similarity, area of polygons and of the circle, space geometry, polyhedron, regular 

polyhedron, surfaces and volumes. Of the 79 students involved, organized into three 

classes, only 8% had studied mathematics from kindergarten to grade 12, with the 

remaining having studied mathematics until the 9th grade. The majority of the 

students revealed negative attitudes toward mathematics and they were ―afraid‖ to 

study geometry: ―to say the word [GEOMETRY] is horrifying‖ (S1); ―I never liked 
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geometry‖ (S4); ―I never understood geometry‖ (S2); ―I can‘t see anything‖ (S3); ―I 

can‘t see the plans‖ (S3).  

According to the profile of the preservice teachers we decided to organize the 

teaching of geometry in two dimensions: work with problem solving and a DGA to 

look for analogies and patterns. Thus, we tried to develop the geometrical knowledge 

of the preservice teachers, but also giving them the possibility of experiencing a 

different method of learning mathematics, focusing more on their work and, we 

expected it, to be more challenging. 

Some tasks and discussion 

To give students opportunities to develop their capacity, to notice patterns and 

aspects that remain invariant while everything around them is changing, we used a 

dynamic geometry application (Geometer´Sketchpad). We chose this application 

because it already existed at school, teachers were used to working with it and 

because in certain situations it becomes more ―demanding‖ than other similar 

applications: for example, for the construction of an equilateral triangle or a square it 

is necessary to resort to geometrical properties and not only the use of the 

application.  

Polygons were built with this tool and the students explored triangles and 

quadrilaterals properties, as the sum of the amplitudes of the internal angles, location 

of the notable points of the triangle and solved problems. 

Task 1 - Construct a dynamic triangle. Measure the angles. What is the sum of the 

angles? Drag a vertex of the triangle. Does the sum remain the same? Formulate a 

conjecture on the sum of triangle‘s angles. Explain why the conjecture is true. 

We began with this simple task using the DGA for exploration and students easily 

began to solve the task. The triangle‘s construction did not raise problems and the 

actual task indicated the following step ―sum of the angles‖. The conjectures arose 

immediately: ―It‘ s 180º‖, ―The sum is 180º‖. Just as the actual task indicated, they 

dragged a vertex from the triangle and verified that the sum was unchangeable. We 

discussed if the invariant was characteristic of some type of triangle, having 

concluded that it was general. It was a property. When we asked why the conjecture 

presented was true they responded that the examples were there. They considered the 

examples sufficient, just as Kunimune, Fujita & Jones (2009) related. One of them 

said:  

S1-  We can see. Why do we need a proof? 

Tutor –  You know that but how do you explain the conjecture? 

S1 –  I see. 

Tutor –  Ok, you see. Tell me why this happens in triangles? 

Other student goes on: 
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S2 -  We may make some copies of each of the angles and join them together. 

Tutor -  What do you think you will get? 

S2 -  …  

Tutor –  Try. 

S2 –   … [I get] an angle with 180º. 

Students revealed difficulties in explaining why the conjecture was true. They were 

convinced that it was, by the experimentation carried out, but they did not know how 

to explain why. Even student S2 had to be helped in concluding his idea. After that, 

another explanation of this relation was discussed resorting to paper folding, 

justification that can be used with 5th and 6th grade students and a parallel was made 

with a proof that normally appear in maths text books in which we turn to the sketch 

of a straight line parallel to one of the triangle‘s sides passing through the opposite 

vertex. This proof (in GII) turned out to be more demanding to the students because 

they needed to resort to the various relations of congruency between angles. The 

preference for paper folding was unanimous because ―this way I understand‖ (S1). 

During this task the six case students revealed their knowledge regarding the types of 

triangles, internal angles and the straight angle. They had the capability to present 

the conjecture, although with some difficulties with mathematical language used, in 

understanding that the particular cases experienced did not explain and difficulties in 

the construction of an explanation for the conjecture, difficulties that confirm 

previous studies also carried out with preservice teachers, in spite of them being 

students with more mathematics education (Fonseca, 2009). They revealed 

expectation in the DGA exploration and showed confidence during the task and in 

the conjecture formulation, confidence that was conferred on them by DGA. The 

justification option by paper folding had an objective to captivate the student‘s 

attention and improve their attitude regarding justification constructions, that by their 

point of view is beyond their capacities ―I can‘t justify… as intended … many times 

I don‘t understand (the justifications) … but I understood this one, I didn‘t know that 

we could do it like this‖ (S4). 

Task 2 - Construct a dynamic triangle. Construct an external angle of the triangle. 

Measure the external angle. Try to relate this angle with the triangle‘s internal 

angles. Formulate a conjecture. Drag a vertex of the triangle. Does the conjecture 

remain the same? Explain why your conjecture is true. 

Students initiate the task by the construction of the triangle and the external angle‘s 

marking. Unlike the previous task, it was not suggested how to find the conjecture.  

Various conjectures took place that not always revealed themselves to be valid, as for 

example, ―the external (angle) is bigger (smaller) than the internal (adjacent angle)‖, 

―the external (angle) is bigger than the other (angles)‖ and that were abandoned with 

DGA‘s help, by the triangle‘s vertex dragging. We discussed the possibility of the 

external angle being congruent with the internal adjacent angle and the students 
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concluded, without difficulty, that it always happened with one of the angles, 

external or its internal adjacent angle was right. Other conjectures came up ―both 

(internal and external adjacent angles) make a 180º angle‖, ―the four angles present 

more than 180º‖, but students reveal difficulties in relating the external angle with 

the internal ones to make the conjecture intended. After some exploration, students 

ran out of ideas to continue the work and teachers decided to make a suggestion – to 

observe the angle‘s measurement values attentively, that they were obtaining, and to 

think of everything that they knew about triangles - which proved to be useful for the 

continuation of student‘s work.  

Observing the values produced by the application, some students, very few, noticed 

special cases (Fig. 1) they observed ―120 

is 70 plus 50.‖ Is that it?, they 

questioned. This aspect reveals the 

necessity to obtain the teacher‘s 

agreement for the relations that they were 

detecting, which displays a low 

confidence attitude in their capacities to 

construct mathematical knowledge. 

Using the DGA they tested if the relation maintained itself. When they verbalized the 

conjecture it already had been tested. The conjectures presented needed to be 

analyzed and rewritten. The following version was accepted ―An external angle of a 

triangle is equal to the sum of the internal angles that has a different vertex‖.  

We want our students to understand that mathematical results always need an 

explanation. Why does this happen?  This question was put forward. To focus the 

student‘s attention, the teacher asks ―What do you already know about angles and 

triangles?‖ The following aspects were related to, even with very little precise 

language: ―The internal angles‘ 

sum is 180º―, ―the external can 

be bigger, smaller or the same to 

the interior―, the bigger angle 

objects to the larger size―, ―both 

(external and internal adjacent 

angles) create a 180º angle―.  

We discussed what could be 

useful and focused on relations 

implicating 180º. 

In each class some students, excluding case students, get an explanation accepted by 

their peers. It was an algebraic explanation (in GII) as shown below.           

One student asked if he could do paper folding. We asked how he would like to do it 

and he explained ―we can cut out two angles in the triangle and cover the external 

angle. It‘s going to work‖ (S3). His idea was carried out with all the students. It is 

m ABD = 120

m CAB = 70

m ABC = 60

m ACB = 50
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ACD + ACB = 180

ABC + BCA + CAB = 180

ACD + ACB = ABC + BCA + CAB 

ACD = ABC + CAB 

m BAC+m ABC = 55,72

m ACD = 55,72
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understood as an explanation in GI. 

During this task the six case students turned out to have knowledge regarding 

triangle properties, which they related to while they looked for an explanation for the 

relation they claimed. They had difficulties in formulating the conjecture, since it 

was not suggested by the task. It was necessary to guide the observation carefully by 

the values provided by the DGA to be able to conjecture although they showed to 

have difficulties with the mathematical language being used.  They continued to be 

―trapped―into the particular cases tested and revealed difficulties in proof, to explain 

the conjecture, difficulties that confirm previous studies also carried out with 

preservice teachers (Fonseca, 2009). They continued to reveal expectations in the 

DGA exploration, but as it was referred to by various students ―I thought that it 

would be easier, but it helps‖ (S2).  

After these tasks were explored tasks relating to the sum of the internal angles of a 

quadrilateral, pentagon, hexagon, … guided by teachers, students formulated a 

conjecture on the sum of the angles of a n-polygon. Some tasks follow each other, 

and students said that they had never worked like this in geometry. 

In order to enhance their creativity, students were asked to prepare and submit to the 

class a theme associated with the areas and volumes of solids. Each class was 

divided into five groups and the subjects were randomly selected. To carry on with 

their work students needed to present exercises and problems, among other things. 

One of the items was tied to the posing of problems, in this case from the scope of  

geometry, as one of the aspects is referred to as an enhancer of creativity (e.g. 

Meissner, s/d). 

Task 3 - For your geometric theme (cubes and quadrilateral prisms, other prisms, 

cylinder, pyramids, cone) present:  

(a) Examples of the solids in the world; (b) Solid Planning; (c) Formulas (areas and 

volume); (d) Exercises /problems.  

 

The students had teacher support in their study and topic organization.  Issues related 

to proposals intended to be present and would be shared among all students via a 

digital platform, which were discussed.  During preparation or during work in the 

classroom, one of the most common questions was related with the need to use 

different formulas for calculating the surface areas of the solids. This fact frightened 

the students. The real need for all those formulas was discussed. Most of the students 

relied on their necessity, with some voices questioning this option, saying that they 

already knew the formula to calculate the areas of squares, rectangles, triangles, ... 

and knew that they had just to think about it and apply them. 

They [math teachers] always asked me to do as I was taught and not otherwise. I 

could do it but it was wrong. Now in geometry I realized that I could do it in a 

different way. We just need to explain and do things right (S3). 

I didn‘t know that I knew maths (S4). 
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FINAL REMARKS  

Based on data collected, we can say that the case students revealed: 

(a) basic geometry content knowledge, as types of angles, triangles, quadrilaterals, 

polygons, solids, regular convex polyhedrons, geometrical relations in triangles and 

some formulas for the area and volume calculation. They revealed the ability to 

formulate conjectures in simple situations, in starting to communicate their reasoning 

and in certain situations they showed an ability to reason correctly and in an 

autonomous way. One of the paradigmatically cases was the student S4. In questions 

involving the area and volume calculations he said:  

S4 -  I don‘t know the formulas. I don‘t know how to do it.  

Tutor -  Which formulas don‘t you know?  

S4 -  The lateral and total areas.  

Tutor-  Find another way. Do you know any formulas?  

S4 -  I do, but not these ones.  

Tutor –  Can you use the ones you know?  

S4 –  Can I? I don‘t have to use these ones?  

Tutor-  What do you think?  

S4-  I don‘t know. 

Tutor-  Try.  

This challenge allowed him to solve the particular questions that occurred and 

allowed him to understand that the formulas that ―they didn‘t know‖ could be 

derived from the ones they knew. This was an episode that caused a change of 

attitude in this student regarding geometry, after that he was not so preoccupied with 

what he did not know, but in reason to use the knowledge he possessed. This change 

happened because the student shared his frustration, the teacher had the opportunity 

to challenge and the student accepted the challenge. Even in teacher training 

environments where the teacher intends that the students are comfortable to share 

their doubts, many times they do not and opportunities for change are lost.  This is an 

aspect that, in our opinion, should continue to deserve the reflection of teacher 

educators.  

(b) difficulties, as in visualizing, using mathematical language, conjecture in more 

complex situations, reason and making proofs, justification /explanation.  

(c) commitment, striving themselves to solve proposed tasks, although showing 

very little confidence in their reasoning capacities and almost always hoping for the 

teacher‘s guarantee, regarding the quality of their work. In case students signs of 

changing of their negative attitudes to geometry were detected; changes were 

influenced by their responsiveness to the adopted methodologies. To develop 
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students‘ confidence in their capacities seems to be a path to the improvement of 

their knowledge.    

After this exploratory study we conclude that most preservice teachers revealed that 

they understood some facts and basic geometry procedures; they worked with diverse 

representations (iconic, symbolic, ...); they began to communicate their reasoning; 

they found analogies and solved some problems. However, they revealed many 

difficulties in visualizing, reasoning and explaining their reasoning, in making 

connections between different mathematical topics, in being confident in their 

capacities, because most of them were always afraid of making mistakes, and being 

autonomous. Most of the time students need teacher support to validate the quality of 

their work. They said that this was a different way to learn geometry. 

As mathematics teacher educators we consider that the options taken revealed 

themselves to be positive for the students, but we are conscious that we have a long 

way to go, to learn, to experiment and to reflect on our options when we decided on 

methodologies and tasks to present and challenge our preservice teachers, but our 

goal is to make them become more knowledgeable and confident in mathematics. 

REFERENCES  

Carrillo, J. & Contreras, L. (2000).  El amplio campo de la resoluciñn de problemas.  

In J. C. Yánez & L. C. Contreras (Eds.), Resoluciñn de problemas en les albores 

del siglo XXI: Una visiñn internacional desde möltiples perspectivas y niveles 

educativos (pp.13-38). Huelva: Hergué, Editora Andaluza. 

Chazan, D. & Yerushalmy, M. (1998).  Charting a course for secondary geometry. In 

R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing 

understanding of geometry and space (pp.67-90).  London: Lawrence Erlbaun 

Associates Publishers. 

Conney, T. (1985).  A beginning teacher´s view of problem solving.  In Journal for 

Research in Mathematics Education, 16 (5), 324-336. 

Conney, T. (1994).  On the application of science to teaching and teacher education. 

In R. Biehler, R. Schlz, R. Stäßer & B. Winkelmann (Eds.), Didactics of 

mathematics as a scientific discipline (pp.103-116).  London: Kluwer Academic 

Publishers.  

DEB (2001). Currículo Nacional do Ensino Básico. Lisboa: ME. 

Fonseca, L. (2009). Looking for patterns in geometric transformations with pre-

service teachers. In I. Vale & A. Barbosa (org.) Patterns. Multiple perspectives 

and Contexts in Mathematics Education, pp.111-121. Viana do Castelo: Escola 

Superior de Educação, Projecto Padrões. 

Hanna, G. & Jahnke, H. N. (1996).  Proof and proving.  In A. J. Bishop et al. (Eds.), 

International handbook of mathematics education (pp.877-908).  Netherlands: 

Kluwer Academic Publishers. 



Working group 4 

 CERME 7 (2011)  597 

 

Hefendehl-Hebeker, L. (1998).  The practice of teaching mathematics: Experimental 

conditions of chance. In F. Seeger, J. Voigt & U. Waschescio (Eds.), The culture 

of the mathematics classroom (pp.104-126). Cambridge: Cambridge University 

Press. 

Houdement, C. & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de 

la géométrie. Annales de Didactique et de Sciences Cognitives, volume 11, pp. 

175-193, Irem de Strasbourg. 

Kunimune, S., Fujita, T. & Jones, K. (2009). Strengthening students´understanding 

of ―proof‖ in geometry in lower secondary school. Workinh Group 5. Cerme 6. 

Laborde, C. (1993).  The computer as part of the learning environment: the case of 

geometry.  In C. Keitel & K. Ruthven (Eds.), Learning from computers: 

Mathematics education and technology (pp.48-67).  Berlin: Springer-Verlag.  

Malone, J. (1996).  Preservice secondary mathematics teachers´ beliefs: two case 

studies of emerging and evolving perceptions. In Puig & Gutiérrez (Eds.), 

Proceedings of the 20 th Conference of the International Group for the PME 

(vol.3, pp.313-320).  Valencia, Spain: Universitat de València. 

Meissner, H. (s/d). Creativity and Mathematics Education. http://wwwmath.uni-

muenster.de/didaktik/u/meissne/WWW/indengl.htm (July 2010). 

ME (2007). Programa de Matemática para a Educação Básica. Lisboa: DGIDC. 

Parzysz, B. (2003). Pre-service Elementary Teachers and the Fundamental 

Ambiguity of  Diagrams in Geometry Problem Solving. Cerme III.  

Rivera, F. (2009). Visuoalphanumeric Mechanisms that support Pattern 

Generalization. In I. Vale & A. Barbosa (org.) Patterns. Multiple perspectives and 

Contexts in Mathematics Education, pp.123-136. Viana do Castelo: Escola 

Superior de Educação, Projecto Padrões. 

Swars, S.L., Smith, S.Z., Smith, M.E. & Hart, L.C. (2009). A longitudinal study of 

effects of a developmental teacher preparation program on elementary prospective 

teachers´mathematical beliefs. Journal of Mathematics Teacher Education, 12(1), 

47-66.  

Villiers, M. de (2000).  Developing understanding of proof within the context of 

defining quadrilaterals. Outubro, 2000.  

Villiers, M. de (1999).  Rethinking proof with the Geometer‘s Sketchpad.  

Emeryville: Key Curriculum Press. 

http://wwwmath.uni-muenster.de/didaktik/u/meissne/WWW/indengl.htm
http://wwwmath.uni-muenster.de/didaktik/u/meissne/WWW/indengl.htm


 

 CERME 7 (2011)  

TOWARDS A COMPREHENSIVE THEORETICAL MODEL OF 

STUDENTS‘ GEOMETRICAL FIGURE UNDERSTANDING AND 

ITS RELATION WITH PROOF 

Eleni Deliyianni*, Athanasios Gagatsis*,  

Annita Monoyiou*, Paraskevi Michael*, Panayiota Kalogirou* and Alain Kuzniak** 

*University of Cyprus, ** University Paris Diderot 

This research study examined the fit of various models regarding geometrical figure 

understanding and its relation with proof. Data were collected from 457 middle and 

high school students. Structural equation modelling affirmed the existence of nine 

first-order factors revealing the differential effect of perceptual and recognition 

abilities, the ways of figure modification, construction of a figure and proof. The 

three second-order factors which represented the perceptual, operative and 

sequential apprehension were regressed to a third-order factor that corresponded to 

the geometrical figure understanding. Results indicated that geometrical figure 

understanding has a strong effect on logic apprehension. Data analysis provided 

support for the invariance of this structure across the two educational levels.  

INTRODUCTION AND THEORETICAL FRAMEWORK  

Fischbein (1993) called geometrical figures ―figural concepts‖ since these entities 

are simultaneously concepts and spatial representations. Generality, abstractness, 

lack of material substance and ideality reflect conceptual characteristics. A 

geometrical figure also possesses spatial properties like shape, location and 

magnitude. In this symbiosis, it is the figural facet that is the source of invention, 

while the conceptual side guarantees the logical consistency of the operations 

(Fischbein & Nachlieli, 1998). The double status of external representation in 

geometry often causes difficulties to students when dealing with geometrical 

problems due to the interactions between concepts and images in geometrical 

reasoning (e.g. Mesquita, 1998). Duval (1995, 1999) distinguishes four 

apprehensions for a ―geometrical figure‖: perceptual, sequential, discursive and 

operative. To function as a geometrical figure, a drawing must evoke perceptual 

apprehension and at least one of the other three. Each has its specific laws of 

organization and processing of the visual stimulus array. Particularly, perceptual 

apprehension refers to the recognition of a shape in a plane or in depth. In fact, one‘s 

perception about what the figure shows is determined by figural organization laws 

and pictorial cues. Perceptual apprehension indicates the ability to name figures and 

the ability to recognize in the perceived figure several sub-figures. Sequential 

apprehension is required whenever one must construct a figure or describe its 

construction. The organization of the elementary figural units does not depend on 

perceptual laws and cues, but on technical constraints and on mathematical 

properties. Discursive apprehension is related with the fact that mathematical 
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properties represented in a drawing cannot be determined through perceptual 

apprehension. In any geometrical representation the perceptual recognition of 

geometrical properties must remain under the control of statements (e.g. 

denomination, definition, primitive commands in a menu). However, it is through 

operative apprehension that we can get an insight to a problem solution when 

looking at a figure. Operative apprehension depends on the various ways of 

modifying a given figure: the mereologic, the optic and the place way. The 

mereologic way refer to the division of the whole given figure into parts of various 

shapes and the combination of them in another figure or sub-figures 

(reconfiguration), the optic way is when one made the figure larger or narrower, or 

slant, while the place way refer to its position or orientation variation. Each of these 

different modifications can be performed mentally or physically, through various 

operations.  

Recently, some researchers (Deliyianni, Elia, Gagatsis, Monoyiou, & Panaoura, 

2009; Elia, Gagatsis, Deliyianni, Monoyiou, & Michael, 2009) made an effort to 

verify empirically some of the cognitive processes underline the geometrical figure 

understanding proposed by Duval (1995, 1999). Elia et al. (2009) gave emphasis on 

the cognitive processes involved in operative apprehension. Furthermore, Deliyianni 

et al. (2009) affirmed the existence of a third-order model that involved six first-

order factors indicating the differential effect of perceptual and recognition abilities, 

the ways of figure modification and measurement concept, three second-order factors 

representing perceptual, operative and discursive apprehension and a third-order 

factor that corresponded to the geometrical figure understanding. Both studies also 

suggested the invariance of this structure across elementary and secondary school 

students. Keeping in mind the underlying cognitive complexity of geometrical 

activity (Duval, 1995) and the transition problem from one educational level to 

another universally (Mullins & Irvin, 2000) the main aim of this research study was 

to confirm a comprehensive theoretical model concerning middle and high school 

students‘ geometrical figure understanding which involves the whole spectrum of 

geometrical figure apprehension types, i.e. perceptual, discursive, sequential and 

operative apprehension and the relation between their corresponding cognitive 

processes. It should be mentioned that concerning discursive apprehension Harada, 

Gallou-Dumiel and Nohda‘s (2000) conceptualization is used. Harada et al. (2000) 

indicated that the hypothetical-deductive proof is produced by this kind of 

apprehension. In fact, the discursive apprehension or logic apprehension, the term 

which is used in the present paper, is produced by inferences based on definitions 

and valid procedures of proof.     

HYPOTHESES AND METHOD   

In the present paper the following hypotheses were examined: (a) There is a relation 

between students‘ geometrical figure understanding and their performance in proof 

tasks, (b) Perceptual, sequential and operative apprehension influence middle (grade 
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9) and high (grade 10) school students‘ geometrical figure understanding, (c) 

Perceptual and recognition abilities have a differential effect on perceptual 

apprehension, (d) The three ways of figure modification (i.e. merelogic, optic and 

place way) have a differential effect on operative apprehension, (e) The abilities to 

construct and describe a figure‘s construction differentially affect sequential 

apprehension, (f) Inferences based on definition and procedures for proof 

differentially affect discursive (logic) apprehension, (g) There are similarities 

between middle and high school students in regard with the structure of their 

geometrical figure understanding and (h) Differences exist in the geometrical figure 

understanding performance of middle and high school students.  

The study was conducted among 457 students, aged 15 to 16, of middle (Grade 9) 

and high (Grade 10) schools in Cyprus (252 in Grade 9, 205 Grade 10). Taking into 

account, Duval‘s (1995, 1999) apprehensions for a ―geometrical figure‖ the a priori 

analysis of the test (Appendix) that was constructed in order to examine the 

hypotheses of this study is the following: 

1. The first group of tasks includes task 1 (PE1a, PE1b, PE1c, PE1d, PE1e, PE1f, 

PE1g), 2 (PE2a, PE2b, PE2c, PE2d, PE2e, PE2f) and 3 (PE3a, PE3b, PE3c). 

These tasks examine students‘ perceptual apprehension of a geometrical figure. 

The task 1 examines students‘ ability to name figures. The tasks 2 and 3 examine 

their ability to discriminate and recognize in the perceived figures several 

subfigures. 

2. The second group of tasks includes task 4 (OP4), 5 (OP5), 6 (OP6), 7 (OP7), 8 

(OP8) and 9 (OP9). These tasks examine students‘ operative apprehension of a 

geometrical figure. The tasks 4 and 5 require a reconfiguration of a given figure, 

the tasks 6 and 7 an optic way of modification, while the tasks 8 and 9 demand 

the place way of modifying two given figures in a new one in order to be solved.    

3. The third group of tasks consists of the tasks 10 (SE10), 11 (SE11), 12 (SE12) 

and 13 (SE13) that correspond to sequential figure apprehension. The tasks 10 

and 11 require students to construct a figure, while the tasks 12 and 13 investigate 

students‘ ability to describe the construction of a figure.  

4.  The fourth group of tasks includes the verbal problems 14 (LO14), 15 (LO15), 16 

(LO16), 17 (LO17), 18 (LO18) and 19 (LO19) that correspond to logic 

apprehension. On the one hand, the verbal problems 14, 15, 16 and 17 demand 

inferences based on definitions in order to be solved. On the other hand, tasks 18 

and 19 require inferences based on procedures for proof for their solution.  

Right and wrong or no answers to the tasks were scored as 1 and 0, respectively. The 

results concerning students‘ answers to the tasks were codified with PE, OP, SE and 

LO corresponding to perceptual, operative, sequential and logic apprehension (proof 

tasks), respectively, followed by the number indicating the exercise number.  
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Confirmatory factor analysis (CFA), by using the EQS program, was used to explore 

the hypotheses about the structural organization of the various dimensions 

investigated here (Bentler, 1995). The tenability of a model can be determined by 

using the following measures of goodness-of-fit:
2x , CFI and RMSEA. The 

following values of the three indices are needed to hold true for supporting an 

adequate fit of the model: 
2x /df < 2, CFI > 0.9, RMSEA < 0.06. A multivariate 

analysis of variance (MANOVA) was also performed to examine if there were 

statistically significant differences between middle and high school students 

concerning their performance in the various dimensions of the figure understanding. 

RESULTS 

Confirmatory factor analysis model. A series of CFA models were tested and 

compared. Specifically, the first model involved only one first-order factor 

associated with all the tasks. This model was the most parsimonious, it disregarded 

though the related theory and past empirical work which pointed out that different 

cognitive processes are needed in order to solve: perceptual, operative, sequential 

and logic apprehension tasks. The fit of this model was poor [CFI= 0.52, x
2
 

(702)=3933.98, RMSEA= 0.10]. The second model that was constructed and tested 

involved four first-order factors corresponding to the perceptual, operative, 

sequential and discursive apprehension and one second-order factor on which all the 

first-order factors were regressed. A chi-square difference test indicated a significant 

improvement in fit between the first and the second model [Γx
2
 (43) =1505.09, 

p<0.001] due to the second-order factor inclusion. However, the fit of the second 

model was also poor [CFI= 0.81, x
2
 (459) = 1682.99, RMSEA= 0.08]. 

The third model took into account Deliyianni‘s et al. (2009) findings and moved a 

step forward involving sequential apprehension dimension, the three ways of figure 

modification in operative apprehension dimension and the deductive reasoning 

dimension. A chi-square difference test indicated a significant improvement in fit 

between the second and the third model [Γx
2
 (52) = 611.83, p<0.001]. Besides, the 

fit of the third model was acceptable [CFI= 0.91, x
2
 (511) = 1071.162, RMSEA= 

0.05]. Even though the third model fitted the data reasonably well, the need to 

confirm that this was the best fitting model arose. Taking into account that 

visualisation is thought to be useful to some aspects of mathematical proof (Hanna & 

Sidoli, 2007), a fourth model was tested. Its fit was acceptable [CFI= 0.94, x
2
 (444) = 

815.08, RMSEA= 0.04], as well. A chi-square difference test indicated a significant 

improvement in fit between the third and the fourth model [Γx
2
 (67) =256.08, 

p<0.001] due to the causal relation between geometrical figure understanding and 

logic apprehension inclusion. The first, second and third tested models are presented 

in Figure 1. Factor loadings are omitted. 
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Figure 1. The first, second and third CFA tested models  

Figure 2 shows the results of the elaborated model, which fitted the data reasonably 

well. The first, second and third coefficients of each factor stand for the application 

of the model in the whole sample (Grade 9 and 10), middle (Grade 9) and high 

(Grade 10) school students, respectively. Particularly, the third-order model which is 

considered appropriate for interpreting geometrical figure understanding, involves 

nine first-order factors, four second-order factors and one third-order factor. The four 

second-order factors correspond to the geometrical figure perceptual (PEA), 

operative (OPA), sequential (SEQ) and logic (LOA) apprehension, respectively. 

Perceptual, operative and sequential apprehensions are regressed on a third-order 

factor that stands for the geometrical figure understanding (GFU). Therefore, it is 

suggested that the type of geometric figure apprehension does have an effect on 

geometrical figure understanding, verifying our second hypothesis. On the second-

order factor that stands for perceptual apprehension the first-order factors F1 and F2 

are regressed. The first-order factor F1 refers to the perceptual tasks, while the first-

order factor F2 to the recognition tasks. Thus, the findings reveal that perceptual and 

recognition abilities have a differential effect on geometrical figure perceptual 

apprehension (hypothesis c). On the second-order factor that corresponds to 

operative apprehension the first-order factors F3, F4 and F5 are regressed. The first-

order factor F3 consists of the tasks which require a modification of a given figure in 

a mereologic way. The tasks which demand an optic way of modifying a given figure 

compose the first-order factor F4 and the tasks demanding the place way of 

modifying two given figures in a new one in order to be solved constitute the first-

order factor F5. Therefore the results indicate that the ways of figure modification 

have an effect on operative figure understanding (hypothesis d). The first-order 

factors F6 and F7 are regressed on the second-order factor that stands for sequential 
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apprehension. The first-order factor F6 refers to the tasks which demand the 

construction of a figure, while the first-order factor F7 consists of the tasks in which 

the description of a figure‘s construction is needed. Thus, the results indicate that the 

two abilities differentially affect sequential apprehension (hypothesis e). According 

to the factor loadings, operative apprehension is more strongly related with 

geometrical figure understanding than perceptual and sequential apprehension. 

On the second-order factor that stands for logic apprehension the first-order factors 

F8 and F9 are regressed. The first-order factor F8 refers to the tasks which require 

inferences based on definition, while the first-order factor F9 to the tasks which 

inferences based on processes of proof are needed. Thus, the findings reveal that the 

kind of inferences has a differential effect on this kind of apprehension (hypothesis 

f). Loadings indicate that geometrical figure understanding have a strong effect on 

logic apprehension (hypothesis a). 

 

Figure 2. The CFA model of the geometrical figure understanding in relation with 

proof processes. 

To test for possible similarities between the two educational levels concerning their 

geometrical figure understanding the proposed three-order factor model is validated 

for middle and high school students separately. The fit indices of the model tested for 

both middle [x
2
 (445) = 658.59, CFI= 0.94, RMSEA= 0.04] and high school students 

are acceptable [x
2
 (438) = 659.61, CFI= 0.94, RMSEA= 0.05]. Thus, the results are 

in line with our hypothesis that the same geometrical figure understanding structure 
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holds for both the middle and the high school students. It is noteworthy that some 

factor loadings are higher in the group of the high school students suggesting that the 

specific structural organization potency increases across the ages. Besides, the factor 

loading in grade 10 regarding perceptual apprehension is lower than in grade 9, 

while the factor loading for sequential apprehension is higher than the corresponding 

in grade 9. This finding indicates that as students grow up are based more on 

mathematical properties and less on perceptual laws and cues.  

The effect of students‘ educational level. Table 1 presents the means and the standard 

deviations for perceptual, operative, sequential and logic apprehension in the two 

educational levels. Overall, the effect of students‘ educational level is significant 

(Pillai‘s F(4, 452)=7.03, p<0.001). In particular, the mean value of high school students 

in geometrical figure perceptual apprehension (PEA) is statistically significant 

higher (F(1,452)=16.94, p<0.001) than the mean value of middle school students. 

Similarly, the mean value of high school students in operative apprehension tasks 

(OPA) is statistically significant higher (F(1,452)=14.26, p<0.001) than the mean value 

of middle school students. In the same way, the mean value of high school students‘ 

performance in sequential apprehension tasks (SEA) is statistically significant higher 

in comparison with middle school students‘ performance (F(1,452)=11.88, p<0.001). 

Even though, the performance of high school students in logic apprehension tasks 

(LOA) is also higher than the performance of middle school students this difference 

is not statistically significant (F(1,452)=3.83, p=0.05). Therefore, the findings verify 

the last hypothesis stating that differences exist in the performance of middle and 

high school students. In particular, high school students‘ performance is higher in all 

the types of geometrical figure apprehension.  

Educational 

Level 

PEA OPA SEA LOA 

X  SD X  SD X  SD X  SD 

Middle 0.78 0.21 0.59 0.23 0.08 0.18 0.27 0.21 

High 0.86 0.20 0.67 0.24 0.14 0.21 0.31 0.25 

Table 1: Means and standard deviations in the different dimensions of the geometrical 

figure apprehension for middle and high school students 

CONCLUSIONS 

This study examined the fit of various models regarding geometrical figure 

understanding and its relation with proof processes. Using structural equation 

modelling we constructed and verified a comprehensive model for geometrical figure 

understanding. Moving a step forward in relation with previous studies (e.g. Elia et 

al., 2009; Deliyianni et al., 2009) which verified Duval‘s (1995, 1999) taxonomy, the 

proposed model involves the whole spectrum of geometrical figure apprehension 
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types and the relation between their corresponding cognitive processes with 

cognitive processes concerning proof.    

According to the results, the three second-order factors which stand for perceptual, 

operative and sequential apprehension are regressed to a third-order factor that 

corresponds to the geometrical figure understanding. Results suggest that 

geometrical figure understanding has a strong effect on students‘ performance in 

proof tasks. This is in line with the findings of previous research studies (e.g. Hanna 

& Sidoli, 2007; Giaquinto, 2007) that suggested that there is a potential contribution 

of visual representations to mathematical proof. Findings reveal also that operative 

apprehension is the one which contributes the most to geometrical figure 

understanding. Taking into account that visualization consists only operative 

apprehension (Duval, 1999) the important role of this kind of apprehension confirms 

empirically Duval‘s (1999) opinion that there is not understanding in geometry 

without visualization. The specific result indicates also that teaching and learning 

should give emphasis in this kind of apprehension since visualization is not 

primitive. In fact, the use of visualization requires specific training, specific to 

visualize each register (Duval, 1999). However, the model points out the important 

role of the other types of geometrical figure apprehension, as well, taking into 

account that even though coordination between them is needed each one is distinct 

from the other (Duval, 1999). Besides, findings affirmed the existence of nine first-

order factors revealing the differential effect of perceptual and recognition abilities 

and the ways of figure modification, construction and proof. Thus, the results 

verified Duval‘s (1995, 1999) and Harada‘s et al. (2000) categorization, respectively.  

In addition to extent our knowledge about students‘ geometrical figure 

understanding, this study may give valuable information to curriculum designers and 

teachers of both middle and high school education. The elaborated model offers 

teachers a framework of students‘ thinking while solving a wide range of geometrical 

tasks in a systematic manner within and between the two educational levels. 

Therefore, the proposed framework may be used as a tool in mathematics instruction 

and designing tasks on geometry in both middle and high school. The framework of 

this study appears to be useful from an assessment perspective, as well. It may 

provide teachers with valuable and specific information on students‘ thinking in 

geometry based on prior knowledge and enable them to enhance this thinking by 

giving appropriate support through the tasks focused on the competences and 

cognitive processes for the geometrical figure understanding and the proof. 

Concerning age, it is important to stress that the structure of the processes underlying 

the geometrical figure understanding in relation with proof processes was invariant 

across the two age groups tested here. These findings enhance the validity of the 

proposed framework and support its potential to coherently describe and predict 

students´ understanding in geometry irrespectively of their grade, even during the 

transitional phase from middle to high school. However, findings reveal differences 
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between middle and high school students‘ performance. In fact, the results provide 

evidence for the existence of three forms of elementary geometry, proposed by 

Houdement and Kuzniak (2003). We may assume that in this research study, middle 

school teaching is mainly focused on Geometry I (Natural Geometry) that is closely 

linked to the perception, is enriched by the experiment and privileges self-evidence 

and construction. On the other hand, high school teaching gives emphasis to 

Geometry II (Natural Axiomatic Geometry) that it is closely linked to the figures and 

privileges the knowledge of properties and demonstration. As a result, in the case of 

middle school students geometrical figure is an object of study and of validation, 

while in the case of  high school students geometrical figure supports reasoning and 

―figural concept‖ (Fischbein, 1993). However, the knowledge produced by 

quantitative research studies might be too abstract and general for direct application 

to specific local situations, contexts, and individuals. For this reason, further research 

is needed to evaluate the feasibility of using this framework for developing effective 

instructional programs for the teaching of geometry in regular classroom situations in 

middle and high education. 
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SECONDARY STUDENTS BEHAVIOR IN PROOF TASKS: 

UNDERSTANDING AND THE INFLUENCE OF THE 

GEOMETRICAL FIGURE10 

Athanasios Gagatsis*, Paraskevi Michael*, Eleni Deliyianni*, Annita Monoyiou*, 

Alain Kuzniak** 

*University of Cyprus, ** Université Paris Diderot, France 

This research study examined and compared 109 9
th

 graders‘ and 103 10
th

 graders‘ 

behaviour in proof tasks, giving emphasis on their understanding of proof and the 

influence of the nature of the geometrical figure, either as an object or as an 

illustration. The results indicated differences, but also similarities between students 

of the two grades. Students were categorized into three levels according to their 

proof understanding, whereas the importance of the geometrical figure as a heuristic 

tool for proof was revealed.  

THEORETICAL FRAMEWORK 

Nowadays, the development of a sense of proof constitutes an important objective of 

Mathematical Education. There seems to be a general trend towards including the 

theme of proof in the curriculum (Mariotti, 2006). Marrades and Gutiérrez (2000) 

defined proof as any justification which satisfies the requirements of abstraction, 

rigor, language, etc. demanded by professional mathematicians to accept a 

mathematical statement as valid within an axiomatic system. Mathematical proof in a 

wide sense includes formal proofs but also any attempt made by students to convince 

themselves, the teacher or other students of the truth of a mathematical statement or 

conjecture by means of explanations, verifications or justifications (Fiallo & 

Gutiérrez, 2007).  

Even among mathematicians there is a diversity of opinion regarding the role and 

functions of proof (Healy & Hoyles, 2000). According to Marrades and Gutierrez 

(2000) the main objectives of mathematical proof are to verify or justify the 

correctness of a statement, to illuminate or explain why a statement is true, to 

systematize results obtained in a deductive system (a system of axioms, definitions, 

accepted theorems, etc.), to discover new theorems, to communicate or transmit 

mathematical knowledge and to provide intellectual challenge to the author of a 

proof. For Mariotti (2006) the purpose of proof is validation. Based on de Villiers 

(2002) some of the functions of proofs are: explanation, discovery, communication, 

intellectual challenge and systematisation.   

                                           

10
 This paper is in the context of the research project ―Ability to use multiple representations in Functions and 

Geometry: The Transition from Middle to High school‖ of the Research Promotion Foundation of Cyprus (ΙΠΔ) 

[ΑΝΘΡΩΠΙΣΙΚΔ/ΠΑΙΓΙ/0308(ΒΔ)/03].  
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Duval (2000) considers that the cognitive processes underlying the understanding of 

a mathematical proof require students to realise that a valid reasoning can produce 

intrinsically an evidence of necessity and become aware of the discrepancy between 

a valid reasoning and a non-valid reasoning. Kunimune, Fujita and Jones (2008) 

examined students‘ understanding of proof in terms of the ‗Generality of proof‘ and 

the ‗Construction of proof‘. Considering these two aspects, they proposed three 

levels of understanding. In Level I students consider experimental verifications are 

enough to demonstrate that geometrical statements are true. In Level II students 

understand that proof is required to demonstrate geometrical statements are true and 

finally in Level III students can understand simple logical chains between theorems.  

As for the understanding of the valid reasoning functions, the learner have to work in 

another register than language and to come back to linguistic expression, since 

geometry involves the mixing of two registers:  the figure register in order to ‗see‘ 

and the natural language register in order to ‗explain‘ (Duval, 2000). According to 

Hanna (2000) diagrams and other visual aids have been used as facilitators of 

understanding and as heuristic accompaniments to proof, inspiring both the theorem 

to be proved and approaches to the proof itself.  

The nature of external representations in geometry, either as an object or as an 

illustration, was examined by Xistouri, Nicolaou, Koukkoufis and Gagatsis (2005). 

According to Mesquita (1998), an external representation has the nature of an object 

when it is possible to infer geometrical relationships from the construction of the 

figure that may be used in geometrical reasoning and proof and when the visual 

perception of the figure is consistent with the verbal statements of the problem. On 

the contrary, when the external representation has the nature of an illustration, it is 

then impossible to directly extract a geometrical relationship from the construction of 

the figure, the figure seems to ‗mislead‘ and  the visual perception of the figure is in 

contradiction within the verbal statements.  

Based on the above the purpose of this study was to examine and compare Grade 9 

and Grade 10 students‘ geometrical proof – problem solving ability. In particular, we 

focussed on the following: 1)The differences between Grade 9 and Grade 10 

students‘ behavior in geometrical – proof tasks, 2) Students‘ understanding about 

the geometrical proof, 3) The impact of the geometrical figure on students‘ proving 

ability according to its nature: as an ‗object‘ and as an ‗illustration‘.  

METHOD 

The study was conducted among 109 9
th

 graders and 103 10
th

 graders of mixed 

mathematical ability, randomly selected from secondary schools in Cyprus. The test 

that examined students‘ geometrical proof – problem solving ability consisted of 8 

proof tasks: 2 proof tasks whose solution is ‗based on definition‘ (VEde1, VEde2) 

and 6 proof tasks ‗based on procedures‘ (VEp), according to Harada‘s, Gallou – 
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Dumiel‘s and Nohda‘s (2000) categorization of proof. The ‗based on procedures‘ 

proof tasks were distinguished into two special categories of tasks:  

1. Tasks that examined the impact of the nature of the geometrical figure 

(Mesuita, 1998) in students‘ geometrical proof – problem solving ability. 

There were two sets of corresponding tasks in which the first task included a 

figure functioning as an ‗object‘ (VEpo1 and VEpo2) and the second a figure 

functioning as an ‗illustration‘ (VEpi1 and VEpi2)  

2. The second category was comprised of a set of corresponding tasks, based on 

Kunimune et al. (2008), examining the ‗Generality of proof‘. In particular, the 

tasks included three different types of proof: an empirical proof (VEp1m2, 

VEp2m2), a semi – empirical proof (VEp1m1, VEp2m1) and a formal proof 

(VEp1m3, VEp2m3). Students had to declare whether they accepted each type 

as a proof.  

Representative samples of the tasks used in the test appear in the Appendix.  

For the analysis of the collected data, the hierarchical clustering of variables and 

Gras‘ implicative statistical method has been conducted using the software C.H.I.C. 

(Bodin, Coutourier, & Gras, 2000).  The similarity diagrams produced allow for the 

arrangement of students‘ responses to the tasks into groups according to their 

homogeneity. This aggregation may be indebted to the conceptual character of every 

group of variables. The implicative diagrams contain implicative relations, which 

indicate whether success to a specific task implies success to another task related to 

the former one.  

RESULTS 

Grade 9 students‘ behaviour according to the similarity diagram 

The similarity diagram of the 9
th

 graders‘ responses to the tasks of the test (Figure 1) 

is divided into two similarity clusters. In the first similarity cluster two subgroups are 

distinguished. In specific, the first subgroup is comprised of procedure proof tasks 

(VEpo1, VEpi2, VEpo2, VEp1m3 and VEpi1) and one definition proof task 

(VEde1). This definition task has a significant and strong relation with the second 

procedure task that includes a figure as an illustration (VEpi2). In the second 

similarity group of the similarity diagram the variables concerning the acceptance of 

the semi – empirical proof in the two corresponding tasks (VEp1m1 and VEp2m1) 

are significantly connected with the solution of the second definition proof task of 

the test (VEde2). These three variables are significantly related with the acceptance 

of the formal proof in the second procedure task of this type (VEp2m3).  

From the 9
th

 graders‘ similarity diagram concerning the nature of the geometrical 

figure we notice that the tasks in which the figure functions as an illustration are 

involved in significant relations. This is indicative of the fact that 9
th

 graders 

behavior during the solution of proof tasks is influenced by the nature of the 
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geometrical figure and specifically when the geometrical figure functions as an 

illustration. The second subgroup consists of two variables that are related to the 

acceptance of an empirical proof in a set of corresponding tasks (VEp1m2 and 

VEp2m2).  

We also notice that as regards the acceptance of the three types of proof, there is a 

distinct group of students. In this group belong students who accept the empirical 

proof (VEp1m2 and VEp2m2) ( X =0.11, SD=0.22). Furthermore, the significant 

relation between the variables VEp1m1 and VEp2m1 allows us for the consideration 

of a second group of students, those who accept the semi – empirical proof ( X =0.10, 

SD=0.21). The definition tasks are located into different clusters, showing that 

students‘ behavior is not differentiated in definition and procedures tasks.  

However there seems to be a relation between students of this group and some 

students of the formal proof group. This might be indicative of some common 

characteristic between these two groups. The two variables representing the formal 

proof  are separated into two different similarity clusters. This is indicative of a not 

stable behavior of students yet for this type of proof tasks. The acceptance of the 

formal proof in the first task is connected with the variables concerning the nature of 

the geometrical figure.  Thus we can infer that the nature of the geometrical figure 

affects, at a degree, the 9
th

 graders proving ability. Particularly it seems that students 

who accept the formal proof ( X =0.07, SD=0.20), are more able to overcome the 

negative influence of the figure functioning as an illustration.  

Grade 10 students‘ behaviour according to the similarity diagram 

Two similarity clusters are identified in Figure 2. Cluster 1 consists of two 

subgroups. The first subgroup includes a procedure proof task accompanied with a 

figure operating as an object (VEpo1) linked to the second definition proof task 

(VEde2). In the second subgroup important relations are observed between some 

variables. In particular, there is a connection between the variables VEp1m3 and 

VEp2m3, indicating students‘ stable behavior in accepting the formal proof in the 

two corresponding tasks. These two variables are also connected with a definition 

proof task (VEde1). Another significant relation is formed between the variables 

VEpo2 and VEpi2, which concern two corresponding procedure proof tasks, having 

a figure as an object and as an illustration respectively. This important relation 

indicates that the presence of the geometrical figure as an illustration does not 

negatively influence students‘ behavior in this proof task, since their behavior 

remains stable in the two corresponding tasks. The two variables concerning the first 

task that examines the nature of the geometrical figure (VEpo1 and VEpi1) are 

separated. The variable that concerns the figure as an illustration (VEpi) is linked 

with variables VEpo2 and VEpi2. In the second cluster two subgroups are also 

found. The first subgroup is formed by the two variables concerning the acceptance 

of a semi – empirical proof (VEp1m1 and VEp2m1). The second subgroup is 
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comprised of the two variables related to the acceptance of an empirical proof 

(VEp1m2 and VEp2m2).  

In the similarity diagram of the 10
th

 graders three distinct groups of students are 

identified. There are students who accept the empirical proof ( X =0.14, SD=0.27), 

students who accept the semi – empirical proof ( X =0.22, SD=0.33) and students that 

accept the formal proof ( X =0.07, SD=0.20). The first two groups are situated in the 

same similarity cluster, indicating that students of these two groups have many 

common characteristics in their proving behavior. The significant relations of this 

group with the variables representing the role of the geometrical figure leads us to 

the conclusion that the students that are mostly able to overcome the negative 

influence of the geometrical figure as an illustration are those who are also able to 

recognize and accept the formal proof. Moreover, the location of the definition tasks 

in the same similarity cluster shows a more stable behavior of students in these tasks, 

but again no differentiation related to procedure proof tasks.   

Grade 9 and 10 students‘ behaviour according to the implicative diagrams 

In the 9
th

 graders‘ implicative diagram (Figure 3) two implicative chains are formed. 

The first implicative chain provides important information concerning students‘ 

behavior related to the nature of the geometrical figure. In particular, it is obvious 

that students who solved the second task including the figure as an object (VEpo2) 

were also able to solve the first task of the same type (VEpo1). Thus, there is a 

relation based on the common function of the figure, as an object in this case. From 

the second implicative chain we can infer that the solution of the second task 

including an illustration figure (VEpi2) leads to the solution of the definition task 1 

(VEde1). This implicative chain ends with the solution of the first task including a 

figure as an object (VEpo1).  

In the implicative diagram of the 10
th

 graders (Figure 4) two distinct implicative 

chains are formed. The first implicative chain consists of two tasks. The solution of 
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Figure 1: Similarity diagram for Grade 9 

students 

Figure 2: Similarity diagram for Grade 10 

students  
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Figure 3: Implicative diagram 

for Grade 9 students   
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Figure 4: Implicative diagram 

for Grade 10 students  

 

the definition task 2 (VEde2) leads to the solution of the first procedure task which is 

accompanied by a geometrical figure as an object (VEpo1). The second implicative 

chain is comprised of two corresponding procedure tasks. Particularly, if students 

succeeded to the solution of the task with a figure as an illustration (VEpi2), which is 

proved to be more difficult for them, then they were also able to solve correctly the 

corresponding task including a figure as an object (VEpo2). This shows that students 

are not misled by the figure as an illustration in this task. 

 

 

 

 

 

 

 

 

 

Grade 9 and 10 students‘ performance according to the nature of the 

geometrical figure 

Students‘ performance relatively to the nature of the geometrical figure is presented 

in table 1. We can see that students of both grades perform better in the tasks in 

which the figure has the nature of an object. Specifically, the paired sample t test 

revealed that the means in task 1 are statistically significant higher for the figure as 

an object for both grades [grade 9: t(108)=-8,1, grade 10: t(102)=8,2]. This is also 

the case for task 2, although the difference is statistically significant only in grade 10 

[t(102)=3,8]. These results are in line with the outcomes of the similarity concerning 

the influences in students‘ behaviour and those of the implicative diagrams regarding 

the difficulty of the tasks.  

  

 Task 1 Task 2 

 object illustration object Illustration 

 X  SD X  SD X  SD X  SD 

Grade 9 (N=109) 0,48 0,50 0,06 0,25 0,11 0,31 0,06 0,23 

Grade 10 (N=103) 0,60 0,49 0,14 0,34 0,26 0,44 0,10 0,30 

Table 1: Means and standard deviations for grade 9 and grade 10 students‘ 

performance in tasks examining the influence of the nature of the geometrical figure 
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CONCLUSIONS 

The aim of this research study was to examine 9
th

 and 10
th

 graders proving behavior, 

especially in respect to the understanding of proof and the role of the nature of the 

geometrical figure, either as an object or as an illustration. The results revealed that 

there are mainly differences, but also some common characteristics in the way 

students solve geometrical proof tasks.  

Considering students‘ understanding of proof, we can classify them into three levels. 

Level I refers to the acceptance of the empirical proof, Level II refers to the 

acceptance of the semi – empirical proof, while Level III concerns the acceptance of 

formal proof. Referring to the 9
th

 graders, they can be clearly situated into Level I 

and Level II. Although there are students that seem to have reached Level III, they 

cannot be clearly distinguished as a group. The relations revealed from the similarity 

diagram between the students of Level II and Level III indicate that there are some 

common characteristics between students of these two groups. Thus, we can say that 

9
th

 graders are more situated in the first two levels of proof understanding and some 

of them are at a transitional stage to the third level. The situation differs for Grade 10 

students, since there is a quite clear classification of the students into the three levels 

of proof understanding. 10
th

 graders who reach Level III constitute an independent 

group, since they do not have any common characteristics with the students of the 

other two levels. On the contrary, students of Levels I and II appear to have some 

common features. The three levels used in order to categorize students‘ proof 

understanding can be connected to the three levels proposed by Kunimune, Fujita 

and Jones (2008), despite the fact that we have only examined students‘ 

understanding regarding the ‗Generality of proof‘ and not the ‗Construction of 

proof‘. Besides, the formation of the three levels of proof understanding can be 

indicative of the existence of the forms of geometry, as suggested by Houdement and 

Kuzniak (2003). We could claim that students of Level I are still situated in 

Geometry I (Natural Geometry), in which intuition is often linked to immediate 

perception and enriched by experiment. Students of Level III have characteristics of 

Geometry II (Natural Axiomatic Geometry), where a system of axioms is necessary. 

The axiom system can be uncompleted, but the demonstrations inside the system are 

necessary requested for progress and for reaching certainty. At last, Level II students 

seem to have characteristics of both Geometry I and Geometry II. Kuzniak (2011, in 

press) suggests that the constant emphasis on a transition towards Geometry II based 

on Geometry can let us suppose that a mixed Geometry (GI/G2) is possible.   

Another difference between 9
th

 graders and 10
th

 graders concerns the definition proof 

tasks. Based on the similarity diagram, 10
th

 graders‘ behaviour is more coherent 

compared to the 9
th

 graders. Nevertheless, the implicative diagrams show that the 

definition tasks are more difficult for 9
th

 and 10
th

 graders, than the procedure tasks in 

which the geometrical figure functioning as an object. Furthermore, the solution of 

these tasks is achieved by students that belong to Level III of proof understanding for 
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10
th

 graders, while for 9
th

 graders a relation with the students of Level II is observed. 

A common feature for the students of both Grades is that the phenomenon of 

compartmentalization is not observed in their behaviour during the solution of 

definition and procedure tasks.   

Concerning the impact of the nature of the geometrical figure on students‘ proving 

ability, it emerged that the geometrical figure plays an important role for the solution 

of proof tasks, since proof does not depend solely on sentential representation and 

visual and sentential reasoning are not mutually exclusive (Hanna, 2000). In some 

cases it does not influence students proving ability when it is functioning as an 

illustration. However it still has an impact on their behaviour, since it sometimes 

leads to different behaviour during the solution of corresponding tasks. Specifically, 

according to the implicative diagram, although 9
th

 graders show consistency when 

the figure has the nature of an object, their proving behavior is influenced and they 

are misled when the geometrical figure functions as an illustration. This is not the 

case for 10
th

 graders, since they show more consistency in the solution of tasks 

including a figure as an illustration. Although students of both grades seem to start 

overcoming the negative influence of the geometrical figure as an illustration, grade 

10 students show a more stable proving performance in tasks of this type. Despite the 

fact that they use the figure, they do not exclusively base their proving procedures on 

it. The findings give support to Duval (2000) who distinguishes between a heuristic 

and a supportive function of the geometrical figure. Thus, Grade 9 students‘ proving 

behaviour is more affected by the nature of the figure, than the common 

characteristics of the exercise, while Grade 10 students seem to be in a transitional 

stage in which they start overcoming the negative influence of the geometrical figure 

on their proving ability. For Grade 9 students the geometrical figure is more an 

object of study and of validation, while for Grade 10 students the geometrical figure 

is supportive for reasoning (Houdement & Kuzniak, 2003) and concerned as a 

―figural concept‖ (Fischbein, 1993).  

Despite the differences mentioned above, findings indicate an important common 

characteristic for Grade 9 and Grade 10 students as far as the relation between the 

nature of the geometrical figure and the levels of proof understanding is concerned. 

Students belonging to Level III are those who are able and make efforts to overcome 

the impact of the figure as an illustration. For these students, who are also at the level 

of Geometry III, the figure functions as a heuristic tool (Houdement & Kuzniak, 

2003). Therefore, the overcoming of the negative influence of the geometrical figure 

leads students to the recognition and acceptance of the formal proof or vice versa. In 

this sense it is well accepted that a diagram is a legitimate component of a 

mathematical argument (Hanna, 2000).    

It is vital to know students‘ conception of mathematical proof in order to understand 

their attempts to solve proof problems. The knowledge of what it is for them to prove 

a statement or what kind of arguments convince students that a statement is true is 
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very important for teaching (Marrades & Gutiérrez, 2000). Thus the necessity for 

qualitative research is evident in order to gain a deeper insight in students‘ proving 

behaviour and constitutes the next step of our study. Besides, longitudinal 

performance investigation in geometrical figure understanding related to proof 

understanding for students (e.g. low achievers) as they move from Grade 9 to Grade 

10 should be carried out.    
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RELATIONS BETWEEN GEOMETRICAL PARADIGMS  

AND VAN HIELE LEVELS 

Annette Braconne-Michoux 

IUFM de Lyon, LEPS-LIRDHIST Université Claude Bernard Lyon1 

Following previous CERME sessions on Geometrical Thinking, this paper addresses 

the link between the geometrical paradigms and the van Hiele levels of thinking in 

geometry. It records the experimentation I conducted with pupils from grade 5 (10-

11 years old, last year of Primary School) and grade 6 (11 – 12 years old, first year 

of Secondary School). Two main points arose: first, that a pupil tends to use a lower 

paradigm or van Hiele level when facing a difficult task, second, that the second van 

Hiele level (analysis) seems to be ―the overlapping zone‖ between GI and GII.  

INTRODUCTION 

During CERME3 (2003), for the first time, Houdement-Kuzniak presented a paper in 

which they referred to the van Hiele levels theory and the geometrical paradigms. 

They introduced in a two dimensional table the idea that Geometry GI integrates the 

first two van Hiele levels of thinking in geometry (identification-visualization and 

analysis) while Geometry GII integrates the fourth level (formal deduction), the third 

level being the transitional one between GI and GII. Parzysz (2003) suggested that, 

from an educational point of view, the same third van Hiele level (informal 

deduction) could be the ―overlapping zone‖ between GI and GII. Houdement-

Kuzniak‘s research had been based on pre-service teachers‘ understanding of 

geometry, that is to say on adults working in geometry. According to the French 

curricula, as Parzysz (2003) put it: ―roughly, GI is Primary School geometry and GII 

is Secondary School geometry‖. If the van Hiele levels theory is to be considered as 

a pedagogical reference to geometry teaching, how can it relate to the geometrical 

paradigms when considering pupils entering Secondary School? 

These suggestions had to be tested among pupils able to work in GI and approaching 

GII, that is to say, at grade 5 (end of Primary School, pupils aged 10 - 11) and grade 

6 (first year of Secondary School, pupils aged 11 - 12). This paper reports the 

experimentation conducted in June 2004 among 250 primary school and 250 

Secondary school pupils.  

THEORETICAL FRAMEWORK 

Geometry is an important topic in the mathematics curricula in France both at 

Primary and Secondary School levels. Though the geometrical objects have the same 

name in Primary School and Secondary School, it has obviously different meanings. 

For instance, a square as drawn by a 8 years old pupil with ruler and set square is 

different from a square as sketched at free hand by a 15 years old student. The first 

one depends on the quality of the drawing (precision in measures and accuracy in the 
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use of instruments) while the second is only the graphic support for reasoning and 

may be used as a heuristic tool.  

Since we are to use the two theories of geometrical paradigms and the van Hiele 

levels of thinking in geometry, we have to summarize the main aspects of both 

theories, particularly those relevant for the purpose of our study that is, GI and GII as 

far as the geometrical paradigms are concerned and the three first van Hiele levels: 

identification-visualization; analysis and informal deduction.  

Geometrical paradigms 

As Houdement-Kuzniak (2003) put it: ―our fundamental principle is that the various 

proposed paradigms are homogeneous: it is possible to reason inside one paradigm 

without knowing the nature of the other. Students  and professors, and it is a source 

of misunderstanding, are not necessarily situated in the same one.‖ The following 

table is a summary of the description of the three different paradigms as defined by 

Houdement-Kuzniak. Parzysz (2003) added the lines about validations and the nature 

of the object as considered or studied by the person working in a specific geometrical 

paradigm. 

 GI GII GIII 

Intuition Sensible, linked to 

the perception, 

enriched by the 

experiment 

Linked to figures Internal to 

mathematics 

Experience Linked to the 

measurable space 

Linked to schemas 

of the reality 

Logical 

Deduction Near of the Real 

and linked to 

experiment 

Demonstration 

based upon axioms 

Demonstration 

based on a 

complete system of 

axioms 

Kind of space Intuitive and 

physical space 

Physical and 

geometrical space 

Abstract Euclidean 

space 

Status of drawing Object of study and 

of validation 

Support of 

reasoning and 

―figural concept‖ 

Schema of a 

theoretical object, 

heuristic tool 

Privileged aspect Self-evidence Properties and 

demonstration 

Demonstration and 

links between the 

objects, 

Structure 

Objects Physical Theoretical 

Validations Perceptive or by 

use of instruments 

Deductive 

Table 1: The geometrical paradigms 
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The Van Hiele levels
11

   

The van Hiele theory of levels of thinking in geometry has been less popular among 

French researchers than among the English speaking didactical community. We will 

give here the major aspects of the theory relevant to our study, that is the first three 

levels: identification-visualization, analysis, informal deduction.  

At the first level (N1 identification-visualization)  

The geometrical figures are judged according to their appearance. The pupils do 

not see the parts of the figure, nor do they perceive the relationship among the 

components of the figure. They cannot even compare figures with common 

properties with one another. […] They recognize, for example, a rectangle, a 

square and other figures. [But] they conceive of the rectangle as completely 

different from the square. [To such pupils] these figures are still completely 

distinct. (Wirszup, 1976; p.76) 

At the second level (N2 analysis) 

The pupil begins to discern the components of the figures; he also establishes 

relationships among these components and relationships between individual 

figures. […] The properties of the figures are established experimentally; they are 

described but not yet formally defined. At this stage, the figures are the bearers of 

their properties [they are recognised by these properties…] however these 

properties are still not connected with one another. (ibid; p.78) 

At the third level (N3 informal deduction) 

Students can establish relations among the properties of a figure and among the 

figures themselves. At this level there occurs a logical ordering of the properties of 

a figure and of classes of figures. The pupil is now able to discern the possibility 

of one property following from another, and the role of definition is clarified. The 

logical connections among figures and properties of figures are established by 

definitions. However, at this level […] the pupil does not yet understand the role 

of axioms, and cannot yet see the connection of statements. […] At the third level 

a square is already viewed as a rectangle and a parallelogram. (ibid; p.78) 

At the fourth level (N4 formal deduction) ―the students grasp the significance of 

deduction as a means of constructing and developing all geometric theory.‖ (ibid; 

p.78) 

                                           

11
 In this text, the van Hiele levels will be numbered from 1 to 5 following Uziskin (1982), Guttiérrez & als (1991) 

Clements and Battista (1992) etc. ; the main reason being that some students do not reach the first level of identification-

visualization. 
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A new framework 

If we are to consider both theories, we can assume that a pupil mastering only the 

first van Hiele level (N1 Identification-visualization) is not yet working in a any 

geometrical paradigm, that is to say even not in GI: he/she can only name a figure by 

global recognition and is not using any instrument or geometrical property to assess 

his/her answer. Though at the end of Primary School most pupils should master not 

only the first van Hiele level (N1) but be able to work in GI as well. At the opposite, 

a pupil mastering the third van Hiele level (N3 informal deduction) is definitely able 

to work in a more theoretical geometry that is to say GII named either ―natural 

axiomatic‖ (Houdement-Kuzniak; 1998-1999) or ―proto-axiomatic‖ (Parzysz; 2003). 

Such an ability is expected from the students finishing Secondary School in France.  

So the question is: if a student masters the second van Hiele level (N2 analysis), is 

he/she working in a specific paradigm? If the answer is yes, is it GI or GII? Since for 

a student at level N2, the geometrical object is not necessarily a physical one but can 

be a meaningful free hand drawing, we cannot consider that such a pupil is working 

in GI. Is he/she working in GII? We cannot be sure of that either: the deductions and 

validations he/she makes are based on a list of properties and are not organised 

deductively. So we can suggest that the second van Hiele level could be an 

―overlapping zone‖ between GI and GII in terms of teaching references.  

The following table summarizes these new relations between the geometrical 

paradigms and the van Hiele levels.  

Geometrical 

paradigm 
GI GII 

Status of 

drawing 

Representing 

itself 

Object of 

study and of 

validation 

Representing 

a class of 

objects 

Schema of a 

theoretical 

object 

Characteristic 

of drawing 

―straight 

lines‖ 

―straight lines 

coded‖ 

Free hand coded drawings 

Validations 

Perceptive or 

using 

instruments 

Using instruments or 

deductive (through 

description and lists  of 

properties) 

Hypothetical-

deductive 

    

Van Hiele 

level 

N1 

Identification

-visualization 

N2 

Analysis 

N3 

Informal 

deduction 

Table 2: Relations between the geometrical paradigms and the van Hiele levels 

Is such an organisation accurate? Can we detect in which geometrical paradigm a 

pupil at this age is working? Can we assess the van Hiele level he is mastering in a 

particular situation?  
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METHODOLOGY 

In order to assess these questions, 250 pupils at grade 5 (last year of Primary School 

in France; 10-11 years old) and 250 pupils at grade 6 (first year of Secondary 

School) were asked to answer the same tests. Each test consisted of two questions, 

the first one supposedly easier than the second among 17 different tasks about 

triangles, quadrilaterals and circles, such as illustrated in figure 1. The first tasks 

were numbered from 1.1 to 1.8; the second ones from 2.1 to 2.9. The tasks consisted 

in recognizing or identifying a specific figure among a lot of different figures, 

drawing a specific figure according to different conditions, identify and explain or 

justify some property of a figure; etc. 

 

Fig 1: ―The rectangles‖ and ―the circle‖ questions
12

 

                                           

12
 Translation:  

Exercise n°1.7. : In the figure below, there are some rectangles. The center of each rectangle is indicated by a cross. The 

drawing has already been started and the side of a rectangle is drawn. Please, find at least two other rectangles and more 

if you can. (you may use your set square if you want to) [the biggest rectangle is 16 cm long and 11 cm wide] 

Exercise n°2.5.: A circle passing through the three vertices of the triangle had been drawn. It was erased. We know that 

the radius is 6 cm. Please, find the center and draw the circle again. Tell us how you did it. 
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Each task could be worked out either in GI or GII. The way the pupils answered the 

questions was to give us some indication about the paradigms they were working in 

and the van Hiele level they were mastering. 

As examples, the tasks illustrated in figure 1 are analysed here.  

In ―exercice 1.7.‖ a pupil mastering the first van Hiele level l would identify only the 

small rectangle on the top left part of the page and try to finish the small rectangle 

with one of its sides already drawn. At level 2 (analysis), the pupil could identify 

three out of the four rectangles. Mainly at this level, the pupil could not cope with 

the recognition of the square and the biggest of the four rectangles. Most of the 

answers at level 2 indicate that the square previously identified as a rectangle has 

been erased thus rejected as a particular rectangle. The pupils at level 3 (informal 

deduction) could identify the four rectangles.  

Considering the geometrical paradigms, pupils having rejected the square or wrongly 

connected the vertices of the biggest rectangles were considered as working in GI at 

most. These pupils could not cope with the different properties of the rectangle 

(length of sides and right angles) at the same time, even when using the ruler and/or 

set square. From the traces left on the sheets, we could tell that most of these pupils 

had made a perceptive validation of their drawings. We considered that the pupils 

working in GII were able to accept the square as one of the rectangles to be 

identified in the figure and were very précised when searching the fourth vertex of 

the biggest rectangle: opposite sides equal and right angles. Some of them indicated 

that the lengths of the opposite sides or the half of diagonals should be equal. 

In ―exercice 2.5.‖, the van Hiele levels were identified according to these criteria. 

At level 0, the pupil did not answer or drew a circle with a radius different from 6 cm 

passing at most by one of the vertices. 

At level 1 (identification-visualization), the circle is a 6 cm radius one but it passes 

by one or two of the vertices of the triangle. Others drew a circle passing by two of 

the vertices but the radius is not 6 cm. Not all the conditions are taken into account.  

At level 2 (analysis), by trials and errors, the pupil draws a 6 cm radius circle passing 

by the three vertices but he cannot explain why he is successful. There are many 

holes in the sheet of paper. The explanation is generally: ―I tried as many times as 

necessary.‖ At this van Hiele level, the pupil is able to grasp the different constraints 

(circle with a 6 cm radius passing by the 3 vertices) but he cannot give any 

theoretical explanation. 

At level 3 (informal deduction) the pupil is able to use the compasses the other way 

round and use the vertices of the triangle as centres of 6 cm radius circles, drawing 

two or three arcs and using their intersection as the centre of the circumcircle of the 

triangle. The explanations are descriptions of the different actions and very rarely 

refer to the definition of a circle.  
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As far as the paradigms are concerned, we considered that a pupil using the 

compasses with a 6 cm opening and working with trials and errors was working in 

GI. Though he could be successful in drawing a convincing circle, he could not give 

any explanation of his success. The validation was a perceptive one.  

As soon as a pupil was able to use the vertices of the triangle as centres of circles, he 

was using the definition of a circle the other way round: every point lying on a 6 cm 

radius circle is the centre of a 6 cm radius circle passing by the centre of the first 

circle. Such a pupil is working in GII, even though he cannot word it through a 

hypothetical-deductive reasoning.  

Each answer was coded according the van Hiele theory on one side and the 

geometrical paradigms on the other one. Every pupil being given two tasks, we had 

for everyone two sets of codes: the van Hiele levels and the geometrical paradigms 

he could work in.  

RESULTS 

First of all, as the two theories are concerned, we discovered that most of the answers 

given by the pupils could be identified as belonging to a specific geometrical 

paradigm and a van Hiele level. 12 answers out of 457 (<3%) were impossible to 

code in one paradigm or a van Hiele level. So we have 445 answers: 209 from grade 

5 pupils and 246 from grade 6 pupils.  

Grade 5  Grade 6 

Recto 

Verso  

GX + GI 

(recto) 

GII 

(recto) 
Total 

 Recto 

Verso 

GX +GI 

(recto) 

GII 

(recto) 
Total 

GX + GI 

(verso) 
120 57 177 

 GX + GI 

(verso) 
69 76 145 

GII (verso) 18 14 32  GII (verso) 43 58 101 

Total 138 71 209  Total  112 134 246 

Table 1: the geometrical paradigms (grade 5 and grade 6)
13

 

Considering the geometrical paradigms (see Table 1), as expected, three quarters of 

grade 6 pupils could work in GII when answering at least one of the two questions 

while only one out of 15 (<7%) from grade 5 pupils could do it. This happened 

mainly when the answer could be worked out without wording, like in ―exercice 

1.7.‖ where they were asked to retrieve the four rectangles, a square being among 

                                           

13
  The code GX was used for the answers we could not clearly identify as referring to GI or GII. But, we 

considered too that at that level of schooling, most pupils were no longer working in G0. So we figured out that they 

were working in GI, even with some awkwardness.  
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them. As the pre-service teachers do (Jore-Lemonnier 2006), one pupil can work in 

both paradigms depending on the task itself or the interpretation he/she has of the 

task. In most cases, even if the pupil can answer the first question working in GII, 

when the second task seems more difficult to him/her, he/she may work in GI to give 

an answer. The validations are then more frequently perceptive or obtained by use of 

instruments rather than by reasoning.  

Grade 5  Grade 6 

Recto 

Verso  

N0 + 

N1 

(recto) 

N2 

(recto) 

N3 

(recto) 
Total 

 Recto 

Verso 

N0 + 

N1 

(recto) 

N2 

(recto) 

N3 

(recto) 
Total 

N0 + N1 

(verso) 
67 28 20 115 

 N0 + N1 

(verso) 
32 29 31 92 

N2(verso) 32 13 25 70  N2(verso) 13 32 19 64 

N3(verso) 8 10 6 24  N3(verso) 17 34 39 90 

Total 107 51 51 209  Total 62 95 89 246 

Table 2: the van Hiele levels (grade 5 and grade 6)
14

 

As far as the van Hiele levels theory is concerned (see Table 2), the same report can 

be done. In most cases, we could identify the level mastered by a pupil when 

answering a specific question. As Burger and Shaughnessy (1986) and Gutiérrez 

(1992) report, one pupil can master different van Hiele levels at the same time 

depending on the subject. We observed too that, when the second question seemed 

more difficult than the first one, the answer given by the same pupil proved to pertain 

to a lower level. When considering the specific level of analysis (N2), we have this 

result: a quarter of grade 5 pupils and a third of grade 6 pupils were able to give at 

least one answer at this level. At the same time, a third of grade 5 pupils and half of 

grade 6 pupils proved to master level 3 (informal deduction) on one occasion at least. 

These answers were identified as such through worded validations relying on 

theoretical properties of figures.  

CONCLUSION  

As expected, 57% of Primary School pupils worked only in GI and 32% of them 

mastered only the first van Hiele level (N1 identification-visualization) on both 

tasks. 28% of Secondary School pupils worked consistently in GI but 13% mastering 

only the first van Hiele level. Such results suggest that some pupils are working in 

                                           

14
 The code N0 was used for the answers we could not clearly identify as referring to any other van Hiele level. But, we 

considered that at that level of schooling, most pupils knew some elements of geometry, even with some awkwardness 

and could be added to those who were clearly identified as mastering N1.  
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GI but master van Hiele level 2 (N2 analysis). At the same time, some answers were 

coded as GII – N2, meaning that the pupil working in GII was mastering only the van 

Hiele level 2.  

When analysing the characteristics of the different answers identified as belonging to 

level 2 (analysis), it seems that this level is the ―overlapping zone‖ between GI and 

GII.  

We could describe as GI – N2 any situation where: 

 The drawing is called ―figure‖ and is made at scale 1 with instruments (ruler, 

set square, compasses, etc.).  

 The pupil can read the information given in such a ―coded‖ drawing.  

 He/she can give a list of the properties of the figure but cannot work out any 

new piece of information or conclusion. 

 He/she can identify sub-figures within a figure but cannot make any 

connections in terms of incidence. 

We could describe as GII – N2 any situation where: 

 The ―figure‖ is a coded sketch or a free hand drawing and the pupil is able to 

give the list of the properties of the figure. 

 The pupil can identify sub-figures in a figure but he/she cannot explain or 

justify the existence of such sub-figures. 

 The pupil can tell what he/she did when drawing the ―figure‖ at scale 1 but the 

story is not organised. It does not refer to any theoretical property or 

hypothetical-deductive reasoning.  

These results tend to indicate that teachers should be advised that not all the pupils 

entering grade 6 are ready to work in GII. When proposing tasks to their pupils, the 

van Hiele level theory could come in hand, the focus being on level 2 (analysis).  

This research was the first one on such a hypothesis: level 2 being ―the overlapping 

zone‖ between GI and GII. More research has to be done particularly clinical 

investigation in order to understand how and when a pupil switches from one 

paradigm or a specific van Hiele level to another. It would be particularly interesting 

to investigate if a pupil entering GII is still working back and forth from GII to GI 

just as any professional mathematician do. Research on the tasks themselves could 

be fruitful and offer the teachers, activities helping the students moving forward in 

their learning of geometry. Investigation should be undertaken in order to connect 

these results with the different working geometrical spaces as identified by Kuzniak 

(2010) too. 
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GEOMETRY AS PROPAEDEUTIC TO MODEL BUILDING –  

A REFLECTION ON SECONDARY SCHOOL TEACHERS‘ 

BELIEFS 

Boris Girnat 

University of Education Freiburg, Germany 

This article presents a qualitative study of teachers‘ beliefs about applying 

geometry, setting application-oriented beliefs in the context of the teachers‘ whole 

geometry curricula. Surprisingly, geometry is not perceived as a field of good 

applications, especially not for model building. Three classes of objections are 

discussed and connected to a prevalent Euclidean view of geometry and a preference 

for proofs and problem-solving tasks. Despite these objections, applications are 

taught, but the analysis of the teachers‘ tasks implies that the teachers‘ implicit 

theory of applying geometry differs from didactical requirements and is not 

compatible with common approaches to model building. The teachers‘ predominant 

alternative, which is called a propaedeutic use of geometry, is described in detail. 

CURRICULAR ASPECTS OF TEACHERS‘ BELIEFS ABOUT GEOMETRY 

The research on teacher beliefs has become a prospering branch of mathematics 

education, revealing subtle influences on student learning. The focus of this study is 

secondary school teachers‘ beliefs about teaching geometry in the context of applied 

mathematics. Beliefs are customarily understood as ―psychologically held under-

standings, premises, or propositions about the world that are thought to be true‖ 

(Philipp 2007, p. 259). In contrast to the general notion of beliefs, this study is only 

interested in a subset of teacher beliefs which has a similar content, structure, and 

purpose to a written curriculum. This part of a teacher‘s belief system is called his 

individual curriculum (cf. Eichler, 2007). Its aspects – content, structure, and pur-

pose – can be explained as follows (cf. Stein, Remillard, & Smith, 2007): the purpose 

of an individual curriculum is equal to the function of a written curriculum, i. e. it is 

used to structure lessons and to guide instructional practice to the goals of education 

through various steps of content and method. Hence, its structure can be seen in 

means-end relations between mathematical content, methods, and educational goals. 

Teacher beliefs about mathematical content are split into beliefs about concepts, 

theorems, objects, tasks, and textbooks. Beliefs about educational goals are separated 

into three levels of generality: content-specific abilities, general competencies, and 

top-level goals of education. The choice of the competencies enquired about during 

data collection is guided by the written curriculum the teachers have to act on: 

arguing, problem-solving, modelling, communicating, formalising, algorithmising, 

and using mathematical description and symbols (KMK 2004, p. 7). 

Against this background, a qualitative study was designed to examine the individual 

curricula of nine teachers teaching geometry at German higher-level secondary 
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schools (so-called Gymnasien, in which about 35-40% of German students are taught 

and whose school leaving certificates are normally necessary to get access to 

university). To invite teachers to participate in this study, four districts of the 

governmental school hierarchy in different regions of Germany were contacted, each 

responding with a list of two or three teachers willing to participate in this study. The 

teachers were visited and interviewed by the author. 

The focus on curricular aspects was chosen because investigations of the implemen-

tation of curricula are scarce in Germany. In addition, no study has been carried out 

about the ways in which the changes to the new national curriculum (KMK 2004) are 

reflected by teachers – especially its emphasis on the competencies mentioned above 

and its increased emphasis on applications and model building. This lack of 

information was the reason to focus this study on modelling and to examine how 

beliefs about this topic are integrated into the teachers‘ whole geometry curricula. 

Individual curricula as subjective theories can provide a bidirectional contribution to 

mathematics education (cf. Girnat 2010): it is possible to detect disparities between 

prescribed goals and teacher objectives in order to discover possible errors in 

practice. On the other hand, individual curricula can also be analysed in comparison 

with didactical opinions on a cooperative level to integrate teachers as semi-

professional researchers and to expedite theoretical thinking on the ground of 

differing views from classroom practice. Both aspects are pursued within this study. 

THEORETICAL BACKGROUND, METHODS, SETTINGS, AND DATA 

The data were collected by semi-structured in-depth interviews, each taking about 90 

minutes. They were interpreted according to the research programme of subjective 

theories (Groeben et al. 1988). This framework was invented by psychologists to 

collect and interpret complex systems of beliefs used by professionals to make their 

decisions when acting occupationally on the basis on a more or less commonly 

shared, but individually interpreted, theory, containing empirical knowledge and 

normative prescriptions similar to curricula or didactical theories. Due to the usual 

complexity of a professional‘s subjective theory, a qualitative approach is normally 

preferred and is used in this study. 

To interpret the data, a so-called dialogue-hermeneutic method was invented 

(Scheele & Groeben, 1984) consisting of three steps: an interview to collect the main 

data, interpretation of the data by hermeneutic methods to define the subjective 

theory, and spot check observations of participant behaviour to validate whether the 

assumed subjective theories are in fact relevant to the teachers‘ practice. In this case, 

observations consisted of five lessons per teacher and a collection of the application-

oriented tasks used in approximately the last quarter before the observation. 

The teachers‘ geometry curricula were analysed in all the aspects mentioned above, 

and not limited to topics of applications, mathematisation or modelling. The reason 

for such a ―holistic‖ approach is the idea that the common instructional practice is 



Working group 4 

 CERME 7 (2011)  630 

 

guided by several goals of education not necessarily related to applications. Hence, 

application-oriented goals have to find their places within the totality of curricular 

aims and convictions. The central questions of this study can be only answered con-

cerning a whole individual curriculum: what significance do the teachers attribute to 

application-oriented goals? Of what kind are the connections between application-

oriented goals and other goals of education? Are teachers‘ application-oriented goals 

similar to or different from didactical ideas and the new written curriculum? 

THE FOCUS ON MODEL BUILDING 

Before presenting some results, it is necessary to briefly sketch some didactical 

perspectives on applied mathematics. The most essential issue seems to be the 

relationship between general mathematical theories and empirical knowledge in 

singular situations. Kaiser-Meßmer (1986, pp. 83-92) has proposed a classification 

whose extremities are called the pragmatic and the scientific-humanistic approach. 

The latter emphasises mathematical concepts and theories as the main goals of 

education and incorporates real-world situations mainly as subordinate tools to 

develop mathematical concepts and insights into manifold realistic associations. 

Empirical knowledge is of minor interest; the teaching process follows a 

mathematical taxonomy of problems, concepts, and techniques, and is not derived 

from empirical questions connected to real-world situations. The real-world 

situations are just ―illustrations‖. The pragmatic view, in contrast, stresses  empirical 

insights into real-world situations and includes a meta-theory about the relationship 

between mathematics and reality to be picked out as a central subject when teaching 

applied mathematics. This approach rests on three classes of educational goals 

(Kaiser-Meßmer 1986, p. 86): 1) utilitarian aims: the situations are not selected 

according to mathematical taxonomies, but on the basis of the current or expected 

benefit to the students‘ lives. 2) methodological aims: the students shall obtain 

general competencies in and meta-knowledge of applying mathematics. 3) meta-

scientific aims: applying mathematics is perceived as model building. The concept of 

model building can be explained by the model building cycle and has to be reflected 

in classroom practice as ―one of the main components of the theory for teaching and 

learning mathematical modelling‖ (Kaiser, Blomhoj, & Sriraman, 2006, p. 82). 

Both approaches to applying mathematics imply different standpoints on the goals of 

education in general; the pragmatic view sees its contribution in universal model 

building competencies and a preparation for life situations. The scientific-humanistic 

approach instead rests on the generality of mathematical theories. The new written 

curricula in Germany based on the national prescriptions (KMK 2004) underline the 

pragmatic view and introduce model building as obligatory; it was incidental or 

ignored in former German curricula. For this study, a simple version of the manifold 

modelling cycles (fig. 1) is used, which seems to be sufficient to determine if a 

teacher possesses a concept of model building in the sense of the contemporary 

academic debate and written curriculum. 
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Figure 1: The modelling cycle used in this study 

FINDINGS: THREE OBJECTIONS TO GEOMETRICAL MODELLING 

To summarise the results: seven of the nine teachers had objections to integrating 

applications into their geometry lessons, though being open-minded about modelling 

in other parts of school mathematics. The spectrum of objections ranges from strict 

exclusion to a moderate use. But even if geometrical applications are taught, the way 

of applying geometry differs from didactical suggestions. The interpretation of the 

data leads to three classes of objections which are based on different reasons. 

Ontological Aspects 

The strictest opposition to an application-oriented way of teaching geometry is based 

on ontological beliefs about the nature of geometry and its objects. In Girnat (2009), 

the following classification of geometrical ontologies is proposed (fig. 2). 

 

Figure 2: An ontological classification of geometry 
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This classification rests on two aspects: 1) the theoretical aspect: is geometry taught 

on the basis of a given axiomatic Euclidean theory (whose rigour may be restricted to 

an adequate school level) or is it derived from experience, observations, and 

measurement as an empirical theory? 2) intended application: does geometry refer to 

ideal objects in the sense of Plato or to physical objects or is it regarded as purely 

formalistic in the sense of Hilbert? 

The two aspects of this classification follow the main ideas of the theory of 

geometrical working spaces (cf. Houdement & Kuzniak, 2001). According to this 

approach, geometry is split into three paradigms: a formalistic theory (called GIII), 

an idealistic theory strictly based on deductive arguments (GII), and an empirical 

theory based on measurement and experiments (GI). Compared to the classification 

used here, the theory of geometrical working spaces combines the aspects of 

justification (deductive or empirical) and reference (the connection of objects) to 

each other, leading to the consequence that an empirical reference is tacitly bounded 

to empirical, non-deductive methods in GI. For our purposes, it is necessary to 

separate these aspects and to allow a geometry which refers to empirical objects, but 

is mainly based on deductive arguments (just including some empirical initial 

conditions). This type of geometry is called the rationalistic one. 

Idealistic Platonists: No applications intended 

Two of the teachers can be classified as exponents of an idealistic view of geometry. 

They do not perceive geometry as a theory of real objects, but of ideal entities which 

correspond to ruler-and-compass constructions and which fulfil the theorems of 

Euclidean geometry without any exceptions. 

Mrs. D: The beauty of mathematics is the fact that everything is logical and 

dignified. […] Everywhere else, there are approximations, but not in 

mathematics. There is everything in this status it has ideally to be in. [It is 

important for the students] to recognise that there are ideal things and 

objects in mathematics and that, in reality, they are similar, but not equal. 

From this point of view, applying geometry is barred by definition. Instead, 

constructive descriptions are promoted to get access to ideal objects. Physical 

objects, typically limited to drawings, are only used as symbolic representations of 

the ―true‖ ideal objects of geometry. Every empirical investigation is seen as a 

heuristic tool, but does not have any relevance for justifying geometrical insights. 

Mrs. D: Besides proof abilities, problem solving is in fact the most important thing I 

want to convey in my lessons on geometry. 

Mr. C: If geometry just consisted of measuring, calculations, drawing, constructing, 

and land surveying, then I would regard it as poor. […] [Geometry as a] tool 

to get access to the real world? No, problem solving would be my favourite. 

Why? Problem solving is a keyword that includes everything. It is the final 



Working group 4 

 CERME 7 (2011)  633 

 

goal to make students work systematically, identifying premises and 

drawing conclusions to solve a problem. 

Classroom observations support the impression derived from the interviews: the 

lessons on geometry held by these two teachers are focussed on proof, construction, 

and problem solving tasks, using drawings only as heuristic tools. 

Model building versus proof and problem solving tasks 

Not only by the two ―idealistic‖ teachers are proof and problem solving tasks seen as 

the main aspects of teaching geometry, but also by six teachers who are not strict 

opponents of geometrical applications. Applying mathematics is not a top level goal, 

but rather is subordinated to proof and problem solving competencies. The tasks the 

teachers presented as good examples to convey these competencies match the typical 

characteristics of problem solving tasks (Holland 2007, pp. 170-195) and lead to the 

hypothesis that the aspects and methods demanded are contrary to the settings of a 

model building process. The main differences are summarised as follows (tab. 1): 

Aspect Model building Proving or problem 

solving task 

Objects of interest singular situation general theorem or 

configuration 

Access to objects by measurement and 

experience 

by constructive 

descriptions 

Building a real model by simplifying simplifying not allowed 

Mathematical treatment inventing a mathematical 

model 

using known operators, 

theorems, or methods 

Validation empirically by deductive arguments 

Table 1: Differences between model building and proving or problem solving tasks 

Most of the teachers want to prevent their students from getting confused by mixing 

the standards of modelling, proving, and problem solving. They hence typically split 

their courses on geometry into pure and application-oriented sections: 

Mr. B: Geometry as a tool to get access to the real world is legitimately not in the 

first place. An application is useful to introduce a new subject, to legitimise 

it, and to test the competencies of this field by realistic tasks in the end. But 

in between, a lot has to be done without any reference to the real world, 

detached from these accessory parts which are not important to the 

mathematical theory. In between, applications are counterproductive. They 

seduce the students into not arguing strictly deductively. 

Insofar as the deductive view of geometry is predominant and geometrical appli-

cations are mostly seen as appendices to the ―serious‖ treatment of geometry, the 



Working group 4 

 CERME 7 (2011)  634 

 

consequence is that aspects of model building are not integrated into the geometry 

curriculum and that geometry is ―applied‖ to real-world problems in the majority of 

cases in the way that a problem-solving task is ―decorated‖ by an empirical-sounding 

vocabulary, which is seen as characteristic of a rationalistic use of geometry. 

The contrast: Geometrical applications as the main focus 

To contrast the first two types of objections, the only teacher who approves and 

practises application-oriented tasks extensively shall be quoted comprehensively. 

After arguing for teaching ―geometrical modelling‖, Mr. H was confronted with the 

question of what significance proofs and problem solving tasks had in his opinion: 

Mr. H: Proofs, not in the sense of what is called a proof at university, shall 

demonstrate that something could be plausible, more plausible than 

something different. […] My students shall be able to judge if a solution can 

be plausible, if the units match, if something could really have happened 

[…] if you throw a stone into a basin of water, then if the gauge could really 

rise by 3 meters. […] They have to solve specific problems, and they have 

to use their geometrical tools. That needn‘t to be exact, that depends on the 

situation, and they have only to know if the methods and solutions may be 

plausible and realistic and how they can be used in the specific context. 

Mr. H stresses the pragmatic aspects of applied mathematics, holding an empirical 

view of geometry at G1 level; and in doing so, he dispenses with the educational 

goals which the teachers mentioned above pursue by proofs and problem solving. 

Geometrical applications as being uninteresting 

The third and last class of objections against geometrical applications is based on the 

assertion that they do not lead to interesting insights. 

Mr. A: The better applications can be found in algebra or stochastics, per cent 

calculations, linear optimisation. It is important to get a deeper insight into 

reality by modelling. In geometry, there are such things as dividing a pizza 

by a compass. I saw a trainee teacher do so. That‘s ridiculous. 

It is remarkable that this objection is focussed on purely geometrical applications. 

The classroom observations and the teachers‘ statements about ―good‖ examples for 

modelling reveal that the teachers in fact use geometrical applications, but that they 

are small and, for themselves, uninteresting parts of more complex modelling tasks 

guided by non-geometrical questions. These tasks typically possess a two-step 

structure. In the first step, geometry is used to calculate some initial or boundary 

conditions, e. g. some lengths, areas, or volumes. Afterwards, these values are 

committed to a second, non-geometrical step which includes stochastics, algebra, 

optimisations or a problem derived from the natural or social sciences, e. g. some 

price, weight or velocity calculations. Five teachers used these two-step applications 

and stated that the interesting insights first and foremost arise in the second step. A 

typical example is mentioned and explained by Mr. B: 
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Mr. B: To grasp the sense of what I like to say, let us regard the following task: ―A 

businessman wants to sell salt in small rectangular packages of 250 gram. 

What would be your advice to reduce the waste of material?‖ That‘s an 

interesting problem providing some surprise, if you take the situation 

serious, and it is quite challenging, but the geometry in it is not, it‘s 

standard, it‘s only a vehicle to manage the interesting aspects, and it has to 

be well understood before deliberating about this problem. 

If the modelling cycle is the core concept to analyse the learning and teaching of 

applied mathematics, then it will be difficult to reconstruct this two-step application 

by a cyclic structure (fig. 1). It rather seems appropriate to perceive geometry as 

―propaedeutic‖ to modelling, outside and ―a priori‖ to the modelling cycle (fig. 3). 

 

Figure 3: Geometry as propaedeutic to model building 

The meaning of ―propaedeutic‖ can be explained in three aspects: 1) A propaedeutic 

use of geometry is characterised by a static view on geometry: It is seen as a pre-

established theory, based on rigid concepts, proved theorems, and infallible methods. 

2) A propaedeutic geometry is used as a suitable language and reliable background 

theory to structure and simplify a situation by geometrical concepts. This way of 

applying geometry is different from a modelling process, since geometrical concepts 

are already used to structure the real situation, and not to build a mathematical model 

after structuring the real situation independently. Hence, the use of geometrical 

concepts and methods is prior to any kind of mathematisation in the sense of the 

modelling cycle. This aspect is best to observe in the two-step structure of the 

teachers‘ ―good‖ examples for modelling tasks. Geometrical concepts and theorems 

are already necessary to ―see‖ geometrical objects in reality and to calculate the 

values of areas or volumes before the second step, the ―true‖ modelling process, can 

get started. Additionally, and as a further contrast to the modelling cycle, the 

propaedeutic use of geometry does not include any kind of validation, since 

geometrical theorems and methods are treated as already proven. In the salt example, 
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the relevant second step is the optimisation process, based on proposals on how to 

shape the packages. The calculation of its shells, volumes, and cut-offs is just an 

algorithmic task, based on pre-established geometrical knowledge and methods. 

3) The teaching method is propaedeutic, since most of the teachers follow Mr. B‘s 

suggestion to avoid connections to reality at first and to integrate realistic situations 

at the end of a teaching unit. The observations indicate that five of our teachers 

approve of modelling tasks and pose them in their lessons, but either geometrical 

problems are not involved and are taught separately or geometry is integrated 

propaedeutically into a two-step structure. 

CONCLUSIONS 

The study reveals objections to an application-oriented approach to geometry based 

on three reasons: a traditional idealistic view of geometry, a preference for proof and 

problem solving competencies, and a propaedeutic treatment of geometry. In 

particular the pragmatic view of modelling with the model building cycle as its core 

concept could not be found as a part of the teachers‘ geometry curricula and teaching 

practice, though being observable in non-geometrical contexts. 

It is interesting to see how several of the teachers integrate application-oriented 

aspects into their geometry curriculum on basis of their ―non-application-oriented‖ 

view, combining a Euclidean perception of geometry with a propaedeutic use. This 

finding suggests some further reflections: although the classroom observations of 

most teachers reveal no application-oriented tasks which could be described as 

―good‖ modelling tasks in the sense of the academic debate and the new German 

curriculum, the teachers are not just unwilling to teach application-oriented 

geometry, but are focussed on educational goals connected to proving and problem 

solving tasks, which are also parts of the written curriculum, and which presuppose a 

geometrical ontology and methodology that provokes a conflict with the background 

theory of modelling objectively, and not only in the subjective perceptions of these 

teachers. The academic debate needs to propose a way to manage these conflicting 

demands in practice. 

The observed two-step structure poses a particularly interesting question to the 

academic debate on modelling: is this way of teaching applied geometry just a 

consequence of the teachers‘ traditional Euclidean view of geometry or is it based on 

a typical way in which geometry ―naturally‖ refers to reality? In the latter case, it 

would be questionable whether the model building cycle is an adequate 

representation of applying geometry. In contrary to common didactical debates 

(Kaiser et al., 2006), the findings suggests the conjecture that it may be advisable to 

shape the modelling debate less as a ―top-down theory‖, establishing a single 

framework to be applied in every part of school mathematics identically, but more as 

a ―bottom-up research programme‖, exploring the existing uses of applications in 

different contexts and parts of school mathematics following from the question of 
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whether there are ways other than the modelling cycle in which mathematics and the 

different parts or disciplines of school mathematics refer to reality. 
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Abstract. The purpose of this contribution is to define the nature of the geometric 

work implemented in France at the end of compulsory education. To do the study, 

the notions of geometric paradigms and Geometric Work Space (GWS) have been 

used. The reference GWS is clarified through an analysis of the curriculum written 

in 1996 and 2005; then the ―appropriate‖ GWS is studied by confronting textbooks 

and observations in class. From this analysis, it results that the GWS are becoming 

more and more split and oscillate in a confusing way between the geometric 

paradigms. This dispersion of the GWS is largely due to the fact that the geometric 

work is not any more controlled by epistemological concerns but tends to adapt the 

mathematical level of the students. 

INTRODUCTION 

This article focuses on the nature of the geometric work implemented at the end of 

compulsory education in France (Grade 8 to Grade 10). These grades correspond to 

the end of the compulsory education and also to the end of a common education 

program for the quasi-totality of students. Grade 9 is the final year of the ―collège 

unique‖, called unique because it is dedicated to welcoming all the students by 

giving them the same learning within a common framework. Grade 10 is the first 

class of the Senior High School and it provides the time when students choose the 

school sections that are more specialized in some particular domains. Due to this, 

most of the students receive their last education in geometry in this grade. To 

examine the nature of geometric work, the notions of Geometric Working Space 

(GWS) and geometrical paradigms (Houdement and Kuzniak, 2003, 2006) are used. 

The three geometrical paradigms, named Geometry I, II and III, are not presented in 

detail, but some elaboration of the notion of geometric work and GWS are given to 

frame the questions studied in the paper.  

THE NOTION OF GEOMETRIC WORKING SPACE 

Towards a definition 

The geometric working space (GWS) is a workspace organized to ensure the work of 

people solving geometry problems (geometricians). It has two levels: the 

"components plan" and the "cognitive plan". 

The "components plan" comprises three parts: the real and local space as material 

support with a set of concrete objects; artefacts such as drawings instruments and 

software available to the geometrician; a theoretical system of references made of 

properties organized in a way that is dependent on the geometrical paradigm. 



Working group 4 

 CERME 7 (2011)  639 

 

The sole components are not sufficient to define the global meaning of a GWS which 

depends on the function that its designer and its users give to it. A first 

reorganization of these various constituents is of an epistemological nature and 

directed by the geometrical paradigms.  

The GWS function can evolve in connection with the social and economic context 

which influences the educational institutions where geometry is taught. Moreover, 

this function depends strongly on the cognitive ability of a particular user. The 

cognitive plan was 

introduced to clarify the 

cognitive processes 

involved in geometry. 

Adapting Duval (1995), 

the three following 

cognitive processes have 

been introduced:  a 

visualization process 

with regard to space 

representations and the 

material support; a 

construction process 

depending on the 

instruments and on the configuration; a discursive process in relation with proving 

and reasoning. 

As the GWS is created within the framework of school institutions, we need to 

introduce different levels in order to describe the diversity existing in school 

education.  

The reference GWS or the expected reorganization The choice of a paradigm by 

the members of a community implies that problems have to be formulated and solved 

in a particular GWS that we name the reference or expected GWS. To describe this 

GWS, it is necessary to exhibit these specifics ways of working and clarify the 

expected style with its treatment and presentation rules. The reference GWS depends 

on the chosen paradigm: Geometry I, II or III. 

The ―appropriate‖ GWS or the question of the implementation Once the bases of 

the geometry taught have been determined, it remains to be worrying about its actual 

learning which requires the existence of GWS convenient to carry out the expected 

geometry with a chance of success. The experts in charge of the GWS design play a 

role similar to that of an architect who conceives a working space for future potential 

users. They develop a GWS which can be appropriate with regard to the intentions of 

the institution, but which can turn out to be not adequate to its expected function and 

not successful during its implementation in classes. 
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The personal GWS The appropriate GWS must be invested by students who use it 

with their knowledge and their cognitive abilities and these new GWSs are named 

personal GWSs. They are formed in a progressive way depending on the individual 

and can sometimes not be operational. Not only are students concerned by this notion 

but also teachers in charge of shaping it. Indeed, they have to have a clear 

consciousness of the nature of the GWS to avoid some misunderstandings resulting 

from a vague and implicit management of the interplay between paradigms. 

We can finally express both questions which we aim to clarify in this paper. 

Question 1: What is the current reference GWS proposed at the end of compulsory 

education in France? 

Question 2: What are the characteristics of the corresponding appropriate GWS? 

We wish to study more particularly the consequences of the division announced of 

the reference GWS on the appropriate GWS and also on the students' personal GWS. 

Our research into the characteristics of this geometric work agrees well with the 

systematic approach privileged by the study TIMSS (Kaiser, 1994) where the focus 

on various types of curricula are called intended, implemented and attained. 

ON THE REFERENCE GWS AT THE END OF COMPULSORY 

EDUCATION IN FRANCE 

During periods of educational stability, access to the reference GWS is facilitated by 

what might be called ―treaties‖ which organize and determine the reference corpus. 

For a long time, Euclid's Elements played this role and fixed the nature of the 

geometric work. It is no longer the case in our education system. Today only the 

texts of the official programs and the documents accompanying them seem fulfill this 

reference role. On the one hand, mathematicians are practically absent from the 

process of elaboration of the curriculum which is left chargeable to the school 

institution and the teachers. On the other hand, the absence of organization of the 

theoretical set of reference in a treaty explains the impression of parceled work space 

that we attribute to the current GWS of reference. The programmes that we study are 

those published in 1996 and 2005.  

In school, both versions of the programme, the older and the newer one, insist on the 

notion of mathematical activity defined as the fact « to identify a problem, speculate 

a result by experimenting on examples, build an argumentation and control the 

obtained result. ». As for the geometry, it has assigned to it the role « to pass from a 

perceptive identification of figures and configurations to their characterization by 

properties ». In the documents accompanying the programme, it is clarified that the 

properties to be demonstrated can be ―seen‖ on the drawing but that students have to 

understand the necessity of demonstrating this result. By using the framework of 

paradigms, we can assert that the curriculum is mainly concerned with the question 

of the transition between GI and GII. However, the passage from one geometry to the 
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other one is not once definitively established at a specific moment in the curriculum, 

and the transition seems ceaselessly put back on every new notion. The new notions 

are introduced and structured around geometric objects which can be seen also – and 

the programs insist on it – as objects of the sensitive space: triangles, circles, 

polygons. The geometric transformations are also used as a structuring element. In 

the curriculum of 1996, a new transformation (orthogonal symmetry, symmetry 

through a point, translation and rotation) was introduced at each level of the college. 

In those of 2005, translations and rotations disappeared with the effect of decreasing 

the global structure of the theoretical set of reference which appears more and more 

like a collection of objects juxtaposed. 

This indecision on the final choice of the paradigm is particularly clear with the 

emphasis on experimental studies made to speculate on properties in every Grade. 

Constructions (in freehand or using drawing instruments or software) play a key role 

in this process. But at the same time, the notion of a minimum base (le socle) is 

imposed by the school institution and all the students are supposed to reach this 

minimal level on all the topics. In the case of geometric constructions, no formal 

proofs are expected and the basic knowledge is limited to the mastery of techniques 

useful to make constructions. At the end of the schooling, a student must know how 

to build and master some elementary techniques without necessarily knowing the 

theoretical justifications stemming from Geometry II. Through this sole expectation 

of techniques, we already guess the possible gliding towards an appropriate and 

personal GWS directed by a technological horizon in Geometry I with the accent put 

on the perception and the artefacts. To characterize this gliding not assumed towards 

Geometry I, we will speak of a surreptitious Geometry I. 

By contrast and always in the syllabi of 2005, the learning of the demonstration is the 

object of a more steady attention. In a paragraph entitled « a progressive initiation to 

the demonstration » it is explained that « the question of the proof has a central place 

in mathematics ». The practice of the proof allows gradually the implementation of 

the demonstration. This distinction between proof and demonstration is new in the 

French education. The proof depends on social context and it can take various forms 

while the demonstration is fundamentally a rhetoric shape characteristic of the 

mathematical style. This distinction between proof and demonstration leads the 

authors of the curriculum to differentiate two phases in the learning process of 

demonstration: the reasoning and its shaping. At the same time the authors insist on 

the phase of discovery and it has some consequence on the work set up in the classes 

because it suggests introducing two different contexts in the appropriate GWS: a 

context of discovery and context of justification. 

Dynamic geometry software is also introduced and used for changing the students' 

viewpoint on figures that are no longer considered only in their iconic form. By 

giving the possibility of moving points and of multiplying experiments, software is 

supposed to favour the access to the general notion of figure contrasting to the 
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drawing. In this optimistic view, dynamic geometry software is used to favour 

conjecturing and reasoning to validate the conjectures. But, the ambiguity of the 

appropriate GWS is again stressed by the role they have: in certain cases they can be 

used instead of a demonstration when students are not able to produce the expected 

reasoning in Geometry II. So, software is not only at the origin of conjectures but 

they can also guarantee the validity of a result. There is then an implicit and potential 

gliding towards a GWS where the geometric work is directed by experiment and 

artefacts. In Grade 10, in another institution, the Lycée, the goal announced by the 

authors of the programme is to stabilize the geometric work developed before during 

the Junior High School education. New notions such as isometric and similar 

triangles are not introduced for their own interest but for using the tools developed 

for proving in Junior High School. The recommended working methods have to be 

very close to the implemented ones at Junior High School. The starting-point in 

geometry must be intuitive and experimental and based on perception. Software 

remains a source of conjectures of properties. These must be proved and then 

demonstrated in a more formal way. 

To conclude this part, we shall speak from a mixed Geometry (GI / GII) because if 

the authors of the programme insist on the difference between demonstration and 

experimental proofs, both forms live ceaselessly and seem also justifiable. 

Furthermore, the theoretical set of reference is split and does not allow to assume 

completely the passage to Geometry II due to the lack of an axiomatic horizon. Only, 

isolated and proof dedicated islands are developed and proofs have to be supported 

by experiments every time. This evanescence of an organized theoretical set of 

reference is not new and was starting at the end of ―modern maths‖ in reaction to the 

―all axiomatic‖ of this period. What is new is, on the one hand, the ambiguous status 

given to instruments and to constructions and, on the other hand, the multiplicity of 

the demonstrative islands dependent of configurations in poor connection with each 

other. This multiplicity contributes to the breaking up of the theoretical set of 

reference. 

TODAY APPROPRIATE GWS 

We are now going to try to appreciate the effects of this Geometry mixed and split on 

the appropriate GWS which we met. In other words, how is this evolution of the 

reference space echoed in textbooks and in practice of the teachers? To address this 

question, we now attempt to assess the effects of this mixed and fragmented 

geometry on the appropriate GWS which we met. In other words, how does this 

evolution of the reference GWS affect textbooks and teachers' practice? 

Describing the appropriate GWS is more complex than specifying the reference 

GWS because it is rare to be able to have a unique source to define these GWSs. To 

understand their functioning, it is necessary to resort to various, sometimes 

contradictory, sources such as the courses of the teachers and the textbooks, very 
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numerous in France (where there are no textbooks accredited by the Ministry). 

Furthermore, it is often only possible to approach the GWS in a local way from a 

study of a subject or even of a type of prescribed task. For our approach of the 

appropriate GWS, besides our personal observations in class, we shall lean on 

different works realized within the Laboratory André Revuz and which give 

information stemming from textbooks but also from the practice in class. To describe 

the process of didactisation existing in class and determine the appropriate GWS, we 

present successively: 

- A study of the notion of inscribed angle in Grade 9 which provides a first 

characterization of the standard appropriate GWS; 

- The gliding introduced into this GWS by the large use of geometry software from the 

years 2000; 

- The break between the standard appropriate GWS and a great part of the students 

engaged in another type of geometric work than the expected one by the teacher. 

Standard appropriate GWS 

We are going to observe the treatment of the notion of the inscribed angle at Grade 9. 

This notion seems relevant for our study because it takes place at the end of the 

Junior High-school and it forces the teachers and the textbooks to integrate it into a 

GWS already in place and that allows us to see some stable characteristics of the 

GWS. Two properties appear in the Grade 9 syllabus and correspond to the 

properties expressed by Euclid in his book III: property 20 gives the relation between 

the central angle and the inscribed angle intercepting the same arc, and property 21 

asserts the equality of the inscribed angles as a consequence. The implementation of 

the notion of the inscribed angle in class has been studied by Roditi (2004) who was 

able to show the close relation of the approach developed by a teacher with the 

proposition made in the textbook retained for our study. Roditi points out that this 

textbook is well known for being well-adapted to the level of the students. So in that 

case, the implementation of the appropriate GWS is already very influenced by the 

students' mathematics level. The notions of inscribed angle and central angle are 

introduced by an activity. Students are asked to draw these two notions from two 

questions on a corpus of six figures. Definitions are given a little farther by the 

authors of the book. They are then associated to prototypic images of the notions of 

acute angle and central angle. So the mode of production of the definitions is of 

empirical type. Based on some particular drawings, the defining process suits to an 

abductive way, something which is confirmed in the activity dedicated to the two 

fundamental properties of inscribed angles and central angles. 

« Draw a circle with centre O. Draw several inscribed angles in a circle which intercept the 

same arc BC. Measure these angles. What conjecture can we do? 

Draw a circle with centre O. Draw a central angle and an inscribed angle in this circle which 

intercept the same arc BC. Measure these two angles. Repeat several times these drawings. 

What conjecture can we do? » 
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This activity allows the showing of both properties, written in red in the book and 

presented in an order different from the Euclidean order. « If two inscribed angles in a 

circle intercept the same arc then they have the same measure. If, in a circle, a central angle and an 

inscribed angle intercept the same arc then the measure of the central angle is the double of the 

measure of the inscribed angle. » 

Both properties are identified from very few examples. We can actually speak here of 

an abduction: the idea of property being present, it is sufficient to extract it from a 

small number of examples verifying it. The use of measuring is recommended to 

speculate the property even if the abductive process incites to neglect the 

approximation and tends to make useless the actual measurement. So, the appropriate 

GWS which is set up leans determinedly on Geometry I but do we really enter in 

Geometry II? Settling the question is not evident in this book since both properties 

are not demonstrated. They are admitted without knowing exactly their validation. In 

other words, are these properties included in a GWS directed by Geometry II or 

Geometry I?  

Furthermore, the two properties are not presented in the order usually used in the 

Euclidean tradition and which allows the deducing of the property of the inscribed 

angles from that of the central angle. This absence of a concern with the global 

organization of the deductive schema takes away the appropriate GWS from 

Geometry II. This impression is confirmed by the study of the only use of the 

property in the textbook. It is asked to prove that some points lie on a straight line on 

a very particular configuration without any degree of generality – with specifics 

measures – that a more general formulation would have been able to introduce. So, 

the work remains joined to a particular figure without reaching the level of the 

generic figures which marks the entrance in Geometry II. The appropriate GWS is so 

characterized by the absence of generic figure and by the support on particular 

figures. It is also allowed to measure. The reasoning is mainly based on abduction to 

clear properties which are then used as techniques to give numerical values. To us, 

all these elements characterize a GWS, actually, rather directed by surreptitious 

Geometry I. 

In his study, Roditi observed a class session given by a young teacher who used the 

earlier textbook to prepare his course. He did a certain number of changes with the 

goal of limiting the degrees of freedom of the students during the activity. The fact of 

limiting the work and the initiatives of the students allows the teacher to manage 

more easily the behaviour of the class. In his study, Roditi asserts that students have 

worked even less than the teacher was waiting, notably at the level of calculations 

and speculating. So, we note a phenomenon of progressive crumbling of the 

appropriate GWS which is more and more oriented by the teacher trying to adapt the 

work to the level of the students. These last ones, in a well-oiled role game, still try 

to simplify the task to make easier their work of student. 
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The impact of the software on the appropriate GWS 

In her Masters dissertation, Boclé (2008) described the typical situation given in the 

French textbooks to introduce a new notion in geometry at the end of Junior High-

school.  In textbooks, conceived just after 1996, the typical structure SP1 was the 

following: 

1. Construction of some particular figures with drawing instruments. 

2. Measurement on these figures by using instruments (marked ruler or protractor). 

3. Conjecture of the property. 

4. Institutionalization of the property accepted without proof or formally proved later. 

In the textbooks printed after 2005, a new tendency appears. A new notion is 

introduced with digital geometric software. The typical situation SP2 is then the 

following one: 

1. Construction of a figure with digital geometric software. 

2. Measures given by the software. 

3. Dragging of points to notice that the property remains true. 

4. Institutionalization of the property accepted or accepted without proof or formally proved later 

In both cases, to introduce the property, students have to build several figures 

satisfying some criteria. Thanks to the measures made on the figures, it is possible to 

notice an invariant then to draw a conjecture. In the textbooks written according to 

the programs of 2005, the activities of construction and measuring suppose the use of 

geometry software. Every activity starts clearly in the GWS directed by Geometry I 

and favouring perception and instrumentation. In both approaches, with and without 

software, the point 4 is the crucial point to determine the type of geometry really 

used and the appropriate GWS. If the property is only proved in a deductive way 

without any use of measuring, it is possible to enter into Geometry II. On the other 

hand, what happens if the property is not demonstrated? It seems that students stay in 

Geometry I. These typical situations well fulfil the programme instructions 

recommending the implementation of activities leading to conjecture of properties. 

The recent emphasis on the use of geometry software is taken into account in 

textbooks but the real contribution of this software in the transition from Geometry I 

to Geometry II deserves to be questioned. Indeed, the use of digital geometric 

software is justified in the textbooks by improving the measuring accuracy and the 

possibility of multiplying the examples. But a measure remains an approximation 

and it is thus not exact. This imprecision can create a contradiction within the class 

and lead some students to convince themselves on another way and then to prove 

without any measurement. By contrast, insisting on the precision of the software and 

their advantage with regard to ruler and compass constructions could risk to take 

away students from the necessity of proving which was one of the stakes expected 

within the reference GWS. In her work, Boclé tried to see if the use of software in 
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these typical situations favoured the transition to Geometry II or if, on the contrary, it 

created a blocking element. She noticed that the strength of the proof by experiment 

overcame the classic work on demonstration with a purely deductive proof. In that 

case, it seems that the use of the software in a standard situation stabilizes rather a 

GWS of type Geometry I and not a transition to GII. 

The break achieved in Grade 10 or when the ostension becomes demonstration. 

We are going to find again this contradiction between the work expected by the 

institution and the work effectively set up in the case of the teaching of similar 

triangles in an ordinary class at Grade 10. Similar triangles are not seen by the 

programs as a new notion but as an opportunity to stabilize the geometric work at the 

end of the compulsory education. We shall consider here only the result of a session 

managed by a teacher who first follows the typical way SP1 but who changes on 

phase 4 of institutionalization and then follows the process SP2 by using uniquely 

himself the software.  

The activity is the first activity on similar triangles.  

A sheet of paper is given to the students with a drawing: Part 1 Create a triangle DEF 

such that BAC=EDF, ABC=DEF 

Under the figure, the following questions appear on the sheet given to the students: What 

can we say about angles ACB and DFE? Compare the sides of the triangles with your 

ruler. What can be noticed? Finish the sentence: We can speculate that if two triangles 

have …. then their sides are ….  

For the teacher the construction does not cause a problem. He anticipated two 

possible configurations, what seems an interesting difficulty to him. He wants to 

motivate the origin of a property in Geometry I which will be completely in 

Geometry II when it will have been proved in the following lesson. For him, the 

figure is a generic example and he has not really thought about the measures given 

on the paper sheet. The great majority of students, but not all, undertake completely 

in the activity of construction which turns out long and complex. Students have 

difficulties with the use of their drawing instruments: the task « to make an equal 

angle » does not fit to a well-known technique. Furthermore, the two existing 

possibilities of the figures cause problems in the class since students are working on 

particular and not on general figures. Other students understood that the construction 

is not important for the teacher and they quietly wait that the course goes on. They 

give, by abduction, purely linguistic conjectures by trying to adapt their 

mathematical knowledge to the situation. At the same time, students engaged in the 

construction task produce very different and contradictory results but actually these 

results and the work of these students will be left aside by the teacher who will 

privilege the solution with the software Geogebra and presented on video-projector 

to the class. The teacher follows the structure SP2 but without making any 

devolution to the students. He is the unique user of the software and he proceeds to 
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an institutionalization which denies all the previous work of the students. On the 

computer, the figure is the start-point and measures are given with five digits and this 

even for angles. The ratio of proportionality calculated by the computer was 1.875 

and was exactly the same for the three ratios. The accuracy of the measures indicated 

by the computer shows the students the imperfection of their work with instruments 

on a very violent way. Strictly speaking, the students' work is of little utility because 

it is left aside by the teacher. Moreover, the accuracy of the software turns it into a 

proof tool and a source of truth and, this, without the teacher knowing, as it can be 

seen in the dialogue which closes the class after the statement of the conjecture. 
Teacher : « Did we demonstrated the property? » 

Almost of the students: « Yes! We have done a demonstration. » 

Teacher (taken aback) « Hum.. No, it is too imprecise! » 

So after more than three years of progressive entrance in Geometry II and in spite of 

the curriculum which insist on the necessary awareness on the status of the 

statements, accepted or demonstrated, the gap between the expected work and the 

effective work is deep. It largely results since the appropriate GWS proposed to the 

students is very ambiguous itself and probably fundamentally a surreptitious 

Geometry I. 

CONCLUSION 

From our study, some characteristic points can be drawn of the GWS implemented at 

the end of the compulsory education in France. The GWS of reference can be 

characterized as relevant to parceled Geometry II. Numerous demonstrative islets are 

introduced to show well the link between geometry and space intuition. Then, the 

emphasis is put on the necessity of developing the demonstrative work by separating 

it from experimental proofs and from perceptive assertions. However, this reference 

GWS leaves the door opened, in certain cases, to the implementation of techniques 

and properties only validated by students experimenting with software. Furthermore, 

the constant emphasis on a transition towards Geometry II based on Geometry I can 

let suppose that a mixed Geometry is possible. This opened door becomes a 

boulevard when we look on the appropriate GWS which appears particularly 

unstable and dependent on the students' level and the choices of the teacher. The 

traditional play between the Geometries I and II turns out to be particularly 

ambiguous because of the probing power of the software for the students. In the 

observed examples, the gliding towards Geometry I was favoured by the use of 

software which establishes a computer proof faced the axiomatic proof. This last one 

is weakened all the more as the theoretical set of reference given to the students does 

not appear, even between the lines. 

Finally, the reorganization of the GWS seems more and more managed by a teacher 

adapting at the level of the students more than by assuming epistemological choices. 

The geometric work evolves by successive impoverishment what can explain the 
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recent attempt to abolish the discursive and figural geometry in Grade 10 for the 

benefit of the sole analytical geometry. Another way would be possible, in 

equivalence with the current social demand: to assume a Geometry I in the 

compulsory education. It would allow again a rich geometric work to be in place and 

for the GWS to be structured in a coherent way. 
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The purpose of this paper is to examine how it is possible to relate the way students 

perceive, act and talk about objects in geometry class. Based on the analysis of an 

"emitter-receiver" situation in a French geometry classroom at primary school, our 

contribution provides a theoretical tool in construction, called "frequentation 

mode".  

Key word: geometry, language, ―frequentation mode‖  

INTRODUCTION 

In French primary school, manipulating objects is a usual and attractive way of 

teaching geometry in order for the pupils to get familiar with geometry objects and 

concepts. Yet, this is only a first step as there is no obvious link between material 

and conceptual objects (Lismont, 1999). Now, this relationship between the physical 

world and the geometry world necessarily induces problems of meaning due to the 

gap between the students‘ understanding and the sense that we, as teachers or 

researchers, give to these confrontations with objects. 

Until today, French researchers (Berthelot and Salin, 1991; Gobert, 2001) in 

geometry education have approached this question by linking actions on selected 

material objects to geometrical knowledge, as Theory of didactical situations mainly 

focuses on material feedback from the milieu (Brousseau, 1998). However, these 

researchers‘ results, as well as our various experiments in teaching geometry (Bulf, 

2009; Mathé, 2006), suggest that the relationship between the physical world and the 

geometry one is a very tough problem. Bartolini-Bussi (1994) or Sfard (2008) stress 

that analyzing the students and teacher‘s discourse in mathematics classroom is 

relevant to better understand learning and teaching phenomena in geometry. Our aim 

is to analyze how the way students act on the objects, the way they talk about them 

and how they act on them, are interrelated. In this paper, we give an overview of our 

work and introduce theoretical and methodological tools to be used for a joint 

analysis of physical and language facts in the geometry classroom.  

A SHORT EXAMPLE 

The following example is an extract from Fregona‘s thesis (1990), recorded in a 

CM1 classroom (4
th

 grade, 9 year-old students) at the Corem [1]. We focus on the 

analysis of a part of the second session of a sequence in which a ―transmitter-

receiver‖ situation is implemented. The announced aims of this lesson were to create 
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conditions to confront basic knowledge of figures from elementary geometry, to 

develop geometrical vocabulary and to use methods of figures construction. 

The teacher gave the "transmitters" a cardboard-made geometrical figure and asked 

them to write a message, without any drawing, which should allow the "receivers" to 

construct a figure that can be superposed on theirs. In the session we analyzed, the 

teacher and students reviewed the messages referring to rectangles and organized a 

collective validation of the productions, by superposing the figure constructed and 

cut on the cardboard model figure. 

For now, we focus on the following message, describing a rectangle shape: ―Take a 

set square and plot 19cm4mm for the larger side and 11cm7mm for the smaller 

side.‖ There are at least two possible interpretations of this message: the "receivers" 

draw a triangle whereas the "emitters" thought about a rectangle. It seems there was a 

misunderstanding about the meaning of ―set square‖ in this message. So, what 

happened, and how to deal with this? A didactical analysis might conclude that the 

students‘ understandings of ―set square‖ were different: set square as the shape of a 

triangle, used to draw a triangle and on the other side, set square as the shape of a 

right angle, used to draw perpendicular sides (in this case, of a rectangle). 

Naive analysis 

The two interpretations we identified tally with Duval‘s ways of seeing in geometry 

(Duval, 2005): the "receiver" focuses on shapes with an interpretation of iconic 

visualization, whereas the "transmitter" may have described a way of representing 

relations between sides in a non-iconic visualization way. 

Furthermore, we have to say that this misunderstanding was not clear to the pupils at 

the beginning, and three main stages are to be distinguished:  

- First of all, a message with an ―invisible‖ misunderstanding about the description 

of the shape; 

- Next, a material feedback (the drawn shape doesn‘t fit the original): this revealed 

the misunderstanding as a fact, but it gave no explanation or solution to the problem; 

- Then, a discursive interaction (arguing about what ―set square‖ means): each 

student tried to justify how he defined ―set square‖, used this tool, and to convince 

his opponent that his conception about set square was right : the meaning of set 

square is negotiated through language beyond a shared use and meaning.  Thus, the 

use of set square changed and students moved from triangle to rectangle. 

The first stage only doesn‘t make the pupils change their interpretation of ―set 

square‖, whereas the negotiation about set square is about explaining and justifying 

and plays a significant role in the learning process. Actually, these two discursive 

interactions‘ functions are very different, and have to be clearly distinguished. 

Nevertheless, the role of material feedback is essential; that is why systems of 

representation and pupils‘ actions have to be taken into account simultaneously. 
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First of all, this preliminary analysis allows us to bring out the initial findings our 

development is based on. Two systems of representation are to be linked in order to 

understand student‘s actions: graphical representations and language representations. 

The study of each system of representation led us to use the notion of action in the 

sense of the following definition. We shall define an action in a system of 

representation as the deliberate transformation of an object within this system 

(Mithalal, 2010). The observables that we seek to identify are material actions - such 

a plot - or speech act - and the transformation of meaning assigned to a term. 

Moreover, from the former short example, it seems that the students‘ geometry 

understanding evolved because of the combination of discursive and material 

activities. The various roles of these activities – description, construction, 

justification – as well as their interactions, have to be analyzed. 

In the next section we present the theoretical model that we designed in order to get 

ahead with the comprehension of these two points. Our first aim is to analyze and to 

have an influence on the students evolving to a shared conception.  

JOINT ANALYSIS OF MATERIAL AND DISCURSIVE ACTIONS: 

FREQUENTATION MODES [2] 

The first purpose of defining frequentation modes is to elaborate a tool which 

simultaneously takes into account students‘ discourse and actions. Indeed, material 

feedback mainly leads to local and unstable changes in the students‘ conception 

(Mithalal, 2010). At the same time, we assume that only taking into account 

language is not sufficient either. As a consequence, this may be the result of a 

dialectic relationship between manipulation and language interactions, without any 

subordination link. 

Three points of view on geometrical activity 

Frequentation modes have to take into account three dimensions at the same time:  

 The different ways of seeing in geometry (Duval, 2005) ; 

Indeed, the underlying hypothesis in Duval‘s work is that ways of seeing 

drawings are strongly linked to the kind of geometrical reasoning. 

 The types of action undertaken by the subject and the instrument usage rules.  

We refer here to geometrical work from research directed by Marie-Jeanne 

Perrin-Glorian (Offre, Perrin-Glorian, Verbaere, 2006). 

 The subject‘s discourse on objects and actions.  

Therefore, defining a frequentation mode consists in describing a geometry activity 

by a way of seeing and considering modalities of action – drawing a plot, complying 

with a given instruction – consistent with a certain discourse characterized by its 

structure – descriptive, explanatory, etc. – and the meaning assigned to the terms by 
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the subject. In particular, it should be stressed that this notion is essentially local, 

being attached to a determined context and subject of study.  

Deeper analysis of the former example 

In the example presented earlier in this paper, students explained that the group who 

constructed a triangle was wrong because the message received was ―Take a set 

square‖. Yet, they considered that a set square ―is used first of all to draw a 

triangle‖. These students explained to the teacher that they drew the rectangle using 

the graduated ruler, by measuring three consecutive sides, and then ―[they checked] 

it was right‖. The transmitters of this group said it was necessary to use a set square 

so that ―the angle be right‖. As we can see, the interpretation of the retroactions led 

students to be explicit about the meaning they gave to the set square. Here and now 

these two dimensions clearly appeared to be closely interrelated: the action was 

determined by the way students considered the set square and by its understanding of 

the word ―set square‖.  It is also because they used the set square as a shape template 

that they interpreted the message this way. Through the longitudinal analysis of the 

meanings of the words ―set square‖ and ―rectangle‖ and of their action modes, we 

can start to outline two conflicting frequentation modes of the set square and the 

rectangle, each one being shared by many students, and which coexist in the 

language interactions observed:  

- For those who read and interpreted the message the students considered as wrong, 

the word ―set square‖ referred to a triangle template and the rectangle to a 2D surface 

the general looking of which was known. Consistently, they used the set square as a 

surface template (―indivisible‖ triangle) and their rectangle construction method 

consisted in drawing a rectangle-looking shape using the graduated ruler, and taking 

into account the measurements of the sides so that the rectangle drawn could be 

superposed on the model figure. This frequentation mode refers to an iconic 

visualization (called ―botanist‖ by Duval).  

- For those who transmitted the message, ―rectangle‖ referred to a quadrilateral with 

two pairs of equal opposite sides and four right angles. The word ―set square‖ 

applied to an instrument used to plot right angles. Their instrument usage mode was 

consistent with this meaning and their rectangle construction method consisted in 

plotting right angles and equal opposite sides using the graduated ruler and the set 

square. This frequentation mode rather referred to a ―surveyor-geometer‖ or 

―constructor‖ vision of the rectangle figure (because the angle rightness is an 

invariant property of the rectangle) according to Duval‘s meaning.  

This analysis allows us to interpret the difficulties encountered by students as the 

confrontation between two contradictory frequentation modes, with outwards signs 

concerning at the same time the material actions made by students and their 

discursive activity. 
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Three focuses that make frequentation modes operational 

The analysis of the former example made us distinguish three consecutive parts of 

the pupils‘ co-constructing a shared frequentation mode of the set square. First, there 

were different interpretations of the words ―set square‖, and various corresponding 

ways of using the tool; then material feedback highlighted the differences between 

these contradictory frequentation modes; and eventually there was a negotiation 

about what could be a shared suitable interpretation of ―set square‖. 

Our aim is now to better understand how the pupils‘ frequentation modes evolved 

and turned into this shared interpretation, suitable to geometry. Studying this 

dynamic process made us see that different stakes crystallized the opposition of these 

frequentation modes:  physical transformations and usage of words in the students‘ 

discourses, or judgment on the validity of a drawing construction or of ―set square‖ 

and ―rectangle‖ the semantic values. 

Our second concern, making a judgment of validity and semantic value, constitutes a 

―meta‖ level for the first one – drawing and description. Therefore, our analysis is 

based on identifying stakes, each one of them being a meta-stake for another one. By 

―meta‖, we mean that it is about judgments made on the sense or validity. 

Defining meta-stakes, from the two we mentioned before, would be an infinite 

process. We decided to add a third one in order to take references to theory into 

account, and the example of the next part shows its role, but it seemed that a fourth 

one – epistemological – would have been irrelevant. These stakes are the following 

ones. 

 Stake 1 

The first stake is based on the actions students perform on drawings: plotting, 

constructing… We assume that these actions are a sign of their frequentation modes. 

We also assume that they are strongly linked to the meaning they assign to the 

words, which has to be analyzed from description of objects – here, it is a rectangle 

– or of actions – take, measure, check, etc.  

Then, this stake is about discourse representatives and material actions. 

 Stake 2  

This stake is a ―meta-stake 1‖, which means that we here focus on judgments about 

validity of constructions according to a description, and then judgments on semantic 

values of terms. 

Then, we focus at the same time on making a judgment on the sense or validity of the 

plot drawn – meta material actions – and on changing the meaning of words – 

semantic action. 

 Stake 3 
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The last stake refers to a theoretical framework and highlights properties on which 

depends the meaning and the finality of the performed actions. Therefore, concerning 

material actions, we focus here on a ―judgment on the judgment‖ (invoking a 

theoretical reference framework), and at the same time this stake is about judgments 

on the validity of semantic values (which is also linked to the pupil‘s theoretical 

point of view) 

UNDERSTANDING THE DYNAMICS OF FREQUENTATION MODES  

Back to the example 

We have already described the confrontation between the two frequentation modes 

identified in the previous section. The physical productions were drawings, in a 

paper-and-pencil environment, using ruler and set square. Now, the rest of the 

session was about reproduction of rectangles, and mainly with the construction of 

four right angles; therefore our analysis focuses on the frequentation modes of the 

geometrical objects – rectangle, triangle, etc. – of the available artefacts – ruler, set 

square – and of the properties called for, in particular the notion of right angle. In the 

following analysis, we try to show how the three stakes we defined allow us to 

characterize the pupils' frequentation modes, analyze how these three parts of 

geometrical activity dynamically interact and which is more important. Our analysis 

highlights the role of this dynamic process in the evolution of the frequentation 

modes. 

First move by teacher‘s intervention 

The teacher intervened and went back to the expression ―right angle‖ mentioned by 

the student then she established that a rectangle had four right angles.The teacher 

confirmed the relevancy of stressing the property of the right angles of the rectangle. 

By doing so, she gave students strong indications on the adequacy of the rectangle 

frequentation mode that paid particular attention to the right angle, and on her 

expectations.  

Next: changes of some students towards a shared frequentation mode  

The teacher focused the discussion on the confrontation between the two rectangle 

constructions methods already mentioned, one using the set square while the other 

only took the graduated ruler.  A student pointed out that the problem was that the 

message mentioned: ―take a set square and plot‖; now, she considered that ―a set 

square is not used to plot, but to have ―right angles‖. The teacher formulated the 

student‘s speech: ―You mean that a set square is not used to measure … it is used to 

make a right angle‖.  As we can see, she did take into consideration that splitting the 

angle into a network of 1D elements and considering the possibility of plotting an 

angle is highly difficult for pupils: ―to plot‖ meant ―to draw a line‖ and the only 

instrument for this was the ruler.  
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Both teacher and students‘ interaction were about the second stake, since they tried 

to justify a specific way of using a set square coherent with their respective 

frequentation mode, and we could see the teacher changing the language form used 

by the student. Nevertheless, her attempts in language actions were not sufficient to 

make the different frequentation modes of the set square converge.  

Prompted by the teacher (―Now […] they tell me they do not need a set square but 

still, you needed it‖), some students who used the set square as a surface template for 

drawing a triangle now considered another usage of it: the set square became an 

instrument used to ―check right angles‖. 

Because of language interactions, these students changed their frequentation modes 

of set square and rectangle to an intermediate frequentation mode : they could split 

rectangles and set squares into 2D sub-elements, admit the property of right angles as 

one of the specific properties of the rectangle and consider the set square as a right 

angle template. Moreover, this change occurred because of language interactions, 

through the simultaneous questioning of the actions performed, of their result and 

validity. The different terms semantic values were affected by the language 

interactions which, in turn, affected the usage modalities of designated objects.  

Thus, language activity made the notion of angle connected to ―rectangle‖ and ―set 

square‖, and the attention drawn on constituent parts rather than on shape.  

Overcoming the contradictions and changing the frequentation mode basing on 

the pragmatic validation of a rectangle constructed on the blackboard 

At first, a student recalled that he only needed the graduated ruler. Spontaneously, he 

underlined the necessity to make sure that ―the line‖ was ―not askew‖. Two 

conflicting ways of checking the drawn figure appeared; the first one, upheld by the 

student, lied on the property establishing that the opposite sides of a rectangle are 

equal; the second one, repeatedly recalled by the teacher, called for the property 

laying down that the rectangle has four right angles.  

If some students succeeded in making their frequentation mode change from the 

previous language interactions, others resisted in considering a non-iconic 

visualization of the rectangle in which the right angle is an invariant property of the 

rectangle. For these students, the set square still could not be used to check the 

construction of the rectangle. Here, the confrontation between the different 

frequentation modes appeared in the conflict between different checking means, each 

one calling for rectangle properties we consider as specific to each frequentation 

mode: for these students, the equal opposite sides that had to be measured using the 

ruler; for the teacher, the property of right angles. Communication couldn‘t work.  

Students were in a necessity of operating plotting whereas the teacher complied with 

theoretical requirements (taking into account the property of the right angle as the 

main criterion).  



Working group 4 

 CERME 7 (2011)  656 

 

The teacher asked a student to construct a rectangle on the blackboard, using the 

ruler, as he said he did. He organized the validation of the rectangle by asking the 

student to measure the last side drawn. Then the student realized that the fourth side 

was too small. Immediately, students in the classroom raised ―the problem of 

angles‖. The teacher incited to explain how he could establish the figure built was 

not a rectangle. The student mentioned the property of equal opposite sides. 

Prompted by the teacher, he finally explained the property of right angles and the set 

square now appeared to be the instrument that had to be used to check the angle 

rightness. The teacher asked the student to check the rightness of angles using the set 

square. Once again, the set square was considered as an instrument used to check the 

rightness of angles but not as a plotting instrument.  

During the plotting operation or when he made his first judgments on the validity of 

the produced figure, the student was still in a frequentation mode based on the 

relation to measurement and guided by an iconic visualization. At the same time, the 

teacher guided him towards a pragmatic validation (sides don‘t have the right length) 

because she tried to make him change his vision mode of the figure. The mistake was 

found out in a mode called ―surveyor-geometer‖ (as it lies on the reading of the 

measuring instrument which is the graduated ruler). Again, the teacher and the 

student used the same language level since they intended to judge the validity of 

plots (stake 2) ―yes, but he wanted to draw the line directly here. I told him he 

should check because …‖. The student‘s frequentation mode changed via the 

interpretation of the pragmatic invalidation of his action results. He eventually 

related the terms ―askew sides‖ and ―right angles‖ when he investigated the origin of 

the found mistake. Thus, he adapted his frequentation mode to the teacher‘s one and 

made the set square compulsory to check an angle rightness. Here, the negotiation 

took place in a level of action and entailed a change not only in the rectangle 

construction method but also in the usage mode of the set square and in the meaning 

assigned to the terms set square and rectangle (stake 1). 

Reinvestment 

The teacher organized a reinvestment phase during which she asked students to 

collectively write down a message allowing for a receiving student to construct a 

rectangle with modified side lengths. The teacher asked whether it was relevant to 

specify the necessity to use a set square in the message. Unanimously, students 

agreed that ―a rectangle can‘t be plotted with a ruler‖ and that ―we should know that 

a ruler must be used!‖. Finally, the message only retained the words rectangle, 

which now implicitly contained the property of right angles, and its side lengths.  

The gap between the students‘ point of view was reduced via a negotiation in stake 

 2, according to two modalities: through a questioning either of the semantic value of 

terms, or of the validity of the result or modalities of a physical action. We can state 

that here the agreement concluded by students in this stake  2 induces an agreement 

on actions at stake 1 (construction method, set square usage mode) and on discourse: 
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now the reference of the term ―rectangle‖ is shared and includes the ―4 right angles‖ 

property.  

CONCLUSION 

In our work, we assume that the different students‘ ways of doing geometry are 

related to the modalities of interaction between them and sensitive objects of the 

situation. We do consider that these modalities of interactions apply in two 

dimensions: a physical dimension which refers to the modalities of students‘ physical 

actions and a language dimension. The students‘ geometrical activities are to be seen 

via their frequentation modes of the various sensitive objects of the situation, in 

which their modalities of action and their discourse on objects form consistent 

wholes. Therefore we consider that the gap between various points of view results in 

the coexistence of conflicting frequentation modes in the students‘ geometry activity. 

This gap is reducing as their respective frequentation modes of the various objects of 

the situation (rectangle, set square, right angle, etc.) progressively change until 

converging towards a shared one (shared discourse and action modes). Then, how 

can we better understand what makes it possible to negotiate a change to a shared 

frequentation mode, operating in the situation and that fits the framework of 

Euclidian geometry? 

Then, we consider that the different levels of (physical as well as language) actions 

we identified may provide some lines of research on the possible modelling of 

relationships between different frequentation modes. Our first analysis suggests that 

these contradictions are overcome when these different types of confrontation are 

linked at different levels. Indeed, the analysis elements examined in this paper put 

forward that the conflict only appears as far as the language forms used in order to 

describe a sensitive object or a physical action differ for two individuals, or when on 

the contrary, two identical terms are used to designate different objects or actions. 

Therefore the contradiction comes from retroactions that emerge from a first level to 

be subjected to the interpretation of a second level. In return, the negotiation 

allowing for solving a conflict between two frequentation modes depends on the 

judgment made on objects or actions or on the terms that designate them: as such, the 

negotiation will take place in the second level, possibly calling for the third level. 

This negotiation makes it possible to agree not only on the modalities of action on 

the sensitive objects of the situation but also on the reference of the terms used (―set 

square‖ and ―rectangle in our example).  

These theoretical and methodological tools are in a construction phase and should 

undoubtedly be improved. However, we believe that they can contribute to questions 

about the place of language in the Geometrical Working Space (GWS) by putting in 

parallel the physical and language actions of students in a geometry activity and by 

examining to what extent the negotiation for a shared GWS can be reached through a 

dialectic change in students‘ ways of seeing, speaking and acting. 
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NOTES 

 [1] Centre pour l‘Observation et la Recherche sur l‘Enseignement des Mathématiques (Centre for 

Observation and Research on Mathematics Education) based in Jules Michelet school in Talence, 

France, until 1998. 

[2] We mean by ―mode‖ the way a student carries out or handles a geometric concept through the 

consideration of three dimensions (we shall develop these three dimensions later: a way of 

geometrical seeing, a way of acting and a way of speaking). By ―frequentation‖, we refer to the 

degree of familiarity, the student‘s understanding about the geometric concept at stake, according to 

his own in-school and out-of-school acquired knowledge. 
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In this paper, we report on a teaching experiment in which we focused on students 

tackling 3D geometry problems in which, in general, they initially tended to produce 

'primitive' conjectures by relying on visual images rather than geometrical 

reasoning. Following the work of Larsen and Zandieh (2008), we utilise the ideas of 

Lakatos (1976) on managing the refutation process and how the use of counter-

examples can be important in promoting the growth of students' capability with 

geometrical reasoning and proof. We found that students' primitive conjectures can 

cause an unexpected result and that this can trigger further reviewing ('Monster-

barring') and modifications of the conjecture ('Exception-barring') amongst 

students. Whole classroom discussion followed by small group discussion allowed 

students to exchange various ideas and opinions and this process was important for 

their construction of a proof of their new conjecture ('Proof-analysis'). 

Key-words: geometry, conjecturing, proof, refutation; 3D tasks 

INTRODUCTION 

The teaching of geometry provides not only a key vehicle for developing learners‘ 

spatial thinking and visualisation skills in mathematics, but also a major opportunity 

to develop their capability with deductive reasoning and proving (Battista, 2007; 

Royal Society, 2001). Through classroom-based research (for example, Kunimune, 

Fujita & Jones, 2010; Fujita, Jones & Kunimune, 2010), we are working on several 

themes in the teaching of geometrical reasoning and proof at the lower secondary 

school level, encompassing the design of problem-solving situations in geometry for 

students, the integration of geometrical constructions, ways of providing students 

with explicit opportunities to examine the differences between experimental 

verifications and deductive proof, and approaches to the teaching of deductive 

geometry based around a set of 'already-learnt' properties which are shared and 

discussed within the classroom. 

In this paper we extend our previous research by focusing both on the design of 

problem-solving situations in geometry for students and on the teaching of deductive 

geometry based around a set of 'already-learnt' properties. While designing suitable 

classroom tasks is very important in mathematics education (e.g. Wittmann, 1995), 

using such tasks with students does not necessarily lead to 'good' results: something 
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which Schoenfeld (1988) has illustrated in detail. Hence, additional factors need to 

be considered if the teaching of geometry is going to be more effective. In this paper, 

and following the work of Larsen and Zandieh (2008), we utilise the ideas of Lakatos 

(1976) to show how managing the refutation process and the use of counter-

examples can be important in promoting the growth of students‘ capability with 

geometrical reasoning and proof. The tasks we use involve geometrical reasoning on 

simple 3D shapes - one of the topics considered by several papers from the CERME 

geometry working group (e.g. Mithalal, 2010; Pitallis et al, 2010). 

REFUTATIONS IN THE PROCESS OF PROVING IN MATHEMATICS 

Given that conjecturing processes are known to be important in the teaching and 

learning of mathematics in general, and geometry in particular, (Caðadas et al, 2007), 

our focus in this paper is on the relationship between conjecture, refutation, and 

proof. It is known that, on the one hand, treatment and understanding of refutation 

and counter-examples are not straightforward for learners (e.g. Balacheff, 1991; 

Stylianides and Al-Murani, 2010): indeed, Potari, Zachariades and Zaslavsky (2009) 

show that even trainee teachers find it difficult to identify correct counter-examples 

to refute false statements. Yet, on the other hand, counter-examples play an 

important role within the process of conjecture production and proof construction. 

Mathematical activity, it has to be said, is not straight-forward, but rather more like a 

zigzag path. Mathematicians typically make a conjecture, find counter-examples, 

refine the conjecture, find more counter-examples and so on, during their proving 

process. Lakatos (1976, p. 127), in his historical and epistemological study, 

considered that the proof and refutation process consists of the following: 

 Primitive conjecture 

 Proof (a rough thought-experiment or argument, decomposing the primitive 

conjecture into sub-conjectures) 

 'Global' counter-examples emerge (counter to the primitive conjecture) 

 Proof is re-examined as a new theorem or improved conjecture emerges 

While mathematicians, historians and philosophers remain engaged in on-going 

discussions into the validity of this process (see, for example, Hanna 2007, p. 10), 

there is some evidence in the mathematics education literature that Lakatos' 

framework can be a useful guide to promoting students‘ conjecture production and 

proof construction process. For example, Larsen and Zandieh (2008) utilised 

Lakatos' framework to analyse undergraduate students‘ proof construction processes 

in abstract algebra. They categorises the types of proof and refutation activities in 

terms of students‘ responses, described in their words as follows (p. 208): 

 Monster-barring; any response in which the counter-example is rejected on the 

grounds that it is not a true instance of the relevant concept 
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 Exception-barring; any response that results in a modification of the conjecture 

to exclude a counter-example without reference to the proof 

 Proof-analysis; the resulting modification to the conjecture is intended to make 

the proof work rather than simply exclude the counter-example from the domain 

of the conjecture 

Larsen and Zandieh showed that Lakatos' framework "can serve as heuristics for 

designing instruction" (p. 215). In a similar vein, Komatsu (2010) revealed how a 

focus on counter-examples can encourage primary school pupils to refine their 

conjectures and extend their reasoning to reach a correct answer in a number task. 

We designed the teaching experiment below with a view to giving lower secondary 

school students valuable opportunities based on the 'proof and refutation' framework. 

RESEARCH SETTING 

The teaching experiment was undertaken in a Japanese lower secondary school 

where geometry has a major role in developing pupils' ideas about proof and 

proving. In Japan, the curriculum states that, in geometry, students must be taught to 

―understand the significance and methodology of proof‖ (JSME, 2000, p. 24. In 

terms of the 'paradigm of geometry' proposed by Houdement and Kuzniak (2003), 

Japanese geometry teaching may be characterized as within the Geometry II 

paradigm (in that axioms are not necessarily explicit and are as close as possible to 

natural intuition of space as experienced by students in their normal lives).  

In our teaching experiment, by following the principles of the geometry curriculum, 

the following lessons were designed for Grades 7 and 8 students (aged 12-14); 

 21 lesson for Grade 7 (students aged 13 yrs old at the time): Introduction of 

3D shapes and nets (2 lessons), Points, lines and planes (1 lesson), Positions 

and angles in 3D shapes (3 lessons, our focus in this paper), Distances of two 

points (2 lessons), Rotated shapes, circles and sectors (1 lessons), Surface 

areas volumes of 3D prisms and pyramids (2 lessons), line and rotational 

symmetry (1 lesson), Construction of parallel lines and tangents of circles (2 

lessons), vertically opposite angles, alternate and corresponding angles in 

parallel lines (3 lessons), and Angles in polygons (4 lessons).  

 28 lessons for Grade 8 (students aged 13 yrs old at the time): Congruent 

triangles (3 lessons), Theorems and definitions in geometry (3 lessons), 

Constructions and properties of isosceles triangles (5 lessons), Constructions 

and properties of parallelogram (4 lessons), Construction of a cube (2 lessons, 

our focus in this paper), Congruent right-angled triangles (2 lessons), 

Relationship between triangles and quadrilaterals (2 lessons), Properties of 

circles (3 lessons), Parallel lines and areas (2 lessons) and Summary (2 

lessons).  
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These lessons were implemented in one class of 40 students in a university-attached 

school where the teachers and researchers work together to undertake classroom-

based research. The students‘ standard in mathematics is generally high. The regular 

teacher of the class, in line with Sekiguchi's (2002) account, generally considers a 

good lesson to be one in which the students are encouraged to share their ideas and 

solutions with each other.  

In this paper, we focus on the lessons from Positions and angles in 3D shapes 

(taught in Grade 7) and Construction of a cube (taught in Grade 8). Our reason for 

focusing on these lessons is that, in trialling the lessons, students in general tended to 

produce their 'primitive' conjectures by relying on visual images rather than through 

geometrical reasoning. Thus, our concern is how to break this situation.  

Recent studies (e.g. Christou et al, 2006; Mithalal, 2010) have shown how the use of 

technology and dynamic 3D geometry environments might help counter the 

difficulties that students have in studying the properties of 3D shapes. In this paper, 

we consider the method of 'proof and refutation' with practical activities and group 

discussions might also be effective and accessible way of teaching. In the analysis 

that follows, we consider this issue by using 'proof and refutation' framework of 

Monster-barring, Exception-barring, and Proof-analysis.  

ANALYSIS OF EPISODES FROM OUR CLASSROOM EXPERIMENT 

Episode 1 – what size is angle PQR in a cube? 

In Grade 7 in Japanese schools, the main purpose of geometry teaching is to 

introduce students to geometrical reasoning through the study of 3D shapes and the 

angle properties of 2D shapes. In this episode (during the third of three lessons on 

Positions and angles in 3D shapes), and after learning some basic concepts of cubes 

and cuboids during the previous five lessons, the students were asked to investigate 

the size of the angle PQR in a cube ABCDEFG (see figure 1). 

Of the forty students in the class, 25 of them considered that ‗the angle is 90 

degrees‘, 11 thought that ‗angles will be changed‘ and 4 said ‗I don‘t know‘. As 

such, the dominant 'primitive' conjecture can be taken to be ‗the angle is 90 degrees‘. 

One student (referred to as student 1) stated his reasoning as follows: 

Student 1: I think wherever P, Q, and R are, the size is 90 degree. Because angle PQR 

looks like 90 degrees if you look at it from the face BFGC. 

 

C

A

B

F G

D

E
H

P

Q

R

 

Figure 1: angle PQR in a cube 
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Students exchanged their ideas and opinions in groups and subsequently in whole 

classroom discussions which led them to modify their conjecture. The following 

presentations were made by students during the whole classroom discussion:  

Student 2: I investigated by cutting a model of a cube. If we cut AC and AF, then we 

have an angle, and I think it won‘t be 90 degrees as the angles are formed 

by AC and AF. 

Student 3: I also used a model, and I used protractor as well. I have got about 60 

degrees, and not 90 degrees. 

We consider these as Exception-barring responses, as their focus is not rejection of 

the 'primitive' conjecture, but the production of a new conjecture that ‗angles will be 

changed‘. After these presentations, the following idea was proposed by a student: 

Student 4: I consider why Students 2's and 3‘s angles are 60 degrees. If we connect C 

and F, then there will be a triangle. It is a bit difficult to see the figure on 

the blackboard [as this is a 2D representation of a cube], but these lines 

should be the same and since all the angles are the same, this triangle should 

be an equilateral triangle. Therefore, angle CAF is 60 degrees. 

We consider this as a Proof-analysis response wherein the new conjecture ‗angles 

will be changed‘ is now justified by a simple proof. 

Episode 2 – What shape is face DPFQ in a cube? 

In Grade 8 in Japan, students continue to study geometry and are gradually 

introduced to more formal ways of geometrical reasoning. In the two lessons on 

Construction of a cube (16th and 17th lessons of their geometry work), the students 

undertook the following problem: ‗Consider the net of a cube [see Figure 2]. 

Construct a net including the face DPFQ [where P and Q are the mid-points of AE 

and CG respectively].‘ 
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Figure 2: a half-cube for Grade 8 students to construct 

In this task, the students were not only expected to identify the face DPFQ, but also 

to construct an actual net and make the model. This additional practical requirement 

is particularly important in the teaching experiment as we consider this is more likely 

to create ‗unexpected situations' (such as the square DPFQ does not fit) for many 

students more easily than a question that solely asks students to determine the shape 

of the face DPFQ. In the latter case, students might say that the face DPFQ is a 

square, but it might be more difficult for them to recognise that it is not.  
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First, the teacher introduced the problem by referring to the students‘ experiences in 

Grade 7: 

Teacher: Do you remember we made the solid ABCDEGH [illustrated as Figure 3] 

 A

B

F G

C

D

E H

 

Figure 3: a solid ABCDEGH 

Students: Yes, I remember. I think we managed to make it. 

Teacher: Yes, and today, we try the task ‗Let us consider a net of this 3D shape 

(where P and Q are the mid-points of AE and CG respectively). Construct a 

net including the face DPFQ‘.   

In this problem, a challenging point, on the one hand, is that the quadrilateral DPFQ 

is not a square, but a rhombus. On the other hand, this can lead the students to 

making a conjecture, refuting their conjecture, modifying the conjecture and so on, 

until their final decisions. After investigating this task individually, the students 

found that their 'primitive' conjecture ‗the DPFQ is a square‘ might not be true as a 

square did not fit their models. The students then started exchanging their ideas 

within each group. For example, students in Group A (with students referred to as 

A1, A2, etc) had the following discussion (relating to models represented by Figures 

4 and 5): 

Student A1: I think DPFQ is a square. First the original shape was a cube, and all faces 

are squares, and therefore APD EPF GQF CQD and all the sides are 

the same [note that this student's model was incomplete as the quadrilateral 

DPFQ did not fit perfectly]. 

Student A2: I thought, like you, that DPFQ is a square, but it did not fit… I drew a 

square first, and cut and pasted in my model. 
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Figure 4: the model by student A2 

Student A3: But [see Figure 5] if we follow A2‘s method, then I wonder if we would 

have a rhombus? I think, if the first shape we make is a square, then all 
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sides should be the same, DQ=DR, and we cut DRP, and this is a right-

angled triangle. Therefore, DP is longer than DR, and DP DQ, and this is 

not a rhombus?  

 D

P F

Q

R  

Figure 5: student A3‘s reasoning about shape DPFQ 

We consider the above responses as Monster-barring and (incorrect) Proof-Analysis. 

The students tried to reject the counter-example and keep their original conjecture by 

using (incorrect) reasoning. It is interesting that their Monster-barring led to a proof 

which they tried to use to justify their original conjecture.  

In another group (group B), however, two students (B1 and B2) first made their 

models without drawing DPFQ, and then student B3 showed his answers as follows 

(see Figure 6): 

Student B1:  My method is probably cheating, but I drew a net without DPFQ, and then 

made a model without a lid. Then, I put my half-completed model on a 

piece of paper, traced DPFQ and then made the lid (DPFQ).  

Student B2:  My method is similar to B1, but I did it a bit differently. I also made a model 

without a lid, and then I measured the angle PDQ, and it was 79 degrees. I 

made a quadrilateral with the angle PDQ 79 degrees, and then put the lid.  

Student B3:  I tried the method which is similar to B1 and B2, started from a net without 

DPFQ, and made a model. But I noticed that the length of PQ, the diagonal 

of DPFQ is the same as EG, the diagonal of HEFG. If we use this fact, we 

can construct DQP by using ruler and compass. If we can construct DQP, 

then we can also construct PQF, then we can complete the net [see Figure 

6]   
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Figure 6: the net made by student B3 

The above process can be considered as Exception-barring. This is because the 

students' original conjecture was abandoned and new ideas were searched for to 

make the situation consistent. Neither arguments by student B1 nor B2 were proofs. 
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In addition, it is difficult to consider B3‘s argument as a proof as his method still 

does not explain what DPFQ is.  

After the group discussion, all the group arguments were shared with the whole 

class. After listening to the presentation of student B3, a student G1 (from group G) 

added his reasoning as follows: 

Student G1: I did like B3‘s way, but if you looked at the shape without the lid from 

above, we can see PQ is equal to EG, and as the four sides of DPFQ are the 

same, so I think it is a rhombus. I then measured PQ and then used compass 

to complete the face DPFQ.  

Student G1‘s response is again Exception-barring, and now a new conjecture ‗the 

face DPFQ is a rhombus‘ is shared in the classroom. Finally, student H1 (from group 

H) presented his idea and the new conjecture was proved as follows (see Figure 7): 

Student H1:  My idea is that I dissected the solid first. If we cut it vertically from PQ to 

EG, then it will be a rectangle. Therefore, PQ=EG. Also, if we cut it by 

connecting DH and F, then it will be a right-angled triangle, and DF is its 

hypotenuse and the other line is HF [and therefore, DF is longer than PQ]. 
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Figure 7: illustration of student H1‘s proof of why the face DPFQ is a rhombus 

This reasoning, triggered by group discussions and whole classroom discussion, is 

considered as Proof-analysis. It is also interesting to see that the properties of 

quadrilaterals and triangles are used effectively by the student to justify the 

reasoning. Before this lesson, in addition to the 21 lessons in Grade 7, students have 

already completed 15 geometry lessons in which they practiced their geometrical 

reasoning in using a set of already-learnt properties which are shared and discussed 

within the classroom. The properties of quadrilaterals and right-angled triangles were 

already studied, and this student (H1) used them effectively to advance his 

reasoning.  

DISCUSSION AND CONCLUDING COMMENTS 

These episodes show that the first conjecture ‗DPFQ is a square‘ caused an 

unexpected situation, and then this triggered further reviews (Monster-barring) and 

modifications of the conjecture (Exception-barring) amongst students. Whole 

classroom discussion followed by small group discussion allowed students to 

exchange various ideas and opinions and this process was important for their 

construction of a proof of their new conjecture (Proof-analysis). 
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In focusing, in this paper, on students‘ conjecture production and proof construction 

within the proof and refutation framework, we can conclude that the framework is 

useful not only for describing students‘ proving processes but also in indicating 

some helpful instructional approaches in geometry lessons. Through our analysis of 

data from our classroom-based research, we illustrate how managing students‘ 

discussions of counter-examples, both in group and whole classroom work, can act 

as a vehicle for promoting the development of their geometrical reasoning. We found 

that Monster-barring can sometimes lead to an incorrect proof from students (for 

example, students A1, A2 and A3 in the second episode). As such, Exception-

barring and classroom discussions are important to construct legitimate proofs 

(Proof-analysis) (see student 4 in the first episode, and student H1 in the second). In 

future research, in addition to continuing to design suitable tasks for students, we 

aim to investigate other factors which could facilitate students‘ conjecture production 

and proof construction in geometry. 

NOTE 

The lessons in this teaching experiment were based on the Japanese 'Course of Study' first published in 2000 (JSME, 

2000).  

REFERENCES 

Balacheff, N. (1991). Treatment of refutations: Aspects of the complexity of a 

constructivist approach to mathematics learning. In E. von Glasersfeld (Ed.), 

Radical Constructivism in Mathematics Education (pp.89-110). Dordrecht: 

Kluwer. 

Battista, M. T. (2007). The development of geometric and spatial thinking. In: F. 

Lester (Ed.), Second Handbook of Research on Mathematics Teaching and 

Learning. Charlotte, NC: NCTM/Information Age Publishing. 

Caðadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, A. (2007). The 

conjecturing process: Perspectives in theory and implications in practice. Journal 

of Teaching and Learning, 5(1), 55-72. 

Christou, C., Jones, K., Mousoulides, N. & Pittalis, M. (2006). Developing the 

3DMath dynamic geometry software: Theoretical perspectives on design, 

International Journal of Technology in Mathematics Education, 13(4), 168-174. 

Fujita, T., Jones, K. & Kunimune, S. (2010). Students‘ geometrical constructions and 

proving activities: a case of cognitive unity? Proceedings of PME34. Belo 

Horizonte, Brazil. Vol 3, pp 9-16. 

Hanna, G. (2007). The ongoing value of proof. In P. Boero (Ed.), Theorems in 

School (pp. 3-18). Rotterdam: Sense. 

Houdement, C. & Kuzniak, A. (2003). Elementary geometry split into different 

geometrical paradigms. Proceedings of CERME 3. 



Working group 4 

 CERME 7 (2011)  669 

 

Japanese Society of Mathematics Education (2000). Mathematics Programme in 

Japan. Tokyo: JSME. 

Komatsu. K. (2010). Counter-examples for refinement of conjectures and proofs in 

primary school mathematics. Journal of Mathematical Behavior, 29(1), 1–10. 

Kunimune, S., Fujita, T. & Jones, K. (2010). Strengthening students‘ understanding 

of ‗proof‘ in geometry in lower secondary school. Proceedings of CERME6 

(pp756-765). 

Lakatos, I. (1976). Proofs and Refutations: The logic of mathematical discovery. 

Cambridge: Cambridge University Press. 

Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate 

mathematics classroom. Educational Studies in Mathematics, 67(3), 205–216. 

Mithalal, J. (2010). 3D geometry and learning of mathematical reasoning. 

Proceedings of CERME6 (pp 796-805). 

Pittalis, P., Mousoulides, N. & Christou, C. (2010). Students‘ 3D geometry thinking 

profiles. Proceedings of CERME6 (pp 816-825). 

Potari, D., Zachariades, T. and Zaslavsky, O. (2010). Mathematics teachers‘ 

reasoning for refuting students‘ invalid claims. Proceedings of CERME6 (pp 281-

290). 

Royal Society (2001). Teaching and Learning Geometry 11-19. London: Royal 

Society/Joint Mathematical Council. 

Schoenfeld, A. (1988). When good teaching leads to bad results: the disasters of 

"well taught" mathematics classes. Educational Psychologist, 23, 145-166.  

Sekiguchi, Y. (2002). Mathematical proof, argumentation, and classroom 

communication: A cultural perspective. Tsukuba Journal of Educational Study in 

Mathematics, 21, 11-20. 

Stylianides, A. J. and Al-Murani, T. (2010). Can a proof and a counterexample 

coexist? Students' conceptions about the relationship between proof and 

refutation, Research in Mathematics Education, 12(1), 21-36. 

Wittmann, E. C. (1995). Mathematics education as a ‗design science‘, Educational 

Studies in Mathematics, 29, 355-374. 

 

 



 

 CERME 7 (2011)  

IDENTIFYING THE STRUCTURE OF REGULAR  

AND SEMIREGULAR SOLIDS – 

A COMPARATIVE STUDY BETWEEN DIFFERENT  

FORMS OF REPRESENTATION 

Jürgen Steinwandel, Matthias Ludwig, 

University of Education Weingarten 

This paper presents the current status of a scientific study that investigates the 

impact of three different working environments (illustration, real model or 

interactive computer-animation) on the recognition and processing of spatial 

structures. Current literature does not give a consistent picture of this matter. This 

inconsistency could have several causes, e.g. the spatial-geometrical and arithmetic 

skills of the test persons, or the complexity of the spatial-geometrical task. We tested 

the working environment with n=242 students from grade 5 to 9 (10 years to 15 

years old students). We selected the students from three types of secondary schools 

in Germany, ―Hauptschule (low track), Realschule (middle track) and Gymnasium 

(high track)‖. It emerges that the working environment "model" is superior to the 

other two forms of representation-like illustration or interactive animation. 

Furthermore, we are exploring whether it is possible to quantify the complexity of a 

regular or semi-regular solid. 

INTRODUCTION 

To detect spatial structures of polyhedra (e.g. number of faces, edges or vertices, 

shapes of their faces, symmetries etc.) students use models (e.g. from the school's 

collection), illustrations or pictures (e.g. textbooks), as well as partly-interactive 

computer animation in school. Studies in this field have mainly focused on the 

torsion angle between two illustrations of a solid that are to be compared and 

analyzed here for example the processing speed or the frequency of errors (Peters et. 

al, 1995). Other variables, for example the age or gender, were taken into 

consideration. Further studies analyzed the impact of computer environments and 

their training effects (Souvignier, 2000, Hartmann & Reiss, 2000; Hellmich et. al, 

2002; Ahmad, 2009). The findings of these studies are inconsistent or contradictory, 

and in this paper we aim to contribute to clarifying the situation. 

THEORETICAL FRAMEWORK 

Numerous authors strongly emphasize the great importance of spatial abilities both 

as a factor of human intelligence and a human skill with practical importance in life 

generally. However, it seems to be very difficult to define this complex construct. 

Different authors use terms such as spatial ability, spatial imagination, spatial 

orientation, spatial awareness and spatial thinking to name just a few. Glück (2006) 

suggests the high complexity of the underlying issue as a possible cause of the 
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inconsistent definition and application of this term. Glück herself uses the term 

spatial imagination performance and means "the use of visual, nonverbal information 

[...], which is stored in the memory, usually transformed in some way or manipulated 

and / or which has to be retrieved." In contrast to this, Franke uses the term "spatial 

ability" as a generic term and distinguishes between visual perception and spatial 

imagination (see Franke, 2007). 

Linn and Petersen (1985, 1986) identified three basic factors as part of a meta-

analysis: 

 Spatial perception is defined as the ability to determine spatial relations despite 

distracting information. 

 Spatial visualisation is the ability to manipulate complex spatial information 

when several stages are needed to produce the correct solution. 

 Mental rotation is defined as the ability to rotate, in imagination, quickly and 

accurately two- or three-dimensional figures. 

It should be noted that these three factors cannot be considered in isolation to each 

other because of their various dependencies and influences. It is, for example, highly 

unlikely that a child has the ability for mental rotation while not possessing abilities 

in the other two areas. In recent years the analysis of the factor "mental rotation‖ has 

become a key area. Numerous studies focused on this aspect with diverse emphasis 

in their observation, e.g. the ability to learn "mental rotation"   (see Glück, 2006, 

Hellmich & Hartmann, 2002; Souvignier, 2000 etc.). Furthermore, factors or 

dispositions such as gender, performance groups, age, mother language etc. have 

been evaluated (see Hirnstein & Bayer et.al, 2009; Kruger & Krist, 2009; Peters & 

Battista, 2008). The related results show trends but mainly do not give definite 

answers that remain consistent even under detailed observations. For example, male 

subjects frequently called into question gender-specific advantages with regards to 

spatial abilities by carrying out analysis with various filterings of the independent 

variables (see Jordan et al., 2002). 

Another field of research evaluates the interrelation between several factors, e.g. the 

dependence of the processing speed and the processing correctness with regards to 

the rotation angle of a distorted body (see Shepard & Metzler, 1971; ter Horst & van 

Lier et.al, 2010 etc.). To some extent the findings demonstrated an almost linear 

interrelationship. However, these studies remain limited to composite cubes, which 

play a minor role in the classroom. Investigations with regards to solids that are 

introduced in grade 5 to 9 (students from 10 years to 15 years) such as cubes, 

cuboids, pyramids etc. play a very minor role. In our investigation we try to describe 

and to investigate the complexity of a body. Therefore we used a very simple and 

easy understanding model. We defined the complexity (C) of a solid as follows:  

C(solid) = number of faces(solid) + number of edges(solid) + number of 

vertices(solid) 
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If we use the polyhedra formula of Euler V – F + E = 2 we can simplify the sum for 

the complexity of a solid. So we get  

C(solid)= 2 + 2x number of vertices (solid)  C(S)=2(1+V)  

Looking at various studies from the field of educational psychology and psychology 

about the general topic of ―learning with animations in computer-based learning 

environments‖ and from research of the didactics of mathematics into the specific 

topic of ―learning of spatial-geometrical contents‖ and ―training of spatial 

imagination‖ with or without a computer, an ambiguous picture about the impact of 

these learning environments transpires. Lowe (2003) for example shows in a study of 

students of meteorology that a multimedia learning environment does not necessarily 

impact positively on the learning outcome. He describes that in many cases arrows as 

movement indicators and illustration series would build sufficient understanding. 

Furthermore, it appears that the potentially supportive factor of animation is lost with 

that result that individuals have less control over their own learning route. 

In a study similar to spatial geometrical matter, Schwan and Riempp (2004) in turn 

note that subjects learn the tying of nautical nodes significantly faster with 

interactive videos (that the subjects can themselves rewind and pause the animations) 

than with non-interactive videos. In connection with other investigations, they 

outline an ambiguous picture about the effectiveness of multimedia environments 

(see also Hellmich & Hartmann, 2002; Cohen, 2005). 

The discussion of current research areas highlights several aspects that seem to make 

a detailed reflection meaningful: 

 Most studies stand within the tradition of psychology and therefore hardly ask 

their primary questions about teaching directly. 

 Generally the descriptions of the solids in rotation that are to be compared limit 

themselves to the angle of rotation. Other attributes such as the number of faces, 

angles etc. have not been extensively studied. 

 Statements regarding different types of presentations and their impact - including 

those that relate to training impact assessments - are in parts still inconsistent 

especially in connection with other set variables (sex, performance level, origin, 

social status, age, arithmetic knowledge etc.). 

Accordingly, the research questions were established. 

RESEARCH QUESTIONS 

The paper presented here has its emphasis on training at schools providing secondary 

education in Germany. In particular we explore whether it is possible to describe 

solids in terms of their spatial complexity. Furthermore, it is of interest what form of 

presentation (illustration, model or simulation software) is the most optimal for the 
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individual student. For the study we choose half-regular and regular solids. With 

regards to that we have key research questions: 

 How much will different performance groups benefit from the different 

representations "illustration (pictures), computer animation and model" with 

regards to the processing of related specific questions? 

 Is it possible to describe the complexity of a solid by virtue of specific properties 

(number of faces, vertices and edges) and how far will such a model retain its 

validity for differing performance groups? 

STUDY DESIGN 

N=242 students in 11 different classes from grade 5 to 9 (students between 10 and 15 

years old) were tested in five secondary schools covering the three different types: 

high track (Gymnasium), middle track (Realschule) and low track (Hauptschule). 

First, two preliminary tests were carried out: an arithmetic test with content 

regarding the understanding of numbers and basic arithmetic - as well as the brick-

test of Birkel & Schumann (2002). Using the data of the brick-test, the student 

groups were scaled and allocated to the three different working environments of the 

structure-identification-test (SIT) resulting in comparable groups of similar 

performance (mean) nearly same standard deviation (SD), while attention had also 

been given to gender. 

In the SIT, eight regular and semi-regular solid had to be worked on. Six students 

were tested in a laboratory in parallel. Each student worked alone at one of the three 

working environments (picture, model and computer). 

We want to emphasize that the SIT is not a treatment in a traditional way. With this 

test we do not check any learning or training effects. We only want to test which 

working environment (illustration, real model or interactive computer-animation) 

supports the students better by doing spatial geometry tasks. It is just a snapshot.  

The brick-test (BST) 

The brick-test of Birkel & Schumann 

(2002) primarily evaluates the "mental 

rotation‖ ability. The basic structure of 

all solids that were used is composite 

cubes. These composites are placed in 

the space more or less rotated. The 

students have to pick two solids from a 

selection of four to build the needed 

composite solid (see Fig. 1). 

The students had to assess a total of 40 

composite solids in a time of 20 minutes. At the beginning two examples were 

Fig. 1: Composite Cubes of the brick-test 
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assessed together with the students. The maximum the students can achieve are 40 

points. 

The samples 

 

Fig. 2: Histogram to improve the normality 

 

Tests of Normality 

 
Kolmogorov-Smirnov

a
 Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Bricktest ,084 242 ,000 ,984 242 ,009 

a. Lilliefors Significance Correction 

Table 1: Tests of Normality 

The presentation is similar to a normal distribution (see Fig. 2), but would not resist a 

statistical test (eg. Kolmogorov-Smirnov, see Table 1). 

Multiple Comparisons (Bricktest) 

 

(I) representation (J) representation Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

dimension2 

illustration 

Ø 23,20 
dimension3 

computer ,445 1,357 ,983 -2,83 3,72 

model -,017 1,385 1,000 -3,36 3,32 

computer  

Ø 22,75 
dimension3 

illustration -,445 1,357 ,983 -3,72 2,83 

model -,462 1,372 ,982 -3,77 2,85 

model 

Ø 23,21 
dimension3 

illustration ,017 1,385 1,000 -3,32 3,36 

computer ,462 1,372 ,982 -2,85 3,77 

Table 2: Tests for similar power distribution 

 

Mean = 23,05 

Std.Dev. = 8,676 

N = 242 

 

Bricktest 
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Fig. 3: Boxplots of the groups illustration, computer and model 

To compare the three working environments (illustration, computer and model) we 

need three samples of students who have similar spatial ability. Therefore we created 

three samples from the results which the students had got from the Brick-Test. For 

this we divided all students into three performance groups (low, middle and high) 

and distributed students from these three performance groups in similar way to the 

three samples. Now we run this method until all students were distributed over all the 

working environments. The result is that all the three working environments have 

nearly the same mean and SD (see Table 2 and Fig. 3). 

The structure-identification-test (SIT) 

The structure-identification-test of Ludwig/Steinwandel deals with a total of 8 semi-

regular and regular solids (Platonic and Archimedean solids) as follows (see Fig. 4). 

 

 

 

 

Fig. 4: The Platonic and Archimedean solids used by the SIT 

For each solid 6 questions of two levels had to be answered by the students. 

Questions of level A (questions about the shape of the faces, the number of edges, 

faces which touch at one vertex) could be answered without abilities in "mental 

rotation" and "spatial visualization", while these abilities were necessary to answer 

questions of level B (questions about the number of faces, edges and vertices). The 

handling time was set and controlled. These periods have been empirically identified 

following a preliminary investigation. (e.g. solid 1  1 minute, solid 4  2:30 

minutes). Thus the total duration was 22 minutes. 

solid 1 solid 2 solid 3 solid 4 solid 5 solid 6 solid 7 solid 8 
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Illustration Computer Model 
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FIRST RESULTS 

Comparison of working environments 

In the subsequent short analysis we want to explore the question how helpful the 

different presentations (or working environments) are for a student in dealing with 

the questions. In order to be able to make specific statements we set different subsets 

of the data records. 

Multiple Comparisons (SIT, only solids 1-6, Level B) 

 

(I) representation (J) representation Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

dimension2 

Illustration 

Ø = 5,35 
dimension3 

Computer ,304 ,453 ,878 -,79 1,40 

Model -1,421
*
 ,455 ,006 -2,52 -,32 

Computer 

Ø = 5,05 
dimension3 

Illustration -,304 ,453 ,878 -1,40 ,79 

Model -1,725
*
 ,440 ,000 -2,79 -,66 

Model 

Ø = 6,78 
dimension3 

Illustration 1,421
*
 ,455 ,006 ,32 2,52 

Computer 1,725
*
 ,440 ,000 ,66 2,79 

*. The mean difference is significant at the 0.05 level. 

Table 3: Post Hoc Tests 

The illustration in Table 3 shows the correlations between performances with the 

various   representations. For the subsequent analysis the data sets were adjusted as 

follows: we only evaluated solid 2 to 6 as solid 1 is considered to be a "warming-up 

shape" while the very complex bodies 7 and 8 differentiated poorly and we only 

considered absolute correct solutions (an approximation to the correct value has not 

been taken into account). 
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The ANOVA-analysis (Table 3 and Fig. 5) shows a similar performance of students 

working with illustrations and pupils operating with the computer. Students who 

worked with the model-based environment show significant better results as students 

who dealt with the other working environments. 

In summary we can establish that the illustration-based and computer-based 

environments in comparison hardly bring about any advantages and lead to results on 

a similar level (see Fig. 5 and Table 4). 

representation representation Significance 

low performance 

Significance  

middle performance 

Significance  

high performance 

illustration computer ,244 ,119 ,614 

computer model ,000 1,000 ,001 

model illustration ,253 ,085 ,061 

Table 4: detailed significances for students with low, middle and high performances  

In Fig. 6, three ability groups (low, medium and beneficial students, related to the 

brick-test) are represented individually. The previous restrictions and filtering have 

been retained. For weak and beneficial students the interactive computer-animation 

was the least helpful. For medium students, there is little relevance to what 

environment they work. Remarkably   the similar results for students with low and 

high performances are observed. Students with low performances show a different 

finding – the working environments computer and model are equally ―successful‖. 

So we can assume, that the model-based environment offers some advantages in 

dealing with the issues, but not always. For a more detailed view, the significances 

are illustrated in Table 4. 

A model to define the complexity of a solid – a first evaluation 

The findings for level A (questions about the shape of the faces, the number of 

edges, faces which touch at one vertex) show clearly that these questions were 

usually answered correctly by the large majority of participants.  

 

 

 

 

 

 

 

Fig. 7: Performance of level B questions in boxplots for each solid 
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The following chart (see Fig. 7) was put together in response to questions of level B 

(questions about the number of faces, edges and vertices). It demonstrates clearly 

that the model to calculate the level of complexity does partly not differentiate pairs. 

Reflections on performance-bands 

 

Fig. 8: Results of the SIT as a function of the complexity of the solid for different 

performance samples 

In Fig. 8, we test the hypothesis whether a solid can be described by the applied 

model to determine the level of complexity. Since we do not have normal 

distributions – as already demonstrated – we will argue with help of five 

performance samples (from a = very poor to e = excellent) with regards to the 

structure-identification-test (SIT). 

The graphical illustration shows that sometimes the necessary differentiation 

between solids is not confirmed by the students‘ performance. For example, the 

learners experience the level of difficulty of two different solids as of equivalent 

value, e.g. solid 1 and 2 or 3 and 4 or 5 and 6. As mentioned above solid 1 has to be 

interpreted cautiously as it is considered to be a "warming-up shape". Tests in this 

respect will follow. In addition, we only evaluated solid 2 to 6 while the very 

complex bodies 7 and 8 differentiated poorly and we only considered correct 

solutions (an approximation to the correct value has not been taken into account). 

The depicted parallel curves suggest the following interpretation: students with 

better results show this performance bonus with all solids to a similar extent and 

regardless of the degree of complexity. 

CONCLUSION 

Based on the analysis of these initial assessments the following two "conservative" 

theses are posed. 
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 The findings confirm the rather inconsistent findings of various recent works. For 

example we cannot confirm that students with strong abilities in the field of 

spatial thinking benefit from a computer-based environment. On the contrary, this 

group benefits particularly strong from a model-based environment. For 

individual performance groups (see Fig. 4) we notice several shifts, which 

however due to the number of subjects studied should only be used cautiously as 

direction.  

 The model to define the level of complexity of a solid does not differentiate 

appropriately. It proofs a trend. However, this is not particularly surprising. This 

model is definitely not sufficient for a description of learning or testing 

environment in the field of spatial geometry. From a current point of view it 

appears that the description of a solid is not easy because other parameters such 

as the angle between two surfaces, the flat of rotation etc. may be relevant. For 

example a linear connection such as between the angle of rotation and the speed 

or correctness of processing cannot be detected (see Shepard, Metzler 1971, ter 

Horst & van Lier et.al, 2010). 

Critical remarks and limits are as follows: 

 Unfortunately, the experience in dealing with the computer could not be tested. 

Both an interview and a reaction test with the mouse have been unusable. It 

should be noted that dealing with the visualization program does not assume any 

computer skills. 

 To estimate the complexity of a solid there are more properties necessary than 

these few we had considered. 

 Because the SIT is not a learning environment but a working environment there 

are no statements possible about training effects. We only consider which 

working environment (illustration, model or computer) will support the students 

more in solving easy spacegeometry tasks. 
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GENERATING SHAPES IN A DYNAMIC ENVIRONMENT 
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The study described in this paper aims to investigate the ways in which 12 – 13 year 

old students conceptualise 2 dimensional shapes. Two students were observed while 

working together at a task in a Dynamic Geometry Environment where they were 

required to generate shapes by dragging 2 rigid bars which formed the diagonals 

within a figure. The students appeared to be attending to the symmetry of the shapes 

generated which helped them to position the bars, with a high degree of accuracy, to 

create specific shapes with the expected properties concerning equal sides and 

angles. 

Keywords. Dynamic Geometry Software, Dragging, Symmetry. 

HOW DO CHILDREN CONCEPTUALISE SHAPES IN 2 DIMENSIONS? 

The study described in this paper was designed to investigate how 12-13 year old 

students reason about the geometrical properties of 2D shapes while working in a 

Dynamic Geometry Environment.  Whilst geometry appears to be a practical area of 

mathematics, understanding geometrical concepts requires abstract thought. 

Researchers have suggested that this dichotomy leads to problems in geometry 

because students find it hard to appreciate the difference between the actual figure on 

paper and the theoretical object that it represents (Battista 2007). Students often 

focus on the material representation of a figure such as a drawing on paper or a 

figure on a computer screen. However, when solving problems in geometry it is 

necessary to work with the ideal perfect geometrical figure. The notion of the ‗figural 

concept‘ describes this perfect geometric figure which, when fused with its 

conceptual properties, is what we manipulate when working on geometrical 

problems (Fischbein, 1993).  

Using Dynamic Geometry Software (DGS) may act as the mediator for the figural 

concept and as such it can provide students with a means to understand the properties 

of geometrical figures. In ordinary school geometry, a theoretical object (figural 

concept in Fischbein‘s terms) is mediated by its material representation on paper 

(Laborde, 1993). Laborde explains that the introduction of DGS enables us to 

redefine the distinction between the theoretical object and its material representation. 

There is now a figure on the screen (which can represent a whole class of figures) 

and this figure is a new kind of mediator for the theoretical object. It is different from 

a paper drawing in that it is dynamic. Its behaviour when dragged (when objects such 

as points and lines making up the figure are picked up by the dragging tool and 

moved on the screen) is determined by the method used to construct it, that is the 

geometrical properties designed into its construction.  
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Mariotti (1995) extends this point by claiming that drawings act as mediators 

between concrete and theoretical objects. Screen images of geometrical figures 

represent the external version of the figural concept. To construct a figure in DGS 

the conceptual and figural aspects must be made explicit in the construction process. 

In this way working in a dynamic geometry environment is useful to develop the 

correct interaction between the figural and conceptual aspects of geometrical 

reasoning. The internal logic of the geometrical figure becomes apparent when it is 

dragged since the geometrical relationships that defined it remain constant under 

dragging. 

Important affordances of Dynamic Geometry Software 

There are a number of different ways students can use dragging to explore and 

conjecture in geometry (Arzarello, Olivero, Paola and Robutti, 2002). Dragging a 

figure can also be used as a way to test the validity of a construction. Jones (2000) 

noted that DGS has given us a way to validate a construction through the dragging 

feature and the drag test can provide the motivation for students to learn about 

geometrical principles. The dynamic nature of the software influences how students 

reason about geometrical objects. Measuring is another important affordance of 

DGS: measures of lengths, angles and areas continually update as the figure is 

manipulated by the dragging tool. Hollebrands (2007) describes two strategies that 

students use when dragging and measuring as reactive and proactive. When students 

drag in a fairly random fashion in order to see what happens and when their decision 

of what to do next is based on the results of the previous action then the students are 

using reactive strategies. An example (not one that Hollebrands gave) would be if 

students are given a quadrilateral whose diagonals are fixed length bars and they 

drag the diagonals in order to see which special quadrilaterals they can make. They 

can use the measures of sides and angles to check whether they have made the 

special quadrilateral and adjust the diagonals until the measurements are satisfactory.   

As the students develop their understanding of the technology and the mathematics 

then they are able to predict the outcome of their actions and become proactive in 

their strategies. An example here would be if the students predicted that placing the 

diagonals so that they bisected at right angles would result in the quadrilateral being 

a rhombus. Hollebrands (2007) noted that encouraging students to use strategies that 

are more proactive may be achieved by asking students to explain and justify what 

happens on the computer screen in terms of geometrical properties.  

Olivero and Robutti (2007) say that dragging and measuring can help students to 

move between the experimental or practical side of geometry (where students can 

measure lines and angles on geometrical figures) and the theoretical area of 

geometrical concepts. In my work I hope to see that students working in the 

practical, experimental side can progress into reasoning in the theoretical side of 

geometry. 
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The Van Hiele Levels 

The Van Hiele levels are an important model to describe the development of 

geometrical reasoning (Jones, 1998, Battista, 2007). Briefly, level 1 is the visual 

level at which children recognise a shape as a totality without considering any of its 

properties. Level 2 is where children start to understand shapes as being collections 

of properties and recognise shapes by their properties. At level 3 children are able to 

infer one set of properties from another and understand the hierarchical classification 

of quadrilaterals e.g. that a square is also a rhombus. A further two levels deal with 

deductive proof and advanced level geometry (Van Hiele, 1986). In England the 

National Framework for Teaching Mathematics gives the specific learning objectives 

for geometry in year 8 (12-13years), the age of the students in this study, as:  

Solve geometrical problems using side and angle properties of equilateral, isosceles and 

right angled triangles and special quadrilaterals, explaining reasoning with diagrams and 

text and classify quadrilaterals by their geometrical properties (Department for Children, 

Schools and Families, 2007).  

Thus the students in this study are expected to be working between Van Hiele levels 

2 and 3. 

METHODOLOGY 

The research described here is part of an ongoing study being undertaken for the 

author‘s doctoral degree. It follows a design based methodology which uses the 

design experiment to study and develop theories about how people think and learn, 

in the setting of a learning environment, and allows the researcher to study the 

learning process in context (Cobb, Confrey, diSessa, Lehrer, and Schauble. 2003, 

Barab and Squire, 2004). The design process goes through a number of iterations 

where the experiment is designed, trialled, the results are analysed and reflected on 

and the experiment is then refined to test the robustness of any observations made. 

 

The experiment was devised with the intention of 

creating a meaningful task for students to work on where 

they would perceive the utility of the mathematics 

involved, in this case geometrical concepts of 2D shapes 

(Ainley, Pratt and Hanson, 2006). It is based on the idea 

of a toy kite whose structure is formed from two sticks 

(or bars). In a basic kite as shown in the Figure 1 these 

bars are fixed at right angles and are of different lengths. 

The resulting structure is covered with fabric and, if we 

attached a long line of string, we might be able to fly it. 

If you imagine the shape, it will probably be as a 

geometric kite, i.e. the vertical bar will intersect the 

horizontal bar at its mid point.  
Figure 1 A toy kite 
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Working with the idea of 2 rigid bars providing the structure for a 2D shape let‘s say 

that the bars can be moved inside the shape (the fabric is elastic and stretches to stay 

with the bars). This would be difficult to demonstrate using pencil and paper except 

for showing different positions of the bars at discrete moments in time. However it 

can be done in the human imagination and also in DGS.  

Using the Geometers Sketchpad version 4 (Jackiw, 2001) a file was created 

containing a vertical bar and horizontal bar of 8cm and 6 cm respectively. The 

students working with the file were asked to drag one bar over the other and to use 

the line tool in the software to join up the ends of the bars. They then constructed the 

interior of the shape which fills it with colour (equivalent to putting fabric onto the 

kite) and helps with visualisation especially when the shape is concave.  

Some researchers (eg Arzarello et al, 2002) have noted that students, working with 

DGS, often need to be encouraged to use the drag mode. The task in this study 

requires students to use dragging. Rather than asking students to construct a figure 

with drag proof properties, this task uses the dynamic nature of the software in a 

different way where the constraints are the two rigid bars inside the shape. These 

restrict the shape to a quadrilateral or triangle, the types of which are dependent on 

the lengths of the bars and the angle between them. 

The task was given to pairs of students aged 12-13 years and, at the time of writing, 

8 pairs had worked on the task. The students worked for two sessions each lasting 

fifty minutes and their on screen activity and dialogue were recorded. Dialogue and 

screen activity were analysed and emerging themes were identified. 

Assessment of the prior knowledge of the students was carried out informally at the 

beginning of the task through questioning about the shapes they had made and about 

their properties. The students were assessed by their regular class teacher as being of 

average attainment with respect to their peers. Each pair were chosen as being 

students who would enjoy working at computer tasks and who were sufficiently 

confident  to be able to talk about what they were doing with the researcher, whom 

they had not met previously. The students generally studied mathematics in the same 

class as each other but did not necessarily work together in class. 

OBSERVATIONS FROM THE RECORDINGS 

At the beginning of the research I had hoped to observe that the students could 

classify 2D shapes in a hierarchical manner e.g. accepting that a square is a special 

case of a rhombus. However my observations indicated that the students were 

reluctant to accept this kind of reasoning. In fact De Villiers (1994) described many 

students‘ unwillingness to work with a hierarchical classification of quadrilaterals, 

preferring instead to use a partitional classification (e.g. where squares have equal 

length sides and equal angles, rhombuses have equal length sides but unequal angles) 

unless they can see a reason for using a hierarchical classification. Nevertheless I 

was able to make observations about how the students may conceptualise shapes and 
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the ways in which they used symmetry emerged as an important feature. Battista 

(2007) has conjectured that students might unconsciously perform visual 

transformations on shapes which help them to conceptualise properties and I argue 

that I have observed something akin to this. 

Three different strategies using the affordances of Dragging and Measuring 

The students appeared to use dragging and measuring in three different ways; using 

the reactive and proactive strategies mentioned by Hollebrands (2007) and a third 

way that I noticed when they used dragging and measuring together. The reactive 

dragging style was observed when the students dragged bars around fairly randomly 

to see what different shapes they could make. This happened at the beginning of the 

sessions when the students did not yet know what to expect. They dragged the bars 

around to make shapes that they recognised from their previous experience in 

geometry.  

Proactive dragging occurred when the students had a little more experience of 

working with the tasks. If the students decided to make a kite, say, then they dragged 

the bars straightaway to generate the shape they wanted. Several pairs of students 

were observed to drag the horizontal bar up and down the vertical bar treating it as a 

perpendicular bisector, maintaining the symmetry of the shape. In this way, using the 

6 cm and 8 cm perpendicular bars, they quickly generated a kite, rhombus, isosceles 

triangle and arrowhead (which they did not recognise as being a concave kite).  

The students attended only to the holistic shape when dragging proactively. After the 

shape was considered finished the students would typically check the length and 

angle measures to prove that they had indeed made a kite or whatever shape it was 

supposed to be. However the measures of sides and angles which were meant to be 

equal very often were not exactly equal. The students would then try to make subtle 

adjustments to the positions of the bars. I have named this third strategy ‗refinement.‘ 

They would typically make very small dragging movements so as to get the required 

measurements as equal as possible. They usually got them to be close to within one 

degree for angles and one decimal place for lengths in centimetres and this was 

considered to be acceptable. Using a refinement strategy also helped the students to 

check and review the properties of the shapes which they already knew. For example 

one pair of boys decided the angles in a rhombus are equal. They tried to drag the 

bars to make the angles equal and still retain the shape of a rhombus but were 

unsuccessful. However this activity helped them to see that there are two different 

sizes of angles in a rhombus. 

Using symmetry 

The most useful strategies the students used were the proactive dragging and the 

refinement strategy. The work of two girls will be described as an example of what 

the student pairs have typically done while working with the files. The girls, working 

in the file with the 6 cm and 8 cm bars, made an arrowhead as their first chosen 
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shape to explore. They proactively dragged the horizontal bar AC so that it was 

bisected by the (extension of) vertical bar BD. After having decided that a 

symmetrical arrowhead would have pairs of equal length sides, the girls used the 

refinement strategy to make the two pairs of adjacent edges congruent. When 

analysing the recording it was noted that the refinement activity took up 3: 55 

minutes of the recording while the girls were trying to make an accurate arrowhead. 

Subsequent intervals of refinement took less than one minute, usually just a few 

seconds. This seems to indicate that the girls improved in their ability to position the 

bars using their judgement and they appeared to use the symmetry of the shape to 

help them to do this. 

The screen shot in Figure 2 shows an instance, when Alice was making the 

arrowhead kite and focused on getting two of the measurements to be equal at the 

expense of the symmetry of the shape. Tilly pointed out that she needed to position 

the vertical bar in the middle of the shape and, although symmetry is not specifically 

mentioned, it is symmetry to which she is referring. 

 

 

Figure 2 

 

Tilly: Oh that was right a minute ago, it was eleven nine seven, point nine seven, you 

need to go higher 

Res: DA and DC have changed now haven't they 

Tilly: cos you've gone to that side more. You need to be in the middle and then move up. 

That's still a bit that side I think. 
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Alice: It still looks wonky to me 

Tilly: So move that way a bit, no the other way. Nearly got them two. We're try and aim 

for D and A first then B and A and BC. If you move that a tiny bit, the other way 

Res:  So what are you trying to do, how are you trying to position BD? 

Tilly: Yeah we're trying to get BD in the middle of the shape. 

Eventually the girls decided that the best way to make a symmetrical arrowhead was 

to place the bars in the position of an isosceles triangle and then move the horizontal 

bar AC up or down from there. They moved AC so that it would be perpendicularly 

bisected by BD although they did not use this kind of terminology. First of all Tilly 

suggested they move the point D to sit on the horizontal bar AC and then move the 

bar BD up from that central position. Tilly had the computer mouse at this point and 

spent some time ensuring that the measures on the isosceles triangle were as close as 

she could get them (Figure 3) before moving the vertical bar BD down making an 

arrowhead (Figure 4) and then up (through the rhombus), to make a kite (Figure 5). 

 

   

Figure 3 Isosceles triangle Figure 4 Arrowhead Figure 5 Kite 

 

These students had realised that simply sliding the horizontal bar AC up and down 

the vertical bar BD such that its mid-point touched BD resulted in shapes they 

recognised. Later in the same session the girls observed that they simply needed to 

slide the horizontal bar AC down in order to make the kite (in one position) and the 

rhombus. ―That‘s a diamond and that‘s a kite‖ was accompanied by the horizontal 

bar being moved down then up again keeping vertical bar AC as the perpendicular 

bisector. 

When it was suggested they slide AC below the position for a rhombus they decided 

that they had generated an ‗upside down‘ kite (thus focusing on the orientation of the 

typical representations of a kite). In each case the girls only needed to spend the 

smallest amount of time using refinement to make the measurements equal as they 

seemed to have gained experience in how to place the bars by eye in order to create a 

shape with symmetry. The girls visualised the shapes holistically when attending to 

symmetry which suggests reasoning at Van Hiele level 1. They were also focusing on 

moving the bars, which were the diagonals, inside the shape and noting the relative 

position of the bars, which indicates reasoning at Van Hiele level 2. 
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The girls only investigated the use of the vertical bar as a line of symmetry which 

may reflect vertical dominance in the natural world. When they generated the 

rhombus they did state that it had two lines of symmetry, i.e. both the bars. When 

questioned, their concept of symmetry seemed to be process based rather than 

coming from an esoteric understanding of the meaning of symmetry. They had 

clearly been taught that, if a line of symmetry exists then the shape can be folded 

along that line, edges and angles will coincide and therefore must be equal in size. 

They used this explanation as their working definition of symmetry and it helped 

them to decide which sides and angles in the shape need to be congruent. 

HALF A SQUARE OR HALF A RECTANGLE? 

 

At one point the girls dragged the bars to make a 

right angled triangle (Figure 6). A discussion 

followed as to whether this shape is half a rectangle 

or half a square. This was interesting because the 

girls clearly visualised that if the right angled 

triangle was copied and then the copy was 

transformed the result would be a rectangle (or 

square, until they had argued it through). When 

Tilly said that it will make a square, Alice 

disagreed and had to persevere for a while until her 

colleague came round to her point of view. 

          Figure 6 

 

Tilly: Cos if you get another one of them, and turn it round and make a 

Alice: It would make a rectangle 

Res:   So you think it would make a rectangle? 

Tilly: No a square  

Res:   If you have two of them? 

Tilly: yeah 

Alice: that'll make a rectangle  

Tilly: Wouldn't cos they're the same 

Res:   Which are the same? 

Tilly: er B and A, well er AC and BC 

Res:   Have we got those two measurements? 

(A discussion took place where they decided the 2 perpendicular sides of the right angled 

triangle were not the same length). 
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Tilly: I think it'll still be a square because if you put that one there. And if you put A er D 

at the top, join it with the B point then put BC on the other side then it would be a 

same I think. 

Res:   What do you think Alice? 

Alice: er, er, wait, I need to 

Tilly: no actually it would be a rectangle  

Alice: It would because, if you think about it, if you did, if you flipped that over the other 

side so it was like symmetry, you would get the same, and if you had both of them, 

then it would be a rectangle 

Tilly: yeah it would be 

Res:   OK so why should it be a rectangle and not a square? 

Tilly: because BC is longer than AD. 

Although it is unclear whether Alice was thinking incorrectly that the copy of the 

right angled triangle would be reflected to make the rectangle (although Tilly 

considered that the extra triangle had to be turned round, indicating rotation) it does 

seem that the girls were looking at the rectangle through the lens of symmetry. 

CONCLUSION 

In analysing the recordings it has become evident that the students are implicitly 

aware of the symmetry of 2D shapes and that this awareness is powerful for their 

understanding of the properties of the shapes. A preliminary conclusion from this 

study is that it may be more intuitive for students to focus on symmetry first and to 

derive other properties from it. In future iterations of the study, bars which are at 

different orientations to the vertical and also bars at adjustable angles will be used to 

investigate further.  
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In order to compare the potential for the integration of number, algebra and 

geometry using interactive geometry software, a series of tasks related to finding the 

area of a circle was performed using Cabri II Plus, Cinderella, GeoGebra and 

Geometer‘s Sketchpad.  It was found that, while each program had the facility to 

perform the tasks, there were differences in the design of the programs that could 

lead to either facilitating or impeding the development of student understanding. 

Keywords. Technology, interactive geometry software, geometry, 

number, algebra. 

INTRODUCTION 

There is an increasing awareness that the details of the design of pedagogical tools 

are significant and should be researched (Jackiw, 2010). This paper arises out of 

research on the design of four different interactive geometry (IGS) programs: Cabri 

II Plus (Cabri), Cinderella, GeoGebra and Geometer‘s Sketchpad (GSP). The focus 

has been on the identification of affordances and design decisions as a basis for 

further research on the impact of such differences on student learning.  

Current IGS software provides a means by which algebra, geometry, and number can 

be meaningfully linked. Falcade (2007) showed that geometric construction could be 

used to enhance student understanding of the concept of function.  Laborde (2010) 

explored the creation of dynamic graphs. Jackiw (2010) suggested that dynamic 

number provides an appropriate link between algebra and geometry. 

A particular series of tasks involving the integration of number, algebra, and 

geometry were hence used to compare the four programs. The topic, finding the area 

of a circle, is universal, and each task (e.g. constructing a geometric object or an 

algebraic expression) involved processes common to other topics. The pedagogical 

approach (involving exploring and gathering information about a mathematical 

situation, making and testing conjectures, then generalizing and proving results) has 

been promoted extensively in the UK since the 1980‘s: the specific tasks were based 

upon the principle stated by Laborde (2010, p. 218) that ―the teaching of 

mathematics must help students learn how to adequately use various representations 

and to move between them if needed.‖ 

As the aim of the research has been to identify rather than study the impact of design 

decisions, the tasks were performed only by the researcher in order to:  
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a) ensure that the same tasks were performed with each program as a basis for 

comparison. The pedagogical approach emphasizes student choice and, in a 

classroom, would result in different tasks being performed by different students. 

b) address the issue of familiarity.  The researcher was in communication with 

the developers of all the programs to ensure that any initial lack of 

understanding was not reflected in her conclusions.  

c) ignore the effects of any differences in task presentation necessitated by 

differences in the programs and in student familiarity with the programs. 

METHOD: 

Each task was performed several times with each program as questions concerning 

the affordances of the programs arose and were answered by the software developers, 

or when more detail was required.   

RESULTS: 

Task 1:  Create a circle and a segment to represent its radius 

In this task, the basic mathematical situation to be explored was set up.  

In Euclidean geometry, a circle is a set of points equidistant from a given point, and 

does not depend on location. Cabri and Cinderella each had a tool by which a circle 

could be created and explored simply by clicking to create a centre point and define 

an initial radius. Dragging the centre point of this circle moved the circle without 

changing its size; dragging on the circle itself changed its radius.  In the other 

programs objects such as a point on the circumference or a segment or number 

giving the length of the radius needed to be chosen.  

The simplest option offered by all the programs (and hence the option used in further 

tasks) was to create a circle given a centre point and a point on the circumference 

(referred to as the radius point). Dragging the centre of this circle changed both its 

location and its size: only by dragging the circle as a whole was its radius 

maintained.  

In Cinderella and GSP the same motion, dragging, is used to create the circle and to 

move it. Making the circle by clicking at the centre, holding down and pulling felt 

analogous to pulling one arm of a pair of compasses away from the other.  Cabri and 

GeoGebra required a click – release - move – click motion, a different motion from 

dragging, but with the same visual effect and hence potentially confusing.  In 

GeoGebra, the algebra window needed to be hidden: otherwise coordinates of the 

centre point and radius point appeared after clicking and before releasing which was 

distracting, unnecessary, and potentially off-putting to learners who had not yet 

encountered coordinates.  



Working group 4 

 CERME 7 (2011)  693 

 

In the geometry of Euclid, distances, areas and volumes could be compared but were 

never assigned a number. Introducing a number moves away from the origins of 

geometry, but, if the number is variable, enables a move toward algebra. In each 

program, a circle may be created from its centre and a number to represent its radius. 

Possibilities for the radius of the circle can be ordered by variation and naming, both 

of which are important in developing the concept of a variable. A conjecture is that 

the process of manipulating numbers which are linked to objects that change may be 

important in developing the idea of a variable. Changing a number such as the radius 

of the circle and noticing the effect may be a useful introduction to the idea of 

variation without algebraic terminology and notation. Using names for variable 

numbers may be a later step in developing the idea of the variable.  

In Cinderella, the number, input through a dialogue box, cannot be edited or used for 

any purpose other than defining the circle. GeoGebra gives the same option, 

although the number may be edited. In Cabri and GSP, the number is selected by 

clicking on any number displayed on the page, either entered directly or the result of 

previous measurement or calculation. Cabri allows numbers to be placed on the page 

without being assigned names. GSP requires a new parameter to be defined, which 

will be assigned a name.  GeoGebra also allows previously defined numbers to be 

used, but only by typing in the name of the variable, such as the name of a slider, 

representing the number. A slider, whereby a number changes as a point is dragged, 

gives a visual representation of the variability of a number, and enables numbers to 

be changed by the same operation, dragging, that changes geometric figures. It has 

the potential to be an important link between geometric and algebraic 

representations. GeoGebra sliders have the appearance of points on segments, but the 

points and segments are not actual geometric objects. In the other programs, 

geometric sliders, which give measurements such as the relative position of a point 

on a segment, may be created.  The numbers defined by such sliders will not 

necessarily have names. 

 

Task 2:  Measure the area and radius of the circle.   

In this task, information is found about the mathematical object being studied.  

With measurement, the introduction of numbers becomes necessary.  In each 

program, it is straightforward to find the area of the circle and the distance between 

the centre and radius points. 

The table below gives a screenshot for each program with a list of construction steps 

so far. The algebra window is also displayed for GeoGebra.  Cabri objects (but not 

measurements) have been labeled. Other labels were supplied by the programs.
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Cabri II Plus 

 

 

Geometer‘s Sketchpad 

  

Cinderella 

  

 

GeoGebra 

Table 1: Constructed figures and figure descriptions 
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An issue with measurement is that GeoGebra and Cinderella do not display units 

(although this can be changed in Cinderella). Although not apparent above, trailing 

zeros are also not displayed. For example 3.004 to two decimal places would be 

written as 3 rather than 3.00, which can lead to statements such as ―3 x 4 = 12.02‖. 

Unlike Cabri and GSP, Cinderella and GeoGebra distinguish names, which appear in 

the figure descriptions, from labels, which appear on the page. For example, the area 

of the circle in Cinderella has the name ―A0‖ but the label ―|C0|‖, and in GeoGebra 

has the name ―areac‖ and the label ―Area‖.  

A confusion concerning objects and algebraic variables is evident in GeoGebra. 

Geometric objects and measurements of these objects may each be given a name, and 

the names may look equally ―algebraic‖, but only the name of the measurement 

refers to a variable (assuming that the measurement is not fixed), as only numerical 

quantities may be variables. Every program identifies the segment from A to B as a 

geometric object, a segment. However, GeoGebra treats it as a variable, and assigns 

it the value of the length of the segment: apparently ―the algebraic representation of a 

segment is its length‖ (Hohenwarter, 2010, personal communication).   This is also a 

puzzling misuse of the phrase ―algebraic representation‖: the length is a 

measurement rather than an algebraic expression, it is not the only measurement 

which can be made of a segment, and it does not determine the segment in the way 

the equation of the circle can determine the circle.  

A further issue here is the naming of coordinates and equations as ―values‖ in 

Geogebra. Particularly in interactive geometry, the coordinates of a free point are an 

indication of its (temporary) location relative to certain coordinate axes: equating a 

point to its coordinates is simply wrong. 

There is also the issue that the information concerning coordinates and equations is 

displayed at all.  For Cinderella, such information must be shown.  In GeoGebra, 

such information must be hidden. 

Task 3:  Change the radius of the circle and observe the effect on its area. 

In this task, further information concerning the mathematical object was obtained, 

and a conjecture was made about the relationship between two variables.  

Dragging is one of the chief links between geometry, number and algebra in an IGS.  

By dragging the radius point, a static circle, with a fixed radius and area, becomes a 

circle whose radius and area are now variables, capable of being related. 

Unless the algebra window is hidden, GeoGebra shows the coordinates of the radius 

point as it is dragged: the other programs enable a focus on the way in which the area 

changes as the radius is changed without distraction.  The measurements move with 

the figure in Cabri and Cinderella and can be attached to the figure in GeoGebra and 

GSP (although this is not straightforward).  It is clear that as the radius increases, so 

does the area. 
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A conjecture is hence that the area is some multiple of the radius. 

Task 4: Test the conjecture by calculating area/radius and seeing how this 

changes as the radius is changed. 

In this task, the conjecture about the relationship between the two variables was 

tested, and refuted. 

An advantage of Cabri and GSP is that the general division of area by radius could 

be achieved simply by using a calculator tool to divide the existing area value by the 

existing radius value, with numbers entered into the calculator by clicking on them. 

As the radius and area changed, the calculation was continually updated. It is 

unnecessary for the student to deal with the abstract idea of dividing one variable by 

another. However, the calculator can also act as an introduction to this idea.  In GSP, 

when a number is selected on the page, its name appears in the calculator, making it 

clear precisely what is being calculated, and the label ―area/radius‖ will appear next 

to the completed calculation.  In Cabri, calculation involves more algebra; when a 

number is selected on the page, the number is assigned a variable name, starting with 

―a‖.  This name appears both on the page next to the number and in the body of the 

calculator.  An expression is built up in the calculator, and the variable names on the 

page indicate which number will be substituted for each variable in the expression 

when the expression is evaluated.  

The use of the function tool for calculation in Cinderella immediately made 

calculation seem more daunting. Numbers could be selected either by clicking on  

them on the screen to place their names in the calculation box, or by typing in the 

names. The possibility of dual input means that the user could either see the 

calculation as just involving numbers or as involving a relationship between 

variables.  

In contrast, GeoGebra required the names of variables be typed in the input bar in 

order to perform any arithmetic operations, hence demanding the awareness that one 

variable might be divided by another with no means to build this awareness.  The 

algebra window, with a large amount of distracting information, needed to be open to 

find the names of the variables and the text input requirement created issues with 

syntax, made more difficult by the confusion regarding the segment name, which 

behaved as a variable in the calculation.  

Having performed the calculation, it is clear that the result changes as the radius 

changes: the conjecture concerning a linear relationship was incorrect. 

Task 5: Using the measurements to create a graph of area against radius 

In this task, a new representation of the mathematical situation was created to give 

further insight on the relationship between the two relevant variables. 
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One of the most powerful features of IGS is the ability to visually represent the way 

in which measurements vary: a graph of area against radius may be constructed 

directly from the existing measurements. 

It is possible in all programs to show inbuilt coordinate axes and directly plot the 

point representing (radius, area), but with Cabri or GSP the basic idea of coordinate 

representation may be explored.  A number can be transferred to a linear object 

which acts as an axis. For example, the radius measurement of 2.5 cm may be used to 

create a point which is 2.5 units from a fixed point along a line functioning as the x 

axis.  As the radius changes, this point will move along the axis accordingly.  The 

corresponding area of 19.4 cm
2
 may be represented by a point along another axis.  

Parallel axes form a dynagraph (Goldenberg, 1992); axes at an angle enable the 

construction of the point that is reached by travelling 2.5 units along the x line 

followed by 19.4 units along a line parallel to the y line.   

Once the point was plotted, each program enabled it to be traced, to create a visual 

record of the way in which area varied as radius was changed. The set of all possible 

points representing (radius, area) could then be obtained by creating a locus, which 

represented the graph of area against radius. This graph was constructed through an 

understanding of coordinate representation with no recourse to algebraic equations. 

In order to make more of the graph visible, it would be useful to reduce the scale on 

the y axis. This is unproblematic in Cabri and GSP. However, although zooming in 

or out is permitted, Cinderella does not allow axes to otherwise be rescaled. 

Geogebra allows rescaling, but with the consequence that the circle changes shape, 

as shown below.  

 

Figure 2: GeoGebra circle with unequal axis scaling 

In Cabri and GSP, a fundamental design decision was to treat the screen as a 

simulation of a Euclidean plane, where distance is measured by a rigid ruler. 

Coordinate axes provide a reference frame relative to which objects such as the circle 

have a location and possibly an algebraic equation. When axes change, the relative 

location and equation of objects will change, but the objects will not. 
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In contrast, Cinderella and GeoGebra define all objects by using a coordinate system 

related to the intrinsic screen coordinate system; selecting the centre point and radius 

point for the circle define it by an equation referring to this coordinate system. This 

is why these programs give coordinates and equations in the figure descriptions. 

This provides an equally acceptable model of the Euclidean plane – provided that the 

coordinate axes cannot be scaled independently. Hence Cinderella does not allow 

such scaling. In GeoGebra, when the axes change, the fixed defining equation means 

the circle visible on the screen needs to change shape and consequently visible area, 

which in an investigation likely geared to 12 or 13 year old students might be highly 

confusing.  

Task 6: Graph an algebraically defined curve to fit the locus and hence find a 

formula for the relationship between radius and area. 

In this task, a further construction is made to test the conjecture that the graph is 

quadratic and to find its coefficient.   

Cabri is the only program that will find the equation of a locus directly (GeoGebra 

does not even list the locus as an object in the algebra window). All programs will fit 

to the locus a graph defined by means of an algebraic equation. Cabri II Plus requires 

an expression to be defined and applied to an axis, whereas GSP, GeoGebra and 

Cinderella require the definition and plotting of a function. A parameter p can be 

introduced to create the graph of y = p x
2
. Manipulating this parameter will give the 

curve of best fit as y = 3.14 x
2
. 

Task 7:  Test the formula found 

In this task, the specific conjecture represented by the formula found in the previous 

task is tested. 

This was achieved by editing the calculation from task 4 to area/radius
2
, which now 

gave a constant value of about 3.14.  It was also possible to create a function or 

expression 3.14*r^2, substitute the radius for r and compare the result with the 

measured area.  Cabri used the simpler language of evaluating an expression, and the 

other programs used the language of functions, with text input needed for GeoGebra. 

The final stage pedagogically would be to prove this result, or at least give some 

reasons why the area of a circle has this particular relationship to its radius, but this 

has been beyond the scope of this paper, although not beyond the scope of IGS, 

which could, for example, be used to compare the area of the circle to that of the 

square containing it, or to ―unfold‖ the circle into an approximate parallelogram. 

CONCLUSION 

The series of tasks shown here illustrate the ways in which IGS could be used to 

develop links between number, algebra and geometry through representation of a 

mathematical situation in different ways.  In particular, dynamic number has emerged 
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as especially important, as predicted by Jackiw (2010). Dynamic number can serve as 

an introduction to variation, and naming such numbers as an introduction to 

algebraic variables.  Relationships between dynamic numbers may be explored and 

expressed as graphs or algebraic formulae. 

A circle could be created according to its fundamental definition, without numbers, 

showing the primacy of geometry in this context. However, a circle could also be 

created by using a number to define its radius.  Changing this number and noting its 

effect on the circle might be important in developing the idea of variation, whereas 

naming the number might be a move toward the idea of variable. 

Measuring the area and radius of the circle involved introducing number as a 

description of geometry. In an environnment where geometric objects may be 

changed by dragging, measurements are variables between which relationships may 

be conjectured. Such relationships may be tested by calculation, ostensibly involving 

just numbers, but in fact involving variables.  Calculation itself may be a means of 

developing awareness of general expressions. 

Creating a graph meant creating a visual representation of the relationship between 

the variables of radius and area.  This was done first without algebra by using the 

basic definition of a graph as a locus (a unique feature of IGS environments), and 

then by means of an algebraic definition, showing that the relationship between 

radius and area could be expressed algebraically. The relationship found could be 

tested algebraically by substituting measurements into a formula.  The relationship 

was not proven, however, although some justification would have been possible with 

IGS. Although quite different in some respects, Cabri, GSP, and Cinderella were 

each well suited to the tasks, giving scope for students to explore the idea of 

variability before requiring the use of specific variables. What was critical in these 

programs is that text entry involving the names of variables was not necessary. Each 

had specific perceived strengths and weaknesses, which will be reported in more 

depth in further research.  

What was surprising, however, is the number of problems that arose using 

GeoGebra, specifically ―developed as a tool to support dynamically linked multiple 

representations of mathematical objects‖ (Hohenwarter, 2010, personal 

communication).  Jackiw (2010) pointed out a number of the problems in 

GeoGebra‘s algebraic representation, and similar problems were found in this study. 

GeoGebra had mathematical errors in number (rounding of decimals), algebra 

(treating a segment name as a variable and assigning it a value) and geometry (not 

consistently representing the Euclidean plane).  In addition, information was 

continually given which was irrelevant and distracting (the display of coordinates 

whenever an object was created or dragged).  Its reliance on text entry made it slow 

to use, liable to syntax errors, and meant that students needed to understand the 

meaning of a variable in order to use it, an understanding that could be developed in 

the process of using the other programs.  Text entry also meant that the algebra 
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window, with unnecessary and distracting coordinate information, needed to remain 

open in order to access the names of variables. It lacked the functionality that would 

enable students to understand coordinate representation from first principles. The 

―algebraic‖ representation of objects given by GeoGebra was at best irrelevant in 

exploring connections in the task described here.  At worst it was distracting and 

misleading. 

Future research will compare student responses to similar tasks using Cabri, GSP and 

Cinderella, testing conjectures made here concerning the role of dynamic numbers 

linked to geometric objects in facilitating the development of algebraic concepts and 

looking more closely at the effect of differences between these programs. The 

programming language available within Cinderella has been beyond the scope of this 

exploration. This is likely to open new possibilities for the linking of number, 

algebra and geometry in the context of an IGS. 
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OVERVIEW 

Our focus on stochastic thinking intentionally avoids any marginalisation of 

probability, which we see as a key component alongside the consideration of data in 

statistical analysis. Probabilistic thinking, distinct from thinking about the 

deterministic, involves modelling randomness and expressing subjective beliefs 

about uncertainty. Statistical thinking involves handling data, seeking patterns and 

making predictions. We see stochastic thinking as embracing both probabilistic and 

statistical thinking. 

WG5 was attended by 35 delegates and 24 papers were accepted for the proceedings 

covering various aspects of stochastic thinking. This large programme stimulated 

much discussion. Each paper was presented for 7 minutes as a reminder of its focus 

with time for clarifying questions afterwards. Papers were clustered and after each 

cluster there was a 10-minute reaction. Following this there was an hour‘s discussion 

around that set of papers. Notes were taken during each session and these were used 

to create the final presentation and this report. We organized the summary of the 

discussion below into four themes, which roughly represent the clusters of papers: 

(i) Curriculum and teaching 

The discussion was based around the papers by: Janet Ainley, Tina Jarvis and 

Frankie McKeon; Arthur Bakker, Monica Wijers and Sanne Akkerman; Maria 

Meletiou-Mavrotheris and Efi Paparistodemou; Anneke Verschut and Arthur Bakker. 

There was also a contribution through the poster by Raquel Santos. 

(ii) Sampling and graphs 

In this section, we discussed the papers by: Pedro Arteaga and Carmen Batanero; 

Dani Ben-Zvi, Katie Makar, Arthur Bakker and Keren Aridor; Helen M. Doerr and 

Bridgette Jacob; Mª Teresa González Astudillo and Jesös Enrique Pinto Sosa; Oduor 

Olande. 

There were further contributions resulting from the posters by: Adri Dierdorp, Arthur 

Bakker, Harrie Eijkelhof, Jan van Maanen; Einat Gil and Dani Ben-Zvi. 
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(iii) Attitudinal and conceptual 

The discussion in this section was stimulated by papers from: Andreas Eichler and 

Markus Vogel; Verónica Y. Kataoka, Claudia Borim da Silva, Claudette Vendramini 

and Irene Cazorla; José Alexandre Martins, Maria Manuel Nascimento and 

Assumpta Estrada. 

A further contribution was made through the poster by Assumpta Estrada and Ana 

Serradñ. 

(iv) Probability and risk (the most popular theme). 

There were a substantial number of papers contributing to this discussion: Chiara 

Andrà; Egan J. Chernoff; J. Miguel Contreras, Carmen Batanero, Carmen Díaz and 

José A. Fernandes; M. Pedro Huerta, Fernando Cerdán, Mª Ángeles Lonjedo and 

Patricia Edo; Antonio Orta and Ernesto Sánchez; Bernard Parzysz and Michel Henry; 

Dave Pratt, Ralph Levinson, Phillip Kent and Cristina Yogui; Susanne Prediger and 

Susanne Schnell; Caterina Primi and Francesca Chiesi; Theodosia Prodromou 

There was also a poster by Hasan Akyuzlu. 

Of course, papers in one theme often raised issues equally relevant to another theme. 

CURRICULUM AND TEACHING 

There was considerable discussion about the role of context in teaching stochastics. 

In particular, the debate was around what is a ‗real‘ problem or question. Was reality 

located in the positioning of the activity inside or outside of school, or was it related 

to how engaging was the task for students? Did it matter that the data were collected 

by students themselves? Could reality be found in the power of the statistical ideas to 

solve problems? Such expressions of where reality might be found seemed to 

indicate different communities: school vs. out of school; cultural differences across 

countries; statistics vs. mathematics; different curriculum layers. 

There was therefore discussion about the notion of boundaries between communities 

that can lead to discontinuities and research that attempted to cross those boundaries. 

This research looked to build boundary objects (artefacts that live in both sides of the 

community) and to engage people such as researchers, teachers, teacher educators 

who tried to live in both communities, on either side of the boundary, and acted as 

brokers. 

SAMPLING AND GRAPHS 

Sampling was a topic that received particular attention in the discussion of the 

working group. Innovative technological tools such as Fathom and TinkerPlots were 

helping students to visualize complex statistical concepts, such as distribution, 

variability and sampling distribution. 
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Such tools were not necessarily familiar to practicing teachers and so it was 

recognised how important it was to provide teachers with opportunities to experience 

similar learning experiences as their students in order to be able to anticipate the 

difficulties their students might encounter. 

These tools have changed the way in which students could engage with graphical 

information, placing more emphasis on interpretation and expression, but, at the 

same time, present a challenge to how skills might be assessed. 

There is considerable research in recent times on informal inferential reasoning (IIR) 

and this approach, often based around exploratory data analysis (EDA) has put an 

accent on representing and interpreting data in the context of the sampling process.   

IIR promises new directions for bridging between statistics and probability, which 

had become increasingly separated with emphasis on data in EDA.  

For example, one of the research studies provided an inquiry based learning 

environment, in which young students developed useful ideas about whether 

inferences could be made from samples of different sizes. Initially, they oscillated 

between absolutist and relativist conclusions, but they came to reason in more 

sophisticated ways with increasing awareness of what was at stake when making 

inferences from samples. 

ATTITUDINAL AND CONCEPTUAL 

Stochastics education suffers from the negative attitudes in society in the same way 

as mathematics but even mathematically-minded scholars often reject the stochastic 

way of thinking. We need to know more about these attitudes to see how they might 

be changed. In contrast to the very limited research on adults‘ attitudes regarding the 

stochastic,  there has been considerable research about students‘ concepts. For 

example, we heard research which aimed to identify the knowledge and thinking of 

students in different ages and levels of schooling to gain an empirical basis for future 

teaching of stochastics. This research adopted the SOLO taxonomy to structure the 

empirical data for different tasks, but not to classify students referring to knowledge 

and thinking levels. 

PROBABILITY AND RISK 

In considering the research specifically on the conceptualisation of probability, there 

was discussion around the role of intuitions, representations and embodiments 

(research in psychological and semiotic perspectives). Enriching and refining 

stochastic ideas are good ways of thinking about how learning often involves coming 

to appreciate the power of what you already know (enriching) or its limitations when 

the knowledge has been over-generalised (refining). For example, knowledge that 

chance is unpredictable was typically over-generalised and needed to be refined to 

appreciate that aggregation in the long term is in a sense predictable. In contrast, 
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knowledge such as 'the more times, I throw the spinner, the more even is its pie 

chart‘ needed some enrichment to realise that it applies also to dice, coins and so on. 

The role of context in the process of enrichment was compared to that reported in the 

mathematics education literature, where contexts in word problems can present 

children with additional difficulties, but can provide meaning if the learners are 

encouraged to engage deeply with the situation. If we provide students with an 

artificial context, we should not be surprised if they try to make it real by bringing in 

personal knowledge that is not necessarily statistical. Rather than thinking of 

abstracting as a process of de-contextualisation, enriching and refining seemed to 

place emphasis on abstracting as generalising. The knowledge of teachers is key in 

the conceptualisation of probability by their students. Research was reported which 

was based on a structural model of teacher knowledge. The insufficiencies of pre-

service training leave teachers with difficulties around stochastic thinking. Research 

has been finding evidence about what teachers do not know. To design effective 

teacher education, we need to know what we might expect teachers to know already, 

including their attitudes. 

SOME CONCLUDING THOUGHTS 

We noted a discrepancy between research results, often taking place in particular 

situations, and the opportunities for large-scale implementation and dissemination. 

We worried that EDA has led to isolation of probability in the curriculum and 

discussed the need to reconnect data and chance, perhaps through modelling tasks 

such as in the beta version of Tinkerplots and perhaps by placing more emphasis on 

subjective probability to escape the specialised uses of probability (in coins, 

spinners, dice etc.). 

The use of subjective probability was apparent in research on risk, presented in the 

working group. We wondered at what age would this be appropriate? Perhaps it is 

possible at a younger age than we have been able to teach classical probability? 

Indeed, could it be the case that the teaching and learning of risk offers new 

opportunities for modelling with subjective probabilities? 

FINAL COMMENTS 

The group work was seen as very useful and efficient. The group was larger than in 

previous years and this created new challenges. The use of a reactor had been 

introduced in previous years but because of the large number of papers it was felt 

better to react to a group of papers. Inevitably this sometimes meant the reactions 

were at a higher level of abstraction and perhaps less specifically useful to individual 

authors. Nevertheless, there were a number of strong papers and much interesting 

content. It is hoped that some of these authors will be able to contribute developed 

papers to a special issue of ZDM.  
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We describe aspects of our work on a European project concerned with inquiry-

based mathematics and science education. A framework has been developed which 

offers a novel perspective on integrated planning, based on deep connections 

between ‗big ideas‘, and on the process of inquiry. We aim to exploit the potential of 

such integration to provide opportunities for mathematical and statistical ideas to be 

used in purposeful ways, stressing their utility. A sequence of activities embodying a 

possible learning trajectory concerning variability is described as an example of the 

application of the framework. 

BACKGROUND: THE FIBONACCI PROJECT 

This paper presents a theoretical framework developed during planning for our 

participation in the Fibonacci Project
15

; a project involving around 36 European 

partners that focuses on the dissemination of Inquiry-based Mathematics and Science 

Education. Each of the partner Centres will work with a group of teachers over a 

period of two years, developing materials to support inquiry-based teaching. An 

important feature of Fibonacci is a model for dissemination through ‗twinning‘ 

Centres with different levels of experience and expertise, and other collaborative 

events. The project thus focuses at three levels, on Centre, teacher and pupil learning. 

Centres choose whether to focus on mathematics or science, or on both subjects, and 

also decide the age group of the pupils involved. In Leicester we have chosen to 

focus on the primary age range (ages 4 – 11), and to take an integrated approach to 

inquiry across mathematics and science. We shall be working with a group of about 

25 teachers who teach children from across the whole age range. Half of these have 

been selected because they have previously engaged in mathematics education or 

science education programmes at the School of Education, and they will each 

involve another colleague from their school. As primary teachers, they are unlikely 

to regard themselves as ‗specialists‘ in mathematics or science, and few will have 

formal qualifications in either subject beyond the minimum qualification levels 

required to enter teaching. Their level of experience as teachers varies from some 

with substantial experience, to some within the first 5 years of their careers. 

Starting in Autumn 2010, the teachers will come to five workshop sessions at the 

School of Education each year (two whole days and three shorter twilight sessions). 

In these sessions, the teachers will work through carefully designed sequences of 

                                           

15
 The FIBONACCI Project - Large scale dissemination of inquiry based science and mathematics education, FP7-SCIENCE-IN-

SOCIETY-2009-1, Grant Agreement Number 244684 
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activities that model the inquiry process. They will be encouraged to select 

appropriate activities to use in their own classrooms between the University sessions.  

DEVELOPING A PLANNING FRAMEWORK 

As a team of teacher educators and researchers in mathematics (Ainley) and science 

(Jarvis and McKeon) education, our focus during the development stage of the 

project has been on developing a cohesive framework around which to plan the 

sequences of activities which we will present to the teachers. In particular, we have 

explored the similarities and differences in our two disciplines, what ‗inquiry‘ might 

mean in each of them, and how the strands of content from each area might be 

brought together in meaningful ways. In these explorations, handling data quickly 

emerged as an area of relevance to both disciplines. We focus here on the place of 

statistical thinking in our planning, as an example of our overall approach. 

Challenges and opportunities in linking mathematics and science 

As well as choosing to focus on both mathematics and science, we have also set 

ourselves the challenge of linking the disciplines in an integrated way which has the 

potential to improve and enrich learning opportunities. We recognise that this is 

potentially problematic, and will certainly be a way of working which is relatively 

unfamiliar to the project teachers. Further, we wish to avoid a superficial approach to 

making such links, for example by identifying where mathematical ideas might be 

taught ‗in preparation‘ for where they are needed in science, or drawing attention to 

the Fibonacci patterns in sunflowers. Whilst these sorts of links might be relatively 

easy to make, we believe that there are potential advantages in integrating 

mathematics and science in a deeper way. We see at least three such advantages. 

First, there is a widely recognised concern within mathematics education about the 

separation between ‗school mathematics‘ and the ways in which mathematics is used 

in everyday life, which is not adequately addressed by traditional attempts to 

contextualise the school mathematics curriculum (e.g. Boaler, 1993, Cooper & 

Dunne, 2000). Ainley and Pratt have argued that this separation inhibits the 

development of an understanding of the utility of mathematical ideas, that is, why 

and how the ideas are useful (Ainley et al., 2006). In order to create opportunities to 

develop an understanding of utility, they emphasise the importance of pedagogic 

tasks that have purpose for learners. Scientific inquiry is a rich source of purposeful 

tasks in which the utility of mathematical ideas can be made transparent. 

Secondly, mathematical ideas play an important role in the explanatory power of 

models in science, which is not generally exploited in the primary school curriculum. 

For example, in order to understand why a small child might get cold more quickly 

than an adult, and thus need more layers of clothing, or why large sugar crystals 

dissolve more slowly than regular sugar, it is important to have an understanding of 

how the ratio of volume to surface area might vary in different shapes. 
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Finally, scientific inquiry provides a purposeful context in which learners collect sets 

of data of various kinds. This contrasts with traditional approaches to data handling 

within primary school mathematics (in the UK), which tend to fall into two 

categories. Either ready-made sets of (clean) data are provided for children, with 

little consideration given to how or why the data might have been collected, or 

children collect data about a familiar context (such as the colours of cars in the car 

park), and use this to produce graphs, but without any real purpose to stimulate more 

than a superficial reading of the graphs produced (Pratt, 1995). In the course of a 

scientific experiment, decisions have to be made about which data to collect, how 

best to collect it, the most appropriate way to display it, and how to interpret the 

resulting graphs and tables. In addition, the data collected will be messy: issues 

about appropriate accuracy, variability, and sample sizes are both visible and of real 

importance. We thus see statistical reasoning, which is generally poorly developed in 

UK primary schools, as a key area of mathematics that can be developed through our 

integrated approach to mathematical and scientific inquiry in the Fibonacci Project.  

Approaches to linking mathematics and science 

The notion of a cross-curricular approach to teaching mathematics and science may 

conjure up a range of different images. Czerniak et al. (1999), in a review of studies 

that attempted to demonstrate benefits of curriculum integration, argue that a serious 

impediment to such research is that 

… a common definition of integration does not exist that can be used as a basis for 

designing, carrying out and interpreting results (Czerniak et al. 1999 p. 422) 

In another review of research, Hurley (2001) identifies five categories of 

‗integration‘ reflected in a wide range of studies. These categories move from a 

‗sequenced‘ approach, in which the two subjects are planned and taught separately, 

but in an appropriate sequence to provide cross-subject support, to ‗total‘ integration 

in which the two subjects are taught ‗together in intended equality‘. However, the 

definitions of the intervening categories are somewhat unclear.  

Offer and Vasquez-Mireles (2009) offer two more specific descriptions of how 

cross-subject planning may be approached. They take a somewhat dismissive view of 

what they refer to as a ‗traditional approach to integration‘ in which mathematics is 

used as a tool in science lessons, and science is used to provide a context in 

mathematics lessons. In their own study, Offer and Vasquez-Mireles take an 

approach which builds on this pattern of integration, which they describe as 

correlation. 

To be a correlated mathematics and science lesson, both mathematics and science 

learning objectives must be clearly identified and direct the instruction (Offer and 

Vasquez-Mireles, 2009 p. 146) 

In addition to this focus on learning objectives, correlation involves attention to the 

use of language, and to parallel concepts in the two disciplines. 
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MAKING DEEP LINKS THROUGH INQUIRY 

The perspectives described above offer pragmatic approaches to planning lessons, or 

sequences of lessons, which go some way to exploiting the opportunities offered by 

linking mathematics and science. Our explorations have led us to look at ways in 

which links of a more fundamental kind may be made by looking beyond the detail 

of curriculum content, and unpacking how the processes of inquiry play out in the 

different subject areas. The way in which we conducted our exploration was for the 

scientists to prepare an activity sequence which they would use to develop a 

particular concept in science (such as insulation and heat loss) and for the 

mathematician to work though this, drawing out the opportunities for developing 

mathematical understanding. In doing this, our aim was not only to find 

opportunities to use particular mathematical ideas (such as the use of place value in 

the scales on measuring instruments), but also to identify opportunities for 

mathematical thinking to offer explanatory power (such as considering the ratios of 

volume to surface area.)  

After going through this process for a number of scientific themes, the pattern 

emerged of a relatively small number of ‗big‘ mathematical ideas underpinning very 

different areas of science. One such ‗big idea‘, which we take as our focus here, is 

that of the variability of data, including ideas about ‗signal‘ and ‗noise‘. 

In contrast to approaches which take the content of the school curriculum as the 

starting point for linking the learning and teaching of mathematics and science, we 

have developed a model for considering links at the deeper level of ‗big ideas‘, based 

on a consideration of the function and processes of inquiry. Because of the 

significant overlap between mathematics and science in the area of handling data, we 

have considered statistics as a distinct disciple in this model. In Table 1 we 

summarise our planning framework, indicating the different levels at which we need 

to consider the links between mathematical, statistical and scientific ideas. Whilst 

our planning begins with consideration of the ‗Deeper level‘ of big ideas, which 

informs progression, we are conscious of the need to make explicit links at the 

‗Surface level‘ of the school curriculum which is familiar to teachers. The design of 

individual tasks in built upon the bottom two rows in the table, utilising the 

processes of inquiry, and drawing on differing purposes to determine the specific 

emphasis within each task. 

EXPLORING THE USE OF DATA IN SCIENCE EDUCATION 

In scientific inquiry, children are encouraged to design and carry out experiments 

and to test hypotheses with the aim of finding an explanation for the observed 

phenomena. The need to compare the outcomes of different experiments drives the 

move beyond descriptive observation to measurement and quantification. The choice 

and use of units and measuring instruments is often ‗taken for granted‘ in science 

teaching, and the ease with which particular instruments can be used may disguise 
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the complexity involved in interpreting the results. For example, digital stopwatches 

are accessible timing devices, but will give readings in tenths, hundredths or even 

thousandths of a second. The emphasis placed in science on fair testing and accuracy 

may engender an inappropriate respect for results given in 2 or 3 places of decimals 

(particularly when the meaning of such results is not well understood). 

 Science Statistics Mathematics  

Surface 

level: the 

School 

curriculum 

 

Electricity 

Forces 

Properties of 

materials 

Plants … 

Drawing graphs 

Collecting data 

Mean, median 

and mode … 

Counting 

Calculation 

Naming shapes 

Measurement 

… 

 

Links at this level are 

easy to make, but may be 

superficial, using 

mathematical or 

statistical ideas 

intermittently as tools 

during science activities 

without continuity. 

However, teachers need 

the reassurance of seeing 

links at this level. 

Deeper level: 

‗big ideas‘ 

 

Energy 

Particle theory 

Inheritance … 

 

 

Variability 

Distribution 

Chance 

Inference … 

 

Pattern 

Proportion 

Equivalence  

Ratio… 

 

Links at this level are 

more challenging, but 

offer opportunities to 

develop sequential 

learning in all subjects 

as the big ideas recur. 

Nature and 

processes of 

inquiry 

Observation, posing questions, collecting data, analysing 

data to draw conclusions, predicting, hypothesising, 

evaluating modelling, raising further questions, … 

We see strong 

similarities in the 

process of inquiry across 

all three disciplines, 

which can be reinforced 

with different emphases. 

Purposes of 

Inquiry 

Generalisation that 

explains the world, 

or observed 

phenomena 

Generalisation 

that informs 

decision making 

Generalisation 

that holds in 

all cases and is 

internally 

consistent 

Whilst the processes of 

inquiry are common, we 

see the purposes as 

distinct: this provides a 

way of creating different 

emphases in task design. 

Table 1: summary of the model of integration used for planning 

Such experiments provide potential opportunities to experience variability: a key 

statistical idea. Following Reading and Shaughnessy‘s (2004) terminology, we shall 

focus here on variability as ‗the [varying] characteristic of the entity that is varying‘, 

rather than the process of describing or measuring variation.  

In the context of a practical experiment, variability can be observed at two levels. At 

the macro level, the whole focus of the experiment may be on the behaviour of one 

(dependent) variable as another variable is deliberately changed by the experimenter. 

For example, children might change the gradient of a sloping surface, and measure 

how far a toy car travels when rolled down the slope. Here children may expect that 

the distance travelled will vary as the gradient is increased or decreased, and look for 

a pattern in their results. However, variability can also be experienced at a micro 

level, and this may initially be unexpected. If a particular experiment is repeated, that 
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is, the car is rolled again down a slope with the same gradient, the distance travelled 

will not be exactly the same as the first attempt. Repeating the experiment a number 

of times will produce a spread of results. Rather than seeing this as an opportunity to 

explore variability as an important statistical idea, the pressures of the curriculum 

tend to lead science teachers to take a pragmatic approach to the ‗problem‘ of 

variability, using the algorithm ‗collect three measurements and then take the 

average (i.e. mean) value‘. Observations of student teachers carrying out scientific 

inquiries have provided us with many examples of the uncritical use of this 

approach, presumably remembered from their own school experiences. In the 

following sections we describe a sequence of activities designed to ‗unpack‘ this 

issue. 

PEDAGOGIC DESIGN FOR EXPLORING VARIABILITY 

We now describe a learning trajectory through a sequence of inquiry activities we 

have designed to provide opportunities to learn about variability in the context of 

scientific ideas. The activities all focus on aspects of exploring flight. Our general 

approach has been to start with inquiry sequences which focus on the development of 

science concepts, and then weave across these sequences which develop the related 

mathematical concepts, whilst reinforcing the processes of inquiry. Any particular 

task or activity could then be viewed through a number of different lenses, with 

different aspects being emphasised as appropriate for the learners (e.g. scientific or 

mathematical content, aspects of inquiry, statistical thinking). The sequence of 

activities described here will be used with the group of project teachers, who will 

then try activities in their classrooms. We aim to make our planning decisions 

explicit, in order to support teachers‘ in developing classroom activities. 

Cylinder gliders: explicit variability 

The first task is based on exploring the behaviour of small gliders, made from loops 

of paper attached to a drinking straw (see Figure 1). The construction of the glider 

allows the smaller (tail) loop to be moved along the straw. In the way we structure 

the activity in response to this task we will focus on making the process of inquiry 

visible as a way to explore a phenomenon, on macro-level variability as part of that 

exploration, and on explicitly confronting micro-level variability.  

 

 

Things I could change 

Size of loops 

Width of loops 

Distance between loops 

Length of straw 

Where I fly it 

How I launch it 
Things I could observe or 

measure 

Length of flight 

Time of flight 

Straightness of flight 

I will change 

Distance between loops 
 

I will measure 

Length of flight 
 

I will keep these the same 

Size of loops 

Width of loops 

Length of straw 

Where I fly it 

How I launch it 

Figure 1: a loop glider Figure 2: the discussion framework 
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After an opportunity to observe the behaviour of the gliders in an unstructured way, a 

question is posed about what affects the way in which the gliders fly. A discussion 

framework (Figure 2) is used to identify variables, and then design experiments to 

explore the affects of changes to the design (inquiry process, macro-level). In the 

example given, the focus is on the distance between the larger and smaller loops. 

The variable how I launch it is problematic, and is likely to generate considerable 

discussion. It will quickly become clear that it is not possible to launch the glider in 

exactly the same way each time, however careful you are. This generates the need 

both to repeat the experiment a number of times, and to address how the resulting 

measurements may be interpreted. Different coloured pins are used for each distance 

between the two loops and placed on the floor to mark where the glider lands This 

gives an immediate visual image of the variability of results (at both micro and 

macro level), which can be discussed. Guided questioning will focus attention on 

both the ‗noise‘ in the array of pins, and the ‗signal‘ that might be detected. 

However, the floor display is messy, and cannot be left in place for long, and so 

results are also recorded in Tinkerplots. The resulting display provides a different 

image of variability (see Figure 3) and may make the pattern in the results easier to 

see, making the utility of graphing explicit. 

Scientific content will not be a focus in this task as it is not easily accessible: the 

emphasis needed on the mathematical content will vary for different age groups. 
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Figure 3: results for different 

gliders 

Figure 4: parachutes being 

made 

Figure 5: results from square 

parachutes 

Parachutes: a context for looking more closely at variability 

The next task in the sequence uses the same inquiry approach to exploring the 

performance of small parachutes made to carry toy people (see Fig. 4). Activity in 

response to this task could emphasise scientific content, exploring the properties of 

different materials, and forces (gravity, air resistance). Mathematical content could 

focus on the area of different sizes and shapes of parachutes, and how measures of 

area relate to other dimensions. Our emphasis will be more on reinforcing aspects of 

the inquiry process, using inquiry to develop explanations of observed phenomena, 

and on statistical thinking about micro-level variability. In this activity, it is easier to 

control the launch than it was with the gliders, but the need for repeated tests is still 
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emphasised. As the parachutes are best dropped from a height of at least 3-4 metres, 

such as down a stairwell, repeats tests are time consuming, and so there is a need to 

consider an appropriate sample size. In the experiment recorded in the graph shown 

in Fig. 5, square cloth parachutes of different sizes have been used. Each has been 

tested 3 times, from a height of 4 metres. Note that the size of each parachute has 

been recorded by area, rather than by the side length: there is rich potential for 

mathematical discussion in this decision. 

Discussion of the results, such as those shown in Fig. 5, will focus on understanding 

and explaining what the graph is telling us. Discussion of the signal in the results 

will link to scientific explanations concerning the effects of air resistance, fabric 

flexibility etc., supported by mathematical ideas about proportion. In discussion of 

the noise, emphasis might be given to a number of statistical ideas. One focus could 

be possible reasons for the micro-level variability, and how the experimental 

procedure might be improved. Another discussion might address whether three 

repetitions gave a big enough sample to provide reliable evidence. Through such 

discussions we would want to emphasise the range and spread of values, and how the 

signal emerges around values towards the centre of the data set for each parachute, 

introducing the utility of larger samples, and of a focus on the data set, rather than 

individual data points. 

An Active Graphing approach: the utility of a measure of centre 

In the third task in the sequence, we make a change to the way in which the inquiry is 

carried out, shifting the focus to developing generalisation to inform decision 

making. The setting is again in the context of flight, this time using small paper 

spinners (see Fig. 6). Attention could be focussed on scientific or mathematical 

ideas, but our choice is to structure activity to emphasise the purposeful use of 

average values from experimental results in a way which makes the utility visible, 

rather than as a black-box which can be used to ‗solve the problem‘ of micro-level 

variability.  

   

Figure 6: a spinner Figure 7: the active graphing approach 

The task is to make a champion flyer: that is, a spinner that will fly for the longest 

time. Following a similar introduction to the identification of variables as that used 

in the previous two activities, a decision is made about which feature of the spinner 
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to vary (e.g. wing length). In contrast to the two previous tasks, where the whole 

experiment was carried out before the data was displayed on a graph, we will now 

use an Active Graphing approach (as shown in Fig. 7) in which a graph is produced 

as soon as two or three pieces of data have been collected, and then used to support 

decisions about further experiments and data collection (Ainley, Nardi, Pratt, 2000). 

Active Graphing focuses attention on the utility of graphs as analytic tools: the 

challenge to make a champion flyer provides a purposeful context for this.  

By now the idea of repeating each test in order to obtain a set of data is well 

established. The need to make decisions about the optimal wing length emphasises 

the need for accuracy, especially as the overall pattern of results may be somewhat 

unexpected. In the sequence of snapshots shown in Fig. 8 there is an attempt to 

‗home in‘ on the best wing length. From the spread of results (top row) it is not clear 

whether 10cm wings perform better than 9cm ones. This provides an opportunity to 

introduce the utility of using the mean of a number of results, which produces a 

clearer graph (bottom row). The third pair of graphs shows that 14cm wings are not 

an improvement, and so the next step will be to try a wing length between 10 and 14. 
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Figure 8: three stages of activity, using full data (top row), and mean values (bottom row) 

DISCUSSION 

In this sequence of tasks, and the associated activities, we have aimed to offer a 

learning trajectory that exploits the rich opportunities of an inquiry-based integration 

of mathematics and science education. There is an overt focus on variability at the 

macro level, as the effect that changing one (independent) variable has on another 

(dependent) variable relating to the flight of the glider, parachute or spinner, is 

measured and recorded. This relates to ‗Surface level‘ curriculum content concerning 

measurement and fair testing. Within the experimental situations, we focus at the 
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level of ‗big ideas‘, creating opportunities to confront and accommodate variability 

at the micro level, by recording and displaying the distribution of results and trying 

to identify patterns  within the noise of a spread of results. The three tasks 

progressively move towards the need to see the distribution of results as an 

aggregate, which could be represented by its mean, rather than as a collection of 

individual points, which Makar and Confrey (2005) see as a key goal in learning 

about distributions. This provides a clear rationale for the need to repeat 

experimental measurements, and the expediency of working with the mean value of 

an appropriate sample of results. Unlike approaches to teaching about variation and 

distribution which may be offered in mathematics lessons, the data involved is 

meaningful and used in purposeful ways.  
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This paper focuses on primary school teachers‘ intuitive approaches to uncertain 

circumstances. In an exploratory study, data from a basic undergraduate course in 

probability for preservice primary school teachers were gathered and examined 

through semiotic lenses. A cognitive model is presented and discussed and an 

example is provided. 
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It is well acknowledged that human beings have to often deal with uncertainty and 

they may judge, decide and behave under the sole guidance of their intuitions. Along 

with their intuitive reasoning, human beings may somehow represent the situation  in 

their mind. The relationship between the representations people use and their 

intuitive reaction in uncertain situations is the focus of this study. Within this 

perspective, teachers are in charge of planning, carrying out and evaluating 

classroom activities. Hence, the analysis of their intuitive approaches to probability 

when using representations – during their training – is a relevant issue. 

THE COGNITIVE MODEL AND ITS THEORETICAL BACKGROUND 

Intuitions and semiotic representations 

Intuitions in the process of learning probability have been a fruitful branch of 

research in Psychology and in Mathematics Education since 1970s (see for example 

Kahneman and Tversky, 1972; Fischbein, 1975). In the 1980s, a rich literature in 

Mathematics Education concentrated on (children‘s) probabilistic intuitions (see for 

example Fischbein & Gazit, 1984; Hawkins & Kapadia, 1984). Later a number of 

researches focused on this topic: for example, Konold et al. (1993) studied students‘ 

inconsistent reasoning about different aspects of the same situation. This kind of 

research addresses students‘ approaches to uncertain situations, and consequently 

helps to frame and analyse students‘ misconceptions and intuitions that can arise and 

be driven by such different approaches. In the subsequent decades, the discussion in 

the field shifted to the notion of statistical thinking (for a review, see Borovcnik, 

2005). Taking into account both probabilistic and statistical reasoning led 

researchers to coin the idea of stochastic thinking that combines both probability and 

statistics. Recently, researchers have not only focused on the theoretical issues of 

stochastic thinking, but also on teachers‘ professional development, on their attitudes 

towards probability and statistics, on students‘ understanding of basic concepts 

(Eichler, Ottaviani, Wozniak, Pratt, 2010). In this varied scenario, the research 

presented in my paper addresses both intuitions and the semiotic resources 
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prospective teachers activate when dealing with uncertain situations. The term 

‗intuition‘ is used in opposition to logical knowledge, according to Fischbein: 

―the process of thinking is composed of two basic interwoven aspects: the logical, 

analytical, discursive one (the evolution of which, in children and adolescents, has been 

studied by Piaget and his co-workers), and intuitive cognitions characterized by self-

evidence, immediacy, globality, coerciveness.‖ (Fischbein, 1998, p.1) 

Now, a few words need to be said about semiotic approaches. Semiotics is a 

powerful tool for interpreting didactical phenomena. For lack of space, I will refer 

solely to an example: the work of Batanero, Arteaga and Ruiz (2010) that generalizes 

the notion of representation by taking into account an ontology of objects that 

intervene in mathematical practices and analyze the graphs produced by prospective 

teachers though a semiotic lens. In their work, semiotic complexity is addressed. In 

this paper, the way teachers use representations is analyzed from Duval‘s perspective 

(Duval, 2008): it identifies mathematical thinking and learning with the coordination 

of a semiotic system according to the following operations: treatment (transforming 

a representation into another within the same semiotic system), and conversion 

(transforming a representation into another in another semiotic system). My 

contention is that the coordination of different semiotic systems support/constrain 

intuitions in probabilistic reasoning. Depending also on the task, the semiotic 

resources employed, and the background of the individual, I have singled out three 

levels to which people can refer when estimating the probability of an event. 

Three levels to estimate probability: experience, discrete quantities, theory 

The first level is the level of experience. At this level dice are rolled, playing cards 

are randomly selected, coins are flipped, etcetera. And at this level people win or 

lose. There is a huge literature in Mathematics Education focusing on and discussing 

the role of the context in mathematics tasks, the relationships between experience 

and beliefs, the goal of mathematics to prepare for citizenship, and so on (van der 

Kooij, 2010). Using this background, which is still the focus of several studies, I take 

into account experience and its role in probability learning processes for two main 

reasons. The first reason is that probability – as a modeling activity and more than 

other mathematics domains such as algebra – has a special relationship with 

experience. Outcomes in probability, in fact, often refer to real objects. Moreover, 

the frequency of such outcomes has a relationship with the estimate of the 

probability of an event (Piattelli-Palmarini, 1995). The other reason is that – just for 

its special relationship with the world of experience – probability and its learning 

result strictly intertwined with intuitions and misconceptions (Fischbein & Gazit, 

1984). 

At the experience level, people have to estimate the probability of the outcomes. 

Hence, people start to somehow represent in their mind the situation: the 

representations are likely to be perceptive and approximate, and they can serve the 
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purpose of counting the number of possible and favorable events. Sometimes people 

(and, above all, teachers when teaching) represent the events using less perceptive 

representations such as arrows, Venn diagrams, tables, etcetera. When using 

representations that help counting, people are no longer at the level of experience, 

but stay at the second level: the level of arithmetic thinking. This is the level at which 

people shift from perception and approximation to quantities. Such quantities, at this 

level, may be integer numbers, and become ratios or percentages.  

There is a third level, the level of theory. At this level lie the formulas, the axioms 

and the theorems of probability. The representations are formal and abstract. 

However, in some tasks there is no need to (know and) stay at this level, but in order 

to correctly solve the task a proper use of representations at the arithmetic level is 

enough. Outside the level of theory, in fact, it is possible to introduce probabilistic 

tools in a more immediate way. At each one of the three levels, in fact, it is possible 

to accomplish an estimate of uncertain situations, following different approaches. As 

a consequence, the three levels should not be regarded as in a certain hierarchy, but 

as different modalities for approaching and representing uncertain situations. This 

approach differs from the model by Pratt (2003), who ―sees the phenomenalisation of 

randomness as providing an intuitive route towards the operationalising of chance to 

be taken before following a more conventional route‖. The main difference is that 

my model does not predict an evolution, for the individual, from a naïve world to a 

theoretical one, but it concentrates on the relationship between intuitions and 

representations (as meaning-making activity) at each one of the three levels. 

Different approaches to uncertain situations 

At the level of experience, estimating the probability of an event means avoiding the 

use of quantities. Semiotically speaking, it entails the use of mainly graphic and 

pictorial registers, related to perceptive and sensorial experience. I claim that people 

in general – and young children in particular – are able to say that an event is nearly 

impossible or almost certain, without involving any sort of computation. A 

confirmation of my claim has been given by Jeong, Levine & Huttenlocher (2007), 

who examined whether children are able to reason about proportions in the context 

of continuous amounts before they are able to do so in the context of discrete sets.  

 

Figure 1: one of Jeong, Levine and Huttenlocher (2007) tasks: donuts. Which donut 

has the greater percentage of its area in grey? 

The tasks they proposed used a graphic register. Figure 1 shows an example: 

children had not to use any sort of number, but were able to say which figure had the 
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largest area. Jeong‘s and his colleagues‘ interpretation of children‘s better 

performance in the continuous than in the discrete conditions was that 

―It seems likely that they used a perceptual strategy similar to that used by infants and 

young children to code the extent of one length or region in relation to another.‖ (Jeong, 

Levine & Huttenlocher, 2007, p. 252) 

In order to characterize it, two keywords related to the approach at the level of 

experience may be: ‗perception‘ and ‗approximation‘. Moreover, it is characterized 

by self-evidence, immediacy, globality, and coerciveness, entailed by 

graphical/pictorial representations. The experience level can be considered intuitive, 

since such characteristics – accomplished by graphical/pictorial representations – are 

the features that define intuitions mentioned above, according to Fischbein (1998). 

The concept of proportion is, according to Fischbein (1998), another form of 

intuitive thinking. I claim that this kind of approach belongs to the level of 

arithmetic, since it is necessary to overcome the level of experience and quantify the 

situation to deal with it. In this case, immediacy and globality are characterized by 

internalized operational schemas, conveyed by arithmetical representations. At the 

level of arithmetic, moreover, I distinguish two approaches: one is more related to 

the experience level and it consists in using only percentages and proportions; the 

other one is linked to the level of theory and it involves the use of ratios. For a better 

framing of the ‗percentage approach‘, I refer also to Huerta & Lonjedo (2007), who 

describe the mostly arithmetical type of thinking as  

―students think in quantities but they recognize events and their associated frequencies or 

percentages.‖ (Huerta & Lonjedo, 2007, p. 735) 

Hence, this level is characterized by arithmetic representations and proportional 

schemas: on the one hand frequencies/percentages, on the other one ratios/fractions. 

The approach at the level of theory regards probability as a function that assigns a 

number between 0 and 1 to an event. It overcomes operational thinking and, through 

symbolic registers, it is characterized by functional and relational reasoning. At this 

level, intuition is the result of specific mathematical training. It allows students to 

deal with more complex situations: for example, Lecoutre and Durand (1988) 

showed that solely using ratios may induce misconceptions in estimating the 

probability of composite events. Other examples in the literature concern 

misconceptions in Bayesian thinking (for example Falk, Falk & Levin, 1980).  

Research focusing on students‘ learning processes in terms of intuitions belongs to 

didactics B (didB), defined by D‘Amore (2006) as an epistemology of learning. 

According to D‘Amore, Didactics A (didA) concentrates on effective teaching 

environments (assuming implicitly cognitive transfer). But the couple teaching 

environments-students does not completely describe the learning process: the 

teacher, together with his role, his training and his beliefs, constitutes the third 

component. Research in didactics C (didC) (ibidem), grounded in Shulman‘s work 
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(1986), focuses on the teacher. It is known, in fact, that for example teachers‘ beliefs 

determine and influence knowledge (didA) and the learning process (didB). 

Moreover, the relationship between the resources/tools teachers choose and their 

epistemology belongs to the teacher‘s sphere: why did the teacher use that tool? 

According to which model did he operate such choice? Following this perspective, a 

more complex analysis may focus on how teachers‘ education and training influence 

the way they teach and how students learn (probability) in primary schools. This 

question that informs the research presented in this paper lies at the boundary of 

didB and didC.  

The issue of teachers‘ training in probability and statistics is central in several 

studies. The work by Batanero, Arteaga, and Ruiz (2010) is interesting, since it 

focuses not only on teachers‘ education, but also on teachers‘ graphical competence 

in statistics from a semiotic perspective. Batanero, Arteaga, and Ruiz defined three 

levels of semiotic complexity, but (unlike my model) these levels inform a hierarchy. 

Relations with the existing literature 

I have shown the three levels at which judging under uncertainty may occur. With 

respect to the aforementioned approaches, Hawkins and Kapadia (1984) 

distinguished four definitions for probability, and labeled them as: (1) ‗a priori‘, (2) 

frequentist, (3) subjective and intuitive, and (4) formal probabilities.  

The level of experience is similar to the definition provided by Hawkins and Kapadia 

for subjective probability: ―subjective probability may rely merely on comparisons of 

perceived likelihood‖ (Hawkins & Kapadia, 1984, p.350). In fact, they also refer to 

the perceptive nature of this kind of thinking. It should be noticed that Hawkins‘ and 

Kapadia‘s (1984) definition of subjective probability does not correspond to (but has 

some connection with) the one provided by de Finetti (1974) as the ratio between the 

amount of money a person is willing to bet on the outcome of a certain event, and the 

amount of money he will receive in case of win, if he is willing to change his place 

with that of any other involved in the game. In their paper, Hawkins & Kapadia 

(1984) related the subjective probability not only to perception, but also to 

coherence. The term ‗coherence‘ highlights that any personal judgment should be 

made in accordance to some ‗axioms‘.  

Formal probability (ibidem) informs and characterizes the level of theory. 

Some features of the ‗a priori‘ probability (ibidem) lead to relate it to the arithmetic 

approach with ratios at the level of discreteness, and the frequentist probability has 

something to do with the use of percentages. On the one hand, in fact, the 

assumption of equal likelihood in the sample space that characterizes the ‗a priori‘ 

probability may lead to the same misconceptions that arise when the classical 

definition of probability, as the ratio between successful and possible cases, is used 

(see also Lecoutre & Durand, 1988). On the other hand, the frequentist probability is 

obtained from observed relative frequencies of different outcomes in repeated trials 
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and entails the use of percentages. As the approach at the level of discreteness, the 

frequentist probability is still linked to the experience, but is an attempt of coming 

out from the real world alone. 

The main differences between the model introduced in this paper and Hawkins‘ and 

Kapadia‘s (1984) work are two: the first difference is that the latter does not take into 

account any semiotic approach, the second one is that the three levels of the former 

depend on the kind of relations between intuitions and representations, regardless the 

definitions of probability.  

METHODOLOGY 

During the academic year 2009/10 at the University of Torino (Italy), data from two 

undergraduate one-semester 30-hours basic courses in probability were gathered and 

are being examined. Data consist in written answers to open-ended exercises, which 

were administered to students all along the semester. 500 undergraduate students 

were involved: respectively, 150 students in Mathematics (M), and 350 for a master 

course for Primary school teachers (P). The content of the two courses differed, but 

in this paper data from a series of exercises that were administered at the beginning 

of the course are analyzed. Students‘ mathematical background of the two groups 

differed: while the P students attended one basic mathematics undergraduate course, 

the M students were attending the second year in mathematics undergraduate course. 

However, the probability backgrounds were similar in the two groups: both of them 

did not receive any prior teaching in probability. In Italy, probability is neither taught 

at lower levels of education, nor in secondary schools. I focus my analysis on the P 

group, while the M group is referred to for comparisons. 

The example below helps illustrate the cognitive model and its applications. It is 

taken from a series of exercises that were given at the beginning of the 

undergraduate course in probability. 

A company employs 75 men (M) and 25 women (F). 12% of M and 20% of F work 

in the accounts department (a.d.). Compute the probability that, drawing the surname 

of an employee in the a.d. it would be the surname of a M.  

In the exercise it is necessary to deal with conditional probability. There is a huge 

literature concerning conditional probability in Mathematics Education. The reader is 

referred to Huerta & Lonjedo (2007). In their paper, the authors consider three 

versions (one with percentages, one with probabilities, and one with integer 

numbers) of a problem, and they show that it is possible to recognize probabilistic or 

arithmetic thinking when data is expressed in terms of probabilities or percentages 

respectively. It is well known that dealing with conditional probability is not 

immediate for students and needs the use of complex semiotic transformations and of 

possibly counter-intuitive solving strategies. 
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DATA ANALYSIS 

Table 1 shows the solutions provided by three P students for the a.d. exercise. 

 

 

 

 

 

Simona 

 

 

 

 

 

Daniele 

 

Emanuela 

Table 1: three representations used by P students for solving the a.d. exercise. 

Let us look first at the Daniele‘s representation in table 1: he does not solve the 

exercise, but uses the Venn diagrams to represent the starting point of the exercise: 

there is the set of M employed in the company, there is the set of employees in the 

a.d., and the intersection between the two sets provides the number of M in the a.d.. 

Even if he does not go on with the computations, Daniele is able to represent the 

situation in a perceptive and intuitive way, using a pictorial register. Hence, 

Daniele‘s solution belongs to the level of experience. In fact, he does not arrive to a 

quantitative solution, but nevertheless he is able to give an approximate estimate of a 

(complex) uncertain situation.   

In her solution, Simona operates within the arithmetic register (table 1). No 

theoretical tool from the probability theory is used, with the exception – in the end of 

the solution – of the classical definition of probability as the ratio between the 

number of favorable cases (9 M) over the total number of cases (14 employees in the 

a.d.). This kind of solution has been taken by the majority of P students: they first 

compute the (integer) numbers of M and F working in the a.d., using the percentages 

and the integer numbers provided by the exercise. Then, working with integer 

numbers, they sum up the number of M and the number of F, obtaining the total 

number of employees in the a.d.: 5+9=14. In the end, they compute the ratio between 

the number of M in the a.d. and the total number of employees in the a.d. and obtain 

P(M|a.d.). The solving process is carried out transforming representations within the 
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arithmetic register, and the intuitive schema of proportion is involved. This 

sophisticated (and correct) solution does not (explicitly) take into account either the 

law of alternatives, or Bayes‘ theorem. M students do not adopt these solutions, 

which lie at the arithmetic level, and apply the rules of probability. 

M students, in fact, applied Bayes‘ theorem to solve the exercise, like Emanuela. In 

the P group, only two students (Emanuela and another one) followed this strategy. 

She operates at the level of theory, using a symbolic register and complementing it 

with a graphic register. The fact that Emanuela uses a graphic register does not 

imply, however, that she is working at the level of experience. Indeed, she is 

accomplishing a very difficult cognitive task (Duval, 2008), namely coordinating two 

semiotic registers. It is interesting that Emanuela uses a tree-diagram for representing 

and computing the probabilities, and in the end she is able to come up with the frame 

of a tree-diagram and apply Bayes‘ theorem correctly. 

The solution of Simona lies at the discreteness level, since she uses ratios. An 

example of a solution at the discreteness level using percentages is not present in the 

protocols relative to this exercise. It comes from another exercise: 

Which is the probability of getting an ace among 52 playing cards? 

One of the P students, Chifan, does not make computations, but writes only a 

percentage: 10%. Orally interviewed afterwards, he provides this explanation 

Chifan  The probability of getting an ace would be around 10%. There are, in fact, 4 

aces in the pack of 52 cards. Hence, more or less the probability is 10%. 

Chifan does not compute the ratio between the number of successful cases (4) and 

the total number of cases (52), but assigns a percentage that seemed to him to be 

likely (and is pretty close to 4/52 = 0.0769). Chifan‘s approach does not belong to 

the experience level only, since he resorts to the arithmetical and percentage registers 

to represent the situation, but it is not completely within the arithmetic level either, 

since approximation and perception are still part of his reasoning process. 

As a side remark, this last task does not involve conditional probability. The 

cognitive model presented in this paper, in fact, applies to all uncertain situations, 

and not only to conditional probability. 

CONCLUDING REMARKS 

In this paper a cognitive model to frame probabilistic reasoning within intuition and 

semiotic perspectives has been shown. Intuitions and semiotics may have two kinds 

of relationship: they can either support task solution, as in the case of Emanuela, who 

is able to operate a complex semiotic transformation (table 1), or impede task 

solution, as in the case of Daniele, who has strong intuitions, bound to pictorial 

representations, that do not allow him to overcome the experience level and operate a 

proper semiotic transformation to solve the task (table 1). Supporting or impeding 
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task solution depends both on the immediacy of choosing the representation that is 

the most proper for the task, and on the transformation(s) the subject operates 

starting from such representations. Hence, both the individual (together with his 

abilities, knowledge, etcetera) and the task contribute to determine the supporting or 

impeding nature of the relation between intuition and semiotic representations. 

Future perspectives 

Dubinsky‘s APOS theory assumes that mathematical knowledge consists in an 

individual‘s tendency to deal with perceived mathematical problem situations by 

constructing mental actions, processes, and objects and organizing them in schemas 

to make sense of the situations and solve problems. The underlying idea of this 

theory is to extend to the level of collegiate mathematics learning from the work of 

Piaget on reflective abstraction in children‘s learning. From a bird‘s eye view, it 

seems that there are many connections between this theory and the model presented 

in this paper. Hence, it would be interesting to go deeper into details in exploring 

possible integrations of the two aforementioned theoretical perspectives. 

In this paper, only Duval‘s semiotic point of view has been taken into account. It 

would be interesting, in the future, to consider also other semiotic points of view, 

such as Radford‘s Objectification Theory, Arzarello‘s APC Space and Godino‘s and 

Batanero‘s Ontosemiotic Approach.  
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RELATING GRAPH SEMIOTIC COMPLEXITY TO GRAPH 

COMPREHENSION IN STATISTICAL GRAPHS PRODUCED 

BY PROSPECTIVE TEACHERS  

Pedro Arteaga and Carmen Batanero   

University of Granada, Spain  

In this paper the graphs produced by 207 prospective primary school teachers in an 

open semi-structured statistical project where they had to compare three pairs of 

statistical variables are analysed. The graphs are classified according their semiotic 

complexity, and the teachers‘ levels of comprehension in Curcio‘s (1989) 

categorization. Most participants produced graphs with sufficient semiotic 

complexity to solve the task proposed; however, the correct conclusion was only 

reached by a minority of prospective teachers who were able to read the data 

produced at the ―reading behind the data‖ level. When relating semiotic complexity 

of graphs to the reading level, teachers producing graphs at the highest semiotic 

level also reached the highest combined percentage of ―reading beyond data‖ and 

―reading between data‖ levels. 

Keywords: statistical graphs, semiotic complexity, graph interpretation and 

comprehension. 

INTRODUCTION 

Graphical language is an important part of statistical literacy (Watson, 2006). It is 

also a tool for transnumeration, a basic component in statistical reasoning consisting 

of ―changing representations to engender understanding‖ (Wild & Pfannkuch, 1999, 

p. 227). In this work we complement our previous research on Spanish prospective 

primary school teachers‘ graphical competence (Batanero, Arteaga & Ruiz, 2010) 

with the aim to relate the semiotic complexity of graphs produced by prospective 

primary school teachers with the graph comprehension levels defined by Curcio 

(1989). 

Understanding Statistical Graphs  

Previous research suggest that competence related to statistical graphs is not reached 

in compulsory education, since students make errors in establishing the graph scales 

(Li & Shen, 1992) or in building specific graphs (Pereira Mendoza & Mellor, 1990; 

Lee & Meletiou, 2003; Bakker, Biehler & Konold, 2004). Several authors 

investigated levels in graph understanding. For this particular research we are using 

Curcio‘s categorisation (1989), that consists of the following levels: (a) Reading the 

data, is the level of a student who is only able to answer explicit questions for which 

the obvious answer is right there in the graph; (b) Reading between the data involves 

interpolating and finding relationships in the data presented in a graph. This includes 

making comparisons as well as applying operations to data; (c) Reading beyond the 
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data involves extrapolating, predicting, or inferring from the representation to answer 

questions related to tendencies in the data or extrapolation from the data.  In this 

research we are only considering these three levels, which do not imply tje need to 

look critically at the data. This would be a new level looking behind the data, 

according to Friel, Bright, and Curcio (2001).  

Graphical Competence in Prospective Teachers 

Few studies have focused on teachers‘ knowledge and conceptions about statistical 

graphs and most of these studies are related to prospective teachers (González, 

Espinel, & Ainley, in preparation). Results from this research highlight the scarce 

graphical competence in prospective teachers. For example, in a study conducted 

with 29 prospective primary teachers in Spain, Bruno and Espinel (2009) found 

frequent errors when building histograms or frequency polygons. In another study 

with 190 prospective primary school teachers, Espinel, Bruno, and Plasencia (2008) 

observed lack of coherence between the graphs built by participants and their 

evaluation of tasks carried out by fictitious future students. Monteiro and Ainley 

(2007) suggested that many Brazilian prospective teachers in a sample of 218 

teachers did not possess enough mathematical knowledge to read graphs taken from 

daily press. In Burgess‘s (2002) study some teachers made graphs in their reports but 

were unable to integrate the knowledge they could get from the graphs with the 

problem context. 

Batanero, Arteaga, and Ruiz (2010) analysed the graphs produced by 93 prospective 

primary school teachers in an open semi-structured statistical project where they had 

to compare two statistical variables. They defined a semiotic complexity level in 

these graphs and analysed the teachers‘ errors in selecting and building the graphs, as 

well as their capacity to reach a conclusion on the research question. Although about 

two thirds of the participants produced a graph with enough semiotic complexity to 

get an adequate conclusion, half the graphs were either inadequate to the problem or 

incorrect. Only one third of participants were able to get a conclusion in relation to 

the research question. In this paper we increase the sample size and the number of 

variables to be compared in the same semi-structured statistical project in order to 

relate the graphs semiotic complexity with the prospective teachers‘ level in reading 

the graphs.  

Semiotic Complexity in Statistical Graphs 

In mathematical work we usually take some objects (e.g. a symbol or a word) to 

represent other abstract objects (e.g. the concept of average). In these situations, and 

according to Eco "there is a semiotic function when an expression and a content are 

in correlation" (Eco 1979, p. 83). Such a correlation is conventionally established, 

though this does not imply arbitrariness, but it depends on a cultural link. Font, 

Godino, and D‘Amore (2007) suggested that all the different types of objects that 

intervene in mathematical practices: problems, actions, concepts, language, 
properties and arguments could be used as either expression or content in a semiotic 
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function. In our study we proposed an open semi-structured project to prospective 

teachers. To address the project, the participants had to solve some mathematical 

problems (e.g., comparing three different pairs of distributions) and perform some 

mathematical practices to solve these problems. The focus in our research is the 

statistical graphs produced by the teachers and the mathematical practices linked to 

the different types of graphs. When teachers produce a graph they need to perform a 

series of actions (such as deciding the particular type of graph or, fixing the scale), 
they implicitly used some concepts (such as variable, value, frequency, range) and 

properties (e.g. proportionality between frequencies and length of bars in the bar 

graph) that vary in different graphs. Consequently the semiotic functions implicit in 

building each graph also varies. We therefore should not consider the different 

graphs as equivalent representations of a same mathematical concept (the data 

distribution) but as different configurations of interrelated mathematical objects that 

interact with that distribution. Taking into account these ideas, Batanero, Arteaga, 

and Ruiz (2010) defined different levels in graphs semiotic complexity, as follow 

(see examples in Figure 1). 

Level 1 

 

Level 2 

Level 3 
 

Level 4 

Figure 1. Examples of graphs at different semiotic complexity level 

L1. Representing only individual results. When given a set of data, some students do 

not complete the graph for the whole data set; instead they only represent isolated 

data values. When the data are collected in the classroom they only represent their 

own data, without considering their classmates‘ data, for example, they represented 
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the number of heads in his /her individual experiment. These students do not use the 

idea of statistical variable or distribution when producing their graphs. 

L2. Representing all the individual values for one or several variables, without 
forming the distribution. Some students do not form the frequency distribution of the 

variables, when they are given a data set. Instead, they produce a graph where data 

are represented one by one, without an attempt to order the data or to combine 

identical values. Consequently these students neither compute the frequency of the 

different values nor explicitly use the idea of distribution.  

L3. Producing separate graphs for each distribution. When comparing a pair of 

distributions, some students use the idea of frequency and distribution but produce a 

separate graph for each variable to be compared. Often, these students use either 

different scales in both graphs or different graphs for the two distributions, which 

makes the comparison hard.  

L4. Producing a joint graph for both distributions. This level corresponds to 

students that form the distributions for the two variables to be compared and 

represent them in a joint graph, which facilitated the comparison. These graphs are 

the most complex, since they represent two different variables in the same frame.  

THE STUDY 

Participants in the sample were 207 pre-service teachers in Spain, in total 6 different 

groups (35-40 pre-service teachers by group). All of them were following the same 

mathematics education course and studied descriptive statistics at a secondary school 

level, and in the previous academic year (for 20 hours), where they had worked with 

another statistical project.  In this paper we analyse the graphs produced by these 

teachers when working in a semi-structured statistical project in which participants 

were asked to perform a random experiment, collect data, compare three pairs of 

distributions and come to a conclusion about the group‘s intuition of randomness, 

basing their conclusion on the analysis of the data. The sequence of activities in the 

project was as follows: 

1. Presenting the problem, and experiment. We proposed that the prospective 

teachers carry out an experiment to decide whether they had good intuitions on 

randomness or not. The experiment had two parts. In the first part (simulated 

sequence) each participant wrote down apparent random results of flipping a coin 

20 times (without really throwing the coin, just inventing the results) in such a 

way that other people would think the coin was flipped at random. In the second 

part (real sequence) each participant flipped a fair coin 20 times and wrote down 

the results.  

2. Collecting data and instructions. Each prospective teacher performed both 

experiments. After the lecturer started a discussion about how the simulated and 

real sequences for the whole group could be compared, some students suggested 

to collect data from the number of heads or number of runs. Finally the lecturer 
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suggested comparing the following statistical variables: number of heads, number 

of runs and longest run. Each prospective teacher provided his/her results in each 

of the variables that were recorded on a recording sheet. At the end of the session 

the prospective teachers were given a printed copy of the data set for the whole 

group of students. They were asked to produce a written report including their 

statistical analyses and their conclusions. There was no restriction in the report 

length; teachers were given freedom to use any statistical method or graph they 

wished and were allowed to use computers. They were given a week to complete 

the reports (for more details of the project, see Godino, Batanero, Roa & 

Wilhelmi, 2008).  

RESULTS AND DISCUSSION 

Once the prospective service teachers‘ written reports were collected, we made a 

qualitative analysis of these reports. From a total of 207 students 181 (87,4%), 146 

(70,5%) and 128 (61,8%) produced some graphs when analysing the number of 

heads, number of runs and longest run, even if the instructions given to the students 

did not explicitly  ask them to construct a graph. These high percentages suggest that 

prospective teachers felt the need of building a graph to reach, through a 

transnumeration process (Wild & Pfannkuch, 1999) some information that was not 

available in the raw data. In Table 1 we present the results. These data show the 

relative difficulty of the variables to be analysed, as the number of heads was more 

familiar to the teachers than the runs. 

Semiotic complexity N.  of heads N. of runs Longest run 

L1. Representing only individual data 6 (3.3) 6 (4.1) 3 (2.3) 

L2. Representing the data list 40 (22.1) 23 (15.7) 21 (16.4) 

L3. Producing separate graphs for each 

distribution 

91 (50.3) 77 (52.7) 67 (52.3) 

L4.  Producing a joint graph to compare both 

distributions 

44 (24.3) 40 (27.4) 37 (28.9) 

Number of participants producing graphs 181 146 128 

Table 1. Frequency (percentage) of participants producing graphs in each semiotic 

level and pair of variables  

Few participant produced level L1 graphs, that is, only analysed their own data and 

less than 25% represented the data list in the same order given in the data sheet 

without making an attempt to summarise the data, producing the variables 

distributions. Consequently the concept of distribution seemed natural for the 

majority of students who produced a graph, since about 75% of them built a 

distribution to compare each pair of variables, although the instructions did not 

explicitly require this. Results agree with those reported by Batanero, Arteaga, and 

Ruiz (2010). 
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Graph comprehension 

In table 2 we classify participants according to Curcio‘s (1989) categorization of 

graph comprehension, in the following way: 

R0 Do not read the graph or incorrect reading: About 30% of the teachers in 

each pair of variables only produced and presented the graph in their report with no 

attempt to read the graph, and reached no conclusion about the problem posed. In 

addition, after producing the graph, between 11% to 14% of the teachers in each pair 

of variables failed when reading the information. Some of these failures were 

produced by errors in the graphs that reproduced those described in Bruno and 

Espinel (2009) or incorrect choice of the type of graph that was inadequate for the 

information represented in the graph. Other failures in reading the graph were due to 

incorrect understanding of a concept; for example confusing frequencies and values 

of the variable or misinterpreting the meaning of the standard deviation.  

R1 Reading data: Between 22- 25% of the participants made a correct literal 

reading of graphs labels, scales and specific information on the graph in each pair of 

variables. However they only considered superficial features of the graph. For 

example, they compared isolated values of the two variables, provided the frequency 

for a given value or made a general comment about the shape of the graph with no 

consideration given to tendencies or variability in the data. 

Graph comprehension level (Curcio) N. of 

heads 

N. of 

runs 

Longest 

run 

R0. Do not read the graph 51 (28.2) 45(30.9) 42(32.8) 

R0. Incorrect reading 21(11.6) 17(11.6) 18(14.1) 

R1. Reading data 41(22.6) 34(23.3) 32(25) 

R2. Reading between data 44(24.3) 32(21.9) 21(16.4) 

R3. Reading beyond data 24(13.3) 18(12.3) 15(11.7) 

Number of students producing 

graphs 

181 146 128 

Table 2. Frequency (percent) of participants producing graphs according to 

comprehension level 

R0. Reading between data: Teachers classified in this level were able to make 

comparisons and look for relationships in the data. They either compared 

averages (means, medians or modes) alone in both distributions (with no 

consideration of variation in the data) or else compared spread (without 

comparing averages). 

R1. Reading beyond data: Making inferences and drawing conclusions from the 

graph: Participants at this level were able to compare both spread and average in 

the distribution and conclude about the differences taking into account both data 
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features. 

Less than 25% of tje prospective teachers who built graphs reached the Curcio‘s 

(1989) intermediate level (reading between the data) and only 13% reached the upper 

level (Table 2). Notice that the percentage of students building graphs without 

interpreting them is high, which agree with Burgess (2002). The difficulty of reading 

the data increased for variables related to runs that were less familiar to participants.  

In Figure 2 we take into account only the prospective teachers who interpreted the 

graphs they built themselves, classifying their representations according to the graph 

semiotic complexity level and reading comprehension level for each pair of variables 

and for all the graphs combined. The Chi-square test to check independence of 

reading levels and semiotic complexity levels for all the graphs combined was 

statistically significant (Chi=40.4, dg=9, p<0.0001) and therefore we can accept that 

these two types of levels are related. 

  

Figure 2. Reading levels by semiotic complexity in the graph 

Prospective teachers producing semiotic level L1 graphs either made an incorrect 

reading or only reached the literal ―reading data‖ level. The percent of incorrect 

reading dramatically decreased in the remaining levels; however this percent is 

higher in level L4 than in levels L2 or L3. This is probably because more complex 
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graphs were harder to be interpreted correctly by participants. Although there is no 

clear tendency as regards literal ―reading the data‖ level, reading the data only is not 

productive to reach a conclusion on the problem posed. ―Reading between data‖ 

level is more frequent in level L2 graphs, because in these graphs the data variability 

is very easily perceived (as compared with levels L1 or L3 graphs). The highest 

percentage of ―reading beyond data‖ level, when teachers are able to analyse both the 

tendency and spread in the data and reach a conclusion, as well the combined 

percentage of ―reading between data‖ and ―reading beyond data‖ levels were reached 

in semiotic level L4 graphs because in level L4 graphs students can perceive spread 

and tendencies more easily. Therefore level L4 graphs provide more opportunity for 

students to get at least a partly correct reading. Consequently, it is important that the 

teacher‘s educator try to promote higher reading levels when possible. 

a. Conclusions according production of 

graph 

b. Conclusions according graph 

semiotic level 

Figure 3.  Conclusion according to (a) production of graph; (b) graph semiotic level 

In the project proposed the students should reach a conclusion regarding the group 

intuition on randomness. Only 8.9% of those prospective teachers who produced no 

graph got a correct or partly correct conclusion. This percentage increased to 20.2% 

in those teachers who produced graphs as part of their analyses (10,2% and 10 %); 

the differences are significant in the Chi-square test (Chi=18,72, d.g.=3; p=0.007). 

Therefore, building a graph helped the teachers in their conclusions (Figure 3.a). The 

percentage of correct conclusions increased to about 30% in teachers producing level 

L4 graphs (Figure 3.b), because, at these levels the teachers read the graph at a 

higher reading level and in these graphs the perception of both tendencies and spread 

is easier. The percentage of partly correct conclusions was higher at level L2 graphs, 

because of easy perception of variability in these graphs. The Chi-square test to 

check independence of type of conclusions and the semiotic complexity levels for all 

the graphs combined was statistically significant (Chi=40,45; d.g.= 9; p= 0,0000) 

and therefore we can accept that these two variables are related. 

IMPLICATIONS FOR TEACHER EDUCATION 

In agreement with Bruno and Espinel (2009) and Monteiro and Ainley (2007) our 

research suggests that building and interpreting graphs is a complex activity for 
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prospective school teachers.  We agree with these authors in the relevance of 

improving the prospective teachers‘ levels of competences in both building and 

interpreting graphs, so that they can later transmit these competences to their own 

students. Many participants in the study limited their analysis to producing graphs 

with no attempt to get a conclusion about the problem posed. Consequently, 

prospective teachers need more training in working with statistical projects, since 

working with projects is today recommended in the teaching of statistics from 

primary school level.  
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The challenges of teaching statistics in vocational education, an underresearched 

area, are likely to be different than in general education due to the focus on a 

particular occupation. The current paper addresses the question what these 

challenges are. Through interviews with teachers, apprentices and supervisors as 

well as analysis of the curriculum and classroom instruction, we identified such 

challenges. These include the difficulty to engage students and prepare them for 

diverse workplaces with different levels of mediation by technology. Moreover, 

competence-based projects, common in vocational education, require artful 

coordination of theoretical and practical knowledge, and the design of 

representations that assist future employees to draw appropriate conclusions. 

CONNECTING SCHOOL AND WORK 

One of the key challenges in statistics and mathematics education is to engage 

students by giving them a sense of purpose and utility of the concepts and techniques 

they learn (Ainley et al., 2006). One way, both in general education (Dierdorp et al., 

2011) and vocational education, is to seek inspiration for designing engaging 

statistics education in professional practices and thus make a connection between 

disciplinary content and future work. After all, as Lave (1988, p. xiii) noted: ―It 

seems impossible to analyze education – in schooling, craft apprenticeship, or any 

other form – without considering its relations with the world for which it ostensibly 

prepares people.‖ In vocational education, this relation between education and 

occupation is apparent and the vocational area is indeed an interesting but 

underresearched area of study: It is where teachers and students face the challenge of 

connecting abstract disciplinary knowledge to its usefulness in occupations. We 

therefore expect that research in general education can learn from research in the 

vocational and workplace domain. 

However, we should also note that the differences between school and work statistics 

are big (cf. Noss et al., 1999) because school and work practices entail very different 

aims, tools, communities, rules and divisions of labour. For example, school 

statistics is mostly general but workplace statistics is typically context-specific and 

mediated by technology – which is the reason that Hoyles et al. (2010) highlight the 

need for Techno-mathematical Literacies (which include statistical literacy). The 

term Techno-mathematical Literacies (TmL) refers to the technology-mediated 

nature of mathematics at work and the need for communicating quantitative 

information. 
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To gain more insight into these challenges we draw on a 3.5-year research project on 

TmL in Dutch senior secondary vocational education (MBO), which prepares for 

intermediate-level occupations. This project came to focus on laboratory work. 

Common in industry, but also in health services and safety institutes, laboratories are 

statistically rich and subject to rapid changes in work organisation, hence interesting 

places to study the challenges that vocational teachers face when preparing their 

students. 

In this paper ask: What are the challenges of teaching statistics in vocational 

laboratory education? Articulating these can provide a basis for improving the 

teaching and learning of statistics in vocational and presumably other settings. The 

challenge of preparing students for the technology-mediated use of statistics, for 

example, is a general one – just like the challenge of engaging academically less able 

students. We do not confine our analysis to challenges that teachers experience 

themselves but also include those that we inferred from discrepancies between 

school and workplace approaches to using statistics. 

DUTCH SENIOR SECONDARY VOCATIONAL EDUCATION (MBO) 

To sketch the setting of our research we first provide information on the MBO 

school system. About 40% of Dutch senior secondary students (aged 16-17) attend 

general education or pre-university tracks; the remaining 60% enrol in senior 

secondary vocational education (MBO). Levels 3 and 4 of MBO are just above basic 

school qualifications but much below Bachelor level (see also Bakker et al., in 

press). MBO used to have attainment targets for each MBO occupation (including 

hair dresser, baker, electrician, lab technician). For mathematics and statistics in 

many technical programmes this was a list of about fifty topics. Attainment targets 

that were less relevant for the occupation were ignored by mathematics teachers and 

general subjects were generally considered separate from the occupation. Over the 

past ten years vocational education has become more and more competence-based 

(Van den Berg & De Bruijn, 2009). There are now qualification files for 237 

occupations which are formulated in terms of what starting employees should be able 

to do. The effect has been that subject knowledge such as mathematics is taught and 

assessed less than about ten years ago. In the file for lab technicians, for example, 

references to the statistical knowledge required are scarce and broadly phrased (e.g., 

―basic knowledge of mathematics‖; ―care for quality‖).  

THEORETICAL BACKGROUND 

Hardly any statistics education research has been carried out in vocational education. 

Therefore hardly anything is known about the challenges of teaching this subject. 

Given the fact that vocational education forms a link between general education and 

workplaces, it is likely that we can yet draw on workplace research in this area. We 

can also learn from international trends of competence-based education. 
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The workplace research most relevant to our research is that by Hoyles et al. (2010). 

Key trends in workplaces such as automation and computerisation of work processes 

are likely to lead to particular challenges. Hoyles et al. (2010) analysed these trends 

and the effects on what employees need to know about mathematics and, notably, 

statistics. Bakker et al. (2009) described a way to draw on employees‘ rich context 

knowledge but often poor knowledge of statistics by designing alternative 

representations of statistics that do not draw on inaccessible symbolic language. Key 

artefacts (boundary objects) in work processes were reconfigured in software 

(technology-enhanced boundary objects) so as to allow manipulation and easy 

interpretation. Teaching required hybrid expertise of statistics and work processes, 

hence our collaboration with workplace trainers. 

The main reasons for introducing competence-based education in our country were 

first to prepare students better for specific vocations and second to take into the 

changing population of students (Van den Berg & De Bruijn, 2009) – those who find 

general knowledge hard to learn and consider themselves doers rather than thinkers, 

of with language or personal problems. Like in many vocational systems in the 

world, projects and simulations are often used to stay close to particular work tasks. 

The underlying reason for such pedagogic measures is the general acknowledgement 

of the situatedness of cognition and problematic transfer of general knowledge to 

everyday situations (e.g., Lave, 1988).  

METHODS 

To identify the challenges we analysed interviews with fourteen teachers (18:05 

hours in total) at four different vocational laboratory schools (MBO) – three schools 

were relatively close to the university and one teacher in the fourth school was 

interested in the theme of our project and provided us with access to its teachers, 

students and supervisors. As a background to understanding the challenges 

mentioned by teachers we also studied their course materials and observed several 

lessons to get a sense of how course materials were used. We further conducted 

interviews with eight supervisors of apprentices in a variety of labs (in total 10:40 

hrs), one school and two workplace managers (2:20 hrs), nine apprentices in the 

workplace (4:20 hrs), 27 apprentices at release days at school (5:40 hrs). With the 

help of three teachers we analysed 35 final apprenticeship reports to see what 

statistical technique apprentices used and how well they did so. In addition, we 

undertook four workplace tours in different labs (2:10 hrs), spent a day of 

observation and interviewing in one lab, and collected several prototypical artefacts 

that represented how statistical knowledge was mediated (e.g., Standard Operating 

Procedures including calculations, graphs, data etc.). This background information 

helped us derive challenges that teachers did not explicitly mention. 

The interviews were transcribed verbatim and coded for challenges experienced by 

teachers. These were categorised into seven different but related challenges 
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summarised in the next section. We used the remaining data sources to offer 

explanations and further background to these challenges.  

CHALLENGES 

1. To cope with limited resources 

All teachers complained that their hours for disciplines such as statistics had 

diminished due to longer apprenticeships (work placement) and the introduction of 

competence-based education – trends that several teachers considered to be a matter 

of economising on costs. In practice this meant more time on projects and learning 

on demand, and less on general subjects such as languages and mathematics. There is 

generally very little time for teaching statistics, for example one hour per week for 

the first two years. Yet the topics encountered in labs are numerous (Bakker et al., 

2010). Moreover, both teachers and students noted that students had often forgotten 

many topics by the time they became apprenticed. A related challenge therefore is to 

keep their knowledge fresh and available over the course of the years even if not 

required in a particular company. 

2. To engage students in learning statistics  

All teachers and supervisors considered it important for students to understand the 

how and why of statistical techniques, but they also characterised their students as 

―doers, not thinkers‖. They found it challenging to engage them in disciplinary 

knowledge that is not immediately linked to what students see as their purpose: 

becoming a lab technician. We have interviewed students who were able to attend 

general education but had deliberately chosen the vocational route because they 

thought this was better preparation for becoming a lab technician or because they 

preferred doing something practical. However, most vocational students have failed 

in general education for whatever reason. We return to this point in the last section. 

3. To make statistics visible to managers and colleagues 

Teachers had a hard time to convince their managers and some of their colleagues 

that students needed some disciplinary knowledge such as statistics in order to 

develop the competences formulated in the qualification files. In most cases, the 

number of teaching hours for subjects such as mathematics, statistics and the 

languages decreased considerably. The time available for teaching is often dedicated 

to projects that simulate some work task typically found in the workplace. Managers 

and even colleagues of the mathematics or science who taught statistics often 

thought that disciplinary content could be taught ―just in time‖, just before it was 

needed in a project. We probably do not have to convince the reader that teaching 

hypothesis testing (t- and F-test are common in lab work) has to be carefully 

prepared, especially to vocational students, who typically have not succeeded 

academically in general education. These observations illustrate that teachers found 
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it hard to make statistics visible to their managers and colleagues. From the literature 

we can derive an explanation. 

It is well known from the research on workplace mathematics (of which a large part 

actually is statistical in nature) that employees tend to say they do not do any 

mathematics, even if mathematics educators observe them using it (Noss et al., 

1999). We have also experienced this: One supervising lab technician claimed his 

work only involved ―pluses and minuses‖, but when he showed us around we saw 

technicians modelling chemical reaction processes, using extrapolation, slope and 

other mathematical concepts. When confronted with this observation, he responded 

this was chemistry rather than mathematics. We refer to this phenomenon as the 

Janus head (two-faced) nature of workplace mathematics and statistics: Where 

employees see working with numbers as part of their discipline (in this case 

chemistry), we as mathematics educators see mathematics being part of their work. It 

is only if we look for the use of statistics in workplaces and deliberately try to 

improve production processes that it becomes more visible (Bakker et al., 2006). 

This trend is corroborated by the omnipresence of black boxes in which most of the 

mathematical models and statistical techniques used at work are crystallised 

(Williams & Wake, 2007).  

The drive to make the work error-free, one manager commented, has led to a 

situation where the younger generation often no longer knows what happens behind 

the screens. The paradoxical situation is that this hardly ever leads to problems – 

those have been ruled out by the system – but we did hear concerns about this 

situation; many lab technicians found it important for apprentices to understand the 

why and how of what they were doing and we have evidence from observations in 

one lab that blindly following procedures can lead to waste of materials and time. 

The tension observed can be seen as a result of the black box phenomenon that 

Latour (1999, p. 304) described: 

… scientific and technical work is made invisible by its own success. When a machine 

runs efficiently, when a matter of fact is settled, one need focus only on its inputs and 

outputs and not on its internal complexity. Thus, paradoxically, the more science and 

technology succeed, the more opaque and obscure they become. 

The Janus head black-boxed nature of statistical knowledge required might explain 

why the qualification files pay so little attention to it and why teachers found it so 

hard to convince their managers of its importance.  

4. To prepare students for the technology-mediated nature of work  

Teachers often ask the question what they should teach their students and how. What 

do students need to understand about more complex statistics if it is carried out by a 

computer system? The fact that t-tests are used in many labs does not necessarily 

mean that an MBO lab technician should understand the formula or be able to 

perform one by hand, or even with a software package. 
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One of the teachers‘ key challenges that we think are relevant to education more 

generally is thus how to prepare students for the technology-mediated nature of 

statistics usage at work. One question here is whether students should learn the 

background of, say, statistical process control, before they use pre-fabricated SPC 

charts or whether they should learn SPC in relation to spreadsheets straightaway. The 

common assumption among teachers seemed to be that theoretical introduction with 

the conventional representations is the basis for practical usage. Previous research in 

a car factory has shown that this assumption is problematic (Bakker et al., 2009) and 

our observations in laboratory education corroborate this. For most students the step 

from symbolic representation, whether SD, t-test or correlation, to what can be 

inferred from them in practical terms is simply too big to teach in limited instruction 

time available for each topic. 

Labs vary in terms of automation and computational tools, which means that schools 

have to prepare students for both manual and automated computation. Computations 

are not always taken away from employees. In some labs (about 14%, see Bakker et 

al., 2010), all calculations were automated in Excel sheets or dedicated computer 

software (such as LIMS: Laboratory Information Management System). In most 

others, a mix of computational tools (calculator, Excel, software) was used. The 

general image from the interviews was that calculations had become easier over the 

years because of software and automated machines, but what lab technicians need to 

know has not become less, only different; for example fluency in Excel has become 

more important. With computations outsourced to software, it becomes important to 

know something about the software and what it is doing. In one lesson we indeed 

observed how a teacher clarified to students the difference between computing 

something in Excel by column or by row – something relevant to statistics education 

we rarely find in a textbook. 

5. To prepare for a diversity of workplaces 

Teachers are well aware that their students may choose to work in very different labs. 

Should all students then learn what is required in the most advanced labs? Where 

chemical and clinical-chemical (medical) work involves correlation, regression and 

validation, the biological work often has a more qualitative nature (recognizing types 

of crystals etc.). Microbiological work does require good understanding of powers 

and logarithms, because amounts of bacteria are reported in powers of ten. 

Interestingly, common measures of centre easily turn out problematic when working 

with powers of ten. One supervisor preferred medians and geometrical means over 

arithmetic means but did not expect MBO level technicians to understand these 

alternatives. 

6. To keep up with innovations at work 

Laboratories change rapidly due to technological innovations. For example, students 

learn to calibrate machines in the old-fashioned way, but modern companies have big 



Working Group 5 

CERME 7 (2011) 741 

 

analysers that can be calibrated with a press on a button. The statistical background 

of calibration – measurements modelled by regression lines and correlation 

coefficients – has been completely blackboxed in such cases. Employees state they 

only judge the correlation coefficient to see if the measurements have been precise 

and accurate enough (e.g., 0.999964 was considered very good). 

The aforementioned rapid developments at work raise the challenge for teachers to 

stay up to date. This is not easy once a teacher is ‗caught‘ in a teaching job. Those 

who have a background as lab technicians themselves typically stay in touch with old 

colleagues and friends on these developments. However, those with a background in 

mathematics or science teaching find it harder to develop a good image of trends at 

work and their implications for curriculum change. 

7. To develop their own statistical expertise 

Most teachers we interviewed did not feel expert enough to assist students with the 

statistics required in their projects. Adding specialist teachers to the team was no 

option because there was a tendency to keep the number of teachers for each student 

as small as possible to make supervision easier for everybody. Workplace 

supervisors differed considerably in terms of statistical expertise and could not 

always help students either. Finally we were struck by the fact how vocation-specific 

statistics could be: The type of statistics taught by mathematics teachers was often 

considered too general to be useful for lab technicians, who thought in terms of 

method validation, reproducibility and stability, rather than correlation and variation 

coefficients. 

TO CONCLUDE: MEETING SOME OF THE CHALLENGES 

In answer to our question what are the challenges of teaching statistics in vocational 

laboratory education, we identified seven challenges illustrated above. Some 

challenges are the consequence of competence-based education (1, 3, 7), one of the 

student population (2), and some of the changing nature of work (5, 6), in particular 

the technology-mediated nature of statistics in workplace (4). Many of the challenges 

are related. For example, the technology-mediated nature of using statistics at work 

not only raises the question of how to prepare students for it, but also contributes to 

the invisibility of this disciplinary knowledge at work and hence at competence-

based education.  

One challenge we see, but teachers did not address explicitly, is how they can help 

their students to develop the number sense required (Bakker et al., 2010). From the 

interviews with supervisors we assume this requires the integration of disciplinary 

knowledge typically developed at school and practical knowledge developed through 

experience at work. For example, whether a measurement value is judged correctly 

also depends on experience with the range in which that value typically falls. 

Judgement of correctness presumably draws on multiple resources including 
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disciplinary and more workplace experiential knowledge. To conclude we mention 

how some of the challenges are or could be dealt with in practice or in research.  

Teacher apprenticeships to stay up to date 

One important way in which teachers can stay up to date with recent developments at 

work is by means of teacher apprenticeships. Teachers, in particular those with a 

disciplinary background in mathematics or science, get the opportunity to work in a 

company for a few days to see how what they teach informs apprentices‘ work. One 

teacher of statistics we interviewed was very enthusiastic about this opportunity. In 

his case, he felt reassured that the topics he taught, such as statistical process control, 

were indeed used in ways that he propagated in his lessons. However, the general 

picture from the limited research on teacher apprenticeships (de Schutter, 2009) is 

that organising them and convincing teachers to take part is not easy. Moreover, not 

every workplace is suitable as a learning site for teachers. 

Diversity of labs 

The way in which lab schools address the diversity challenge is to start with a 

general programme for statistics and tie the statistical aspects of lab work to the 

variants chosen. The biggest school we investigated had six different variants from 

which students could choose in their last two years. However, small schools did not 

have the resources to offer more than two variants (e.g., chemical and medical). 

Diversity is not always problematic, because students are also diverse. They have 

different interests and qualities, and look for laboratories in which they can flourish. 

Likewise, companies select students that seem to fit in their type of labs. Some are 

good at routine work, other function better in non-routine work.  

Workplaces also demonstrate a high degree of adaptivity which is possible due to the 

diversity of employees and tasks in a lab. If tasks turn out too difficult or important 

for apprentices or beginning lab technicians, they are carried out by higher-level or 

more experienced lab technicians. Thus workplace systems are serving as an ecology 

adapting to particular gaps or weaknesses in apprentices‘ knowledge. Such 

adaptivity and division of labour also has another side: We were told about lab 

technicians with an affinity for statistics who were given the opportunity to develop 

their statistical knowledge and become the team‘s statistics expert. 

Finding alternative representations 

One of the main challenges in our view is how to deal with the discrepancy between 

how statistical measures and techniques are typically represented at school on the 

one hand, and how they are used in practice on the other. In course materials 

standard deviation and the t-test are typically represented in a symbolic language 

with ∑-signs – a language that is inaccessible to most vocational students. Our 

impression from observations and previous research (Bakker et al., 2009) is that 

many teachers and trainers think the essence of, say, a t-test is captured by its 
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formula, just like the mean by its calculation, and that they see little opportunity to 

represent such concepts alternatively, or to emphasize their meaning in usage. 

However, what intermediate-level employees need to know about such techniques is 

what their purpose and utility (Ainley et al., 2006) are and how they should be 

interpreted when produced by a computer system, and some conditions of usage. To 

us it seems sufficient for student lab technicians who do not plan to attend higher 

professional education to know that a t-test is useful for comparing means of data 

sets (e.g., to check if a new instrument is as accurate as the standard), and what it 

means that there is a significant difference. The little time attributed to teaching the t-

test (typically one lesson) is perhaps better spent on such insights, including how to 

perform a t-test in Excel, than on explaining and applying the formula. 

The problem of representation of such statistical concepts and tests was dealt with by 

Bakker et al. (2009) in the context of process improvement in a car factory. To avoid 

the symbolic language about process capability indices, they designed relatively 

simple, visual computer tools with which employees could get a sense of what these 

indices conveyed, and how their indices could be manipulated by changing mean, 

control limits or specification limits. These tools proved to facilitate communication 

between employees with diverse educational background. We therefore expect that it 

is in principle possible to convey the practical usage and implications of many 

statistical concepts and techniques in the context of work without anxiety-evoking 

formulae. We see ample reason to continue this line of research, especially in 

vocational settings where we can observe the connections between school and work 

practices and test out ways to engage students in seeing statistics as useful for a clear 

purpose: work. 
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Research on informal statistical inference has so far attended little to sampling. This 

paper analyzes children‘s reasoning about sampling when making informal 

statistical inferences in an inquiry-based environment. Using data from a design 

experiment in Israeli Grade 5 (age 11) classrooms, we focus on the emergent 

reasoning of two boys working with TinkerPlots on investigations with growing 

sample size. They turn out to have useful ideas about whether inferences can be 

made from samples of different sizes. Initially, they oscillate between deterministic 

and relativistic conclusions, but they come to reason in more sophisticated ways 

with increasing awareness of what is at stake when making inferences from samples. 

INFORMAL STATISTICAL INFERENCE 

One of key things that statistics allows us to do is to draw inferences from samples. 

Doing so with formal techniques such as estimation, confidence intervals or 

hypothesis testing goes well beyond what most students will have the opportunity to 

learn, yet it seems important to give them a sense of the power of statistics by 

making such inferences informally (Garfield & Ben-Zvi, 2008). For these reasons, 

statistics educators have studied informal statistical inference, characterized as a 

generalized conclusion expressed with uncertainty and evidenced by, yet extending 

beyond, available data (Makar & Rubin, 2009). Two special issues have already been 

dedicated to this theme (Makar & Ben-Zvi, in press; Pratt & Ainley, 2008). 

In earlier work we addressed the question of how informal inferential reasoning, the 

reasoning processes leading to informal statistical inference, can be nurtured and 

supported (Makar, Bakker, & Ben-Zvi, in press). Supporting elements include 

statistical concepts and tools, knowledge of the problem context, inquiry drivers such 

as doubt, explanation, and resolution of cognitive conflicts. We proposed that an 

inquiry-based learning environment with suitable tasks and tools as well as teacher 

scaffolds is especially suitable to support students‘ informal inferential reasoning. 

SAMPLES AND SAMPLING 

The concept of sample is a central concept in statistics yet it has received limited 

attention in the research literature compared to other concepts such as average, 

variation, and inference. Concepts and issues surrounding sampling are complex and 

require coordinating several ideas at once. Researchers note that students and 

teachers often conflate samples with their population when working with data 

(Lavigne & Lajoie, 2007; Pfannkuch, 2008; Pratt, Johnston-Wilder, Ainley, & 

Mason, 2008). Others caution that students may hold extreme beliefs about 
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relationships between samples and their population: Those focusing on sampling 

representativeness might believe that a sample provides complete information about 

a population, while students focusing on sampling variability might believe that a 

sample provides no information (Rubin, Bruce, & Tenney, 1990). Watson and Moritz 

(2000) found that children in their study (Grade 3, age 8-9) had fairly primitive 

notions of samples and were typically comfortable making claims from small 

samples with little concern about bias, while the older children (Grade 9, age 14-15) 

generally attended to both sample size and representativeness in making claims, 

recognizing potential problems of bias and variability of small samples. Students 

between these ages (Grade 6, age 11-12) held a diversity of beliefs about sample size 

and sampling, suggesting they are at a critical age in their development of concepts 

of sampling. 

Recent interest has arisen about the potential of informal statistical inference as an 

organising principle in learning statistics. Several aspects of informal statistical 

inference have been addressed in the literature, but the role of sampling has received 

surprisingly little attention given its centrality in inference. Several researchers (e.g., 

Arnold & Pfannkuch, 2010; Konold & Kazak, 2008) have used hands-on activities, 

visualisations, and simulations in helping students coordinate the complex issues of 

sampling in inferential reasoning. In this paper we focus on the question: How does 

children‘s reasoning about sampling emerge when making informal statistical 

inferences in an inquiry-based environment? We use 2010 data from Ben-Zvi‘s 

Connections Project (Ben-Zvi, Gil, & Apel, 2005) to respond to this question by 

examining the work of two boys (aged 11) participating in a teaching experiment as 

they grapple with drawing inferences from samples of increasing sizes. 

GROWING SAMPLES 

A key idea behind the design is that of growing samples—an instructional idea 

mentioned by Konold and Pollatsek (2002), worked out by Bakker (2004) and 

elaborated by Ben-Zvi (2006). Starting with small data sets (e.g., n=8), students are 

expected to experience the limitations of what they can infer from them about the 

whole class. They are next asked to draw conclusions from the whole class and 

speculate on what can be inferred about the whole grade in the school. Bakker (2004) 

found that such an approach is helpful in supporting coherent reasoning with key 

statistical concepts such as data, distribution, variability, tendency, and sampling. 

What-if questions proved particularly stimulating. 

METHOD 

We address the research question by drawing on findings from a design study (Cobb, 

Confrey, diSessa, Lehrer, & Schauble, 2003) carried out in three Grade 5 classrooms 

in Israel. This study is part of the Connections Project––a longitudinal development 
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and research project (2005-2010) aiming to develop an inquiry-based environment 

for learning statistics in grades 4-6 using TinkerPlots (Konold & Miller, 2005). 

The setting and participants 

The learning sequence was built around five cycles of extended data investigations 

(2-3 lessons of 90 minutes each) of a student-administered survey across several 

grades in their school. The survey gathered student information about dimensions of 

body parts, free time activities, pets ownership, etc. (33 variables, n=270), creating a 

rich and interesting database for investigation. In each cycle, students posed a 

research question, organized their sample data using TinkerPlots, and made sense of 

it to draw informal inferences. 

In line with the literature on growing samples, the design of activities evolved 

around the idea of starting from a sample of size 8, moving to about 30 (a whole 

class), then 90 (a grade level), and finally 270 cases (entire cohort) (see Figure 2 in 

Ben-Zvi, 2006). Starting with a small sample size was a pedagogical design decision 

to draw students‘ attention to the limitations of small samples, gradually developing 

their reasoning about samples, confidence level in their inferences, and ―what-if‖ 

questions about larger sample sizes (e.g., ―If you had a sample size of X, would the 

inference you just made still hold?‖). 

Students worked in pairs through a scaffolded, open-ended inquiry of the data, with 

some pairs presenting their investigations in front of the class for further discussion. 

Independent investigations were videotaped using Camtasia to capture both their 

computer screen and faces. In this paper we focus on one pair of academically 

successful and articulate boys—Liron and Shay—in their first two investigations. 

The episodes 

In the first episode—their first independent investigation with TinkerPlots—the pair 

studied issues about free time (e.g., what students do in their free time, preferred 

communication method). They were given a sample of 8 students from their class 

(including themselves) with eleven variables to analyze and make inferences beyond 

the data at hand and a handout with instructions and questions about sampling issues 

(e.g., ―Would the conclusions you have reached apply also to half of the class? Please explain.‖). 

In the second episode, the sample was increased to 29 (whole class) and they were 

asked to see if their conclusions still held for the larger sample. 

Data analysis 

Videos were observed, transcribed, translated from Hebrew to English and annotated 

for further analysis of the development of their reasoning about samples in relation to 

inferences. Interpretations were discussed until consensus was reached. Differences 

between Hebrew and English connotations of words (inference, conclusion, sample) 

were discussed extensively. Episodes were selected to illustrate the boys‘ developing 

reasoning about samples when making informal inferences. 
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RESULTS 

First investigation, n=8 

After orienting to TinkerPlots, Shay and Liron organized the small data set with the 

software. In their first graph, the eight data points spread across six categories of 

students‘ free time activities, with most categories having only one point (Figure 1). 
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Figure 1: Liron and Shay‘s initial graph of 8 data points spread across 6 categories 

They expressed initial dissatisfaction with working from such a small set of data: 

―We only have 8 kids, we don‘t have enough data! … We don‘t have enough to 

know things properly!‖ (Shay, lines 9-12) and found it frustrating to draw 

conclusions. With only eight data points, they considered them not to be ―real data‖: 

25 Shay: So let's see. Still, we don‘t have enough data that we can see because 
we have only 8 kids and it kind of spreads out. So we'll try to see 
something else, and then we will see if we have enough real data. 

26 Liron: Pets is very easy. Let‘s check this first [scanning the pets data]. 

27 Shay: Well OK, we see it‘s [also] too spread out, and since we have only 8 
kids, we don‘t have much to see. So let‘s try to see, err, what shall we 
try to see, Liron? 

In looking for other variables to investigate, the boys seemed to search for an 

apparent pattern. With most variables having low frequencies in each category (due 

to the small sample), they characterized the data as too ―spread out‖ to draw 

conclusions. This implies that their reluctance to draw conclusions involved both 

sample size and its relation to frequencies (in this case, large spread and a ―flat 

distribution‖, cf. Ben-Zvi et al., 2005) and suggests a need to acknowledge students‘ 

statistical conceptions more broadly (e.g., variability and distribution) when focusing 

on sampling. When exploring the number of after-school activities per week (Figure 

2), the boys finally felt able to draw a conclusion from numerical data. These data 

were not spread out like in the variable activity in free time: 

39 Liron: 3 is the biggest. It is the most common. 

40 Shay: According to what we see, the ‗most mode one‘ is 3. What we see is 
that it can also be said that the average here is 3. The average is 3. 

45 Shay: … Ok, wait, we have found something very interesting – we have the 
average number of children [activities] in a week is three. Let‘s save 
it. 
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Figure 2: Liron and Shay‘s distribution with higher frequency in one value 

As they searched for interesting and sensible stories in their data, they reviewed 

several additional variables (e.g., methods of communication with friends). However, 

after having done these analyses, Shay dismissed them almost immediately: 

56 Shay: So usually you use the telephone at home, some use the cell phone and 
chats on the internet. [But] as we said before, we don‘t have enough 
kids in order to have something, a proper result as needed. 

Shay realized again that the small sample size was a flaw in the validity of the 

inference. The conflict of making valid conclusions from a small sample arose 

several times during the investigation. At other times, they set the issue aside and 

made fairly strong claims (e.g., ―Boys like computers more than girls.‖). This 

oscillation between stating there is nothing to say and stating claims 

deterministically continued throughout this first investigation. We should cautiously 

note, however, that it is not clear whether Shay had changed his mind or went 

through the analysis with the impression that the results would be improper results. 

To overcome this concern, Liron proposed to collect more data. 

One aim of the growing samples activities is to develop, as well as gain insight into, 

students‘ inferential reasoning about the relationship between conclusions drawn 

with a small sample and their inferences to larger samples (e.g., limitations of small 

samples, confidence about their inferences). When asked whether their claims 

applied more generally to the class, their initial response was quite confident that 

they would be. When pressed, however, their responses were qualified. ―According 

to these data for now, only based on these, boys like computers more than girls and 

girls like to spend time with their friends more than boys‖ (line 198). Shortly 

thereafter, their responses changed again: 

207 Int.: And what if I ask you about the whole class? What do you think your 
inferences look like? 

208 Shay: It could be completely different! 

210 Int.: … What do you mean by ―completely different‖? Could it be, say, that 
girls like computers more than boys? 

211 Shay: It will not be that different. 

213 Int.: … Won't it surprise you? If you see for example that the girls in the 
whole class, there will be more girls that like computers than boys? 

214 Shay: Yes, it will surprise me, but there is a chance it will happen. 
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215 Int.: Why will it surprise you? 

216 Shay: Because I know from personal experience that boys like computers 
more than girls, but there is a chance that my personal experience is 
wrong! There is a chance. 

Although Shay thought the results in the entire class might be completely different 

than the sample results, his answer in line 211 is more nuanced. This remark may 

suggest that Shay anticipates that the results in the sample compared to the entire 

class could be similar and he sees a small chance that the results will be completely 

opposite. This is the first time the role of chance is mentioned in the discussion, not 

in explicit relation to the sample size but rather to the boy‘s personal knowledge of 

the context. In the end of this discussion, the interviewer explored the limits of what 

the boys were willing to conclude from different sample sizes: 

243 Int: Can you say based on the conclusion from these data that they are true 
for a larger group of kids? 

244 Liron: No. Every child has a different opinion. 

245 Int: Shay, what do you think? 

246 Shay: I agree. Each child has their own characteristics. 

247 Int: How many kids in your class? 

248 Liron: 29. 

249 Int.: What if we ask 15 kids? Do you think then we could conclude 
something? 

250 Liron: Yes. 

We saw this same reasoning about the ability to infer from half of the population in 

discussions among other students as well. Even at the end of this activity, the boys 

still oscillated between not being able to say anything (―Every child has a different 

opinion‖) and being able to infer something regarding bigger samples. Their 

confidence in drawing conclusions oscillated during their investigation. They 

repeatedly asked for more data, offering even to go to the class and collect it 

themselves; at the same time, they often made claims based on a frequency of one 

(e.g., girls like to talk to friends more than boys). When probed, they were able to 

qualify the claims, but were uncertain whether their claims would hold more broadly. 

Second investigation, n=29 

In the second investigation, students were given data for their entire class (29 

students) as well as five additional variables (e.g., various body measurements, 

additional pet ownership data). Shay and Liron‘s immediate reaction was one of 

excitement ―Wow! … It‘s so much fun now!‖ (Lines 255-257). Before investigating 

the data, Liron anticipated that the conclusions would be different from those they 

made for the sample of eight. This suggests one way that the growing samples 

sequence stimulated students to think about sample-population relationships: 
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258 Int.: Do you think they will be similar or different for the entire class and 
why? 

259 Liron: Different. 

260 Shay: Not just different. We should say in what [way] they will be different. 

261 Liron: Eight kids can‘t represent an entire class! 

When the boys were given the data for the entire class, they compared their new 

findings (sample size 29) with those from the previous investigation (sample size 8). 

265 Shay: I knew! Girls love to be with friends more than boys. Boys like 
computers more than girls. Here, here, my hypotheses are 
materializing! 

266 Liron: Because? 

267 Shay: Look, it's really beautiful. We really have conclusions! 

Although the boys easily recognized the similarities, they didn‘t understand why. 

289 Liron: Most of our hypotheses were confirmed. … 

292 Shay: … But I don't understand. It is the same data. It is unfair. I don't get it. 

293 Liron: Neither do I, but what do you know? 

294 Shay: I was sure it would be entirely different data. 

295 Liron: So was I, but here it is. You can see it. 

The boys expressed surprise by the unexpected similarity then questioned its 

validity. Their language became more subtle, focusing on the uncertainty. 

307 Shay: But you know it happened by chance. 

308 Liron: It happened by chance. They didn't do it on purpose. 

And later: 

316 Shay: This quite surprised me, and I thought that if I take more kids, it will 
change, but who knows, apparently it is the same thing. 

317 Liron: It must have been a coincidence. 

318 Shay: Maybe, not for sure. 

When asked for an explanation, Liron said he had no idea and Shay repeated that it 

happened by chance. Later, following the design idea of growing samples, they were 

asked again whether they expected the result to be similar for the entire 5
th

 grade. 

423 Shay: Now I think that if you take like, what happen is that it was [first only] 
8. Now we took the entire class, it was exactly the same properties. So 
I think now that if you take the entire 5

th
 grade, it will also be the same 

conclusions. 

424 Int.: Why? Try to explain once more why? You just said something and I 
am not sure I got you. 

425 Shay: Because from the conclusions here, we saw that once we expanded it, 
there were the same conclusions. Now what do I infer from this? 
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426 Int.: What? 

427 Shay: That it is really true. That it will keep being true, also. 

When probed, the boys informally quantified their level of confidence about the 

conclusions, both now and from the original sample of eight, but cautioned that the 

results would not necessarily extend to other ages in the school. 

441 Int.: In the same age, if we take a scale from 1 to 10, … how much are you 
certain from 1 to 10 that the results will remain the same? 

442 Shay: 7. 

443 Liron: I am also 7. … 

447 Int.: How sure were you from [the sample of] 8 about the entire class? … 

448 Shay: About 2. Maybe 3. 

DISCUSSION 

The brief excerpts from Liron and Shay‘s investigations give us some insight into 

initial ways that children can reason about samples in an inquiry classroom designed 

to provoke their informal statistical inferences. The analysis of Liron and Shay‘s 

inferential reasoning about sampling issues shows a development from fairly extreme 

and seemingly contradictory views of what can be concluded from a small sample to 

more nuanced statements about the strength of their later claims and emerging 

quantification of confidence in making inferences. In the first investigation, the boys 

repeatedly expressed their lack of confidence in conclusions drawn from only eight 

data points while concurrently making fairly strong claims (e.g., boys like computers 

more than girls do) based on frequencies of only one or two data points. As they 

progressed, they qualified their claims as only holding for their limited data and were 

rightly conflicted about whether the sample would provide any information about a 

larger population. In the second investigation, the larger data set confirmed many of 

their previous conclusions, which surprised them. This confluence appeared to 

provoke them to question the way the data were gathered. 

In addition to working with concepts of samples and informal statistical inference, 

strong links to other statistical key concepts arose during the investigation, such as 

average (average of 3 activities per week), spread and distribution, likelihood, 

randomness, and graph interpretation. The excerpts further underline Bakker and 

Derry‘s (in press) discussion of the importance of a holistic approach to concept 

development as these concepts were not encountered in isolation, but emerged 

collectively as relevant tools by provoking their reasoning in the context of inquiry. 

The opportunity to probe the students‘ reasoning was helpful to explore the scope, 

flexibility and robustness of students‘ concepts in action. This aligns with 

inferentialist approaches to have students reason within the context of complex 

problems and through that process find the scope and limit of their conceptions in the 

act of reasoning with them. 
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We end with a few questions for future research: 

1. How can ideas about sampling in relation to informal statistical inference be 

further developed in the next grade? 

2. What was the role of the activities design and the inquiry-based environment in 

the development of students' reasoning about samples and sampling? And in 

particular how can the instructional idea of growing samples can be further 

improved and used? 

3. How can new tools (e.g., TinkerPlots2, see Konold et al., in press) probe students‘ 

inferential reasoning? 
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University of Saskatchewan 

By focusing on a particular alteration of the relative likelihood task, this study 

contributes to research on teachers‘ knowledge of probability. The novel task 

presented prospective teachers with multinomial, contextualized sequences (possible 

answer keys to a 10 question multiple-choice quiz) and asked them to identify which 

sequence was least likely. Results demonstrate that the sample to population ratio 

and reflection of randomness determinants of representativeness (featured in 

research on binomial, platonic sequences) are present in the current situation as 

well. Results further suggest that the context in which tasks are presented 

significantly influences probability judgments. Consideration of context also 

provides a news lens and, concurrently, potential obstacles for analysing certain 

results. 

In the first Handbook of Research on Mathematics Teaching and Learning, 

Shaughnessy‘s seminal (1992) review of ―research in learning and teaching 

stochastics‖ (p. 466) concluded with ―a wish list‖ (p. 488) for future research. 

Included in the list, a call for investigation into teachers‘ conceptions of probability. 

Fifteen years later, in the Second Handbook of Research on Mathematics Teaching 

and Learning, Jones, Langrall, and Mooney (2007), who were given the ―main task 

of reviewing and analyzing research in probability education during the period since 

Shaughnessy‘s (1992) review‖ (p. 910), included ―Stohl‘s (2005) review[, which] 

concluded that there had been limited response to Shaughnessy‘s call for research on 

teachers‘ knowledge and beliefs about probability‖ (p. 945), in their research 

synthesis.  

Given the dearth of research documented above, the purpose of this article, in 

general, is to contribute to research investigating teachers‘ conceptions of 

probability. In specific, the purpose of this article is to present results demonstrating 

that Kahneman & Tversky‘s (1972) representativeness determinants (described in 

detail below) extend to multinomial sequences (i.e., sequences derived from a 

multinomial experiment) and contextual sequences. In order to examine the 

relationship between representativeness and multinomial and contextualized 

sequences, prospective mathematics teachers are asked to compare the relative 

likelihood of two answer keys for a 10 question multiple choice (i.e., A, B, C, or D) 

math quiz. 

THEORETICAL CONSIDERATIONS 

Kahneman and Tversky (1972), in examining how ―people replace the laws of 

chance by heuristics‖ (p. 430), produced an initial investigation into what they called 
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the representativeness heuristic. According to their findings, an individual who 

follows the representativeness heuristic ―evaluates the probability of an uncertain 

event, or a sample, by the degree to which it is: (i) similar in essential properties to 

its parent population; and (ii) reflects the salient features of the process by which it is 

generated‖ (p. 431). Kahneman and Tversky theorized that events are considered 

more probable when appearing more representative and, similarly, events are 

considered less probable when appearing less representative. In order to test their 

theory, the authors focused on some now well-known probability comparisons. 

Kahneman and Tversky (1972) presented individuals with birth sequences that were 

considered equally likely, but were hypothesized by the authors to not be ―equally 

representative‖ (p. 432). Of the three sequences presented (GBGBBG, BGBBBB and 

BBBGGG), the sequence BGBBBB was considered less likely than GBGBBG 

because BGBBBB does not reflect the ratio of boys to girls found in the parent 

population. Further, BBBGGG was deemed less likely than GBGBBG because 

BBBGGG did not reflect the random nature associated with the birthing of boys and 

girls in a family. While the findings supported the authors‘ initial hypotheses (more 

representative sequences would be judged more likely) they also declared that 

similarity of a sample to the parent population is a necessary, but not sufficient, 

determinant of representativeness. As such, they further investigated the reflection of 

randomness determinant. 

In an investigation into the appearance of randomness, Kahneman and Tversky 

(1972) declared that ―two general properties, irregularity and local 

representativeness, seem to capture the intuitive notion of randomness‖ (p. 433). To 

explicate their point, the authors showed how alternating sequences, e.g., a perfect 

alteration of heads and tails, was too regular and thus would not correspond to the 

result of a random process. Local representativeness, on the other hand, is the belief 

that ―the essential characteristics of the parent population are represented not only 

globally in the entire sample, but also locally in each of its parts‖ (p. 434). For 

example, individuals, when examining a short sequence of coin tosses, would expect 

(1) the ratio of heads to tails to be close to one, and (2) short runs, which would 

correspond to frequent alterations, because, as the authors indicated, ―People view 

chance as unpredictable but essentially fair‖ (p. 434).  

TASK DESIGN AND RATIONALE 

Although not the first individuals to conduct an experiment comparing the relative 

likelihood of sequences of outcomes, researchers of, and literature in, probability 

education consider – by acclamation – the early seventies research of Tversky and 

Kahneman (e.g., Kahneman & Tversky, 1972; Tversky & Kahneman, 1974) as the 

canonical research into comparing the relative likelihood of sequences of outcomes.  
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Task developments 

Kahneman and Tversky‘s (1972) investigation into the relative likelihood of 

sequences of outcomes (detailed above) was, actually, two tasks: A task was first 

presented that would address the sample to population ratio determinant of 

representativeness (i.e., are there more families with a birth order sequence of 

BGBBBB or GBGBBG?) and, second, a related task was presented to address the 

reflection of randomness determinant (i.e., are there more families with a birth order 

sequence of GBGBBG or BBBGGG?). These two tasks would undergo a number of 

changes, as they became a fixture in the field of mathematics education. 

Shaughnessy‘s (1977) research introduced two new, important developments to the 

tasks. First, in comparing the chances of occurrence of different sequences, his 

version of the task gave students the option of choosing ―(c) about the same chance‖ 

(p. 309) as one of the response items. Second, Shaughnessy asked participants to 

―give a reason for your answer‖ (p. 309). Despite these two new developments, one 

thing remained the same: the task remained as two tasks.  

Konold, Pollatsek, Well, Lohmeier, and Lipson‘s (1993) version(s) of the relative 

likelihood task unified, for the first time, into one task, both the sample to population 

ratio determinant and the reflection of randomness determinant.  

Which of the following is the most likely result of five flips of a fair coin? 

a) HHHTT b) THHTH c) THTTT d) HTHTH e) All four sequences are equally likely 

Figure 1. Konold et al.‘s (1993, p. 395) iteration of the relative likelihood task 

As seen in Figure 1 above, three of the options presented have a ratio of 3 heads to 2 

tails, while option c) has a ratio of 4 heads to 1 tail, which is consistent with earlier 

tasks investigating sample to population determinants. The options containing 3 

heads and 2 tails present a variety of symmetrical, switch, and run considerations, 

which is also consistent with earlier tasks examining the reflection of randomness 

determinant. Further, Konold et al.‘s (1993) iteration of the task adopts 

Shaughnessy‘s (1977) developments, which not only provides the equally likely 

option, but also ―also asked subjects to provide a written justification for their 

answer‖ (p. 396). Despite Chernoff‘s (2009) alteration, which maintains the same 

ratio of heads to tails in all sequences, all other versions of the relative likelihood 

task found in mathematics education (e.g., Hirsch & O‘Donnell, 2001; Rubel, 2007) 

adopt a similar framework to Konold et al.‘s (1993) version of the task.  

Task consistencies 

Despite developments and new versions of the task, two things have remained the 

same. First, the use of sequences of outcomes derived from a binomial experiment 

(hereafter referred to as binomial sequences) and, second, the use of what I will 

define below as, platonic sequences).  
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The majority of research on the relative likelihood of sequences of outcomes (e.g., 

Chernoff, 2009; Cox & Mouw, 1992; Hirsch & O‘Donnell, 2001; Kahneman & 

Tversky, 1972; Konold et al., 1993; Rubel, 2007; Shaughnessy, 1977, 1981), thus 

far, utilizes, exclusively, binomial sequences. Although certain research does 

investigate sequences where the probability of success does not equal failure (e.g., 

Konold et al., 1993), multinomial experiments, such as the rolling a six-sided die, are 

reduced to binomial experiments, by, for example, painting the sides of the die two 

colors.  

To help frame this discussion, I will distinguish between two types of sequences, 

which I have denoted as platonic and contextualized. Platonic sequences, which 

currently dominate research literature, are characterized by their idealism. For 

example, a sequence of coin flips derived from an ideal experiment (where an 

infinitely thin coin, which has the same probability of success as failure, is tossed 

repeatedly in perfect, independent, identical trials) would represent a platonic 

sequence. On the other hand, contextualized sequences, which are less represented in 

the current research literature, are characterized by their pragmatism. For example: 

the sequence derived from the severed left and right feet, which were washing up on 

the shores of British Columbia, Canada in late 2007 and early 2008 (e.g., LLLLLR); 

the sequence of six numbers obtained when buying a (North American) lottery ticket 

(e.g., 4, 8, 15, 16, 23, 42); the answer key to a true or false quiz (e.g., TFTTF); the 

answer key to a multiple choice mathematics quiz or test (e.g., ACCBDCAADB); 

and others, would represent contextualized sequences.  

As I claim above, platonic sequences currently dominate the research literature; 

however, this platonicity, which Taleb (2007) defines as the ―tendency to mistake the 

map for the territory‖ (p. xxv), of the sequences, which are devoid of context, 

occurred over time. For example, in the ‗beginning‘, Tversky and Kahneman (1972) 

incorporated a frequentist or experimental perspective with their sequence of six 

children, when declaring, in their task, that ―72 families‖ (p. 34) were surveyed. As 

the task migrated from psychology to mathematic education, platonicity began to 

occur. Shaughnessy‘s (1977) research witnesses the first explicit move towards ideal 

sequences. In his version of the task, Shaughnessy declares, up front, that ―the 

probability of having a baby boy is about 1/2‖ (p. 309) and, in the second half of his 

task states, ―(same  assumptions as [task 1])‖ (p. 309). However, the assumptions 

explicitly stated in Shaughnessy‘s version became implicit in subsequent versions of 

the task. By the beginning of the 1990‘s the platonification of the experiment and the 

sequences, in essence the entire task, was complete. For example, the research of 

Chernoff (2009), Cox & Mouw (1992), Hirsch & O‘Donnell (2001), Konold et al. 

(1993), and Rubel (2007) all utilize the following phrase: A fair coin it tossed x 

times; which, in these cases, is intended to mean (from a rationalist perspective) that 

an infinitely thin coin, which has the same probability of success as failure, is tossed 

repeatedly in perfect, independent, identical trials to produce the sequences of coin 
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flips. In other words, the map is mistaken for the territory. Despite the platonification 

of the task, pragmatic responses are a mainstay in individuals‘ responses and are part 

of the motivation for the new version of the task. 

THE ANSWER KEY TASK 

Given the domination of binomial and platonic sequences found in the literature, the 

new task contributes to existing research by utilizing multinomial, contextualized 

sequences. The new version of a probability comparison task, as seen in Figure 1, 

asked individuals to compare the relative likelihood of two different answer keys to a 

10 question multiple choice quiz and to explain or justify their answer.  

 

Which of the following, answer key 1 or answer key 2, is least likely to be the answer 

key for a 10 question multiple choice math quiz? Explain your answer 

Answer key 1: A C C B D C A A D B Answer key 2: C C C B B B B B B B 

Figure 1. Answer key version of the comparative likelihood task 

PARTICIPANTS AND RESULTS 

Data for this study was gathered by asking participants, 59 prospective teachers, to 

respond, in writing (with no time limitations), to the task presented in Figure 1. 

Results show that the majority (48 / 59) of the participants in the study (81%) chose 

answer key 2 (hereafter refereed to as AK2 and, similarly, answer key 1 as AK1) as 

least likely to be the answer key for a 10 question multiple-choice quiz. More 

specifically, 23 participants (74%) in Class A and 25 participants (89%) in Class B 

chose AK2 to be least likely. Given similar themes in the identified response 

justifications, the impending analysis of results does not distinguish between the two 

classes.  

ANALYSIS OF RESULTS 

In this section, exemplary response justifications from the 48 individuals who chose 

AK2 as least likely to be the answer key for a 10 question multiple choice quiz are 

analyzed. Responses justifications are organized into two main sections: (1) 

multinomial considerations and (2) contextual considerations. 

Multinomial considerations 

As noted, Kahneman and Tversky (1972) declared two determinants of 

representativeness as sample to parent population and reflection of randomness. As 

such, the analysis of responses for determinants of representativeness extending to 

multinomial sequences is similarly broken into (1) sample to parent population and 

(2) reflection of randomness sections. 
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Sample to population. The response justifications for 9 particular individuals 

demonstrate that representativeness – more specifically ―the features that determine 

the similarity of a sample to its parent population‖ (Kahneman & Tversky, 1972, p. 

33) – extend from binomial to multinomial sequences of outcomes. While all 9 

individuals declared the proportion of multiple choice answers presented in AK2 

(i.e., 3 C‘s and 7 B‘s) does not reflect the proportion of multiple choice answers for 

the population, different individuals presented the notion in different ways, as seen 

in the responses of Adam and Ben.  

Adam:  AK2 because there is too little variety of answers. 

Ben:  AK2 is least likely because it has only C‘s and B‘s! 

While implicitly stated in certain responses, Frank is explicit in his use of 

percentages and expected frequencies when declaring that the sample population 

should have an equal distribution of available answers.  

Frank:  There are 4 possible letters, so each should show up around 25% of the 

time. This is true of AK1 (A:30% B:20% C:30% D:20%). So AK2 (C:30% 

B:70%) is least likely.  

Ike‘s response epitomizes the similarity of sample to population determinant of 

representativeness extended to multinomial sequences.  

Ike:  AK2 upon first impression because it doesn‘t appear to be random, since 

each question has 1 in 4 chances of either being A, B, C, or D. The 

likelihood/probability of that occurring is low. 

For Ike, AK2 is less likely than AK1 because AK2, by not having an even 

distribution of answers A, B, C, and D, ―doesn‘t appear random.‖ In other words, 

AK2, with only B‘s and C‘s, is not representative of the sample to parent population 

and is influencing Ike‘s (and Adam, Ben, and Frank‘s) appearance of randomness, 

which, in turn, is influencing his probabilistic judgment, because, according to 

Kahneman and Tversky‘s (1972) (confirmed) hypothesis, less representative 

sequences are deemed less likely.  

Reflection of randomness. As with the sample to parent population determinant, it 

will be shown that the reflection of randomness determinant, more specifically local 

representativeness, extends from binomial to multinomial sequences of outcomes. 

Kahneman and Tversky‘s (1972) notion of local representativeness (which states ―a 

representative sample is one in which the essential characteristics of the parent 

population are represented globally in the entire sample, but also locally in each of 

its parts‖ (p. 36)) influences the relative likelihood of the answer keys for two 

participants, whose answers are featured in the responses below.  

Jen:  AK2 [...] because the probability of sequential answers being identical is 

low. 
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Kate:  AK2 is the least likely because there would not be so many ―B‖ answers in 

a row. 

For Jen, the chances of ―sequential answers being identical‖ (i.e., 3 C‘s and then 7 

B‘s) is not representative for part of the answer key and, thus, not likely to be the 

answer key. Similarly for Kate, ―the so many ‗B‘ answers in a row‖ is not locally 

representative and, thus, she concludes AK2 is least likely to be the answer key. 

Although stated differently by Jen and Kate, for both, the long run of 7 B‘s found in 

the latter section of AK2 is not locally representative. That is, the essential 

characteristics of the parent population are not found in the BBBBBBB section of 

the answer key. As such, the entire sequence, which, for them, does not appear 

random, is not representative of a 10 question multiple-choice answer key. Given the 

answer key is not (locally) representative, AK2 is considered less likely to be the 

answer key.  

Contextual considerations 

According to Kahneman and Tversky (1972), ―As is true of the similarity of sample 

to population, the specific features that determine apparent randomness differ 

depending on context‖ (p. 35, my italics). Taking into account certain contextual 

considerations associated with the answer key task, however, demonstrates that an 

innate answer key structure (not only the determinants of representativeness) can 

account for probability comparison responses. To get a sense of the innate structure 

of answer keys, a variety of perspectives – including: answer key, personal 

experience, teacher, student, and combined or multiple perspectives – will be 

presented with the main goal of presenting the subject under investigation, that is, 

innate answer key structure, in a greater context.  

Answer key perspective. The responses from six individuals took the answer key 

into consideration in their response justifications and, in doing so, they provided 

insight into the properties associated with an innate structure of answer keys. For 

example Mary (like Jen and Kate above) references the length of runs for answers C 

and B, which are found in AK2. However (unlike Jen and Kate), the respondent 

qualifies that long runs are not a feature found with answer keys. 

Mary:  answer keys usually do not have a constant answer for consecutive 

questions in a row. They are usually mixed up upon each other and will 

occasionally be in a row. 

Similarly, the justification of Quinn, like that of Adam and others above, makes 

reference to the lack of variety of answers found in AK2. However, unlike Adam and 

others above, Quinn also qualifies that the lack of variety is not a feature found in 

answer keys.  

Quinn:  #2 because it seems there‘s only two possible answers for this quiz – not 

multiple choice. 
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For all six respondents, the long run of B‘s and the lack of variety amongst the 

available answers found in AK2 are reasons why AK2 is deemed less likely. 

However, the features they mention are inherent, for these individuals, to an innate 

structure associated with the answer key and answer keys in general. 

Personal experience. Instead of qualifying responses with references to the structure 

of answer keys, six individuals made reference certain properties associated with 

their personal experiences with answer keys. For example, the reference to a lack of 

variety of answers, seen below in the response Tara, and the reference to the long run 

of the one answer, see below in the response of Uma, exemplify responses seen from 

other individuals who also referred to their personal experience with answer keys.  

Tara:  From my experience with multiple-choice exams, the answers never line up 

one after the other, like in AK2. The multiple choice exams I studied for 

such as math, have always looked more like AK1, where there is a variety 

of answers such as ACCBD instead of CCCBBB. 

Uma:  there are too many answers that are the same ex)cccbbb. This (as a student) 

always made me confused. If the answers are all in a line like that, it makes 

the student feel like they did something wrong. 

However, for Tara and Uma, as was the case with those individuals who referenced 

answer key perspective, the features they describe, i.e., long runs and a lack of 

variety are inherent, for these individuals, to their personal experiences with answer 

keys and answer key structure.  

Teacher perspective. Certain individuals, three in total, projected themselves into a 

teacher‘s perspective for their response justifications. Wendy‘s response provides 

insight into how she perceives teachers‘ use of and experience with answer keys. 

Wendy:  Normally teachers or instructors who set up answer keys tend to highlight a 

number of letters and use variation. A teacher would very rarely chose B to 

represent an answer 7 times in a row, as they usually seem to make random 

answer keys according to correct letters. 

In her response, Wendy references both a lack of variation (i.e., sample to parent 

population) and the answer B appearing 7 times in a row (i.e., local 

representativeness) as reasons for AK2 being least likely. She notes that there would 

not be a of consecutive answers because this is not something that instructors who 

set up answer keys would do because teachers would make more ―random‖ answer 

keys. Seen again, the respondent references a lack of variety and a long run of one 

answer as features in AK2; however, the justifications for these individuals are based 

on how they inherently perceive a teacher would set up the answer key.  

Student perspective. A focus on the presence of a pattern was apparent in the 

responses justifications of 6 individuals who projected themselves into a student‘s 

perspective. Similar to previous perspectives analyzed, their responses provide 
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insight into how they perceive students‘ use of and experience with patterns and 

answer keys. For example, and as seen in the response justification below, the 

presence of a pattern for AK2 and the absence of a pattern for AK1led to the 

declaration that AK2 is less likely that AK1. 

Doug:  I think AK2 is least likely to be the answer key because there is only 2 lines 

going straight down. AK1 has a zig-zag and it just seems better to have the 

answers all over rather than a boring pattern. Everyone knows the answers 

don‘t follow a pattern, if they did, everyone would get the answers right. 

Doug‘s response deviates from previous perspectives because it does not, at least 

explicitly, reference the small variety of available answers presented and the long run 

of B‘s. Instead, the respondent qualifies that patterns are a feature not inherent to 

multiple-choice exams because students will be able to pick up any pattern that 

exists. Therefore, multiple choice quizzes containing a pattern are less likely than 

quizzes containing a pattern, because of students‘ acute ability to pick up on the 

pattern and, thus, the integrity of the test is compromised. However, Doug‘s response 

does not deviate from previous perspectives because it, too, is based on how the 

respondent inherently perceives a student would interact with an answer key. 

Multiple Perspectives. The response justifications from 13 individuals, who also 

chose AK2 as least likely, combined many of the perspectives detailed above. For 

example, the following response combines all previously detailed perspectives.  

Mike: AK2 is least likely. Answer keys go something like a rhyming scheme: 

ABBACC etc. A ―teacher‖ would never give so many consecutive correct 

answers under the same letter. It would both corrupt the integrity of the test 

and play mind games with the student. 

Mike‘s response, like those of the other 12 individuals, references the long string of 

one answer in a row and, further, with his notion of a ―rhyming scheme,‖ references 

a pattern or lack thereof inherent to answer keys. However, Mike justifies his stance 

according to interplay of: personal experience, the teacher‘s perspective, student 

perspective, and the answer key. His response exemplifies an answer-key ethos and, 

for Mike, is the basis for why he considers AK2 as least likely to be the answer key. 

DISCUSSION AND CONCLUSION 

Theoretically speaking, the answer keys presented to participants are equally likely 

to occur. In fact, each of the 1 048 576 possible answer keys are equally likely to 

occur. Despite this fact, the majority, over 80%, of participants in this study 

indicated that AK2 was least likely to be the answer key for a 10 question multiple-

choice exam.  

On the one hand, for individuals who referenced the multinomial nature of the 

sequences they were presented, the little variety of answers (i.e., no use of A and D) 

and the long run of answer B justified their responses of AK2 being least likely. As 
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such, it appears that certain representativeness determinants (specifically and 

respectively: sample to parent population and the local representativeness component 

of reflection of randomness) extend to multinomial sequences.  

On the other hand, for individuals who referenced the contextual aspects of the 

sequences they were presented, the little variety of answers, the long run of B 

responses, and the presence of a pattern in AK2 and lack of a pattern in AK1 were all 

used as justifications for why AK2 was deemed less likely. As such, it may also be 

argued that the representativeness determinants (i.e., sample to parent population and 

both components – local representativeness and irregularity – of perceived 

randomness) extend to contextual sequences. However, the innate structure of 

answer keys, also revealed in the analysis of results, provides a new way to account 

for these response justifications and, simultaneously, provides a potential obstacle 

for research(ers). 

According to the representativeness heuristic, people expect sequences of outcomes 

to accurately reflect the parent population, to have frequent switches and short runs 

and irregularity. However, as shown in the analysis of results, specifically for answer 

keys, people already expect a variety of answers coupled with frequent switches and 

short runs and irregularity, as they feel these features are inherent to answer keys. As 

such, it becomes difficult to declare whether, for certain contextual sequences, like in 

the answer key task, participants are employing representativeness determinants or, 

in this instance, the representativeness lens is rendered moot due to contextual 

considerations. To better understand whether the representativeness heuristic 

influences innate answer key structure or whether answer key structure influences 

the representativeness heuristic, further research in this area will need to be 

conducted. 
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The aim of this research was to assess the common and specialized knowledge of 

elementary probability in a sample of 183 prospective primary school teachers in 

Spain, using an open-ended task. Common knowledge of probability was assessed in 

the first part of the task, where teachers had to compute simple, compound and 

conditional probability from data presented in a two-way table. The specialized 

knowledge of probability was assessed in the second part of the task, were teachers 

were asked to identify and classify the mathematical content in the problem 

proposed. Results suggest participants‘ poor common and specialized knowledge of 

elementary probability in this task and point to the need of reinforcing the 

preparation of prospective teachers to teach probability. 

INTRODUCTION 

The reasons for including probability in schools have been repeatedly highlighted 

over the past years (e.g., Gal, 2005; Jones, 2005): usefulness of probability for daily 

life, its instrumental role in other disciplines, the need for a basic stochastic 

knowledge in many professions, and the important role of probability reasoning in 

decision making. Consequently, probability has recently been included in the 

primary school curriculum in many countries, where changes do not just concern the 

age of learning or the amount of material, but also the approach to teaching (Franklin 

et al., 2005). The success of these curricula will depend on the extent to which we 

can convince teachers that probability is an important topic for their students, as well 

as on the correct preparation of these teachers. Unfortunately, several authors (e.g., 

Franklin & Mewborn, 2006; Chick & Pierce, 2008) agree that many of the current 

programmes still do not train teachers adequately for their task to teach statistics and 

probability. The above reasons suggest to us the need to reinforce the specific and 

didactic preparation of primary school statistics teachers, and also the relevance of 

assessing the teachers‘ difficulties and errors in learning the topic. 

Components in Teachers‘ Knowledge 

An increasing number of authors have analysed the nature of knowledge needed by 

teachers to achieve truly effective teaching outcomes. Shulman (1987) described 

―pedagogical content knowledge‖ (PCK) as ―that special amalgam of content and 

pedagogy that is uniquely the province of teachers, their own special form of 

professional understanding‖ (p. 6). Ball and her colleagues (Ball, Lubienski, & 

Mewborn, 2001; Hill, Ball, & Schilling, 2008) developed the notion of 
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―mathematical knowledge for teaching‖ (MKT) in which they distinguished six main 

categories (see Ball et al., 2001 for a comprehensive description). Our research was 

intended to assess two of these components in prospective primary school teachers in 

relation to elementary probability. More specifically we were interested in the 

following components of teachers‘ knowledge: 

 Common content knowledge (CCK) or the mathematical knowledge teachers are 

responsible for developing in their students; that is, the mathematical knowledge 

that is typically known by competent adults (Hill et al., 2004). In this research we 

assess common knowledge of elementary probability with a task where teachers 

are asked to compute single, compound and conditional probability from a two-

way table.  

 Specialized content knowledge (SCK). In addition to common knowledge, 

teachers need to know the content they teach in ways that differ from what is 

typically taught and learned in mathematics courses. SCK is the mathematical 

knowledge that is used in teaching, but not directly taught to students (Hill et al., 

2004). We include here the ability to recognise what probabilistic concepts or 

properties can be addressed in the teaching tasks and resources (that was 

considered by Chick & Pierce, 2008 as a part of PCK). To assess this knowledge, 

in this research participants are asked to identify and classify the mathematical 

content they used to solve the first part of the task. 

Below we first summarise related previous research and then describe the method 

and results in this study. 

PREVIOUS RESEARCH 

Two-Way Tables and Conditional Probability 

A two-way or contingency table serves to present in a summarised way the frequency 

distribution in a population or sample that was classified according to two statistical 

variables (an example is included in the task presented in Figure 1). Research on 

contingency tables, started with the pioneer study by Inhelder and Piaget (1955), and 

focused on students‘ strategies and conceptions when assessing association between 

the variables in rows and columns from the data presented in a two-way table (e.g., 

Batanero, Estepa, Godino, & Green, 1996). More recently research has focussed on 

students‘ performance when computing probabilities with data presented in a two-

way tables (see Huerta, 2009, for an analysis of the structure of these problems). 

Also relevant for this study is research related to conditional probability, such as that 

by Falk‘s (1986) who remarked that many students do not adequately discriminate 

between the two different conditional probability, that is, P(A/B) and P(B/A). Falk 

termed this confusion as fallacy of transposed conditional. Einhorn and Hogarth 

(1986) observed that some students confused joint and conditional probability 

because they misinterpreted the conjunction ―and‖. 
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Teachers‘ Probabilistic Knowledge 

The scarce research related to primary school teachers‘ understanding of probability 

indicates this understanding is weak. For example, Begg and Edward (1999) found 

that only about two-thirds of the in-service and pre-service primary school teachers 

in their sample understood equally likely events and very few understood the concept 

of independence. Batanero, Caðizares, and Godino‘s (2005) found three widespread 

probabilistic misconceptions in a sample of 132 pre-service teachers related to 

representativeness (Tversky & Kahneman, 1982), equiprobability (Lecoutre, 1992) 

and the outcome approach (Konold, 1991). Fernandes and Barros (2005) study with 

37 pre-service teachers in Portugal suggested the teachers‘ difficulties to formulate 

events and to understand compound and certain events. In addition, these teachers 

frequently used additive reasoning to compare probabilities. 

In relation to knowledge needed to teach probability, Stohl (2005) suggested that few 

teachers have prior experience with conducting probability experiments or 

simulations and many of them may have difficulty implementing an experimental 

approach to teaching probability. In Lee and Hollebrands‘s (2008) research, although 

the participant teachers engaged students in investigations based on probability 

experiments, their approaches to using empirical estimates of probability did not 

foster a frequentist conception of probability. Teachers almost exclusively chose 

small samples sizes and rarely pooled class data or used representations supportive 

of examining distributions and variability across collections of samples so they failed 

to address the heart of the issue.  

Estrada and Díaz (2006) asked 65 prospective primary school teachers, who had 

followed a 60 hours long course in statistics education at the University of Lleida, in 

Spain, to compute simple, compound and conditional probability from data presented 

in a two-way table and analysed the solutions provided by these teachers. The 

authors found a large proportion of participants who were unable to provide any 

solution to the problems. There were a variety of errors, including confusion between 

compound and conditional probability, confusion between an event and its 

complementary, confusion between probabilities with possible cases (absolute 

frequencies), and assuming independence in the data. The aim of the present paper is 

to expand the research by Estrada and Díaz (2006) with a bigger sample of 

prospective teachers, who had not followed a specific course in statistics education. 

In addition, the second part of the task is intended to assess the SCK of probability 

that was not taken into account in Estrada and Díaz‘s research. 

METHOD 

The sample in the study consisted of 183 prospective teachers at the Faculty of 

Education, University of Granada, Spain. The task analysed in this paper was 

answered individually by each participant as a part of the final assessment in a course 

of Mathematics Education. In this course (60 teaching hours), the prospective 
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teachers are introduced to the primary school mathematics curriculum, didactic 

resources, children‘s difficulties, and technological tools for teaching elementary 

mathematics. Most sessions are devoted to practical work, in which participants 

performed didactic analyses (including identification of mathematical content) of 

curricular guidelines, school textbooks, assessment items and children responses to 

these items, and teaching episodes. Several sessions of the course are devoted to 

probability and statistics education. The previous year all these prospective teachers 

took a Mathematics course (90 teaching hours) with about 10 hours of in-classroom 

work and 40 additional hours of extra-classroom work devoted to statistics and 

probability (data, distribution, graphs, averages, variation, randomness and 

probability, including some exercises of compound and conditional probability). 

The task given to participants is presented in Figure 1 and is similar to another task 

used by Estrada and Díaz (2006), although the statement was simplified, in order to 

avoid the use of negative statements in the wording of the item and the use of 

inequalities in the definition of the events in the sample space. The three questions in 

the first part of the task, were aimed to assess the prospective teachers‘ CCK in 

relation to elementary probability. More specifically we were interested in the 

prospective teachers‘ ability to read the table and identify the data needed to compute 

a simple probability (question a), a compound probability (question b) and a 

conditional probability (question c). The second part was aimed to assess the 

participants‘ SCK knowledge of probability; more specifically we were interested in 

their ability to identify the mathematical problems, concepts, properties, language, 

procedures and language implicit or used to solve the task.  

 

A survey in a small school provided the following results: 

 Boys Girls Total 

Liking tennis 400 200 600 

Disliking tennis 50 50 100 

Total 450 250 700 

Part 1. Providing that we select one of the school students at random: 

a. What is the probability that the student likes tennis? 

b. What is the probability that the student is a girl and likes tennis? 

c. The student selected is a girl. What is the probability that she does like tennis? 

 

Part 2. Identify the mathematical content you used to solve the above tasks (specify the types of 

problems; concepts, procedures; properties, mathematical language and mathematical arguments 

you used to solve the task). 

Figure 1. Task given to participants in the study 
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RESULTS 

Common mathematical knowledge 

The written reports produced by the participants in the study were analysed and the 

answers to each question were categorized, taking into account the correctness of the 

response, as well as the type of errors, in case of incorrect response, as follows:  

Basically correct answers: We group in this category answers that showed students 

correctly read the two-way table, identified the probability required and provided a 

correct solution to the problem. We also include here responses that provided a 

correct numerical result, with incorrect symbolization of probabilities, such as for 

example: ―The probability of liking tennis is P(600/700)‖ (Student 70). The 

percentage of basically correct responses is low, except for the first question 

(65,6%), in agreement with what was reported by Estrada and Díaz in their sample. 

Confusing probabilities: Some participants confused simple, compound and/or 

conditional probabilities. The most frequent confusion (13,7%) was between 

conditional and compound probability: ―Probability of liking tennis assuming the 

student is a girl is 200/700‖  (Student 73). This is an error described by Einhorn and 

Hogarth (1986) in university students and also found in 17% of prospective teachers 

in Estrada and Díaz‘s research. A few participants confused P(A/B) and P(B/A), an 

error that was described by Falk (1986): ―There is 33% probability that a girl likes 

tennis‖ (Student 71). In the following example, instead of computing a simple 

probability, the student computed two conditional probabilities; we observe the 

student‘s inability to read the data in the two-way table as he did not reach the 

―reading between data‖ level (Curcio, 1989): Probability of liking tennis is: 

4/6=66,6% for boys and 2/6=33,3% for girls‖ (Student 36). Other students confused 

simple probability with the probability of an elementary event: ―Probability of liking 

tennis if you select a student at random is 1/700, since there are 700 students‖ 

(Student 82). The percentage of pre-service teachers confusing different probabilities 

was slightly lower than that reported by Estrada and Díaz, possibly because the task 

was simplified. 

Confusing events: A few prospective teachers identified the probability but confused 

an event and its complement, an error described by Estrada and Díaz (2006); 

―Probability of liking tennis is
50

20%
250

‖ (Student 102), which again suggest the 

pre-service teachers‘ inability to read the two-way table. Additionally some 

prospective teachers confused other different mathematical objects; such as 

probability and frequency (or number of favourable cases) and  for this reason 

obtained a probability higher than 1. 

Confusing formulas: A small number of pre-service teachers identified correctly the 

probability to be computed and used correct symbols, but did not remember the 

formula, so that the final result was wrong. Other errors consisted in computing 
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means of frequencies, or assuming independence in the data and applying directly 

the product‘s rule  for independent events when computing compound probabilities. 

Table 1. Frequency (and percentage) of responses to the three questions 

Teacher‘s answer P(A) P(A B) P(A/B) 

Basically correct 120 (65,6) 75 (41,0) 80 (43,7) 

Confuse probabilities 8 (4,4) 46 (25,1) 30 (16,4) 

Confuse other objects 9 (4,9) 10 (5,5) 5 (2,7) 

Confuse formulas 3 (1,6) 2 (1,1) 2 (1,1) 

Confuse events 0 (0,0) 7 (3,8) 8 (4,4) 

Other errors 1 (0,5) 4 (2,2) 11 (6,0) 

Do not provide an answer 42 (23,0) 39 (21,3) 47 (25,7) 

Total 183 (100) 183 (100) 183 (100) 

The students‘ responses are presented in Table 1, where we use the following 

abbreviations: A=―the student likes tennis‖; B=―the student is a girl‖. Although the 

majority of participants correctly computed simple probability, less than 45%  of 

responses when computing compound and conditional probabilities were correct. 

Also, similarly to Estrada and Díaz‘s research, an important percent of participants in 

our study did not provide any solution. There were a variety of errors reported in 

previous research, in particular confusion between different probabilities, and at the 

same time we found other mistakes which have not been described in the literature, 

such as confusing a simple probability with the probability of an elementary event. 

Specialized knowledge of content 

In the second part of the task, we asked the participants to identify the probability 

content needed to solve the task. We included the following categories of objects: 

 Problems: We expected the students to identify the three different specific 

problems in the task: A simple probability problem in part (a), a compound 

probability problem in part (b), and a conditional probability problem in part (c).  

 Language: Verbal, numerical and tabular mathematical language appears in the 

task statement; depending on the solution, some students would also use symbolic 

and graphical language. 

 Concepts: Implicit in the task we can identify the concepts of random experiment 

(selecting a school student at random); simple and compound events; sample 

spaces, favourable and unfavourable cases for each question; simple, compound 

and conditional probability, fraction, ratio and proportion, frequency and 

percentage, integer numbers, operations with integer numbers (division). 
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 Properties (or relationships between concepts). Some properties implicit in this 

task are:  The probability axioms; the relation between the probability for an 

event and that of its contrary; the fact that sample space is restricted in computing 

conditional probability; equivalence of two fractions when dividing the two terms 

of the fraction by the same number; the Laplace rule; the relation between the 

total sample size and the totals in rows or in columns; the relation between 

double, marginal and conditional frequencies. 

 Procedures (or algorithms). Possible procedures that can be used in solving these 

tasks include doing numerical operations, such as division or addition, operating 

or simplifying fractions, reading a table; transforming a probability in percentage; 

applying the formulas for computing simple, compound and conditional 

probability, and computing percentages or proportions. 

 Arguments. The main correct type of argument used to solve the task is deductive 

argument, which was identified by many students. 

Many students were able to identify and correctly classify some of the above 

mathematical objects in the problem; although, in general, the number of objects 

identified was quite small, and an important proportion of students were unable to 

give examples in some categories. Other examples provided by the students were 

considered incorrect, due to some of the following reasons: 

 Some responses were too imprecise, for example, answering  that a mathematical 

problem was ―replying the questions that appear after the data table‖ (Student 

95) or that ―there are three different mathematical problems in the task‖ (Student 

125); these responses do not specify the type of problems (simple, conditional or 

compound probability problem). 

 Some students confused the different types of mathematical objects; for example, 

some of them considered the procedures ―interpreting the table‖ or ―performing a 

division‖ to be concepts. Other students confused procedures with their solution 

or confused phenomenological elements with mathematical objects. For example, 

some students suggested ―girls‖ or ―liking tennis‖ instead of ―event‖ as examples 

of mathematical concepts.  

 Other students included in their responses some mathematical objects that were 

not needed to solve the task, such as, for example, ―median, mode, standard 

deviation‖. 

The number of correct and incorrect examples of mathematical objects provided by 

each participant in each category varied, ranging from not being able to identify a 

mathematical object in a given category to including several examples (in table 2 we 

present the mean and standard deviation). Results suggest that identifying the 

mathematical objects implicit in the task was not easy for the participants in the 

sample. On average, only half the students correctly identified a mathematical 
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problem (even when three different problems were proposed in the task) and only a 

third identified correctly a property or the use of deductive argument. The easiest 

elements for the prospective teachers were concepts (2-3 concepts correctly 

identified per participant), procedures and language (1-2 correctly identified). 

Anyway, although some prospective teachers suggested incorrect mathematical 

objects in all the categories, the average number of correct responses was higher than 

the number of incorrect responses in all the categories and the differences were 

statistically significant, except for properties and arguments that were hardest to be 

identified in the task by participants.  

Table 2. Mean and standard deviation for the number of correct and incorrect 

mathematical objects identified in the task 

 Correct Incorrect p-value in 

the t-test of 

differences 
Objects Mean Std. Dev. Mean Std. Dev. 

Problems 0,54 0,70 0,17 0,47 0,004* 

Language 1,37 1,91 0,57 1,23 0,007* 

Concepts 2,22 2,01 0,87 1,58 0,002* 

Procedures 1,40 1,71 0,38 0,89 0,003* 

Properties 0,32 0,77 0,26 0,62 0,076 N.S. 

Arguments 0,37 0,62 0,26 0,62 0,066 N.S. 

* Differences statistically significant at 0,05. 

IMPLICATIONS FOR TRAINING THE TEACHERS 

Our results suggest that computing simple, compound and conditional probabilities 

from a two-way table was not easy for participants in the sample who showed a weak 

common knowledge of probability to solve this task. Many teachers were unable to 

provide an answer to the problems, in agreement with Estrada and Díaz‘ (2006) 

research, or made errors reported in previous research, particularly by Einhorn and 

Hogarth (1986) and Falk (1986). We agree with Falk that the everyday language we 

use to state a conditional probability problem lacks precision and is therefore 

ambiguous. However, a future teacher should master both the concept and the 

language used in teaching, particularly the language which today is part of statistical 

literacy, which is important for their students, and which they should transmit them. 

Participants also had difficulty in identifying and classifying mathematical objects in 

this task coinciding with Chick and Peirce‘s (2008) results, which suggest that the 

specialised knowledge of elementary probability was also poor. These results are 

cause for concern, since prospective teachers in our sample are likely to fail in future 

teaching of probability in some professional activities, such as ―figuring out what 
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students know; choosing and managing representations of mathematical ideas; 

selecting and modifying textbooks; deciding among alternative courses of action‖ 

(Ball, Lubienski, & Mewborn, 2001, p. 453). These activities involve mathematical 

reasoning and thinking, which were weak for these teachers when dealing with 

probability. To conclude these results suggest the need to reform and improve the 

probability education these future teachers are receiving during their training in the 

schools of education. 
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Most secondary teachers are familiar with the procedures of basic descriptive 

statistics, but they have not necessarily been prepared to interpret graphical 

representations of data or to reason about sampling distributions. In this 

exploratory research study in the United States, we investigate the understandings of 

eleven teachers who participated in a semester-long course, using Fathom, to 

develop their understanding of these concepts. We present the analysis of a pre- and 

post-test of content knowledge, the teachers‘ performance on two tasks, and their use 

of Fathom as a tool to simulate and represent sampling distributions.  

INTRODUCTION 

Over the last twenty years, researchers have made substantial progress in 

understanding students‘ conceptions of probability and statistics. Over this same 

time frame, there have been calls for a greater emphasis in schools on the inclusion 

of statistics topics throughout the curriculum (NCTM, 2000; Pfannkuch & Begg, 

2004). However, a vision of improved teaching and learning of school statistics 

relies heavily on the knowledge and skills of teachers to enact instruction that 

engages students in developing statistical reasoning. Unfortunately, considerably less 

progress has been made in understanding teachers‘ statistical reasoning. As 

Shaughnessy pointed out in his recent review of the research on statistics learning 

and reasoning, ―More research is needed on teachers‘ conceptions of statistics. 

Teachers have the same difficulties with statistical concepts as the students they 

teach.‖ (2007, p. 1000). The broad goal of the research reported in this paper is to 

contribute to the research base on teachers‘ understandings of statistics, with an eye 

towards characterizing the knowledge that teachers bring to tasks involving 

graphical representations of data distributions, including sampling distributions. 

These understandings are key to developing a robust understanding of statistical 

inference, a topic that is taught at the upper secondary level in the United States. In 

particular, we are interested in two questions: (1) how do secondary teachers 

interpret graphical representations of data and (2) how do secondary teachers reason 

about sampling distributions?  

BACKGROUND 

The statistics background for most secondary mathematics teachers in the United 

States is very limited (Shaughnessy, 2007). Some pre-service teachers will have had 

limited formal coursework in statistics, and often their experience of this coursework 

is somewhat removed from the statistical content that they will need to teach in the 
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secondary school. Such formal coursework in statistics would rarely address the 

specialized kinds of statistical knowledge that is needed for teaching that is different 

from just more statistical content, such as the potential misunderstandings that arise 

from students in the classroom (c.f., Shaughnessy & Chance, 2005). While many 

secondary teachers will be fluent with the procedures of descriptive statistics such as 

those in the study by Makar and Confrey (2004), teachers are likely to struggle with 

using graphical interpretations to data distributions. These researchers found that 

teachers were able to develop a robust understanding of distribution when working 

with data in a meaningful context, namely, interpreting test results for students, but 

the teachers encountered difficulty in distinguishing between the variability in a data 

set from that of a related sampling distribution. In their study with secondary 

teachers using Tinkerplots, Rubin and colleagues (Rubin et al., 2005) found that the 

shape of the distribution influenced the strategies that teachers used when comparing 

two distributions and that the teachers were more confident in their conclusions 

about symmetric distributions than about skewed distributions. As Pfannkuch (2006) 

points out, reasoning about data sets from their graphical representations is a 

complex task, requiring one ―to attend to a multiplicity of elements within and 

between box plots, and to make judgements.‖ (p. 29). For the teacher, the complexity 

of this task is further layered with the necessity of generating the kinds of talk that 

will communicate the concepts represented in box plots in ways that will build 

towards informal inference. 

While the most widely available technological tool for data analysis in the secondary 

classroom in the United States is the graphing calculator, this tool is more limited in 

its capabilities for learning data analysis than currently available software. Software 

designed for the learning of statistics (such as Tinkerplots or Fathom) provides the 

learner with opportunities to flexibly explore the data. The ―landscape-type‖ design 

(Bakker, 2002) of Fathom, in contrast to ―route-type‖ software tools, does not 

assume a particular learning trajectory for the teachers, but provides many routes for 

exploration. In her study of secondary teachers' comparing distributions, Madden 

(2008) argues that route-type tools can scaffold teachers' learning of both statistical 

content and new technology environments by moving from physical experiment to 

route-type tools to landscape-type tools. In addition, land-scape tools have the 

potential to support an ―expressive‖ approach to data modeling (Doerr & Pratt, 2008) 

that would allow teachers to create meaningful representations and interpretations of 

data and sampling distributions. In this study, we assume the reciprocal relationship 

between representations and models described by Rubin et al. (2005): "Not only does 

the model of data a person currently holds influence the representation she chooses 

to use, but the representation in turn influences the model of data she is developing." 

In this sense, the simulation and representational capabilities of Fathom can reveal 

the person's current way of thinking and support the development of that thinking.  



Working Group 5 

CERME 7 (2011) 778 

 

DESIGN AND METHODOLOGY 

This exploratory study was designed to gain insight into secondary teachers‘ 

knowledge about the graphical representation of data and sampling distributions. To 

this end, authors designed and taught a one-semester course that would engage 

teachers with a range of tasks involving the investigation and exploration of 

statistical concepts using the software package Fathom (Finzer, 2001). The statistical 

content of the course consisted of investigations into variation and distribution, 

sampling distributions, confidence intervals, and inferential statistics. In addition, the 

course included various readings and discussions about (a) the nature of statistical 

reasoning and how it compares to other forms of mathematical reasoning and about 

(b) secondary students‘ learning and statistical reasoning. 

The choice of Fathom was intended to support the teachers‘ learning by providing an 

interface that would allow them to flexibly explore multiple graphical 

representations (e.g. shifting between box plots, dot plots and histograms) while 

being able to easily compare data sets and to make changes to the data so as to 

explore conjectures. Fathom also provided the simulation tools necessary to create 

sampling distributions and representations of the population, the sample, and the 

sampling distribution. We saw this as critical to developing the teachers‘ knowledge 

of sampling. 

There were 11 subjects who participated in this study. Eight of the participants were 

pre-service teachers, two were in-service teachers, and one was a doctoral student in 

mathematics education. Eight of the participants were female and three were male. 

All participants had completed the equivalent of an undergraduate major in 

mathematics, with all but one having had at least one course in statistics. All 

participants completed a 20 item pre- and post-test of their statistical knowledge in 

six categories: graphical representations, sampling variation, inference, data 

collection and design, bivariate data and probability. These items were drawn from 

the Comprehensive Assessment of Outcomes in a First Statistics course (CAOS, 

https://app.gen.umn.edu/artist/caos.html). These items have been used with college 

students, and this study extends those results to this group of teachers.  

All participants completed two paper-and-pencil tasks prior to specific instruction 

that (a) required them to compare the standard deviation of two distributions, based 

on their graphs (delMas & Liu, 2005), and (b) to analyze the relationship between a 

population and a sampling distribution (Chance, delMas, & Garfield, 2004). As we 

anticipated, the teachers had many of the same difficulties as college students did 

with these tasks. Because of the difficulties, we designed a third task (described in 

more detail below) using Fathom that engaged the participants in investigating 

confidence intervals and how the number of samples and the size of samples affect 

the sampling distribution. The multiple display windows and the animation features 

in Fathom provided an opportunity for participants to build displays that showed the 

population, a particular sample, and the sampling distribution as it was being built.   
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RESULTS 

In this section, we first report on the results of the pre- and post-test. We then present 

the findings on two tasks on graphical interpretations. This is followed by a brief 

analysis of one participant‘s use of Fathom to represent her understanding of 

sampling distributions. 

Post-Test Results 

The post-test results suggest that there was an overall improvement in the teachers‘ 

understanding of the statistical concepts, as measured by the 20 items on the test, and 

this gain was significant (p<0.05), as shown in Table 1, n = 11. The only sub-area of 

the test where there was a significant difference from the pre-test to the post-test was 

in the area of graphical representations with six items. This result likely reflects the 

emphasis given to graphical representations and the extensive use of Fathom within 

the course.  

 pre-test mean 

(SD) 

post-test mean 

(SD) 

p-value 

Overall  n=11 
11.09 (4.23) 12.54 (3.96) 0.027 

graphical  

representation  n=11 

4.09 (1.45) 5.00 (1.79) 0.033 

Table 1: Pre-post test results for overall concepts and graphical representations. 

The first item among the six graphical representation items addressed the ability to 

describe and interpret a distribution displayed in a histogram. There was no change 

in this item from the pre- to the post-test, with 82% correct. The persistent error was 

misinterpreting the magnitude of the standard deviation of a near normal distribution 

as too small. Performance on the second item increased from 64% correct to 73% 

correct; the most common error was tending to select a normal distribution that did 

not make sense in the context of the problem. Items three and four addressed the 

ability to interpret the median and the quartiles in a box plot; these two items went 

from 73% to 91% correct and 55% to 82% correct. The error made on item four was 

incorrectly reasoning that the boxplot with a longer upper whisker would have a 

higher percentage of data above the median. On item five, which tested the 

understanding that a distribution with the median larger than the mean is likely 

skewed to the left, the correct response rate went from 64% to 82%. All participant 

errors on item five (both pre- and post-test) were incorrectly selecting a somewhat 

symmetric, mound-shaped graph. On item six, which addressed the ability to 

estimate standard deviations for different histograms, there was a change from 73% 

to 91% correct. Taken together, these results seem to suggest a tendency for some 

teachers to have more difficulty interpreting skewed distributions than symmetric 

distributions and a tendency to incorrectly choose a normal distribution. 
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Graphical Interpretations of Standard Deviation 

Early in the course, we gave the participants the task from delMas and Liu (2005) on 

interpreting standard deviations graphically to the participants. Three of these items 

(#4, 8, and 10) are shown in Figure 1. The mean and the standard deviation are 

displayed for the graph on the left, but only the mean is displayed for the graph on 

the right. The participants were asked to determine whether the standard deviation 

for the graph on the right was greater than, less than, or equal to the standard 

deviation for the graph on the left. As delMas and Liu point out, test item 4 ―was 

specifically designed to see if students understood that given the same frequencies 

and range, a distribution with a stronger skew tended to have a larger standard 

deviation‖ (2005, p. 63). According to delMas and Liu, test items 8 and 10 were 

―designed to challenge the belief that a perfectly symmetric and bell-shaped 

distribution will always have a smaller standard deviation. Students were expected to 

find these items more difficult than the others.‖ (2005, p.63). Unlike the students in 

delMas and Liu‘s study, the participants in our study had more difficulty with item 

10 than item 8. 

 

     

Figure 1: Comparing standard deviations graphically. 

Of the ten participants who completed this task, four incorrectly answered that the 

standard deviations of the two distributions shown in item #4 were equal. This 

suggests that these participants are not attending to how skew affects the standard 

deviation. For item 8, four of our participants incorrectly concluded that the graph on 

the right had a smaller standard deviation, despite the fact that the graph on the left 

has a smaller range and represents a smaller number of values. This suggests that 

these participants might have reasoned that the symmetry of the bell-shaped curve 

with a large portion of the density centered about the mean would result in a smaller 

standard deviation.  
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For item 10, the graph on the right appears to have less density around the mean, but 

at the same time, it has a smaller range and represents a smaller number of values. As 

delMas and Liu point out, a reasonable response to both items 8 and 10 could be that 

the standard deviations needed to be calculated in order to determine how they differ. 

In their study, many of the students used calculations to come to a correct answer. 

Those who did not calculate came to the same incorrect conclusion as nearly all of 

the participants in this study. Only one of the ten participants answered this item 

correctly. Seven concluded that the distribution on the right had the greater standard 

deviation. One of the remaining two students concluded that the standard deviations 

were equal and the other answered with a question mark. These results suggest that 

these participants might be assuming that a symmetric normal distribution minimizes 

the standard deviation. The results also point to the difficulties in determining the 

standard deviation from a graph when having to interpret combined effects of density 

about the mean, range, and frequency.  

Graphical Interpretations of Population Distributions and Samples 

We asked our participants to compare the shape and the variability of a sampling 

distribution to a population, based on a task described in Chance, delMas and 

Garfield (2004). Prior to specific instruction, we asked our participants which of the 

graphs in A through E represented a distribution of sample means for 500 samples of 

size 4 and of size 16, based on the population distribution shown in the upper left in 

Figure 2. We asked them to state whether these sampling distributions would have 

less, more or the same variability as the population and as each other. The results of 

this task are shown in Table 2 and Table 3. 

 

Figure 2: Population distribution from Chance, delMas, & Garfield (2004), p. 321 



Working Group 5 

CERME 7 (2011) 782 

 

Only 4 of the 11 participants chose the correct response (C) when asked for the 

distribution of sample means for 500 samples of size 4. When asked for the 

distribution of sample means for 500 samples of size 16, only 5 of the 11 participants 

chose the correct response (E). For both items, the majority of participants chose 

distributions that indicate a belief that the sampling distribution should look like the 

population. This is a common misconception held by students (Chance, delMas & 

Garfield, 2004). The choice of response B for the second item would indicate that 

some participants believed that the sampling distribution continued to look like the 

population as the sample size increased, but with reduced the variability. 

responses   A B C D E 

sample means of size 4 2 0 4 5 0 

sample means of size 16 2 4 0 0 5 

Table 2: Possible distributions of sample means drawn from a population 

As shown in Table 3, most participants (7 out of 11 and 10 out of 11) correctly 

compared the variability of the samples of size 16 to both the population variability 

and the variability of the samples of size 4. However, when comparing the variability 

of samples of size 4 to the variability of the population, 5 of the participants 

incorrectly expected the samples of size 4 to have more variability. This 

misconception is particularly interesting given that nearly all of the participants 

correctly compared the variability of a sample of size 4 to a sample of size 16. We 

speculate that these participants might be confusing the variability of a single sample 

with the variability of the sampling distributions. This needs further investigation. 

responses less same more 

samples of size 4 compared to 

population 

6 0 5 

samples of size 16 compared to 

population 

7 3 1 

samples of size 16 compared to 

samples of size 4 

10 0 1 

Table 3: Comparing the variability of the sample distributions 

Representing the sampling distribution using Fathom 

Given the difficulties that a number of participants had with the previous task, we 

designed a task using Fathom to help participants better understand the three levels 

of abstraction that are present in a sampling simulation: (1) the population; (2) a 

particular sample from the population; and (3) the collection of measures that result 

from repeated sampling. This task consisted of two parts: the first part of the task 

asked the participants to set up a simulation in Fathom and investigate how the 
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sampling distribution of a summary statistic compared to the population distribution 

and how changing the number of samples and the sample size affects the sampling 

distribution. The participants successfully completed this first part of the task using a 

collection of 100 random rectangles (Key Curriculum Press, 2002, p. 127).  

The second part of the task asked the participants to create a display that could be 

used to help students understand the difference between the population distribution, 

the sample, and the sampling distribution. This creation of a display that could be 

understandable to a learner was a substantial shift in the nature of the task that the 

participants were engaged in. Rather than convincing themselves about the 

relationships involved, the participants now shifted their attention to create a 

representation that could be used to illuminate the relationships among the 

population, a sample and the sampling distribution of a particular statistic. The work 

of one pre-service teacher is shown in Figures 3 and 4 and is representative of the 

kind of displays most participants created.  

  

Figure 3: Juxtaposing the population, the sample and the population distribution 

This pre-service teacher displayed the entire population of 100 rectangles, next to a 

randomly chosen sample of 10 rectangles along with a histogram showing the 

distribution of the areas along with the summary statistics for the entire population 

(as shown in Figure 3). The next section of her display (shown in Figure 4) 

juxtaposed a table that summarized the dimensions of each of the ten rectangles in 

the randomly drawn sample and the distribution of the areas for that sample. Just 

below this, she positioned a table (lower left in Figure 4) that showed the mean, 

median and maximum area for each sample of 10 rectangles up to 101 such samples. 

Next to the table is the graph of the distribution of the sample means. The pre-service 

teacher created this display with the animation feature of Fathom turned on so that 

she could see the sample distribution changing with each sample of 10 rectangles, 

while the sampling distribution was slowly being built and taking on the shape of a 

normal distribution. All participants introduced dynamic elements of animation into 

their displays, which are not fully captured by static snapshots.  
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This display suggests that this pre-service teacher was separating the three levels (or 

tiers as Madden (2008) refers to them) of abstraction that one needs to understand in 

order to grasp the concept of the sampling distribution. By using the simulation 

capabilities of Fathom, along with its flexibility in selecting representations, this pre-

service teacher has clarified the distinction between the population, the sample, and 

the collection of sample means. The animation feature seemed to make visible how 

the sampling distribution is built over time as samples are collected. This particular 

display has the potential to help the pre-service teachers avoid confusing the 

population distribution with the sampling distribution as seen in the second task 

reported above. On a related item on the pre- and post-test, that asked participants to 

select an appropriate sampling distribution for a particular population and sample 

size, we found that the response rate went from 45% to 64% correct.  

 

Figure 4: A snapshot of a dynamic display building the sampling distribution 

DISCUSSION AND CONCLUSIONS 

The results of this study provide some evidence that, as Shaughnessy (2007) argued, 

teachers have some of the same difficulties with statistics as do students. We note 

that a limitation of this study is the small number of participants and that while there 

was a statistically significant gain on the post-test, this gain was small and largely in 

the area of graphical representations. Consistent with the findings of Makar and 

Confrey (2004) and Rubin et al. (2005), we found that some teachers had difficulty 

interpreting skewed distributions and tended to inappropriately choose symmetric 

normal distributions. This was evidenced when having to interpret how the combined 

changes in density about the mean, range and frequency affected the standard 

deviation. It is likely that these secondary teachers‘ prior learning of statistics 
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focused largely on the computational algorithm for standard deviation. Extending the 

results of Chance et al (2004), we found some teachers, like students, had a tendency 

to see the sampling distribution as having the same shape as the population 

distribution. Most teachers correctly reasoned about the variability of the distribution 

of larger samples, but incorrectly expected greater variability in the sampling 

distribution of smaller samples when compared to the distribution of the population. 

We found nearly all participants were able to create animated displays with Fathom 

that brought clarity to the three levels of abstraction that are present in any sampling 

distribution. This suggests that a land-scape tool such as Fathom has the potential to 

make visible teachers‘ models of statistical concepts. 
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This report focuses on a research programme that aims to identify the ability to cope 

with basic statistical concepts of young students (primary school and secondary 

school) without schooling in statistics, and to identify the students‘ mental models 

when acting within simple statistical situations. Firstly, the basic elements of the 

theoretical framework of the research programme will be outlined. Afterwards the 

method and exemplary results of a pilot study will be discussed. Finally, these results 

will be evaluated with regard to follow-up studies. 

Keywords: mental models, basic statistical concepts, statistical knowledge  

INTRODUCTION 

About 60 years ago, Piaget and Inhelder (1951) published their seminal work 

referring to the development of thinking with probabilities. Nowadays, a huge 

amount of subsequent research exists that, on the one side, replicates the well known 

levels of the student‘s development of probabilistic thinking but, on the other hand, 

modifies, enhances or contradicts the findings of Piaget and Inhelder (Jones et al., 

2007). Overall, however, we have a substantial knowledge about the development of 

the (naïve) probabilistic thinking of young students which is a basis to decide on the 

time to introduce probabilistic concepts in schools (Fischbein, 1975). 

In recent years statistics instead of probability seem to become both the essential part 

of the stochastics curriculum in many countries, and a crucial part of the research 

into stochastics education (Shaughnessy, 2007). The majority of the existing research 

approaches in this field are intervention studies, trying to investigate how instruction 

promotes the students‘ statistical thinking (Ben-Zvi & Garfield, 2004; Shaughnessy, 

2007). In addition, researchers developed theoretical frameworks towards statistical 

acting (e.g. Wild & Pfannkuch, 1999). However, in contrast to the research on 

students‘ probabilistic thinking, Mokros & Russel (1995) suggested 15 years ago 

that we knew little about students‘ development of a statistical thinking without 

statistical schooling and the situation has not improved today. Nonetheless, empirical 

knowledge about students‘ naïve knowledge of basic statistical concepts and 

statistical situations is important in order to adequately design a statistics curriculum, 

and to avoid students‘ misunderstandings referring to statistical concepts or 

statistical methods (Fischbein, 1975). For this reason in this paper we will discuss 

the first phase of a research programme that has the main aim: 

 to identify the naïve knowledge represented by mental models of young 

students (aged 9 to 18) regarding basic statistical concepts and situations, and 

 to investigate the development of this knowledge depending on age. 
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To discuss our research approach, firstly, we will clarify basic elements of our 

theoretical framework. Afterwards, we will discuss the method and provide some 

examples of the main results of a pilot study of our ongoing research. The pilot study 

itself consists of the following aims: 

 to prove several tasks with regard to their adequateness for investigating 

students‘ naïve knowledge towards different statistical concepts and situations, 

 to get information about whether students actually show different mental 

models by working with different statistical tasks, and 

 to explore whether it is possible to identify differences in the students‘ ability 

to cope with basic statistical concepts and situations depending on age. 

THEORETICAL FRAMEWORK 

The theoretical framework involves two components. The first part deals with the 

identification of possible subjects and competencies that may represent students‘ 

basic statistical knowledge. The second part involves the discussion of students‘ 

development of thinking concerning statistical concepts. 

Statistical Reasoning and Prior Statistical Knowledge  

Wild and Pfannkuch (1999) suggested five aspects to be the main thinking processes 

in acting statistically. They considered them as being independent from the expertise 

of the actor. These five processes are 

 the recognition of the need for data, 

 transnumeration, 

 the consideration of variation, 

 reasoning with statistical models, and 

 integrating the statistical and contextual information, knowledge, conceptions. 

Except for the second type of reasoning, these components are not necessarily based 

on the students‘ prior statistical knowledge gained through schooling. Thus, it should 

be possible to identify them as parts of young students‘ naïve knowledge concerning 

statistical concepts.  

While the five aspects of the statistical thinking represent an individual‘s statistical 

acting beyond specific statistical topics, several topics were declared to be central 

referring to statistical knowledge, i.e. sampling, central measurement and variation, 

distribution, graphical representation of data, or regression and correlation (e.g. 

Curcio, 1989; Mokros & Russel, 1995, Bakker 2007).  

Students Development Concerning Statistical Thinking 

A main assumption for this research is that students‘ competencies in basic statistical 

concepts develop with age. Unlike Piaget and Neo-Piagetians like Case (1992) we 
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assume that this development cannot be described adequately by a staircase model. 

We follow Siegler (1996) who postulated the development of children‘s thinking had 

to be considered as ―overlapping waves‖. The fundamental idea of his approach is 

making allowance for the observable variability of children‘s thinking. This 

variability depends on different factors, like specific circumstances, requirements 

and available knowledge, which influence a child‘s concrete actions within different 

situations. Based on several empirical studies Siegler provided evidence for high 

inter-individual as well as intra-individual variability when using complex strategies 

for solving problems (e.g. Siegler, 1995; Schauble, 1990).  

The theory of mental models (Johnson-Laird, 1983) incorporates the situation‘s 

impact on cognitive processes, too. This theory suggests that, when interacting with 

(statistical) demands of a specific situation, the learner builds a mental model in 

order to simulate relevant aspects of the situation to be cognitively mastered (cf. 

Seel, 2001). Mental models are of dynamic nature: They are not to be seen as being 

fixed structures of memory; mental models are constructed according to a task and its 

requirements within a situation representing the structure or the function of the 

modelled object (Schnotz & Bannert, 1999). Thus, mental models concern the 

situation and they also facilitate to differentiate the students‘ cognitive development 

(or maturation) in using basic statistical concepts. Furthermore, tasks concerning 

statistical thinking and statistical knowledge contain information a student could 

proceed and internalize in a mental model being specific with regard to his or hers 

individual abilities, pre-knowledge and apperception of the task‘s representation. 

According to the information process model of Schnotz & Bannert (1999), the 

elements of a mental model may be changed, enriched or modified during the 

persistent mutual processes of internalizing and externalizing, when a student is 

working on a statistical task but they do not disappear at all. Thus, information about 

statistical mental models, and hence statistical thinking and statistical knowledge, 

could be made available by analyzing the tasks (content, representation), the learners 

specific situation (experience and pre-knowledge with regard to statistical content, 

statistical methods and statistical context) and the learners outcomes (written or 

spoken responses) after working on the tasks.  

Not the statistical mental models themselves are claimed to be captured, but the 

researchers‘ reconstruction of these models based on learning outcomes. It is obvious 

that different students will show different grades of performance. A categorization 

system describing different performances that is often used in statistics education is 

based on the SOLO model of Biggs and Collis (1982). In the adaptation of Watson 

and Moritz (2003), this model has four levels or rather modes, i.e. 

 the prestructural mode: students solve a task using irrelevant information, 

 the unistructural mode: students solve a task using an isolated information, 

 the multistructural mode: students solve a task using a set of information, 
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 the relational mode: students solve a task using a set of information and 

considering an interconnected knowledge of context and statistical concepts. 

Although alternative models exist to describe students‘ performances in acting with 

specific statistical tasks (e.g. Watson et al., 2003), in the pilot study we used the 

model outlined above only, but consistently, since the scope of statistical tasks in the 

pilot study encompassed different basic statistical concepts.   

In summary, using this theoretical framework the underlying aim of the pilot study 

was to get information about students‘ ability to cope with basic statistical concepts 

within different situational requirements. A further aim was to see if and how it 

could be done to reconstruct students‘ potential mental models when working on 

different statistical situations.  

METHOD 

To investigate different aspects of students‘ naïve knowledge concerning basic 

statistical concepts and situations we have designed tasks referring to  

 central measurement, 

 variability of statistical data, 

 proportional reasoning involving the students consideration of variability,  

 interrelation of bivariate data, and 

 simple random experiments. 

The design of the tasks was based on the research literature as mentioned above. 

Some of these tasks were adopted without changes, some other tasks were modified, 

and some new tasks were developed. Every task contains a decision-making process 

in a statistical situation and an open-ended item in which the student had to justify 

the decision. The particular aim of the pilot study was to investigate whether the 

students of different age were able to work with these tasks and whether these tasks 

could be useful to identify students‘ mental models when acting with different 

statistical situations. 

Figure 1 shows two of the tasks. The first task, called the frog-task, deals with the 

students‘ mental models referring to proportional reasoning and variability of 

statistical data. The second task, called the die-task, deals with the students‘ mental 

models referring to a simple random experiment (Figure 1). 

Both items have adequate normative solutions. For instance, estimating 100 frogs in 

field 3 after 100 jumps or choosing the ordinary die in the second task are inadequate 

solutions. Our main focus in analysing students‘ solutions, however, was to code 

students‘ different performances in justifying their solution according to the four-

level-model of Watson and Moritz (2003). In this study we coded no solution with 0, 

a solution that matches the prestructural mode with 1, a solution that matches the 
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unistructural mode with 2, a solution that matches the multistructural mode with 3, 

and, finally, a solution that matches the relational mode with 4. We also tried to 

identify different mental models that were, potentially, the basis of the students‘ 

justifications of their solutions. 

 

Andrea lets the frog jump ten times from the 

starting line. The frog ends in field 1 once, in 

field 2 twice, in field 3 seven times, and never 

in field 4. 

Make an estimation: 

How often will the frog get to field 3 after 100 

jumps? Justify your answer. 

How often will the frog get to in field 3 after 

1000 jumps? Justify your answer. 

How often will the frog get to field 4 after 1000 

jumps? Justify your answer.  

 

You will win a game if one die 

shows 3 the first time you throw. 

 

Which of the two dice would you 

choose to win this game? 

Why have you chosen this die! 

Figure 1: The frog-task (left side) and the die-task (right side) 

To identify possible differences in the performances of the students‘ solutions 

depending on both the students‘ age and the students‘ specific situation (experience 

and pre-knowledge with regard to statistical content, statistical methods and 

statistical context; see above), we selected samples of students in different grades. 

The samples answering the two tasks we discussed above are shown in Table 1. 

die-task frog-task 

Grade [age] Sample size Grade [age] Sample size 

2 [7-8] 19 4 [9-10] 21 

4 [9-10] 25 10 [15-16] 45 

8 [13-14] 65 12 [17-18] 23 

11 [16-17] 17   

 n = 126  n = 89 

Table 1: Sample sizes in the pilot study 

All primary students and most of the students in higher grades had never learned 

about statistics in school before taking the test. There were only a few students who 

had gained mostly little statistical experience along their schooling. 
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As we proceed, we begin with the discussion of students‘ solutions of the die-task. 

Afterwards, we will discuss the results in a broader sense including open questions 

that have arisen from the results of our first research step, and including possible 

next research steps. 

SOME RESULTS OF THE DIE-TASK 

The die-task provides the following question (see Figure 1): ―Why have you chosen 

this die?‖  

A grade 4 student who chose the ordinary die justified his solution as follows: 

―Because, it will spin better‖. This student provided an inadequate solution on the 

one side and, on the other side, referred to a physical feature of the die, which is 

irrelevant in the statistical situation of choosing one of the two dice. For this reason, 

we coded his solution with 1 (representing the prestructural mode). 

Another grade 4 student justified his selection of the cubic-die as follows: ―Because 

the side is bigger. Thus, you get the three faster.‖ The student referred to a single 

physical feature of the die which is relevant for an adequate choice of one of the two 

dice. The student was not able, however, to describe the relationship between the 

different sizes of the sides of the cuboid-die, and, respectively, the different sizes of 

the side showing the 4 on both dice. For this reason, we coded this justification with 

2 (unistructural mode). 

A third student (grade 8) justified his selection of the cuboid-die as follows: 

―Because the first die has sides of the same size, which is not the case for the second 

one‖. This student compared the two dice according to a relevant physical feature, 

and, thus, used a set of relevant information in the statistical situation. For this 

reason, we coded this justification with 3 (multistructural mode). 

Finally, one student (grade 8) justified her selection of the cuboid-die as follows: 

―The sides showing the 3 and the 4 are bigger than the others. For this reason, the 

chance of getting a 3 is about 2/8 (two eighth), thus 1/4 (one fourth). This chance is 

bigger than 1/6 (one sixth) in the other die.‖ This student considered a lot of relevant 

information. She compared the symmetrical areas of the cuboid-die showing the 3 

and the 4 and estimated a probability by comparing all the areas of the die. She also 

showed knowledge about the probability of the ordinary die and was able to compare 

these probabilities. Thus, we coded this justification with 4 (relational mode). 

In Table 2 the absolute numbers of students‘ justifications in the whole sample 

(n=126) that were coded from 0 to 4 is shown. The justifications are divided into 

those that are given concerning the cuboid-die (r: right) and the ordinary die (w: 

wrong).  

Three results of the descriptive analysis can be pointed out:  

 The students‘ ability to select adequately the cuboid-die seems to increase by age. 
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 The students‘ performance in formulating a justification for their choice of one of 

the two dice seems to increase by age, as well. 

If the students choose the inadequate die, they show a low performance in justifying 

their choice. 

Code Grade 2 

 

Grade 4 Grade 8 Grade 11 

 n = 19 n = 25 n = 65 n = 17 

 r w r w r w r w 

0 0 0 0 0 0 0 0 0 

1 5 14 4 12 8 8 1 1 

2 0 0 6 0 44 0 12 2 

3 0 0 2 1 4 0 1 0 

4 0 0 0 0 1 0 0 0 

Sum 5 14 12 13 57 8 14 3 

Table 2: Absolute numbers of codes concerning the students‘ justifications 

SOME RESULTS OF THE FROG-TASK  

The coding of the students‘ justifications in the frog-task was based on 

considerations similar to the die-task. Although we coded the justifications to the 

four answers of the frog-task as a whole, we illustrate the codes from 1 to 4 by 

presenting only justifications to the last question (―How often will the frog get to 

field 4 in 1000 jumps?‖): 

1: ―250 times. The chance that the frog will get to each of the four fields is 25%.‖  

2: ―0 times. 1000 is a hundred times larger than 10 and, thus, we have to multiply 0 

(number of frogs having reached field 4 by jumping 10 times) by 100.‖ 

3: ―8 times. Because getting to field 4 seems to be more difficult.‖ 

4: ―0-10 times. The more often the frog will jump, the bigger is the chance that the 

frog will get to field 4.‖  

The justification of the first student (grade 10) describes an equal-probability model, 

which is an inadequate model in the statistical situation of the frog-task (which 

would imply a distribution of jumps according to the normal distribution). The 

justification of the second student (grade 12) describes a fixed proportional model 

without consideration of variation. In contrast, the third student (grade 4) seems to 

grasp the idea of variation implicitly and in an unsophisticated way. Finally, the 

fourth student (grade 12) showed a more sophisticated understanding of variation 

and of the relationship between variation and the number of jumps. Table 3 shows 

the absolute numbers of students‘ justifications in the whole sample (n = 89) that 

were coded from 0 to 4.  

Regarding the results of the descriptive analysis, it is important to state that:  
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 the performance of the students‘ justifications seems to increase with the 

student‘s age. However the increase is low in comparison to the die-task and, for 

instance, one student of grade 4 (see above) showed a higher performance as a 

student of grade 10 and even a student of grade 12; 

the performance of the students‘ justifications is higher compared to the justifications 

referring to the die-task. 

Code Grade 4, n = 21 Grade 10, n = 45 Grade 12, n = 23 

0 0 1 0 

1 7 5 3 

2 10 19 11 

3 4 17  6 

4 0 3 3 

Table 3: Absolute numbers of codes concerning the students‘ justifications  

DISCUSSION 

The results of the first step of our on-going research have to be interpreted carefully. 

These results, though, should facilitate the finding of appropriate questions and the 

phrasing of adequate hypotheses referring to students‘ ability to cope with basic 

statistical concepts. Taking into account these constraints the following aspects 

seem, nevertheless, to be worthwhile being considered in follow-up studies. 

Firstly, the results concerning the two tasks as well as for other tasks gave evidence 

that students‘ ability to cope with basic statistical concepts and to justify decisions in 

different statistical situations are dependent on age (see the results in both tasks). 

This hypothesis will be investigated in a follow-up study involving randomised 

samples of students of different grades. Although there seems to be a correlation 

between the students‘ performance concerning different tasks, students of the same 

age also justify their acting in a statistical situation in considerably different ways 

(see for example the two students of grade 12 concerning the frog-task). Further, 

there is some evidence that, partially, students formulate different justifications in 

tasks that are structurally equivalent. Both results meet the Siegler‘s theory of 

―overlapping waves‖ in children‘s thinking (Siegler, 1995).  

There is some evidence that students use different mental models coping with 

statistical situations. Although it is, theoretically, not possible to identify the mental 

model a student actually uses, research results seem to reveal some indication of 

equivalent inter-individual mental models. For instance, some of the students 

neglected in both tasks the randomness of the data‘s genesis or, respectively, the 

randomness of future data (e.g., the student we coded with 0 in the die-task). Another 

pattern concerns the omnipresence of the fair chance: Neglecting the information 

given in the frog-task, these students estimate future events consistently based on the 

model of an equal-probability (see the student, we coded with 0 in the frog-task).  
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According to the theory of mental models, we found great differences in the 

students‘ ability to cope with statistical situations depending on the representation of 

the task. For instance, students‘ seemed to use significantly different mental models 

when the die-task was represented by two real dice, the picture of the dice (c.f. the 

die-task discussed above), or the description of the two dice. We also hypothesise 

that different representations of other statistical situations will have a great impact on 

the students‘ ability to cope with these statistical situations. For instance, the frog-

task using the picture of the statistical situation shown in Figure 1 could be 

compared to the same task involving a picture of a real experiment or more abstract 

graphical representations of the situation, e.g. a dot plot. 

Two important questions were not investigated in our pilot study: Do we measure the 

students‘ ability to cope with statistical situations or do we only measure the 

students‘ ability to communicate their ideas? Do the differences in communicating 

decisions and their justifications in a statistical situation contrast with a student‘s 

acting in the same situation? The outward appearance of the written justifications of 

students of different age varies considerably (c.f. Figure 2 to 5). At the current stage 

of our research programme, however, we postulate that a student‘s ability to cope 

with statistical situations is similar to the student‘s ability to verbalise his decisions 

and his decisions‘ justifications in a statistical situation.  

Two follow-up-studies are being undertaken currently on the dependence of 

students‘ ability to cope with basic statistical concepts from age and on the students‘ 

different mental models by coping with statistical situations that will be—in the first 

step— structured using the SOLO taxonomy but will be described by a more 

differentiated systems inductive developed categories. From both studies which will 

include quantitative and qualitative parts we expect to get a better understanding of 

students‘ (naïve) knowledge concerning statistical concepts and students‘ (naïve) 

statistical thinking. 
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Abstract: This work is focused on the knowledge that two teachers of Statistics have 

about instructional representations and strategies in the teaching of statistical 

graphs. The instructional representations they use for teaching are definitions and 

explanations, questions, examples and exercises, and instructions; all of them 

centered on explanations, the use of examples and prototypic exercises, and the 

construction of graphs. Occasionally, the manipulation of data and graphs is used to 

explore the meaning of previous concepts and explore the characteristics and 

elements of the graph. 
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INTRODUCTION 

Pedagogical content knowledge (PCK) emerges from Lee Shulman‘s theoretical 

framework entitled ―the knowledge base for teaching‖. This knowledge base 

consists of seven categories, three of which are content related: (a) content 

knowledge (CK), (b) pedagogical content knowledge (PCK), and (c) curriculum 

knowledge. The other four categories refer to general pedagogy, learners and their 

characteristics, educational contexts, and educational purposes (Shulman, 1987). 

Within the category of PCK, Shulman (1986) included three closely connected key 

elements or domains of knowledge: the subject matter knowledge for teaching, the 

knowledge of instructional representations and strategies, and the understanding of 

specific learning difficulties and students‘ conceptions (Pinto & Gonzalez, 2006).  
The purpose of this research is to explore the PCK of two teachers who teach 

Statistics focusing on the topic of statistical graphs in schools of Psychology and 

Education. In this paper we present exclusively what corresponds to one of the three 

elements of PCK, i.e. the knowledge of instructional representations.  

Instructional representations 

Instructional representations are ―ways of talking, showing, enacting, or otherwise 

representing ideas so that the unknowing can come to know, those without 

understanding can comprehend and discern, and the unskilled can become adept‖ 

(Shulman, 1987, p.7). Therefore, the teacher must bear in mind both to the possible 
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meanings within the subject, and the comprehension that his or her students are able 

to reach.  

McDiarmid, Ball & Anderson (1989) apply the term instructional representation to 

―a wide range of models that may convey something about the subject matter to the 

learner: activities, questions, examples, and analogies, for instance‖. The sources 

from which instructional representations derive are two; those originated from the 

teacher himself and those originated from outside. The forms of instruction in the 

first group are: worksheets, activities, explanations, questions and answers that 

teachers provide their students with. The second group of representations derives 

from the curricular materials (textbooks, guidelines for the teacher, equipment, 

software, films and videos), courses or workshops for teachers and experiences 

shared by colleagues in the school context. 

Regarding the type of representation there are different forms. Shulman (1986) 

mentions some: analogies, illustrations, examples, explanations and demonstrations. 

Llinares, Sanchez & Garcia (1994) suggest additionally drawings and the graphical 

representations found in books or those provided by the teacher on the board. Even 

and Tirosh (1995) present questions, activities and discussions linked with the 

mathematical content as examples of representations. McDiarmid, Ball & Anderson 

(1989) also talk about verbal expositions, diagrams, simulations, dramatizations, 

and content analysis; verbal, symbolic, graphic or concrete representations stand out 

as inherent to mathematical content. Furthermore, Putnam & Borko (2000) discuss 

models and metaphors. 

Shulman (1986) states that a teacher should select and use a wide repertoire of 

representations, according to the specific content in question, which highlights the 

importance of the teacher‘s knowledge of instructional representations linked to the 

topics being taught and the way the teacher uses them (Llinares, Sanchez & Garcia, 

1994). 

Statistical graph 

We will focus specifically on knowledge of the instructional representations of a 

specific topic: statistical graphs. A statistical graph is a ―construct which was 

developed in specific cultural contexts to mediate interpretation of data… an activity 

which is related to a complex range of elements and processes‖ (Monteiro & Ainley, 

2006, p.1) and it is considered a reasoning tool to learn something new about the 

context it represents, gain new information or learn from the data (Pfannkuch, 2006). 

For this reason, teachers should develop PCK that will help them design activities to 

increase the conceptual understanding of statistical graphs in their students, based on 

the relationships between the main components of the graph and the necessary 

process for its interpretation (Friel, Curcio & Bright, 2001). 

Each instructional representation for teaching and learning statistical graphs favours 

certain conceptions that are transmitted to the students. For example, Meletiou & 
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Stylianou (2003) considerer that when students use technology this enables them to 

engage in interpretation and translation of graphically represented information. 

Thompson (1994) proposes a strategy to incorporate significative data from the 

student, Curcio (1989) sequence a set of activities to develop graphical 

understanding, and Peden (2001) shows an activity from four data sets to capture and 

select, analyze and interpret the best graph. Moreover Cazorla & Santana (2006) 

show examples of problem situations of interest either for quantitative or for 

qualitative analysis to understand the characteristics of graphs. Moore (2000) 

suggests using appropriate software to make graphs, group problem solving and 

discussion, written and oral presentations and projects.   

However, several studies in statistics education (Burgess, 2002; Monteiro & Ainley, 

2006) have concluded that the difficulties for the teaching and learning statistical 

graphs as well as a limited repertoire of instructional representation, clearly 

exemplify the training that statistics teachers have. 

THE RESEARCH 

This research focuses on the representation of statistical data, specifically graphical 

representation, which is one of the first topics in any introductory course in statistics 

at any school level, as well as the point of departure for the statistical analysis 

process in a group of data and a basic element in statistical thinking (Pfannkuch & 

Rubick, 2002). 

Considering this view, the critical issues that we wanted to establish were: How does 

a teacher plan his/her classes? What kind of knowledge does he/she have about the 

instructional representations of the content that is being taught? What kind of 

activities does he/she use in teaching? How does he/she use them? We did not 

attempt to characterize or typify teacher‘s knowledge, but to understand and go 

deeper into his/her knowledge, to know how it is used to teach statistical content in 

his/her classes. 

In order to achieve this, two cases were selected (Alicia and Luis) on the basis of the 

following criteria: knowledge about the topic of statistical graphs (SG), different 

initial training (a mathematician and a psychologist), a teacher who taught Statistics 

in a school of Psychology and the other in a school of Education, different teaching 

experience in Statistics, willingness and motivation to collaborate and share their 

thoughts and knowledge, as well as a positive attitude towards learning. Both 

teachers teach at a public university located in Mérida, México. 

The following instruments were used for data collection: the syllabus of each 

Statistics course (Sy), a contextual and biographical interview (I1), a didactics 

questionnaire with four hypothetical teaching-learning situations about SG (Q1 to 

Q4), each of them with different items (1a,1b..), an in-depth interview about their 

answers to the questionnaire (I2), and the materials used for the teaching of SG 

which included class notes (Not), exercises (Exe), Exams (Exa), course programs 



Working Group 5 

CERME 7 (2011) 800 

 

(Pro), textbooks (Txt), student notebooks (Sno), presentations (Pre) and web pages 

(Web).  

RESULTS 

From the answers to the questionnaire and the interviews and from the materials used 

in their classroom we have classified the instructional representations used by Luis 

an Alicia to teach SG in their classroom in five types: definitions and explanations, 

questions, examples and exercises, instructions and data and graphical manipulation. 

Alicia uses the first four, and although Luis uses other types of instructional 

representations (project based learning and case study) in his classroom, the only 

ones linked to SG are questions and data and graphical manipulation. These 

instructional representations are discussed by Shulman (1986) (explanations and 

examples), Even & Tirosh (1995) and Peden (2001) (questions, activities), Curcio 

(1989) (activities) and Meletiou & Stylianou (2003) (using technology).  

We will describe the characteristics of each of them as follows using only certain 

excerpts regarding each of the teachers as illustrations considering that they repeated 

the same ideas though out the documents we have analyzed. 

Definitions and explanations 

Definitions are a description of topics 

that appear at two points of the 

explanations: as a closure of an 

inductive process after an explanation 

as a synthesis or conclusion, or to 

begin a new topic. For instance, to 

start to work with the histogram, 

Alicia presents its definition showing 

some of its characteristics, indicating 

the kind of variable associated to the 

graph, and then provides an example 

with the criteria for its construction 

specifying the sequence of steps that 

the students should follow. 

 Graph 

Bar Graphs allows a simple visualization of the 

distribution of qualitative data for absolute frequencies 

and relative ones. On the horizontal axis the categories are 

represented and on the vertical axis, in a continuous line, 

the values from zero to the maximum reached by the 

frequencies.  

The frequencies are shown by the height of the bars, and all 

of them have the same width.   

 

Figure 1. Translation of a definition used by Alicia (Sno.01) 

Definitions come, generally, from textbooks (Txt) or course notes (Not) that Alicia 

uses in her classrooms and she dictates them to the students or writes them up on the 

board for them to copy. These definitions are supplemented with explanations where 

every characteristic of the graphic is commented, clarified, described and supported, 

for example indicating what kind of a variable each graph is useful for. 
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Questions 

Questions are instructional representations posed to the students in order to help 

them reflect on the characteristics of SG. They vary according to the context in 

which they are asked:  those related to the teacher´s knowledge of the teaching of SG 

or those generated from the hypothetical situations that were proposed in the 

questionnaire. 

In the first context Alicia and Luis used questions as a resource to develop statistical 

reasoning, to find out if the concept was understood, to reinforce acquired 

knowledge or to identify mistakes. 

38  Alicia: In this sense they are quite familiar with their grades average. It is appropriate 
to ask them: ―Well, when you get your grade average, what meaning does it 
have? Why do you only manage to get a particular grade? Let‘s say that 
while you were taking a subject, how did you get the final score?‖ and then 
they start saying: ―well, [because] there were some partial exams, they were 
graded this way and then we get that er… final grade,‖ and ―why do they 
only consider that grade?‖ (I2) 

06  Luis:  Well what graph do you think is better? ―I am going to do a pie chart‖, Ok 
what are the advantages that this has compared to this other one?...(I2) 

87   Alicia: Then, when I see that something is… like they are just writing it or they are 
copying it from somewhere, then I start asking them, I tell them: ―Well er… 
why did you write this? What are you going to answer?‖. I start asking 
questions and that‘s the way I can see more or less who are the ones who 
have some difficulty and what is happening (I2) 

In the second context, questions are posed with a clear intention to make the students 

realize, in an inductive way, what the characteristics of each graph are and the nature 

of the data represented or to develop a critical sense to help them learn. 

          Alicia: What is the meaning in the graph of each one of the axis? (Q3b.1) 

02      Luis: What does the stem in a stem-and-leaf plot represent? (I2) 

         Alicia: First I would ask them: ―What is the variable to be studied?‖ (Q4a.1) 

09     Luis: Is it a continuous variable or not? (I2)  

         Alicia: Is it clear for the reader what the cars positions represent? (Q4a.5) 

   Luis: What are the parts of the graph whose relationships are incorrect? (Q4bii.3)  

         Alicia:  What could be included in the graph to make it is easier for any reader to 

understand? (Q3b.2) 

The questions associated to each context differ from those of the others. In the first 

one we find questions more related to reinforcing knowledge and to clarifying the 

students‘ doubts, while in the second one, they are centered mainly on the 

exploration of the structural components of the graph. 
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Exercises and examples  

Examples are learning activities that have a direct relationship with the knowledge 

and understanding of the concepts or topics of the program and are generally 

provided immediately after a definition or explanation of the topic. Exercises, 

however, are learning activities whose main objectives are to develop practice, and 

to confirm that the concepts have been understood. Despite this difference, Alicia 

mentioned both terms repeatedly and indistinctly so they are included within the 

same category. 

This instructional strategy was used to assess the students' knowledge of graphs 

construction or to enable the student to discriminate between one graph and another: 

82    Alicia: (she is thinking) They did some exercises in class where they had to do, 

from their frequency distribution, then some graphs, we handled histograms, 

mm…  some pictograms. Then I asked them for exercises in which I gave 

them some data and they had to do their distributions and their graphs. (I1) 

39   Alicia: …In the exercises where they are figuring out their distribution of 

frequencies, I ask them to make a graph…. I tell them to make all the graphs 

without paying attention to which one is the best or which one would be 

more suitable for that type of information. (I2) 

These are activities in which, starting from a data set, the student must organize 

them, prepare a frequency table and, finally, build up one or more selected graphs 

(Figure 2). All the exercises come from textbooks. 

 

Figure 2. Representative example of the type of exercises (Exe.20) 

In relation to the context of the exercises, most cases provide a set of data from an 

educational context: psychological or intelligence test scores, students‘ height 

measurements, exams, means of school transportation, preference for a school 

subject, and values from a students‘ opinion poll. However, exercises far removed 

from the educational context were also found: bulbs, salaries, stocks and shares sold, 

enterprises, currencies, daily consumption of water and measurements of 

earthquakes. Regarding this, Alicia stated that "it is difficult to find examples related 

to the area of education" (I1) although she recognized the need to find appropriate 

examples for these students. 
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In another set of exercises, in addition to drawing the corresponding graph, the 

student is asked to calculate and/or interpret some statistical value (e.g. mean, 

median, and mode). 

40   Alicia:  I only worked with the histogram as the exercise I showed you, where I give 
the histogram and from there they have to give a distribution, for example, 
of frequencies and obtain their central or dispersion measurements starting 
from that graph. (I2) 

Only 3 out of the 22 exercises that were analyzed asked for computing certain 

statistical values, and all of them were notes in Alicia‘s own handwriting, that is, she 

added these tasks to the exercises. In another 3 exercises, the idea was to explore the 

graph(s) and to answer certain questions related to their interpretation. 

Instructions 

Instructions are indications, activities, signals or orders given to help students 

understand different aspects of GR. Apart from exercises which are done on paper; 

instructions are in general oral, sometimes supported by some concrete object. 

Alicia: I would also ask them, based only on their diagrams (without looking at 

their data), to tell me how many people took exactly 23 minutes to get to 

school… (Q1a.2) 

Alicia: and that if these were not that clear to them, what they could include in the 

graph so that it would be more comprehensible for any reader (Q3b.2) 

These instructions are often supported by questions. 

Data and graphical manipulation 

Data and graphical manipulation is a modification of data and graphs, with the help 

of different resources such as technology, with some particular aim. Specifically, to 

teach SG is a way to explore what happens along the axes of the graph, as well as the 

similarities and differences between graphs, for example with the stem and leaf and 

the histogram: 

01 Luis:  For example, when we have worked with graphs, I ask them to manipulate 
the graph itself in their minds. For example, in this class, I generally do that 
in the computer lab because we can handle the graphs with the projector and 
things, for example, suddenly, ―What would happen if you turn the axis and 
change the graph?‖ because in the case of the stem and leaf graph… ― in 
other words, if we turn it and leave it … or turn the graph of the histogram, 
what happens? in other words, what similarities do you find between the 
two? Yes? And at that moment to start to see what particular elements are 
found in both of them. (I2) 

Luis makes reference to the manipulation of data to generate the graph, or to the 

rotation of the axes or the graph itself. This strategy is not a systematic or habitual 

activity in his classrooms, but circumstantial, depending on what occurs during the 

lesson and it is aimed at the analysis of the graph during SPSS practice. 
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DISCUSSION 

We have identified and characterized the instructional representations used by 

Alicia and Luis to teach SG, their types, purposes, points at which they are used 

and the role of teachers and students. Four of them are oral: definitions and 

explanations; questions; instructions and data and graph manipulation; and one of 

them is a concrete representation: examples and exercises (McDiarmid, Ball & 

Anderson, 1989). The teacher is the source of the questions, instructions, and data and 

graphics manipulation; while definitions, examples and exercises are taken from 

textbooks. 

The instructional representations used by Alicia are teacher-centered whereas the 

ones used by Luis are thought to actively engage the students. Both of them resort to 

representations that allow interaction with the students like questions and data and 

graphical manipulation. Nevertheless, they are not previously planned activities but 

they arise from the dynamics of the classroom and the students‘ needs. These 

activities are only directed to reading data and reading between the data because they 

only aim to uncover the characteristics of the graphs and the relationship with the 

context.  
Instructional representations used for teaching do not adequately nourish the 

development of statistical literacy in students and support materials reflect a passive 

approach to the teaching of graphing, and are quite different from: the 

recommendations of Meletiou & Stylianou (2003) to improve the comprehension of 

graphs; the developmental process of the cognitive levels of graph comprehension 

through interactive activities in the real contexts discussed by Curcio (1989); the 

information about general graph techniques and broad bibliography about graphs 

proposed by Pittenger (1995); the inclusion of updated texts with recent novelties 

regarding the way to approach the study of SG from Moore (2000) and Salkind 

(2000), and the practical applications presented in the Teaching Statistics, to mention 

just a few examples. 
The results obtained suggest the need to better understand the role and effect of 

teachers‘ practices on students‘ learning statistics, such as the instructional 

representations. It is important to know and understand the nature and origins of 

instructional representations with the aim of designing training programs to help 

teachers to develop strategies to correct inappropriate beliefs and conceptions and to 

identify their prior knowledge on SG. These instructional representations can be a 

useful referent to train other teachers. Also, curriculum developers should consider 

teachers‘ limited knowledge and experience of data handling, and adopt an active 

graphing perspective that emphasizes the learners‘ role as interpreters and users of 

graphs in different moments and opportunities as analytical tools in solving problems 

in real contexts.  
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ASSESSING DIFFICULTIES OF CONDITIONAL PROBABILITY 

PROBLEMS1 
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In this paper we define some difficulties of conditional probability problems and 

their measurements. We also show some results about the measurements of those 

difficulties in relation to the structure of problems, the contexts in which they are 

formulated and the sample of students that solved them. Finally, we also comment on 

the possible influences of these factors on the difficulties of problems. 

INTRODUCTION 

Some research reports inform us of the difficulties and the low success rate students 

have in solving tasks or problems involving Bayes‘ rule, or in general in solving 

conditional probability problems (Diaz & De la Fuente, 2007).  These difficulties, it 

is said, depend on multiple factors. One of them is the cognitive complexity of the 

concept. Sometime this complexity is related to data format and the presentation of 

the data in problems (Estrada & Diaz, 2006; Huerta & Lonjedo, 2006; Lonjedo & 

Huerta, 2007), the context in which problems are put forward (Ojeda, 1996: Carles & 

Huerta, 2007) and the particular language with which conditionality and events are 

expressed (Maury, 1984). However, in general, these studies do not pay attention to 

the mathematical structure of problems and the context in which problems are put 

forward, at least not in a systematic way, factors that could be the reason why these 

problems are so difficult for students. Therefore, in the main, these factors are not 

taken into account in research results. Nevertheless, for us, they are influential 

factors on the students‘ success and on their difficulties in solving problems. 

Due to their structure, we already know that we can consider a particular world of 

problems that is generated by means of a limited set of events and probabilities and 

the relationships between them (Huerta, 2009).  Concretely, with two basic events, 

16 probabilities and 18 ternary relationships
2
 between these probabilities it is 

possible to generate this world of problems, which we call the world of the ternary 

problems of conditional probability (Cerdán & Huerta, 2007; Huerta, 2009). Many 

school problems belong to this world, as do a considerable number of tasks used in 

research, and they can be seen as instances of more general realistic situations 

(Carles & Huerta, 2007).  For this reason their study, we think, is relevant. 

Two particular pieces of research will be briefly examined in this paper. Apart from 

problems and the students‘ sample, both pieces of work share the same objectives 

and research methodology. Thus, we will firstly show the shared objectives and 

methodology and, in continuation, the results we have obtained up to now. Because 

the research is still not finished and due to the limitation number of pages available 
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for this report, only the global results of the research is shown along with a few 

comments on them. 

OBJECTIVES 

Our general objectives in this report are as follows: 

1. To identify difficulties of conditional probability problems. 

2. To introduce a measure of these difficulties and to carry out these measurements. 

3. To consider to what extent the structure and context variables, considered as 

independent variables, are influential factors on the difficulty of the problems.  

BACKGROUND: ELEMENTS OF THE FRAMEWORK 

Several years ago, we began the study of the conditional probability problems in a 

systematic and methodical way (Lonjedo & Huerta, 2007; Huerta & Lonjedo, 2006; 

Cerdán & Huerta, 2007; Carles & Huerta, 2007; Lonjedo, 2007; Huerta, 2009; Edo, 

2010). In these works the main object of research is the problems themselves. We 

identified a particular family of problems that we call ternary problems of 

conditional probability
3
, and with the help of a tool we call trinomial graph we 

carried out analytical readings of the problems (Huerta, 2009). An analytical reading 

of a problem is one that only pays attention to known and unknown data and their 

relationships but ignoring other elements of the problem that we know are also 

important. The analytical readings of problems on a trinomial graph allow 

researchers and teachers to determine the complexity of problems by means of their 

minimal graph, that is to say, the graph containing the minimum number of required 

relationships between known and unknown data that solves the problem. At the same 

time, we use the graph in order to identify problems in which the analytical reading 

is either arithmetical or algebraical
4
.  

Because of the structure of data, ternary problems of conditional probability have 

been classified into four families and twenty sub-families (Lonjedo, 2007). The L-

family of problems is characterized because every problem belonging to it has either 

0 or 1 or 2 or 3 known conditional probabilities as a maximum. We call this Level of 

problems (Huerta, 2009). Related to each L-family, the CiTj-subfamily of problems is 

characterized by having 0, 1 or 2 known absolute (marginal) probabilities (the 

characteristic Ci of a problem) and one unknown probability, which is asked for in 

problem (the type T of the problem: Type T1 if a conditional probability is asked for, 

T2 if a marginal and Type T3 if an intersection probability). Therefore, analytically 

speaking, for each family and sub-family, there is at our disposal a problem 

representing each one of the classes of problems. All these previous theoretical 

studies about problems permit us to construct questionnaires of problems to be 

administered (look at the examples in the annex). 
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All the above-mentioned are elements of the framework in which we place our 

research on conditional probability problem solving. This framework is still in 

progress but some of its components can be studied in Huerta (2009).   

METHODOLOGY FOR ASSESSING DIFFICULTIES OF PROBLEMS 

Bearing in mind all the above considerations, in order to construct questionnaires for 

assessing difficulties of problems we first must to decide on what independent 

variables they might depend. Thus, as task variables (Kulm, 1979) they are, and in 

order to investigate difficulties depending on structure and context variables, we 

fixed data format in every problem we put forward. All data referring to 

probabilities, either known or unknown was expressed in a percentage format, in the 

case of conditional probability. The reason for taking this decision can be found in 

various studies (e.g. Watson & Kelly, 2007; Lonjedo & Huerta, 2007). There is a 

general agreement that students think better using conditional frequencies than with 

conditional probabilities (see for example, Jones, Langrall & Mooney, 2007). 

Thus, for each problem in the questionnaires, we define the following independent 

variables: 

 Structure variable, given by the L-family and the C, T sub-family. 

 Context variable, taking the following values: Stat-Social, Stat-Health and Diag-

Health. (See the examples in the annex) 

Depending on these two variables, we analyse students‘ resolutions paying attention 

to two main dependent variables: process and product variables. Difficulties of 

problems will be measured throughout the product variable, which takes the 

following values: 

 Tackled. Number of students who tackle a problem. We say that a student tackles 

a problem if we can recognize that student undertakes the problem in some way. 

 Answer. Number of students that answer the question posed in the problem. The 

answer to the question may be anything that students declare is the answer to the 

question posed. 

 Number. Number of students that respond to the question of the problem by 

means of a correct number (a percentage in this case). 

 Description. Number of students that attach an expression to the numerical 

answer, describing what this number is measuring. For a given number, the 

attached expression may be correct or incorrect whether the number is correct or 

not. 

By means of these variables we define the following difficulties of problems: 

 Appreciated difficulty (ADP) of a problem. This tries to measure students‘ 

difficulties before the process of solving the problem starts. Therefore, we are 
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supposing that students, after reading the problem, decide whether to tackle the 

problem or not. If they do not, we suppose it is because he/she appreciates that 

the problem is too difficult to be solved.  

 Problem‘s difficulty (PD). This difficulty will inform us to what extent it is 

difficult to give an answer to the question in problem. 

 Problem solution difficult (PSD). In relation to the previous difficulty, this one 

indicates to us how difficult is to give a correct answer to the problem. 

 Difficulty of Correct Description of the solution of the problem (CorrectDescD). 

In this case, we will obtain information about students‘ difficulties in giving a 

correct description of the event which is measured by the given number as a 

solution. 

Differences between difficulties may be also appreciated through their measures 

and the way we measure them.  Indeed, each one of these difficulties is measured 

in percentages, as a result of applying the following formulae: 

ADP 100 (
tackled

number of students
) 100   

PD 100 (
answer

tackled
) 100   PSD 100 (

number

tackled
) 100   

DescD =100 -(
Description

answers
) 100   CorrectDescD 100 (

CorrectDesc

Description
) 100 

These difficulties are ranked in an [0, 100]-interval. If a difficulty is measured by one 

0, then this means that the problem does not pose that particular difficulty for any 

student whereas, on the opposite side of the interval, a difficulty which is measured 

by one 100 is present in the problem for all students. 

RESULTS FROM TWO INDEPENDENT, BUT RELATED, RESEARCHES 

1. Research on difficulties of problems from L0-family in students15-16 aged 

without previous instruction on conditional probability. 

The L0-family of problems can be divided into three sub-families (Huerta, 2009; Edo, 

2010): C0T1, C1T1 and C2T1. There are 6 basic-options of problems representing to 

this family: one from C0T1; two from C1T1; and finally three from C2T1. Accordingly, 

we constructed one basic questionnaire containing 6 problems. Owing to the fact we 

finally consider three contexts, in order to explore difficulties of problems depending 

on contexts, we prepared a total of 18 problems (one of them is given in the annex). 

All those problems were distributed into 6 questionnaires each containing 3 + 3 

problems structurally isomorphic in pairs, but put forward in different contexts. For 

each questionnaire, and from students‘ resolution of problems, the possible influence 

of the context in the difficulties of problems becomes observable for researchers. 
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Furthermore, at the same time, the influence of the structure of problems on these 

difficulties is also observable.  

Questionnaires were administered to 165 students aged 15-16 years. Students solved 

problems during their mathematics class. They received no teaching on conditional 

probability. 

The 990 students‘ resolutions provided the following global results (Table 1): 

L0-Problems‘ 

resolutions 

Tackled Answer Number Descriptions Correct Desc 

990 712 585 214 320 139 

Difficulties 

(%) 

ADP 

(28.1) 

PD 

(17.8) 

PSD 

(69.9) 

DescD 

(45.3) 

CorrectDescD 

(56.6) 

Table 1: Global results en frequencies and difficulties of problems from L0-family, in 

percentages. 

If we take into account contexts and structures, the following tables (Tables 2 & 3) 

show us to what extent these are influential factors: 

 

Table 2: Difficulties of problems from L0-family, depending on their structure (%) 

Context/difficult

y 

ADP PD PSD CorrectDes

D 

Stat-Social 20.9 13.

4 

50 41.2 

Stat-Health 23 18.

1 

75 75.7 

Diag-Health 40.3 23.

3 

62.9 55.1 

Table 3: Difficulties of problems from L0-family, depending on contexts (%) 

Structure/ 

Difficulty 

ADP PD PSD CorrectDes

D 

C0T1 8.5 13.

5 

59.5 69 

C1T1 27.2 17.

8 

64.9 49.6 

C2T1 41.9 21.

4 

65.5 51.4 
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A deeper analysis of data suggests that the structure variable is an influential factor 

on the ADP and PD but not on the PSD. At the same time, the context variable is 

also an influential factor but not in the same manner as the structure variable does. 

Indeed, the Diag-Health context is more influential on every difficulty than the Stat-

Social context, but the Stat-Health is the most influential context on PSD. 

2. Research on difficulties of ternary problems (problems belonging to all 

families) in student teachers of high school mathematics. 

In this research we studied the difficulties of ternary problems in a sample of 54 

students doing a Professional Master in Secondary Mathematics Teaching at the 

Universitat of València (Spain). Not all of them were Mathematics graduates, as 

there were also graduates in Economics, Engineering and Architecture. However all 

of them had taken courses in probability during their regular studies.  

In order to construct a questionnaire for assessing difficulties of problems, and given 

that we did not have prior experience on problem resolutions in students belonging 

to this sample, many previous decisions had to be taken into account. Only the 

experience with L0-problems could help us in doing this. In addition to this, previous 

to deciding what problems were going to be included in the questionnaire, we carried 

out a theoretical study of problems at every level, in order to determine basic-options 

of problems representing all families and sub-families, as had been done for the L0-

family. Based on this study, among others, the following decisions were taken: 

 The questionnaire consists of 7 ternary problems distributed as follows: One 

problem from L0-familiy, two problems from L1-family, three problems from L2-

family, and one problem from L3-family. Among them, two problems have 

algebraical readings (one from L2-family and one from L3-family) and five 

arithmetical readings (some examples are given in the annex). 

 In every problem, the data format is percentages. 

 Stat-social, Stat-Health and Diag-Health/man are the contexts in which problems 

are put forward. Differences between Diagnostic Test in Health or Manufacture 

must be found in the elements of the context: people or manufactured pieces that 

are tested. 

 If a problem has a complex analytical reading, either arithmetical or algebraical, 

we decided to avoid extra difficulties by contextualizing the problem in a context 

that we know is not very influential in the difficulties (see the above study 

results). This is the case, for example, in the problem that belongs to the L3-

family. We already know that all problems from this family have an algebraical 

reading. On the other hand, from the previous research, we also know that Stat-

social is a less influential context on the difficulties than the other two we 

considered. Therefore, we decided to formulate the problem from L3-family in a 
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Stat-social context. Conversely, the problem from L0-family is formulated in the 

most influential context, the Stat-Health context. 

The 378 students‘ resolutions produced the following global results (Table 4): 

Resolutions Tackled Answer Number Descriptions Correct Desc 

378 369 269 109 183 138 

Difficulties 

(%) 

ADP 

(2.4) 

PD 

(27.1) 

PSD 

(70.5) 

DescD  

(32) 

CorrectDescD 

(24.6) 

Table 4: Global results en frequencies and global difficulties of problems in % 

In a similar way, as was done in the above example, the following table (Table 5) 

provides us with information concerning the difficulties of the problems depending 

on the family to which they belong:  

Level ADP PD PSD DescD CorrectDesD 

L0 1.8 16.7 68.5 28.9 28.1 

L1 1 26.2 68.2 29.1 25 

L2 4.3 28.4 69.8 38.7 27.9 

L3 0 37 79.6 20.6 11.1 

Table 5: Difficulties of problems depending the family they belong to, in (%) 

These results suggest that the structure of problems belong to L3-family is a more 

influential factor on PD and PSD than the other structures of problems. Perhaps, this 

influence is due to the fact that problems belong to L3-family have algebraical 

readings. 

And, finally, the following table (Table 6) shows the difficulties of problems 

depending, this time, on the contexts in which the problem was presented: 

Context ADP PD PSD DescD CorrectDesD 

Stat-Social 1.8 35.2 71.7 28.1 14.9 

Stat-Health 4.6 31.1 74.6 33.8 27.7 

Diag-

Health/Man. 

1 11.2 64.5 34.7 33.9 

Table 6: Difficulties of problems depending on contexts, in (%). 

As in the above study, for this sample of students, the Stat-Health context is the most 

influential context on the PSD, but not in a meaningful way. The students, however, 

do not appreciate difficulties in problems because almost all students tackled the 

problems (ADP<5%).  
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DISCUSSION AND CONCLUSIONS 

From a global point of view, we can conclude that ternary problems of conditional 

probability are difficult for students. Finding a correct answer to a problem, which is 

basically finding a conditional probability when three known data are given in a 

context, is a difficult task for every student, whether they are from secondary school 

or graduated (PSD ≥ 70% for both samples of students).  But, in general, at the 

beginning of the process, it seems that these difficulties are not especially 

appreciated by students (ADP between 28%, in the first study, and 2.4% in the 

second one) when they tackle the problems and try to give an answer to the question 

posed in them (PD between 17.8% and 27.1%).  However, the answers given are 

usually incorrect in a very high percentage of cases (PSD of 69.9% in the first study, 

70.5% in second one). Among those students who give an answer, some of them do 

not describe the number, given as the answer, by means of an expression 

representing the event and the number is its measure (45.5% in first, 32% in second).  

That is to say, for these percentages of students, the answer is simply a number, 

neglecting what this number is measuring and why. Among the students that describe 

the number with an expression, there is a percentage of students that do it incorrectly 

(56.6% in the first one, 24.6% in the second one). In some of these incorrect 

expressions it is usual to recognize one of the most common misconception in 

conditional probability: the conditional probability by intersection probability 

(Lonjedo & Huerta, 2007; Lonjedo, 2007), even if the given number is a correct 

number and the students are either at secondary school or graduated. 

Structures and contexts appear as influential factors on the difficulty of problems, as 

we have shown above. Thus, for example, in the second study, we can see how the 

difficulty of giving an answer to problems increases as the number of known 

conditional probabilities in text of problems also becomes greater. However, when 

an answer is given, the difficulty of giving the correct answer is not as sensitive to 

this factor, except in the L3-problem. It seems that there are other structure-based 

factors that are influential on this difficulty. Indeed, every problem from L3-family 

has an algebraical reading. 

Finally it is reasonable to think that contexts are an influential factor on the 

difficulties of problems. But difficulties are not sensitive to these influences in the 

same measure. Thus, while the Diag-Health context is an influential factor on the 

appreciated difficulty of the problem for secondary school students, this is not the 

case for future teachers. This could mean that the context is not a well-known 

context for the former but that it is for the latter. On the contrary, if we pay attention 

to the problem solution difficulty, it is common to both samples that the Stat-Health 

context is the most influential. Considered in an isolated way or in combination with 

structure, difficulties are very sensitive to it. This context is characterized because it 

belongs to a more general situation called Les situations causalistes (Henry, 2005), 

that particularly in the Health context is very influential: every time someone treats 
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himself/herself with a medicine, then he/she is cured of the illness, but if this is not 

so then he/she does not. Obviously, there are no conditional probabilities involved. 

Although the results we just show in this report are global and their analysis is not 

yet finished, some suggestions can be made for the future, both for researchers in 

probabilistic education and for mathematics teachers. Researchers could take into 

account that tasks used to investigate students‘ behaviour have different difficulties 

depending on the structure of their data and the context chosen for putting forward 

the task. It is a hypothesis to suppose that varying structure and context in tasks 

imply that students‘ behaviour may also be different in each case, or not. This 

hypothesis might be contrasted. 

On the other hand, teachers should be aware that there are families of conditional 

probability problems that contain problems with different difficulty degrees, again 

depending on structures of data and context. Perhaps a teaching model could be 

considered which was based on solving problems belonging to these families, 

organized sequentially, and exploring through them as contexts as possible. This 

could potentially be a good way to improve students‘ competence in solving 

conditional probability problems. 

NOTES 

[1] EDU/2008-03140/EDU Project, funded by Ministerio de Ciencia e Innovaciñn, Espaða. 

[2] These are examples of them: p(A) p(A) 1; p(A | B) p(B) p(A B) . They may be either additive or 

multiplicative. 

[
3
] Ternary problems of conditional probability are defined as problems that fulfil the following conditions: (1) One 

conditional probability is involved, either as known data or as unknown data or both; (2) Three probabilities are known; 

(3) All probabilities, both known and unknown are connected by ternary relationships. 

[
4
] If a problem has an algebraical reading then it means that, in order to solve it, an extra-data will be required (an 

unknown). If it has an arithmetical reading, then it does not. 
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Annex: Example of problems used in the researches 

Problem in Level L0, L0C0T1-subfamily. Stat-social context. 15-16 years old students. 

The 4
th

 grade class is made up of 30 students between boys and girls. Among the 

students, there are 7 boys who wear glasses, 10 girls who do not use them, and 8 
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boys who do not wear them. Among boys in the class, what percentage wears 

glasses? 

Problem in Level L1, L1C1T1-subfamily. Diag-Health context. Graduated students. 

A population at risk for tuberculosis is subject to the tuberculin test. Different studies 

show that 57% of the population suffers from tuberculosis, and among those with 

tuberculosis 59.6% give positive in test. In addition, it is known that 13% did not 

have tuberculosis but is positive in the test. Among those who are positive in the test, 

what percentage is suffering from tuberculosis? 

Problem in Level L2, L2C1T1-subfamily. Stat-Health context. Graduated students. 

A population suffers from eye infection. Of these, 42% are treated with a new 

antibiotic. The results show that, of those treated with the antibiotic, 83.3% were 

cured, and people who have not cured 14.9% were treated with the antibiotic. Among 

those who have been cured, what percentage has not been treated with the new 

antibiotic? 

Problem in Level L3, L3C0T2-subfamily. Stat-social context. Graduated students. 

Of the girls in a high school, 37.5% wear glasses. Of the boys, 28.6% wear glasses. 

Of those who do not wear glasses, 50% were boys. Among high school students, 

what percentage are girls?   
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The aim of this study was to analyze the degree of difficulty of questions included in 

a statistical literacy questionnaire answered by 1343 Brazilian undergraduate 

students who were studying a statistics course for the first time. The responses to the 

questionnaire, which was made up of multiple-choice items, were classified 

according to the structure of the observed learning outcome (SOLO) taxonomy, and 

the results were analyzed using item response theory. Questions that involved the 

calculation of measures of central tendency with an outlier and variability 

associated with reading a graph presented the highest degree of difficulty, implying 

that these areas are not explored in basic education. Considering the importance of 

measures of central tendency and spread for statistical literacy, it is important to 

continue promoting the improvement of statistics education in Brazilian schools. 

Keywords: SOLO taxonomy; item response theory; statistics questionnaire 

INTRODUCTION 

In Brazil, at the end of the 1990s, following the publication of the National 

Curricular Parameters (Parâmetros Curriculares Nacionais – PCN), basic statistical 

concepts were formally incorporated into the mathematics curriculum in primary and 

middle schools (Brazil, 1997, 1998) and in high schools (Brazil, 2002, 2006). With 

regard to teaching statistics, these curricular guidelines are in line with Watson's 

(2003) suggestion that, in order to attain statistical literacy in adults, it is important 

that students, whilst still in school, are exposed to statistical and probabilistic 

concepts. Wallman (1993, p. 1) was one of the first authors to define statistical 

literacy as: 

[...] the competence to understand and to critically assess statistical results that permeate 

our daily lives, together with the capacity to recognize the contribution that statistical 

thought can provide to public, private, professional, and personal decisions. 

This idea of statistical competence forms the cognitive component of Gal's (2002) 

definition of statistical literacy. This author supplements his definition with the 

component of disposition, which relates to the competence of individuals to discuss 

or communicate their reactions to statistical information, such as their understanding 

of the meaning of information, their opinions on the implications of such information 

or their considerations in relation to the acceptance of the conclusions provided (Gal, 

2002, pp. 2-3). 
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According to Gal (2002), the cognitive elements of statistical literacy are: (a) 

mathematical knowledge; (b) contextual knowledge; (c) literacy skills (i.e., being 

able to understand written or oral text and tabular or graphic displays); and (d) the 

competence of developing critical questions. The author suggests five areas of basic 

statistical knowledge that together make up statistical literacy: (a) knowing why data 

are needed and how data can be produced; (b) familiarity with basic terms and ideas 

related to descriptive statistics; (c) familiarity with graphic and tabular displays and 

their interpretation; (d) understanding the basic concepts of probability; and (e) 

knowing how statistical conclusions or inferences are reached. 

Considering the literacy model suggested by Gal (2002) and keeping in mind the 

Brazilian context, which, for over 10 years, has included curricular guidelines for 

teaching statistics in basic education (consequently, the Brazilian students who 

entered university after 2008 should have finished their basic education with a 

minimum level of statistical literacy), this research aims to answer the following 

questions: do university students learn about these five topics and therefore attain a 

basic knowledge of statistics during their school education? Which topics are easier 

or harder for students? The answers to these questions may guide pedagogical 

initiatives that will contribute to the improvement of the teaching and learning of 

statistics in Brazilian schools.  

In order to answer the questions above, the objective of this study was to use item 

response theory (IRT) to analyze the degree of difficulty of questions answered by 

undergraduate students who were studying statistics for the first time. The questions 

covered the statistical content included in the PCN and were fully in line with the 

components of Gal‘s (2002) model. 

METHOD 

This study was conducted with 1343 undergraduate students from five Brazilian 

universities in three different states. The following instruments were applied in the 

first semester of 2009: a statistical questionnaire and a profile questionnaire which 

included questions relating to the students‘ socio-educational characteristics, 

knowledge and utilization of statistics in their daily lives, both personal and 

professional. The data were collected during the first two weeks of the semester with 

the objective of minimizing the influence of formal learning on the results of both 

questionnaires. 

The age of the participants ranged from 17 to 58 (M = 22.3, SD = 5.3), and 52.0% 

were male. In terms of specialty, 35.4% were studying an exact area of science, 

14.5% were studying biology/health and 49.7% were studying human sciences (0.4% 

did not answer). The students were distributed across two private universities in São 

Paulo (40.6% and 24.3%), a state university in São Paulo (7.2%), a private university 

in Rio Grande do Sul (4.2%) and a federal university in Pernambuco (23.6%). 
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Of the students involved in this survey, 41.7% and 31.0% considered statistics to be 

very important for their personal capabilities or as a basic requirement for other 

undergraduate courses respectively. Only 21.0% of the students could not imagine 

other areas for which statistics would be important. In addition, 35.7% of students 

considered statistics to be moderately relevant to their daily lives. 

Statistical questionnaire 

The statistics questionnaire included seven multiple-choice questions involving the 

following content: measures of central tendency and spread; probability; reading and 

interpreting two-way tables and confidence intervals. All of this content, except 

confidence intervals, is included in the Brazilian curricular guidelines for schools. 

Despite the fact that confidence intervals are not a part of the Brazilian school 

curriculum, one question was included in order to assess whether or not this concept, 

which appears frequently in the media, should be part of students‘ extra-curricular 

knowledge. 

The first question (Q.1), covering measures of central tendency, was adapted from 

the work of Watson and Callingham (2003) and Garfield (2003), and required the 

students to choose the most accurate measure to represent the weight of the an object 

measured by nine students using the same instrument. The sample contained an 

outlier. The expected response was that the outlier should be removed and the mean 

of the other remaining values should be calculated. There were three questions 

relating to probability. The second question (Q.2) was taken from the work of 

Watson and Callingham (2003) and Garfield (2003) and required the interpretation 

of a simple probability (a bottle of medicine has the following notice: ―For 

application to areas of skin, there is a 15% chance of developing a rash.‖). The third 

question (Q.3) was suggested by Garfield (2003), and asked studentes to analyse the 

accuracy of a weather forecast (the meteorologist identified in his reports the days on 

which there was a 70% probability of rain). The expected response was the selection 

of an option that included the value of 70% in the interval. 

Statistics from the State Highway Dept. are presented in the table below, providing 

information about the number of accidents (fatal or otherwise) with victims, and the 

condition of the driver (sober or drunk): 

Driver/ victim Non-fatal Fatal 
Sober 1228 275 
Drunk 239 86 

 
 

Would you say that the condition of the driver (sober or drunk) affects the 

occurrence of fatalities? What is this probability? (a) Sober, P(sober|fatal) = 275/361 

(b) Drunk – P(drunk|fatal) = 86/361 (c) Sober – P(fatal|sober) =275/1503 (d) Drunk 

– P(drunk|fatal) = 86/325 (e) None of the above 

Figure 1: Fifth question from the statistics questionnaire 
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The fifth question (Q.5) required the interpretation of conditional probability in a 

problem suggested by Kataoka et al. (2008) (Figure 1). For this question, we 

expected the students to answer that the condition is the driver being drunk, and to 

calculate P (fatal|drunk) = 86/325. 

A research agency held a survey in order to assess voters‘ intentions in one State 

Government election. A total of 6000 voters in 26 cities were randomly selected. 

Based on this research, in which 41% of voters in the poll said that they intended to 

vote for candidate A, 23% for candidate B, 21% candidate C, and 15% for one of the 

remaining candidates, and considering that the margin of error was 2% with a 99% 

degree of confidence, is it possible to predict who will dispute the run-off election 

with candidate A? Choose one answer: 

(a) Yes, candidate B       (b) Yes, candidate C      (c) No, it could be candidate B or C 

(d) No, more information is required                     (e) None of the above 

Figure 2: Except from fourth question from the statistics questionnaire 

The fourth question (Q.4), which was developed by the authors of the present work, 

covered the confidence interval for proportion, and required the student to analyze 

the results of an electoral poll regarding the state government (Figure 2). For this 

question, we expected that the students would add the margin of error to the 

percentage of votes for candidates B and C, and that a technical tie occurs between 

the two candidates, and it did not allow the students to choose between them. 

The principal of School X was interested in assessing students' reading skills. 

Therefore, he asked for the number of books read by the girls and boys at the school 

during the first semester. The results are presented in the bar chart below. Based on 

the graph, the principal concluded that (choose one answer only): (a) The variability 

of the number of books read by boys is higher, because they read between two and 

eight each; (b) The variability of the number of books read by girls is higher, because 

there are many girls who read six to eight books; (c) The variability of the number of 

books read by girls is higher, because on average they read more books; (d) The 

variability of the number of books read by girls and boys is almost equal; and (e) 

None of the above. 
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Figure 3: Excerpt from sixth question from the statistics questionnaire 
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Questions six and seven were developed by the authors and were related to the 

concept of variation in the context of a group comparison. This concept is considered 

by Wild and Pfannkuch (1999) to be a central element of statistical thinking. In both 

questions, data about the groups were presented graphically, with one question about 

variability and another about standard deviation. In question six (Q.6), a double bar 

chart was presented in order to allow the students to compare variability between the 

groups (Figure 3). 

Data analysis 

The responses of the students were classified using content analysis (Bardin, 1995) 

and reclassified based on hierarchical levels of the structure of the observed learning 

outcome (SOLO) taxonomy devised by Biggs and Collis (1991) (Table 1). 

Q. Description of categories 

1 0. Blank response or use of an inadequate method 

1. Calculates the mean with all of the values or notices the outlier 

2. Uses a method in which the result is a good representation of the data e.g. mode, 

median etc. 

3   Removes the outlier (15.3) and calculates the mean 

2 0. Blank or incorrect response 

1. Answers considering only informal interpretation (small or good chance) 

2. Answers considering only one numerical interpretation of 15% (approximately 15 

in 100) or a numerical and informal interpretation 

3  0. Intervals that do not contain 70% 

1. Notices that for all of the days, the forecast was 70% and, of these, 95% and 100% 

of these days had 70%. 

2. Interval that contains 70% 

4  0. Blank response or incorrect interpretation 

1. Chooses one of the probable candidates 

2. Notes that the margin of error does not allow selection between candidates B and 

C 

5 0. Blank reply or calculates simple probability 

1. Calculates the conditional probability, but uses the incorrect sample space 

2. Calculates the correct conditional probability 

6 0. Blank reply or reads the graph with only one measure of central tendency 

1. Reads the total range only 

2. Correct comparison, taking into consideration variation (total range and density 

frequency) 

7 0. Blank reply, or reads the graph with one measure of central tendency only 

1. Reads the total range only 

2. Correct comparison, taking into consideration variation (total range and density 

frequency) 

Table 1: Description of the categories of each question according to the SOLO 

taxonomy 
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According to Biggs and Collis (1991), the SOLO taxonomy consists of: the 

prestructural level (code 0), in which the student makes basic mistakes and provides 

insufficient answers; the unistructural level (code 1), in which the student presents 

several conclusions that could be correct, but which are not mutually consistent and 

focus on only one relevant aspect of the problem; and the multistructural level (code 

2), in which the student notices more than one relevant aspect, but does not integrate 

them, meaning that their answers may be inconsistent. The relational level (code 3) 

was not used in the analysis, with the exception of the question about the measure of 

central tendency, in which one of the options required the student to suggest a 

method with which to define a measure that would represent the set of weight 

measures that included an outlier (Table 1). In this level (code 3), the student 

presents a conclusion that could potentially relate to all of the relevant aspects, 

showing an overall degree of consistency. 

Each response category for each question was denominated as an item and is 

represented by the number of the question followed by the category value; for 

example, the notation 2.1 means question 2 and the response which was classified as 

category 1. After classifying the responses, the items included in the instrument were 

analyzed based on a Rasch partial credit model (Rasch, 1980; Masters, 1982), which 

is an extension of the Rasch model for dichotomous items. This model is suitable for 

the analysis of responses obtained from two or more ordinal categories (polytomic 

items), such as the categorization of responses based on the SOLO taxonomy. The 

quality of the items was analyzed using the difficulty/adjustment measure of the 

model (infit and outfit) and the correlation between the question and the Rasch 

measure. 

RESULTS AND DISCUSSION 

In the profile questionnaire, the students were asked if they had already studied 

statistics and probability in basic education; 30.5% of them said yes, 38.3% said that 

they had studied these two subjects but that they did not remember the content and 

31.2% said that they had never studied statistics or probability. In another question, 

when asked which terms they knew and were able to recall, the most familiar terms 

were: percentage; mean; probability; frequency and sample (Figure 4).  
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Figure 4: Percentage of statistical terms that students knew and could interpret 
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These responses relate to the students‘ educational backgrounds at school, as the 

questionnaire was conducted during first two weeks of the semester. As previously 

stated, of the content covered in the statistics questionnaire, the students were not 

expected to be (formally) aware of confidence intervals. 

The IRT results indicate a good fit to the Rasch model, because the infit/outfit rates 

of questions were within acceptable limits (between 0.5 and 1.5) and the correlation 

was higher than 0.2 (from 0.39 to 0.52). The difficulty of the questions ranged from  

-0.93 (Q.4) to 0.65 (Q.7). The skill level of the 1343 students involved in the present 

survey varied from -2.74 to 2.90 (M = 0.14; DP = 0.78), indicating that the difficulty 

level of the questionnaire (M = 0.00; DP = 0.62) was slightly below the skill level of 

the participants.  

The two questions with a greater level of difficulty were related to variation: Q.6 

(with a difficulty index of 0.58) and Q.7 (with a difficulty index of 0.65), despite the 

fact that 21.4% and 41.1% of the students confirmed that they knew and were able to 

interpret the terms "variance" and "standard deviation" respectively (Figure 4). In 

this case, what probably happened is that students know how to compute a standard 

deviation, but the interpretation of a standard deviation associated with reading a 

graph is not taught in basic education. Silva and Coutinho (2008), in their study, 

noted that even though many mathematics teachers reported having an understanding 

of standard deviation, the majority only presented a informal level of variation 

reasoning, and this affected the correct interpretation of this measure. 
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Item Logit % response 

1.0 -1.14 7  1.3 1.52 4 
2.0 -0.89 16  5.2 0.71 27 
4.0 -0.88 13  6.2 0.71 25 
3.0 -0.61 27  7.2 0.69 20 
5.0 -0.32 45  3.2 0.49 47 
7.0 -0.24 45  4.2 0.44 61 
6.0 -0.22 49  2.2 0.38 67 
4.1 -0.22 26  1.2 0.31 37 
2.1 -0.05 17  7.1 0,20 35 
1.1 0.02 52  5.1 0.19 28 
6 1 0.14 26  3.1 0.15 26 

Table 2: Order of item difficulty (according to logit) and % of response for each item 

in the questions 

According to the analysis of item difficulty (Table 2), we noted that, among the 

categories with a SOLO unistructural level, item 4.1 (question 4, category 1) 

presented the least difficulty (without considering the answers in the prestructural 

level – code 0), despite the fact that the response was associated only with reading a 

percentage value in a simple table, without considering the margin of error presented 

in the question (Table 1). In addition, 61% of the responses (item 4.2) were classified 
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at the highest level expected for this question. This result makes sense, as 88.5% of 

the students stated that they knew about and were able to interpret the term 

"percentage" (Figure 4). 

The most difficult item (logit 1.52) with the lowest percentage of answers (4.0%) 

was the first question in category 3 (item 1.3), even though 80.6% of the students 

stated that they knew and were able to interpret the term "mean" (Figure 4). A 

probable explanation is that measures of central tendency are taught in basic 

education without the presence of outliers, which requires an extended grasp of the 

subject by the student. This difficulty was also identified by Garfield (2003) and 

Watson and Callingham (2003). 

With regard to the three questions about probability (Q.2, Q.3 and Q.5), the students 

had difficulty with the items corresponding to categories 1 and 2, varying from -0.05 

to 0.71. The highest proportion of answers in category 2 was 67.0% for the second 

question (Table 2). The results of Q.2 were as expected, as 64.1% of the students 

said that they knew about and were able to interpret the term "probability", but not 

conditional probability, which was the concept which was required in order to 

discern the correct reply to the fifth question (Figure 4). Students‘ difficulty with 

questions involving the concept of conditional probability has already been 

identified by several researchers, such as Estrada and Díaz (2006), Díaz and de la 

Fuente (2007) and Díaz (2010). 

FINAL CONSIDERATIONS 

The IRT analysis helped to improve the interpretation of these results, taking into 

account that this method not only considers the students‘ total score, but also the 

questionnaire response vectors that can vary for the same total score. In addition, it is 

important to consider that in accordance with IRT, the items‘ level of difficulty and 

the skill level of the students were measured on the same scale, thus allowing a more 

detailed analysis of the results. 

In a global analysis, the results seem to indicate that Brazilian students enter 

university with a basic knowledge of statistics and probability. However, the 

questions that involved the calculation of measures of central tendency with an 

outlier and variability associated with reading a graph had apparently not been 

explored in basic education, and for this reason they presented the highest degree of 

difficulty. According to this point of view, it is probable that the principles of 

statistical literacy have not yet been fully incorporated into the teaching and learning 

of statistics at this educational level. The results of the present survey are an 

indication that a change is needed in Brazilian schools in order to put into practice 

the PCN recommendations as well as the statistical literacy model suggested by Gal 

(2002). 

The next phase of the present research will be to investigate the results of a post-

questionnaire that was applied to the same students after their experience with the 



Working Group 5 

CERME 7 (2011) 826 

 

statistics course at undergraduate level, thus checking whether or not these 

difficulties persist after a formal university education in statistics. 
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In this paper, we will discuss teachers‘ attitudes towards statistics, as we believe 

that these attitudes have a key role in the teaching and learning process. We will 

examine the attitude concept, review the literature regarding scales for the 

measurement of attitudes towards mathematics and statistics, and present and 

analyse some of the results of a questionnaire/scale applied to a sample of 

Portuguese teachers. 

INTRODUCTION  

This work is part of a preliminary study of the attitudes of teachers from the second 

(ages 10 and 11) and third (ages 12 to 14) cycles of basic education in Portugal 

towards statistics. It could be argued that without the full commitment of teachers to 

the teaching and learning process, it would be very difficult to implement any 

significant changes in the ways in which statistics is taught. Nñvoa (1992, 30) stated 

that ―the schools can not change without the participation of the teachers‖. In 

addition, Gal and Ginsburg (1994, 1) wrote: 

While statistics educators have focused on improving the cognitive side of instruction, 

i.e., the skills and knowledge that students are expected to develop, little regard has been 

given to non-cognitive issues such as students‘ feelings, attitudes, beliefs, interests, 

expectations, and motivations. (…) We believe that further attention to such factors is 

warranted, as they may contribute to students‘ difficulties in learning basic concepts in 

statistics and probability. 

Therefore, it is necessary for this approach to include aspects such as attitudes, 

beliefs, interests, expectations and motivations which are associated with statistics, 

because teachers must go beyond the transmission of knowledge, positive attitudes, 

both in terms of the discipline and of its contents, and in relation to students, schools 

and education in general. 

In this work, we will provide a brief summary of the current understanding of 

attitudes towards statistics and the Scale of Attitudes Towards Statistics (Escala de 

Actitudes hacia la Estadistica de Estrada EAEE) (Estrada, 2002). We will also begin 

to analyse the results of a survey of in-service Portuguese teachers in the second and 

third cycles of basic education. The main purpose of this survey is to analyse 

Portuguese teachers‘ attitudes towards statistics. 
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ATTITUDES TOWARDS STATISTICS  

Theoretical and empirical issues related to attitudes have received a great deal of 

attention over recent years, and different perspectives regarding what attitudes are 

have emerged. In conceptualising the affective domain in relation to mathematics 

education, McLeod (1992) distinguished between emotions, attitudes and beliefs and 

conceptualised attitudes as learned predispositions to respond positively or 

negatively to given objects, situations, concepts or people. As such, according to 

Aiken (1980, p. 2), the attitudes comprise three dimensions: cognitive (beliefs, 

knowledge), affective (emotional, motivational), and performance (behaviour, active 

tendencies). More recently, Phillip (2007) described attitudes as ways of acting, 

feeling or thinking, which (in this case) indicate the disposition or opinions of a 

person with regard to statistics.  

Attitudes are intense feelings which are relatively stable, and which result from 

positive or negative experiences encountered whilst learning a subject (in this case 

statistics) over a period of time. Students may have these experiences of statistics at 

school, or as part of an informal extra-curricular learning process. In other cases, 

students transfer their negative feelings towards mathematics onto statistics (Gal & 

Ginsburg, 1994). 

Within the field of statistics education, the level of interest in the beliefs, attitudes, 

and expectations that students bring to the classroom is increasing, as ―such factors 

can impede learning of statistics, or hinder the extent to which students will develop 

useful statistical intuitions and apply what they have learned outside the classroom‖ 

(Gal & Ginsburg, 1994, p.1). These authors have suggested that statistics teachers 

should not focus solely on the transmission of knowledge and skills, because if 

students encounter difficulties whilst learning about statistics, this experience might 

impede their desire to receive further instruction. They may also fail to appreciate the 

potential usefulness of statistics in their professional and personal lives. These 

theories are particularly relevant in terms of the training which teachers receive.  

In the last two decades, a large number of tools with which to measure attitudes and 

anxiety levels relating to statistics have been developed (Gal & Ginsburg, 1994; 

Carmona, 2004). Three of the most widely used instruments with which to measure 

attitudes towards statistics are Wise‘s (1985) Attitudes Towards Statistics Scale 

(ATS), Roberts and Saxe‘s (1982) Statistics Attitude Survey (SAS) and Schau, 

Stevens, Dauphine and del Vecchio‘s (1995) Survey of Attitudes Towards Statistics 

(SATS). 

These scales have been validated using samples of students at college or university, 

but not among teachers or future teachers. For this purpose, Estrada (2002) proposed 

and developed a Scale of Attitudes Towards Statistics (EAEE), which was applied to 

prospective and in-service teachers. 
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The EAEE is a combination of three scales: the SAS (Roberts & Bilderback, 1980) 

and the ATS (Wise, 1985), which are the most commonly used in an international 

context, and the Spanish scale proposed by Auzmendi (1992).  

Based on these three scales, a list of 36 items was developed, consisting of both 

positive (affirmative) and negative items in order to avoid the problem of 

acquiescence (Morales, 1988), and including various pedagogical and 

anthropological components, as described by Estrada (2002) and Estrada et al. 

(2004). These items were submitted to a panel of expert judges, and, following their 

evaluation, a final scale consisting of 25 items (14 affirmative and 11 negative) was 

proposed. The distribution of items according to the various components is provided 

in Table 1. 

 

Teaching 

component 

Anthropological component 

Social Educational Instrumental 

Affective 1, 11, 25 7, 12, 23 10, 13, 16, 20 

Cognitive 2, 19, 21 4, 6, 17 3, 24 

Behavioural 9, 18 8, 15, 22 5, 14 

Table 1: Components of attitudes as assessed in the EAEE 

In this study, attitudes were measured using a 25-item Likert scale. The independent 

variables we considered were: gender, group (prospective vs. in-service teachers), 

the number of previous courses taken in statistics, specialty (the subject in which the 

prospective teachers were specialising or the subject which the teachers taught) and 

the number of years of teaching experience in mathematics (for in-service teachers). 

METHOD, RESULTS AND DISCUSSION 

In this study, we analysed the results of a survey of 71 teachers in the second and 

third cycles of basic education in Portugal. The survey was distributed in the 

teachers‘ annual meeting (ProfMat 2008, 2-4 September) and in some of those cycles 

schools in Seia, S. Romão, Oliveira do Hospital and Lisbon. This allowed us to 

obtain a sample of the 212 teachers who were involved in these teaching cycles in 

Portugal at the time. The EAEE (Estrada, 2002) was translated and adapted to the 

Portuguese language by the authors, and two items were added. These two new items 

were related to the use of technology in statistics classes. In Table 1, these items 

were included in the section in which the behavioural components of teaching 

overlap with educational and anthropological components (items 26: ―In statistics 

classes, I need to use the computer and the Internet in order to perform the tasks that 

I have set‖, and 27: ―I do not need to use a calculator in order to perform the tasks 

that I set in statistics classes‖). All of the items comprised statements, to which the 
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respondents marked their level of agreement or disagreement on a five-point Likert 

type scale (from 1: strongly disagree, through 3: neither agree nor disagree, to 5: 

strongly agree). Of the 27 items, 15 were positively worded (for instance, question 

26) and 12 were negatively worded (for instance, question 27). For the 12 negatively 

worded items, the scale was reversed when the responses were analysed (from 1: 

strongly agree, through 3: neither agree nor disagree to 5: strongly disagree), 

meaning that the teachers‘ attitudes towards statistics could be measured in terms of 

the total score for all of their answers. The minimum score was 27, and the maximum 

was 135, with a mid-point of 81. In the data analysis, statistical software and a 

spreadsheet were used. 

Of the 71 respondents, 61 (86%) were women. With regard to the teachers‘ years of 

experience, we found a mean of approximately 15 years, with a standard deviation 

(SD) of 7.8 years. The distribution is shown in Figure 1 (left), in which we can see 

the number of new teachers and those with far more experience.  

The cycles in which the teachers were working are also shown in Figure 1 (right). Of 

the 71 respondents, only 51 indicated the subject in which they had graduated (we 

think that the 20 missing answers may have been a result of the presentation of the 

question). Of these respondents, around 78% were mathematics graduates (in 

teaching or other areas) and around 6% were economics graduates. These 51 

respondents had graduated from a total of 13 different subject areas. 

 

Figure 1: Years of experience of teaching (left) and teaching cycles (right) 

Table 2 provides an analysis of each item. The mean value and SD were computed 

for a positive scale, meaning that all of the scores are comparable. The nearer to five 

they are, the stronger the indication of a positive attitude towards statistics. In 

contrast, if the scores are closer to one, this indicates a negative attitude towards 

statistics. 

 Item Mean SD 

1 Some statistical information transmitted in television 

programmes bothers me 

2.7 1.2 

2 Statistics helps me to understand today‘s world  4.2 0.9 

3 Through statistics, one can manipulate reality 1.6 0.7 



Working Group 5 

CERME 7 (2011) 832 

 

4 Statistics is fundamental to the basic training of future 

citizens 

4.3 0.6 

5 I solve day-to-day problems using statistics 3.6 0.7 

6 We should not teach statistics in schools 4.9 0.3 

7 I have fun in classes in which I teach statistics 3.8 0.7 

8 I find that statistical problems are easy 3.8 0.9 

9 I do not understand the statistical information that appears in 

the media 

4.1 1.0 

10 I like statistics, because it helps me to fully understand the 

complexity of certain issues 

3.7 0.9 

11 I feel intimidated by statistical data 4.4 0.8 

12 I find the world of statistics interesting 4.0 0.7 

13 I like serious work which involves statistical analysis 3.9 0.8 

14 I do not use statistics outside of school 3.4 1.0 

15 When I attended statistics classes, I did not fully understand 

what was said 

3.7 1.1 

16 I am passionate about statistics because it helps me to view 

problems objectively 

3.3 0.8 

17 Statistics is easy 3.5 1.0 

18 I find it easier to understand the results of elections when 

they are shown using graphics 

3.7 1.0 

19 Statistics are only good for people in scientific areas 4.7 0.5 

20 I like to solve problems using statistics 3.8 0.7 

21 Statistics is worthless 4.8 0.7 

22 If I could eliminate part of the syllabus, it would be statistics 4.6 0.9 

23 I usually explain statistics problems to my colleagues if they 

do not understand 

2.7 0.9 

24 Statistics helps people to make better decisions 3.8 0.7 

25 When I read, I avoid statistical information 4.4 0.6 

26 In statistics classes, I need to use the computer and the 

Internet in order to perform the tasks that I have set 

3.2 1.1 

27 I do not need to use a calculator in order to perform the tasks 

that I set in statistics classes 

3.7 1.1 
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Table 2: Mean and SD for each item 

The items with the highest mean scores (> 4.5) were 6, 19, 21 and 22 (all of them are 

negatively worded, we note again). In addition to indicating positive attitudes 

towards statistics, these results reinforce our idea that these mathematics teachers 

seem to be aware of the importance of statistics as a part of the mathematics 

curriculum, as well as its importance for citizens in the modern world. 

The items with the lower mean scores (< 3) were 1, 3 (both of them are negatively 

worded, we note again) and 23. The result for item 23 seems to indicate a lack of 

collaboration between colleagues. With regard to items 3 and 1, we suspect that the 

respondents ―wrongly‖ understood the meaning of the statements.  

It is important to note that the two items which were related to the use of technology 

in statistics classes (26 and 27, this last one is negatively worded) had mean scores of 

3.24 and 3.68 and SD values of 1.08 and 1.09 respectively. These results may 

indicate that there is still room for improvement, as teachers do not make use of 

technology in their classrooms. 

Figure 2 indicates the frequencies of the total scores. From the graph, we can see that 

most of the respondents had a mean total score which was higher than 81 (the level 

of indifference). The modal score is 104, and the mean is 102.58, with a SD of 8.38 

and a slight negative skewness (-0.53).  

 

 

Figure 2: The frequencies of the total scores 

Teaching 

component 

Anthropological component 
Total 

Social Educational Instrumental 

Affective 3.83 3.67 3.70 3.67 

Cognitive 4.55 3.99 2.73 3.99 

Behavioural 3.94 3.77 3.48 3.77 

Total 4.13 3.80 3.40 3.80 

Table 3: Mean scores according to the components of attitudes  
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Table 3 presents the respondents‘ mean scores according to the components of 

attitudes. According to a briefly analysis of these scores, none of the components – 

teaching or anthropological – presented high mean scores (> 4.5) or low mean scores 

(< 3). Nevertheless, a high mean score arises when the cognitive component of 

teaching is combined with the social anthropological component, and a low mean 

score can be obtained by crossing the cognitive component of teaching with the 

instrumental anthropological component. 

We also studied the reliability of this survey; we obtained a Cronbach‘s alpha of 

0.749 as a coefficient of internal consistency, and, taking into account the small 

number of respondents for this preliminary study, we believe this to be a reasonable 

value. Furthermore, in order to test the effect of each item on the internal consistency 

of the scale, we ran 27 more tests, using only 26 items at a time. For these 27 tests, 

the values for Cronbach‘s alpha varied from 0.725 to 0.768. 

We analysed the influence of gender on attitudes towards statistics, and we did not 

find any statistically significant differences (F (1, 69) = 1.582, p-value: 0.213). 

However, we found that the mean total score for women, which was 103.8 (SD 1.09), 

was higher then the mean total score for men, which was 99.5 (SD 2.31). This result 

is in accordance with the results of Estrada et al. (2004). 

With regard to the effect of their years of experience on teachers‘ attitudes towards 

statistics, despite a generally positive attitude, no statistically significant differences 

were found (F (4, 66) = 0.367, p-value: 0.831). Nevertheless, we found that the mean 

total score was higher and the SD was lower if the respondents had been teaching 

mathematics for fewer years, and vice versa. This result may be related to specific 

training in statistical and pedagogical approaches and teaching methods which the 

teachers received during their initial training. 

Regarding the influence of the cycles of education on the teachers‘ attitudes towards 

statistics, we noticed that the mean total score was relatively high, but with no 

statistically significant differences (F (3, 67) = 0.963, p-value: 0.415). Slightly higher 

scores were observed in the case of teachers who taught in the second and third 

cycles and the first and second cycles (the smaller group of respondents), who also 

had the highest SD values. Nevertheless, the question of whether or not a more 

positive attitude towards statistics may be associated with the cycles of basic 

education needs further research. 

Regarding the different areas of training and their relationship with attitudes towards 

statistics, no statistically significant differences were found (F (1, 49) = 0.021, p-

value: 0.885). However, we noted that the respondents with basic training in 

mathematics had slightly lower mean scores (102.55 and SD 1.36), while those with 

training in other areas had a mean score of 103, but a greater SD (3.28). This result is 

interesting and somewhat unexpected; suggesting once again that further analysis in 

this area is required. 
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PRELIMINARY CONCLUSIONS 

The sample size and the characteristics of this survey mean that our results cannot be 

generalised. We must state that the purpose of this study was not to make any 

generalisations, but to test the validity of the items and the performance of the scale 

used in the similar study carried out by Estrada et al. (2004). 

Distributing this survey through the ProfMat 2008 organising committee did not 

prove to be a good option, since there the teachers had several other requests 

(workshops, conferences, team groups, and so on) which may explain the low 

response rate and possibly even some of the ―wrong‖ answers. 

For this preliminary study, Cronbach‘s alpha (the coefficient of internal consistency) 

was 0.749. In our view, this value is reasonable, given that the sample size was very 

small. For the purposes of the survey, this initial study suggests that teachers‘ 

attitudes towards statistics are generally positive, with a mean total score of 102.58 

(and SD 8.38), which is well above the mid-point (81), which would indicate their 

indifference. These results are in line with the results of Estrada et al. (2004). We did 

not find statistically significant differences in the respondents‘ attitudes towards 

statistics in terms of some of the variables studied, but we should emphasise the 

following points: women had a slightly higher mean total score than men; the mean 

total scores were slightly lower in the groups of teachers with fewer years of teaching 

experience; the mean total scores were lower for the teachers who taught in only one 

of the cycles of basic education, and teachers with training in mathematics also had a 

higher mean total score than teachers with other forms of training. The mean scores 

of the two additional items were only slightly above three (indicating indifference), 

which leads us to infer that (in terms of these respondents at least) the use of 

technology in statistics classes needs further study. 

These results must be read with great caution and with full knowledge of the (very) 

small size of the studied sample. Nevertheless, this preliminary study has provided us 

with some directions for further research and action; for instance, in terms of 

rewriting some of the items and the need to validate this Portuguese translation of the 

EAEE (Estrada, 2002). 

Having followed on from the study by Estrada et al. (2004), we have not addressed 

all of the issues which were raised during the survey, but we intend to do so in 

further analysis. In order to continue this study of attitudes towards statistics, we feel 

the need to collect more answers using this survey in order to validate the scale when 

studying teachers in the second and third cycles of Portuguese basic education, and 

in order to improve the graphical presentation of the first section: the questions 

regarding sample characteristics of teachers. We also intend to conduct further 

statistical analysis, including multivariate analysis. 
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The article presents an overview of the main experiences gained from a case study 

which investigated the forms of collaboration and shared knowledge building 

undertaken by a multinational group of teachers participating in online professional 

development. This study took place during the pilot delivery of Early Statistics, an 

online professional development course in statistics education targeting European 

elementary and middle school mathematics teachers. A central conviction 

underlying the course design is that learning is a social act best supported through 

collaborative activities, and thus learning as part of a community of practitioners 

can provide a useful model for online teacher professional development.  

INTRODUCTION 

Numerous initiatives in online teacher training serving large numbers of educators 

are underway (e.g. Garfield & Everson, 2009; Cady& Rearden, 2009). Several of 

these programs exploit the richness of interactions fostered by the Web to build and 

study network-based services with the aim of fostering online communities of 

teaching practitioners. Communities of practice is a construct grounded in an 

anthropological perspective that examines how adults learn through social practices 

(Gray, 2004). A community of practice consists of a group of individuals with a 

shared domain of expertise, who engage in a process of collective learning about 

practices that matter to them (Wenger, 1998). A promise of new web-based 

technologies is that they can enable geographically dispersed teachers to engage in 

online communities, in which they can exchange ideas with other teachers and garner 

support as they try new strategies in their classrooms (Cochran-Smith & Lytle, 

1999). 

This chapter focuses on the question how the information and communication tools 

made available by modern internet technologies could be effectively utilized in order 

to build and study network-based services with the aim of fostering online 

communities that promote statistics teachers‘ learning and development. It first 

provides an overview of the existing literature on online communities of practice. It 

then reports on some of the experiences from an exploratory study designed to 

investigate the forms of collaboration and shared knowledge building undertaken by 

a multinational group of teachers participating in online professional development in 

statistics education. The main insights gained from the study regarding enabling and 

constraining factors to the successful implementation of an online community of 

practice are discussed. Based on the analysis of these data, some recommendations 

for mathematics educators involved in pre-service and/or in-service teacher training 
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who wish to incorporate online communities of practice in their work are provided. 

BACKGROUND 

Online communities of practice are constantly evolving into many forms and styles 

as they embrace new and evolving technologies. While, however, they proliferate in 

cyberspace, little is still known about best practices for their effective design, as 

empirical research on this topic is still at an initial stage. Conducted studies indicate 

that online communities of practice are, indeed, a promising model for both pre-

service and in-service teacher training (Cady& Rearden, 2009; Dalgarno & Colgan, 

2007). They have a great potential to support teacher professional development 

through placing educators at the center of their learning (Kayler & Weller, 2007), 

thus promoting their independence and self-directed learning. Online communities of 

practice facilitate not only communication, but also the collaborative finding, 

shaping, and sharing of knowledge among teachers.  

Despite the potential of online communities of practice, several studies have found 

their introduction in educational contexts to be less successful than anticipated (e.g. 

Kennard, 2007). These studies highlight several difficulties in building and 

maintaining online communities involving shared professional learning. A study by 

ten Cate (2007), for example, has identified the following obstacles to participation 

in an online community of practice: limited time, limited access, limited 

opportunities to meet face-to-face, and language barriers. Language barriers are a 

particularly serious challenge for international communities of practice, where 

members come from different countries and time zones, and communicate with other 

teachers in a foreign language (Trayner, Smith, & Bettoni, 2007).  

Timely postings by group members are considered to be a necessary component in 

building a functional community of practice (Kayler & Weller, 2007). However, 

studies of participation demographics in online communities and social networks 

have found that between 46 percent and 82 percent of users are invisible observers 

who rarely or never participate (Preece, 2000). There is strong research evidence 

indicating that many distance learners join discussion forums, read messages, but do 

not contribute to discussions (Simpson, 2002). 

The design of cognitive tools to promote learner participation in online communities 

of practice involves many inter-related considerations (e.g. moderator involvement, 

reliability and stability of the technology, etc.), most of which are not yet well 

understood (Stahl, 2006). More research is still needed to shed light into how to best 

support the development of healthy and sustaining online communities of teaching 

practitioners. Below some experiences related to educating statistics teachers at a 

distance are analyzed. 
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METHODOLOGY 

Context and Participants 

The research comes from EarlyStatistics, a 3-year project (2005-2008) funded by the 

European Union under the Socrates-Comenius Action, which exploited the 

affordances offered by distance learning technologies to help improve the quality of 

statistics instruction offered in European schools. The project consortium, comprised 

of five universities in four countries (Cyprus, Spain, Greece, Norway), developed 

and pilot tested an intercultural online professional development course in statistics 

education. The course aims at helping European teachers improve their pedagogical 

and content knowledge of statistics through exposure to innovative web-based 

educational tools and resources, and cross-cultural exchange of experiences and 

ideas. A central conviction underlying the course design is that learning as part of an 

international community of practice can provide a useful model for teacher 

professional development (Wenger, 1998).  

A case study design with mixed methods was employed in the study. The case 

studied consisted of the group of fourteen in-service teachers that participated in the 

pilot delivery of EarlyStatistics, which took place during the final year of the project 

(in spring 2008) in three of the partner countries – Cyprus, Spain and Greece. 

Participants voluntarily enrolled in the course. They did not gain any extrinsic 

rewards such as compensation, or academic credit incentives. A prerequisite for 

participation in the course was proficiency in English, since English was the 

language of instruction and of online communication. 

Nine of the course participants were female and five male. Seven were aged between 

31-40, while three were younger (21-30 years old) and four older (41-50 years old). 

The majority of the participants had been teaching for more than ten years. Since 

they originated from three different European countries, teachers were 

geographically, culturally, and linguistically heterogeneous. They came from 

different educational systems, and had varied educational backgrounds. They were 

either elementary or secondary school teachers (9 elementary school teachers, 5 

secondary school level teachers), and differed considerably in their mathematical and 

statistical knowledge, and in their confidence and experience in teaching statistics. 

There was also variety in teachers‘ experience and comfort with internet 

technologies, and in their previous experience in taking online courses.  

The EarlyStatistics course lasted 13 weeks, and was made up of six Modules. In 

Modules 1-3 (Weeks 1-6), the focus was on enriching the participants‘ statistical 

content and pedagogical knowledge by exposing them to similar kinds of learning 

situations, technologies, and curricula to those they should employ in their own 

classrooms. To help teachers go beyond procedural memorization and acquire a 

well-organized body of knowledge, the course emphasized and revisited a set of 

central statistical ideas. Through participation in authentic educational activities 
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such as projects, experiments, computer explorations with data, group work and 

discussions, participating teachers learned where the ―big ideas‖ of statistics apply 

and how, and developed a variety of methodologies and resources for their effective 

instruction. In Modules 4-6, the focus shifted to classroom implementation issues. 

Teachers customized and expanded upon provided materials (Module 4; Weeks 7-9), 

and applied them in their own classrooms with the support of the design team 

(Module 5; Weeks 10-11). They wrote up their experiences, including a critical 

analysis of their work and that resulting from their pupils. Once the teaching 

experiment was completed, they reported on their experiences to the other teachers, 

and also provided video-taped teaching episodes and samples of their students‘ 

work, for group reflection and evaluation (Module 6; Weeks 12-13).  

The course was delivered through a blended learning approach. There were a few 

face-to-face meetings with local teachers, but the biggest part of the course was 

delivered online, by utilizing the project information base for teaching, support and 

coordination purposes. To offer teachers flexibility and to accommodate different 

time zones, the largest portion of the course was conducted asynchronously through 

online discussion and e-mail groups. There was also some synchronous 

communication through use of technologies such as chat rooms, audio/video 

streaming, and videoconferencing.  

Each module involved a range of activities, readings, and contributions to discussion 

forums, as well as completion of group and/or individual assignments. Both the 

dialogue and the assignments were structured so as to explicitly make ties among 

theory and practice. Reflective questions created situations for the participating 

teachers to critically examine the subject matter through additional personal research 

or reading of the course material, thus giving them the opportunity to make new 

connections between theory and their personal and professional experiences.  

Concurring with Roseth, Garfield, and Ben-Zvi (2008), EarlyStatistics was built on 

the premise that statistics instruction ought to resemble statistical practice, which is 

an inherently cooperative enterprise. A number of strategies were employed by the 

project consortium to promote online dialogue and transnational collaboration 

among participating teachers, and to ensure that all teachers actively contribute to 

course activities and discussions, including the following: (i) Monitored discussion 

forums allowed teachers to discuss content and help each other; (ii) Discussion 

questions were assigned bi-weekly. These were conceptual questions keyed to a 

major theme, and addressing content as well as pedagogical concerns; (iii) 

Participation in discussion forums and other collaborative activities was a 

compulsory element of the course; (iv) Participants were assigned to small groups, 

and each group was facilitated by a tutor. Groups received periodic milestone group 

assignments which they jointly completed using social software tools such as wikis. 

Members of the EarlyStatistics consortium with expertise in statistics education 

facilitated the course. Since the course was designed to be a community-based 
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learning experience, their role was to guide discussions, encourage full, thoughtful 

involvement of all participants, and provide feedback. Facilitators helped to deepen 

the learning experience for course participants by encouraging productive interaction 

and critical reflection on workplace practices.  

Instruments, Data Collection and Analysis Procedures:  

Documenting online interactions is a multifaceted phenomenon that requires 

complementary methods of data collection and analysis in order to understand how 

learning is accomplished through interaction, how learners engage in knowledge 

building, and how designed media support this accomplishment. Consequently, to 

increase understanding of the research setting, the current study employed a variety 

of both qualitative and quantitative data collection techniques, including: (i) The 

contents of the online discussion boards in which teachers participated during the 

course; (ii)  Group assignments completed by teachers throughout the course; (iii) 

Quantitative statistics automatically collected by the system (e.g. number of teachers 

participating in a discussion forum, or successfully completing group assignments, 

number of postings by each participant, etc.);  (iv) An open-ended web-based survey 

administered at the course completion, aimed at determining teachers‘ perceptions, 

opinions, feelings and motives regarding their participation in collaborative course 

activities and the impact these might have had on their professional development; 

and (v) Semi-structured interviews of a selected group of teachers that surveyed their 

views on the effectiveness of the online communication during the course. 

RESULTS 

The overall feedback from the target user groups from all partner countries 

participating in the EarlyStatistics course pilot delivery, as well as from external 

experts regarding the course content, services, and didactical approaches was 

generally very positive. Key conclusions from the analysis of the user feedback were 

that EarlyStatistics was quite successful in helping teachers to improve their 

pedagogical and content knowledge of statistics by offering interactive, technology-

rich instructional materials and services that enhance the teaching and learning 

process, and by providing course participants the opportunity to collaborate with 

other teachers and begin the construction of a community of practice. Moreover, data 

obtained from the teaching experimentations in the course participants‘ classrooms 

suggest positive gains in student learning outcomes and attitudes towards statistics 

(for more details see Chadjipadelis & Andreadis, 2008).  

In the survey administered at the completion of the pilot course delivery and the 

follow-up interviews, teachers were asked to indicate ―what they liked the most 

about the EarlyStatistics course‖. The promotion of communication and 

collaboration among teachers was an aspect of the EarlyStatistics course that was 

considered by all course participants to be an important strength of the program: ―I 
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liked the interaction with the other teachers. It is useful to share your ideas and 

problems with other teachers from different educational levels‖; ―It was very useful 

to be able to communicate with teachers of different levels and perspectives. This 

direct communication with everyone has helped to continue the hard work of self-

learning‖.  

In particular, teachers praised the fact that EarlyStatistics had allowed them, through 

computer-mediated communication, to share content, ideas, and instructional 

strategies with teachers from different countries and educational systems:  

The international cooperation among teachers having the same agony on how to teach 

their students better statistics; the fact that I also learned a lot of things about statistical 

syllabus, pedagogical aspects, and how education is implemented in other countries.  

Distance training has helped me to understand that the problems that I have when 

teaching statistics are also common in other European Countries.  

It is good to ‗hear‘ colleagues from other countries that face similar problems like you 

and sometimes, because of a different view on a point, suggest ideas you didn‘t think of. 
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Figure 1: Distribution of messages in the EarlyStatistics Discussion Forums per Module 

(Figure 1-left), and community member (Figure 1-right) 

Recently, EarlyStatistics won, ex-aequo with Maths4Stats (a joint project 

coordinated by Statistics South Africa), the 2009 Best Cooperative Project Award in 

Statistical Literacy. This award is given every two years by the International 

Association of Statistics Education (IASE) ―in recognition of outstanding, 

innovative, and influential statistical literacy projects that affect a broad segment of 

the general public‖.  

Despite the overall success of the EarlyStatistics project and the very positive 

feedback from the groups of teachers participating in the pilot delivery and from 

external experts in statistics education, a number of shortcomings have also been 

identified. The biggest difficulty experienced by the consortium was its limited 

success in establishing a functional online community of practice, which was a main 

objective of the project. Despite the fact that the course team employed several 
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strategies to promote teacher dialogue and collaboration, and that the course 

facilitators tried their best to ensure that all teachers actively contributed to 

discussion forums, there was often a lower than anticipated learner-to-learner 

interaction.  

Figure 1-left shows the distribution of messages in EarlyStatistics per forum. We can 

see that while at the beginning of the course there was big enthusiasm and very high 

participation in the discussion forums, interaction dropped off over time. In contrast 

to the vibrant interaction and rich dialog characterizing the earlier part of the course, 

often what happened towards the end of the course was that only 3-4 teachers would 

actively participate in the discussion forums, while the rest would make minimal or 

no contributions.  

Figure 1-right shows the distribution of messages written in the forums per 

community member (P1-P14 stand for the course participants, and CF1-CF3 for the 

course facilitators). As we can see, there was a huge variation in the degree of 

participation among community members. There were a few teachers whose level of 

engagement was very high. At the same time, several other teachers participated only 

sporadically in the forums and, as a result, wrote a very small number of messages. 

These teachers exhibited a silent manner of participation. Checking their records of 

participation, we discovered that despite them not being active in the discussion 

forums, they continued to join the forums and read the messages posted by other 

members. Based on the analysis of the data collected during the study, we have 

identified a number of factors that adversely affected online participation of course 

participants: 

Course Workload: A reason that might have contributed to our limited success 

in building an online community of practice is the pilot course workload, which 

proved to be overwhelming. When asked, in the end-of course survey and in the 

follow-up interviews, to indicate ―what they liked the least about the EarlyStatistics 

course‖, most participants mentioned the course workload which made it very 

difficult for them to keep up with the course requirements due to their overburdened 

schedules: ―The papers we had to read in the first modules were too many and our 

time to work on them limited, because of our jobs‖; ―There was too much studying 

involved.‖ 

Duration of Discussion Forums: The short duration of the discussion periods 

was another aspect of the course criticized by participants. Several participants noted 

that the study pace had been too high for them, and that the time allocated to each 

discussion forum (two weeks in average) was not adequate: ―The course had too 

many assignments on the theoretical part, and there was not enough time for 

working on them and posting on the forums.‖  

Lack of physical proximity: During the pilot delivery there were a few face-to-

face meetings with local teachers, but not with the group as a whole. Course 
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participants got the chance to virtually meet teachers from the other countries 

through video-conferencing, this however cannot be as effective as face-to-face 

interaction. Moreover, planning of videoconferencing and other activities that 

required synchronous communication (e.g. chat sessions) proved very difficult to 

schedule, as it was almost impossible for all of the teachers to be available at the 

same time. As a result, teachers built strong local groups but had more limited than 

desired interaction with teachers from other countries.  

Language barriers: Researchers that have studied the dynamics of international 

online communities of practice (e.g. Trayner, Smith, & Bettoni, 2007) have found 

communication among people who speak different first languages to be a very 

serious challenge for such communities. In this study, language of communication 

also proved to be an obstacle to participation for some of the course participants. 

While most of the teachers did not seem to have any problems reading and writing in 

English, for a few of them language was a barrier that prevented them from fully 

participating in online discussions: ―It was a bit difficult and time consuming for us 

to read bibliography in English and to post our thoughts in the forum.‖  Teachers 

with language difficulties did not post as often as their peers who had better English 

writing skills, and their contributions tended to be shorter.  

Limited experience of course facilitators in online instruction:  The important 

role of facilitators and moderators is a main theme emerging from research studies 

examining online communities of practice. In EarlyStatistics, the limited experience 

of the course facilitators in distance learning was a drawback of the pilot course. The 

team members that facilitated EarlyStatistics are very experienced statistics educators 

who have been involved for several years in teacher training. Nonetheless, this was 

the first time they were offering professional development online. Consortium 

partners with extensive previous expertise in distance education acted as mentors and 

provided hands-on training on a number of topics relating to distance learning. This 

undoubtedly helped course facilitators to improve their instructional skills in 

distance education. However, they still faced some difficulties in running the pilot 

course, and particularly in leading the discussion forums. While in guiding 

discussions, they tried to encourage full, thoughtful involvement of all participants, 

and to provide constructive feedback, they did not always manage to achieve 

productive interaction and critical reflection of the participants. 

Insights gained from the EarlyStatistics pilot delivery have informed the revision of 

the course to better support online community building. The heavy course workload 

was corrected in the revised version of the course, and the length of time allocated to 

each discussion forum was increased from two to three weeks, in order to allow 

teachers more time for reflection and for online communication. Similarly, the 

technical difficulties experienced in the pilot delivery have been resolved. 

Additionally, the lack of a face-to-face meeting with participants from other 

countries experienced by the teachers participating in the pilot delivery, will not be 
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an issue in future offerings of the EarlyStatistics course, which will have a blended-

learning format. At the beginning of the course, teachers from all over Europe will 

gather together to attend a one-week intensive seminar (they can finance their 

expenses by applying for a grant under the Lifelong Learning/Comenius In-Service 

Training Program). During this meeting, they will get familiarized with the course 

and its objectives, and with the facilities offered by the course e-Learning system. 

More importantly, they will get the chance to meet and interact with one another, and 

with the course facilitators. We believe that this initial in-person meeting will 

reinforce teacher online engagement by helping mitigate the problem of trust and 

social presence online (Ardichvili, Page, & Wentling, 2003). Finally, the limited 

experience of the EarlyStatistics course facilitators in online instruction will not be 

such a big issue in future offerings of the course. Undoubtedly, however, the 

valuable experiences they gained from this pilot delivery will allow them to employ 

much more effective moderating strategies in future offerings of the course. 

DISCUSSION 

A common thread emerging from educational research is the direct relationship 

between improving the quality of teaching and improving students‘ learning. Thus, 

the provision of high-quality, ongoing professional development for teachers has 

become a paramount issue in school reform efforts. The need for the training of large 

numbers of teachers makes distance learning an attractive option. The traditional 

approach is to provide teacher training through a well-designed course package. The 

EarlyStatistics project has adopted a different approach, guided by contemporary 

visions of web-based instruction which support ―learning‖ and ―community‖ rather 

than ―instructional‖ models of professional development.  

Unlike traditional, individualistic approaches to teacher professional development, 

properly designed online communities of practice can foster a culture of sharing and 

sustained support for teachers. By allowing geographically dispersed teachers to 

interact, communities of practice can enable them to connect and learn from each 

other in ways not possible in more traditional, face-to-face professional development 

programs. However, despite the potential of online communities of practice, the 

existing research literature indicates that their introduction in educational contexts is 

often less successful than anticipated. Findings from the current study concur with 

the research literature, indicating that successful building of an online community of 

practice, particularly in a cross-national context, is very challenging.  

While online teacher professional development courses share many features with 

face-to-face programs, the experience gained from the EarlyStatistics program, 

suggest that they also present some unique challenges. Teachers participating in such 

a course are likely to be characterized by diversity in a number of parameters 

(pedagogical and content knowledge of statistics and mathematics, educational level 

and grade they teach, cultural and/or professional backgrounds, comfort with 
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technology and with distance learning, etc.). Several pedagogical and technical 

issues should be taken into account in the design of an online professional 

development course, in order to provide an effective environment that motivates 

teachers and supports the development of a functional online community of practice:  

 Access to multiple distance collaboration tools that promote interaction with 

peers and with course facilitators; 

 Careful scheduling of course activities to offer teachers flexibility, and to 

accommodate different time zones; 

 Adoption, whenever possible, of a blended learning approach, to allow teachers 

to personally meet and interact with each other. 

 Setting of realistic work expectations so as not to overburden teachers; 

 Provision of adequate time for teachers to formulate and articulate contributions 

to online discussions; 

 Prompt and effective moderation of online interactions by course facilitators;  

 Support, in the case of international online communities, of members 

experiencing difficulties in oral and/or written communication in English. 

Research in the area of online communities of practice is still at an embryonic stage. 

More research is needed to advance our understanding of how to best take advantage 

of computer-mediated communication tools to support the development of effective 

virtual communities that can act as vehicles for teacher learning and growth. Despite 

the tentative and non-generalizable nature of the current case study‘s findings, it 

does contribute some useful insights into the factors that may facilitate or impede the 

successful implementation of an online community of teaching practitioners, 

suggesting possible methods for improving their implementation in distance 

education. These insights have helped to further enhance the quality and 

effectiveness of the EarlyStatistics course, and sketch a road map for our future 

research work and for other similar online community building endeavors. 

REFERENCES 

Ardichvili, A. Page, V., & Wentling, T. (2003). Motivation and Barriers to Participation in 

Virtual Knowledge-Sharing Communities of Practice. Journal of Knowledge 

Management, 7(1), 64–77. 

Cady, J., & Rearden, K. (2009). Delivering online professional development in mathematics 

to rural educators. Journal of Technology and Teacher Education, 17, 281-298. 

Chadjipadelis, T. & Andreadis, I. (2008). EarlyStatistics Evaluation Report (Internal 

document. Project: 226573-CP-1-2005). 

Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of Knowledge and Practice: 

Teacher Learning in Communities. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of 



Working Group 5 

CERME 7 (2011) 847 

 

Research in Education (pp. 249–305). Washington, DC: American Educational Research 

Association. 

Dalgarno, N., & Colgan, L. (2007). Supporting novice elementary mathematics teachers' 

induction in professional communities and providing innovative forms of pedagogical 

content knowledge development through information and communication technology. 

Teaching and Teacher Education: An International Journal of Research and Studies, 23, 

1051-1065. 

Garfield, J., Everson, M. (2009). Preparing Teachers of Statistics: A Graduate Course for 

Future Teachers. Journal of Statistics Education, 17(2). Retrieved November 15, 2010, 

from http://www.amstat.org/publications/jse/v17n2/garfield.html. 

Gray, B. (2004). Informal Learning in an Online Community of Practice. Journal of 

Distance Education, 19(1), 20-35.  

Kayler, M., & Weller, K. (2007). Pedagogy, Self-Assessment, and Online Discussion 

Groups. Educational Technology & Society, 10(1), 136-147. 

Kennard, C. (2007). Wiki Productivity and Discussion Forum Activity in a Postgraduate 

Online Distance Learning Course. In C. Montgomery C., & J. Seale (Eds.), Proceedings 

of World Conference on Educational Multimedia, Hypermedia and Telecommunications 

2007 (pp. 3564-3569). Chesapeake, VA: AACE. 

Preece, J. (2000). Online communities: Designing usability, supporting sociability. 

Chichester, United Kingdom: John Wiley & Sons. 

Roseth, C.J., Garfield, J.B., & Ben-Zvi, D. (2008). Collaboration in Learning and Teaching 

Statistics, Journal of Statistics Education, 16(1). Retrieved September 5, 2010, from 

www.amstat.org/publications/jse/v16n1/roseth.html. 

Simpson, O. (2002). Supporting Students in Online, Open and Distance Learning. London 

and New York: Taylor and Francis Group. 

Stahl, G. (2006). Group Cognition: Computer Support for Collaborative Knowledge 

Building. Cambridge, MA: MIT Press. 

ten Cate G. (2007).  Supporting a Community of Trainers: Can a Community of Practice 

help address trainers‘ need for continuous, easily accessible, and context-appropriate 

support? International Institute for Communication and Development, The Hague. 

Retrieved October 15, 2010, from www.ciera.org/library/reports/inquiry-3/3-014/3-

014.pdf. 

Trayner, B., Smith, J. D., & Bettoni, M. (2007). Participation in International Virtual 

Learning Communities: A Social Learning Perspective. Lecture Notes in Business 

Information Processing, 1(Part IV), 402-413. 

Wenger, E. (1998). Communities of Practice: Leaning, Meaning, and Identity. Cambridge, 

UK: Cambridge University Press.   

http://www.amstat.org/publications/jse/v16n1/roseth.html


 

CERME 7 (2011)  
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Decision making under uncertainty involves the underlying concepts of risk and 

probabilities. By getting involved in risk taking experiences preschoolers develop 

stochastic thinking and skills that allow making risky or riskless choices depending 

on the outcome and related information.  In the current study, children (N= 80), at 

the age of 4-6 participated in the‘ Cups‘ task (Levin et al, 2003) through concrete 

manipulatives versus pc. Findings allow implications for the design of the 

probabilistic tasks in relation to the cognitive capacities of young children.      

INTRODUCTION 

Risk challenges and undergoes most human activities and decisions. Through risky 

contexts children and adults understand and confront the dangers and uncertainties of 

life at a personal and more general level (Slovic, 1999). There is no one definition of 

risk thus, according to Harding (1998) risk refers to ―a combination of probability or 

frequency of occurrence, of a defined hazard and the magnitude of the consequences 

of the occurrence‖ (p.167). The terminology and methods used for dealing with risk 

and uncertainty vary a lot and make it difficult to communicate across the various 

areas of applications and disciplines (Aven, 2009).  

Methodologically, risk-taking has been analysed not only through actual rates (i.e., 

with the use of interviews or questionnaires) but also through more artificial, 

laboratory based risk-taking tasks. The major goal in this later approach has been to 

provide analogues to the risks children and adolescents actually engage in, while 

controlling extraneous variables and assessing the effects of key variables (Boyer, 

2006). One such key variable is the estimation and apprehension of probabilities and 

the likelihood of events. 

Recent studies support that preschoolers may exploit and develop probabilistic 

thinking, as for instance they have been found to possess characteristics of 

probabilistic thinking (Jones et al, 1997; Nikiforidou & Pange 2010) and make use of 

probabilistic evidence in order to produce causal relations (Kushnir & Gopnik, 

2005). The development of such skills in the preschool context, under appropriate 

pedagogical practices, is a matter in progress (Pange & Talbot, 2003) and strongly 

complements the field of decision making under risk and uncertainty by implying 

what is called ‗risk literacy‘ (Gigerenzer et al, 2007). 

Research in the area of risky decision making by young children usually consists of 

an adaptation of tasks that aim at older ages and have already been tested on 

adolescents and adults. The ‗Cups-task‘ developed by Levin et al, (2003) is one 

example, among others, that supports that risk is age-related and that children get 
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affected by the loss or gain domain and the expected value (Schottmann, 2001; Levin 

et al, 2007). Among these lines, young children tend to select more risky choices in 

order to avoid losses than to achieve gains. This constitutes the preference shift as 

proposed by the Prospect Theory (Kahneman and Tversky, 1979) and analysed 

mainly with older participants. The aim of the current study is to examine whether 

preschoolers may or may not participate in a risky decision-taking task (similar to the 

‗Cups-task‘) by assessing the likelihood of an event in terms of immediate gain and 

loss. Can they estimate the probability of winning and losing under risky and riskless 

options? Will they show differences in the gain and loss domains? 

MATERIALS AND METHODS 

The study took place in two Greek kindergartens, during 2010. Children (N = 80), 

aged 4-6, participated in mixed age-groups consisted of five members. The between-

subject study was realised after parents gave their written consent and as soon as 

teachers expressed their willingness to collaborate.  

The material used in the experiment included six small round metallic boxes and 12 

cards of 4.5 x 5.5 cm each: six depicted happy faces and six sad faces. Children 

would record by themselves the outcome of their choice in specially designed sheets. 

There were two domains; the domain of gain and the domain of loss. In the gain 

domain children would win the equivalent number of stamps. On the contrary, in the 

loss domain they would cross out respective happy faces from a given bank of faces.  

The experiment took place within the participants‘ schools, thus in a separate room 

from their classroom in order to avoid disturbance. At a first point, children were 

seated around a table and were presented with the stimulus. After counting the boxes, 

the researcher would divide them in two sections composed by 3. Each section would 

be placed on each side of the table (right and left) by producing the risky and the 

riskless sides, depending on the number of cards that would be placed under each 

box. Therefore, children would observe the researcher separate the boxes in triads 

and place cards underneath them. In the riskless side, there would be one card per 

each box and in the risky side randomly 1 box would get 3 cards while the remaining 

two boxes would get no card at all (Table 1).  

Material Design of gain 

domain 

Design of loss 

domain 

concrete 

manipulative 

(metallic boxes and 

cards) 

risky             riskless  risky          riskless  

 

            

  

   

    

        

 

            

  

   

    

        

Table 1: Design of the risk-taking task 
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As the researcher explained orally the whole procedure in both domains, children 

would follow the shuffling of the boxes per each side; the risky boxes within them 

and the riskless accordingly within them. Then, each child was asked to select one 

box and this implied a two-level decision.  

Firstly, children were expected to choose between the risky and riskless option and 

afterwards they were expected to point at a particular box in order to find out 

whether and what they had won or lost. In the gain domain if children selected from 

the risky side they were prone to win 3 stamps by 33% chance, otherwise they would 

come up with none by 66%. If they chose a box from the riskless side they would 

gain one stamp for sure. In the loss domain, depending on their choice, children 

would either erase for sure one happy face from their bank of faces if they went for 

the riskless option or if they went for the risky option they would either erase all 3 

happy faces by 33% or none by 66%.  

As soon as one domain ended children went on with the other domain. The domains 

were counterbalanced and every time instructions were provided orally. Each trial 

was repeated 3 times and participants marked down their gains or losses. Children 

with more stamps or less crossed out faces were considered to be the winners, thus 

there was no final prize.  

RESULTS  

Children preferred the risky option compared to the non-risky option by 74.3% in the 

gain domain and by 91.3% in the loss domain. By conducting a χ
2
 chi-test it can be 

seen that in both domains there are statistically significant differences in children‘s 

responses as, in the gain domain, χ
2 
(1) = 54.5, p < 0.00 and in the loss domain, χ

2
 (1) 

= 157.9, p<0.000. 

In the following table (Table 2) the frequencies are reported per domain and trial.  

Responses 

  trial 1 trial 2 trial 3 

Gain 
Risky 57 54 60 

riskless 19 23 17 

Loss 
Risky 70 70 71 

riskless 7 7 6 

Table 2: Overall responses.  

A binomial test revealed that there is a significant preference for the risky option in 

every trial of both domains: z1g = 4.07, p <0.05 , z2g =3.887, p <0.05 z3g = 4.21, p 

<0.05,  z1l =4,67, p <0.05, z2l = 4,67, p <0.05, z3l =4,7, p <0.05. 
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The trend of selecting the riskless option instead of the risky was more evident in the 

gain domain. In the loss domain children were more likely to go for the risky boxes. 

In the gain domain the odds ratio in selecting the riskless/risky option in the 1
st
 trial 

was 4.16, in the 2
nd

 trial 7.3 and in the 3
rd

 trial 7.4. In the loss domain, in the 1
st
 trial 

children were more likely to select the riskless response by 1.77, in the 2
nd

 by 2.16 

and in the 3
rd

 by 2.22.   

DISCUSSION 

Children participated actively in this child-oriented risk-taking task. They were 

excited with this game and expressed patterns in their choices that comply with the 

preference shift phenomenon (Kahneman and Tversky, 1979). Under this 

perspective, choices involving gains are risk averse and choices involving losses are 

risk seeking. One of the basic features of decision under risk and uncertainty is that 

losses loom larger than gains. Risk seeking is prevalent when people must choose 

between a sure loss and a substantial probability of a larger loss and alternatively, 

people often prefer a small probability of winning a large prize over the expected 

value of that prospect.  

Young children at the age of 4-6 would select the risky option so as to avoid losing 

happy faces rather than maximizing their stamps. The preference shift phenomenon 

related to this age group is in compliance with Levin‘s et al (2003) and Levin‘s et al 

(2007) studies. If children had no indications of probabilistic thinking then they 

wouldn‘t show such patterns of choice; they would either be risk-seeking in all trials 

or risk-averting. On the contrary, children seemed to estimate and try to avoid in the 

loss domain not only the -1 but also the -3, whereas in the gain condition they would 

be satisfied with a +1. Findings in this direction support that children posses a 

limited understanding of probabilistic notions (Nikiforidou & Pange, 2010).  

Risk-taking tasks addressing to young children have been developed during the last 

years, usually as an adjustment of tasks designed for older participants. Within the 

laboratory-based tasks external variables are expected to be controlled and 

participants are encouraged to express their risky or riskless choices. Thus, the act of 

choosing, for instance one box, based on prior information is different from the 

reasoning and inferring that accompany this choice. In this direction further research 

should take in consideration children‘s justifications and explanations concerning 

these choices not only in experimental tasks but also in tasks that relate to real life 

situations and children‘s interests.  

To sum up, matters of design and ways of measuring young children‘s decisions 

under risk and uncertainty are a field of great interest that has emerged during the 

last years. By taking into account that risk-taking is very complicated and 

multidimensional, research investigates aspects of children‘s cognitive and 

probabilistic thinking. How can children at the age of 4-6 get engaged at a first point 

and learn at a more long-termed level to manipulate decisions under risk that entail 
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probabilistic concepts? How can concrete stimuli provide incentives that allow 

young children to express stochastic ideas and take risky decisions and finally, how 

can they be perceived in a useful manner for individuals‘ personal and social life 

within the framework of ‗risk literacy‘?  
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INFLUENTIAL ASPECTS IN MIDDLE SCHOOL STUDENTS‘ 

UNDERSTANDING OF STATISTICS VARIATION1  

Antonio Orta, Ernesto Sánchez 

Department of Maths Education, Cinvestav. México 

This study explores the way in which certain statistics notions influence the 

understanding of variation among junior high students. A teaching experiment with 

50 13-year-old students was undertaken, in which the concept of statistical variation 

was studied in the context of temperature measurements. After the teaching, a 

problem of comparing wait-time for a movie of different cinema chains was 

administered to the students. Some of them learnt to identify which set of data have 

more variation by reading their frequency distributions; others also did it by 

calculating and comparing the ranges. However, students are unable to respond to a 

question related to choosing a cinema chain to go by considering the uncertainty 

that should have been seen through variation. This observation brings a reflection 

on the understanding of the relationship between variation and uncertainty. 

INTRODUCTION 

It is acknowledged among the statisticians and statistics educators that variation is 

the core of statistics. Moore (1990) emphasized the omnipresence of variation and 

the importance of modelling and measure variation in statistics; Wild and Pfannkuch 

(1999) proposed the perception of variation as one fundamental kind of statistical 

thinking and Watson, Kelly, Callingham, and Shaughnessy (2003: 1) pointed out that 

―statistics requires variation for its existence‖. 

Variation is a very complex concept, complex in such way that understanding it 

requires connecting it with many other notions. For example, Watson, Callingham 

and Kelly (2007) suggest that understanding variation involves perceiving 

uncertainty, anticipated change, unanticipated change and outliers. Konold and 

Pollatsek (2002) emphasized the importance of jointly considering variability (noise) 

and centre (signal), because both ideas are needed to find meaning when analyzing 

data. Garfield and Ben-Zvi (2008: 203) remarked that ―understanding the ideas of 

spread or variability of data is a key component of understanding the concept of 

distribution, and is essential for making statistical inferences‖. Wild (2006: 11) 

suggested that the notion of distribution ―underlies virtually all statistical ways of 

reasoning about variation‖. 

The absence of the notion of variation in the curricula in mandatory education and 

the lack of research on students‘ understanding of it, in contrast to its importance in 

statistics, was pointed out by Shaughnessy (1997). Since then, an increasing number 

of studies on students‘ understanding of variation have been published. Recent 

research results indicate the possibility of developing intuitive notions of variation 

from earlier grades. In the present study the way in which the notions of mean, range 
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and uncertainty influence middle school students‘ understanding of variation is 

explored. 

CONCEPTUAL FRAMEWORK 

The notion of understanding used in this paper is described by Hiebert and Carpenter 

(1992: 67); they point out that a concept ―is understood if its mental representation is 

part of a network of representations. The degree of understanding is determined by 

the number and strength of the connections‖. This means that a certain degree of 

understanding of a mathematics or statistical concept involves recognizing at least 

some of its relevant relationships with other concepts and procedures. 

Variation of data is connected with many concepts, but in comparing tasks three 

basic connections are the mean, the range and the graph of data. Two other concepts 

considered in this study are the mean deviation as a more precise measure of 

variation and the notion of uncertainty as a bridge to interpret variation in some 

contexts. All these concepts are related each other and they have connections with 

other more elemental notions. 

Variation in data can be seen through the frequency distribution of the data. Line and 

bar graphs, and histograms are some of the ways of representing the frequency 

distribution of data. Since these representations are spread across the curriculum of 

middle school it becomes important to investigate how students learn variation 

through them.  

As Konold and Pollatsek (2004) suggested it is convenient to consider signal (in our 

case, mean) connected with noise (variation) to have a concise but meaningful 

description of data. Since in calculating the mean deviation the mean itself is 

necessary as a reference point and, in comparing sets of data, it is convenient to 

consider their means, the knowledge of mean cannot be disregarded in achieving an 

understanding of variation in data. 

Although range is the most elemental measure of variation and it is easily understood 

by students, range is insufficient to describe variation. Standard deviation is the most 

convenient measure, but this is a very difficult notion. An alternative could be the 

mean deviation since it can be more comprehensible to middle school students. 

Watson et al. (2007) point out the relation between variation and uncertainty. In this 

sense, it is convenient to consider the idea of Tal (2001) about that variation can be 

information or uncertainty; it is information when it can be explained and uncertainty 

when it cannot. In contexts where variation is uncertainty, perceiving it as risk could 

lead to making good decisions. Kahneman and Tversky (2000) point out that people 

are risk-averse; this means they tend to choose situations where the risk is minimal. 

The problem however is whether students see properly uncertainty and risk in the 

situations where variation is uncertainty.   
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METODOLOGY 

Participants. The participants in this study were 50 students, one teacher and the 

authors of this paper. The students were distributed in two groups of the eighth grade 

(13 years old) from a public middle school in Mexico City. The teacher has 10 years 

experience and he recently received a master degree in a professional development 

program in maths education. 

Instruments. In this study, three different instruments were designed and 

implemented in order to obtain data: a diagnostic test, a set of worksheets filled by 

the students during a teaching sequence and a post-test. This last one contained three 

tasks, one of which is about comparison of the waiting time in theatres of different 

chain cinemas (adapted from Shaughnessy, et al 2004); it is presented in Figure 1 

below. Only the responses to this task are analyzed in this paper. 

      A recent trend in movie theatres is to show commercials along with previews 

before the movie begins. The wait-time for a movie is the difference between the 

advertised start time (like in the paper) and the actual start time for the movie. 

A class of 10 students investigated the wait-times at three popular movie theatre 

chains in Mexico: Cinemex, Cinépolis and Multicinemas. Each student attended 

three movies, a different movie in each theatre. The class‘s results are shown in the 

charts below. (Times were rounded to the nearest half-minute.) 

Cinemex 

12.0 

21.0 

15.0 

15.0 

13.0 

16.0 

16.0 

16.0 

20.0 

18.0 
 

Cinépolis 

15.0 

15.5 

16.0 

16.0 

16.5 

16.5 

18.0 

16.0 

15.5 

17.0 
 

Multicinemas 

15.5 

17.0 

18.0 

16.5 

16.0 

16.5 

16.5 

15.0 

15.0 

16.0 
 

a) In the attached sheet, make the graph corresponding to each chart. 

b) Calculate the average waiting time for each movie chain and draw a line 

along the mean in the graph that you made. 
[Incises c-h are presented below] 

Figure 1. Task on comparing wait-times in movie chains 

Procedures. A teaching experiment of eight sessions, of 100 minutes each, was 

designed with the purpose of providing conditions for the learning of the variance 

notions.The students were instructed in the handling and organization of data 

through the eight sessions, in each they filled out a worksheet. In sessions 1 to 7 the 

body temperature context was used. In session 1, the students responded a 

questionnaire about body temperature. Every student measured his or her 
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temperature with a mercury thermometer. Data were gathered in a list. The mode and 

mean were calculated. In session 2, students made graphics freely with data gathered 

in the previous session. In session 3, students were taught about the correct way to 

make frequency graphs; they were also given a squared sheet with axes on it for the 

purpose of more accurate graphics. Students were asked to locate the mean in the 

graph. In session 4, data belonging to the other group were considered. Students 

were taught how to calculate the range and how to associate it with the variability. 

They discussed the accuracy of measurement in each of the groups and their relation 

with the range. In session 5, new data were gathered, but this time, it was done with 

digital thermometers. The new data obtained were processed in the same way as 

previously. Students were asked to compare the data groups in terms of their 

accuracy and variability; to do this they used the range. In session 6, the concept of 

mean deviation was introduced as a more accurate measure of variance. The students 

calculated the mean deviation from the data obtained in previous sessions. In session 

7, the accuracy of the temperature measurements obtained with the mercury 

thermometer were discussed and analyzed compared to those obtained with the 

digital one; to do this they used the range and the mean deviation of their data. 

Finally, in session 8, some problems with new data given were solved where range 

and mean deviation had to be calculated to obtain the solutions. 

Analysis procedure. After the teaching, the post-test was administered to the 

students. The responses to the task on waiting time were analyzed by ranking them in 

different categories inspired by the SOLO model of Biggs and Collis (1991). These 

authors define a PUMR learning cycle as follows. 

Prestructural, The task is engaged, but the learner is distracted or misled by an irrelevant aspect 

[to the task] [...]. Unistructural, The learner focuses on the relevant domain and picks up one 

aspect to work with. Multistructural, the learner picks up more and more relevant or correct 

features, but does not integrate them. Relational, The learner now integrates the parts with each 

other, so that the whole has a coherent structure and meaning (p. 65).  

For the sake of analysis, the post-test activity was divided in four sub-tasks: Graph 

construction, mean and variation, reading variation in the graph, and interpretation of 

variation. The responses of the first three tasks were analyzed by defining levels 

analogous to PUMR levels. 

RESULTS 

Instructions observations 

The students showed familiarization with the context of body temperature. They 

knew that temperature varies from person to person and that such variation is low, 

just around 36.5þC. Data were obtained and organized without difficulty and its 

mean and median were calculated. 

However, students had some difficulties representing data in frequency graphics. 

Even when they chose the X axis to represent the temperature values, most of them 
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neither grouped data nor organized them according to the magnitude of values but 

rather by the order in which they were obtained. Some others grouped and arranged 

data in order, but did not place them according to their relative magnitude. In order 

to overcome these difficulties, a session to instruct students in constructing 

frequency graphs was implemented. With the support of the teacher‘s instructions, 

students had no difficulties in constructing the graphs of the data obtained in the 

previous sessions. 

It must be highlighted that, when requiring one value of the temperature of the group 

to inform another person (the principal, for instance) about the measures taken, 

students agreed on proposing the mean. Some of them say mean because they see in 

this a precise value resulting from operating the data, and others for considering it a 

representative value. 

When students were asked to compare the accuracy of measurements in the two 

groups of data, many of them proposed using the mean and/or the graph or 

comparing against clinical data; only three students mentioned the range as a 

measure for accuracy in data. When they were asked to compare the variability of the 

groups of data, they identified variability in the graphs, especially focused on 

outliers, and spontaneously looked for causes of variation: illness of some students, 

errors in the measurement process, and the quality of thermometers. After that, 

students were formally instructed in calculating the range and mean deviation of data 

and in using them to measure variation. 

The instructions sessions provided the students with knowledge and language that 

permitted undertaking observations about their thinking about statistical notions 

related to variability. Although the performance in group tasks seemed high, many 

difficulties persisted in the individual performance on post-test tasks.  

Graph construction 

One way to perceive variation in data is by looking at its frequency graph. To define 

the PUMR levels the following aspects were considered relevant to complete the 

task: 

1. Select the X axis to distribute data on it in an ordered way  

2. Calculate the frequencies of each value and represent them in Y-axis of the 

graph 

3. Respect distances between values, this mean considering the X-axis as a 

numerical straight line and not only a place to put labels. 

In the prestructural level none of these aspects were considered. In the unistructural 

level the responses are focused only on one of these aspects. In the multistructural 

level the responses are focused on two aspects (mostly 1 and 2), but failed in the 

third. Finally, in the relational level responses focused on the three aspects 

mentioned. The distribution of the responses is show in the table1.  
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SOLO Categories Pre-structural Uni-structural Multi-structural Relational No answer 

Number of students 30 5 7 3 5 

Table 1 

Mean and variation 

Based on the graphs they made, the students had to answer the following questions. 

c. Is there any difference in the average waiting time in the three movie 

chains? Explain your answer. 

d. How can you know and determine the variation in the waiting time 

from the three movie chains? 

e. Which of the three movie chains has more variation? 

The responses to these questions are jointly considered in order to catch the students‘ 

understanding about mean and variance. First, they had to verify that the waiting-

time mean is the same in the three Cinemas; second, they should know that can use 

the range or the mean deviation to determine the variation and, finally, they should 

apply this criterion to say that Cinemex has more variation than the others. 

In an analogous way to PUMR levels, the responses can be classified in different 

levels taking into account some statistical clue aspects, namely the mean, the range 

or the mean deviation, as well as the identification of the cinema with greater 

variation.  

In level 0 (analogous to prestructural), the responses are not based on any statistical 

clue aspects nor indicate the cinema with greater variation; for example, the answers 

of Anahí to the three questions are as follows, respectively. 

Anahí:  c) Both are too different from the last one. 

d) By going to the movies just like the other teenagers but to three movie 

theatres. 

e) There is more variation in the third one than in the second one. 

In a level 1, the responses show evidence that only one of these clue aspects was 

considered, without indentifying the cinema with greater variation; for example, the 

answers of Alejandro are the following. 

Alejandro:  c) No. 

d) By getting the average or range. 

e) Any of them. 

In level 2, the responses show evidence that the mean and the range or mean 

deviation from the data were considered. Sometimes the chain with greatest variation 

is identified, however they present some error or inconsistency, as in this example. 
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Mñnica: c) No because the average of the three movies is the same.  

d) By adding the minutes and dividing them by the number of data. 

e) At Cinemex because the range is bigger. 

In a level 3, the responses show evidence that the mean, the range or media deviation 

from the data were considered and that the chain with greatest variation is identified. 

Miguel: c) No  

d) Range. 

e) In the first one, Cinemex. 

The frequencies resulting from classifying the responses are shown in Table 2 

Categories Level 0 Level 1 Level 2 Level 3 No answer 

Number of students 19 17 3 3 8 

Table 2. Analysis of the answers on questions of points f, g and h  

In some responses can be seen that there is confusion between the notions of mean 

and variation. For example, a student says that the variation can be determined ―by 

getting the average or the range‖, and another says that ―by adding up the minutes 

and dividing them by the number of data‖. Even when the students are acquiring and 

incorporating terms such as ―mean‖ and ―variation‖ or synonyms of these, they have 

not yet acquired their corresponding meanings. 

Reading variation in the graph 

In a second part of the same task, the students were given the corresponding well 

made graphs of data (Figure 2) and they were told the mean and median of each 

movie theatre data set. The idea was to give the opportunity to answer the questions 

about variation avoiding mistakes made when making the graph or calculating the 

mean. 

[A graph of data is presented] 

f. Which of the three movie theatre chains has more variation in waiting 

time? Why? 

g. In which of the movie theatre chains is there more variation, Cinépolis 

or Multicinemas? Explain. 

h. If the three theatres are equidistant from your home, which one would 

you choose to watch a movie? 

Figure 2: Graphs given to students 

To answer question f, the variation can be seen at first sight and argued by 

comparing the ranges. To answer question g, it is necessary to calculate the mean 

deviation and therefore use the mean.  
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To analyze the responses to questions f and g, only the justifications or explanations 

are considered. Again, the responses can be classified at different levels taking into 

account the presence of some correct aspects in their justifications. 

At level 0, students focus on idiosyncratic aspects or on their experiences without 

using statistics arguments:  

Josue: f) At Cinemex because it takes more time to go in. 

 g) Cinépolis, because there are more people waiting all that time for the movie to 

start. 

At level 1, the arguments focused on visual perceptions in the graph 

Itzel:   f) At Cinemex because of data are more dispersed  

g) Cinépolis and Multicinema because of data are equally dispersed. 

At level 2, responses are supported by considering the range 

Garay: f) At Cinemex because its range is that from 12 to 21 and at Cinepolis and 

Multicinemas it is 18. 

g) Cinepolis, because at Cinepolis the 16.5 is 2 and at Multicinemas it is 3. 

At level 3, responses are supported by considering the range or mean deviation in 

incise a) and mean deviation in b). None of responses fell in this category.  

The frequencies of responses in each level are presented in Table 2. 

Categories Level 0 Level 1 Level 2 Level 3 No answer 

Number of students 22 14 7 0 7 

Table 3. Frequencies of responses in each level 

Interpreting variation in the context of the task 

Question h takes us to considering how the problem of variation in the context of 

cinema-chains should be interpreted, how the question should be answered taken into 

account the data given?  In a previous analysis students were expected to relate 

variation to uncertainty. This may require that students make a ‗mental experiment‘, 

imagining the consequences of variation in waiting time in different cinemas when 

they go there: the greater the variation in the waiting time, the greater the uncertainty 

about when the movie will start. If someone likes watching previews or waiting for 

the movie, it does not help choose the cinema with most variation because the movie 

may start too early. However there was no response where students related variation 

to uncertainty.  

In fact most justifications were in terms of the personal experiences of the 

respondents, for example, seven students gave reasons similar to that given by Juan: 

―Cinemex, because it is very near to my home‖. The students that attained higher 

levels in other questions did not discern that the best theatre to go to is Multicinemas 
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(or Cinépolis) because it has less variation and therefore less uncertainty. These are 

some of the answers: 

Miguel: h) Cinépolis. Because I like how they have the things and I do not mind 

how many previews they show. 

Estefany: h) Cinépolis because the waiting time is less there and it is more famous. 

In a later analysis it was discovered that the context is not the best to promote 

interpreting variation as uncertainty. The justifications of a selection of a theatre in 

terms of personal experiences are reasonable although participants didn‘t draw 

conclusions from the data. The reason is that in this case uncertainty does not bring 

adverse or grave consequences since most people do not mind to wait for long or 

short time in a cinema. 

DISCUSSION AND CONCLUSIONS 

It is important that, during the process of understanding the notion of variation, 

students be able to make and read graphs as well as to calculate and interpret the 

mean of data. Acquiring these competences implies different levels of complexity. 

Most students that show a good level of competence when making graphs and who 

are able to compare sets of data based on the mean can identify which cinema chain 

has the greatest variation. 

This study shows that it may be convenient to teach the graphing of distributions and 

central tendency measures (in particular the mean) by presenting them through 

problem-situations in which variation is also part of the problem. The meanings of 

those notions are mutually binding and the understanding of each of them is stronger 

when they are conceived as part of a concept web rather than as isolated notions. 

However, it must be expected that the understanding of each of these notions goes 

through different levels so that they progressively join into more complex concept 

webs. 

It is particularly convenient to rethink the role of uncertainty within this concept 

web. The intuition of ―avoiding uncertainty as much as possible‖ can indeed be 

applied to many situations in which data variance can be understood in terms of 

uncertainty. This can help when making decisions or when making informal 

inferences. 

It becomes frustrating to observe that students were not able to infer that it is more 

convenient to go to the movie theatre which has less variability in its wait-time. One 

of the students, whose answers are classified in the higher levels, chooses the movie 

theatre with less variability but her reason is that less variability means ―less wait- 

time‖. This is one way mean may be confused with variation. Even when this 

confusion was also present among other students, this particular case is interesting 

because she gave good responses in the other questions. This leads to the question of 

what was missing in order to achieve better understanding of variation. Our answer 
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is that she was unable to associate variation with uncertainty. This difficulty may not 

be surprising because the teaching episodes did not help students to see that 

relationship since, in the context of body temperature, variation is interpreted as 

information, not as uncertainty. Also, in the problem of wait-time in cinemas waiting 

for long or short time is not really important for people. The authors are trying to 

investigate the same research question using another problem or context where 

variation brings more serious or grave consequences.  

1. This work was sponsored by grant 101708 from the National Council of Science and Technology (CONACYT). 
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EXPERIMENTS IN THE CLASSROOM. 
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Today, the teaching of randomness in schools makes frequent use of technology − for 

example, random experiments that are simulated by the use of a random generator. 

In fact, what is actually being simulated is a probabilistic model of the experiment. 

This is a problem when one must teach probability through both a classical and 

frequentist approach, as is the case in French high schools. We propose a solution 

for overcoming this issue and approaching the concept of a probabilistic model by 

on the one hand preserving the ‗isomorphism‘ between the protocol put into play in 

the ‗concrete‘ experiment and the simulation process, and, on the other hand, by 

making the experimental hypotheses explicit and taking an interest in the analogies 

between the tables produced by the software when simulating different experiments 

(which means that they implicitly refer to the same model). More generally, making 

use of computers is of didactical interest because they can help students to grasp and 

better understand the modelling process in random experiments. 

Keywords: random experiments, simulation, spreadsheet, model, modelling process. 

INTRODUCTION 

Today, many countries include statistics and probability in their math curriculum at 

the high school level. This change is obviously linked − at least in part − to the 

increasing amount of statistical data published in the media. But it is also linked to 

the evolving development of technology, especially with regard to software that can 

process vast numerical data. Teaching probability at the high school level is indeed a 

delicate issue, since students are confronted with many difficulties − difficulties that 

often compound one another. These include: the introduction of a new concept − one 

of its meanings being related to a specific idea of limit (stabilized frequency); 

language of sets; logic of events; and, above all, modelling processes. 

At any rate, the didactic answer to such a challenge cannot be to overlook this 

process. It is, rather, to have students become familiar with and experiment with − as 

soon as possible − real-life random situations, as is now the case in many countries at 

the junior high − and even elementary − school levels. It is also necessary to give 

students the linguistic tools associated with the description of such situations. 

Additionally, various instruments (calculators, computers) and forms of software 

(spreadsheets) have become important tools in the domain of probability study 

[Batanero et al. 2005]. They include a ‗random‘ generator to simulate random 
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experiments − which is much quicker than performing the actual experiment. For this 

reason, it is necessary that research in didactical engineering at the high school level 

should emphasize the study and proposition of various situations that can easily be 

simulated and are, of course, efficient from an educational point of view [Pratt 2005]. 

In France − and in many other countries − probability curriculum develop an 

approach of the concept of probability through relative frequency, in which the 

probability of an event linked with a random experiment can be estimated by a large 

number of iterations of that experiment. This is opposed to calculating it from 

symmetry considerations, using the classical formula (which cannot always be done): 

issues ofnumber  total

issues favourable ofnumber 
 

Even if the genuine experiment can be repeated, this is difficult and time-consuming. 

Therefore, genuine experiments are often replaced by simulations using a 

spreadsheet. But this is not as simple for students as it is for us ([Pichard 1998], 

[Girard 2005]) and frequently, students do not acknowledge the similarities between 

several experiments that look different but implicitly refer to the same theoretical 

model (of which they have no idea at that time). In this presentation, we want to 

address these questions and propose some solutions that make use of spreadsheets.  

A RANDOM EXPERIMENT  

In order to simulate a random phenomenon with a spreadsheet, one must decide how 

to use the random generator in accordance with the phenomenon. To illustrate this, 

we shall use a famous historical example: a game called ‗heads or tails‘ (croix ou pile 

in French), which was widely played in France in the 18
th

 century and which 

comprises two players and the use of one coin. The first player tosses the coin: if he 

gets ―heads,‖ he wins; if he gets ―tails,‖ he tosses the coin again. This time, if he gets 

―heads,‖ he wins, and if he gets ―tails,‖ the other player wins.  

About that game, the French mathematician Jean le Rond d‘Alembert (1717-1783) 

[D‘Alembert 1754] wrote in the great Encyclopedia that two solutions could be given 

to determine each player‘s chances. First solution: there are four combinations − 

heads/heads, heads/tails, tails/heads and tails/tails. Since the first player wins in three 

of these four combinations, his odds are three times better than the second player‘s. 

But d‘Alembert suggests that one can reduce the number of total combinations to 

three, ―since when heads has come at first, the game is over and the second tossing is 

of no use.‖ These combinations are: heads, tails/heads and tails/tails. In this case, the 

first player‘s odds are only two times better than the second player‘s. 

D‘Alembert‘s text has been discussed in several high school classrooms. However, it 

causes great confusion, and students are generally split into three groups of differing 

opinions [Parzysz 2007]. To get over this puzzling situation, students quickly think 

of playing a certain number of games, and, by doing so − by chance − they soon 
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become convinced that the first player has more chances to win than the second 

player. But what are the correct odds? Three against one or two against one? To be 

‗almost‘ sure, a great number of games must be played. In some cases, because not 

enough games are played (around 1,000 are necessary), students find a frequency of 

about 0.7 and cannot choose between 2/3 and 3/4. This is typically the problem 

posed by a frequentist evaluation of probability: even if it allows for the dismissal of 

some solutions, it does not necessarily ascertain that one of them is correct. 

EXPERIMENT, SIMULATION, MODEL 

Since playing a number of ‗real‘ games is time-consuming − and, moreover, is not 

always practical − another option is to simulate the game. But, for many students, 

even replacing a dice by another one is dubious, so replacing a genuine experiment 

by a ‗fake‘ one (a simulation) − particularly with a spreadsheet − poses similar 

difficulties. In these conditions, can a simulation really replace the experiment to get 

an answer of probabilistic nature? 

Let us now see what French 10
th

 grade textbooks say about what it means to 

―simulate‖ a random experiment. You can sort the ideas into four primary points 

where the fourth corresponds to our point of view [Parzysz 2008]: 

 First idea: a simulation is a substitute of the experiment 

 Second idea: there must be an analogy between the experiment and its simulation 

 Third idea: a simulation is more economic than the experiment 

 Fourth idea: a simulation is a model of the experiment 

These ideas can be synthesized by saying that simulation consists of replacing a 

given random experiment by another one, which is easier and/or faster to put into 

play − provided it can be ascertained that the simulation statistically reflects the 

characteristics of the genuine experiment. In fact, its appropriateness is ensured by 

the probabilistic model which underlies the simulation. On the whole, the process is 

as follows: being given an experimental protocol and the possible tools, one suggests 

a model for the experiment and implements a simulation of this model. Afterwards, 

the experimental data will be confronted with the simulation and the model is then 

either accepted or rejected (fig. 1). 

 

Figure 1 
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This may be a real problem for younger students who do not know what a 

probabilistic model is. For them, in those cases, the above ternary diagram becomes 

binary (the ‗model‘ vertex disappears). In our example, the class could be split into 

two groups: in one group, students will carry out the genuine random experiment 

(exp 1), while in the other group, students will simulate it with a spreadsheet (exp 2).  

Then, a comparison between the two experiments may be carried out, leading to 

reflection that aims to make explicit some hypotheses and the ways in which they 

correspond to features of the simulation. 

For instance, let us consider the elementary example of tossing a coin, for which we 

want to study the distribution of heads and tails in a designated number of tosses. We 

can make the following hypotheses: 

(H1) There can only be two results: ‗heads‘ or ‗tails‘ (according to the visible side of the 

coin). 

(H2) If the coin falls on its edge, the try is nullified. 

(H3) The coin is well-balanced (i.e. heads and tails have the same chance of occurring). 

(H4) The coin is tossed so that the result cannot be foreseen. 

This set of hypotheses obviously constitutes a simplified abstraction of reality 

[Henry 1999], in which some aspects of the experiment are neglected (e.g. H2: coin 

falling on edge) or assumed (e.g. H3: well balanced coin) and some details of an 

experimental protocol are made explicit (H1, H4). 

Now the hypotheses must be transformed into issues of the random generator. This 

will be attained by defining a transformation and associating an issue, H (heads) or T 

(tails), to any number x (0 ≤ x < 1) produced by the random generator, such as: 

(H1) + (H2) → the issue H is associated with a value x < .5, and the issue T with x ≥ .5; 

(H3) and (H4) correspond to the randomness of the sequence of numbers. 

To make this last point clear, let us recall that a so-called ‗random‘ generator is in 

fact a deterministic generator, since the numbers produced are successive terms of a 

recurrent sequence given under the form of decimal fractions with a fixed number of 

digits [Parzysz 2005]. Nevertheless, we may assume that the generator has been 

tested by the manufacturer and can consider it a fair simulator of a random sequence. 

SIMULATION PROCEDURES AND MODELLING 

When simulating a random experiment with a spreadsheet, it frequently happens that 

several possibilities can be considered a priori. To illustrate this, let us go back to 

our example: the ‗heads or tails‘ game described above, in which we shall suppose 

that the coin is well balanced. Two procedures (at least) are possible: 
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Procedure 1.  

Produce a random variable (alea1) with 

two equally distributed issues H and T:  

- if H happens you win;  

- if T happens, produce a random variable 

in the same conditions as above (alea2), 

then: if H happens, you win;  

- if T happens you lose. 

This procedure leads to table 1, in which 

H is associated with a random number 

smaller than .5. 

Game Alea

1 

Result Alea

2 

? 

1 .732 again .813 lost 

2 .307   won 

3 .042   won 

4 .967 again .274 won 

5 .766  again .819 lost 

Table 1 

Procedure 2.  

Produce two independent random 

variables (alea1 and alea2) with two 

equally distributed values H and T: 

- if both show T you lose;  

- otherwise you win. 

 

This procedure leads to table 2, in 

which H is associated with a 

random number smaller than .5. 
Game Alea

1 

Alea

2 

? 

1 .732 .813 lost 

2 .307 .785 won 

3 .042 .654 won 

4 .967 .274 won 

5 .766 .819 lost 

Table 2 

The second simulation is easier to carry out than the first, which contains two 

interwoven aleas, but it introduces a second tossing that does not always occur in the 

real game. Although very useful, this virtual toss may cause some students to only 

reluctantly accept the second procedure as a simulation of the real experiment. The 

same opposition was expressed by the French mathematician Roberval (1602-1675), 

as Pascal mentioned in his famous exchange of letters with Fermat in 1654 about the 

now-famous ‗share-out problem‘ [Parzysz 2009]. Therefore, it proves necessary to 

make students understand that this kind of change does not modify the results (as 

Fermat himself did). 

But this difficulty can be overcome. Let us consider the two above tables 

(intentionally, the same numerical data appears in both tables). We can observe that 

in table 1, the ―Result‖ column can be removed without any consequence and that in 

table 2, suppressing some numbers (namely .978 and .724) has no effect on the 

outcome of the game, since the player has already won.  
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After these changes are made, the two tables become identical, showing that the two 

implemented procedures (hence the two associated experiments) yield the same 

results and that one can replace procedure 1 by procedure 2 without any disruption 

to the data. 

More generally, comparing several experiments through their simulations by looking 

both at the associated procedures (in order to make the underlying hypotheses 

explicit) and at their implementations on a spreadsheet makes it possible to convince 

students that some simulations (and their corresponding experiments) may be 

‗equivalent‘ in spite of any apparent differences. When carried out, they behave 

similarly from a probabilistic point of view. This is because they correspond to the 

same ‗experience scheme,‘ which can be considered a first step toward the notion of 

a probabilistic model to be built later on (fig. 2). 

 

 

 

 

 

 

Figure 2 

Thus, through the idea of experience scheme, such examples of simulations lead 

students to a first idea about probabilistic models and the modelling process 

[Garfield 2008]: 

- describe and analyze the random experiment at stake 

- work out an experimental protocol, i.e. the set of features defining the experiment from 

a probabilistic point of view: list of observable issues, characteristics of the events that 

will be considered (corresponding to each issue), actions to perform in order to 

ascertain that the same experiment is repeated 

- make work hypotheses explicit in order to be able to control the relevance of the model 

in construction 

- interpret the characteristics of the real experiment in terms of model hypotheses 

(especially the probabilities representing randomness) 

- translate these hypotheses into computer instructions, in order to solve problems that 

seem, at first sight, inaccessible via mere calculation 

- theoretically exploit the model to draw properties accounting for phenomena which can 

be observed in reality 

- interpret the results of the simulation by comparing them to the initial model 

hypotheses 

1  

 

 
Procedure 

1 

Procedure 

2 

Procedure 

3 

Table 1 

Table 2 

Table 3 

EXPERIMEN

TS 

SIMULATIONS 

EXPERIENCE 

SCHEME 

Experiment 1 

Experiment 2 

Experiment 3 



Working Group 5 

CERME 7 (2011) 870 

 

SIMULATION AS A TOOL FOR SOLVING PROBLEMS 

With the d‘Alembert‘s problem, we can verify that the result of a simulation is in 

accordance with the probability calculated a priori in the model − assuming the same 

probability to all ordered pairs of possible issues. This reinforces student confidence 

in simulation (but, in fact, this confirms that the computer and software makers 

satisfied the schedule of conditions with regard to the random generator). 

Nevertheless, the didactical interest of simulation must not be neglected, since it 

allows for finding solutions to problems that are too difficult or even impossible to 

solve by hand [Biehler 1991]. 

Let us now consider the following example inspired by the ‗free tile‘ game (franc-

carreau, in French). This game was very popular in France during the 18
th

 century, 

and the probability problem associated with it was first analyzed by the 

mathematician and naturalist Buffon (1707-1788) [Buffon 1733]. In this game, a 

coin is thrown on a floor covered with square tiles and players bet on its final 

position: will it stop on a single tile (‗free tile‘) or land on a line adjoining two tiles?  

Let us consider the tile where the centre O of the coin 

is fallen. With the hypothesis (implicit for Buffon) that 

all locations of the tiling had the same chance to be 

reached, the answer to this − now classical − problem 

can easily be found by comparing the areas of the two 

squares ABCD and A‘B‘C‘D‘ to obtain this 

geometrical probability : A‘B‘
2
 / AB

2
. 

In a simulation of this problem, with AB = 1 and the radius of the coin equal to µ 

(A‘B‘ = ´ and the probability of ‗free tile‘ is .25), we obtained for several series of 

10,000 successive throws relative frequencies equal to .2564; .2515; .2445; .2497… 

On the one hand, the simulations will give similar results from a probabilistic point 

of view. On the other hand, a simple calculation will show that the ratio of the ‗good‘ 

area (‗free tile‘) to the total area is quite close to the values obtained by simulations. 

Thus, students can interpret these values as approximate measures of the probability 

of ‗free tile‘ and, convinced by quality of this simulation, gain confidence in this 

tool. 

In 1733, Buffon also studied the case of a small stick thrown on a parquet floor (this 

is the well-known ‗Buffon‘s needle problem‘ [Klain 1997], [Aigner 2006] or [Henry 

2003]). These historical examples lead us to a more difficult problem than the free 

tile game, which can be solved by a simple simulation on a spreadsheet. Let us now 

assume that a rod − and not a coin − is thrown on a square-tiled floor. The 

probability of ‗free tile‘ cannot be calculated so easily. However, made confident by 

the good result given by the computer simulation in the case of the coin, we infer that 

it will be the same for the rod, i.e. that the stabilized frequency will be close to the 

probability which could − perhaps − be calculated by hand (such a calculation 

A B 

D C 

A‘ B‘ 

C‘ D‘ 

O 
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implies advanced mathematical knowledge). Thus, our problem is as follows: 

throwing a rod on a floor covered with square tiles, what is the probability of it 

landing on a ‗free tile‘ 

Let us represent the rod by a segment 

[AB] (fig. 3), the length of which is a, 

and consider the tile on which the end 

A  fell. This tile is represented by the 

unit square in a cartesian coordinate 

system.  

Let x and y be the random coordinates 

of A (0 ≤ x < 1, 0 ≤ y ≤ 1) and t the 

random angle between the x-axis and 

vector AB (0 ≤ t ≤ 2π). The rod makes 

‗free tile‘ when these two conditions 

are satisfied:  

0 ≤ x + a cost < 1 and 0 ≤ y + a sint < 1 

The volume in x, y, t delimited inside the cartesian product [0,1]  [0,1]  [0,2π] by 

these conditions is not easy to calculate, but the simulation of the experiment is 

within reach of a senior high school student with the model hypothesis of the 

uniform distribution of (x, y, t) in the above product. Here is a possible carry-out of 

this simulation with a spreadsheet. 

Length of AB (cell) A1 .44 Comment Example 

x(A) B1 =ALEA() Alea 1 .306 

y(A) C1 =ALEA() Alea 2 .477 

angle t D1 =2*PI()*ALEA() Alea 3 5.786 

x(B) E1 =B1+A1*COS(D1)  .692 

y(B) F1 =C1+A1*SIN(D1)  .267 

Free tile = 1 G1 
= IF((E1>0)*AND(E1<1)* 

AND(F1>0)*AND(F1<1);1;0) 

 
1 

For instance, by implementing this simulation, we had got the following results for a 

rod of length a = .44 

Frequency 

of free tiles 

in 250 tries 

Frequency of 

free tiles in 

1000 tries 

Frequency of 

free tiles in 

5000 tries 

Frequency of 

free tiles in 

10,000 tries 

Confidence interval 

at 5% risk for 10,000 tries 

.496 .496 .493 .499 .489 .509 

1 O 

B (x + a cost ; y + a sint) 
1 

A (x,y) 

t 

a 

Figure 3 
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Thus, we have here a tool for solving problems that plays the exact same role as 

graphic calculators, which can draw curves to represent functions − for finding the 

approximate graphical solution of a system of equations, for instance. 

DIDACTICAL SIGNIFICANCE OF SIMULATION 

Despite the obvious utility of simulation, our interest is fundamentally didactic. First, 

computers are capable of working on vast statistical series, which gives meaning to 

statistical summaries (parameters, graphs) and demonstrates their relevance. They 

also provide a dynamic presentation of how the notions of relative frequency and 

probability work and interact − notions that are encountered in France in the 9
th

 

grade, either theoretically, in an equiprobabilistic context, or through practical 

experiments with numbers large enough to foster an understanding of the law of 

large numbers in actuality. 

Of course, the computer does not make use of the notion of probability when it 

performs a simulation: it just exhibits the effects of the equirepartition principle on 

the random numbers that it generates, (a principle which is part of its specifications.) 

But even so, the use of computer simulations in the classroom − as a pseudo-random 

generator − fosters a better understanding of the notions of relative frequency, 

sample fluctuation, variability of empirical parameters and, finally, probability. 

Making the most of the power and speed of computers to generate pseudo-random 

numbers and introduce them in relevant formulas − which realizes a simulation of 

the model of a studied experiment − introduces students to a great richness of new 

virtual random experiments. This is not the only interest of computers, however, for 

the didactical significance of simulation is fundamentally to lead students to grasp 

the modelling process as described above. From a didactical point of view, we stress 

the importance of posing problems in terms of modelling, which implies that one 

must make the model hypotheses explicit and choose them in relation to the studied 

problem [Henry 2001]. This allows students to avoid paradoxes and overcome 

obstacles linked with their own preconceptions, since probability is a domain in 

which intuition is often misleading. Identifying such insufficient or erroneous 

conceptions among students, investigating their origins, spotting and analyzing such 

difficulties (which are cultural as well as epistemological and didactical) and 

designing didactical situations in order to overcome them − these are all necessary 

tasks for future research in math education. 

To conclude, we quote a paper presented in CERME 6 [Papaieronymou 2009], which 

reports these recommendations of four U.S. professional organizations that place 

considerable emphasis on experimental vs. theoretical probability and simulations:  

―Secondary mathematics teachers need to be able to plan and conduct experiments and 

simulations, distinguish between experimental and theoretical probability, determine 

experimental probabilities, use experimental and theoretical probabilities to formulate and 

solve probability problems, and use simulations to estimate the solution to problems of 
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chance. Secondary mathematics teachers should be able to provide a model which gives a 

theoretical probability that can be compared to experimental results, which in turn is 

essential when studying the concept of relative frequency. In order to help students 

develop an understanding of probability as a long-run relative frequency, secondary 

mathematics teachers need to understand the law of large numbers and be able to 

illustrate it using simulations‖. 
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In modern society, the notion of risk is drawn upon to convey much human decision-

making. In fact, risk is variously depicted and the psychological literature is divided 

in how people make sense of risky situations. At a time when curricula, especially in 

the UK, are recognising the need for students to be sensitised to risk-based decision-

making, we have been studying how mathematics and science teachers make sense of 

risk, focussing on activity around a specific personal dilemma. We analyse this data 

through the lens of the priority heuristic. We identify possible limitations in the 

priority heuristic. We conclude that these teachers needed greater support for 

coordinating the dimensions of risk and offer one software response. 

RISK 

In this paper, we consider how a mathematics and science teacher engage in risk-

based decision-making with a view to evaluating whether recent psychological 

research adequately describes that process and what additional resources might be 

offered to support such decision-making. 

In modern society risk permeates decision-making at both personal and policy levels, 

a fact now being recognised in curricula. The exponential increase in talk around risk 

has not ironically resulted in its clear definition and the epistemological basis for risk 

continues to be a subject of debate (Adams, 1995; Stirling, 1999).  

In the media, risk is typically portrayed as identical to likelihood, a problem when 

hazards with differing severity are compared. In such circumstances, both likelihood 

and impact need to be addressed simultaneously in some sort of trade-off. Indeed, 

standard decision-making theory formulates risk as the product of the probability (as 

a measure of likelihood) and disutility (as a measure of loss) and proposes that 

decisions should aim to minimise the total calculated risk. However, the 

psychological literature has demonstrated that individuals often do not make risk-

based decisions by minimising total risk as in standard theory. 

HEURISTICS FOR MAKING JUDGEMENTS ABOUT RISK 

Risk-based decision-making is especially complex and so people draw on intuitive 

heuristics. It has been demonstrated that such heuristics are vulnerable to bias (see, 

for example, descriptions of the availability and representativeness heuristics in 

Kahneman et al., 1982). Recent research (Brandstätter et al, 2006) has focussed on 

trying to specify what people attend to and the information-search procedures used 

when making risk-based decisions. According to Brandstätter et al, in the case of 

losses, the decision-making process is described by the priority heuristic as follows: 
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First, compare the minimum losses of the alternative decisions. If the difference 

between the two minima is at least 10% of the maximum loss, choose the decision 

associated with the lesser of the two minimum losses. Otherwise, compare the 

probabilities of the minimum losses of the alternative decisions. If the two 

probabilities differ by more than 0.1, choose the decision associated with the higher 

probability of loss. Otherwise, compare the maximum losses of the alternative 

decisions and choose the decision associated with the lower maximum loss. (Our 

paraphrasing of the heuristic.) 

It is claimed that, under certain conditions, the priority heuristic predicts the decision 

most people will make and the decision-making process that they will undertake. In 

the literature, this heuristic has been demonstrated by reference to situations in which 

people are making decisions about different gambling situations with clearly 

specified profits (or losses) and probabilities. 

In this paper, we use the priority heuristic to analyse the teachers‘ decision-making. 

We have two main research questions in conducting this exercise. First, we ask 

whether the priority heuristic is an adequate model in a complex situation where the 

losses and likelihoods are not clearly specified and may even not be easily 

quantifiable. We hope through asking this question that we might gain some insights 

into the scope of the priority heuristic. Second, we ask whether, through such an 

analysis, what sort of resources might support teachers (and perhaps others) in 

deploying more sophisticated strategies. 

METHOD 

Through an iterative design process, we developed a computer-based scenario, 

Deborah‘s Dilemma (DD), in which mathematics and science teachers were required 

to respond to the fictitious Deborah‘s difficulty in deciding whether to have an 

operation that could cure a painful spinal condition. The operation might result in a 

number of complications described through various, and at time conflicting, sources 

of information. Should Deborah choose not to have the operation, she would need to 

manage her pain level through changing her daily routines of work, domestic and 

leisure activity. 

Information about Deborah‘s condition was set out within the software in a 

deliberately personal way, to offer different perspectives with varying levels of 

authority. Two software tools accompanied the information about the condition. 

First, a probability simulator allowed the teachers to model the possible 

complications to gain a sense of how often the operation might be successful, and 

how often complications of varying degrees of severity might occur. Second, a 

‗Painometer‘ offered a quantified experience of Deborah's pain in relation to a 

―tolerable‖ level, as the pain was influenced by the activities in which Deborah 

engaged. The teachers modelled which activities Deborah would undertake to infer 

the effect of these on Deborah‘s pain level. 
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Three pairs of teachers (one science and one mathematics from the same school in 

each pair) worked through DD to arrive at a specific response. A researcher sat with 

each group but only intervened to demonstrate relevant aspects of the software, to 

address any technical points and to ask questions for clarification. Video screen 

capture software recorded the teachers‘ dialogues and on-screen actions. The session 

lasted approximately 2 hours. Data for the analysis consists of an audio transcript 

and a video record of their interactions with the software for each pair of teachers. 

We present below the findings through the case of Peter (science) and Emma 

(mathematics). Analysis of the data from the other teachers‘ is ongoing. 

PETER (P) AND EMMA (E) ENGAGE WITH DEBORAH‘S DILEMMA 

We present the activity by P and E in two stages. The first stage represents the 

process by which P and E came to a decision based on their interpretation of the 

information given in DD. Later, we present their ongoing activity after an 

intervention from the researcher (the first-named author). 

Stage 1: Before the researcher‘s intervention 

P and E read the introductory information about DD and formed an initial reaction: 

P: If I was Deborah I think I'd have the operation. 

E: I agree – so we'll go for operation first. 

They then began to look more closely at the information available about the 

operation and expressed some concern about the reliability of the data, especially in 

relation to Deborah‘s personal research: 

P: Now her own research. Reliability, source. 

E:  Yes, that is questionable – one list from any old website you don't know, could be 
one person. 

As they read the information, they discussed the chance of the operation being 

successful as well as the possible severity of the complications and their likelihoods. 

P: Right that's saying 95% of the time it works, but if it doesn't you have to have the 
operation again. 

E: 1 in 1000 of nerve root or spinal cord damage. 5[referring to the fifth listed 
complication] is temporary and happens 1% of the time... 

P: Number 4 sounds scary [referring to nerve root/spinal cord damage]… it might 
mean a bit of tingling, pins and needles, which is a different level from being in 
a wheelchair. But you don't know, and of course they can't tell you because, 
when you're in the operating theatre, different things happen to what was 
expected. 

P and E discussed which complications should be included in their model: 

E: Shall we put the other one – the 1 in 500, what was that? [checks web page] 
damage to trachea/oesophagus - only possibly permanent, but if you can't eat 
that is significant I would say – it would worry me! [laughs] 
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P: That sounds really horrible. Should happen less than 1 in 500 cases. Let's add that 
one [returning to the software tool]… call it 'trachea damage'. 

35 minutes into the investigation, P and E ran their model, starting with one case, 

then extending it to 10, 100 and 10010 trials. 

E: That's not bad, 17 [failures] out of 10,010. I'd take those odds. 

P and E continued to modify and run their model, adding complications related to 

anaesthetic and infection from a superbug. 

E: 9010 successful. And anaesthetic is 1, which doesn't necessarily mean dying 
[laughter]. And 33 superbugged – slightly horrible, but they should have gone 
to a better hospital. So that was the biggest. Nerve damage was pretty low 
[referring to the number of cases of nerve damage out of 1000, which was 8]. 
The no eating no drinking thing, 17.  

P: But you don't know how severe that is; it could be anything from a sore throat up 
to no eating. 

E: Only one had a problem with the general anaesthetic. 

P: I think that probably means death, or severe brain damage, something pretty awful. 

E: And superbug can be awful. But again, out of 990, which have failed, only 49 
people, which is 50 in 1000, which is tiny. 

P: And the rest just had the pain they had before. 

E: If you had the operation without success, you had the uncomfortable experience, 
but you haven't lost much else apart from time. At least you haven't gone 
backwards. I think she should have it. 

E confirms in line 0 their original intuition (line 0) that Deborah should have the 

operation. At this point (49 minutes into the investigation), the researcher proposed 

that they began to consider Deborah‘s lifestyle through the second software tool. 

They discussed which activities to include and what levels to set the amount of 

activity and consequent pain incurred. 

E: I don't believe her, that she does that much sport. She didn't seem that upset about 
not being able to do sport. 

P: It did impact on her life though. 

E: Shall we leave it as, a fair bit? 

P: May not be higher than that, just 'more pain'. 

After 56 minutes, P and E ran their model of Deborah‘s lifestyle. 

E: Look! [Laughter] She's always above the tolerance, apart from once in a blue 
moon. 

P: Yes... oh look though, it's painful to look at isn't it?  

P: If it was like that you would stop doing your sport. 

The researcher proposed that they experiment with different settings. 

P: OK, take her sport, like I can't do all these things. 

E: But even if she does, she's still above it [Sport slider is moved to zero] – she can 
do lots and lots of work and no sport and she is OK [pain level always under 
the tolerance level] 
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P: Yes, though she's always up to tolerance level.  

E: If I increase this [gradually increasing the Sport slider], watch for the first point… 

P: There! 

E: See, that is not much sport she is allowed to do. 

P: You'd want the operation immediately. 

Having added the sorting activity, P and E felt even more confident that Deborah 

should have the operation. They continued by adding further activities to model 

Deborah‘s lifestyle, and remained convinced that having the operation was the better 

option. 

P: As soon as you look at this one it would make children think she should have the 
operation, with the impact on your life. 

E: We were undecided until we started looking at the pain. 

P: Yes, because then you are thinking about what it does to your life. Every day it 
always hurts, and when she does sport, it always hurts when she shops. The 
risky bits of the surgery might not happen to her, but she knows every day 
‗when I go shopping it's going to hurt me‘. With the surgery lot of things are 
short-term, even if you got worse for a while then you know the end point is 
going to better than you were in the first place. 

E When we were looking at the surgery, successful outcome, we did not really, it 
wasn't conclusive until we looked at the pain threshold. 

P & E often thought about the problem through the eyes of their students in school 

(see line 0). Lines 0 and 0 give some indication of what influences P and E in coming 

to this conclusion as does E‘s later comment (line 0): 

E:  Yeah, you forget about all the numbers and think, ―Bloody hell!‖ 

Stage 2: After the researcher‘s intervention 

After 85 minutes of the investigation, the researcher wished to probe P & E‘s basis 

for their position – wondering to what extent was it sensitive to the parameters in the 

problem. He asked P and E consider how far the probabilities would need to change 

for them to reverse their decision that Deborah should have the operation. As a 

result, P and E reviewed the complications and, after running the model 1000 times, 

found complications on 50 occasions i.e. a worse position than prior to the operation 

on 1 in 200 occasions. 

E: 1 in 200, that's actually not - it's not as successful as we thought! [laughter] Are 
you mortified now? 1 in 200, that's still pretty good though, I think. You're not 
convinced are you? 

P: I don't think they'd be keen on surgery – that's it‘s not working? 

Noting that P & E were now aggregating the complications as ‗being in a worse 

situation‘, the researcher pressed by asking what they would think if all 50 occasions 

involved death or impairment. 

E: I'm slightly – if I was Deborah, and there was me dying, that would be better than 
being still alive with something horrible – do you know what I mean, it sounds 
stupid, but if I'm dead I don't care, but if I'm alive and feeling pain, obviously it 
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depends - another thing is what her family situation was, if she's got young 
children, with a 1 in 200 chance, you'd rather be there for your kids, whereas 
being by yourself, you know you might have a slightly… I think I probably 
wouldn't, I dunno, I'm a bit of a… 

P: Because the pain she has doesn't stop her leading a normal life.  

E: She leads a restricted life, but she's not bedridden or anything. 

After 100 minutes, P and E reviewed their position. 

E: Oh, but she's still got to live with that pain every day, I'd still go for... I don't know 
if I'd change my mind... 

P: She's got a 1 in 200 chance of being worse off. 

E: But she's in pain for most of her life.  

P: That is partly under her control; she could stop sport for example. 

E: Yeah, I think I'm changing my mind, but she couldn't stop her work; she could stop 
driving, but she wouldn't be able to carry things. Oh, we should just have 
stopped when we were happy! [laughter]  

P: She could change her job. Probably she's been through some of those thoughts 
already. She didn't go straight to the doctor. She's lived with it quite a long 
time. 

E: You'd try to make adjustments, you wouldn't be considering the operation if you 
hadn't thought about adjustments. 

The intervention apparently led to P and E being less confident about what decision 

Deborah should make. They finally wrote: 

…she can to a certain degree control the pain by not doing certain activities like 

sport but this lowers her quality of life. If she has the operation, there is a 1 in 200 

chance of her having horrible complications plus there are other alternatives with the 

exercises and the neck brace. Her personal home life would also be a significant 

factor, depending on children etc or if she is a carer… 

DISCUSSION 

Brandstätter et al (2006) claim that the priority heuristic not only predicts the 

decision but also describes the decision-making process. We examine both of these 

claims. 

The priority heuristic as a predictor of Peter and Emma‘s decision 

Table 1 shows the possible outcomes and their likelihoods as entered by P and E into 

their model of the decision to have the operation. 

Outcome Likelihood as entered Likelihood as n in 10000 

Operation successful 450 in 500 9000 

Nerve damage 1 in 1000 10 

Trachea/oesophagus soreness 1 in 500 20 
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General anaesthetic 1 in 1000 10 

Superbug infection 1 in 400 25 

Table 1: Complications in P & E‘s model for the decision to have the operation 

In modelling Deborah‘s lifestyle, P and E entered sport, work and shopping as three 

activities that impacted on her pain level. They formed the view that, with these 

activities in place, Deborah would suffer almost constant above-threshold pain. 

Following the priority heuristic, as set out in the subsection on Heuristics for making 

judgements about risk, the minimum losses that could be incurred are zero for a 

successful operation and constant above-threshold pain if no operation. The lower 

loss is zero and so priority heuristic predicts an initial decision that Deborah should 

have the operation. However, that is only the final decision if the minimum losses 

differ by at least 10% of the maximum loss, death or paralysis. It is unclear whether 

the difference between zero loss and constant above-threshold pain is more than 10% 

of the loss incurred by death or paralysis. If not, then the priority heuristic may 

predict a different decision, based on the probabilities of the minimum losses, 0.9 

(for the successful operation) and 1, or perhaps slightly below 1, for the constant 

ongoing pain. The difference between these two probabilities is less than 0.1 and so 

the priority heuristic refers next to the maximum loss. This is presumably death or 

paralysis and so the prediction is a decision not to have the operation. 

In conclusion, the priority heuristic makes the correct prediction for Stage 1 provided 

constant above-threshold pain is regarded as an order of magnitude below the loss 

associated with death or paralysis, which is perhaps reasonable, though not entirely 

clear, given E‘s view in line 0. Insofar as P and E were, after the intervention, 

wavering towards a decision not to have the operation, it is unclear why the 

intervention might have changed any of the considerations above, other than possibly 

by placing ‗unnatural‘ emphasis on the complications associated with the operation. 

The priority heuristic as a description of the decision-making process 

One criticism might be that P and E took an early view that Deborah should have the 

operation (lines 0-0), arguably signalling an end to the search for a decision, and yet 

continued beyond the apparent stopping condition, in contradiction of the priority 

heuristic‘s description of the process. We think this criticism would be unfair. The 

priority heuristic assumes that all information is available at the point of decision; it 

is certainly the case that, in taking their early view, P and E had not yet assimilated 

all of the information, so we take continued activity as part of the process of reaching 

a point where a decision might be made that could follow the priority heuristic 

(activity such as making sense of the likelihoods and judging to the severity of the 

complications in lines 0-0, and such as deciding which activities in Deborah‘s life 

were significant and how they should be measured in lines 0-0). 
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The heuristic indicates that the decision-making process will place first priority on 

perceived losses. Certainly there is substantial focus on the harms that might result 

from complications arising out of the operation (lines 0-0; 0-0) and in Deborah‘s 

lifestyle (lines 0-0). However, there is also considerable discussion about likelihoods 

and these often take place alongside discussion of losses. More pertinently, P and E 

make specific reference to losses when describing how they were making their 

decision. Thus, in line 0, E explicitly articulates how her focus is on the possible zero 

loss outcome of having the operation and uses that fact to argue for Deborah having 

the operation. Similarly in lines 0-0, both P and E clarify that the operation became 

increasingly the better option when they considered the constant pain of not having 

the operation, presumably in comparison to the possible zero loss when having the 

operation. Perhaps line 0 captures the sentiment when E refers to forgetting about the 

numbers (by which we think she means the probabilities). 

These articulations strengthen the notion that in the end, after assimilating all of the 

information through reading, discussion and modelling, P and E did in Stage 1 seek 

to minimise the minimum loss, in accordance with the priority heuristic. 

After the intervention, P and E were encouraged to consider that extreme 

complications were rather likely. According to the priority heuristic, the decision 

should remain the same since the minimum losses were not affected by this re-

evaluation. So, why might P and E show signs of changing their mind? Our 

interpretation is that the intervention, by focussing on likelihoods, artificially pushed 

P and E into the later steps of the priority heuristic, resulting in the consideration of 

maximum losses and a decision not to have the operation. 

Limitations of the priority heuristic 

Broadly speaking, we think the priority heuristic provides a good prediction of both 

the decision and the decision-making undertaken by P and E. In conducting this 

analysis, we have become aware of some interesting limitations. The findings 

reported in the Brandstätter et al study were based on responses to situations that 

were already quantified both in terms of loss (or gain) and likelihood. Rarely in real-

world problems is it possible to quantify very precisely, if at all, either likelihoods or 

losses. This raises a question about how individuals cope with such uncertainty. 

Perhaps the priority heuristic is still relevant when there are clear and distinct 

differences, such as between the zero and constant above-threshold losses. But when 

the teachers were artificially pushed beyond that step in the heuristic, they found 

decision-making much more difficult. Perhaps their hesitancy was partly because the 

differences were far less self-evident, such as the differences in the probabilities of 

the two minimum losses. We wonder what the teachers would have done if the 

dilemma had involved two decisions with similar unquantified minimum losses. 

The uncertainty in real world decision-making is further accentuated in practice by 

concerns about the source of data. P and E regularly referred to these concerns (such 
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as in lines 0 and 0). In such circumstances, people are likely to go with the 

judgement of what they see as the highest authority. 

It is also important to recognise that the judgements of loss (and to a lesser extent 

perhaps likelihood) are essentially subjective and so differences in decision across 

individuals do not necessarily reflect a failure in the priority heuristic but might 

instead represent differences in individuals‘ judgements. This is highlighted by E in 

line 0, when she acknowledges that death might under certain circumstances be 

preferable to constant pain, and, in line 0 and in the final report, where she refers to 

the relevance of Deborah‘s family situation to making such judgements. 

CONCLUSION 

The above analysis demonstrates that the two teachers placed highest priority on 

losses (rather than probabilities) and that they decided according to the lesser of the 

minimum losses that would be incurred by the two possible decisions. It is also 

evident that their use of the priority heuristic is not robust. A simple intervention 

seemed to push them to focus on elements of the heuristic that would normally not 

have been triggered. Such a lack of robustness is not surprising when the teachers 

were dealing with a complex scenario with many aspects unquantified and in mutual 

conflict. Nevertheless, we believe that this uncertainty reflects common scenarios for 

personal decision-making. Perhaps this is indicated by Cokely and Kelly (2009), 

when they claim from their experimental evidence that more precise process 

modelling of risk choices with the priority heuristic would require at least one 

parameter that creates variation in the search and stopping rules. 

We have presented the activity of one pair of teachers in detail. Analysis of the 

remaining data is continuing. This further analysis might reveal differences across 

different subject disciplines but any such findings would need to be treated with 

caution. Already, we see in our analysis reasons to be sceptical about the easy 

transfer of psychological research findings from straightforward situations to 

complex scenarios.  These initial conjectures will be tested in the ongoing analysis. 

Furthermore, the software is a response to another distinction between educational 

and some psychological research. As educators (rather than psychologists), we need 

to ask what does this mean for schools, and in particular for mathematics and science 

classrooms. The above activity demonstrates the complexity of risk-based decision-

making, especially in rich scenarios such as DD. The evidence that people avoid 

trade-offs and apply heuristics such as the priority heuristic is compelling. As 

educators, should we be satisfied with increasing our understanding of how such 

decisions are made or should we take this evidence as a pedagogic challenge to find 

ways to support thinking that engages more explicitly with trade-offs by facilitating 

the co-ordination of the various dimensions of risk? Perhaps inspired by the progress 

made in statistics education in supporting students‘ meanings for randomness and 

inference (for example: Pratt, 2002; Konold, 2007; Ben-Zvi, 2004), we are aiming to 
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respond by designing new tools, with the explicit aim of supporting coordination of 

risk. We imagine tools that can list and order hazards by size of risk, that consolidate 

harm, likelihood as well as ethical and moral dimensions. 

In the latest design of DD, we have incorporated a concept-mapping tool, which was 

not available at the time of the above activity. The teachers would be encouraged to 

keep an ongoing map by connecting boxes containing information they have entered 

about possible hazards. Later, the teachers could press a ‗Show Risk‘ button and the 

hazard boxes would change colour. Boxes towards the left of the screen would 

become darker while those to right would become lighter on a continuous scale. The 

teachers would be told that the darker the hazard, the greater its risk. Inevitably, the 

teachers would now judge that some of the boxes were in the wrong position on the 

screen. They would be able to drag the boxes to what they would judge to be the 

correct relative position according to their estimation of the risks. We conjecture that 

such tools might provide an educational intervention that would enable teachers, and 

later non-teachers such as students, to coordinate the dimensions of risk into a single 

construct with the promise that they might, under certain circumstances, use thinking 

about trade-offs rather than strategies, such as the priority heuristic. 
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An essential property for distinguishing random from haphazard events is the 

existence of patterns in the long term. Its inclusion into the individual repertoire of 

conceptions counts as a prerequisite to developing adequate conceptions of chance 

and probability. This paper exemplifies results from a teaching experiment designed 

to investigate 11 to 13 year-old students‘ individual pathways of constructing, 

enriching and refining their conceptions of patterns of chance 

Students‘ individual conceptions of chance and probability have often been 

investigated empirically. The construction of conceptions that match the underlying 

stochastic theory (shortly called intended or mathematically-appropriate 

conceptions) seems to be a major challenge for stochastic education (e.g. 

Shaughnessy, 1992) and is deeply influenced by students‘ initial everyday 

conceptions (Fishbein, 1975; Konold, 1989). While early conceptualisations of these 

initial conceptions labelled them as misconceptions (e.g. overview in Shaughnessy, 

1992), stochastic education researchers with a constructivist background have taken 

them seriously as starting points for individual learning processes (e.g. Konold, 

1989; Pratt & Noss, 2002) and studied their development. In this tradition, this paper 

aims at contributing to a deeper understanding of students‘ individual pathways of 

constructing, enriching and refining their conceptions of patterns of chance as 

observed in design experiments.
16

 

THEORETICAL BACKGROUND 

Context-differentiated activation of constructs as an aim for processes of 

horizontal conceptual change 

The relevance of individual initial (mis-)conceptions for the construction of 

conceptions has been explained in constructivist terms: individual, active 

constructions of mental structures always build upon the existing prior mental 

structures by accommodation to experiences with new phenomena, while the initial 

structures serve as ―both a filter and a catalyst to the acquisition of new ideas‖ 

(Confrey, 1990, p. 21). According to the conceptual change approach (Posner et al., 

1982; first applied to probability by Konold, 1989), learning thus has to be 

conceptualised as ―re-learning, since prior conceptions and scientific conceptions are 

often opposed to each other in central aspects‖ (Duit & von Rhôneck, 1996, p. 158). 

For many years, conceptual change approaches have (implicitly or explicitly) guided 

                                           
16

  The design experiments are embedded in the long-term project KOSIMA that conducts design research 

for a complete middle school curriculum (cf. Hußmann, Leuders, Barzel, & Prediger, 2011).  
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the design of learning situations by providing means to overcome initial conceptions 

and develop them into intended mathematically appropriate conceptions. These 

means concern, for example, the relevance of concrete experiences, the confrontation 

of predictions with real outcomes and the generation of cognitive conflicts (see 

Posner et al., 1982). However, the far reaching aim of ―overcoming‖ individual prior 

conceptions in mathematics classrooms that guided early views on conceptual 

change is not universally applicable. Empirical studies show that it is not always 

realisable, as individual conceptions often continue to exist next to the new 

conceptions and are activated situatively (cf. Tyson et al., 1997; for probability e.g. 

Shaughnessy, 1992; Konold, 1989). Rather than a substitution of initial conceptions, 

the more adequate aim is the shift of contexts in which initial and intended 

conceptions are to be activated. ―Successful students learn to utilize different 

conceptions in appropriate contexts.‖ (Tyson et al., 1997, p. 402). Pratt & Noss 

(2002) emphasise changes in priority between initial and intended conceptions as 

one pathway of a conceptual change.  

Prediger (2008) called this modified perspective on conceptual change with 

persisting co-existence of initial and intended conceptions a horizontal view; in 

contrast to the vertical view on conceptual change, which aims at overcoming initial 

conceptions. The horizontal view considers students‘ initial conceptions as 

legitimate ideas that can persist if they are weaved into a new framework (similar to 

Abrahamson & Wilensky, 2007) and can be refined by knowledge of their context-

specific scope of validity. Thus, the question guiding the design and analysis of a 

learning situation for facilitating horizontal conceptual change transforms into the 

following: How can a learning situation support the extension of individual 

repertoires of conceptions (constructing and enriching), and how can learners be 

enabled to choose adequate conceptions in varying contexts (refining and 

generalising)? 

For terminological clarification, we mention that in line with the conceptual change 

approach, the notion ‗conception‘ here refers to all subjective mental structures used 

by learners to explain their experiences. Conceptions may range on different epis-

temological levels of complexity from concepts, intuitive rules up to local theories 

that connect different concepts (Gropengießer, 2001, p.30ff.) and can vary in the 

degree to which they match the underlying mathematical theory. Although the 

conceptual change approach is suitable to describe the macro-structures in individual 

pathways of development of conceptions (see for example Prediger & Rolka, 2009), 

the fine-grained analysis of micro-structures in the processes of constructing, 

enriching and refining conceptions require a further operationalization on the micro-

level (similarly in diSessa, 1993; Pratt & Noss, 2002). For this purpose, we adopted 

the notion ‗construct‘ as the smallest empirically-identifiable unit of conceptions 

from Schwarz et al. (2009) and their methodology of reconstructing them by means 

of three observable epistemic actions: Conceptions are seen as webbings of 
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constructs. An epistemic action of constructing is defined as (re-)creating a new 

knowledge construct by building with existing ones. This is identified when a 

construct is first verbalised or shown by action in the analysed learning situation 

(although sometimes being constructed before the observed situation). Previous 

constructs can be recognized as relevant for a specific context and used for building-

with actions in order to achieve a localized goal.  

Due to our horizontal view, two major adaptions of the notions were necessary: 1. As 

we consider idiosyncratic conceptions to be legitimate building blocks, we extended 

the normatively-guided focus from mathematically (partially) correct constructs (Ron 

et al., 2010) to all individual constructs, being in line with mathematical conceptions 

or not. 2. Our descriptions of horizontal learning pathways are mainly focused on the 

epistemic actions of constructing and required the distinction of two special cases of 

constructing, namely enriching and refining. A construct is identified to be enriched, 

when a complementary construct is put into relation to it which means there are 

connections to other constructs identifiable. A construct is said to be refined, when it 

is enriched by conditions of applicability; in our study mostly as narrowing the range 

of applicable situations from a broad initial one. In other situations, initial constructs 

are generalized and transferred to new contexts (as reconstructed e.g. by Pratt & 

Noss, 2010, p. 94). 

of patterns and deviations distinguishing long-term and short-term Conceptions 

contexts as precondition for context-adequate choices 

The existence of patterns in long series of chance experiments can be identified as a 

crucial insight for developing adequate conceptions of chance and probability 

(Prediger, 2008). This focus is strengthened by Moore‘s definition of random as 

―phenomena having uncertain individual outcomes but a regular pattern of outcomes 

in many repetitions‖ (Moore, 1990, p. 97). This includes the important distinction 

between short-term and long-term contexts which is central since Konold (1989) 

described many people‘s ―different understanding of the goal in reasoning under 

uncertainty‖ (p.61, emphasis added) as an important source of deviant conceptions. 

Whereas probabilistic conceptions only apply to long-term contexts, many people 

intend to predict single outcomes of chance experiments in a short-term perspective 

(Konold, 1989). Deviant conceptions — like betting on numbers that have a specific 

significance such as birthdays — can be experienced as unsuccessful in long-term 

contexts, but they prove just as (un)suitable — for single outcomes — as the 

intended probabilistic conceptions. Therefore, the well-known empirical law of large 

numbers is crucial for horizontal conceptual change since it explains why one can 

adopt probabilistic conceptions in a successful way (in long-term contexts), although 

randomness cannot be predicted for single outcomes (the short-term context). The 

empirical law of large numbers explains the sense and preconditions, but also the 

limits of probabilistic considerations and offers thus the conceptual base for a 

context-adequate choice of conceptions.  
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Borovcnik (2006) emphasised that the learning process while experimenting with 

dice etc. is hindered by the fact that chance, and therefore the produced data does not 

only have patterns, but also many deviations. That is why students have to include 

these experiences into their conceptions. Therefore, developing context-adequate 

probabilistic conceptions does not only include the important shift of attention from 

short-term contexts to long-term contexts (cf. Pratt & Johnston-Wilder, 2007), but 

also the construction of conditions when regularities are visible: whereas patterns are 

visible in sufficiently long series of outcomes, they can be disturbed by many outliers 

in short series, and single outcomes might not conform to an expected pattern at all 

(see Table 1). In this paper, we describe a case of successful development while 

constructing, enriching and refining constructs of patterns and their deviations in 

relation to the context. 

DESIGN OF THE TEACHING EXPERIMENTS  

The learning situation based on ‗Betting King‘ 

To facilitate the differentiation between short-term and 

long-term contexts in the sense of a horizontal view of 

conceptual change, a learning situation for 11 to 13 year 

old students has been designed by  Prediger & Hußmann 

(2012) to provide opportunities for experiences with the 

empirical law of large numbers. The core element of the 

learning situation is the board game ―Betting King‖  

(Fig. 1), which challenges students to bet on one of four 

coloured animals in a race. Betting activities refer to 

making predictions which animal will be the fastest and 

on which position each animal will end up. The four 

coloured animals are powered by throws of a coloured 20-

sided die (red ant: 7, green frog: 5, yellow snail: 5, blue 

hedgehog: 3), so that the red ant is theoretically the fastest 

with a chance of 7/20. Most children quickly notice the 

red ant to be a good bet. Soon, they activate a fruitful 

ordinal conception of chance, relating the expected order 

of animals to the number of coloured faces on the die. In 

this way, the students‘ initial resources to link the 

empirical pattern to the colour distribution are taken into 

account. Beyond that, the learning situation aims to refine 

these initial conceptions into an understanding of when this pattern can be predicted 

more confidently according to the long-term or short-term context. For this purpose, 

the context attribute ―total of throws‖ is materialised in the game by a STOP sign for 

the throw counter. By setting the STOP sign for each game, students can deliberately 

define the total of throws between 1 and 40 for the board game, and between 1 and 

10000 throws for the computer simulation (Fig. 2). In order to lead students from 

Fig.1 The Game ‗Betting King‘ 

Fig. 2 Screen of corresponding 

computer simulation  
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unsystematically playing the game into systematically investigating the situation, 

protocol sheets guide the collection of game result data for various predefined throw 

counts (1, 10, 100 and 1000, later 2000). For refining constructs by the conditions of 

their applicability, it is important to become aware of the role of the total number of 

throws. 

 Short-Term Context:  

Single games with  

small total of throws 

Long-Term Context 1:  

Series of games with  

small total of throws 

Long-Term Context II:  

Series of games with  

large total of throws  

Pattern S-pattern  

non-existent 

L1-pattern 

red ant mostly wins,  

frog & snail are in similar 

positions, hedgehog loses 

mostly 

L2-pattern 

red ant always wins, frog & 

snail are second, hedgehog 

last 

Quality of 

prediction 

S-predictability 

difficult to bet,  

but red ant is still the 

best 

L1-predictability 

red ant is a good bet,  

but not a secure bet 

L2-predictability 

red ant is a good and secure 

bet 

Relevance of 

disturbance 

S-disturbance 

some single outcomes 

completely differ from 

any expected pattern 

L1-deviation 

pattern difficult to see  

due to lot of disturbances 

L2-deviation 

pattern strongly visible,  

still some disturbance 

Explanation 

of appearing 

pattern 

no adequate  

explanation  

for the outcome itself 

e.g.  

L1-theoretical explanation  

L1-empirical explanation  

e.g.  

L2-theoretical explanation  

L2-empirical explanation 

L2-law of large numbers 

Table 1: Intended probabilistic constructs on patterns of chance in Betting King 

From a probabilistic point of view, the distinction between different long-term 

contexts and a short-term context is crucial as was elaborated above. But whereas 

this distinction oriented our data-guided systematisation of intended constructs in 

Table 1, students first have to construct this distinction between contexts by 

themselves. In our learning situation, this construction of differences is facilitated by 

the following leading question: ―Apparently, the red ant is a good bet. But when is 

this bet not only the best bet but also a mostly secure bet?‖ The question challenges 

students to enrich their conceptions by context-differentiated constructs of 

predictability which are linked to individual constructs of relevance of disturbance, 

but in many different ways, as we learned in the ongoing data analysis. 

RESEARCH QUESTIONS AND DESIGN OF THE STUDY 

Following the paradigm of design research (Gravemeijer & Cobb, 2006), the 

learning situation was tested and improved cyclically over three courses of 

evaluation in six classes (grade 5 and 6, students aged 11 to 13). The empirical 

analysis of classroom learning processes in Prediger & Rolka (2009) showed that 

most students could indeed find better and more secure betting strategies and learned 

to differentiate between long-term and short-term contexts. However, for gaining a 

deeper understanding on the detailed processes of the development of conceptions, 
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classroom data was too incomplete. For that reason, a further series of teaching 

experiments was conducted in a laboratory situation by the second author of this 

paper. 

The teaching experiments (following Gravemeijer & Cobb, 2006) based on the 

presented learning situation were conducted in a series of game interviews with ten 

couples of students of grade 6 (age 11-13) in a German comprehensive secondary 

school. The semi-structured interviews of 4x 45-90 minutes were guided by an 

intervention manual that defined the role of the interview with the attitude of giving 

as little help as possible but also to provide guidance in situations that were crucial 

for the continuation of the interview sessions. Each session was videotaped and 

transcribed in detail for the analysis. The data corpus also included the record of the 

computer screen and written products.  Though the underlying research interest of 

the ongoing analysis addresses a range of different questions concerning a more 

detailed description of the processes of conceptual change, this article focuses on the 

following questions: 

26 How are students constructing, enriching and refining constructs for patterns, 

deviations of patterns and predictability in relation to short- and long-term 

contexts? 

27 Which constructs do students use for explaining these patterns?  

THE CASE OF RAMONA AND SARAH – FIRST RESULTS 

The case of Ramona and Sarah exemplifies how relating and enriching different 

constructs can provide students with a tool to make sense of the different 

observations of patterns of chance in relation the specific short-term or long-term 

context. This case was chosen as the girls show a broad range of constructs and are 

highly able to verbalize their ideas. Due to limited space, comparisons with other 

couples are restricted to the concluding remarks.  

Episode 1: Refining by differentiating the L1-context from S-context  

When introduced to the learning environment, Ramona and Sarah are eager to find a 

strategy to win as often  as possible. For this reason, they keep looking for patterns in 

single throws of the die or in results of games. Episode 1 below starts after 15 

minutes of playing. All four games so far with totals of throws between 25 and 37 

have been won by the red ant, with the first game tied with the green frog. Having 

the outcome of the fourth game on the board as documented in Fig. 1 (red ant on 11, 

frog on 7, snail on 5, blue hedgehog on 6), the students express their ideas on the 

found patterns.  

422 Ramona (points to red ant on the board) This one is the fastest. Then, the 
hedgehog should come, then [green] frog, then [yellow] snail (points 
to animals) 

423 Sarah Why? 
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424 Ramona I don't know, because the- the ant has won almost every time so far. 

As a first construct, Ramona describes in line 424 the pattern that the red ant wins 

more often (L1-pattern winning ant) and relates this to her empirical observation 

(L1- empirical explanation). She apparently refers to the series of four games by 

expressing ―almost every time so far‖ in 424. In the (not printed) turns following the 

above episode, Sarah tries to find an explanation for the empirical pattern and comes 

up with the idea that not all faces of the die are equal, which prompts Ramona to 

count. After counting twice, they find the correct colour distribution of 7,5,5,3.  

481 Interviewer Now you have counted [all colours on the die]. What does that mean? 

482a Sarah  That red, well, more- well, that red wins actually, because it has more 
and then you get it more often, when you throw the die. And then 
green and yellow, because they-  

482b Sarah Well, you two- That is why they are again so- Green and yellow 
(points on yellow snail and then blue hedgehog on the board) 

482c Sarah  Eh, green and yellow (points to yellow snail and then green frog, then 
to both simultaneously) are sometimes far apart, but. 

483 Ramona Blue has good chances, too, because- 

484 Sarah Yes. 

485 Ramona You also have- blue has sometimes a lot of luck and then it gets the 
three faces sometimes very often. 

486 Sarah You see it here (points on the board to snail and blue hedgehog). 

In 482a, Sarah enriches the pattern-construct that was so far only empirically 

explained with an additional theoretical explanation of the colour distribution (L1-

theoretical explanation). While the observation and also the empirical explanation of 

the pattern of the red ant as best animal come from a series of games (with totals 

between 25 and 37, L1-context), she switches in 482b to the single result of the game 

that is still displayed in front of her (see Fig.1) and tries to transfer the L1-pattern to 

the single game. By pointing to the board, she is possibly trying to demonstrate the 

theoretically expected pattern, but her use of half sentences and her pointing to the 

wrong animals in 482b seem to indicate that she is experiencing a conflict between 

the deviant S-pattern and the expected L1-pattern. In this moment, the constructed 

L1-pattern is possibly already starting to get refined implicitly as Sarah experiences a 

problem in its scope of applicability for the single short game. In 482c, she corrects 

herself by pointing to green frog and yellow snail, but seems not to be describing a 

pattern anymore, as she uses the term ―sometimes‖ (S-deviation). Sarah seemingly 

does not solve the problem between L1-pattern and the deviant S-pattern here, as she 

ends her sentence with a ―but‖ in 482c, even though she is not interrupted.  

Episode 2: Constructing luck as S-explanation for deviation  

Ramona expresses in 483 to 485 a new construct that had not been mentioned before. 

She explains this situation that differs from the L1-pattern by the ―luck‖ that the blue 

hedgehog must have had (S-explanation for the deviation). Keeping the term 
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―sometimes‖, she is seemingly still speaking about single outcomes as opposed to a 

series. Sarah concurs with this explanation by demonstrating it on the board. Here, 

the girls seem to have found an explanation by excluding this and possibly other 

single outcomes from the scope of applicability of the L1-pattern and therefore 

making the difference between short-term and long-term context explicit. Still, the 

construct of luck is only brought up in relation with the notion of the distribution of 

colours. 

Episode 3: Building with the luck-construct for S-explanation for deviation  

Over the course of all interviews, they again build with this construct to explain 

single outcomes of games being not in accordance with the theoretically expected 

pattern. One example is Episode 3 (about 35 min. later). So far, Ramona and Sarah 

have filled in several protocol sheets while playing more than 25 further games with 

a total of throws between 1 and 20 and have written down their strategy for betting. 

The interviewer‘s question leads Ramona to clarify the distinction between pattern 

and luck further:  

1203 Interviewer  Could you read out loud what you have written, Sarah? 

1204 Sarah Always stay on the ant-(...) 

1206 Sarah As it has the most faces on the die and therefore you roll it more often. 

1207 Interviewer  Hm, you put that very well. What I don‘t get completely yet: I bet on 
the hedgehog and won, for example. Or – well, not only ant has won- 

1208  Ramona  That is just luck. 

1209  Interviewer It‘s only luck? 

1210  Ramona  It is not a strategy, it is truly luck. 

Here, the previously constructed S-explanation for deviation is recognized as being 

usable in a situation, in which the interviewer seems to point to single games. By 

emphasising the difference between luck and strategy, Ramona builds with it by 

referring it to the unpredictability of the single (lucky) outcomes in single short 

games (S-Prediction) and the more predictable L1-pattern (L1-predictability). This 

contributes to refining the distinction of S- and L1-context. 

Episode 4: Constructing the L1-L2-distinction  

In the second interview, Ramona and Sarah start to focus on the long-term context 

L2 of games with high totals of throws, which is supported by using the computer 

simulation and protocol sheets that include total of throws up to 1000. Ramona and 

Sarah address the question, when the red ant is a good bet without an interviewer‘s 

stimulus. Having filled in a protocol sheet and a series of 16 games with increasing 

totals of throws, they realize that their consequent bet on ant has won the first game, 

lost for the next four and won every game from the sixth one on (with totals of 

throws of 10, 100 and 1000):  

975 Sarah (points to sixth game on the protocol sheet; total of throws: 10) From 
here on, you only always win with the ant. 



Working Group 5 

CERME 7 (2011) 893 

 

This utterance could be an indication that she is constructing a notion of the 

predictability of the pattern ant-winning in relation to the context (distinguishing L2-

predictability from L1-predictability). Although not marking exactly those games 

with at least 100 throws, her formulation ―from here on‖ clearly addresses a series of 

games and seems vaguely to refer to the larger total of throws as they increase in the 

bottom of the sheet. While filling in a summary sheet, the girls become aware of their 

results showing clear patterns: If the total of throws was one or ten, all animals won, 

while the red ant was the only winner in all games with throw totals of 100 and 1000. 

Asked to formulate their strategy now, the following dialogue begins: 

1079 Sarah  At 100 and 1000, the ant always wins. At 10 and 1, it‘s always different- 

... 

1085 Ramona [At 10 and 1], mostly winning are- 

1086 Sarah  (points to upper part of protocol sheet) snail, frog and sometimes ant, too.  

1087 Ramona  There, ant is not winning as often and here (points to lower part of 
protocol sheet) you can see it, only ant. 

The girls refine their construct of L2-pattern by contrasting it to the L1-pattern. Both 

seem to accept that ant is the only one winning in long games which is in accordance 

with Sarah‘s statement in 975. Referring to the series of short games (i.e. the L1-

context), Sarah revises her previous statement and remarks in 1079, that at a throw 

total of one or ten ―it‘s always different‖. It is possible that she emphasises the 

distinction between the L1 and L2 context and focuses the L1-deviation more than 

the L1-pattern itself. Furthermore, she might relate the absence of a pattern in L1 to 

the previous construct S-disturbance in the context of short games, which was then 

explained by the construct ―luck‖. Here, both girls do not mention luck as a possible 

explanation, but point out the shift of context as the explanation for the discrepancies 

in the observations of patterns (L1-explanation). When Ramona starts to mention 

winning animals in 1085, Sarah points out three of four animals, relativising the red 

ant by adding the adverb ―sometimes‖. In contrast to 1079, she is possibly now 

pointing out a L1-pattern, which is refined by Ramona in 1086. She emphasises the 

words ―as often‖ and ―always‖ and makes the distinction between her construct for 

L2-pattern (ant wins always) and L1-pattern (ant wins sometimes) very explicit. 

Furthermore, she hereby constructs the notion of both L1-deviation and L2-

deviation.  

CONCLUSION  

Like the girls‘ pathway of developing conceptions, all ten interview-pairs create 

complex networks of constructs while trying to make sense of several, partially-

conflicting experiences. In each case, a shift of focus between short-term and long-

term context can be reconstructed. Beyond that, the individual pathways are highly 

individualised.  
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Ramona and Sarah are able to enrich pattern constructs with explanations not only in 

a long-term perspective, but also refine these patterns regarding the absence of 

patterns in a series and single outliers in short-term contexts. Their individual 

constructs ―luck‖ and ―pattern‖ seem not only to be connected to each other, but also 

to the distribution of colours. The deviation of patterns is only mentioned in relation 

with ―pattern‖ and while mentioning explicitly the total of throws as being low. 

Though the girls don‘t compare this whole network of constructs and test its 

coherence, it seems from an outside point of view that by defining the scopes of 

applicability, their constructs are not contradictory, but in coexistence with each 

other. This gives evidence to the horizontal view on conceptual change and provides 

a short but deep insight into how the individual pathways of students can lead into 

conceptions consisting of networks of constructs, in which even rather idiosyncratic 

constructs such as luck have a scope of applicability that does not seem to obstruct 

the intended mathematical constructs. For some students, the negotiation of ranges of 

applicability of constructs is more complicated than for Ramona and Sarah. Further 

steps of data analysis include the identification of common conceptions for many 

participants and sharpen the description of the character of the network of constructs. 
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A new model by Stanovich et al. (2008) specifies the ways in which knowledge and 

cognitive capacity might interact in shaping reasoning performance. This model 

proposes that normative performance relies on knowing relevant rules and 

procedures (called ―mindware‖), detecting the need to implement them, and holding 

of the necessary cognitive capacity to acquire/use them appropriately. The aim of the 

present study was to test these assumptions investigating gambler fallacy inside 

probabilistic reasoning. Participants were primary (N=251) and college students 

(N=151). Results provide support for the claim that mindware plays an important 

role in probabilistic reasoning, and there is an interplay with cognitive ability. 

Theoretical and educational implications of results are discussed. 

INTRODUCTION 

According to dual-process theories, mental functioning can be characterized by two 

different types of process which have different strengths and weaknesses (e.g., 

Brainerd & Reyna, 2001; Epstein, 1994; Evans 2006; Sloman, 1996; Stanovich, 

1999). Type 1 processes
17

 are rapid and mandatory when the triggering stimuli are 

encountered, they do not require much cognitive effort, and they can operate in 

parallel. Type 1 processing is cognitively economical, its output is not consciously 

generated but seems to ―pop‖ into consciousness (Sloman, 1996), and people ―feel‖ 

intuitively that the responses are right (Epstein, 1994). Whereas Type 1 processing 

often leads to correct responses, in some cases they lead to systematic biases and 

errors. By contrast, Type 2 processes are relatively slow and computationally 

expensive, they are available for conscious awareness, serial, and often language 

based. Type 2 processes are also often associated with the use of normative rules and 

logical responding. 

To exemplify the role of the two types of process in reasoning, imagine that in order 

to win a prize you have to pick a red marble from one of two urns (A and B). Urn A 

contains 20 red and 80 blue marbles, and Urn B contains 1 red and 9 blue marbles. 

When you respond to the task, you can compare the ratio of winning marbles in each 

urn (20% vs. 10%) which requires some time, mental effort and computations, or you 

can simply rely on the feeling/intuition that it is preferable to pick from the urn with 

more ―favourable events‖. In this example, both processes cue the normatively 

correct answer (that is, Urn A). On the other hand, it is possible to set up a task 

                                           

17
 Several terms have been used to refer to these two aspects of cognitive functioning (e.g. heuristic vs analytic, 

esperential vs rational), here we follow Evans (2006) in using the terms Type 1 and Type 2 processes. 
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where Type 1 and Type 2 reasoning cue different responses. For example, if  you can 

choose between picking a marble from an urn containing 10 red and 90 blue marbles, 

or from an urn containing 2 red and 8 blue marbles, the feeling/intuition that it is 

preferable to pick from the urn with more ―favourable events‖ results in a 

normatively incorrect choice. 

When Type 1 and Type 2 processes do not produce the same output, Type 1 

processes usually cue responses that are theoretically incorrect and, according to 

dual-process theorists one of the most critical functions of Type 2 processes in these 

cases is to interrupt and override Type 1 processing. However, this does not always 

happen. In the case of a conflict between intuitions and normative rules even 

educated adults will predominantly produce heuristic responses. 

In a recent paper Stanovich, Toplak and West (2008) outlined how people can reach 

a correct solution when the task besides the normative solution elicits competing 

response options that are intuitively compelling. They stated that people have to 

possess the relevant rules, procedures, and strategies, they have to recognise the need 

to use them, and then they have to have the necessary cognitive capacity to inhibit 

competing responses. In their model of reasoning, Stanovich and colleagues (2008) 

referred to rules, procedures, and strategies derived from past learning experiences as 

―mindware‖ (Perkins, 1995). If the relevant mindware can be retrieved and used, 

alternative responses became available to engage in the override of the intuitive 

compelling answers.  

Errors can arise when we have a mindware gap. Indeed, when relevant knowledge, 

procedures, and strategies are not available, i.e. they are not learned (or poorly 

compiled), we can not have an override since to override the intuitive response a 

different response is needed as a substitute. Instead, when the relevant knowledge, 

procedures, and strategies can be easily retrieved, and a normative solution becomes 

available, errors are termed override failures: different alternatives are produced and 

there is the attempt to take the intuitive response offline, but this attempt fails since 

beliefs, feelings and impressions seem to be right beside rule-based considerations. 

So we have an override failure when people hold the rule but they do not base their 

answer on it. 

Finally, Stanovich and colleagues (2008) addressed the role of several factors that 

might affect reasoning and, among them, particular attention was paid to cognitive 

ability. Kahneman and  Frederick (2002) pointed out that ―intelligent people are 

more likely to possess the relevant logical rules and also to recognize the 

applicability of these rules in particular situations […] that enable them to overcome 

erroneous intuitions when adequate information are available.‖ Thus, in both 

children and adults, reasoning errors are expected to be related to cognitive ability 

(Evans, Handley, Neilens, & Over, 2009; Kokis, MacPherson, Toplak, West & 

Stanovich, 2002; Morsanyi & Handley, 2008).  
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Starting from these premises, the aim of the present study was to test the Stanovich 

and colleagues‘ model inside probabilistic reasoning investigating gambler fallacy 

(Kahneman, Slovic & Tversky, 1982). Indeed, the model of Stanovich and 

colleagues provides a theoretical framework for integrating the educational and dual-

process approaches emphasizing the role of both relevant knowledge and cognitive 

capacity in the development of reasoning skills. As the rules of probabilistic 

reasoning are very hard to derive from personal experiences (e.g., Fischbein, 1987) – 

that is, the actual patterns of probabilistic outcomes are ―messy‖ or even resemble 

more what could be predicted based on the fallacies of probabilistic reasoning than 

on the relevant normative rules (see Hahn & Warren, 2009) - normative probabilistic 

knowledge mostly stem from what learned at school.  

In details, we aimed (a) to investigate when sound probabilistic reasoning could be 

prevented by the lack of relevant knowledge (that we call ―mindware‖ following 

Stanovich et al.‘s terminology)) for dealing with probability comparing different 

educational levels, and (b) to take into account the role of individual differences in 

cognitive ability and the interactions between mindware and cognitive capacity. 

Committing gambler fallacy, people tend to estimate the likelihood of an event by 

taking into account how well it represents its parent population, i.e. a sequence of the 

same outcome (given two possible options) must be followed by the other outcome 

in order to equilibrate the proportion. In this way they do not take into account base-

rates along with the independence notion. In the present study gambler fallacy was 

investigated in primary students since these basics of probability are taught to the 

fourth and fifth graders following the Italian national curricular programs
18

. Then, 

we compared primary school students probabilistic reasoning to college students in 

order to better explore the role of mindware starting from the assumption that 

relevant knowledge should be consolidated through education as well as the ability 

to recognize the need to use it in specific situations. In sum, we included three 

groups: students before they were taught probability issues (third graders), students 

who had been taught probability issues (fifth graders) and college students who had 

encountered issues related to probability throughout primary to high school years.  

We predicted that probabilistic reasoning performance strongly relied on relevant 

mindware. We expected that younger primary students should perform worse due to 

their mindware gap. This difference should be observed even when individual 

differences in cognitive ability are partialled out. We predicted that college students 

                                           

18
 Specifically, curricula include statistical surveys and their representations, some linguistic/conceptual issues related to 

possible, impossible, improbable events, and the development of judgment under uncertainty and estimation of odds 

through games of chance, inside the classical definition of probability (see http://www.rhoda.it/programm.htm). These 

issues were firstly included in the 1985 reform, and more recently the importance of teaching these topics was stressed 

in the revised government program (Moratti, 2004). 
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would generally perform better due to their more consolidated knowledge of the 

relevant rules of probability, and their higher cognitive ability. Whereas no 

difference should be observed among older primary students and college students 

once individual differences in cognitive ability are taken into account. 

METHOD 

Participants 

The participants were 251 primary school students attending Grade 3 (n= 133, 68 

males; mean age: 8.3 yrs) and Grade 5 (n= 118, 65 males; mean age: 10.5 yrs) and 

151 college students (30 males; mean age: 20.3 yrs). The primary schools students 

were enrolled in Italian primary schools that serve families from lower middle to 

middle socioeconomic classes. Primary students were invited to participate. Their 

parents were given information about the study and their permission was requested. 

The college students were all students in Psychology degree program at the 

University of Florence (Italy). They were volunteers, and did not receive any reward 

for their participation in this study. 

Measures and Procedure 

Gambler Fallacy Task: A preliminary version of this task was used in a previous 

study run with children and college students (Chiesi & Primi, 2009). It consists in a 

marble bag game in which different base-rates in combination with two different 

sequences of outcomes were used. Using marbles - compared to the tossing of a 

regular coin traditionally employed to test gambler fallacy – the present task allows 

for testing this bias with both equally likely and not equally likely proportions. In 

detail, the task was composed of 3 different trials in which proportion of Blue (B) 

and Green (G) marbles varied (15B & 15G; 10B & 20G; 25B & 5G).  

Before the actual task was presented, all children were shown a video in order to 

exemplify the concept of sampling with replacement. The bag shown in the video has 

a see-through part and instead of drawing a marble from the bag, the marble is 

pushed into the corner and then moved back inside the bag. Since the bag is closed 

it‘s a way to make clear that the number of the marbles stays always the same. 

After the video, each participant received a sheet where it was written the following 

instruction: ―15 blue and 15 green marbles have been put into a bag such as the one 

shown in the video and one ball has been pushed in the see-trough part‖ The first 

question was ―It‘s more likely it is...‖. The following instruction explained that: ―The 

game was repeated with same bag and a sequence of 5 green marble was obtained‖. 

The second question was: ―The next one is more likely it is....‖. The following 

instruction told that: ―The game was repeated again with same bag and a sequence 

of 5 blue marble was obtained‖. The third question was: ―The next one is more likely 

it is....‖. After this first trial, the other two trials with different marbles proportion 

were presented, and for each one the three questions were asked. In sum, each 

participant had to answer 9 questions, three for each trial.  
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We formed two composite scores summing correct answers. One represents the 

necessary knowledge to tackle the task, i.e. how the probability of a single event 

changes referring to base-rates, and it was called Mindware score (range 0-3). The 

other, represents normative reasoning, i.e. higher the score, higher the respondent‘s 

ability to avoid gambler fallacy, and it was called Probabilistic Reasoning score 

(range 0-6).  

After the Gambler Fallacy task, cognitive ability was measured using two short 

forms of the Raven‘s Matrices, one suitable for children, the other for adults. 

Set I of the Advanced Progressive Matrices (APM–SET I): To measure children‘s 

cognitive abilities the APM–SET I (Raven, 1962) was administered as a short form 

of the Raven‘s Standard Progressive Matrices (Raven, 1941) as suggested by 

Nathaniel-James et al. (2004). The Set I of APM is composed by 12 matrices 

increasing in their difficulty level, and the items covered the range of difficulty of 

SPM (Raven, 1962). These items are composed of a series of perceptual analytic 

reasoning problems, each in the form of a matrix. The problems involve both 

horizontal and vertical transformation: figures may increase or decrease in size, and 

elements may be added or subtracted, flipped, rotated, or show other progressive 

changes in the pattern. In each case, the lower right corner of the matrix is missing 

and the participant‘s task is to determine which of eight possible alternatives fits into 

the missing space such that row and column rules are satisfied. Test adaptation to the 

Italian children population was done using IRT analysis procedure (Ciancaleoni, 

Primi & Chiesi, 2010).  

Advanced Progressive Matrices Short Form (APM–SF, Arthur & Day, 1994): 

College students were administered the Advanced Progressive Matrices Short Form 

(Arthur & Day, 1994). The APM-SF is composed by 12 matrices derived from the 

APM. Matrices characteristic are described above. Test adaptation was done using 

IRT analysis procedure (Primi, Galli, Ciancaleoni, & Chiesi, 2010).  

RESULTS 

As expected, a differences between Grade 3 and Grade 5 was found in Mindware 

(t(247)= -4.3, p<.001, d=-.55) and Probabilistic Reasoning (t(247)= -4.92, p<.001, 

d=-.62). Older children performed better (Mindware: M=1.90; SD=.86; Probabilistic 

Reasoning: M=2.83; SD=1.52) than younger children (Mindware: M=1.45; SD=.80; 

Probabilistic Reasoning: M=2.07; SD=.84). 

In order to control the effect of cognitive ability, two ANCOVAs were run in which 

Raven Matrices score was used as a covariate, Grade as the independent factor, and 

Mindware and Probabilistic Reasoning score as the dependent variables. The results 

showed that once the significant effect of cognitive ability was partialled out 

(F(1,246)=15.16, p<.001, p
2
=.06), the main effect of educational level on Mindware 

was still significant (F(1,246)=6.25, p<.01, p
2
=.03). In the same way, once the 

significant effect of cognitive ability was partialled out (F(1,246)=31.24, p<.001, 
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p
2
=.13), the main effect of educational level on Probabilistic reasoning remained 

significant (F(1,246)=6.53, p<.01, p
2
 =.03). 

Starting from these results, we aimed to identify the relative weight of the two 

factors related to correct reasoning, that is cognitive ability and relevant knowledge. 

So, we conducted a hierarchical regression analysis - separately for third graders, 

fifth graders and college students - in which the criterion variable was the 

Probabilistic Reasoning, and predictors were Cognitive Ability, entered first into the 

analysis, and Mindware. 

Third Grade 
Step   Multiple R R

2
 Change F Change 

1 COGNITIVE ABILITY 0.03 / 4.64* 
2 MINDWARE 0.00 0.00 ns 

Fifth Grade 
1 COGNITIVE ABILITY 0.19 / 26.24** 
2 MINDWARE 0.30 0.11 18.27** 

College 
1 COGNITIVE ABILITY 0.05 / 4.31* 
2 MINDWARE 0.47 0.42 68.14* 

*p < .05, **p < .01 

Table 1: Hierarchical regression for each student group with Cognitive Ability and 

Mindware entered as predictors of the Probabilistic Reasoning score. 

Different patterns of results were observed for the three groups (Table 1). In third 

graders probabilistic reasoning was totally unrelated from mindware, and cognitive 

ability accounted for a little part of it (less than 5%). In fifth graders both cognitive 

ability and relevant mindware predicted probabilistic reasoning: cognitive ability 

accounted for 19% of the variance, and mindware accounted for an additional 11%. 

Finally, mindware explained in large part college students‘ reasoning accounting for 

the 42% of the variance.  

Results show that both cognitive ability and relevant mindware would lead to 

increase students‘ reasoning performance and the relative weight of the two factors 

depend on educational level. Moreover, we can argue that students who correctly 

answered the first question not only hold the relevant mindware but the question 

makes them aware of the need to use it in answering the following questions. In other 

word, mindware was retrieved and made available to substitute the compelling 

intuitive response likely elicited by the sequence of five identical outcomes (i.e., all 

green/blue marbles). 

In order to further ascertain the role of mindware on probabilistic reasoning, we 

compared who hold a well-learned rule and who lack or hold a poorly compiled rule. 

To do that, we created two groups (Hold vs Lack) using as a criterion the maximum 
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Mindware score (that is, who always answer correctly, even when the correct answer 

was ―blue and green are equally likely‖ and not a dichotomous choice between blue 

and green). In this way third graders were excluded from the analysis since only few 

students (as expected) were found to belong to Hold group. A 2X2 ANCOVA was 

run in which cognitive ability was used as a covariate, Educational Level (Fifth 

Grade  vs College) and Mindware (Lack vs Hold) as independent variables, and 

Probabilistic reasoning as dependent variable. The results showed that once the 

significant effect of cognitive ability was partialled out (F(1,199)=15.58, p<.001, 

p
2
=.07), the main effects of Educational Level (F(1,199)=5.03, p<.05, p

2
 =.03) and 

Mindware (F(1,199)=113.07, p<.001, p
2
=.36) were significant, as well as the 

interaction between them (F(1,199)=4.54, p<.05, p
2
=.02) (Figure 1). Looking at the 

effect sizes, we can observe that the stronger difference depends on mindware, i.e., in 

both groups students had a low performance when they lack, or lack to retrieve and 

apply, the relevant mindware. 

 

 

 

 

 

 

 

 

 

Figure 1: Means of Probabilistic Reasoning score in function of Mindware and 

Educational Level. 

CONCLUSION 

In this work we investigated the effects of relevant knowledge on primary and 

college students‘ probabilistic reasoning ability, and we examined the interactions 

between relevant knowledge and cognitive ability. According to Stanovich et al. 

(2008), the present study suggests that in solving gambler fallacy tasks the correct 

solution can be reached holding the relevant mindware and recognising the need to 

use it. Moreover, we found that individual differences in cognitive ability can be 

accounted for explaining sound reasoning in both primary and college students but, 

once the effect of cognitive ability has been taken into account, if the relevant 

knowledge is hold, retrieved and applied primary and college students perform 

equally well. In the same way, when they do not possess it or use it, their 

performance is equally bad. 
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In sum, correct probabilistic reasoning relies strongly on knowledge about rules. 

Since these rules are very hard to derive from personal experiences, we may 

conclude that normative probabilistic reasoning mostly stem from what learned at 

school. In this way, it becomes relevant define methods to make students aware of 

the need for rules even when they ―feel‖ that these rules do not work, that is when 

conclusions derived from the theory are counterintuitive.   

This study offers some cues to cross the bridge from a psychological approach to an 

educational approach. Psychological theories on reasoning assert that people are 

prone to rely on intuitions and that in dealing with probability intuitions seem to be 

right beside rule-based consideration. Nonetheless, rules are needed to reason 

normatively and to avoid biases. Didactical interventions have to focus on solving 

this puzzle. 
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CONNECTING EXPERIMENTAL AND THEORETICAL 

PERSPECTIVES 

Theodosia Prodromou  

University of New England, Australia 

This paper presents a case study of a group of pre-service teachers (age 21- 52) as 

they work in a domain of stochastic abstraction to reason about ―experimental‖ and 

―theoretical‖ perspectives. I am particularly interested in investigating whether pre-

service teachers could construct a bidirectional link between the data-centric and 

modelling perspectives on distribution, similar to the tentative model I introduced 

elsewhere for coordinating the two perspectives on distribution. In this study, we 

have seen echoes of these ideas in relation to experimental and theoretical 

probabilities. The results show students‘ movement between probabilities at the 

micro level and the shape of histograms at the macro level. 

INTRODUCTION  

The concept of probability distribution lies at the heart of statistics at university level 

(Cohen & Chechile, 1997). Students at university level are expected to have a 

sophisticated understanding of theoretical statistical principles. This requires an 

appreciation of probability theory, an ability to describe the variation due to 

sampling and calculate and judge the variation pattern of a random variable and its 

respective probabilities.  

Konold and Kazak (2008) claim that there are four fundamental ideas which are 

central to the domain of data and chance: model fit, distribution, signal-noise, and 

the Law of Large numbers. Model Fit involves the development of expectations 

about certain characteristics of the data with regard to the possible kind of a ―model‖ 

that the data follows (Konold & Kazak, 2008). For instance, if we examine the 

outcomes of tossing a fair coin repeatedly, we expect to get about an equal number of 

sequences of heads and tails. When we look at the data, we evaluate our data with 

regards to our ―model‖. However, there are two approaches to model fit. Exploratory 

data analysis (EDA), introduced by Tukey (1972), is an approach that places 

emphasis on looking at data sets in order to form hypotheses worth testing, instead of 

putting forward hypotheses concerning the possible kind of probability model the 

data follows. EDA, therefore, allows the data to reveal an underlying structure and 

suggest admissible models that best fit. EDA seems to have two working principles: 

Firstly, to look at the data, valuing: i) graphical displays, ii) numerical summaries, 

and iii) the natural pattern-recognition capabilities that humans possess. Secondly, to 

look at the data with a fundamental respect for real data, and a profound distrust in 

modelling that is not related to real data, because there is always an element of 

uncertainty whether the data that is being generated from some assumed theoretical 



Working Group 5 

CERME 7 (2011) 906 

 

distribution sufficiently imitates the fundamental features of the process that 

generated the data.   

EDA approach is taking a data-centric perspective (Prodromou, 2008; Prodromou 

and Pratt, 2006) on distribution in the underlying sense that the primary focus of the 

principal techniques and principles used in EDA is on data from which a pattern or 

model may or may not be discerned. In the data-centric perspective on distribution, 

data will spread across a range of values. From this perspective, variation generates 

distribution since ―without variation, there is no distribution‖ (Bakker and 

Gravemeijer, 2004, p. 149). This perspective is compared to that of the statistician, 

who accounts for unexplained variation as that part of a hypothetical model which is 

not apparently associated with a main effect. Here the emphasis is on mathematical 

models that are called theoretical distributions (e.g. Normal, Binomial), in which we 

attribute probabilities to a range of possible outcomes (discrete or continuous) in the 

sample space. Prodromou and Pratt (2006) and Prodromou (2007; 2008) refer to this 

approach as the modelling perspective on distribution. The modelling perspective on 

distribution pays attention to randomness and the shape of the probabilities that 

determine the outcomes. In this modelling approach the model gives rise to variation 

that is portrayed as a random movement away from the main effect. In the modelling 

perspective, data distributions are seen as variations from the ideal model, the 

variations being the result of noise randomly affecting the signal, as reflected in the 

model itself. Prodromou (2007; 2008) introduced the tentative model (Fig1) for the 

coordination of the data-centric and modelling perspectives on distribution. 

  

Fig1: A tentative model for the connection of the data-centric and modelling 

perspectives on distribution. 

Prodromou (2008) first considered the connection from modelling distribution (MD) 

to data-centric distribution (DD), in the top half of Fig1. Her 15 year old students 

typically tended to gravitate towards simple causal explanations when they observed 

the modelling distribution which in some sense generates the data.  They invented 

probability (Piaget and Inhelder, 1975) to operationalise randomness. She considered 

the connection for DD to MD in the bottom half of Fig1. Many of her students first 
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recognised variation in data and made the connection from data-centric to modelling 

perspectives, the target interpretation. Her students had great difficulty however in 

operationalising variation to explain this connection, and turned to relatively vague 

references to emergence, as if emergence were a causal agent by which the data-

centric distribution targets the modelling distribution.  

Prodromou (2007; 2008) claimed that the target and intention models probably are 

not dissimilar from how experts appreciate the co-ordination of the two perspectives 

on distribution. She suggested that, experts add to this image a co-ordinated 

understanding of how the Law of Large Numbers which appears to be the principal 

aspect of synthesizing the two perspectives on distribution, relates the probabilistic 

and emergent mechanisms. 

APPROACH OF THE STUDY 

At an Australian regional university, one hundred pre-service teachers, who were 

destined to deliver the content of the K-6 Mathematics Syllabus (NSWBOS 2002) in 

the state of New South Wales, were attending an online unit called ‗Numeracy 

Enrichment for Primary Teachers‘.  

The main purpose of this course was to provide primary pre-service teachers, with 

access to studies in selected topics in mathematics that would enhance their 

enjoyment and knowledge of mathematics and help them to become more positive 

about their ability to understand some of the structures of mathematics, its 

applications and relationships. It is noteworthy to point out that this course was 

designed for pre-service teachers‘ personal mathematical understanding, rather than 

about teaching mathematics. Many of the activities could, however, be used in the 

primary classroom.   

The content of this unit of study was organized into eight topics. These topics 

address all the content strands [1] of the Australia mathematics curriculum: number, 

space, measurement, data and patterns and algebra.  

This course was available online and located on the Blackboard Learning System. 

The online site of this unit included features such as a message board, a discussion 

forum, an online white board and a virtual classroom, and electronic downloads of 

teaching material. For each topic there was a discussion forum set up on UNEonline. 

The discussion was monitored regularly, and the unit co-ordinator contributed as 

well as students in the course. Pre-service teachers were expected to attempt all 

investigations and activities outlined in the Topic Notes for this unit and write up 

their solutions, explain, justify and reflect on their thinking processes throughout the 

unit in a journal or logbook format that would be compiled into a portfolio. This 

portfolio constituted the assessment for the unit and submitted into parts. 

The eighth topic of this unit was about probability investigations, experiments with 

random number generators, simulations and mathematical models. The Game of 
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Craps described below, was one of the computer-based simulations [2] that pre-

service students used. It simulates a gambling game played by rolling two dice. 

Players take turns rolling two dice and make bets with chips on different areas on a 

craps table that displays the various different areas which pay out according to 

numbers rolled. The simulation displays the odds for each different bet when the 

cursor is hovered over the spot where the bet would be placed. The user of the Craps 

simulation could set the amount of his wager and clicks on the spot where he wants 

to place his bet. When the first roll total of both dice is seven (7) or eleven (11) is an 

instant win and the roll is called ―natural‖. This outcome pays $1 for a $1 bet. A first 

roll total of two (2), three (3) or twelve (12) which is called ―craps‖ looses the bet. If 

a roll total of (4, 5, 6, 8, 9, 10) is rolled, that number becomes the ―point‖ and the 

―point‖ must be rolled again before a seven (7) is rolled in order to win. There are 

different payoffs for each point. A point of four (4) or ten (10) will pay pre-service 

teachers 2:1 ($2 for a $1 bet); 5 or 9 pays 3:2; 6 or 8 pays 6:5. If a seven (7) is rolled 

before that next ―point‖ the player looses the bet (Crapped out) and the two dice 

must be passed to the next player.  

Pre-service were asked to create a strategy for playing the craps game. The 

assignment task encouraged pre-service teachers to look at this game and see what 

the chances of winning were by finding out how often a number came out when they 

added the faces of two dice. The problem involved rolling two dice 50, 1000 and 

5000 times, adding the numbers together and recording the sum of the rolled dice 

outcomes on the respective positions from 1 to 12.  

Pre-service students decided to create a spreadsheet that would simulate randomly 

rolling to dice and add their faces. After they simulated 50 rolls of two dice they 

drew a histogram for the sum of two dice (Fig2). Moreover, they drew histograms to 

show the sum of the rolled dice, 2-12 after 1000 rolls and 5000 rolls (Fig2).  

Fig2: Histograms for the sum of two dice after 50, 1000 and 5000 rolls.  

Pre-service teachers were asked to observe the three graphs very carefully and : 1) 

describe the pattern they could see emerging, and discuss the occurrence of the 

outcomes from rolling two dice; 2) explain which numbers occurred more often and 

which occurred least often; 3) determine the percentage for each outcome when 

reading the ‗5000 rolls‘ graph.   
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The notes drew pre-service teachers‘ attention to the fact that not every probability 

was calculated using simulation and experimental probability. It therefore, 

introduced another type of probability called theoretical probability, that was a 

method which did not perform a single experiment, but instead used theory and 

reason to determine the chance of an event occurring.  

Pre-service students were asked to 4) complete a chart by adding the different 

possibilities together when two dice are rolled and (5) complete a table for each sum 

of the two dice, the frequencies and % of occurrence. (6) The sixth task was to draw 

a histogram of the data and compare the histogram they constructed to the‗5000 

rolls‘ histogram. (7) They were also asked to compare the percentage of the 

occurrence of the theoretical probabilities to the experimental probabilities 

calculated earlier when pre-service teachers constructed the ‗5000 rolls‘ histogram 

and make connections to the Craps simulation. The questions required pre-service 

teachers to justify their answers based on their knowledge about empirical and 

theoretical distributions, experimental and theoretical probabilities.  

The series of the seven tasks was selected because it was approachable, both through 

conducting physical trials and through theoretical analysis via the sample space. 

When pre-service teachers were asked to determine the optimal sample space for an 

event, they were restricted to contexts where the sample space was relatively small, 

such that pre-service students were capable of generating all possible cases, being 

the only source of probability.  

One hundred pre-service teachers e-submitted their portfolio. To illustrate the ideas 

emerged from pre-service teacher‘ work, I present excerpts taken from the portfolios 

of ten pre-service teachers (PT 1, PT 2, PT 3, PT 4, PT 5, PT 6, PT 7, PT 8, PT 9, PT 

10) who were ranging in age from 21 to 52 years old. The data included excerpts 

from pre-service teachers‘ explanation and justification of the assignment tasks and 

their reflections on mathematical processes. At the first stage, I wrote extensive field 

notes, during and immediately after reading each portfolio. Excerpts were coded and 

compared across portfolios to infer explanations for pre-service students‘ reflections. 

In this sense, the analysis was one of progressive focusing (Robson, 1993).  

In this study, my overarching aim is to observe how pre-service students 1) justify 

their answers based on their knowledge about experimental and theoretical 

probabilities, and 2) whether they can construct a bidirectional link between the data-

centric and modelling perspectives on distribution, similar to the tentative model for 

coordinating the two perspectives on distribution (Fig1).    

RESULTS  

Pre-service teachers were first challenged to describe the pattern they could see 

emerging from the three distributions for the sum of two dice after 50 rolls, 1000 

rolls and 5000 rolls.  
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1 PT 1: The frequency starts out low at the beginning of the graph, leading up 
to a peak in the middle and then descending back again towards the 
end of the graph, similar to a mountain. I have also noticed that certain 
numbers have partners on either side of the peak, however 7; the most 
frequent number has no partner. For example 8 and 6 are partners, as 
is 2 and 12. In that their frequencies are similar numbers. 

2 PT 2: After rolling 2 dice 50 times, 7 is the most occurring number, followed 
by 8 and 9. Apart the clear 7 leader, the rest of the numbers are fairly 
scattered however, as the dice is rolled more times, 1000 and then 
5000, the graph is peaking at 7, the leader and coming down evenly to 
2 and 12.   

PT 1 was inclined to resort to a causal explanation for the histogram by comparing 

its shape to a mountain and anthropomorphizing the occurrence of its underlying 

bars.  PT 2, in his attempt to understand the emerging pattern, he assumed 

centralized control. In particular, he saw the histogram as a centralised system where 

a centralised controller – 7 the leader – impressively coordinated the pattern. 

Pre-service teachers were also inclined to use geometrical shapes to describe the 

shapes of the histograms.  

3 PT 3: The bar graph is triangular in shape with the outside bar being shortest 
and the inner ones becoming taller.  

4 PT 4: The pattern is a pyramid, with the apex being number 7.  

5 PT 5: I noticed the bell curve that is evident from the graphs. 

6 Pt 6:   A pattern is emerging whereby a bell curve is forming centred on the 
outcome of number 7. 

Many pre-service teachers (PT 3) described the histogram as triangular in shape. PT 

4 saw the histogram as a three-dimensional object. In contrast, PT 5 referred to the 

emerging pattern of a bell curve.  

After comparing the histograms of 1000 and 5000 rolls, pre-service teachers noticed 

that the result of performing the same simulation a large number of times tended to 

provide more stable outcomes.            

7 PT 2:  As the dice is rolled more times, 1000 and then 5000, the graph, we 
see increasingly stable and symmetrical orderings of likeliness 
reaching a crescendo at 7 and falling away equally on either side. 

8   PT 5: The more rolls that are undertaken, the more constant and smooth the 
results are becoming. 

9 PT 8:   … the more rolls that are recorded, the more even the distribution 
becomes when 7 is rolled most frequently, then 6 and 8 then after that 
5 and 9, ten 4 and 10 then 3 and 11, then 2 and 12 in even steps. 

Pre-service teachers were challenged to work out the theoretical probabilities of each 

of the sums occurring, determine the percentage of the occurrence of each outcome 

(Table 1) and compare those percentages to the scores they calculated for the 

histogram ‗Rolling two dice 5000 rolls‘ (Table 1).  
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Table 1: Theoretical probabilities (left hand side) and percentages of occurrence of roll 

total of two dice when ‗rolling two dice 5000 rolls‘ (right hand side).  

Pre-service teachers seemed to articulate a notion of signal with noise:   

10 PT 7:   The theoretical will always be the same and never fluctuate or change 
but experimental will deviate lightly above or below the theoretical 
probability. 

11 PT 9:   The more times a die is rolled… the histogram for the experimental 
probabilities will be above or below the histogram of the theoretical 
probability of an event occurring. 

Pre-service teacher (PT 7) expressed noise as ―above or below‖ the theoretical 

probability and saw the theoretical probability as a central value that might in a sense 

direct the outcome. PT 9, in turn, seemed to have a sense of there being a signal as 

the theoretical distribution and noise as a discrepancy between the data observed and 

the smooth bell curve.       

When pre-service teachers referred to the tendency of individual values of 

experimental probability towards the expected values, they attributed this tendency 

to ―chance‖.      

12  PT 10:  It is evident that as the number of trials  1, wrote: ―The percentage of 
occurrence I calculated using Theoretical probability is very close to 
the percentage of occurrence what we found using experimental 
probability, however the numbers are not exactly the same. For 
example for the outcome 7 in experimental probability I got 16.4% as 
the occurrence percentage, however in theoretical the answer is 
16.6%. The numbers however are very close and I am sure that if 
further experiments were conducted, one such experiment would 
emerge in which the numbers would be exactly the same as the 
theoretical probability percentages, this is all up to chance. 

As we have witnessed from the previous excerpt, pre-service teachers did not appear 

to perceive a continuum tendency of the data-centric distribution towards a target. 

The element of randomness appeared as a distractive factor for the successful 

coordination of the two perspectives on distribution. I wondered whether pre-service 

Outcome  % of occurrence Frequency  Outcome  % of occurrence 

2 1/36=2.78 % 1  2 150/5000=3% 

3 2/36=5.56 % 2  3 310/5000=6.2 % 

4 3/36=8.33% 3  4 425/5000=8.5% 

5 4/36=11.11% 4  5 560/5000=11% 

6 5/36=13.89% 5  6 675/5000=13.5% 

7 6/36=16.67% 6  7 830/5000=16.6% 

8 5/36=3.89% 5  8 690/5000=13.8% 

9 5/36=13.89% 4  9 520/5000=10.4% 

10 4/36=11.11% 3  10 410/5000=8.2% 

11 2/36=5.56% 2  11 290/5000=5.8% 

12 1/36=2.78% 1  12 140/5000=2.8% 
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teachers might have developed an understanding (at the global level) of the 

distribution targeting the modelling perspective on distribution. When the question 

required them to compare the two perspectives on distribution, pre-service teachers 

appeared to made comparisons locally.  

13 PT 6:  It is evident that as the number of trials increases, the experimental 
probability approaches the theoretical probability. 

14 PT 4:  The experimental probability figures will, the more dice rolls that are 
completed, eventually get closer and closer to the theoretical 
probability figures…we used experimental probability to ‗prove‘ 
theoretical probability. 

 

There was, however, a reference (line 14) of using the experimental probability to 

prove theoretical probability. Some of pre-service teachers separated the theoretical 

and experimental probability.  

15 PT 2:  Theoretical probability is the knowledge that is calculated of what will 
happen under ideal conditions. Experimental is the action of going and 
doing a chance experiment and recording the results for analysis.  

PT 2 appeared unable to suggest any connection for the co-ordination of the 

experimental and theoretical probabilities. Most of the pre-service teachers, however, 

preferred the security provided by the theoretical probability methods.      

16 PT 5:  While the experimental data, with a high number of trials, is quite 
successful at producing probability results, I believe that it is easier 
and more valuable and reliable to us the theoretical probability 
methods, as this ensures that every possible outcome paths is 
addressed. 

17 PT 1:  Experiments are not entirely necessary if you have theoretical 
probability, which also gives you an even more precise answer to the 
chance of something happening. 

18 PT 7:  This means that you can predict how many times a 4 will appear as a 
combination of rolling two standard die, without having to actually 
roll them. The answer you find in this theoretical probability will be 
the same if you actually perform the experiment physically. Thus, 
theoretical probabilities can provide us with the ability to predict the 
outcome of an experiment that may take a very long time to perform or 
one that it is difficult to perform due to reasons such availability of 
resources etc.    

Pre-service teachers appeared to acknowledge that the theoretical probabilities have 

the power to predict the experimental probabilities (16, 17, 18). Although, those 

excerpts have provided an insight into the resemblance of the two perspectives on 

probability, a strong connection has not been suggested to be made from the 

modelling perspective on distribution towards the data-centric perspective on 

distribution, in which the modelling distribution in some sense generates the data. 
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The role of large numbers (though probably finite numbers) in this process became 

very obvious.       

DISCUSSION 

Pre-service teachers resort to causal explanations to describe the shape of the 

emerging pattern (1). They gravitate towards adopting a centralised mindset to 

describe the organization of the histogram (2) by a centralised controller. It is 

interesting how pre-service teachers use terminology from geometry to describe the 

shape of the histogram as triangular or a three-dimensional object (3, 4). Pre-service 

teachers, who distinguish the theoretical from experimental probabilities, were not 

always able to coordinate those two different perspectives on probability. When they 

tried to make the connection from the experimental to theoretical probability there 

was an element of chance (or uncertainty) in the occurrence of the data, out of which 

the theoretical probability emerges (12). This element caused uncertainty for pre-

service teachers, as the connection of data-centric to modelling perspective on 

distribution caused uncertainty for the 15 year old students in a previous study 

(Prodromou, 2008). In both cases there was variation omnipresence in the data out of 

which both entities emerge. The only difference is that the theoretical probability 

emerges at the local level and the distribution emerges through self organisation at 

the global level. In both cases students and pre-service teachers articulate their 

emerging sense of how both entities emerge, by using situated abstractions (Noss and 

Hoyles, 1996), informal heuristics that capture generally expressed in term of the 

structuring resources within the settings. 

NOTES 

1. The Australian mathematics K–6 Syllabus is organised into six strands — one process strand, Working  

Mathematically, and the five content strands, Number, Patterns, and Algebra, Data, Measurement, and Space 

and Geometry.  

2. The game of Craps is available online from http://www.ildado.com/free_craps.html 
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Coherence is one of the objectives of a new statistics curriculum for grades 10-11 

(age 15-17) in the Netherlands. Since coherence has different meanings for different 

curriculum representations, this paper evaluates to what extent the initial attempts to 

design and implement a coherent statistics curriculum were successful for different 

curriculum representations. Data were collected from curriculum developers (ideal 

curriculum), authors of teaching materials (written curriculum), teachers (perceived 

curriculum) and classrooms (operational curriculum). The results suggest that the 

implementation of a coherent curriculum in classrooms requires a clear statement of 

this objective in the ideal curriculum, worked out into guidelines for curriculum 

authors and concrete classroom activities.  

Keywords: coherence, curriculum implementation, statistics education, teacher 

support. 

INTRODUCTION 

A new statistics curriculum for the high school level (grades 10-11, ages 15-17) is 

being developed in the Netherlands. The design and implementation process is part 

of a broader reform movement that should lead to more coherent science and 

mathematics curricula in general. In this paper we evaluate the initial attempts to 

implement the ideal of a more coherent statistics curriculum into the classroom.  

What is new in this curriculum is that students learn the concepts of statistics through 

working with real data sets. The idea is that this helps them to see the relevance of 

the statistical concepts and techniques they learn. The reform follows similar 

movements in other countries (e.g., USA, Germany, and New Zealand) and is 

inspired by international research in the field of statistics education. Teaching 

students a list of statistical recipes is not enough to make them statistically literate. 

Students also need to see the coherence between the concepts they learn and the 

basic principles underlying data analysis (Moore, 1997; Tarr & Shaughnessy, 2007). 

In the new curriculum, to be implemented nationally in 2015, teachers are 

encouraged to let students work with real data sets and information technology. 

Furthermore, the curriculum has both a theoretical and a practical strand. In the 

practical strand students do research projects where they can apply to real-world 

problems the theoretical concepts they have learnt in the theoretical strand. The 

experts in statistics education whom we interviewed thought that these 

characteristics can indeed help to improve the coherence of the new curriculum 

(Verschut & Bakker, 2010).   
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However, it is a well-known problem that there is often a huge gap between the 

original ideas and intentions of a new curriculum and the curriculum actually enacted 

in classrooms (Begg, 2005; Van den Akker & Voogt, 1994). In this paper we 

describe the initial experiences with the development and implementation of the new 

curriculum, based on the experiences of a small group of schools that are piloting the 

exemplary teaching materials. The question we seek to answer is: to what extent do 

curriculum developers, writers of teaching materials and teachers indeed succeed in 

making statistics education at the high school level more coherent?  

THEORETICAL BACKGROUND 

When people in a reform process speak about a coherent curriculum, what do they 

actually mean? The first issue we have to deal with is that at least three 

representations of a curriculum are commonly distinguished: the intended, 

implemented and attained curriculum (Goodlad, 1979). In a more refined version of 

this typology the intended curriculum contains both the ideal curriculum (the vision 

or basic philosophy underlying a curriculum) and the written curriculum (intentions 

as specified in curriculum documents and/or teaching materials). The implemented 

curriculum includes both the perceived curriculum (interpretations of intended 

curriculum by users, particularly teachers) and the operational curriculum (teaching 

and learning activities actually enacted in classrooms). The attained curriculum is 

represented by students‘ learning experiences and learning results.  

In this paper we focus on the intentions of policy-makers to have a coherent 

curriculum in 2015. However, their power is confined to the ideal curriculum. Many 

questions arise in such a situation: How has the policy-makers‘ ideal of a coherent 

curriculum been transformed into the written curriculum by the writers of the 

exemplary teaching materials? How did teachers perceive the new curriculum?  

Curriculum materials play a role in encouraging or supporting new curriculum goals 

(Herbel-Eisenmann, 2007). So, those who develop curriculum materials need to 

carefully attend to their discursive choices so that they do not undermine their own 

intentions.  Furthermore, additional support for teachers to make pedagogical choices 

in line with the new curriculum goals may be needed within the teaching materials 

(Herbel-Eisenmann, 2007). Teachers have a considerable impact on the 

transformation process from the written curriculum to the attained curriculum as they 

decide how to interpret the written curriculum (Stein et al., 2007). Teachers intend to 

match the written curriculum concerning the content, but their inclinations to match 

the innovative goals differ (Eichler, 2010). The differences result from teachers‘ 

different attitudes and beliefs towards statistics, their knowledge of statistics, and 

their professional identity (Eichler, 2010; März et al., 2010; Stein et al., 2007).    
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What people mean by coherence  

Another issue that comes up when we talk about a coherent statistics curriculum is 

what stakeholders mean by coherence. In other words: what constitutes a coherent 

curriculum? From interviews with national and international experts (Verschut & 

Bakker, 2010), we inferred the purpose of a coherent curriculum basically is to 

provide students with coherent knowledge and that coherent statistical knowledge 

includes:  

- conceptual understanding of statistical concepts and their connections 

- knowing when, why and how to use what statistical concept or technique 

- statistical reasoning, and   

- transfer to subjects other than statistics. 

Furthermore, we found that building curriculum materials around a central theme 

such as the key concepts of statistics was assumed to advance coherence of students‘ 

statistical knowledge. Another way is to use a concentric method around ever 

recurring topics, for instance by recognizing that there are two basic types of 

statistical questions: either you want to know whether a certain variable is correlated 

with another, or you are comparing two or more groups. Emphasizing the purpose of 

what is learnt, as happens in an inquiry-based or problem-based learning curriculum, 

could also improve coherence of students‘ knowledge. A further point that was 

mentioned is the importance of making the relation between chance and statistics 

more explicit; in the old curriculum these were two separate worlds. In other 

countries (e.g., United States) researchers have also observed this problem (cf. 

Konold & Kazak, 2008). 

Active learning and students‘ motivation are both recognized as promoters of 

coherent knowledge (Bransford et al., 2000; Kali et al., 2008). The experts we 

interviewed underlined this by mentioning motivating learning activities such as 

doing real-life research projects and working with real data, and active learning 

activities like discussion and reflection, when asked what teachers could do in the 

classroom to promote coherent knowledge (implemented curriculum). They also 

mentioned that the use of computer software for visualization of data could support 

development of conceptual understanding.  

Thus, the characteristics of our new curriculum, working with real data sets and 

information technology, and the research projects in the practical strand, indeed have  

the potential to make statistics education more coherent. The question remains to 

what extent it works.   

METHOD 

In order to answer our research question we collected data from all people involved 

in the implementation of the new curriculum at different curriculum representations.   



Working Group 5 

CERME 7 (2011) 918 

 

We read the report of the committee that had the task to write down the basic 

philosophy of the new curriculum (SKACA, 2007), and interviewed all of its four 

members plus the person who initiated the curriculum reform together with one of 

the SKACA members, to better understand the ideal curriculum. For a better insight 

into the development process of the written curriculum, we attended the meetings of 

the authors of the exemplary teaching materials, made notes during these meetings 

and observed the evolution of the different versions of the instructional materials.   

Fourteen teachers of five different schools have tried out three chapters of the 

exemplary teaching materials in their classrooms in the school year 2009/2010. The 

classrooms were all of grade 10 of the so-called general education track [1]. The 

teachers who implemented the materials did so because their schools had signed a 

contract with the Dutch reform committee for mathematics education (cTWO) to 

participate in the evaluation procedure of the new curriculum. Two of the teachers 

(of two different schools) had some knowledge of the ideas behind the new 

curriculum before they started piloting the materials, as they had been involved in a 

small try-out project of the initial ideas in the year before these pilots took place. 

They both initiated the participation of their schools in the evaluation procedure.   

The rest of the teachers were more or less charged by their schools to participate. We 

interviewed nine of the participating teachers (at least one per school) a few weeks 

after they started to work with the materials and attended at least one lesson per 

school. We also asked them to complete a short questionnaire on their educational 

and professional background, asking for information on years of experience in 

teaching mathematics, and statistics in particular, educational background, 

experience in doing statistical inquiries. This information is relevant since teachers‘ 

backgrounds have an influence on their attitudes and beliefs towards statistics 

education, and thus on their perceptions of a new curriculum (März et al., 2010).  

In the interviews we sought a clarification of the perceived curriculum by 

questioning the teachers on their experiences with the former statistics curriculum, 

how they perceived the attempts to reform, and whether they were aware that 

coherence was one of the ideas behind the reform attempts. We further asked them 

what in their opinion coherence meant, and what type of teaching or learning 

activities they thought could help students to develop coherent knowledge. A first 

impression of what the operational curriculum would look like emerged by the 

answers to questions such as in what respect they thought they would teach 

differently in comparison to the former curriculum, and whether they felt capable of 

teaching in this new way. Furthermore we asked them what type of support they 

would need to implement this curriculum properly.  

After each chapter all teachers were asked to send us evaluation materials such as 

teacher questionnaires, annotations with the materials, log-books and student 

questionnaires. We received materials from nine different teachers (at least one per 

school), whereas some of them stated that they had discussed their findings with 
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their colleagues (who did not send any materials) and that the materials reflected 

their shared views. At the end of the school year we had a group discussion with six 

of the teachers in order to evaluate their initial experiences of the past school year. 

This meeting, combined with the evaluation materials gave us a clearer picture of the 

preliminary operational curriculum.  

All data collected were analysed according to a coding scheme based on the general 

evaluation criteria for a coherent curriculum that we developed in an earlier paper 

(Verschut & Bakker, 2010) and summarised in the previous section of this paper.    

RESULTS 

In order to answer our research question we first need a short description of the ideal 

curriculum.  

Ideal curriculum  

Although one of the objectives of the curriculum reform was that the learning strands 

should be coherent, which presumably helps students to develop more coherent 

knowledge, the SKACA committee did not explicitly mention the notion of 

coherence in their report. They did offer some ideas that could help to improve 

coherence of students‘ statistical knowledge, such as building the curriculum around 

the investigative cycle, developing concepts by making use of real world problems 

(problem-oriented approach), making the relationship between chance and data more 

explicit, and teaching probability as being at the service of statistics so as to avoid 

the common problem of probability and statistics being two separate areas in the 

mathematics curriculum.   

From ideal to written curriculum 

Based upon our notes on the meetings of the curriculum authors that we attended, it 

became clear that the writers of the exemplary teaching materials did not pay much 

attention to coherence of the materials. From the discussions about the new 

educational materials it transpired that the authors did not think it was necessary to 

clearly highlight the connecting thread in the materials for students or teachers, or to 

offer teachers additional material to explain the ideas behind the materials. An 

illustrative remark often made by one of the authors in this respect is: ―We should 

not pamper the teachers too much.‖ Furthermore, they did not explicitly try to 

incorporate teaching or learning activities that could advance coherent knowledge. 

Their main concern was to cover all of the attainment targets [2], which – admittedly 

– was already a puzzle in itself.  

From written to perceived curriculum 

The questionnaire on the educational and professional backgrounds of the 

participating teachers gave us a rather diverse picture: years of experience ranged 

from one to over thirty. Two of the teachers had an econometrist background rather 

than a mathematical one, and thus presumably had learned more about statistics  than 
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the other teachers. One of them even carried out statistical enquiries in the past for 

her profession. The other teachers had no specific interest in statistics or statistics 

education.  

What came to the fore from the interviews with the teachers was that at the time they 

started working with the exemplary teaching materials most of them were not aware 

that coherence was one of the goals. When asked what they thought was important 

for this type of students, they mainly mentioned things that are related to what we 

can summarise as statistical literacy. For instance, they mentioned goals such as 

being critical readers of newspaper articles on statistical results, being able to 

critically evaluate the outcome of statistical reports written by other people, and 

understanding that statistical knowledge is useful in their daily life or other subjects 

at school.  

When asked, they appeared to have an image of what constitutes coherent knowledge 

and how to improve it, but the notions they had were rather vague, and were not the 

same as the notions we mentioned in the theoretical background section. They 

mainly thought of a connecting thread or a clear structure in the materials, or they 

thought of coherence with other school subjects, such as geography or biology and 

applications of statistics outside the mathematics curriculum. When we explained the 

rationale behind a more coherent curriculum, they all considered it an objective 

worth striving for. However, teachers also complained that they did not know what 

the attainment targets were of the new curriculum, and thus could not see what the 

things they were teaching in this first chapter should lead to in the next chapters. 

This was also due to the fact that at the time they were working with Chapter 1 the 

rest of the chapters were still under development.  

From perceived to operational curriculum 

In the lessons we observed we saw hardly any classroom activities that were 

mentioned in the interviews or literature as stimulating coherent knowledge. An 

explanation of this disappointing result is that teachers had very little time to prepare 

their lesson series since the exemplary teaching materials were finished just before 

the lesson series started. We assume many of our observations could be different in a 

next year when teachers have worked with more chapters and have studied the 

attainment targets. 

One of the teachers piloting the materials is a member of cTWO, and thus is more 

aware of the underlying ideas and intentions of the materials. In her lesson we could 

see some attempts to motivate students to seek for coherence in the things they have 

learnt. For example she told her students, while doing their exercises, to ask 

themselves the question ―How can I make use of the knowledge I learn from doing 

this exercise, when I (in another context) am trying to find an answer on a research 

question?‖ We consider this an attempt to stimulate reflection on the applicability of 

acquired knowledge.     
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Another positive example was a lesson we observed of a teacher with an 

econometrist background. She tried to give students a feeling for the role of statistics 

within the investigative cycle. For example, in one of her lessons she gave her 

students a group work assignment to invent a research question related to pocket-

money and think about a possible research set-up that could lead to an answer to this 

research question. The results were discussed by the entire class. We think this 

activity stimulated coherent knowledge as it emphasized the central role of the 

investigative cycle in statistics, it motivated and activated students because of the 

real-life context and group work, and the class discussion at the end stimulated the 

students to reflect on the pros and cons of their research questions and methods. 

Teachers‘ evaluations of the operational curriculum 

From the evaluation materials collected during the rest of the school year and the 

evaluation meeting we had at the end of the school year, we learnt that teachers 

found the new teaching materials promising, but difficult to implement. They 

thought the new approach could lead to more coherent statistics education, as one of 

them stated: 

Last year we basically taught them [the students] some tricks, now we also talk with them 

about statistics and they can get a clearer picture of what statistics is used for and how it 

works.  

However, the first results were not promising, so the teachers felt they failed in 

utilizing the opportunities of the new curriculum. For instance, some teachers gave 

their students an assignment to do a small research project on their own or in groups 

of two or three students, but were disappointed by the results. Only a small 

proportion of the students showed that they got a grip on the aims and ways of 

thinking in statistics.  

One of the reasons the teachers gave for the disappointing results was that the 

intentions of the authors of the exemplary teaching materials were not always clear. 

The teachers said they had difficulty in finding the connecting thread in the 

materials, how the different chapters were connected and what the entire curriculum 

was aiming at. They asked for more structure in the materials as a way to support 

teachers in implementing the curriculum.  

The teachers recognized that they have a central role in advancing coherence of their 

students‘ knowledge because in their view this type of students has no natural 

inclination to seek for coherence in what they learn. The teachers understood that for 

instance having more classroom discussions or promoting reflection by asking a lot 

of questions could help their students to develop coherent knowledge. However, they 

did not have a lot of experience with this type of activities and were concerned that it 

would take up too much time of their lessons, since the entire mathematics 

curriculum is rather overloaded and statistics is part of the school exams, not of the 

national exams. Suggestions in the materials for classroom activities that stimulate 
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coherent knowledge and make efficient use of time would be highly appreciated: 

―When they think it is important, it should be in the materials!‖  

DISCUSSION 

Our results indicate that the first year of piloting the new curriculum was not very 

successful. The original ideas and intentions of the ideal curriculum were not worked 

out neatly: what is meant by coherence within a statistics curriculum at different 

curriculum representations and how could it be promoted. This made the 

implementation process even more complex than could be expected on the basis of 

the literature (Begg, 2005; Van den Akker & Voogt, 1994).       

It is hopeful that for the perceived curriculum we found that teachers indeed 

recognized the potential of the new teaching materials to provide students with a 

more coherent knowledge base of statistics: a better understanding of statistical 

reasoning processes, and a better understanding of when, why and how the statistical 

techniques they have learnt can be of use. However, the teachers felt they failed in 

transferring this rich knowledge to their students in the operational curriculum. This 

feeling was intensified by the disappointing results of a research project assignment.  

The teachers complained that their failure was partially due to the written 

curriculum: The authors of the teaching materials had not highlighted the structure 

and connecting thread in the materials. Teachers asked for more guidance and 

support in implementing this curriculum, for instance by making the intentions of the 

authors of the materials more distinct, or by offering suggestions for classroom 

activities that stimulate coherent knowledge. Although the group of teachers piloting 

the materials consists of teachers of diverse educational and professional 

backgrounds, they were unanimous in their desire for more implementation support 

in the teaching materials. Our findings confirm the suggestions by Herbel-Eisenmann 

(2007) for more support for teachers within the teaching materials. An issue that 

remains for future research is to what extent differences appear in teachers‘ 

inclinations to match the innovative goal of this curriculum, i.e. coherent knowledge, 

following their different educational and professional backgrounds as has been 

reported by others (Eichler, 2010; März et al., 2010; Stein et al., 2007).    

It is easy to ask for a coherent curriculum – this is done in policy documents 

worldwide. However, without specifying what coherence means in terms of 

connecting threads, recurring themes, a concentric approach, the repeated use of an 

investigative cycle or problem types (e.g., group comparison versus correlation 

questions), the concept remains empty to most curriculum authors, let alone teachers. 

Our impression is that more specific measures to promote coherent curriculum 

strands should be mentioned, trialled and investigated.  

In the first place the objective should be clearly stated in the ideal curriculum, 

otherwise authors of teaching materials and teachers are not aware of the objective, 

but stating the objective of coherent statistical knowledge is not enough. The authors 
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of teaching materials should include concrete measures and activities that can 

promote coherence of students‘ statistical knowledge in the written curriculum, and 

thus translate the broad concept of coherence, typical of policy documents into some 

concrete and easy to apply measures. One might think of indicating the connecting 

thread or structure in the materials, give suggestions for classroom activities such as 

discussion or reflection, and include exemplary items for assessment.  

In the next stage of our research we will develop and evaluate concrete 

implementation support materials, such as suggestions for classroom activities that 

may contribute to coherent knowledge. The design of these implementation support 

materials will be based on teachers‘ initial experiences with the curriculum and 

literature on ways to promote coherent knowledge. Inspired by the notion of 

educative curriculum materials (Davis & Krajcik, 2005), and remarks made by the 

teachers of our research group, we argue these materials should be included in the 

teaching materials.  

So far we only looked at the intended and implemented curriculum. In the next stage 

of our research we will also investigate students‘ results to see if the invented 

activities indeed lead to more coherent statistical knowledge. For that purpose we 

need to develop more insight into how coherent knowledge can be measured.  

NOTES 

1. In Dutch secondary education 60% of the students attend pre-vocational education, 20% are 

in the general educational track and 20% are in the pre-university track.  

2. Attainment targets are the statutory objectives of a school subject as formulated by the Dutch 

government such as: the candidate can interpret statistical data that are represented and/or 

summarised in diverse ways, and critically appreciate their relevance.  
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INTRODUCTION TO THE PAPERS OF WG  6:  

APPLICATIONS AND MODELLING  

Chair: Gabriele Kaiser 

Team members: Susana Carreira, Thomas Lingefjärd, Geoff Wake 

The starting point of the working group was a panel discussion of the understanding 

of the nature of modelling and applications and its theoretical description. One 

central aspect, namely the distinction between applications and modelling, was 

intensively discussed by Blum, who referred to the ICMI Study on Applications and 

Modelling (Blum et al., 2007). He distinguished between modelling and applications 

as follows: modelling tends to focus on the direction ―reality to mathematics‖ and 

emphasises the processes involved. When modelling we are standing outside 

mathematics looking into mathematics and asking, ‗where can I find some 

mathematics to help me with this problem?‘ Applications tend to focus on the 

direction ―mathematics to reality‖ and emphasises the objects involved. With 

applications we are standing inside mathematics looking out and looking for a 

particular piece of mathematical knowledge, we can use.   

Furthermore, the differences and commonalities that exist between problem solving 

and modelling were intensively discussed by Doerr who described problem solving 

as inward looking, dealing with pre-mathematised word problems, in which the 

givens and goals are static and the goal is a particular solution. Modelling she 

described as outward looking with the phase of transition from real-world to 

mathematics as central and the givens and goals dynamic and with the goal being a 

tool that can be re-used. Both approaches share one important commonality, namely 

the fundamental question, whether modelling is for mathematics learning or 

mathematics learning is for modelling. She proposed an integrative view, in which 

the development of mathematical content and the development of modelling abilities 

are joint processes, in which the learning of mathematics happens in the context of 

modelling real world problems and modelling real world problems happens in the 

context of learning mathematics. An understanding of this joint development will be 

a key element in advancing a research agenda on modelling and problem solving. 

Amongst other aspects the role of technology in applications and modelling was 

discussed intensively by Carreira. She argued that the inclusion of technology into 

modelling processes can allow the usage of more complex mathematics, especially 

the inclusion of simulation or experimentation, where investigation would be 

possible. Furthermore, the visualization of images and results would contribute to a 

better understanding of the real situation and of mathematical ideas.  

The working group discussed various strands concerning modelling and applications: 

the majority of the papers dealt with results of empirical research, which displayed a 

large variety of themes. Several papers dealt with theoretical aspects such the 
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distinction of hypotheses and assumptions within modelling processes by Grigoras or 

the usage of realistic Fermi problems from the perspective of the anthropological 

theory of didactics by Ärlebäck. Two reports were of psychologically oriented 

studies: the study on the connections between the mathematical thinking styles of  

teachers and their interventions by Borromeo Ferri and Blum and the analysis of the 

problems solving process by Johannes Gross. Frejd described a curricular oriented 

study of modelling in Swedish national course tests. A subject-bound study of the 

understanding of average rate of change was proposed by Doerr and O‘Neil. Other 

papers dealt with theoretical aspects such as the role of the teacher‘s identity in a 

psychologically oriented study by Jensen and an interdisciplinary oriented study of 

modelling in an integrated mathematics and science curriculum by Wake. Teacher 

education was researched in a curricular oriented study of a teaching sequence for 

future mathematics teachers by Lingefjärd, the role of modelling as a big idea within 

the beliefs of future teachers was researched by Siller. The use of digital tools within 

modelling problems in German centralised examinations was discussed by Greefrath.  

The sessions closed with reflections on the discussion in the light of the panel debate 

at the beginning and identified the following main research areas for the future:  

 How to move forward in the scientific debate on applications and modelling? 

 How to make progress concerning the inclusion of applications and modelling 

in curriculum and school practice? 

These two areas give rise to questions that can be differentiated as follows:  

 Where are research deficits? Can we identify them? 

 What kind of empirical research is necessary? Large-scale studies versus case 

studies? Role of replication studies? 

 What kinds of measures are necessary and can be constructed? Is the 

development of teaching units or learning materials sufficient? What is the 

role of comprehensive learning environments? 

 What can we say about the role of culture in the teaching and learning of 

mathematical modelling? Is it culture-free or what do we need to consider as 

cultural effects in our debate? 

REFERENCE:  

Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (2007). Modelling and applications in 

mathematics education. 14
th

 ICMI study. New York: Springer. 
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MODELLING ENVIRONMENT 

Rita Borromeo Ferri and Werner Blum 

University of Hamburg and University of Kassel, Germany 

A lot of empirical studies have shown that the learning and teaching of mathematics 

is highly complex and influenced by many factors. The teacher, in particular, can 

promote high-quality lessons with a substantial learning outcome. In previous 

studies, preferred mathematical thinking styles and preferred interventions of 

teachers were reconstructed as important factors when teaching modelling in the 

mathematics classroom. In the present empirical study, the main question was 

whether there is a connection between certain thinking styles and certain 

intervention types of teachers. In this paper, first results and hypotheses of this 

quantitative-qualitatively oriented study will be presented. 

THEORETICAL BACKGROUND 

First, we will briefly give a theoretical background regarding the two basic elements 

of our study, mathematical thinking styles and teacher interventions. 

A mathematical thinking style is ―the way in which an individual prefers to present, 

to understand and to think through mathematical facts and connections by certain 

internal imaginations and/or externalized representations. Hence, a mathematical 

style is based on two components: 1) internal imaginations and externalized 

representations, 2) the wholist respectively the dissecting way of proceeding.‖ 

(Borromeo Ferri 2003) 

Within the theory of mathematical thinking styles the term ―preference‖ is 

important, because a style, speaking in the sense of Sternberg (1997), refers to how 

someone likes to do something, whereas an ability refers to how well someone can 

do something. So styles are preferences in using abilities. Sternberg‘s general theory 

of styles influenced also the construct of mathematical thinking styles. On the basis 

of empirical studies (see Borromeo Ferri 2003, 2004) three mathematical thinking 

styles could be reconstructed so far with students from grades nine and ten and with 

teachers of secondary schools: 

 Visual thinking style: Visual thinkers show preferences for distinctive 

pictorial imaginations and representations as well as preferences for the 

understanding of mathematical facts and connections in a holistic way. The 

internal imaginations are mainly effected by strong associations with 

experienced situations.  

 Analytical thinking style: Analytic thinkers show preferences for formal 

imaginations and representations. They are able to comprehend mathematical 
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facts preferably through symbolic or verbal representations and prefer to 

proceed rather in a sequence of steps. 

 Integrated thinking style: These persons combine visual and analytic ways of 

thinking and are able to switch flexibly between different representations or 

ways of proceeding. 

In a further empirical study (see Borromeo Ferri 2010), one of the main questions 

was whether there is an influence of mathematical thinking styles particularly on the 

modelling behaviour of students and teachers. Summarising the results shortly only 

regarding the teachers‘ behaviour, it became clear that teachers who differ in their 

mathematical thinking styles have preferences for focusing on different parts of the 

modelling cycle while helping or discussing with students. More concretely: 

Analytic thinkers preferred the ―mathematical part‖ of the modelling cycle and were 

more interested in formal solutions of modelling tasks, whereas the validation of the 

real results was not so important for them. Visual thinkers tended to think more in 

terms of the ―real world‖ (the given situation in the task) and to enrich the reality 

with their own associations, whereas looking on formal solutions was not in their 

focus. Integrated thinkers found a balance between reality and mathematics for 

themselves and in their behaviour with their students. So mathematical thinking 

styles seem to have a substantial influence on the way teachers deal with modelling 

problems in the classroom. 

Of particular interest is now whether and in which way certain types of teacher 

interventions are linked with certain mathematical thinking styles. In the following, 

we will refer to Leiß‘ (2007) theory of teacher interventions. Leiß characterises 

teacher interventions as all verbal, para-verbal and non-verbal interferences of a 

teacher in the solution process of students. Adaptive teacher interventions are 

characterised as supporting individual students in a minimal way, so that students 

can work as much on their own as possible (realising a balance between students‘ 

independence and teacher‘s guidance, in the spirit of Maria Montessori: ―Help me to 

do it by myself‖). 

Leiß (2007) carried out his empirical study for reconstructing teacher interventions 

within the DISUM project (see Blum/Leiß 2007b). He created, on the basis of 

existing theories of interventions (e.g. Zech 1996) and his own classification 

(Leiß/Wiegand 2005), a coding scheme for analysing his observations. He 

distinguished levels, activators and aims of interventions. These will be explained in 

the following tables into more detail, because we also used this coding scheme for 

our analyses. 
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Levels of interventions                                               Aims of interventions 

with regard to the content 

interventions of the teacher referring to the 

content, here: the modelling process and the 

corresponding mathematics 

diagnose 

teacher asks students about the current state 

of their solution process 

strategic 

interventions concerning the meta-level, 

that is general aspects of the modelling and 

problem solving process 

evaluation/feedback 

teacher gives feedback to students‘ solution 

process without further information or 

correction 

affective 

interventions trying to influence the mental 

state of students 

indirect advice 

subtle hints of the teacher in order to help 

students to find the ―best way of solving‖ 

according to the teacher‘s opinion 

organizational 

interventions concerning the basic 

conditions of students‘ working including 

group interactions or presentations 

direct advice 

teacher gives relevant explanations and 

information to students explicitly 

 conscious non-intervention 

no intervention of the teacher although 

students may have problems 

Table 1: Level and aims of interventions 

                                            Activators of intervention 

invasive own initiative of the teacher to intervene in 

the solution process of the students 

responsive students ask the teacher explicitly for 

advice  

Table 2: Activators of interventions 

Main results of Leiß‘ study were, among others, that strategic interventions are 

included in the intervention-repertoire of the observed teachers only very marginally 

and that the teachers often choose indirect advice where students have to find only 

one step by themselves in order to come over the difficulty. 

More sophisticated results were obtained in the so-called main study of the DISUM 

project (see Blum 2011). Altogether 25 grade 9 classes participated in this study 

with a pre-, post- and follow up test design and with ten lessons devoted to 
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modelling tasks. The research focus was the comparison between two teaching 

styles: a more teacher guided ―directive‖ style and an ―operative-strategic‖ style 

focussing more on students‘ independent work in groups. The results showed a 

significantly higher progress of modelling competency of students taught in the 

―operative-strategic‖ style. The best results concerning progress in modelling 

competency could be reconstructed in those classes were the balance between 

students‘ independence and teachers‘ guidance was realised best, based on experts‘ 

ratings. This corresponds to a constructivist view of learning where students have to 

build their knowledge and competencies as actively and independently as possible, 

supported by the teacher. More generally, the background model for our studies is a 

view on ―quality mathematics teaching‖ characterised by a demanding orchestration 

of teaching the mathematical subject matter (by giving students vast opportunities to 

acquire mathematical competencies and making connections within and outside 

mathematics), by a permanent cognitive activation of the learners and by an 

effective and learner-oriented classroom management (see Blum/Leiß 2007b and 

Blum 2011). 

RESEARCH QUESTION AND METHOD 

The central question of our study was: Do connections exist between teachers‘ 

mathematical thinking styles and types of teacher interventions in mathematical 

modelling environments? 

In particular the results of the main study of the DISUM project, mentioned before, 

raised new questions. In fact, the ―operative-strategic‖ style was more successful, but 

big differences among the teachers concerning the quality of teaching and the 

progress of their students could be observed, although all teachers got a special 

training for teaching the ten lessons modelling unit. So an open question is whether 

these differences can be explained more deeply with certain individual attributes of 

the teachers. The procedure of our study was as follows. Firstly, regarding data 

collection: we chose four of the 25 teachers of the main study of the DISUM project 

(for whom a particular lot of video material was available) for analysing the same 

two videotaped lessons with the tasks ―Filling up I and II‖ (see Blum/Leiß 2007a). 

Additionally, we also conducted focussed interviews (Flick 1990) with all four 

teachers in order to reconstruct their mathematical thinking styles. The guideline for 

these teacher interviews was developed and used in the recent study Borromeo Ferri 

(2010). Examples of interview questions are: What does mathematics mean for you? 

Do you think that your attitude concerning mathematics changed through your 

teaching life? What is your preferred way of solving tasks (concretely: the ―Filling 

up‖ task)? What is important for you when teaching mathematics?  

The interviews were transcribed and analysed in combination with the actions of the 

teachers in the lessons for reconstructing their mathematical thinking styles. A basic 

instrument for the classification of the thinking styles was the coding scheme 
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developed by Borromeo Ferri (2003). In order to get more validity, two persons 

analysed the data independently, in the sense of so-called concurrent coding 

(Schmidt 1997, 559). With the same method, using the coding scheme of Leiß 

(2007), teacher interventions were reconstructed directly from the videos. For 

analysing the interventions, a structure was created so that interventions of the 

teachers could be better compared in several phases of the lessons. The following six 

phases were considered during the whole analysing process: 1. Introduction of the 

lesson (task ―Filling up I‖); 2. Group work; 3. Plenum (discussion about students‘ 

results); 4. Improving students‘ own results; 5. Plenum (reflections on the solution 

process); 6. Transfer to the second task ―Filling up II‖. 

RESULTS 

On the basis of the interviews and the videos, three of the teachers, Mr. H., Mr. B. 

and Mrs. R., could be reconstructed as analytic thinkers and one, Mr. S., as an 

integrated thinker. So a visual thinker was not in this (small) sample. 

a) Quantitative analyses of teacher interventions (lessons ―Filling up I and II‖) 

The duration of the six phases was different in the four classes. A deeper look  at 

phases 2 and 3, which means the group work and the first plenum, offered  

interesting results how the teachers acted.  In Mrs. R.‘s and Mr. S.‘ lessons the pupils 

worked in the sense of the ‖operative-strategic‖ style independently in their groups. 

Mr. H. and Mr. B. were teaching in the ―directive‖ style which is also their preferred 

way in everyday teaching: students sitting head-on, solving the tasks in the whole 

class.  Mr. H. got the highest number of interventions namely  in particular invasive, 

context-bound and directive interventions.  During the plenum phase, only Mrs. R. 

and Mr. S. intervened. Because Mr. H. worked on the modelling problem with the 

whole class the students only got ―one right result‖ that was not discussed further. 

Mr. S. asked every group of students to explain their results, which explains his high 

number of interventions. Mrs. R. also discussed the different results of the students. 

In the following table 3, all interventions of all teachers during all phases are 

presented. Concerning the activators of the interventions, Mr. B. (152) has the the 

biggest number of invasive interventions, but also Mr. H. (115) and Mrs. R (107) 

intervened strongly invasively, in contrast to Mr. S. (87). Concerning the level of 

interventions, Mr. H. intervened 50% and Mr. S. 43% content-related, and Mr. B. 

even 65% Strategic interventions can be observed for Mr. S. twice as much as for the 

other teachers. Concerning affective and organisational interventions, Mrs. R. has the 

highest rate with 32% and 27%.  Results of t-tests (confidence-interval 95%) showed 

that all these differences are significant. 
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b) Qualitative analyses of teacher interventions (lessons ―Filling up I and II‖) 

In the following, interventions and connections to mathematical thinking styles only 

of Mrs. R and Mr. S (both within the ―operative-strategic‖ design) are reconstructed 

because of the restricted space. We do that firstly with the help of a table 

summarising the main characteristics of each teacher and secondly with a 

comparison of some concrete actions of the teachers. In the left column one can find 

the actions within the lessons and in the right column statements from the interview. 

We start with Mrs. R., reconstructed as an analytic thinker. 
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Interventions and actions (lesson) Reflections about own teaching (interview) 

- lesson is structured 

- students can work independently in their 

groups 

- different interventions in the groups: less 

interventions in groups which work on the 

path preferred by Mrs. R., other groups are 

more or less guided during the solving 

process; altogether many affective and 

organizational interventions 

- she introduces new themes in maths by a 

concrete example and then mainly 

algorithms are important for her  

- she prefers a clear structure of lessons 

- she does not like some mathematical 

contents such as riddles 

- she personally likes to solve tasks formally 

Table 4: Mrs. R. – some characteristics 

Interpretation: Mrs. R. prefers and also shows well structured maths lessons. 

Analysing the two lessons as well as the other lessons in that teaching unit, it 

becomes clear that Mrs. R. intervenes regularly and consciously in the thinking and 

solving process of the students: 

―I went from one group to the other and I always said think about it.‖ 

Mrs. R. intends to have their students learn from mistakes: 

   ―I always tell my students that it is not bad making mistakes, but learning from mistakes is    

good.‖ 

However, this statement is in a certain contrast to her real actions in classroom. In all 

analysed lessons Mrs. R. was trying to prevent students from making mistakes and to 

guide them to her preferred solution. We interpret her well structured lessons in 

combination with her analytic thinking style as a kind of aplomb while teaching and 

a sign of her intention to avoid ambiguity regarding mathematical contents. She likes 

to have the control of as many aspects during lessons as possible, especially 

concerning the way of solving tasks: 

―We have a certain ritual of solving tasks and I exercise this with my students.‖ 

For Mrs. R. visualising is also relevant, but her preferred way of thinking becomes 

evident when she talks about solving a linear equations task: 

―Personally I do not see the straight line, I see the actual data. Of course I know that 

behind is the system of equations.‖ 

Altogether, according to our interpretation, Mrs. R. tries to compensate a certain one-

sidedness, caused by her mathematical thinking style, by planning carefully each step 

during a lesson. She emphasised in the interview that acting this way is keeping her 

from ambiguity. 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=ambiguity&trestr=0x8001
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Mr. S. was reconstructed as an integrated thinker 

Interventions and actions (lesson) Reflections about own actions (interview) 

- lesson is structured 

- students can work independently in their 

groups 

- indirect interventions for getting partial 

solution of students without guiding them 

much 

- new ideas of students are picked up with 

extra information 

- helping the students to do things by 

themselves; he gives the same attention to 

all students and praises solutions not only 

when they are correct 

- aim of intervention is predominantly 

diagnosis or indirect, also often non-

interventions 

- mathematics is for him ―everything‖, 

training thinking processes as well as 

applications 

- he likes diversity in teaching maths and 

developed special methods for several 

phases within a lesson 

- during university he had problems with the 

formal exactness of mathematics 

- he sees a balance for himself between 

formal and visual acting 

- he welcomes different solutions of students 

 

 

Table 5: Mr S. – some characteristics 

Interpretation: The main intentions and actions of Mr. S. can be summarised in one 

sentence: he tries to help the students to do it by themselves. For many students that 

is enough for being active during the whole lesson. Students are not afraid asking 

something. For him ―the main principle is to inspire students for mathematics.‖ So 

that is why he created various methods. At the beginning of lessons he gives students 

sometimes a riddle or a logical story. 

―Pupils should see that one can solve problems with the help of mathematics and that 

mathematics is training thinking processes.‖ 

His own problem with the exactness of mathematics during his university studies has 

influenced his way of teaching and assessment at school. This becomes clear while 

analysing the two lessons: 

―Students who understood the problem will not get a worse mark if they don‘t do it totally 

formally correct.‖ 

For Mr. S. it is important to support sustainable knowledge so he creates his lessons 

usually very open and uses several methods. He also welcomes individual solution 

processes of the students, for instance in the case of linear equations the whole 

spectrum from formal equations over tables to graphs. So we reconstructed in his 

lessons that Mr. S. is listening to students‘ ideas and is doing some kind of 
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―juggling‖ with these ideas. He is encouraging every group to think in different 

directions and also to think about solutions of other groups.  

c) Reconstructed connections 

Connections between interventions and mathematical thinking styles were 

reconstructed on the basis of the cases shown here, both with respect to qualitative 

and quantitative aspects. The teachers‘ mathematical thinking styles were clearly 

correlated with their actions in lessons. The integrated thinker, Mr. S., had a more 

flexible repertoire of intervening, including strategic interventions, he let students 

work much more independently and develop more individual solutions. The analytic 

thinkers tried a lot more to guide students according to the teachers‘ preferred ways 

of solving the tasks. 

Now what was the effect of these ways of teaching? Comparing the learning progress 

of the students (see the remark in section 1; for more details see Schukajlow et al., 

2009), Mr. S.‘s students learned significantly more during this ten lesson teaching 

unit (progress: half a SD) than the students of the other three teachers (progress: 

quarter of a SD), in particular concerning modelling. 

So our central hypothesis on the basis of our case study is: 

Integrated thinkers are better able to intervene flexibly and minimal-adaptively and 

thus get better results concerning students‘ learning progress. 

Of course, this result ought to be replicated with a bigger sample of teachers before 

implications for teacher education can be drawn. 

An open question is how teachers‘ mathematical thinking styles and interventions are 

connected with other factors such as their subject-related professional knowledge 

and competencies or their epistemological convictions and beliefs. Perhaps the 

guiding forces behind both thinking styles and interventions are the same. This 

should also be subject of further studies on teachers. 

REFERENCES 

Blum, W. (2011). Can modelling be taught and learnt? Some answers from  

empirical research. In: Kaiser, G.; Blum, W.; Borromeo Ferri, R.; Stillman, G. 

(Eds), Trends in teaching and learning mathematical modelling, ICTMA 14. New 

York: Springer. 

Blum, W.; Leiß, D. (2007a). „Filling Up―– the problem of independence-preserving 

teacher interventions in lessons with demanding modelling tasks. In: Bosch, M. 

(Ed.), Proceedings of CERME 4. Guixol, pp. 1623-1633.  

Blum, W.; Leiß, D. (2007b). Investigating Quality Mathematics Teaching – the 

DISUM Project. In: Developing and Researching Quality in Mathematics 



Working Group 6 

 CERME 7 (2011)  936 

Teaching and Learning (Eds: C. Bergsten/ B. Grevholm), Proceedings of MADIF 

5. Linkôping: SMDF, pp. 3-16. 

Borromeo Ferri, R. (2003). Mathematical thinking styles – an empirical study. In: 

Proceedings of CERME 3. Bellaria. 

Borromeo Ferri, R. (2004). Mathematische Denkstile. Ergebnisse einer empirischen 

Studie. Hildesheim: Franzbecker. 

Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on 

learners‘ modelling behaviour. In: Journal für Mathematik-Didaktik, 31 (1), pp. 

99-118. 

Flick, U. (1999). Qualitative Sozialforschung, eine Einführung. Rowohlt: Reinbek. 

Leiß, D.; Wiegand, B. (2005). A classification of teacher interventions in 

mathematics teaching. In: Zentralblatt für Didaktik der Mathematik, 37, 3, pp. 

240-245. 

Leiß, D. (2007). Hilf mir es selbst zu tun. Lehrerinterventionen beim mathematischen 

Modellieren. Hildesheim: Franzbecker. 

Schmidt, C. (1997). ―Am Material‖: Auswertungstechniken für Leitfadeninterviews. 

In: Friebertshäuser, B.; Prengel, A. (Eds.): Handbuch qualitativer 

Forschungsmethoden in der Erziehungswissenschaft. Weinheim: Juventa, pp. 544-

568. 

Schukajlow, S.; Blum, W.; Messner, R.; Pekrun, R.; Leiss, D.; Müller, M. (2009). 

Unterrichtsformen, Emotionen und Anstrengung als Prädiktoren von Schüler-

Leistungen bei anspruchsvollen mathematischen Modellierungsaufgaben. In: 

Unterrichtswissenschaft 37 (2), pp. 164-186 

Sternberg, R. (1997). Thinking Styles. New York: Cambridge University Press 

Zech, F. (1996). Grundkurs Mathematikdidaktik. Weinheim: Beltz 



 

CERME 7 (2011)  
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UNDERSTANDING OF AVERAGE RATE OF CHANGE 
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Students‘ difficulties in reasoning about change are well documented in the research 

literature. In this paper, we describe a modelling approach to developing students‘ 

abilities to create and interpret models of phenomena where change is occurring 

and developing their concepts of rate of change. We describe the design of a model 

development sequence and its classroom implementation with 33 students just prior 

to beginning their university studies. The pre/post-test results show that the students 

made significant gains in their understanding of the concept of average rate of 

change. We present an analysis of the areas of greatest gains and of the difficulties 

some students encountered in their interpretations of changing phenomena. 

Much research over the last twenty years has documented the difficulties that 

students encounter when creating and interpreting models of changing phenomena. 

Several studies have examined the role that students‘ concepts of function and rate of 

change play in students‘ abilities to represent and to reason about dynamic events 

(Carlson et al., 2002; Monk, 1992; Thompson, 1994). As Oerhtman, Carlson and 

Thompson (2008) argue, in order to reason dynamically, students must be able to 

simultaneously attend to both the changing values of the output of a function and the 

rate of that change as the input values vary over intervals in the domain. The 

complexity of such reasoning has proven difficult even for high achieving 

undergraduate students (Carlson, 1998). A related line of research (Confrey & Smith, 

1994; Michelsen, 2006; Shternberg & Yerushalmy, 2003) has emphasized the role of 

context in the development of students‘ reasoning about changing phenomena. 

Michelsen (2006) argues that one source of difficulty for students in applying 

functions in context is that students fail to treat variables as related quantities that 

change and hence have difficulties in recognizing that functions are tools for 

describing, explaining and predicting the relationships among changing quantities. 

The broad goal of our research is to understand the inter-related development of 

students‘ abilities to create and interpret models of phenomena where change is 

occurring and the development of students‘ concepts of rate of change. We also wish 

to move beyond descriptions of single model eliciting activities to characterize more 

fully the nature of model development sequences (Lesh et al., 2003; Doerr & 

English, 2003). In this paper, we describe a sequence of model development tasks 

that was designed to support the development of students‘ concept of rate of change 

by engaging them in creating and interpreting models of physical phenomena that 

change. In particular, we are interested in two research questions: (1) how did the 

sequence of modelling tasks support the development of students‘ concepts of rate of 
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change and (2) to what extent were students able to interpret rates of change in 

context? 

THEORETICAL BACKGROUND 

Modelling approaches to the teaching and learning of mathematics encompass a 

wide range of theoretical and pragmatic perspectives (Kaiser & Sriraman, 2006). As 

Kaiser and Sriraman point out, modelling research based in the ―contextual 

modelling‖ perspective draws on the design of activities that motivate students to 

develop the mathematics needed to make sense of meaningful situations. Much work 

done within this perspective draws on model eliciting activities (MEAs) developed 

by Lesh and colleagues (Lesh et al., 2003). Model eliciting activities confront the 

student with the need to develop a model that can be used to describe, explain or 

predict the behavior of familiar or meaningful situations. Such MEAs encourage 

students to engage in a cyclic process where they express, test, and refine their own 

ways of thinking about meaningful situations.  

However, a single MEA in isolation is seldom enough for a student to develop a 

generalized model that can be used and re-used in a range of contexts. To achieve 

this goal, we argue that students need multiple opportunities to explore the relevant 

mathematical constructs and to apply their model in new settings. Sequences of 

structurally related model exploration activities and model application activities are 

needed, accompanied by discussions and presentations that focus on the underlying 

structure of the model and on the strengths of various representations and ways of 

using them productively. Each stage of this sequence engages students in multiple 

cycles of descriptions, interpretations, conjectures and explanations that are 

iteratively refined while interacting with other students. Thus, in this study, we have 

designed an instructional sequence (described in more detail in the next section) that 

begins by engaging students with meaningful problem situations that elicit the 

development of significant mathematical constructs. Students then explore and apply 

those constructs in other situations leading to the development of a model that is 

usable in a range of contexts. This study was designed to examine students‘ learning 

of the concept of average rate of change when engaged in a sequence of model 

development tasks. 

DESIGN AND METHODOLOGY 

The Model Development Sequence 

Model development sequences are structurally related activities that encourage 

student exploration and are accompanied by teacher-led discussions, student 

presentations, and summaries so as to focus attention on the structural similarities 

among the tasks and on the use of representations across the activities. As in our 

prior work, we began this sequence with a model-eliciting activity, using a familiar 

and meaningful situation, in this case, motion along a straight line. Students were 
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asked to create graphs using a motion detector and their own bodily motion and to 

generate descriptions of that motion. The graphs included comparative situations of 

faster and slower constant speed, changing speed and changing direction, and graphs 

where the motion was not physically possible.  

Following the model-eliciting activity, the students engaged in several model 

exploration activities. An important goal of these activities was to engage students in 

using everyday language to make sense of the average rate of change in two different 

contexts and to develop their understanding of the representational systems for 

describing change. These activities were designed to help students to think with the 

conceptual system (or model) and to think about the underlying structure and 

generalizability of the model. The first model exploration activity used SimCalc 

Mathworlds (Kaput & Roschelle, 1996). This activity reversed the representational 

space of the model-eliciting activity where bodily motion created a position graph 

and extended that space as the students made velocity graphs that generated the 

motion of a simulated character. From this motion, the students created position 

graphs, thus developing an understanding of how the position graph could be 

constructed by calculating the area between the velocity graph and the x-axis. In 

exploring this linked relationship between the velocity and position graphs, students 

began to reason about the position of characters solely from information about the 

velocity of the characters. For example, in one task, the students were given written 

descriptions of the motion of two characters and asked to create appropriate velocity 

graphs, such as that shown in Figure 1. 

1 2 3 4 5 6
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Meters/Second

 

Figure 1. Interpreting position from a description of velocity.  

The students were then asked to determine which character had walked farther and 

who was walking faster at various points in time. The students were asked to justify 

whether or not the two characters would ever be at the same position at the same 

time. This model exploration activity provided an opportunity for students to 

develop their abilities to interpret position information from a velocity graph and 

velocity information from a position graph. 

The second model exploration activity used the ―Gym‖ task from the interactive 

mathematics textbook by Yerushalmy (2005). This applet (http://www.cet.ac.il/ 

math/function/english/line/rate/rate10.htm) was designed to help students understand 
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how the rate of change is expressed in table values, graphs, and equations. Using the 

context of training plans on a weight-lifting machine in a gym, the students explored 

the difference between constant and non-constant rates of change. Specifically, they 

investigated the graphical and numerical representations of weight training plans 

where the weight lifted increased or decreased at a constant rate, at an increasing rate 

or at a decreasing rate. The students were asked to explore the applet in order to 

make generalized observations about how setting the initial weight, the first change 

in weight and the change of the change affected the shape of the corresponding 

graph and the table of values. 

The third component of the model development sequence consisted of two model-

application activities that focused on applying their model to new problem situations. 

This was intended to lead to a generalized understanding of average rate of change. 

In the first task, students were asked to create a model of the intensity of light with 

respect to the distance from the light source, to analyze the average rates of change 

of the intensity at varying distances from the light source and to describe the change 

in the average rates of change as the distance from the light source increased. The 

second model application task investigated the rate at which a fully charged 

capacitor in a simple RC circuit discharged with respect to time. The students built 

the circuits, charged the capacitor, and then measured the voltage drop across the 

capacitor as it discharged. Students were given a set of resistors and capacitors and 

were asked to develop a model they could use to answer these three questions:  

(1) How does increasing the resistance affect the rate at which a capacitor 

discharges?  

(2) Compare the rates at which the capacitor is discharging at the beginning, middle 

and end of the total time interval. How does the average rate of change of the 

function change as time increases?  

(3) How does increasing the capacitance affect the rate at which a capacitor 

discharges?  

Taken together, these two model-application tasks focused the students‘ attention 

simultaneously on the quantity that was measured and on how that quantity was 

changing with respect to some other quantity (i.e., distance or time). A coordinated 

understanding of these two measurements is at the crux of representing and 

reasoning about dynamic events (Oerhtman et al., 2008). 

Rate of Change Concept Inventory 

To measure students‘ understanding of average rate of change, we designed a ―Rate 

of Change Concept Inventory‖ consisting of items in four categories: algebraic 

expressions (5 items), graphical interpretation (8 items), symbolic interpretation (3 

items), and purely contextual (1 item). Fourteen of the items on this test were drawn 

from the research literature (described earlier) on students‘ conception of rate of 

change. Three items were developed to test the students‘ mastery of the algebraic 
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representations involved in expressing and computing average rates of change. The 

development of this concept inventory is part of our on-going work. 

Setting, Participants, Data Collection and Analysis 

This model development sequence formed the basis for a six-week course, taught by 

the second author, to students who were preparing to enter their university studies. 

There were 33 subjects from this course who volunteered to participate in the study. 

Eleven of the participants were female and 22 were male. All but one participant had 

completed four years of study of high school mathematics; 18 students had studied 

calculus in high school and 15 had not studied any calculus. The participants worked 

in groups of three or four to complete the model-eliciting tasks and model-

application tasks. The model exploration tasks were done individually at a computer; 

however, the participants were encouraged to discuss their work with each other. 

Following each task in the sequence, there was a whole-class discussion which 

usually involved students in presenting the results of the work produced during the 

model-eliciting and model-application tasks. The class discussion following the 

model-exploration tasks focused on the structural features of the model and on the 

relationships among different representational systems. The students worked in pairs 

to complete final reports on their findings for each of the model-application tasks. 

All participants completed all of the tasks in the model development sequence 

described above. The written work from these collaborative tasks and from 

individual course examinations was collected and analyzed. All participants 

completed the 17 item pre- and post-test of ―Rate of Change Concept Inventory.‖ 

The overall pre- and post-test scores and the four sub-scores were analyzed using t-

tests.  

RESULTS 

Change in students‘ understanding of average rate of change 

The post-test results show that there was a significant improvement in the students‘ 

understanding of the concept of average rate of change from an overall score of 52% 

correct to 75% correct, as measured by the 17 items on the test. There was a 

significant improvement in three of the sub-score areas: algebraic expressions, 

graphical interpretations, and symbolic interpretation. Table 1 displays the overall 

performance on the pre- and post- test and the performance on each of the sub-scores 

for n = 33 students. 

While the overall scores improved by 23%, there were seven items on the concept 

inventory for which the improvement was greater than 30%. Two of these were 

algebraic expression items, four were graphical interpretation items, and one was a 

symbolic interpretation item. The two algebraic expression items asked the student to 

find the equation of the line joining two points and to calculate the average rate of 

change between two points on a parabola. 
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Pre-test  
mean (sd), 

percent correct 

Post-test 
mean (sd), 

percent correct 

p-value 

Overall 8.87 (3.47), 52% 12.69 (2.81), 75% <0.001 

Algebraic 2.64 (1.27), 53% 3.70 (1.13), 74% <0.001 

Graphical 4.96 (1.82), 62% 6.78 (1.31), 85% <0.001 

Symbolic 0.94 (0.90), 31% 1.70 (1.02), 57% <0.001 

Contextual 0.33 (0.48), 33% 0.52 (0.51), 52% n.s. 

Table 1. Pre-test and post-test results for overall concepts and subscores. 

There were substantial gains on two items that measured students‘ proficiency in 

being able to express algebraically two basic ideas about average rate of change. On 

the item that asked for the equation of a function with a constant rate of change n=16 

(48%) students answered the item correctly on the pre-test and n=26 (79%) answered 

correctly on the post-test. Similarly, on the item that asked students to compute the 

average rate of change for a function with a non-constant rate of change the number 

correct went from n=8 (24%) on the pre-test to n=22 (67%) on the post-test.  

The symbolic interpretation item required the student to interpret the meaning of the 

parameters in an exponential growth function: ―The model that describes the number 

of bacteria in a culture after t days has just been updated from P(t)=7(2)
t
 to 

P(t)=7(3)
t
. What implications can you draw from this information?‖ There was a 

substantial gain on this question of 40 percentage points from the pre-test (n=12, 

36%) to the post-test (n=25, 76%). This likely reflects the emphasis in the model 

development sequence on making meaningful interpretations of data and on giving 

descriptions of the average rate of change in various contexts, including the 

exponential change in the circuit task.  

There were substantial gains on four items that measured students‘ proficiency at 

interpreting rate of change when given graphical information (see Table 2).  

Graphical Pre-Test Post-Test     

Items n % n % Γn Γ% 

Q4 C 19 58% 29 88% 10 30% 

Q5 C and 

Q5 D 

22 

20 

67% 

61% 

32 

30 

97% 

91% 

10 

10 

30% 

30% 

Q8 A 18 55% 28 85% 10 30% 

Q10  5 15% 19 58% 14 43% 

Table 2. Improvement on graphical interpretation items 
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Questions Q4 C, Q5 C and D, and Q8 all addressed interpreting information about 

velocity when given a position graph. Question Q10, on the other hand, involved 

interpreting position information when given a velocity (or speed) graph. This 

coordination of representational systems (shifting between the velocity or rate graph 

and its associated position graph) was the main focus in the model-exploration tasks 

described earlier. Due to space limitations, we will illustrate these results with Q5 C 

and D and Q10.  

 

Figure 2.  A graphical representation of a 20-meter race between two runners. 

Item Q5 C and D asked for a description of the runner whose graph is shown by the 

solid line in Figure 2 over two time intervals:  from 4 seconds to 7 seconds and from 

7 seconds to 8 seconds.  On the post-test, 97% and 91% of the participants were able 

to correctly describe the runner as standing still and as moving back towards the 

starting position. In other words, the participants were able to correctly reason about 

the velocity (or average rate of change) over an interval when given a position (or 

quantity) graph.   

 

Figure 3.  Interpreting the relative position of two cars given their speed. 

Item Q10 represents an important reversal of the above problem and one that is a 

well-known source of difficulty for calculus students (Monk, 1992). This item 

requires an understanding of how to reason about position when given a velocity 
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graph. We found a 43% improvement in the number of students who were able to 

correctly interpret the relative position of two cars, starting from the same position 

and travelling in the same direction, when given the speed graph shown in Figure 3. 

Interpreting rate of change in context 

In this section we report on our analysis of the students‘ responses to a written 

examination item. The students were given a data set of the voltage drop across a 

capacitor for 50 seconds and asked to compute the average rate of change over three 

subintervals, from t = 5 to t = 10 seconds, t = 20 to t = 25 seconds and t = 40 to t = 

45 seconds. After computing these average rates of change, the students were asked 

to ―Write two or three sentences interpreting this data.‖ Since this data is modelled 

by an exponential decay function, the voltage is decreasing over each sub-interval 

but the average rate of change is increasing across the sub-intervals. Describing such 

functions as decreasing at an increasing rate presents both conceptual and contextual 

challenges. The conceptual challenges reside, in part, in coordinating one‘s 

understanding of the change in function values with the rate of that change over 

various subintervals; the difficulty of the comparisons becomes more complex when 

the rates are negative but increasing. The contextual challenges arise from the 

difficulties in natural language in describing magnitude of the voltage drop, since 

this magnitude decreases, while the signed average rate increases as it becomes less 

negative. Everyday language for describing the change in rate appears in conflict 

with formal mathematical language for describing that change. 

We categorized students‘ responses to this item into four levels.  These levels and 

the number of student responses are shown in Table 3. Approximately 61% of the 

students correctly described both the behavior of the function and its average rate of 

change with half of those responses (10 out of 20) including a reference to the 

context.   

Category Number of 

Responses 

(3) Correctly described both function and rate of 

change, referring to context 

10 

(2) Correctly described both function and rate of 

change, minimal or no reference to context 

10 

(1) Correctly described function, but not rate of change 1 

(0) Incorrect description 12 

Table 3. Interpretations of rate of change 

An example of a response in category (3) is: ―The average rate of change increases 

(gets less negative) as time progresses, meaning the voltage on the capacitor is 

decreasing at an increasing rate.‖ An example of a response in category (2) 
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expressed that the function is decreasing, while ―the average rate of change is going 

from a more negative number to a less negative number, meaning the average rate of 

change is increasing over time.‖ Although this response does not specifically refer to 

the context of the problem, namely the voltage drop across the capacitor, the student 

correctly distinguishes between the change in the function and the change in the 

average rate of change.   

Of the 12 responses in category (0), six of those responses indicated that the student 

conflated the changes in the function with the changes in the average rate of change. 

An example of such a response is:  ―The average rate of change is decreasing at an 

increasing rate.  This is because the numbers are getting closer to zero.‖ It is not the 

average rate of change that is decreasing, but rather the function values (or voltages) 

are decreasing. The values that the student correctly calculated for the average rate of 

change were negative and increasing since those numbers were ―getting closer to 

zero.‖  This student is not using the values of the average rates of change to infer the 

characteristics of the function (decreasing at an increasing rate), but rather the 

student incorrectly concludes that it is the average rate of change itself that is 

decreasing at an increasing rate. This error points to the difficulty of simultaneously 

attending to changes in the function values and changes in the average rate of 

change.  

DISCUSSION AND CONCLUSIONS 

The results of this study provide some evidence that the model development 

sequence had a positive impact on the students‘ understanding of average rate of 

change, as measured by the statistically significant overall gain on the ―Rate of 

Change Concept Inventory.‖ The gains on the graphical items may be due to the 

model exploration tasks that focused on the coordination between representational 

systems. This coordination included shifting between position and velocity graphs, 

thus distinguishing between the function‘s graph and the graph of its rate of change, 

and shifting between numerical and graphical data, thus linking the value of the 

average rate of change with the graph of the function. Overall, the majority of 

students were able to give meaningful interpretations of data and descriptions of 

change in contexts. At the end of the study, a small number of students still had 

difficulty in distinguishing between changes in the function values and changes in 

the average rate of change. The difficulty in expressing this distinction suggests the 

need for further research on the development of students‘ language for describing 

changing phenomena. 
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Mathematical modelling is one competence assessed in the Swedish national course 

tests in mathematics (NCT) in upper secondary school. This paper presents, with 

empirical data from the NCT, a content analysis about what aspects of mathematical 

modelling are assessed and how it is assessed. The main conclusion is that only 

fragments (intra-mathematical aspects) of the modelling process are being assessed.  

INTRODUCTION  

Supported by curricula that stress the use of ‗real world problems‘ in mathematics 

teaching, researchers in the field of mathematical modelling and applications in 

mathematics education have argued for more mathematical modelling activities into 

mathematics classrooms. However, the presence of modelling activities in day-to-day 

teaching is still limited at many places (Blum, Galbraith, Henn & Niss, 2007). The 

present situation in Sweden is quite similar, where the role of mathematical 

modelling in teaching and learning mathematics has been made more and more 

explicit in official curriculum guidelines for upper secondary school since 1965 

(Ärlebäck, 2009). However, Frejd and Ärlebäck (in press) found that only 23% of the 

upper secondary students from a sample across Sweden (n=381) stated that they had 

used or heard about mathematical models or modelling in their education. In 

addition, the meaning of the notion mathematical modelling is only described in 

implicit terms in the curriculum, which opens up for various interpretations of the 

notion and how it should be implemented into school activities (Ärlebäck, 2009). A 

possible way to make modelling become a more wide spread activity in the 

classroom is to use more modelling activity in assessment tasks, according to Niss‘ 

(1993) premise: ―What is not assessed in education becomes invisible or 

unimportant‖ (p. 27). One activity assessing mathematical modelling for all students 

in Swedish upper secondary school is the national course tests in mathematics 

(NCT).  

The aim of this paper is to investigate what is assessed in the national course tests 

about mathematical modelling and how is it assessed. It also investigates what 

interpretations of the notion of mathematical modelling have been done by its 

authors of the NCT and what reasons they provide for those interpretations.  

THE ‗MODELLING CYCLE‘  

The notion of mathematical modelling is not unambiguously defined and is 

depending on the theoretical perspective adopted (Frejd, 2010). The theoretical 
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perspective used in this paper refers to a conception of mathematical modelling 

known as the ‗modelling cycle‘. The ‗modelling cycle‘ is a general mathematical 

modelling process (Kaiser, Blomhøj, & Sriraman, 2006) described in different ways 

depending on the research aim (Borromeo Ferri, 2006). One such cyclic process is 

described in terms of six phases and transitions between these, see for example 

Borromeo Ferri (2006). The starting point of the modelling process is called the real 

situation (RS), which might be a description of the problem in everyday knowledge 

in the domain of an ‗extra-mathematical world‘ or ‗real world‘. A mental 

representation (ME) of the situation is made to understand the task. Then the 

information from the mental representation is idealized, filtered and simplified/ 

structured to get a real model (RM), which might be an external representation of the 

situation. This real model is then mathematized into a mathematical model (MM) in 

the domain of a ‗mathematical world‘. Finally the modeller or the modellers work 

mathematically with the mathematical model to get solutions, mathematical results 

(MR), which are interpreted in terms of real results (RR) and validated in the ‗extra-

mathematical world‘. The validation may show that the real result is not satisfactory 

and that other aspects have to be taken into consideration; the modeller or the 

modellers then have to do the process over again and make another lap in the cycle. 

In educational research literature one can find researchers both in favour of as well 

as critical to this cyclic perspective on modelling (cf. Jablonka & Gellert, 2007; 

Ärlebäck, 2009; Frejd, 2010). In this study the general modelling process was used, 

because the construction of national course tests in mathematics (NCT) is based on 

an interpretation of the curriculum guidelines by Palm, Bergqvist, Eriksson, 

Hellstrôm and Häggstrôm (2004), drawing such a view on modelling. 

The modelling cycle and the National Course Tests (NCT) 

Palm et al. (2004) have done an analysis and an interpretation of the present national 

curriculum guidelines, for upper secondary school in Sweden, as a basis for the 

construction of the NCT in mathematics courses B-D [1]. They state that ―[…] this 

interpretation is one of many possible interpretations of the official curriculum 

guidelines‖ (Palm et al., 2004, p. 1, my translation). The result of their interpretation 

is described in terms of six mathematical competences (problem solving, algorithm, 

concept, modelling, reasoning, and communicating) similar to those adopted in 

PISA, TIMSS2003, NCTM (USA) and KOM (Denmark) (Palm et al., 2004). 

According to Palm et al. (2004) the modelling competence is needed to solve ‗real 

world‘ problems. Some situations may be familiar to the students and the modelling 

process is then a routine procedure related to the algorithm competence. Other 

situations may be new to the students and demands a ―genuine modelling process‖ 

(Palm et al., 2004, p. 18), related to the problem solving competence (no discussions 

are made if the modelling competence has connections to reasoning-, concept- or 

communication-competences). The genuine modelling process is defined as the 

entire process displayed in Figure 1. The process is cyclic and similar to the 
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‗modelling cyclic‘ involving two domains as described in the previous section and is 

interpreted from the ‗goals to aim for‘ in the curriculum.  

 

 

 

 

 

Figure 1. The structure of the modelling process from Palm et al. (2004, p.18, my 

translation). 

The ‗goals to aim for‘ in the curriculum declare that mathematics teaching should 

ensure the students to ―develop their ability to design, fine-tune and use 

mathematical models, as well as critically assess the conditions, opportunities and 

limitations of different models‖ (Skolverket, 2000). How this statement has been 

turned into a cyclic process may not be obvious, but can be seen as one interpretation 

(cf. above). In relation to this interpretation, Palm et al. (2004) have identified five 

different types of modelling items that test; 1. The entire modelling process, 2. Parts 

(essential, 1a, 1b and 3; see Figure 1.), 3. Real life problems, 4. Open problems and 

5. Items with too much or too little information.  

The genuine modelling process is a holistic view about the modelling process. The 

competence to master this process similar to Blomhøj and Højgaard Jensen‘s (2003) 

definition ―[b]y mathematical modelling competence we mean being able to 

autonomously and insightfully carry through all aspects of a mathematical modelling 

process in a certain context‖ (p. 126). I have adopted Blomhøj and Højgaard Jensen‘s 

definition, also used in Frejd and Ärlebäck (in press), and used it in the next section. 

METHODOLODGY 

To address the aim and based on the discussion in the previous section, the research 

questions are: Which transitions of the modelling process are presented and what are 

put aside in the national course tests? What types of problems are being used to asses 

modelling? How is it assessed in relation to the ‗official guidelines for assessment‘ (a 

guideline for teachers on how to assess students‘ solutions of items in the NCT)?  

For examining course documents Robson (2002) suggests the method of content 

analysis. I have followed Robsons‘ guidelines for content analysis which are: start 

with the research question; decide on a sampling strategy; construct categories for 

the analysis which are to be mutually exclusive (categorized in one way), exhaustive 

(everything relevant should be categorized) and operational (explicit specifications); 

test the coding on samples of items and assess reliability.  
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The sample used is the last ten years of national tests in mathematics D (a total of 19 

tests). It is the last mandatory course in upper secondary school (science programme) 

and it concludes ―an in-depth knowledge of concepts and methods learned in earlier 

courses‖ (Skolverket, 2000); the main content is comprised by trigonometry, 

derivative and integrals, which may be used to assess mathematical modelling in the 

NCT. The strategy used in the analysis is to first identify items in the test that have 

an extra-mathematical context and then to scrutinize them.  

The extra-mathematical domain is related to what is often called the ‗real world‘ 

(Blum, Galbraith, Henn & Niss, 2007). To delimit the possibility to miss any 

modelling items with an extra-mathematical context an exclusion of texts related to 

pure mathematics has been done. Examples of excluded texts begin with  ―Arrange 

the following numbers in increasing order‖ and ‖A triangle has the sides...‖ , in 

contrast to ―water flows with a constant speed into an empty container‖ and ―a tone 

sounds different if it is played on an organ or a violin‖(my translations).  

In the definition adopted from Blomhøj and Højgaard Jensen (2003) the modelling 

competence is divided into sub-competencies (describing a more atomistic view of 

the process) to create exhaustive categories to answer the research questions. To 

capture significant aspects about the transitions in the modelling process, 11 

modelling categories were developed. The categories or guiding questions used in 

the analysis, see the Appendix, were developed from: I) the curriculum guidelines 

(develop their ability to design, fine-tune etc.); II) Palm et al. (2004) (the five 

identified items, etc.); III) a research tool from Hains, Crouch and Davis (2000) 

designed to measure students‘ ability in sub-competencies, IV) Other research 

literature discussing modelling competencies such as Mass (2006).  

One reason for the choice of the material (I-IV) is that both the curriculum guidelines 

and the interpretation by Palm et al. (2004) are the base for the construction of 

modelling items in the NCT. Another reason is that the research tool (a multiple 

choice test) from Hains, Crouch and Davis (2000) has been used in several research 

studies (for details see Frejd and Ärlebäck, in press) and is measuring sub-

competencies. The research literature focusing on modelling competencies was a 

help to strengthen and fortify the 11 modelling categories. 

The process of linking together the material (I-IV) and to get as mutually exclusive 

categories as possible was done based on the transitions between the phases such as 

real model to mathematical model. To illustrate the construction process of the 

categories I will use an example, starting with the transition from the real situation to 

the real model. I identified aspects from: I) Skolverket (2000), the student should 

develop their ability to interpret a problem situation; II) Palm et al. (2004), open 

problem and understand the problem; III) Hains, Crouch and Davis (2000) the sub-

competence to make simplifying assumptions concerning the real world problem; 

and IV) Maass (2006) a competence ―to make assumptions for the problem and 
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simplify the situation‖ (p. 116). These aspects turned into the modelling category/ 

guiding question nr 1 ―Do students need to make simplifying assumptions about the 

problem situation in order to solve the problem?‖ To make the guiding questions  

more operational by the use of explicit specifications the example, How long time 

does it take to evacuate your school?, is discussed for each category (see Appendix). 

To answer what types of problems being used the following questions were asked to 

each item: From where in the modelling process is the item originating, i.e. the 

starting point of investigation? What type of model do the students need to use? Is it 

a ‗realistic question‘, i.e. is it stated in the text from where the data arise, such as real 

places (names of cities, countries etc), time (year, date) and is it possible to find 

similar data (e.g. on the web)?  

To analyse the last research question, what do the ‗official guidelines for assessment‘ 

outline (emphasize) in order to assess the item, have I developed assessments 

categories. These categories are based on frequently used words in the official 

guidelines for assessment and they are motivation (explanations, insight etc), 

solution strategy (general investigation, a general approved solution etc), result 

(correct answer, approved determination of something, approved solution with a 

specified answer etc), to set up a mathematical expression (to set up a equation, 

model etc) and math language (students use of math symbols, conventions etc). 

I have analysed all 315 tasks (items) in the 19 national course tests (D-course) from 

the years 2000-2009. To illustrate the method for analysing I will present two 

examples (see Figure 2) from the test in spring 2005. First some information about 

the NCT (D-course) is provided. The NCT (D-course) is divided in two parts and the 

limitation of time is four hours. Part one is without access to calculators and part two 

with access to a calculator. Part two includes an item of performance assessment (i.e. 

an essay answer task that invites students to write a more extensive solution in some 

paragraphs). 

 

 

 

 

 

 

Figure 2. Two tasks (items) from the NCT (D-course) spring 2005 retrieved from: 

http://www8.umu.se/edmeas/np/. 

The item to the left in Figure 2 is about Daniel and Linda who want to evaluate if the 

size of a living room in a flat is correct. The outset for investigation may appear to be 

the real situation, but the focus is on the real model which is given (a sketch). It may 



Working Group 6 

 CERME 7 (2011)  952 

also look realistic with a reasonable size of a living room, but it is not described 

where it is and it is not described how the angle is measured. The modelling 

categories used are nr 4, 5, 8 and 9 (see Appendix), because the students are 

supposed to assign the diagonal as a variable, set up a trigonometry model, calculate 

a result and compare to 31,2 m
2
. No assumptions, no clarifications etc. are needed 

(i.e. category 1 and 2). The guidelines for assessment and marking emphasize the 

assessment category result (calculations of diagonal +1point, calculation of any 

angel +1p, approved solution +1p, approved answer (29,4 m
2
) +1p marked [result, 

result, solution strategy, result]). The aim of the right item in Figure 2 is to decide a 

formula for a ―platecurve‖ on f(x)=Asinkx and to decide the length of a flat plate 

needed to create a 5 m long ―platecurve‖. The starting point of investigation is both 

the real model and the mathematical model. It seems not to be realistic: why do you 

want to have the shape of the curve in Asinkx? Why a curve in the first place? And 

in the second question a plater never makes a 5 m wide plate as it would be 

impossible to work with. The modelling categories used are nr 4, 6 and 8, because 

the students are expected to assign a variable in the integration (let x go from 0 to z), 

fine tune the model (search for A and k) and calculate a result (7,3 m). However, no 

formulations of any new models are needed, only to use the given ones. The 

mathematical models used here are the trigonometry model and the integration model 

(which includes differentiation). The guidelines for assessment emphasize to set up a 

math expression and to find a result. For assessing reliability of the coding and the 

additional questions, Holsti‘s method (Holsti, 1969) was used for two independent 

coders, with a satisfactory result (0.89 > 0.8).  

RESULTS 

Extra-mathematical contexts were found in 55 items (four items in part one of the 

test and 51 items in part two including five performance assessments). The starting 

point of the modelling process in the scrutinized items was the mathematical model 

(in 54% of the items), the real model (29%), both the real model and the 

mathematical model (15%) and both the mathematical model and the mathematical 

result (2%). The frequency of investigated modelling categories from the content 

analysis and the frequency of number of modelling categories per item are displayed 

in Figure 3. 

  

Figure 3. Frequency of used modelling categories and frequency of number of modelling 

categories per item 
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The left diagram in Figure 3 shows that the modelling categories 8 (calculate a 

result), 4 (assigning variables) and 5 (formulate a mathematical statement) are the 

most frequently appearing categories in the coding. Categories 6 (alter the 

mathematical model), 9 (relate the solution to the real world), 10 (interpret a given 

model) and 11 (critically assess the conditions) are together used in less than 20% of 

the items. Notable is that categories 1 (simplifying assumptions), 2 (clarify), 3 

(simulations) and 7 (select) were not visible in the data. The right diagram in Figure 

3 show that three modelling categories used per item are most common. 

The results of the content analysis referring to the assessment guidelines are 

illustrated in Figure 4 below. 

   

Figure 4. Frequency of assement codes and Frequency of number of assessment codes per 

item. 

The left diagram in Figure 4 shows that the result (correct answer, correct derived 

function etc.) is most frequently used in the assessment guidelines: more than every 

second assessment code is referring to the result (100 codes out of a total of 193). 

The right diagram in Figure 4 shows that two codes to four codes are the most 

frequently used number of codes to code an item in the assessment guidelines and 

five codes to seven codes are found in 20% of the items analysed. 

The different types of models that the students were supposed to use were based on 

trigonometry (45%), integration (16%), polynomial functions (15%), exponential 

functions (11%), differential equations (7%), and a mix of these models (5% of the 

total number of items analysed). The items were realistic or close to realistic in 29% 

of the extra-mathematical items. The official assessment guidelines to the NCT also 

provide a list of items for every test referring to Skolverkets‘ (2000) statement that 

students should develop their ability to design, fine-tune and use mathematical 

models etc. The lists include in total 95 items (two tests did not have a list) but only 

27 of those items had an extra-mathematical content according to my analysis. 

CONCLUSION AND IMPLICATIONS 

The designed research tool has been useful to pinpoint exactly what parts of the 

modelling process the NCT (D-course) focuses on and what has been left out. The 

primary aspects being assessed concerning the modelling process relate to the intra-

mathematical world, such as to use an already existing model to calculate a result or 

assign variables to formulate a mathematical statement to calculate a result. Aspects 
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left out or occurring sparsely are related to extra-mathematical parts (the real 

situation and validation), such as to do simplifying assumptions about the problem, 

to clarify what facts are most important, critically assess conditions, and interpret the 

result and relate to the real situation. 

From a holistic view of modelling the conclusion is that there have not been any 

modelling items in the NCT (D-course) during the last decade, because not all 

aspects of the modelling process were represented in a single item. The models that 

the students were supposed to use were oriented towards trigonometry (45% of the 

models), which is not odd as new content in the D-course is trigonometry. Most of 

the items were not based on realistic data (71% of the investigated items). However, 

in this study the result is based on a web search for possible comparative data. 

The outcome that result (correct answer, correct derived function etc) is most 

frequently used in the guidelines for assessment is not surprising, because one of the 

goals of the NCT is reliable assessment, meaning that it should be equivalently 

assessed all over Sweden. According to Niss (1993), standardized schemes that are 

not time consuming are traditional requirements for treating large populations of 

students, and in this case the focus on result may be seen as a fast marking scheme 

(correct or incorrect).  

One may question the impact of Palm‘s et al. (2004) interpretation of the curriculum 

on the construction of the NCT. Most of the listed modelling items in the assessment 

guidelines do not refer to extra-mathematical content and no items refer to the entire 

modelling process. Neither were open problems (open for different interpretations, 

assumptions and solutions) nor items with too much or too little information found. 

However, items questioning parts of the modelling process were found and maybe a 

further investigation of NCT from other mathematics courses will give another 

result. 

In Frejd and Ärlebäck (in press) most of the students expressed that they had not 

worked with problems similar to Hains, Crouch and Davis (2000) problems before. 

This study can conclude that the students have not been assessed on such problems 

in the NCT (D-course) either. The discrepancies between the sub-competencies 

found in Frejd and Ärlebäck (in press) can therefore not be accounted for by the 

NCT. Many of the sub-competencies are invisible in the NCT such as categories 1 

(simplifying assumptions), 2 (clarify), 3 (simulations) and 7 (select) and there is no 

difference in frequency between categories 4 (assigning variables is used in 69% of 

the items) and 5 (formulate a mathematical statement is used in 67% of the items). 

Finally, some researchers argue that if only a limited set of aspects of mathematics is 

assessed it may create a disordered view of what mathematics really is (Niss, 1993). 

The result from this study that only fragments (intra-mathematical aspects) of the 

modelling process are assessed suggests further research. Questions investigating the 

issue may be: What conceptions do teachers in upper secondary school express about 
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the notion of mathematical modelling? To what extent do they describe mathematical 

modelling activities as part of mathematics/ mathematics education?  

NOTES 

1. Mathematic B-probability theory, second order equations; Mathematic C-differential calculus; Mathematic D-

Trigonometry, etc. for more info see http://www3.skolverket.se/ki/eng/nv_eng.pdf   
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APPENDIX  

Guiding questions/ Modelling categories How long time does it take to evacuate your school? 

1. Do students need to make simplifying assumptions about the 

problem situation in order to solve the problem? [RS to RM] 

Could be to do assumptions about number of students, 

locations of classrooms, number emergency exits, etc 

2. Based on the real situation do students need to clarify what is 

to be accomplished by the mathematical model? (Is it unclear 

from the outset what kind of facts are most relevant to formulate 

a mathematical model and what relations are needed to 

formulate the mathematical model?) [RS to RM/MM] 

Could be to clarify what of the following facts are 

important to include in the mathematical model: the 

width of emergency exits, number of students in a 

classroom or the velocity of some students walking in a 

line, etc? What are the relations between the facts? 

3. Do students need to focuse on exact arrangements that can 

provide a basis for the intended simulation? (Is the student 

supposed to do or evaluate some simulation method to 

investigate a problem?) [RM to MM] 

How can we set up a simulation? Has a simulation of 

the problem been done, and if so could another method 

give a better result? 

4. Are students expected to assign variables, parameters, or 

constants to solve the problem? [RM to MM] 

Could be set x as length, v as angle, y´ as velocity, n as 

number of students etc ( But not just  to use a given 

model for instance to set t=0 for evaluate reaction time) 

5. Do students need to set up a mathematically formulated 

statement (a mathematical model) describing the problem 

addressed? [RM to MM] 

Could be set up a new model or a function (t= t0+x 

y´+…) and maybe included to integrate or differentiate 

some function. ( But, not just  to use a given model) 

6. Do students need to adapt the mathematical model in order to 

improve (fine-tune) the result? [MM to RM] 

A model is created (or given) for instance t= t0+x y´+.. 

and t0 is supposed to be decided to fit the given data. 

7. Do students need to select one mathematical model out of 

several possibilities and motivate such a choice (the one that fits 

the data best)? [RM to MM] 

Based on the assumptions made, several types of 

mathematical models are possible. (more than one 

model is given in the official guidelines for assessment) 

8. Do students need to use the model to calculate a mathematical 

result? [MM to MR] 

Example: Calculate the evacuation time for your school 

building? Could be t=11,3 min. 

9. Do students need to interpret and relate the mathematical 

solution to the (real world) context? (Is it explicitly given in the 

item text a value/ a statement that is possible to compare to 

mathematical solution?) [MR to RM] 

It could be stated in the text that during the last 10 

years of emergency drills the average evacuation time 

is 13, 4 min. 

10. Are students asked explicitly to explain the meaning of a 

given mathematical model or a mathematical result?[MM/ MR to 

RM] 

It could be stated in the text that a model is found for 

evacuation time t=… could you explain what it means?  

11. Do students need to critically assess the conditions, 

opportunities and limitations of the mathematical model? [MM 

to RM] 

The mathematical model might be valid only between 8 

am to 2 pm during weekdays under certain conditions, 

factors not discussed might be panic etc. 
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In Germany many centralised mathematics examinations consist of modelling tasks 

or nearly realistic tasks. A further aspect is added by the usage of digital tools, e. g. 

a computer algebra system, in examinations. In this article we discuss the 

simultaneous use of realistic tasks and digital tools in examinations. Some criteria 

for good examination tasks with modelling problems and the use of technology are 

presented. 

INTRODUCTION 

The use of digital tools (i. e. spread sheet, dynamic geometry environments, function 

plotter and computer algebra systems) in centralised examinations influences many 

aspects of mathematics education. For example it was found that students working 

with a computer algebra system (CAS) tended to give shorter written solutions than 

non-CAS students (Ball 2003). Especially the use of digital tools in centralised 

mathematics examinations showed effects on the content of teaching, teaching 

methods, types of tasks and other questions concerning mathematics education. It 

becomes obvious that the question about suitable centralised examinations with 

digital media and tools does not only refer to examinations, but also to the teaching 

preceding the examinations. 

Other competencies that are relevant in mathematical education are not automatically 

connected with the use of digital media and tools (s. e. g. Maaß 2006). Tasks relying 

on the use of digital tools do, however, require and promote certain process-related 

competencies such as problem solving, interpreting data or modelling. Moreover, it 

is possible to give the students CAS-tasks which require them to choose between 

several possible solution strategies by themselves.  

The introduction of CAS into examinations has the potential to provide more 

solution strategies for the students. It allows the student to move on from an 

examination where the examiner controls the solution strategy to one in which the 

student controls the solution strategy (Brown 2003a). Thus there is a potential shift 

in tasks away from the ones in which only algorithms are trained to more realistic 

ones in which the students are required to do more modelling. So in addition to 

possible technical difficulties we have to consider possible blockages during 

transitions in the modelling process (s. e. g. Galbraith & Stillman 2006). In particular 

centralised examination questions containing modelling problems and digital tools 

require special attention. Based on the potential use of digital tools in the modelling 

cycle and the German situation in upper secondary school examinations we 



Working Group 6 

 CERME 7 (2011)  958 

formulate some criteria for good examination tasks with modelling problems and the 

use of technology.  

MODELLING AND DIGITAL TOOLS 

Realistic mathematical modelling problems (cf. for example Blum et al.) can be well-

established in many classrooms, when we have adequate examination questions to 

not only test the modelling competencies but also the use of the necessary digital 

tools.  

The solution of modelling problems using a digital tool requires that two important 

translation processes take place. Firstly, the real problem (cf. Blum & Leiß 2006) of 

the task has to be understood and translated into mathematical language. The digital 

tool, e. g. the computer algebra system calculator, though, cannot be used before the 

mathematical expressions have been translated into the language used by the digital 

tool. The computer results then have to be translated back into mathematical 

expressions. Finally the task can be solved by relating the mathematical results to the 

given real situation. 

 

Figure 1. Modelling cycle (Blum & Leiß 2006) 

As an illustration of the potential use of digital tools in the modelling process we 

integrate the use of digital tools as the technology world in a simplified modelling 

cycle. Compared with the modelling cycle of Blum & Leiß (figure 1), we use a less 

detailed characterisation of the rest of the world, because we focus on the other part 

of the cycle. The situation in our model (cf. figure 2) describes the real situation and 

the real model in Modelling cycle of Blum & Leiß. Here the technology world has 

been added to the mathematical world (mathematics) and real world (rest of the 
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world) in the common models of modelling (e.g. Blum & Leiß 2006, Galbraith & 

Stillman 2006). 

The separation in three different worlds shown in figure 2 is artificial. For example 

the development of a mathematical model depends on the mathematical knowledge 

on the one hand and is on the other hand affected by the possibilities given in the 

technology world. Using technology provides additional possibilities to work with 

certain mathematical models, which would not be used and lead to a solution if 

technology was not available (Siller & Greefrath 2010, Geiger 2011). 

 

Figure 2. Modelling cycle concerning technology (Greefrath & Mühlenfeld 2007, cf. 

also Savelsbergh et al. 2008) 

When creating examination questions many aspects should be considered. As a basic 

principle (following Winter), applications in education should only be used in sense-

making real situations or if they bring advantages in understanding the problem 

(Henn 2007). But due to the complexity factor examination tasks containing a whole 

modelling process are not possible in most cases. Consequently we have to construct 

examination tasks with parts of the modelling cycle.  

Examination questions can be categorized according to the potential use of digital 

tools when solving them. Firstly, the question can be deliberately structured such 

that digital tools cannot or may not be used to solve the problem. Secondly, questions 

are thinkable where digital tools can be used, but have no potential to contribute to 

the solution. Thirdly, there are questions where digital tools could contribute to the 

solution of the examination question but their use is not required and fourthly there 

are questions which cannot be solved without the use of digital tools (Brown 2003b).  

Looking at the German situation mostly questions of the types two and three are used 

in examinations with digital tools (cf. Weigand & Bichler). In the following we 

illustrate the German situation of examination questions with modelling problems 

and use of digital tools. One aspect concerns problems resulting from the real 

situation described in the task; a second aspect concerns the use of digital media, i.e. 

the computer model (cf. figure 2). 
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THE GERMAN SITUATION 

In Germany there are specific practical regulations for the usage of digital tools in 

upper secondary school examinations. Additionally, there are different regulations in 

all of the 16 federal states in Germany. Several federal states started with centralized 

examinations in the last years and permit the use of computer algebra systems. For 

example in the federal state of North Rhine-Westphalia (NRW) two calculator-

specific versions of the mathematics examination have been employed since 2007. 

One group of examination questions is for standard or graphing calculators (non-

CAS group) and another group for computer algebra systems (CAS-group). The 

mathematical content of the examination questions is (nearly) identical for both 

groups, but some interesting aspects are different. There are only minimal differences 

between these two groups of tasks, but a positive trend can be seen in the CAS-group 

(cf. Pallack 2008). Tasks with CAS are more open-structured. For example the 

described real model of a situation has no given equation of the function or no given 

coordinate system. Hence the tasks are a bit more realistic and the students have to 

take more steps (e.g. simplifying, mathematizing, cf. Figure 1) in the modelling 

cycle. 

Another aspect when using technology in examinations is the diversity in the 

computer models (cf. figure 2) used. For example with a CAS-calculator we can 

determine a questioned polynomial of degree 3 with a linear equation system or a 

statistic regression. In addition the solution could be calculated numerically or 

algebraically. This is of course a good starting point for an interesting discussion in a 

mathematics lesson, but the evaluation in centralised examinations becomes more 

difficult. So the diversity of possible computer models complicates the marking in 

centralised examinations. 

An analysis of current examinations in the NRW part of Germany shows that there 

are characteristic types of tasks depending on the treated mathematical domain 

(Greefrath, Siller & Weitendorf).  

 In stochastics the tasks for examinations are application-oriented. The stochastic 

models used, for example, the binomial distribution, are well known. So the 

applications are not really modelling problems in the sense of ISTRON (Blum et 

al.), but standard tasks. The students in both groups (CAS and non-CAS) have 

nearly or even exactly the same examination questions, so the use of CAS does 

not change tests in stochastics. The main problem in stochastics is – apart from 

the CAS usage – the missing connection between reality and mathematical 

models. The fit of the stochastic model is one of the most important questions. 

But most of the final secondary-school examinations in Germany are lacking this 

part. 

 Tasks in analytic geometry usually are unrealistic. A typical question, for 

example, is situated in the context of an excessive simplified tower. The question 
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is, if the temperature sensor in a special point is in the shadow of the tower or 

not. No one will think that this is a meaningful use of mathematics. There is no 

improvement imaginable due to the use of CAS. Examination tasks should show 

sense-making use of Mathematics. So tasks in this mathematical domain can only 

be improved by making them inner-mathematical with or without CAS. As a 

consequence, we have no modelling problems in this part of an examination, just 

a relevant use of Mathematics (in the sense of Winter, cf. Henn 2007, BE 2). 

 The most common mathematical field for modelling problems in examinations is 

analysis. Here, tasks should include real-world problems. The changes due to the 

use of CAS show the right tendency, but actual tasks contain too many standard 

parts. For example in 2008 there was a problem on a model for concentration of a 

certain medicine in blood. The main part of the task was to calculate interesting 

points of the graph (e.g. maximum and inflexion point). The blood concentration 

context was not really necessary to solve the task. Considering all analysis tasks 

in the upper secondary school examinations for CAS in NRW the proportion of 

parts that really need a CAS (the forth role of digital tools in examination 

questions) and not only a graphing calculator is less than 5 per cent. Obviously 

there is high potential for improvements.  

CRITERIA FOR EXAMINATION TASKS 

On the Basis of the experiences in Germany some criteria for good examination tasks 

with modelling problems and use of technology can be pronounced. The first is the 

sense-making use of Mathematics. If necessary – like in analytic geometry – it is 

better to have relevant use of Mathematics rather than simple word problems with 

unrealistic contexts. The second is a good choice of interesting and relevant real 

world problems to treat an essential part of the modelling cycle in exams. The third is 

an essential use of CAS in tasks especially for CAS. That means the examination 

question for CAS should not be solvable without use of digital tools and the students 

have a real choice between different computer models (cf. the modelling cycle 

concerning technology above).  

But not all parts of examinations need to require a digital tool. For the examination 

of mathematical competencies, which were acquired with digital tools, it is not 

necessarily needed, that the digital tools are present in the test situation (Greefrath, 

Leuders & Pallack, 2008). 

CLOSING REMARKS 

Centralised examinations with digital media and tools have to be prepared carefully. 

The use of digital tools can be discussed for e.g. from a socio-political or didactic 

point of view. Thus it is necessary to say why it is feasible to use digital media and 

tools in examinations, which can be done at different levels. On the other hand, the 

use of digital media and tools in class can be promoted by their use in examinations. 
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When we use digital tools in centralised examinations, certain mathematical 

operations that have so far been performed by the students themselves, such as 

differentiating or solving simple equations or systems of equations, will performed 

by the digital tool. It is thus necessary to describe special competences for the use of 

digital tools (of CAS in particular) and to publish these descriptions before the 

examinations take place. It is necessary to develop clear guidelines for the use of 

calculators in examinations – in particular for the centralised ones. Especially, it has 

to be examined whether the examinations can be solved in a comparable way with all 

permitted digital tools, the comparability referring both to the time-frame and to the 

required competences. 

Many examples show that technology can be helpful at any step of the modelling 

cycle (Greefrath, Siller & Weitendorf). Therefore the use of technology does not 

only create an important appendix to the modelling cycle (see Figure 2), but 

influences each part of the cycle (cf. Geiger 2011). So the technology world is 

relating to the real world and mathematical world. This multiple influence of 

technology in solving modelling problems can also be found and integrated in 

examination questions. The role of technology in modelling activities is as important 

in tests as in process-related educational situations. 
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The aim of this study was to analyze the structure of the problem solving process and 

the use of different external representations while working on complex story 

problems in primary school. 17 2
nd

 grade students and ten 4
th

 grade students 

participated in our study. Different influence factors on the process of solving a 

story problem were measured via questionnaires. In a maximum of 40 minutes, the 

students had to work on five complex story problems individually. They were allowed 

to use different auxiliary material. If the students couldn't continue on their own, 

they received help from the researcher. The students were videotaped individually 

and interviewed right after every story problem. The problem solving processes was 

analyzed according to a newly developed system of categories for this study. Our 

findings show that the ability groups and the grade levels differed in terms of 

representations they used, as well as in terms of the time they needed to solve the 

problems. Also, the total word problem score differed between grade levels as well 

as between ability groups. 

Keywords: complex story problems, problem solving process, system of categories, 

external representations  

 THEORETICAL BACKGROUND 

The term ―complex story problems‖ specifies a group of problems, that are different 

from ―regular story problems‖ (Rasch, 2001). Unlike regular story problems, these 

complex story problems are based on very complex mathematical structures, and 

cannot be solved by arithmetic operation models, with which students are usually 

familiar (Rasch, 2001). In order to solve these specific tasks, students have to 

restructure their prior knowledge (Winter, 1992). The positive effects of complex 

story problems on learning have already been shown by former research. For 

instance, Rasch (2001) reported that the use of these tasks can improve students' 

―problem solving competences‖ (Klieme, 2005) in primary school classes. Yet, there 

are very few studies on the use of complex story problems (Verschaffel, 2000). This 

group of tasks also plays a minor role in mathematical didactics. To convince didacts 

of  the advantages of complex story problems and to get teachers to implement these 

tasks in their lessons, further research on the use of complex story problems in 

http://www.dict.cc/englisch-deutsch/auxiliary.html
http://www.dict.cc/englisch-deutsch/material.html
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primary schools is needed (Verschaffel, 2000). Our study makes a contribution to 

this goal. 

The problem solving process can be observed from different perspectives. The field 

of mathematical didactics focuses on the modeling process (Verschaffel, 2000), 

while cognitive psychology has a special interest in the problem solving process 

(Franke, 2003). Every perspective has its pros and cons (Verschaffel, 2000). 

Moreover, solving story problems is a complex process. In order to be able to 

research this process, it is important to combine these different scientific 

perspectives (Franke, 2003). The presented study is working towards this aim.  

The theoretical framework underlying our study is a combination of two models 

concerning the course of students' problem solving processes with regard to ―story 

problems‖ (Verschaffel, 2000). The first model (Reusser, 1993) is called ―Student-

Problem-Solver‖ (SPS), which was developed for primary school. According to the 

SPS model, the story problem is recoded and gradually transformed by the student in 

stages (Textbase, Episodic Situation Model, Mathematical Problem Model and 

Numerical Equation) into a solution. The second model is the ―cognitive-

metacognitive model of mathematical problem solving‖ (Montague & Applegate, 

1993). This model identifies seven cognitive processes (read, paraphrase, visualize, 

hypothesize, estimate, compute, check) as essential for effective and efficient 

problem solving. According to Montague and Applegate (1993), a student must be 

capable of selecting or developing the adequate cognitive processes with regard to 

the specific requirements and characteristics of the story problem. Both models focus 

on different aspects of the problem solving process on story problems and 

complement one another. By combining these two models we developed a new 

system of categories for analyzing the problem solving processes. This system (for 

details, see Groß, Hohn, Telli, Rasch & Schnotz, 2010) consists of 9 categories and 

30 facets, which cover the whole problem solving process. The system can be used to 

analyze the problem solving processes and the use of different external 

representations while working on complex story problems in primary school 

mathematics.  

The development of ―problem solving competences‖ (Klieme, 2005) is an important 

aspect of the curriculum for mathematics (NCTM, 1989). The TIMSS-study 

indicated that German students show a great deficiency regarding mathematical 

problem solving competences (Baumert et al., 1997). Now, research is needed to find 

out where these deficits come from and what can be done to solve this matter. The 

present study is situated in the field of ―problem solving‖ and makes a contribution 

to the goal mentioned above.  

A representation is a mental or physical occasion, which stands for something else 

(Schnotz, Baadte, Müller & Rasch, 2010). Students were allowed to use different 

auxiliary material to solve the complex story problems (sheet of paper, colorful 

http://www.dict.cc/englisch-deutsch/auxiliary.html
http://www.dict.cc/englisch-deutsch/material.html
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pencils, 1-unit cubes, 10-unit rods). According to Schnotz et al. (2010) these 

materials are external representations. Representations are very important elements 

for the problem solving process in mathematical education (Goldin, 2007). The 

positive effects of representations on learning in the problem solving process in 

primary schools have already been shown in various studies (Stern, 2005). Yet, 

studies on the configuration of the problem solving process and the use of different 

external representations on complex story problems are scarce (Goldin, 2007). That 

is especially unfavorable, because the positive effects of complex story problems on 

learners‘ problem solving competences in primary school classes have already been 

shown in studies (e.g. Rasch, 2001). By closing this gap in research, an effort is 

made to help students in their struggles with problem solving in mathematics at 

school (Baumert et al., 1997). In this study we are trying to reach this goal.  

RESEARCH QUESTIONS 

The underlying study is supposed to analyze the structure of the problem solving 

processes of primary school students when working on complex story problems in 

general, as well as in terms of integrating external representations into the problem 

solving process. The aim of this study is to find out if there are specific differences in 

the research question 1), 2), 3) and 4) concerning the two grade levels and ability 

groups: 

1) Which external representations are applied in the problem solving process 

regarding complex story problems? 

2) What are the differences in the persistence and total word problem score when 

working on complex story problems? 

3) How is the problem solving process organized concerning complex story 

problems? 

4) Which stages of the problem solving process are connected to which external 

representations with regard to complex story problems? 

METHODS 

Participants  

A total number of 27 students from a public primary school participated in our study, 

which was conducted in April 2010. 17 students were from 2
nd

 grade; nine of them 

were girls, and eight of them were boys. The other ten students attended the 4
th

 

grade; six of them were girls, and four of them were boys.  

Instruments and Procedures  

Firstly, students provided information on gender and age. Secondly, the influence 

factor cognitive ability on the processes of solving a story problem (Renkl, A. & 

Stern, E., 1994) was explored via a well-established questionnaire. Verbal as well as 
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visual spatial intelligence was measured with scales in this test (Kognitiver 

Fähigkeitstest [KFT], Heller & Geisler, 1983; Heller, Schôn-Gaedike & Weinläder, 

1976). Different test versions were applied with regard to the two different grade 

levels. Moreover, scales from the Project for the Analysis of Learning and 

Achievement in Mathematics (Projekt zur Analyse der Leistungsentwicklung in 

Mathematik [PALMA], Pekrun, Gôtz, Zirngibl, v. Hofe & Blum, 2002) were used to 

assess students‘ mathematical self-efficacy as well as their mathematical self-

concept. Afterwards students were asked to solve five complex word problems that 

were selected from a book that contains complex story problems (Rasch, 2008). They 

had been used in former studies (e.g. Rasch, 2001) in math classes in primary school. 

The problems were different from each other regarding the mathematical areas they 

were based on and the subject areas they dealt with. In our study, students were 

successively given the following five complex story problems: 

28 Two bandits discover a hidden treasure, 2 bags of gold coins. They count 

the coins. In one bag there are 34 coins, in the other there are 52 coins. 

They want to share the prey fairly. How many coins do they have to take 

out of the fuller bag and put into the other bag, until the coins are equally 

distributed between the bags?  

29 The devil said to a poor man: ―If you pass the bridge, I will double your 

money, but you have to drop 8 coins into the water when you come back.‖ 

When the man returned for the third time, he didn‘t have any pennies. How 

much money did he have at the beginning?  

30 A snail in a 20-meter deep well wants to go up to the meadow. She always 

crawls up 5 meters during day time and glides 2 meter down when she is 

asleep. On what day does she reach the top of the well?  

31 Streblinde, Quicki and Murks want to buy ice cream. Every child has got 

money for two scoops of ice cream. The iceman offers 3 flavors of ice 

cream: chocolate, vanilla and raspberry. What dish of ice cream could 

Quickie buy? Find all different possibilities!  

32 Mummy, Daddy and Murks take a steamboat. For children it is only half 

price. Altogether they pay €30. How much does a ticket cost for an adult 

and how much does it cost for a child?  

In a maximum of 40 minutes, the students could individually solve these five tasks. 

The problems were read out by the researcher and then given to each child in written 

form. The complex story problems were arranged randomly with regard to a Latin 

Square Design to avoid sequence). First, students had to try solving the problems on 

their own. They were given different auxiliary material they were allowed to use at 

all times. If the students couldn't continue on their own, they received help from the 

researcher who used standardized questions. If a child still was not able to solve a 

problem, the researcher turned to the next task. The students were videotaped 

http://www.dict.cc/englisch-deutsch/auxiliary.html
http://www.dict.cc/englisch-deutsch/material.html
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individually during the solution process and interviewed with a ―structured task-

based interview‖ (Goldin, 2007) right after every task about the heuristics they used 

to solve the story problem. 

Analysis 

The participants were divided into two groups, according to their results in a German 

standardized cognitive abilities test (KFT). Depending on these test results, there was 

a group of higher (HC) and a group of lower maths competence (LC) in both grade 

levels. The groups were put together through median split. In the 2
nd 

grade there were 

nine students in the LC group: four of them were girls and five of them were boys. 

Eight Students in the 2
nd

 grade were in the HC group: five of them were girls and 

three of them were boys. In 4
th 

grade there were five students in both ability groups. 

In the LC group there were four girls and one boy. In the HC group there were two 

girls and three boys.  

The videos were analyzed by two raters. An evaluation of the inter-rater reliability 

(Wirtz & Caspar, 2002) was scheduled and afterwards the training of independent 

raters was organized. The problem solving processes will be analysed according to a 

system of categories (Groß, Hohn, Telli, Rasch & Schnotz, 2010) which was newly 

developed for this study.  

RESULTS  

External representations which are applied in the problem solving process  

The results of our descriptive analysis show that the ability groups of both grade 

levels differ in terms of the representations that were used to solve the story 

problems.  

The results of the 2
nd

 grade are listed in Table 1. At this grade level only members of 

the HC groups used ―fingers‖ and ―logical pictures‖ as kinds of representation.  

In both ability groups,  ―spoken language‖ was the kind of representation that was 

used most. Members of the HC group used this kind of representation 7.70 times on 

average, the LC group 8.00 times. The external representation ―realistic pictures‖ 

was not used in any of the ability groups of 2
nd

 grade.  

The results of the 4
th

 grade are listed in Table 2. At this grade level members of the 

LC Group used all kinds of external representation. Meanwhile, ―working materials‖ 

and ―fingers‖ as kinds of representation were not used at all by members of the HC 

group. The kind of representation ―number, arithmetic‖ was used the most in both 

ability groups. The HC group used this kind of representation 8.40 times, the LC 

group 7.80 times on average.  

Looking at each grade level on its own, there was no big difference between the two 

ability groups: If a kind of representation was used, members of both ability groups 

used it similarly on average.  
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Table 1: Average number of occasions individual representations are used (2
nd

 grade)  

 

 

Table 2: Average number of occasions individual representations are used (4
th

 grade)  

The comparison of the two grade levels (Table 3) showed that students of the 4
th

 

grade use the external representation ―realistic pictures‖ in contrast to students of the 

2
nd

 grade. All the other kinds of representation occurred in both grade levels.  

There is no big difference in the total number of uses of representation when 

comparing the two grade levels. Only ―numbers, arithmetic‖ was used more often in 

fourth grade (8.10) than in second (3.60). 

 

 
Table 3: Average number occasions individual representations are used (2

nd
 and 4

th
 

grade)  
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Differences in the persistence and total word problem score 

Table 4 shows the differences in the persistence which was measured in seconds via 

time sampling and the total word problem score. The total word problem score is the 

probability of students to solve a word problem correctly – it is the mathematical 

average of correct solutions for all word problems.  

On average, members of the HC group (2
nd

 grade) needed less time to solve the story 

problems. That was not the case for the 4
th

 grade students. At this grade level, the 

members of the LC-group needed less time for working on the story problems.  

On comparison of the two grade levels, it becomes obvious that students of the 2
nd

 

grade need more time to solve the story problems than students of the 4
th

 grade. On 

average, 2
nd

 graders needed 105.85, 4
th

 graders 69.86 seconds.  

At both grade levels, students of the HC group achieved a higher total word score 

than students of the LC group. HC students of the 2
nd

 grade reached a score of .24, 

HC students of the 4
th

 grade a score of .36. The 2
nd

 grade LC students only reached a 

total word score of .03 and 4
th

 graders only scored .16. 

Comparing the two grade levels, it becomes obvious that students of the 4
th

 grade 

achieve a higher total word score (.26) than students of the 2
nd

 grade (.15). 

 

 
Table 4: Average persistence and total word problem score (2

nd
 and 4

th
 grade)5  

OUTLOOK 

The design and development of the system of categories has been completed. Using 

this system, the remaining research questions will be answered. At the moment, the 

observers are analyzing the video material of our study using the system of 

categories. Further results of the analysis will be presented later on.  
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APPLICATION AND THE IDENTITY OF MATHEMATICS 

Kasper Bjering Søby Jensen, IMFUFA, Roskilde University, Denmark 

In the paper a conceptual framework for discussing the identity of mathematics as a 

school subject is constructed with particular emphasize on application of 

mathematics. The framework is used to analyze the identity of mathematics, as it 

appears on two different kinds of domains: the political system and the teachers. At 

the end it is discussed whether this framework gives us new insights into 

mathematics teaching. It is concluded that the framework can articulates important 

aspects. 

INTRODUCTION 

This paper presents a theoretical element of a larger research project on the identity 

of mathematics as a subject in the Danish general upper secondary school (the 

Gymnasium). The term identity is borrowed from the subject specific regulations.  

Every subject of the Gymnasium has its own regulation, starting with a paragraph 

named ―identity‖. An analysis of those paragraphs shows that an identity of a subject 

seems to consist of three aspects: 1) A general description of the objects studied in 

the subject, 2) specific descriptions of methods, theories, contents, etc. in the subject 

and 3) external justifications of the existence of the subject as an independent entity. 

Those three aspects are used to compare different subjects, by highlighting their 

principal differences. They are also used to declare how the political system 

officially wants the subject to be identified. For many of the subjects, such 

identification may be uncontroversial. But in the case of mathematics, this is not so. 

The identity of mathematics as a discipline and especially as a school subject is in 

general disputed. 

I define an identity of mathematics as a holistic view of what kinds of tasks, contents, 

knowledge, actions, etc. that can be recognized as belonging to the field of 

mathematics. It is my claim that an identity of mathematics as a school subject can be 

described as a vector in (at least) three dimensions: 1) A view on the role of theory, 

2) a view on the role of application and 3) a view on the role of meta-issues. In short 

they can be named the in-, with- and about dimension (with inspiration from Jankvist 

2008). A dimension can be described in several ways. For this purpose, a set of 

levels ordered by inclusion will be convenient. 

Identities of a school subject are not well described animals, living in a well defined 

territory. It is blurred creatures living on qualitatively different domains and in 

different states. The domains can be the political system, the individual teacher, a 

textbook, a student, etc. The different kinds of states found on a domain depend on 

the characteristics of this. 

A math teacher is an example of a domain. Here we can find an identity of 

mathematics as a school subject in different states, e.g. intended identity, practiced 
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identity and principal identity. While the first two have to do with teaching, the last 

one is the persons more general identification of mathematics as a discipline and 

academic field.  

My overall research question(s) is: »Which identities dominate the mathematics 

subject in the Danish gymnasium today and what consequences does it have for the 

possibilities of making general changes in the identity?«. By this I want to grab the 

struggle between identities focusing narrowly on mathematics as a theoretical field 

versus identities allowing mathematics to be a tool for application outside its own 

world. 

To answer this question, I am investigating four categories of domains: 1) The 

political system, 2) the textbook systems, 3) the math teachers and 4) the academic 

environment around the subject of mathematics in the Gymnasium. In this paper I 

will present some of the theoretical considerations about the with-dimension. I will 

follow this up, by giving some examples on the analysis of two of those four 

mentioned domains, the political system and the math teachers. 

I should underline here, that the discussion about the identity of mathematics as a 

subject in the Danish Gymnasium is relevant, because of a larger reform that was 

fully implemented in 2008. The reform has moved the subject of mathematics toward 

a stronger role for application. This can be seen in two ways: 

Firstly, the reform has emphasized cooperation between different subjects. This 

change forces mathematics to think in terms of application. This change has been 

discussed in several articles (e.g. K. B. Jensen (2010) and Andresen & Lindenskov 

(2008)). I will not go deeper into this in the paper. Secondly, there are a larger 

emphasize on modeling and application in the new regulations of mathematics as a 

single subject. It is this change that I will discuss here. What role does application 

and modeling play, when mathematics is on its own? This role has earlier in the pre-

reform era been discussed in e.g. T. H. Jensen (2007). 

THE ROLE OF APPLICATION 

As claimed above, the view on the role of application is an independent dimension in 

an identity of mathematics. The simplest ―value‖ for this dimension would be zero, 

corresponding to the view, that application of math shall not play any role at all. This 

is not the same as saying that mathematics can‘t be applied, but that the applications 

belong elsewhere. This viewpoint can be found among the math teachers in the 

Danish Gymnasium (that typically holds a master degree in mathematics from a 

university), but in this very radical form, it will probably be rare. 

So to describe the existing viewpoints as parts of identities, I have chosen to 

formulate a suitable number of inclusively ordered levels, i.e. that a lower level can 

be seen as contained in a higher level. In order to construct those levels, it will be 

necessary to choose a set of notions about application of mathematics. 



Working Group 6 

 CERME 7 (2011)  975 

Application is a matter of working with models in a more or less unfolded way. A 

model is an object, that can be described as a triple (S,M,R), where S is a real-world 

situation, M a collection of mathematical objects and R a relation between S and M 

(Blum and Niss, 1991). Modelling is a process, in which a model is constructed. The 

modelling process can be described as six sub-processes, as in Blomhøj and Kjeldsen 

(2006). The sub-processes are shown in figure 1. 
 Model results Model results  

Perceived 
reality 

Domain of inquiry 

Mathematical 
system 

Model results 

Action/insight 

(a) Formulation of task 

(b)  Systematiziation   

(c)  Mathematization (d) Mathematical analysis 

(e) Interpretation/evaluation   

(f) Validation 

Data 

Theory 

System 

Experience 

 

Figur 1: The modelling cycle consisting of six sub-processes 

A good entrance to the discussion of the role of application is to talk about different 

kinds of tasks based on the application of mathematics. From the modelling-cycle, 

five kinds of such tasks can be defined: 

 Modelling task. A task that can only be solved by going through sub-process 

(b), (c), (d) and (e), and eventually also (a) and (f). 

 Model task. A task involving sub-process (c), (d) and (e). 

 Mathematization task. A task involving sub-process (c) and eventually (d). 

 Interpretation task. A task involving sub-process (e) and eventually (d).  

 Wrapped task. A task that in any practical sense only involves sub-process (d). 

I will then define roles of application on five inclusively ordered levels: 

1. Illustration. The role of application is narrowly to illustrate the pure theory.  

2. Motivation. The role of application is to motivate work with the pure theory. 

3. Service function. Math has a service function in other subjects and areas. 

4. Personal tool. Math is a tool, one carries around to use in the real world. 
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5. Critical inquiry. Math is a field for investigating a wide range of problems. 

Level 1 and 2 will be found in identities that see mathematics as a field for only pure 

theoretical activities. Applications must serve theory. On the illustration level, it is 

not important that the application has anything to do with the real world, while on 

the motivation level the cases must have some sort of real world relevance. That 

gives the order of the two levels. On these two levels wrapped tasks are sufficient. 

On level 3, mathematics is recognized as a field of theory that other subjects and 

fields may borrow with great advantage. For instance when biologists and physicists 

needs a differential equation to be set up, solved and interpreted, or a carpenter needs 

to calculate the dimensions of a roof. On this level mathematics should deal with real 

world problems, but not before they have a clear mathematical form. On this level 

wrapped tasks are found, but also mathematization, interpretation and model tasks.  

On level 4, it is important to be able to solve real world problems, when you meet 

them. Math should be a tool that you carry with you to use on appropriate problems. 

An economist must know how to handle problems like »what is the actual taxation as 

a function of income tax and VAT«, and a physicist must know how to handle 

problems like »with what speed does a parachute land« and »how early does Venus 

rise«. Therefore those questions are relevant to ask in mathematics. Wrapped tasks 

play a minor role on this level and the modeling task are introduced. 

On level 5, mathematics is recognized as a field where a lot of open questions can be 

examined critically. It can be tasks like »what is the best means of transport«, »how 

many bosses should a company hire«, »how many elevators are needed in a 

warehouse with many floors«, and »should we trust the polls«. On level 5 a major 

part of the tasks worked with should be of the modeling kind. 

Those five levels will be a part of my framework to analyze what identities are 

dominating in the Danish Gymnasium. In the two following sections, I will give 

examples on the use on two different categories of domains. 

THE POLITICAL SYSTEM 

In the political system, the identity of mathematics as a subject in Danish 

Gymnasium lives primarily in different kinds of documents. Therefore document 

analysis is the most important method to uncover it. The political system is an 

aggregation of many peoples‘ individual viewpoints and interests, so it is not 

expected that a clear well defined identity is found. 

The documents to analyze are first of all the regulation, especially its appendices on 

mathematics. Secondly it is the guidelines following the regulation. And then it is the 

annual written examinations. The written examination is taken by all students with 

mathematics on medium or high level. It consists of typically 16-17 tasks, which 

must be answered in 5 hours without communication with others. 
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The regulation presents mathematics as a subject in three steps: 1) Identity and 

purpose, 2) Mathematical aims and 3) Core- and extension material. The purpose 

says: 

One of the aims of the teaching is to give the pupils knowledge of some of the important 

parts of mathematics‘ interactions with culture, science and technology. In addition, the 

aim is to give the pupils an insight into how mathematics can contribute to understanding, 

formulating and solving problems within a number of different subjects, as well as an 

insight into mathematical reasoning… (EVA 2009, p. 59) 

This text doesn‘t focus narrowly on mathematical theory. Actually one can barely say 

that it mentions that mathematics as a theoretical activity should play an independent 

role. So we must be above the illustration- and motivation level. The talk of 

interaction and solving problems in other subjects, points at a service function- or 

personal tool level. So let us look at just one of the following nine mathematical 

aims: 

Pupils should be capable of using functions and their derivatives in setting up 

mathematical models based upon data or knowledge from other subject areas. They 

should also be able to have an opinion about the idealizations and range of such models, 

be able to analyze given mathematical models, and undertake simulations and 

extrapolations. (ibid) 

This text presents theoretical elements as tools to apply in real world. So again we 

are above illustration and motivation, and the talk of pupils ―being capable of‖ and 

―have an opinion about‖ draws towards the personal tool-level. But then the core 

material is presented. The core material is ten dots presenting the ―syllabus‖. The 

content that every student are expected to learn. Here are three of the 10 dots: 

 the definition and interpretation of the derivative, hereunder growth rate and 

differentials, the derivatives for elementary functions and the rules for the 

differentiation of f + g, f – g, k · f, f · g, f ○ g, proof of selected derivatives 

 monotonic functions, maxima, minima and optimization along with the connections 

between these concepts and the derivative 

 fundamental properties of mathematical models (EVA 2008, p. 60) 

The first two dots present pure theoretical contents. Application and real world are 

not mentioned. The other seven dots are of the same character. And then the 10th last 

dot, talks about models. So in the core material, mathematics is presented as a large 

collection of theoretical concepts and rules, and models as a little additional aspect. 

From this perspective, applications are drawn towards something serving the theory. 

Finally, if we look at the Guidelines, they say: 

To demonstrate knowledge about application of mathematics means, that you in a 

reflected way can present some content that you have worked with. In that do not lay the 
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idea that students independently can take care of a mathematical problem and modeling of 

a material or problem, which has not been prepared. (UVM 2008, p.22., my translation) 

In this text, the talking about unassisted applications is laid dead. Instead application 

is something taking place in continuation of work done by others. So this text places 

the role of application around the level of motivation or service function. 

The four pieces of text draws together a blurred picture of the systems declared 

identity. The relation between theory and application is unclear. According to the 

general declarations of aims and purposes, application should be very central. But if 

one looks at the list of mandatory contents, it is the pure theory that is in focus. It is 

also unclear on what level applications are to be presented. But again, the general 

parts draw up, the concrete parts draw down. 

 It is therefore my claim that the regulation leaves the teacher with a broad range of 

choices of what identity he or she will practice in the daily teaching. Therefore it is 

very important to examine the identities held by the individual teachers. But the 

system has one important tool left: tasks for the written examination. Even though 

the rules are unclear, the teacher still has to take the written examination into 

account. 

The written examination is a collection of typically 16-17 tasks, that every student 

must answer in 5 hours. The first five tasks must be answered and handed in, in the 

first hour, without any aid. The remaining tasks must be answered with the use of 

calculators, tables of formulas, computer programs and other means, not including 

communication with others. The tasks are very similar from year to year. They are 

therefore a clear message to teachers and students about what kind of task they 

should be training to answer. Out of the 11-12 tasks with aids, 5-6 are formulated in 

an applied way (i.e. by referring to some extra-mathematical context). It is my 

assumption, that these tasks are the strongest declaration from the system about, what 

role application should play. Here I will just give two examples of typically applied 

tasks from written examination on the highest level (UVM 2009, my translation): 

Example A 

In a model, the weight of a certain fish as a 

function of the fish‘s age, is given by: 

 

Where w is the weight (measured in kg), and t is 

the age (measured in years). 

a) Use the model to decide the fish‘s 

weight, when it is 3 years. 

b) Determine the age of the fish, 

when the fish‘s weight is 13 kg. 

Example B  

In a garden a flower bed is landscaped with the 

shape of a circle sector (se the figure). 

It is informed, that the area of the flower bed as 

a function of the angle v (measured in radians) 

is: 

 

a) Determine v, so 

the area of the flowerbed becomes as big 

as possible 
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Both of these tasks are of the wrapped kind. In both tasks are given an explicit 

expression and asked questions that it is very simple to unwrap as pure mathematical 

questions. Said in another way, it is possible to formulate both tasks as pure 

theoretical tasks. Therefore the term ―wrapped‖, because it is pure tasks wrapped in 

an extra-mathematical context. 

Example A is a task of the kind given y = f(x), find f(x0) and x so that f(x) = y0. 

Example B is of the kind given y = f(x), find the x where f(x) has its maximum at the 

interval [a;b]. It is my claim, that those tasks focuses mathematics on the theoretical 

dimension, while it places what we could call the systems practiced identity on the 

lower levels of the application dimension. The tasks do illustrate and motivate theory 

through application, but they do not train how to apply math. 

THE TEACHERS 

In the case of a teacher, the identity lives as a collection of viewpoints, believes, 

habits, abilities, etc. inside the teachers mind. Therefore more sophisticated methods 

than document analysis are needed, to uncover it. In the singular case, the best 

method would probably be a combination of deep conversations and observation of 

teaching practice. But if we want an overview of the entire population of teachers, 

we need to do a survey on a well chosen sample. 

Here the main problem is how to screen a person‘s mind. If the person is asked 

directly about the identity, you will probably not get complete and accurate answers. 

Therefore it is necessary to ask questions where the answer builds more or less 

unconsciously on the teacher‘s identity of mathematics. Examples of such a method 

are to present a number of different kinds of tasks to the teacher, and ask him or her 

to place it in relation to their ideas about the subject (e.g. central, supplementary or 

not belonging), and to show the teacher four proposals for the identity-paragraph in 

the regulation and ask which one the person would vote for in a referendum. 

It is not the purpose of this paper to justify my methodology, present results or draw 

any conclusions. But I will exemplify the use of the identity concept on the domains 

of teachers, by referring to interviews made with four math teachers, as a pilot study 

before designing a survey. 

The teachers were asked to comment on the task »How early does Venus rise? «. 

This task can be answered in many different ways. Venus is placed between the 

Earth and the Sun. Therefore it must rise relatively close to sunrise. One way to 

answer the question, is to estimate the greatest time difference between the rise of 

Venus and sunrise. By making a plane geometric model one can convice him- or 

herself, that this happens when the Sun-Venus line is perpendicular to the Earth-

Venus line. In terms of Sun-Earth (rE) and Sun-Venus (rV) distances, this gives the 

following time difference (T): 
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. 

The interviewed teachers were not presented for this or any other ideas to a solution. 

Two of the teachers refused the task, claiming that it does not belong to the field of 

mathematics. One of these two teachers explained this in the following way: 

T1 […] as the question stands, you can‘t calculate it unless you have some 

preknowledge, unless you have been taught astronomy. And of course there 

is some mathematics in it […] It would be a good fourth question in a 

report, where a lot of other questions leads up to it. 

According to this teacher, the question is first relevant, when another subject has 

been on work. Then there will be something to do for mathematics. This indicates a 

service function-level. The other refusing teacher says: 

 T4 It depends on where you see it from. And it requires different astronomy 

software at your disposal… I really don‘t think that has something to do 

with mathematics. 

This teacher doesn‘t recognize the task as something where mathematics can play a 

role. This does as well indicate that we are not at the highest level of application. A 

teacher at the two highest levels would be expected to spontaneously being open 

towards investigating the possibilities of a question like this. 

The two other teachers didn‘t refuse the task, but declared the task to be 

―supplementary‖, i.e. useful but not central.  

T2 […] the description of the celestial bodies is traditionally handled by 

physics. But fundamentally it is also a mathematical question and can be 

modeled with mathematics […] so of course it can be supplementary, but as 

the task stands here… it demands to much additional knowledge. 

Here the teacher does not refuse the task. Instead he talks about modeling. He is 

though critical to the missing informations. So to him, mathematics is not a field of 

critical inquiry, where open questions are examined. On the other hands, it is more a 

lack of information, than a lack of another discipline that bothers the teacher. This 

indicates a teacher on the personal tool-level. 

So what I try to indicate here is that by asking those kinds of questions, it is possible 

to state a first impression of a teacher‘s position on the with-dimension of identity. 

DISCUSSION 

In this paper I have presented a conceptual framework of the identity of mathematics 

as a school subject. The part of the framework describing the application of 

mathematics was particularly developed. The framework has been used to discuss the 

identity of mathematics living on two different kinds of domains. The political 
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system and the teachers. Examples have been given on how to use the conceptual 

framework on those two domains. 

Whether a conceptual framework is useable or not, must be decided in its ability to 

articulate relevant problems from reality. In this case it is the overall discussion on 

the conflict between a pure theoretical approach to mathematics versus an applied 

approach and the discussion between different approaches to application. 

The identity concept adds a way of addressing the disputes on what should 

characterize the mathematics subject. The concept describes different holistic views 

on the subject. Differences in such views can be used to address special challenges, 

when the aims and contents of the subjects are changing. At the same time it can be 

used to give an overall quantitative description of ―the state of the art‖, though this is 

methodological complicated. So the conceptual framework presented, seems to be 

useful to the Danish context, but may very well be so for other countries as well. 
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STUDENTS CONSTRUCTING MODELING TASKS TO PEERS 
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In a mathematics education course at the University of Gothenburg, students were 

asked to develop modelling tasks or modelling situations to each others. There are 

many reasons for encouraging the development of peer tutoring among students. 

When explaining something for a class mate, students must clarify their own thinking 

in order to give an explanation and must be prepared to have misconceptions 

confronted and corrected through discussion and listening. In general students learn 

much more if engaged in the teaching of a course. But will the receiving students 

learn what was intended? In this paper I will discuss how this activity was carried 

out by two groups of students and what they thought they learned from it. 

INTRODUCTION 

To teach matters of learning and teaching principles to prospective teachers is a huge 

task. There is so much stuff and information to cover in order to prepare prospective 

mathematics teacher for the upper secondary school level and regularly rather few 

teaching hours in which we can teach it. In a mathematics education course for 

prospective mathematics teachers, we decided to try to combine several course 

objectives such as: Learning how to use a wide spectrum of technological resources, 

learning how to engage and challenge students‘ mathematical thinking, and learning 

how to create learning situations which are relevant for most students in upper 

secondary schools. 

Technological resources 

We wanted them to learn different aspects of GeoGebra since it is such an excellent 

tool when teaching and learning many different branches of mathematics. It is free, 

portable (runs on any machine who runs Java), and combines Algebra, Geometry and 

spreadsheet number theory. We also wanted them to learn how to use digital cameras 

and free software for splitting a film into images. All students had access to cameras 

and/or cellular telephones which they could film with. We also introduced them to 

the software VirtualDub, which enables you to split avi files into images. All films 

are made of many images, from 25 – 150 images per second. It is not surprising that 

there exist software that can separate the images from each other again. 

Students  

There were 24 students in this mathematics education course, they had all been 

studying mathematics at the university level for two semesters, and some of them 

(although not all) also had studied another teaching subject such as physics or 

chemistry. In our course, they have read and discussed article about theories on 

learning as well as papers on mathematical modelling (namely, Sfard, 1991; 
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Lingefjärd, 2006). We decided to split them up in six groups with four students in 

every group. Some of the students were known to be good in mathematics, some of 

them already knew about GeoGebra, some of the students knew about software for 

editing and handling movies, and so forth. We tried hard to make the groups equally 

strong, with respect to these variables, as possible. 

Three groups were chosen as teaching groups (presenting tasks) and three groups 

were chosen as students groups (receiving and solving tasks). One teacher group and 

one student group were paired. 

Student activity 

All three teaching groups developed interesting teaching materials. What I will 

present in this paper is just one task out of three and perhaps not the best or most 

accurate task. Nevertheless, it is an interesting activity in the sense that it combines 

most, if not all, of the course objectives mentioned above. 

THEORETICAL FRAMEWORK 

Studies on student learning (Ramsden and Entwistle, 1985; Johnson et al., 1989, 

Johnson and Johnson, 1991, Ross and Cousins, 1993, Marton and Booth, 1997) 

suggest that students adopt at different times and in different circumstances, different 

approaches to learning. In groups of two or more individuals, students work together, 

share and clarify ideas. Through talking to each other about subject matter, students 

can discover what they know and what they do not understand and ‗make sense‘ of 

what they are learning. Some studies show that peer or co-operative learning forces 

students to engage in higher order thinking, which includes application, analysis, 

synthesis and evaluation (Ellis and Whalen, 1990). Of course there is no certain way 

to declare that peer or co-operative learning is the best way to learn. It seems that the 

more we learn about different ways of learning, the more complex and vague the 

picture becomes. 

The reader might find that it has been somewhat bewildering, our bringing together 

findings on qualitative differences in the way in which learning is experienced that 

originate from studies of learning in widely differing educational contexts, that if infants, 

preschool children, secondary school pupils, and university students, and moreover from 

such widely differing cultural contexts as Britain, Sweden, China, Uruguay. Our 

assumption is that a phenomenon, such as learning as experienced, can be described in the 

terms of the complex of differing dimensions of variation identified. (Marton & Booth, p. 

54, 1997)  

In order to learn something certain conditions must be met. Learning situations are 

always experienced within a framing of different circumstances, such as a context, a 

certain time, a place, and so forth – while a phenomenon is experienced as abstracted 

from or transcending such an anchorage. But learning is also closely connected to the 

possibility of variation. 
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Variation theory makes it possible to analyse teaching and learning in 

commensurable terms, which implies that ‗what the teacher intends the students to 

learn‘, ‗what is made possible to learn in a lesson‘ and ‗what the students learn‘ are 

connected and described in a similar way. From a variation theory position, learning 

is defined as a change in the way something is experienced, seen, or understood. A 

fundamental assumption is that the learner, in one way or another, experiences what 

is learned. The educational system aims at developing the learners‘ capability to 

handle various situations, to solve different problems, and to act effectively 

according to one‘s purposes and the conditions of the situation. However, the 

possibility of acting on, or handling, a situation depends upon how we make sense of 

it. We act in accordance with how we perceive the situation. This is affected by our 

previous experiences, but the experiences we see as relevant are also affected by how 

we experience the situation. ‗We try to achieve our aims, not in relation to the 

situation in an objective sense but in relation to how we see it‘ (Marton et al., 2004, 

p. 5). 

When working with prospective teachers, it is of interest to regard what they see as 

possible to learn from a situation both in the sense of their own learning, but also in 

their role as future teachers. In variation theory, learning is seen as becoming able to 

discern critical features of an object of learning. The object of learning is the 

definition of a competence or understanding of something, for example a particular 

content taught in a mathematics lesson. The object of learning is consequently not 

the same as learning objectives in a course; it is not the subject or the content taught 

and learned but rather the capability connected to that particular knowledge. 

Teacher group task 

The students in this group went to a gym with a basketball hall and while one of 

them were practicing distance shots with a ball against the basket, the others in the 

group practiced to film the shots by different cameras and cellular telephones from 

several distances. When they were satisfied with the shooters performance and the 

content in the films, they went to a computer lab at the university and transferred all 

the films to a computer, watched all the short films and selected the best film in 

terms of quality. After that they downloaded the free software VirtualDub and used it 

to split the three second long film into frames. See figure 1 and figure 2 for two such 

frames.  There are several more frames between these two. 

 

Figure 1&2: The 

start of a basket 

shot and the 

same basket shot 

a moment later 
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Researcher: So why did you choose this specific activity? What do you see as the 

possible object of learning? What will your peers understand or learn from 

this activity? 

Student 1: Our first objective of learning is of course that our peer students should 

learn more about mathematical modelling. But we also think that they will 

learn about specifics in the modelling process, specifics such as that every 

point in the graph has a certain value which defines the point‘s position in a 

Cartesian coordinate system. When you look at the different representations 

of the same object in GeoGebra, you understand more about that object. 

Reseacher: Please elaborate on that. 

Student 1: I am referring to Sfard‘s theory on dual nature of mathematical conceptions. 

It must be better to see different representations and be able to vary between 

them in order to understand more about them... 

Student 2: We also think that when you look at that ball‘s position, thereby sketching 

the trajectory of the ball, then you understand something about how the 

single images are part of a whole film. This is represented for thirteen 

positions of a ball. So you understand more about the connection between 

reality and the images and that connection is exactly the mathematical 

model. 

It is obvious that the teaching group chiefly was focused on the mathematical 

modelling activity as their object of learning. For them this whole complex process 

with many different specifics became reification into the mathematical model. 

Besides being software for teaching geometry and algebra, GeoGebra also contains 

several other possibilities suited for teaching different branches of mathematics. One 

such possibility is to insert an image anywhere in the coordinate system and then use 

it as a background. Another one is to mark a point at that image and then select 

―copy the coordinates to the input line‖, e.g. A = (-2.02, -0.56). From the input line, 

you can easily relabeling the coordinates to A1 = (-2.02) B1= (-0.56) and thereby 

make them part of the spreadsheet. Once in the spreadsheet, the set of points can be 

used to create a List of points, which then becomes an object. In our example, the 

ball‘s centre act as the marking part in every picture and with every frame put in the 

same place, GeoGebra present us with a set of data points as in figure 3.    

 

 

 

Figure 3: The motion of the 

ball represented in two ways. 
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Student: And if you take any of the points (in GeoGebra) and drag it a little bit off, then 

you get another trajectory. See here, the fitted curve moves. So, by varying the 

position of just one single point, the mathematical model can indicate that the 

shooter made a goal or maybe missed to make a goal. It will teach you even 

more about mathematical modelling and how careful you must be when you 

measure data. (See figure 4). 

 

Figure 4: Observe that the trajectory of the fitted curve, the correlation coefficient and 

the formula for the polynomial will all change if one point is moved. 

It seems as if the students hold an intuitive sense of the variation possibilities offered 

by the technology. It is important to acknowledge that variation can be represented in 

many different ways. In the student statement above, it is the concept of position 

which is varied in different representational forms. It is also notable that for the 

students in the teacher group the reality now was transferred into the film, with part 

of that reality expressed by the frames inside GeoGebra. 

As indicated, the students in the corresponding student group were given 13 frames, 

illustrating the shot from the start and up to the peak of the balls trajectory towards 

the basket. They were asked to construct a mathematical model based on the balls 

position in the frames and then use the model to predict if the shot was a goal or not. 

Student group solving 

After some initial discussion about the procedures and command structure of 

VirtualDub and GeoGebra with regard to this specific problem, they started to insert 

the images into GeoGebra and once done with this and with creating the set of data 

points, they also started to analyse the situation:  

Student 1: Now when we have all the points in the spreadsheet and have created the 

List of point, we can use the regression command FitPoly[Lista1, 2]. 

If we do that, with a polynomial of grade 2, we should get a curve fit that 

shows a hit or a fail. Do you follow? 

Student 2: Yes, this is such an excellent way of introducing and using the concept of 

equations of second degree. This is actually the first time that I understand 
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why we actually teach the students about them in the upper secondary 

school. Amazing! 

Researcher: And what do you think that you are learning while you do this? What do 

you see as the object of learning?  

Student 1: There are several things of course, I was not aware of the possibility to just 

go away and make a film and the split it into images and just say to the 

students: Analyse this situation. It is just so cool! 

Researcher: So what did you learn? 

Student 2: I also learned much more about second degree equations and I will 

definitely use part of this when I teach introduction to second degree 

functions next time, it is awesome. 

What we see here is that the students group assume a different object of learning 

compared to the teacher group. The object of learning can obviously be seen from 

three different points of view: the ―teacher‘s‖, the ―student‘s‖ and the researcher‘s. 

The object of learning seen from the point of view of what the teacher or, in this 

case, the students who acted as teachers, is what is called the intended object of 

learning. Compare this to the ―intended curriculum‖. The intended object of learning 

was connected to mathematical modelling and the correlation between data points 

and regression curves. 

Any teacher hopefully always has a particular goal and intention about what the 

students should learn, for instance that students are able to understand that a function 

must be continuous in order to have a derivative everywhere. On the other hand, 

what students (the learners) actually learn is the experienced (lived) object of 

learning and that can be observed during the learning situation by the students‘ 

expressions, or after the lesson in an exam. Obviously, it is not necessary that the 

intended and the experienced (lived) object of learning coincide. In this activity, the 

students in the students group, experienced another object of learning, namely an 

example of how second degree equations can describe ball trajectory paths.  

The object of learning seen and analysed from the researcher‘s point of view, 

implying ‗what it is made possible to learn‘, is the enacted object of learning. The 

enacted object of learning describes what features of the content are possible to 

experience during a ―lesson‖. The variation used to elicit the features, the values 

within a dimension of variation, is the range of change (Watson & Mason, 2006) and 

the way it is possible to discern the variation is through different patterns of 

variation. 

For me, as a researcher, it was most obvious that the students now experienced a way 

of working with technology that can enable their own teaching in their future teacher 

professions. Some subset of their object of learning was of course related to 

mathematical modelling and the selection of suitable curves for the curve fitting 
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process. For me that was in the details, while the overall picture was about new 

challenging working methods and opportunities when technology is at hand. 

Altogether, these results created an opportunity for a challenging seminar with all the 

prospective teachers where we discussed what they had learned and what the 

intentions were. That was probably the most vivid discussion I had ever seen in a 

seminar. 

DISCUSSION 

It seems that this is an excellent example of how modern technology enables us to 

construct interesting mathematical problems directly from situations around us. It 

seems hard to imagine that this problem could have been constructed and presented 

by one group of prospective teachers to another group of prospective teachers 

without technology at hand. 

Nevertheless, the experiment with students constructing problems for others enables 

someone to study the learning outcome and thereby observing the difference between 

the groups acknowledge of the object of learning and between my own expectations 

of the learning outcome.  

The more complex a teaching and learning situation gets the harder it is to analyse 

the situation in stereotypes or easy commensurable terms. Whenever we try to teach 

something, we should be aware of the fact that students or humans never perceive 

reality, since here is no reality outside our notion. 

We cannot separate our understanding of the situation or our understanding of the 

phenomena that lend sense to the situation. Not only is the situation understood in terms 

of the phenomena involved, but we are aware of the phenomena for the point of view in 

the particular situation. Furthermore, not only is our experience of the situation molded by 

the phenomena as we experience them, but our experience of the phenomena is modified, 

transformed, and developed through the situations we experience them in. (Marton & 

Booth, p. 83) (Italics in original) 
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There is not only a consensus that modelling is a big idea for mathematics as a 

scientific discipline, but also that this big idea should have an impact on the 

mathematics classroom. Consequently, teachers should be aware of this big idea and 

know how modelling relates to a variety of curricular contents. However, empirical 

research into views of pre-service teachers related to big ideas in general and to 

modelling as a big idea in particular is scarce. Hence, this study concentrates on 

views of Austrian and German pre-service teachers about the significance of 

modelling as a big idea. For this purpose, we focus on the role of modelling as a big 

idea, and report about results concerning the pre-service teachers‘ perceptions. 

INTRODUCTION 

Modelling is considered as a big idea by the scientific communities in mathematics 

and mathematics education (cf. Blum et al., 2007; Lesh et al., 2007; Stillman et al. 

2008) – it remains very important for mathematics and its development, and there is 

a consensus on its importance for mathematics instruction and mathematical literacy. 

In contrast, empirical findings have suggested that mathematics teachers might lack 

awareness of the significance of modelling in everyday instruction. However, there is 

still a need of broadening the empirical base in this field, and teachers‘ perceptions 

about the significance of modelling in comparison with other big ideas have hardly 

been the subject of research so far.  

This paper responds to this need of research by investigating views of Austrian and 

German pre-service teachers about the significance of modelling. These views about 

modelling are also compared to views about other big ideas, and they are, moreover, 

examined with respect to specific content areas. The results indicate that modelling is 

perceived as a significant big idea among others. However, low evaluations by a sub-

group of pre-service teachers suggest that the awareness of modelling as a 

mathematics-related big idea should be fostered. Intercultural differences could stem 

from differences in declarative and procedural professional knowledge about 

modelling. 

In this paper, we will first give an introduction to the theoretical background of 

considering modelling as a big idea. After specifying the research questions, we will 

give information about sample and methods in a corresponding section. We will then 

present results and finally discuss them in a concluding section. 
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THEORETICAL BACKGROUND 

The ―idea‖ of big ideas 

Learning opportunities can be particularly rich when they address mathematical 

concepts holistically (cf. e. g. English, 2003). In mathematical content knowledge, 

the importance of overarching concepts has been identified by Bruner (1960) and 

Schweiger (2010), in whose work the notion of ―fundamental idea‖ is central. 

According to Schweiger (1992, p. 203), a fundamental idea is „a bundle of actions, 

strategies or techniques, […] that 

1. can be made visible in the historical development of mathematics, that  

2. appear as sustainable for structuring curricular conceptions vertically, that 

3. are appropriate as ideas for giving answers to the question, what mathematics is, 

and for speaking about mathematics, that therefore  

4. can make mathematics instruction more flexible and at the time more transparent.  

Furthermore, […] an anchoring in everyday language and thinking, like a corresponding 

archetypical thought, expression or action [is] necessary.― 

The idea behind the approach of putting such fundamental, overarching, or simply 

―big‖ ideas in the foreground of mathematics instruction is to facilitate building up 

links across contents, to foster the organisation of mathematical knowledge, to 

encourage reflection and to help learners to make sense of mathematics. Seen from a 

moderate constructivist perspective, these aspects can be used to describe what can 

be seen as a big idea. Such a characterisation affords integrating prior approaches to 

overarching concepts into a pragmatic understanding, and offering an openness 

towards the reflections about mathematics by teachers as it may take place in their 

professional development. Accordingly, by referring to the notion of big ideas in 

mathematics (s. also Kuntze et al., accepted), we think of ideas that should 

 have a high potential of encouraging learning with understanding of 

conceptual knowledge (including orientation, linking and anchoring of 

knowledge)  

 be relevant for building up meta-knowledge about mathematics as a science  

 support abilities of communicating meaningfully about mathematics  

 encourage reflection processes of teachers connected with designing rich and 

cognitively activating learning opportunities as well as with accompanying 

and supporting learning processes of students. 

Hence we do not consider big ideas as belonging to a pre-defined catalogue, but we 

emphasise the potential of these ideas for making mathematics meaningful and rich 

for conceptual learning according to the aspects above. Examples of big ideas the 

project ABCmaths (www.abcmaths.net) focuses on are ―using multiple 
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representations‖, ―dealing with infinity‖, ―doing-undoing/inverting‖, or 

―generalising/specialising‖ (for more details, see ABCmaths team, in preparation). 

Of course, these ideas may overlap, but they have different emphasis.  

Consequently, for profiting from rich learning opportunities, learners and also their 

teachers should be aware of big ideas linked to mathematics. We will exemplify this 

by focusing on the big idea of modelling. 

Modelling as a big idea in mathematics  

Indeed, ―mathematical modelling‖ not only clearly satisfies well the meta-scientific, 

curricular, historical and learner-oriented criteria of Schweiger (1992), but also 

affords reflecting on mathematical concepts and their roles for solving real-world 

problems as well as creating rich learning opportunities. As Pollack (1979, p. 240) 

states, modelling ―requires an understanding of the situation outside mathematics and of the 

process of mathematisation as well as of the mathematics itself‖. And, conversely, the role 

of mathematics can be recognised particularly clearly when reflecting about 

modelling processes. The contribution of mathematical ideas and concepts (Lakoff et 

al., 2000) can be made transparent for learners through their use in modelling real-

world problems. A prototypical example of the impact of modelling on mathematics 

with implications also for mathematics instruction can be seen in De Lange‘s (1996) 

approach of using real world problems as an opportunity to develop mathematical 

concepts. Further, the approach of developing mathematical knowledge by using and 

refining models not only allows curricular conceptions but also helps to anchor 

modelling in everyday thinking (cf. Blum et al., 2007; Lesh et al., 2007; Stillman et 

al. 2008).  

Implications for the classroom and desiderata for the professional knowledge of 

mathematics teachers 

Although mathematical modelling has had a history as long as mathematics itself, the 

same cannot be said of the history of mathematical modelling in school curricula. A 

good deal about modelling as classroom teaching and learning strategy has been 

written e.g. by Swetz et al. (1991) or White (1994). Today the importance of 

mathematical modelling is acknowledged in current curricula and standards. 

Consequently, modelling is given a key role in the assessment of mathematical 

competency. For instance, it is an important constituent in ‗Mathematical literacy‘, 

which is defined by the OECD / PISA (2003, p. 24): ―Mathematical literacy is an 

individual‘s capacity to identify and understand the role that mathematics plays in the world, 

to make well-founded judgements and to use and engage with mathematics in ways that 

meet the needs of that individual‘s life as a constructive, concerned and reflective citizen.‖ 

This definition highlights the relevance of modelling and underpins its role as a big 

idea. Consequently, competencies in modelling play an important role in national 

standards (cf. KMK, 2005; AECC, 2008), too.  
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Hence, developing modelling competencies is a fundamental goal for mathematics 

instruction as described by Klieme et al. (2001, p. 186): ―In the centre of basic 

education the ability of mathematical modelling should be found.‖ In the classroom, 

students should be encouraged and supported to engage in meaningful modelling 

tasks and modelling activities (Blum, 1996; Maaß, 2004). As a precondition it is 

acknowledged that students learn mathematical modelling by (actively) participating 

in the experience of constructing a model and working to correct and improve their 

models. This requires teachers to allow students to formulate, test, discuss and adjust 

their thinking. The role of teachers is to provide opportunities for this learning to 

take place and to guide the students through a modelling process, while allowing 

them freedom within each stage.  

As a prerequisite for teachers to design corresponding learning opportunities with 

rich modelling activities, teachers need to be aware of the idea of modelling and its 

relations to a variety of contents. Hence, teachers‘ views about the significance of 

modelling appear as crucial for the development of mathematics instruction. 

Teachers‘ views about modelling  

Studies into teachers‘ views about modelling have to be seen as embedded in more 

general research focusing on professional knowledge and teachers‘ beliefs or 

convictions (e.g. Shulman, 1986; Ball, Thames & Phelps, 2008). The corresponding 

theoretical background is developed in more detail in Kuntze (accepted). Leading to 

the research questions of this study about the significance of modelling as a big idea, 

we will, in the following, focus on specific findings. A recent study about teachers‘ 

views about modelling has been realised in the framework of the LEMA project 

(Maaß et al., 2009). In this study, teachers demonstrated little knowledge about 

modelling, e.g. about the modelling cycle. Kuntze and Zôttl (2008) showed that pre-

service teachers favoured tasks with low modelling relevance to tasks with higher 

modelling requirements. In a study by Kuntze (accepted) in-service teachers showed 

a tendency of similar patterns of answers in a task-specific survey centred on the idea 

of modelling. Again, the in-service teachers were not very confident with respect to 

their knowledge about the modelling cycle, which suggests a lack of professional 

knowledge related to modelling. We consequently expect that teachers might 

attribute not the highest significance to modelling, as a consequence of a non-

optimal professional knowledge related to modelling. These findings correspond to 

evidence from other studies suggesting that modelling in classrooms has to compete 

for attention (cf. Kaiser-Meßmer, 1985; Maaß, 2004). As there is probably a dilemma 

for many teachers between different instructional goals in concurrence with the aim 

of developing and fostering modelling competencies of the students, research should 

focus on the importance teachers associate with modelling in comparison with other 

important mathematics-related ideas like those presented in the previous section. As 

views about the significance of modelling as a big idea have hardly been subject to 

quantitative empirical research so far, this study on comparisons with the 
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significance attributed to other big ideas is exploratory. For linking the results with 

other findings in the ABCmaths project, we focus on the set of big ideas in the scope 

of ABCmaths.  

RESEARCH QUESTIONS 

Against this theoretical background, we focus on the following research questions:  

 What views about the significance of modelling as a big idea in mathematics 

do pre-service teachers hold? 

 How do these views compare to the significance attributed to other big ideas? 

 In which content domains do pre-service teachers root the importance of 

modelling as a big idea? 

 Are there differences between pre-service teacher groups of different school 

cultures? 

SAMPLE AND METHODS 

In order to find out about the research questions above, a test was administered to 

117 German pre-service teachers (78 female, 35 male, 4 without data) and 42 

Austrian pre-service teachers (27 female, 15 male) before the beginning of a 

university course, respectively. The German pre-service teachers had a mean age of 

22.33 years (SD = 3.56 years) and had been studying on average for 2.19 semesters 

(SD = 1.12). 61 pre-service teachers were preparing for being teachers in primary 

schools, 35 in secondary schools for lower-attaining students, and 15 for working in 

schools for students with special needs. The 42 Austrian pre-service teachers had a 

mean age of 22.5 years (SD = 3.34 years) and had been studying on average for 4.93 

semesters (SD = 2.10). All of them were preparing to be teachers in secondary 

schools. The choice of the sub-samples was not meant to be the base of a 

representative international comparison. However, comparing the answers in these 

sub-samples can give insights into how stable under a change of culture 

(internationally or related to school type) the considered teachers‘ views are. 

The exploratory approach of this study and the research questions highlight the need 

of gaining an overview on the pre-service teachers‘ views. This suggests the use of 

quantitative methods based on a questionnaire survey. Accordingly, the pre-service 

teachers were asked to complete a questionnaire unit on their views about the 

significance of modelling and other big ideas. This questionnaire unit was part of a 

longer instrument, which was used in an analysis of needs study in the research 

project ABCmaths (www.abcmaths.net; cf. also Kuntze et al., accepted). The 

questionnaire unit contained a rating of the overall significance of modelling among 

other big ideas (see Fig. 1), and a rating of their importance for specific content 

areas, respectively. The pre-service teachers were asked to rate the significance of 

the big ideas with numbers between 0 (low significance) and 5 (high significance). 

Moreover, the questionnaire unit provided short explanations on the big ideas 
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appearing in the questionnaire in order to prevent the participants from 

misunderstandings. In the following analyses, pre-service teachers with complete 

data are considered. 

RESULTS 

In this section, we present results in the order of the research questions given above. 

As an exception, we will refer to the last research question about inter-cultural 

differences constantly while reporting the results, in order to support easy access to 

the data. The pre-service teachers held on average a positive view about the 

significance of modelling as a big idea in mathematics. The average values of the 

ratings are in the upper half of the scale, 3.46 (SD=1.28) for the German and 4.06 

(SD=1.10) for the Austrian pre-service teachers. The difference is significant 

(T=2.58; df=103; p<0.05; d=0.55), indicating a possible inter-cultural effect. 

Figure 1 shows the importance assigned to modelling compared to the average 

significance attributed to other big ideas. As can be seen, modelling was not the most 

important big idea in the eyes of pre-service teachers. For German participants, the 

importance given to modelling was significantly lower than the importance given to 

―argumentation/proof‖ (T=2.08; df=70; p<0.05; d=0.33), ―multiple representations‖ 

(T=4.38; df=70; p<0.001; d=0.59) and higher than ―infinity‖ (T=2.94; df=70; 

p<0.01; d=0.49) and ―inverting‖ (T=2.41; df=70; p<0.05; d=0.37). For the Austrian 

pre-service teachers, no other big idea was rated significantly higher than modelling. 

However, the only big ideas to have been rated significantly lower than modelling 

were ―infinity‖ (T=4.54; df=33; p<0.001; d=1.03) and ―inverting‖ (T=2.89; df=33; 

p<0.01; d=0.54). 

 

 

 

 

 

 

 

 

Figure 1: Ratings of the significance of big ideas: Means and standard errors 

Beyond considering mean values, we focused on differences within the sub-samples 

by calculating (separate) cluster analyses on the base of the ratings of the big ideas 

(Ward method). The results are presented in Figure 2, showing a cluster with lower 

and one with higher ratings, splitting the sub-samples approximately by half. In the 
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case of the German pre-service teachers, these clusters show the largest difference in 

their views of modelling among all big ideas, whereas the ratings of modelling 

appear more homogeneous for the Austrian clusters.  

 

Figure 2: Ratings of subgroups of pre-service teachers based on a cluster analyses  

Correlations between the ratings of the significance of big ideas can give further 

insight into how these were interrelated in the eyes of the pre-service teachers. In the 

German sub-sample, the significance of ―modelling‖ correlates with the ratings of 

―functional dependence‖ (r=0.45**, correlation significant with p<0.01), ―multiple 

representations‖ (r=0.75***, p<0.001), ―inverting‖ (r=0.42*, p<0.05), and 

―generalising/specialising‖ (r=0.40*, p<0.05). In the Austrian sub-sample, the rating 

of ―modelling‖ correlates with the perceived importance of ―multiple 

representations‖ (r=0.37***, p<0.001) and ―variation/uncertainty‖ (r=0.31**, 

p<0.01).  
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Figure 3: Significance of modelling related to content areas 

In order to stay not only on the level of very general evaluations of the significance 

of modelling as a big idea, the third research question focused on making a link 
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between the pre-service teachers‘ general views and selected content areas. Figure 3 

shows the average rating of the significance of modelling related to six content areas. 

The values concerning ―patterns in number sequences‖, ―word problems concerning 

calculus with money‖ and ―tables and diagrams‖ were somewhat higher than the 

perceived significance related to the other content areas. With the exception of 

―tables and diagrams‖, there are no significant differences between the Austrian and 

German sub-samples.  

DISCUSSION AND CONCLUSIONS 

Views about the significance of modelling and other big ideas related to mathematics 

can be seen as an indicator of the awareness teachers have towards ideas linked to 

mathematics when defining learning goals and designing learning opportunities for 

their classrooms (cf. Shulman, 1986; Kuntze, accepted). Even if the results should be 

interpreted with care, given the exploratory approach of the study, modelling appears 

to have been perceived on average as a significant big idea. However, in the cluster 

analysis, it became apparent that a large portion of the pre-service teachers saw 

modelling as relatively insignificant compared to other big ideas. The Austrian pre-

service teachers put more emphasis on this idea than did the pre-service teachers in 

the German sub-sample. This might be not, or not only, an effect of countries but it 

could also be an effect of the school types the teachers were preparing for and the 

corresponding cultures. Hence, school culture may play an important role for the 

professional development process of prospective teachers with respect to modelling. 

Against this background, the results do not contradict prior findings (e.g. Maaß & 

Gurlith, 2009; Kuntze, acc.), but they broaden the scope of possible explanations. 

An interesting question related to these results is whether differences in professional 

knowledge may have caused the differences in the evaluations of ―modelling‖ and 

―functional dependence‖. Possibly, prior professional learning of the Austrian 

teachers could have caused this effect. The more general question for further 

research would be whether and how views concerning the significance of big ideas 

can be developed and influenced by teacher education programs.  

Even though there are some intercultural differences, it is interesting that some of the 

Austrian and German pre-service teachers‘ views were relatively similar, e.g. those 

related to the mathematical content areas. However, despite of these resemblances, 

teacher education should increase the awareness of modelling also related to a broad 

spectrum of other content areas, including areas that may be evaluated as less 

relevant in the first instance. This raises not only the question of further research 

about content domain-related views about the idea of modelling, but also to what 

extent such views may tend to evolve with increased instructional experience, in 

short terms: What are the views of in-service teachers related to the significance of 

modelling as a big idea? Moreover, the findings call for empirical research into the 



Working Group 6 

 CERME 7 (2011)  998 

role of the views examined in this study for the teachers‘ choice of learning 

opportunities in the classroom.  

Considering the structure of professional teacher knowledge itself, research with the 

goal of identifying relationships with other aspects of professional knowledge could 

open up ways of effective mathematics teacher professionalisation. For the later 

research question, we expect results from ongoing studies and analyses in 

ABCmaths. 
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MODELLING IN AN INTEGRATED MATHEMATICS AND 

SCIENCE CURRICULUM: BRIDGING THE DIVIDE 

Geoff Wake 

University of Manchester 

This paper explores the theoretical rationale behind a new approach to developing 

integrated mathematics and science curriculum experiences using the construct of 

bridging concepts. Such interdisciplinary approaches provide challenges for 

teachers and learners as they need to develop new practices in their classrooms and 

communicate across traditional subject boundaries whilst ensuring curriculum 

objectives in both subjects are met. Experiences from students across case study 

schools suggests that they need considerable time and space in which to develop 

conceptual understanding within and across mathematics and science and the 

vocabulary with which to communicate their thinking. The development to-date 

points to an important role for applications and modelling in mathematics in such 

cross-curriculum learning. 

BACKGROUND:  

The place of mathematical modelling in curricula of compulsory schooling is often 

contested and even with the pressure of international assessment such as PISA giving 

priority to applications of mathematics it may struggle to find a place (Ofsted, 2008). 

Equally scientific enquiry, as part of what might be considered a ‗reform‘ agenda in 

science, that prioritises scientific method and consequently sees the need for enquiry 

as central, prioritises approaches that are not always prominent in day-to-day 

teaching (for example, Sadeh and Zion (2009), Wilson et al (2010)). The work 

described here relates to an EU (Comenious) funded project COMPASS (Common 

problem solving strategies as links between Mathematics and Science
19

) which seeks 

to tackle these issues promoting an integrated approach to the learning of 

mathematics and science by developing a range of classroom materials and 

professional development support for teachers. Fundamental to this project is the 

development of new approaches to teaching that motivate learning both within and 

across the disciplines. Pragmatically, given that there is no official demand for this 

(at least in England), this requires some understanding of how such innovation can 

be motivated in ways that ensure that current curriculum demands are being met.  

Here, therefore, I present a theoretical rationale behind a new approach to 

interdisciplinary teaching and learning in mathematics. The outcomes of an initial 

adoption of materials based on this are reflected upon so as to inform a next iteration 

                                           

19
 Project: 503635-LLP-1-2009-1-DE-COMENIUS-CMP. This is funded under the Lifelong Learning Programme. For 

further details see http://www.compass-project.eu/project.php . 
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of their further development. I firstly explore how such aims might be achieved by 

considering, albeit briefly, the nature of the different domains of mathematics and 

science and exploring different ways that the demands of each, and indeed the 

demands of teachers and learners of each, might be met. I present a theoretical 

overview and a rationale of the design of interdisciplinary teaching and learning that, 

therefore, is also cognisant of these analyses of the subject domains of mathematics 

and science informed by an understanding of interdisciplinary learning approaches. 

Additionally, the resulting approach also has to meet the aims of the COMPASS 

project that seeks to see mathematical and scientific activity situated in contexts that 

are meaningful to critically informed European citizens of the future. The approach 

adopted is exemplified in this paper by outlining a set of materials that have gone 

through a first cycle of design and improvement in collaboration with mathematics 

and teachers working in a small group of schools in England. Finally, I draw on case 

study data and particularly focus group interviews with teachers to reflect further 

upon the design principles and implications for the integration of mathematics and 

science and the potential importance of applications and modelling in such 

curriculum design. 

DEVELOPING A THEORY INFORMED DESIGN APPROACH 

Nikitina (2006) identifies, on the basis of empirical classification, three basic 

approaches to the development of interdisciplinary approaches: contextualising, 

conceptualising and problem – centering. Her classification suggests that, in general, 

underlying differences and similarities in pedagogies and epistemologies in different 

disciplines are likely to result in one or other of these different approaches being 

adopted when school subjects are considered in common patterns of 

interdisciplinarity. For example, in the case of interdisciplinary approaches involving 

(1) disciplines in the humanities the common approach is often one of 

contextualising, that is one of developing tasks and materials that pay attention to 

issues of time, culture and personal experience. This contrasts with likely approaches 

to interdisciplinary work (2) in the scientific disciplines that is likely to focus on 

concepts that are central to constituent disciplines and work in quantifiable ways in 

making connections and (3) that takes a critical problem-solving approach to issues 

of social concern and which may require a more eclectic combination of knowledge 

and skills across disciplines. This would suggest that an interdisciplinary approach to 

study of mathematics and science is commonly one that focuses on concepts. It is 

perhaps not surprising that Nikitina‘s classification is reflected in other more 

philosophical analyses of mathematics and science knowledge domains that attempt 

to capture the essence of these in their enactment as school subjects. For example, 

Figure 1, adapted from the PISA overview of the mathematical literacy domain 

(OECD, 2003), draws attention to important components to take into account when 

considering this: concepts, competencies and contexts or situations in which these 

might be situated. These in turn inform formulation of tasks and ultimately learner 
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experience. The looping connections in the diagram suggest that there is no straight 

forward heuristic that can be adopted in developing tasks and approaches to lessons, 

but rather that the process is inevitably fuzzy as the different factors are brought to 

bear on classroom experiences. 

 

 

 

 

 

Figure 1. School mathematics domain (Wake, 2010) based on PISA analysis (OECD, 

2003) 

The influence of the OECD international comparative study (PISA) that has over 

recent years measured student performance at age 15 in mathematics, science and 

literacy has been important in informing curricula design across nations (Grek, 

2009). This is the case in England where in 2007 (QCA, 2007) a new national 

curriculum for all subjects was introduced. In mathematics this gave greater 

prominence to competencies / process skills than had hitherto been the case 

reflecting the greater emphasis given to these by the PISA tests. The key processes of 

representing, analysing (using procedures and reasoning), interpreting and 

evaluating have been emphasised in relation to a problem solving cycle (see Figure 

2) which is based on the modelling schema included in the OECD framework 

(OECD, 2003).  

 

 

 

 

 

 

 

Figure 2. Problem solving / modelling cycle in the English mathematics curriculum 

The problem solving cycle as represented in the curriculum is more general than in 

PISA as it is expected that students could be working in the world of mathematics 

itself rather than working towards solution of a problem in a non-mathematical 

reality (as in PISA). The corresponding framework for the scientific literacy domain 
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equally identifies the importance of the three components; (knowledge /) concepts, 

(processes /) competencies and (situations /) contexts. As in the case of mathematics, 

science in the school curriculum tends to focus on content and competencies at the 

expense of context with the emphasis on the former of these components. In science, 

discussion of concepts identifies thirteen major and diverse themes ranging from the 

property of matter to genetic control. Scientific processes are grouped under three 

main themes: (1) describing, explaining and predicting scientific phemomena, (2) 

understanding scientific investigation, (3) interpreting scientific evidence and 

conclusions (OECD, 2003, p137). 

In summary, school mathematics and science practices may, therefore, be considered 

as being culturally and historically situated primarily in the concept component of 

the domain with recent curriculum formulations in England having the intention of 

shifting the focus to the competency component. This shift in focus of curriculum 

priority suggests a potential way forward in interdisciplinary curriculum design 

would be to focus on common mathematical and scientific competencies. However, 

there remains one component of the subject domain that as yet has not been 

discussed in relation to its potential to support interdisciplinarity: that of contexts. 

This is often neglected in both mathematics and science which, as school disciplines, 

may be seen as rather abstract areas of study with only hints of their applications and 

usefulness in contemporary contexts. There have been recent attempts in science to 

remedy this with courses such as 21
st
 Century Science (Millar and Osborne, 1998) 

attempting to situate scientific understanding more realistically in the lives of the 

students who are expected to study this. It should be noted that such courses are not 

without their critics who see them as diluting true / ‗academic‘ scientific knowledge 

and understanding. The role of contexts in the interdisciplinary approaches to be 

developed is considered important by the COMPASS project that seeks to provide 

teachers with rich, motivating materials that allow young people to explore 

meaningful problems in a European context. In other words an important aim of the 

project is to motivate students by posing problems that can immediately be seen to 

have importance to young people as citizens of Europe with a concern for their 

environment and the population that inhabits this. 

Overall, then, in designing materials for classroom use in ways that bring together 

meaningful learning in both mathematics and science as separate disciplines, as well 

as in ways that makes powerful interconnections, it was the COMPASS group‘s 

desire to pay due attention to each of the components (contexts, content and 

competencies) of the discipline domain without privileging any one at the expense of 

the other. In an attempt to do this whilst also addressing the pragmatic issue of 

providing neutral ground on which mathematics and science teachers might jointly 

work together we developed the construct of the ―bridging concept‖. This is an 

organising structure that draws on mathematical and scientific thinking in ways that 

provide a way of visualising and understanding how measurable and therefore 
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quantifiable phenomena (interact or) behave. Importantly, Nikitina‘s analysis 

suggests that this is likely to meet with least resistance from mathematics and science 

teachers who appear to be most comfortable with interdisciplinary approaches of a 

type that gives prominence to concepts. However, before going on to describe 

bridging concepts more generally, and exemplify in some detail one such concept, I 

wish to emphasise that the materials that we eventually produced pay due attention to 

the other important components of the discipline domains. The bridging concept, 

therefore, attempts to take a new epistemological approach to knowledge across 

science and mathematics by looking for ways in which understanding phenomena 

might be considered as being general and consequently having applications across 

many situations / contexts. For example, the need to understand how outcomes at the 

micro-level are scaled up and have implications at the macro-level appears important 

in many situations. Consider, for example, issues (1) of inoculation against disease: 

how does an individual‘s decision to be inoculated or not impact on the likely spread 

of disease at the level of the population? (2) of the impact of a switch to energy 

saving devices / equipment such as light bulbs: what are the implications for the 

individual and for society as a whole? To investigate these problems deriving from 

context driven issues clearly requires the use of both concepts and competencies 

from mathematics and science but it is the intention that at a meta-level students also 

have opportunities to consider how micro-level actions have implications and 

outcomes at a macro-level. It is the task formulation (Figure 1) that determines how 

concepts and competencies in mathematics and science will interact. At this stage we 

have not identified a substantive number of such bridging concepts but the examples 

and teacher and student reactions that I go on to discuss focus on a further bridging 

concept: that of flow. Again there are multiple needs to understand flow across the 

different sub-disciplines of science and indeed more widely in technology-based 

settings: flow is a central characteristic of contexts ranging from electric circuits to 

ecosystems, from the human heart to tidal estuaries, from solar emissions to traffic 

management. When linked with flow, the concept of equilibrium is a key to 

understanding stability in systems as varied as electricity supply, transport, 

geothermal activity and ecosystems.  In summary, therefore, bridging concepts seek 

to value concepts from both the science and mathematics domain in making sense of 

phenomena and have general applicability at a meta-level. Importantly they provide a 

driver to facilitate cross-disciplinary thinking in ways that are deeper / richer than 

would otherwise be the case. The intention is that the bridging concept gives new 

insights to teachers and learners alike at how they can use mathematics and science 

to make sense of a range of issues of importance to European citizens of today and 

the implications of these for the future. 

BRIDGING CONCEPT: FLOW 

The materials developed and exemplified here focus on the bridging concept of flow 

and supported students towards a contextual problem based on flooding. ―How can 
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further disastrous flooding and environmental damage be prevented? – a case study 

of Lynmouth in Devon, UK.‖ However, this task comes as the culmination of a 

substantial programme of lessons in both mathematics and science that focused on 

key underpinning conceptual understanding. The flow of liquid was central 

throughout this particular set of materials although at the beginning the need to 

understand flow as an important concept was motivated by video clips that allowed 

students to consider flow in the context of traffic and crowd movement. Here due to 

restrictions of space I will exemplify the teaching materials with reference to 

mathematics materials only, before returning to consider implementation issues that 

arise from case studies of classrooms in a number of schools.  

The mathematics is organised around two web-based research environments or 

applets20 which students are encouraged to use to explore in a systematic way how 

different parameters affect aspects of measuring / quantifying and controlling flow. 

These applets model, in an idealised way, situations that the students will need to 

understand when they come to consider flow in science (for example, how flow is 

affected by the permeability of materials) and eventually the flow of rainwater that 

may give rise to flooding. In working with the applets students are expected to 

predict – test – explain, that is, to pose a question and predict the outcome before 

they use the applet to test this, and then explain why their prediction was correct or 

not, following the problem solving cycle with questions posed and predictions of 

outcomes important in concept development.  

The first applet ―Roof‖ simulates rain falling on a roof and draining into a blocked 

gutter. This provides an opportunity for students to come to an understanding that 

water, being a liquid, can flow from one place to another, and that we can measure / 

calculate its volume when it collects in a container. This provides an idealised scaled 

down model of a hillside with rain draining into a river that students will need to 

consider at a later stage. The applet model assumes that all of the water on the roof 

drains into a gutter on each side of the roof (Figure 3), and that the gutters are 

blocked so that all of the water collects there and is distributed evenly throughout the 

gutter. The gutter is assumed to be horizontal and that the depth of water in all parts 

of the gutter is the same throughout. The applet allows students to vary the total 

amount of rainfall, the angle of slope of the roof and the width of the house with 

graphs showing how each of these affect the height of water in the gutter. Using a 

trace facility allows the user to see how each variable is affected as they alter, using 

the slider, any one of the parameters between its minimum and maximum values. 

Although it is possible for students to carry out calculations of area, volume and 

capacity it is also possible for them to pose questions such as, ―What would happen 

if the width of the house was doubled, multiplied by three, halved and so on?‖ 

                                           

20
 Currently available at: http://130.88.43.249/compass/ 
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A second applet simulates water flowing into and out of different cuboid and 

trapezoidal containers. In these simulations it is assumed that flow rates are constant 

throughout and that the containers are horizontal so that depths of water are constant 

throughout the container at all times. Having selected either a rectangular or 

trapezoidal container of volume 10, 20 or 30 units, and selected flow rates for water 

entering and leaving the container, graphs, on one set of axes, can selected to be 

plotted of (i) total water flow in, (ii) total water flow out, (iii) volume of water in the 

container and (iv) total volume of water overflow from the container against time. A 

separate additional graph of height of water in the container against time is plotted. 

Again students are expected to explore in a systematic way, and again ―predicting – 

testing and explaining‖, how the flow through a ‗container‘ is affected by important 

parameters. This simulation can be used to model water flow through guttering from 

a roof or from a hilly landscape through a river or drainage channel.  

 

Figure 3. Applet used to investigate the collection of rainwater from a roof 

As a final part of the sequence of activities students were asked to engage with a 

substantial problem that asked them to think about how flooding might be prevented 

in a valley leading to the sea: this scenario was based on an event in Lynmouth in 

Devon in 1952 where flash flooding caused substantial damage. Students were asked 

to use the results of some of the experiments they had carried out in maths and 

science to give the best possible advice to (a) farmers and others using and draining 

the land on the moors above Lynmouth; (b) bridge engineers planning to rebuild 

bridges in the valley; (c) engineers planning how the river should flow through the 

town; (d) people wanting to rebuild their houses and homes in Lynmouth. It was 

noticeable that much of the output of the students was descriptive rather than 

involving calculations. Some of this is shown in Figure 4. 
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Figure 4. Student accounts in response to flooding problem 

In England the approach and materials explained in this paper have been used in a 

first cycle of development by a mathematics and science teacher from each of eight 

different schools. The teachers‘ work and accounts of their experiences
21

 with their 

students in using the materials has been facilitated by two days of professional 

development workshops generously funded by an IMPACT grant from the Science 

Learning Centre North West: additionally over a period of two weeks each school 

had the support of a newly qualified mathematics and science teacher. In general 

each of the schools worked with pupils in both mathematics and science using the 

materials. The following reflections on the outcomes of this implementation are 

informed by focus groups that were convened as part of the second of the workshops 

during which teachers were asked to reflect on nine key areas that explored the 

design approach and their implementation of this. 

REFLECTIONS AND THE ROLE OF MODELLING 

In considering the students‘ work in mathematics many of the teachers drew 

attention to ideas of modelling although the applets effectively present them and 

their students with ready-made models that they were able to use to explore issues 

that would eventually relate to a more complex reality. This type of exploratory 

environment, therefore, might be classified as being of the perspective ―Educational 

modelling type (b) conceptual modelling‖ in the classification system as proposed by 

Kaiser et al (2007). The applets allow quantifiable aspects of the situation to be 

varied and the effects of doing so to be explored systematically: however, other 

potential variables are fixed to ensure a relative simplicity of the model and 

consequently provide for a didactical focussing on key concepts and competencies. 

For example, in the use of both applets students were encouraged to ―predict-test-

explain‖ with teachers reporting that this enquiry based activity resulted in a much 

                                           

21
 These accounts can be accessed at: http://www.education.manchester.ac.uk/research/centres/lta/LTAResearch/compass/ 
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more dialogic classroom with students taking the lead in directing activity and 

working in collaborative groups. The conceptual understanding of issues relating to 

flow encapsulated in the applets appears to have been of fundamental importance to 

students learning to use these to inform their work in science and in tackling the 

substantial modelling task at the end of the sequence of lessons. Perhaps it is not 

surprising that students did not focus primarily on quantitative work when a more 

qualitative conceptual understanding had been sought by asking them to predict 

outcomes and graphical representations of these when working with the applets. 

A crucial question for the design of the interdisciplinary approach I report here is the 

role that the bridging concept (in this case ―flow‖) played. In focus group interviews 

teachers reported that this was important (i) for themselves as teachers because it 

provided them with a new way of thinking / working together as a team developing a 

common frame of reference for participants, (ii) for students because it provided a 

new starting point and setting in which to work with familiar ideas to see things 

differently, (iii) in mathematics as it involved students in modelling and applications, 

and (iv) in science because it provided a common overview by which links and 

connections across the curriculum could be made. It appears, therefore, that the 

bridging concept provides a boundary object (see for example, Tuomi-Grohn and 

Engestrom, 2003) at the intersection of the usual formulations of the mathematics 

and science curricula. It seems that this allows students and teachers means by which 

they might develop a new epistemology that brings together knowledge and 

competencies in mathematics and science in ways that interplay with, and reinforce, 

each other. Our work with teachers and students in schools to date has highlighted 

that this requires that students have time and space in which they can explore key 

ideas (in this case related to flow) that allows them to develop conceptual 

understanding and gives them language and terminology by which they can start to 

communicate with each other about relatively complex ideas. The applets we 

developed in the case reported here (and which we have developed for other units of 

work) appear to provide a vehicle by which students might be able to develop this 

necessary understanding. However, we note that the understandings developed are 

indeed at a more conceptual level than merely being quantifiable / calculable. For 

example, students have considered what might occur if both flow-in and flow-out 

were doubled without worrying about specific rates of flow.  We also note that the 

modelling work produced by students drew substantially on this conceptual 

understanding rather than leading naturally to an approach that resulted in careful 

calculation. We are lead to conclude, at this stage, that in developing an 

interdisciplinary approach to mathematics and science the construct of ‗bridging 

concept‘ is useful as it allows both teachers and students new approaches to 

developing knowledge that synthesises mathematics and science. In such approaches 

to learning we have found that students need support in understanding new concepts 

and language with which to discuss these. We have found purpose built applets that 
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students can use to explore how varying different parameters can affect a 

mathematical model of a situation particularly useful. These applets involve students 

in developing a range of modelling sub-competencies as well as engaging with 

important mathematical content, providing a playful environment in which a pre-

constructed model can be used with purpose to explore potential outcomes relatively 

quickly. It is to be hoped that these new concept focused approaches in mathematics 

may ultimately have spin-off as and when students come to build their own, and 

quantifiable models of situations. In general, therefore, early indications are that 

bridging concepts have the potential to inform the design of materials that may 

support an interdisciplinary approach to the learning of mathematics and science 

content and competencies in meaningful contexts. For mathematics in particular they 

give a motivating purpose for more conceptual, dialogic classrooms with 

mathematical models central. 
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Abstract: This paper reports on a first attempt to use the notions of ‗Research and 

Study Course‘ (RSC) and ‗praxeologies‘ within the Anthropological Theory of the 

Didactics (ATD) to analyse groups of students engaged in the mathematical activity 

of solving realistic Fermi problems. By considering so called realistic Fermi 

problem as a generating question in a RSC the groups‘ derived sub-questions are 

identified and the praxeologies developed to address these are discussed. 

INTRODUCTION AND BACKGROUD 

Working with mathematical models and modelling is a central part of the national 

intended written curriculum for the Swedish upper secondary mathematics education 

(Skolverket, 2000). Indeed, although without any definitions provided and only 

implicitly described, the notions of mathematical modelling and models have 

successively been explicitly more emphasised in the last two curricula reforms from 

1994 and 2000 respectively (Ärlebäck, 2009a). Generally however, mathematics 

education research involving mathematical models and modelling at the Swedish 

upper secondary level is largely under-researched, and interest in research with this 

particular focus is just in its infancy. Nevertheless, one of the most palpable 

conclusions from this initial research is the big discrepancy found between the 

indented written curriculum and what the students actually attain (Ärlebäck, 2009b). 

For example, in a study of 381 third year upper secondary students 77 % stated that 

they never had encountered the notions during their upper secondary education 

(Frejd & Ärlebäck, accepted). Part of the problematique might be that teachers have 

difficulties in formulating and explaining their conceptions of these notions 

(Ärlebäck, 2010), or that mathematics teaching at this educational level in Sweden 

strongly is influenced by ‗ traditional‘ textbooks (Skolverket, 2003) with little or no 

discussions about models and modelling. However, it has been suggested and 

concluded that the introduction of, and students‘ initial conceptualisation of, 

mathematical modelling (interpreted in line with the written curriculum documents) 

at the upper secondary level adequately and efficiently can be done using so called 

realistic Fermi problems (Ärlebäck, 2009c; Ärlebäck & Bergsten, 2010). The aim of 

this paper is to continue, deepen and extend this line of investigation.  

MATHEMATICAL MODELLIG AND REALISTIC FERMI PROBLEMS 

In the research literature in mathematics education there are many different 

perspectives on and ways to approach mathematical modelling (e.g. Blum, Galbraith, 
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Henn, & Niss, 2007; Lesh, Galbraith, Haines, & Hurford, 2010). Concepts and 

notations used are for instance those of competencies (Blomhøj & Højgaard Jensen, 

2007; Maaß, 2006); modelling skills (Berry, 2002); and, sub-processes or sub-

activities (Blomhøj & Højgaard Jensen, 2003). These all focus on the descriptions of, 

relations between and/or the transitions of phenomena in the real world and their 

mathematical representations. From a Swedish perspective, the intended written 

curriculum (e.g. Skolverket, 2000) permits a broad interpretation of the meaning and 

content of the notions of mathematical models and modelling (Ärlebäck, 2009b). 

One such interpretation with a real influence on the school practice has been 

presented by Palm et al. (2004), which is used for the construction of national test 

items focusing on mathematical modelling [1]. In principle, the interpretation by 

Palm et al. concord with the view on modelling illustrated in Figure 1. 

 

Figure 1: The modelling cycle as presented by Borromeo Ferri (2006, p. 92) 

 after adaption from Blum and Leiβ (2007) 

Based on this view on modelling Ärlebäck (2009c) and Ärlebäck and Bergsten 

(2010) explored the idea that so called realistic Fermi problems are ‗modelling 

problems in miniature‘, which potentially could be useful and time effective for 

introducing some of the typical features of mathematical modelling; see Ärlebäck 

(2009c) for details. Realistic Fermi problems are characterized by (1) their 

accessibility, meaning that they can be approached by all individual students or 

groups of students as well as be solved on both different educational levels and on 

different levels of complexity. Normally, any specific pre-mathematical knowledge is 

not required to provide an answer; (2) their clear real-world connection, to be 

realistic; (3) the need to specify and structure the relevant information and 

relationships to be able to tackle the problem. In other words for the problem 

formulation to be open in such a way that the problem solvers not immediately 

associated the problem with a know strategy or procedure on how to solve it, but 
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rather urge the problem solvers to invoke prior experiences, conceptions, constructs, 

strategies and other cognitive skills in approaching the problem; (4) the absence of 

numerical data, that is the need to make reasonable estimates of relevant quantities; 

and (5) their inner momentum to promote discussion, that as a group activity they 

invite to discussion on different matters such as what is relevant for the problem and 

how to estimate physical entities (e.g. respectively (3) and (4) above) [2]. 

The realistic Fermi problem the groups of students solved used in Ärlebäck (2009c) 

and Ärlebäck and Bergsten (2010) was the Empire State Building problem: 

The Empire State Building problem (ESB-problem): 

On the street level in Empire State Building there is an information desk. 

The two most frequently asked questions to the staff are: 

 How long does the tourist elevator take to the top floor observatory? 

 If one instead decides to walk the stairs, how long does this take? 

Your task is to write short answers to these questions, including the 

assumptions on which you base your reasoning, to give to the staff at the 

information desk. 

The data from three groups of students working on the ESB-problem using only 

paper and pencils for approximately 30 minutes was analysed using a developed 

analytical tool called Modelling Activity Diagram (the MAD framework). This 

framework is inspired by Schoenfeld‘s ‗graphs of problem solving‘ (Schoenfeld, 

1985), the view adapted on mathematical modelling described above, and the five 

characteristic features of realistic Fermi problems. It pictures the different types of 

sub-activities the groups engage in during the problem solving process in terms of 

the categories Reading, Making model, Estimating, Verifying, Calculating, and 

Writing (see Figure 2 and Ärlebäck (2009c) for details). However, although this 

macroscopic schematic representation clearly shows that the sub-activities are 

dynamically and richly represented in the solving process of the Fermi problem (cf. 

Figure 2), it does not provide any detailed information about what kind of 

discussions, topics and questions the groups addressed and investigated. In order to 

get a more nuanced and circumstantial picture of the problem solving process 

involving realistic Fermi problems in these respects this paper aims to provide a 

more microscopic analysis focusing on what actually is discussed within the groups, 

especially in connection to mathematical topics and content. Hence, the research 

question studied in this paper can be states as follows: What are the questions the 

students address during the problem solving process of the EBS-problem? What 

mathematics do the students use in the problem solving process and how is the use of 

this mathematics motivated and justified?  
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Figure 2: An example of a Modelling Activity Diagram of one of the 

groups solving the ESB-problem (Ärlebäck, 2009c, s. 346). 

THERETICAL FRAMEWORK, METHODOLOGY AND METHOD 

This paper uses the notions of praxeologies and Research and Study Course (RSC) 

from ATD. Within this framework praxeologies are used to describe any human 

activity in terms of two ‗blocks‘: a praxis block (‗know-how‘ or ‗practical-part‘) 

containing both a designated type of tasks and the techniques used/needed to 

complete/perform these; and a logos block (‗know-why‘ or ‗knowledge-part‘) 

containing the technologies that explain, justify and describe the techniques as well 

as the formal justification of these technologies, the theory. As the name 

praxeologies suggests the praxis- and logos blocks are to be regarded as inseparable 

(Barbé, Bosch, Espinoza, & Gascñn, 2005; Rodríguez, Bosch, & Gascñn, 2008). 

The notion of Research and Study Course (RSC) introduced by Chevallard (2004; 

2006) is a general model that can be used for both designing and analyzing learning 

and study processes. A main emphasis of a RSC is on the generating question, Q0, 

which should be intriguing and of genuine interest to the students as well as ‗rich 

enough‘ to encourage the students to derive, pursue and answer dynamically raised 

and related (sub-)questions, Qi, in the quest of trying to arrive at an answer to the 

question Q0. In addressing these questions the students have to invoke, use and/or 

develop one or more praxeologies. The derived sequence of sub-questions Qi and 

their respective answers Ri are often represented and illustrated in a ‗tree-diagram‘ 

which illustrates the relationships between the different studied questions Qi; see 

Figure 3 for an example.  
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In terms of ATD the study reported on in Ärlebäck (2009c) and Ärlebäck and 

Bergsten (2010) can be conceptualised as an investigation of the didactical 

praxeology with the task to introduce mathematical modelling to students at the 

upper secondary level using the suggested technique presented by realistic Fermi 

problems. The issues addressed in these papers, as well as in this one, are concerning 

the (underdeveloped) logos block of this praxeology, especially the technology part.   

The ATD concepts of RSC and praxeologies provide theoretical constructs focusing 

both on what questions the students tackle when solving the ESB-problem as well as 

how and why. In the notion briefly introduced above the research question(s) studied 

in this paper can be reformulated as: Given the ESB-problem as a generating 

question in a RSC, what sub-questions are addressed by the participating groups of 

students and what (mathematical) praxeologies are used and developed? Due to 

space limitation the main emphasis in this paper will be on the first of these 

questions. 

From an ATD perspective García et al. (2006) have presented a conceptualisation of 

mathematical modelling which basically equates all mathematical activity with 

mathematical modelling. In this paper however, the view of modelling is inherited 

from Ärlebäck (2009c) as briefly described and argued for in the previous paragraph.  

To address the research question, widening and deepening the analysis of the groups 

of students solving realistic Fermi problems, the recorded video and transcribed data 

from one of the groups used in Ärlebäck (2009c) was revisited and re-analysed. The 

basic idea was to consider the students‘ work on the realistic Fermi problem in the 

context of a SRC as the generative question Q0 and to see what (sub-)questions Qi,j,... 

this led the students to investigate, and in addition to link these questions the MAD 

representation of the problem solving process of the studied group. Note that in the 

ESB-problem the generating question, Q0, actually is two questions: 

       Q0,1:  How long does the tourist elevator take to the top floor observatory? 

       Q0,2:  If one instead decides to walk the stairs, how long does this take? 

The approach taken was in line with Hansen and Winsløw (2010) who make use of 

the RSC as an analytic model. Focus of the analysis was on the group activity as 

whole and thus firstly on explicit questions uttered by the members of the group, and 

secondly on how these questions where addressed in terms the constituents of one or 

more praxeologies. Although there exist an a priori analysis in Ärlebäck (2009c) 

identifying some of the questions the problem solvers need to address in order to 

solve the problem, this paper only focus on the empirical questions actually 

addressed by one of the groups of students during their problem solving session.  

RESULTS 

The questions Qi,j,… the students derived from the generative questions and examined 

are presented below in the order in which they were raised and posed during the 
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problem solving session. The formulations below are in principle the students‘ own 

wording; some minor alterations have been made in order make the actual question 

intelligible and more concise. Basically the questions Q1… are concerned with the 

ESB‘s physical appearance, Q2… address Q0,1 (taking the elevator), and Q2… address 

Q0,2 (taking the stairs):  

   Q1: How high is the Empire State building? 

      Q1,1: How many floors are there in the Empire State Building? 

         Q1,1,1: How high is a floor? 

      Q1,2: How high can a general building be? 

      Q1,3: How high was the World Trade Centre? 

   Q2: How fast is an elevator? 

      Q2,1: What is the weight of the elevator? 

         Q2,1,1: How much work is being done by the elevator? 

            Q2,1,1,1: Given the work done by the elevator, can we then calculate its 

                            velocity? 

      Q2,2: How long does it take to ride the elevator to Michael‘s apartment [a friend]? 

         Q2,2,1: On what floor is Michael‘s apartment? 

   Q3: How tired does one get from walking the stairs? 

      Q3,1: How longer does it take for one floor? 

      Q3,2: How much longer does it take for each floor? 

         Q3,2,1: How long does it take to walk up the first floor? 

            Q3,2,1,1: How fast is normal walking pace? 

            Q3,2,1,2: What is the inclination of the stairs? 

      Q3,3: My [one of the students] mother lives on the fifth floor – I wonder how long 

                 it takes walking up the stairs to her place? 

The relationships between these (sub-)questions are illustrated in Figure 3. Note that 

the doted lines in the tree-diagram display the dependence of the answers R1, R2, and 

R3 respectively with respect to previously answers to questions in the tree. However, 

due to space limitations, and the fact that the focus of this paper is on the derived 

questions, these details are omitted here to be discussed elsewhere.  

All branches except Q2,1,… represent questions which answers contributed to the 

solving of the ESB-problem. The branch Q2,1,… is about the classical mechanics 

concept of work, which the students briefly discuss as one possible strategy to get an 

estimate for the velocity of the elevators in the ESB. 

After having spent about 15 minutes on the problem the group starts working on 

details concerning their suggested model on how to take the physical exertion into 

consideration in the Q0,2 question. They continue to do this in approximately 4 

minutes, before the writing of the letter instructed in the problem formulation begins. 
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Figure 3: A tree-diagram illustrating the relationship between the questions addressed 

by the students solving the ESB-problem  

Figure 4 illustrates the dynamic aspects of the addressed questions added to the 

MAD representation of the students‘ problem solving process. The first time a 

specific question is explicitly addressed it is preceded by an asterisk (*). 

CONCLUSION AND DISCUSSION 

One can notice that the actual modelling in terms of discussing, structuring and 

determining central variables and relationships important for solving the problem is 

something that is made implicitly and silently throughout the problem solving 

session. The praxeologies developed to address the questions (tasks) Q0,1 and Q0,2, in 

fact all three groups in Ärlebäck (2009c) used the mathematical model t=s/v (t 

being the time, s the distance, and v the (average) velocity) as the basic technique to 

approach the questions. However, the decision to use this model was not explicitly 

uttered, or in any other way directly communicated, within the groups; it seems that 

all the participating students took it for granted that this was the model to use to 
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solve the problem. In other words, the logos of this praxeology is kept hidden. It is 

possible that this ‗choice‘ narrowed the groups‘ possibilities to go beyond this model 

and come up with more elaborated models.  

 

 

Figure 4: The Modelling Activity Diagram (Ärlebäck, 2009c, s. 346) extended with the 

order and dynamics of the derived questions in the RSC. 

A majority of the praxeologies the students developed made use of estimation as the 

technique to resolve the tasks originating from all (but Q2,1,1,1 and Q3) of the derived 

questions the students engaged in. All these praxeologies have underdeveloped logos 

and the technologies and theories invoked to justify and verify the estimates are 

based on personal and often anecdotal experiences. This is most probable due to the 

feature of realistic Fermi problem to not provide the students with any explicit 

numbers to work with. It should be noted that one of the technologies applied and 

made use of to validate the estimate in some of these praxeologies are the same 

mathematical model as used as the technique in addressing Q0,1 and Q0,2; v=s/t. 

The result suggests that there are some often used mathematical models, here 

exemplified by v=s/t, which are taken for granted used without second thought and 

reflection on underlying assumptions, limitations or alternatives. An explanation 

might be found in the different institutional conditions and constrains where these 

models are taught, learnt, practiced and applied. In particular, it would be interesting 

to study the didactical transposition of the notions and use of mathematical models 
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and modelling to see where these conditions and constrains arise. Though it has 

proven productive and useful to use realistic Fermi problems for the introduction of 

mathematical modelling at the upper secondary level, the challenge for the future is 

to design generative questions in the RSC so that also more advanced mathematical 

praxeologies are invoked and developed. The RSC ‗allows‘ for the teacher to 

intervene, comment and make suggestions during the course of study, and this 

present a possibility achieve more, and perhaps specific, advanced mathematical 

content 

NOTES 

1. For a critical discussion of this interpretation and its possible consequences see Ärlebäck (2009b). 

2. For a discussion on the relations between realistic Fermi problems and other characterisations of problems (such as 

modeling eliciting activities, numerosity problems etc.) see Ärlebäck (2009c).  
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By going through the mathematical modelling process, students often generate 

hypotheses and assumptions, in order to follow their strategies and to come to a 

solution. This generation of hypotheses is investigated by using the Scientific 

Discovery and Dual Search (SDDS) model. The design of the ―Africa task‖ for a 

case study aims at stimulating students‘ work with hypotheses in an a-priori non-

mathematical setting. The students‘ mathematical works are investigated with a 

modification of the SDDS model. This somewhat untypical task leads to assumptions 

and hypotheses of quite different nature than those one might be used to thinking of, 

that is, in more traditional tasks within mathematical modelling. 

INTRODUCTION 

During the mathematical modelling process, students go through distinct phases in 

the modelling cycle. However, some of these phases interfere with the others 

(Crouch and Haines, 2004) and some of them are even missing. In this study, we are 

interested in the process of mathematisation, and particularly in the means by which 

students express their thoughts and ideas in order to accomplish a mathematical 

modelling task. Mathematising, as part of mathematical modelling, is the process 

addressing the transition from a real model to mathematics. The modelling process 

students go through can be regarded as a path scattered with generation of 

hypotheses and assumptions, while following certain problem solving strategies. 

The emerging hypotheses in students‘ work are essentially of different nature than 

hypotheses in scientific research; like in physics, for example, where stated 

hypotheses are followed by experiments, and afterwards evaluated, therefore 

sustained or rejected. Here the students do not check many of these hypotheses, but 

simply state them and take them as granted. They are either led by intuition or the 

use of their background knowledge. It could also be that the means for proving does 

not stay at the students‘ disposal, but the agreement in the group and intuition 

encourage them to go further with their stream of thoughts and ideas. Assumptions 

represent on the other hand another main component in modelling (Galbraith and 

Stillman, 2001; Ikahata, 2007), and according to the specificity of the task 

environment, in this study, their character is more or less mathematical. The model 

used as framework is applied here on a mathematical modelling task, and the 

procedure of testing hypotheses, as well as experimental space have atypical 

behaviour and form, closely dependent on the contextual situation, not following 

standardised hypotheses checking practices. 



Working Group 6 

 CERME 7 (2011)  1021 

Since the current investigation concerns assignments where mathematics is 

somewhat hidden and no direct calculations are to be performed, the emphasis falls 

on elaborating strategies for pursuing with the task. Under these circumstances, 

collaborative working in groups appears fruitful, and students must proceed by 

loudly expressing their ideas. Assumptions are sometimes not easy to differentiate 

from hypotheses, thus working definitions for both are formulated in advance. 

THEORETICAL FRAMEWORK 

On the one hand, the scientific acquisition of knowledge is seen as a complex form 

of problem-solving, where the problem-solving search takes place in two spaces: in 

the hypothesis-space and in the experiment-space (Simon, 1981). The SDDS model 

(Klahr, 2000) supports a structured description of hypotheses in the two spaces, as 

well as the evaluating evidence that comes in addition to these. On the other hand, 

the process of mathematical knowledge construction can be described with the help 

of the epistemic actions (Hershkowitz, Dreyfus & Schwarz, 2001). 

SDDS 

The Scientific Discovery and Dual Search (SDDS) model is widely used in the area 

of scientific education; as a ―general framework within which to interpret human 

behaviour in any scientific reasoning task‖ (Klahr, 2000). A special concern of the 

SDDS model is the evidence-based description of all aspects in the scientific 

acquisition of knowledge by the initial hypothesis statement, through the later 

acquisition of experimental evidences in order to check a hypothesis, and then ends 

up with a decision as to whether there is enough evidence for checking the 

hypothesis (Hammann, 2007). The scientific acquisition of knowledge begins with 

the searching in the hypothesis space, which also assumptions can be part of. 

Building hypotheses is described as a form of problem-solving, where initially 

domain-specific knowledge about a phenomenon or process following to be 

described, are provided. The final product is a tested hypothesis, explained with 

certain plausibility. Testing hypothesis has as output the description of evidence 

which sustains, respectively contradicts the hypothesis. 

When predicting the finding of some research based on a theory or a logical common 

sense, a theoretical hypothesis is drawn. When a temporary conclusion is drawn, 

which will be validated with more data, it is handled with an empirical hypothesis. If 

an objective reasoning is important, in order to avoid bias, and if data is computed, a 

statistical hypothesis is formulated (Latief, 2009). More precisely, a theoretical and 

logical hypothesis can be defined as 

[...] a tentative proposition suggested as a solution to a problem or as an explanation of 

some phenomena. It presents in simple form a statement of the researcher‘s expectation 

relative to a relationship between variables within the problem (Ary, Jacobs and Razavieh 

1979, p. 72). 



Working Group 6 

 CERME 7 (2011)  1022 

Accommodated for our purposes, context and circumstances, the following working 

definitions are the basis for our identifications. We denote an assumption as being a 

proposition by means of which a certain thinking path is enabled. Reasons behind the 

generation of assumptions could be various; the need for pushing forward a stream of 

thoughts, reducing complexity of a situation, insufficient mathematical literacy or 

methods and algorithms near at hand, imposing conditions while smoothing the 

course of some solving. We denote a hypothesis as being any statement which is 

meant to answer a complex question, given a sophisticated situation and whose 

argumentation requires going through an unpredictable number of steps. Hypotheses 

differ from assumptions basically in their coherent and self-explanatory action 

containing it, meaningful by its own, with or without a succeeding proof. 

RBC model 

The epistemic actions model of abstraction in context (AiC) aims at providing a 

framework for a micro-level description and analysis of processes of abstraction 

(Dreyfus, Hershkowitz & Schwarz, 2001). Empirically, abstraction can often be seen 

in the following ―epistemic actions‖: recognising (R), building-with ‗(B) and 

constructing (C) (in the sense of vertical reorganisation of knowledge). These are 

mental actions by means of which knowledge is reconstructed. Conforming to the 

RBC, recognising takes place when students detect that a certain piece of knowledge 

is relevant for the context (s)he is dealing with. Building-with is the action where 

recognised constructs are combined in order to achieve a specific goal. Constructions 

are those activities indicating epistemic actions towards mathematical abstraction. 

The RBC model is used here to verify to which extent knowledge construction was 

realised by the students. The found constructions were finally embedded in the 

hypothesis space, that is, some of the hypotheses were identified as constructions. 

EMPIRICAL SETTING 

A task on a predator-prey situation was designed with the purpose of encouraging 

students to make statements during argumentation and generate hypotheses and 

assumptions. Slightly different versions of this task have been developed over time, 

and the latest version of this Africa task (Grigoraş and Hoede, 2008) is: 

In Africa there are territories consisting of three areas. On one side of a river there is an 
area with grass and trees. On the other side there are two areas, one only with grass, and 
one only with trees. These two areas are separated by mountains.  

There are seven species of animals: antelopes (A), crocodiles (C), Gnus (G), elephants (E), 
lions (L), monkeys (M) and panthers (P).  

Grass and trees grow depending on the rain fall, grass serves as food for antelopes and 
Gnus, trees give food to monkeys and elephants. Lions feed on antelopes and Gnus, panthers 
feed on monkeys, and crocodiles feed on Gnus whenever these pass the river.  

Gnus pass the river if there is not enough grass. 
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Elephants can also pass the river if they want to get to another area with trees, without 
being threatened by crocodiles. 

1. In which areas do you think will the species be living? Make a drawing of the 
situation and indicate by letters where grass, trees, as well as each species is to be 
found. 

2. Group the animals according to properties. 

3. Suppose that there is no rain in the area where there grass and trees are. By this, the 
amount of grass and the number of trees are going down.  

a. Investigate what is happening with all the species in the three areas. 

b. What happens if the rain stops falling in the area where only grass grows? 

c. What happens if the rain stops falling in the area where only trees grow? 

4. In case the grass is disappearing in the area where there is only grass (case 3.b), 
Gnus will cross the river and start eating the grass on the other side.  

5. Now focus upon grass, antelopes, Gnus and lions: describe your expectation of what 

will happen with the amount of grass and each of these three species. 

Students – aged 13-16 – of a secondary school worked on the given task, while being 

organised in groups, in a classroom environment. 7
th

 graders were mainly chosen for 

the analysis, with some 9
th

 graders also involved, in order to check whether 

significant differences in their approaches can be observed. Teams of three students 

were video-taped during working and the teacher had no intervention on the content, 

unless students had to clarify issues concerning task formulation. 

Data analysis 

Given the complexity of the task, a fragmentation in smaller pieces of data contained 

in the formulation or inferred from students‘ reasoning was realised. The following 

categories were developed, which distinguish sources of knowledge as follows: 

Text information belongs to the real world, and is extracted from the task‘s text. For 

reasons of space, just several pieces of the text information are given here, the others 

can be found in the assignment statement, presented in the previous section. For an 

easier manipulation in our analysis, the task was fragmented in nineteen pieces (T‘s): 

T1: In Africa there are territories consisting of three areas. 

T2: On one side of a river there is an area with grass and trees, and so on. 

Knowledge of biology/geography/etc. (B‘s) belongs to real world and represents 

information showing relationships between concepts used in the task, being mainly 

background knowledge. It is also possible that some B‘s overlap or sometimes even 

contradict with some T‘s given in the formulation task. Some examples of B‘s are: 

B13: When the grass is gone, then the grass feeding animals are dying, and 
herewith other animals feeding from the grass feeding animals. 

B15: When it stops raining in the area where only grass grows, then all 
animals die, except monkeys, elephants and panthers. 
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B16: If it stops raining in the area where trees and grass grow, then after a 
while they will all get dry. 

B17: If it stops raining in the area where only grass grows, then antelopes will 
also cross the river to the area where grass grows, like the Gnus, and therefore 
lions will go to that area, too. 

We remark at this point that the difference between text information (T‘s) and 

biology information (B‘s) is basically that the text information may trace certain 

changes, by means of some actions, so that connections between different parts can 

make sense to be set up. The distinction between some T‘s and B‘s (which might be 

very similar) is done by the context in which B‘s were expressed. 

Logical clauses (L‘s) belong to the mathematical world and act as kind of 

‗operators‘, by means of which logical inferences are achieved: 

L1: A  B 

L2: Negation 

L3: If ―A  B‖ and ―B  C‖, then ―A  C‖ 
L4: x  y  x (if x influences y, then y will influence, in turn, x) 

A statement counting as construction in our analysis does not have to necessarily 

look or sound abstract in the sense of being intangible or imaginary difficult, but 

realised on a meta-level, so that further cognitive processes are enabled through it. 

Constructions: (for reasons of space, just few of the ten C‘s are enumerated here) 

C5: When there are fewer lions, then there are more Gnus, but then there are 
again more lions. 

C6: Less rain causes less grass, and therefore also fewer herbivores, namely 
antelopes and Gnus. 
C7: When grass gets dry off, then Gnus and antelopes do not have food 
anymore and die off. Then lions and crocodiles die off, too, 

The list of suggested knowledge (B‘s and L‘s) gets longer with the number of 

subjects participating in the investigation. The present B‘s and C‘s resulted from 

gatherings of five teams (7
th

 and 9
th

 graders). An increased number of students, more 

advanced in background knowledge might easily produce considerably more items in 

number and quality, than the B‘s and C‘s delivered in the existing analysis. 

There is no space to give all the hypotheses and assumptions found in students‘ 

results. Nevertheless, their dialogues abound in hypotheses, while assumptions are 

significantly less. ‗Typical‘ hypotheses and assumptions produced by students are: 

Hypotheses: 

Student 1: The lion is by grass and trees, because the antelopes go on the other side, 

when not having grass there. 

Student 2: I would say, by grass – only antelopes, and by grass and trees – Gnus are 

also coming, because the lions can eat sometimes... 
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Student 3: I would rather write... here... eat grass, eat things from trees... eat Gnus and 

eat antelopes and make then cross... it is much practical. 

Student 4: The grass gets dry, and then Gnus and antelopes do not have food anymore 

and die off. When G and A are gone, then L and C die off. 

Student 5: When it does not rain, the trees are getting fewer, and thus fewer trees 

feeding animals. 

Assumptions: 

Student 1: It must be so, that some... to be free from those which do not eat them... this 

is the feeding dynamic chain. 

Student 2: No, we have to describe that somehow... first by x... remains nothing more 

to eat, then by y no more food, then by z no more eating... 

Student 3: Yes, but we should restrict only to A, G and L. We should not do with the 

crocodiles, but only with antelopes, Gnus and lions. 

Findings 

In the following, we present a scheme to depict the hypotheses and assumptions 

generated by the students in form of figures, corresponding to every team under 

investigation. The entire dialogue is part of the hypothesis space, which contains, in 

turn, experiment spaces as subsets. Combinations of T‘s, B‘s and L‘s, seen as 

elements of the experiment spaces, lead to hypotheses, some of which are linked to 

each other, while assumptions act sometimes as junctions. When a certain direction 

can be defined, either in meaning or time, arrows are also coming along. A possible 

way to start reading the scheme is, for example, by taking time as backbone (the 

sense is here inverse clock-wise). The size of the experiment spaces spheres differs 

just in that they contain more or less dense clustered T‘s, B‘s, respectively L‘s. 

Figure 1 displays a rather typical view of an overall picture for the work performed 

by the young students for the Africa task. The four hypotheses (Hy1,... , Hy4), which 

in this case happen to be constructions (C1,... , C4), are connected in meaning, as it is 

illustrated in the diagram. Where the main subject of the statements expressed by 

students gets changed, no edge in the figure appears. If a certain assumption is 

related to a hypothesis stated previously or afterwards, then this can also be seen in 

the drawing. But it must not necessary be the case; there could be assumptions whose 

statements do not come in the logical reasoning of some previous hypothesis, and 

also do not directly yield the emergence of other hypothesis. A characteristic of this 

team is the weird way of communicating between students, sometimes the topic 

changing spontaneously, or some students ignoring the opinion of other colleagues. 

This is reflected in the ‗solitary‘ hypotheses/assumptions, having no edges with 

others. It could also be that other peers just manifest the wish of immediately sharing 

a new idea, and thus a previous discussion gets abandoned. This can be seen in the 
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diagram, namely where even more isolated tiny systems lie. This particularity is 

independent of the quality of students‘ reasoning or the correctitude of their answers. 
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Fig. 1: Hypotheses and assumptions in the 9
th

 graders‘ team work 

As it can be seen in Figure 2, a considerable number of hypotheses are stated, having 

quite intensive discussions behind (many B‘s, L‘s, T‘s and dense connections 

between them in most of the spheres). 
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Fig. 2: Hypotheses and assumptions in the 7
th

 graders‘ first team  

The communication between students is well-established and efficiently maintained. 

Though sometimes certain misunderstandings are occurring in incipient phases of 
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some key-points of the conversation, they are thoroughly worked out and better ideas 

are emitted, approved and successfully implemented. The manner in which 

assumptions are produced, how they relate, sometimes contradicting to each other, as 

well as the way of leading to hypotheses are clear indications for students working 

carefully and likely to have previously experienced mathematical challenges. The 

constructions occurring here do not necessary seem to be decisive for the quality of 

the team, though some beliefs could speak about a direct proportionality in this 

regard. The overall work was performed in a rather mature manner and quite some 

complexity in elaborating strategies emerged, as far as the task allows. 

The third team carries, as others as well, features of its quality peers 

communications. The work was often taken as a game, at least by the leading person. 

This influenced the results by preventing students from treating the task more 

thoroughly, and eventually to perform better. Four hypotheses and one assumption 

needed to be reformulated or rephrased, sometimes more than twice, and this 

indicates on the one hand uncertainty, but on the other hand consistency and the wish 

to make things better. 
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Fig. 3: Hypotheses and assumptions in the 7
th

 graders‘ second team  

The discussions between students are quite intensive; many hypotheses are stated, 

meaning that ideas are generated, but reasoning is not realised by means of an 

extensive number of assumptions. It is also the nature of this particular task, which 

does not necessary ask for imposing special conditions, in order that the reasoning 

process follows smoothly, and the answers to the posing questions to be found. The 

emitted hypotheses are tested through repetition, then expecting feedback, 

respectively confirmation from the other colleagues of the team. Quite particular in 

the working of this group of students is the way how they approached the last 
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question of the problem, and namely how they understood to discuss what happens 

―only with the three species of animals‖. The specification given in the formulation, 

that just the three species (antelopes, Gnus and lions) are the object of investigation, 

created some confusion and efforts of handling the problem, because the requirement 

could not be achieved without involving other aspects, namely that crocodiles 

influence what happens with the Gnus. On the one hand, the impossibility of 

answering the question without considering other aspects was continuously sustained 

by one student. On the other hand, another colleague argued loudly for the denial of 

even mentioning other pieces of information than the required ones. These two 

opposing ideas met in a conflict, highly voiced, but nevertheless students maintained 

their collegial relationship. It was in fact controversy content versus form, and the 

noisiest ‗advocate‘ finally won, namely the supporter of the second idea. 

DISCUSSION 

Since hypotheses are sometimes hardly distinguished from assumptions, the SDDS 

model does help pointing this distinction while following the groups‘ dynamics. 

When trying to map the empirical results to a SDDS diagram, some conclusions can 

be drawn, specific to the particular task it is worked with. The entire path covered 

while coming to a solution is a continuous hypotheses launching, which would fit to 

a searching hypotheses space. This seeking is done concomitantly with 

experimenting, i.e., testing hypotheses by continuously checking given information, 

as well as information obtained from these (T‘s and B‘s). The experimental space is 

formed by the logical block (mainly having at least one L), where the generation of 

hypotheses allows going deeper in the logical world, and staying in the same space. 

When nothing more in the direction of a hypothesis can be done by the students, then 

new interpretations take place and new logical constructs are attempted. These 

logical considerations are not always concluded as constructions (in the sense of the 

RBC theory), thus not all the hypotheses are regarded as constructions. 

The assumptions are being conceived when changes in the model space are implicitly 

required, meaning that discussions get to such a point where no decision seems to be 

possible or agreed on. Sometimes assumptions opposing to each other are 

pronounced, then one of them is adopted, and afterwards a next hypothesis follows. 

Many hypotheses are tightly linked, like students‘ thoughts rowed in a chain. The 

search hypotheses space cannot be separated from the space where testing 

hypotheses is acquired and hopefully achieved. The first space is containing the 

other space, since the components which help finding the hypotheses are the same by 

means of which hypotheses are tested, namely T‘s, B‘s and L‘s. In fact, testing takes 

place through posing rhetorical questions, a proper combination of the background 

knowledge, which permits drawing satisfying (from a students‘ point of view) 

conclusions. Evaluating evidence seems to be part of the testing hypotheses, and in 
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case agreement on certain hypotheses is performed, then no later contradictions, as 

result of evaluating evidence, are met. 

Since operating with hypotheses is basically part of researchers‘ scientific work, one 

can ideally say that within every student lies a possible future scientist.7
th

 graders 

produced more elaborated results than the 9
th

 graders, collaboration within the team 

being the main reason for it. They manipulate their own statements in no predefined 

and much more elaborate manner, but mainly on intuitive basis. Nevertheless, 

surprises in this regard are not excluded; novices are handling empirical and 

theoretical hypotheses (according to Latief‘s typology), and if properly challenged, it 

might be surprising how mature and constructive students‘ approach could become. 
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Demetra Pitta-Pantazi (Cyprus),  
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Andreas Ulovec (Austria) 

SCOPE AND FOCUS OF THE WORKING GROUP 

The purpose of the WG was to raise the attention of the mathematics education 

community to the field of mathematical potential, creativity and talent, and to 

promote empirical research that will contribute to the development of our 

understanding of the field.  

The WG aimed at international exchange of ideas related to the didactics of teaching 

highly able students as well as the promotion of creativity in all students. Part of the 

discussion was focused on the ways that lead students to discover and realize their 

mathematical talents and develop their mathematical creativity. Special attention was 

devoted to activities which are challenging, fundamentally free of routine, inquiry-

based, and rich in authentic mathematical problem solving.  

The WG addressed the ways of identifying mathematically gifted and creative 

students as well as the relationship between exceptional mathematical abilities, 

motivation and mathematical creativity. The WG participants paid special attention 

to teacher education aimed at mathematics teaching that encourages creativity and 

fosters mathematical talent. 

Finally WG members discussed interculturally- and culturally- related aspects of 

creativity and giftedness. 

Twenty-five participants from 14 countries took part in the Working Group.  

In what follows we describe the main topics for discussion that were suggested by 

group leaders and some outcomes of these discussions. 

Topic 1:  Theoretical foundations of mathematical talent and creativity 

Discussion on theoretical foundations of mathematical talent and creativity attended 

definitions and origins of creativity and of mathematical talent. Additionally, this 

session was devoted to questions of how to identify mathematically creative and 

talented students.  

The study by Kontoyianni et al. served as a basis for the discussion of modelling 

mathematical giftedness through the design of a theoretical model. This model, 

which was based on previous theoretical works, was put into practice using large-

scale empirical research. The paper by Leikin and Kloss offered a starting point for 

discussing theoretical models of creativity and their implications for  empirical 
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research. The choice of a research paradigm for empirical investigation was found to 

be a basic element in the performance of empirical research. Brandl's model of 

mathematical giftedness was designed based on a variety of educational theories and 

paradigms. This work led to discussion of whether each theoretical model should be 

tested empirically and to what extent empirical investigation performed by a 

researcher should be analysed by means of the theoretical model he/she designed.  

Discussion outcomes 

There was general agreement among group participants that the definitions of 

creativity usually depend on the context. Giftedness and creativity are expressed in 

extraordinary performance in problem solving. At the same time, problem posing can 

be a powerful tool for identifying mathematical creativity and giftedness. Moreover, 

problem posing can be considered as an essence of mathematics and, in contrast to 

problem solving, it facilitates better evaluation of elaborative acts.  

The participants suggested that a characterisation of mathematically gifted students 

can be devised by asking expert mathematics teachers to distinguish between 

children who are good in math and those who are absolutely amazing. The teachers 

can be asked:  

 What is the essence in this child that a teacher remembers for years?  

 What is it that makes one certain student so special? 

The group agreed that mathematical talent can rarely be identified using one 

(relatively short) specific test. Our assumption was that a combined test (e.g., 

combining achievements, personal traits and creativity) would have to be employed. 

We assumed that good questions and unique ideas raised by the students are 

probably indicators of their giftedness. However, the following question remains 

open:   

 What are the predictors of mathematical giftedness and talent? 

Topic 2:  In-depth empirical studies on creativity and its development 

Three papers served as starting points for the discussion of empirical studies on 

creativity, its development and investigation of giftedness. This session ended up 

with more questions than answers. 

The paper of Kattou et al. presented a complementary part of the study presented by 

Kontoyianni. This study presented empirical testing of a theoretical model in which 

mathematical creativity is considered as a predictor of mathematical ability. The 

results of testing 359 elementary school students in Cyprus using two instruments 

showed that mathematical ability may be predicted by mathematical creativity. 

Levenson introduced the concept of collective creativity that was devised through 

empirical investigation of problem-solving directed at the development of creativity 

in elementary school students. We asked:  

 How can this construct be used by other researchers?  



Working Group 7 

 CERME 7 (2011)  1032 

 

 Does it characterise the work of professional mathematicians, or is it useful 

just on the level of elementary school mathematics?  

We assumed that collective creativity does not necessarily lead to construction of 

shared mathematical meaning by a group of students since only few students can be 

participating at one time in this collaborative process.  

Based on the paper by Levav-Waynberg et al. participants discussed the possibility 

of developing creativity in groups of students with varying abilities. The studies in 

Levav-Waynberg et al. demonstrated that development of mathematical creativity is 

significant not only in groups of high-achievers but also in groups of mid-achievers. 

Based on this study the following question was raised: 

 What is a reasonable balance between qualitative and quantitative studies in 

the field of creativity and giftedness that can lead to a better understanding of 

these phenomena? 

Other questions emerged from the discussions:  

 What is the relationship between high ability and creativity? 

 How can creativity be developed in each and every student? 

Topic 3:  Mathematical activities aimed at developing creativity and promoting 

mathematical giftedness  

Two sessions of the WG were devoted to the mathematical activities that are aimed 

at Development of Creativity and Promoting Mathematical Giftedness. We discussed 

papers by Aizikovitsh-Udi and Amit; Kyriakides; Maj; Novotná and Sarrazy; Singer, 

Pelczer and Voica; and Sophokleous and Pitta-Pantazi. We also learned about the 

NRICH project that was presented by Hewson and McClure.  

A variety of creative ideas about developing mathematical creativity and the ways of 

working with gifted students were presented during two sessions of the WG. The 

discussion focused on ways of realizing students' mathematical potential including:  

 teaching high-achieving students,  

 promoting and fostering creativity in the mathematics classrooms,  

 presenting mathematically challenging activities: non-routine, inquiry-based, 

and authentic mathematical, problem posing; and  

 enhancing teacher education. 

When discussing didactical principles of working with highly able students the 

participants made distinctions between the affective, social and cognitive domains. 

Among others, the following issues were found extremely important in discussion of 

the education of students with high mathematical abilities:  

 When designing programs for highly able students, mathematics educators 

should be concerned with the social consequences of treating able children 
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differently. If these children are offered the same curriculum as everyone else, 

there is no point in placing them in separate groups. Ability grouping requires 

offering a qualitatively different curriculum. 

 The interdisciplinary and multidisciplinary nature of the curriculum for 

mathematically gifted students is an important principle in the education of the 

gifted, since spending a majority of the time on mathematics could inhibit 

them from doing well in other subjects which they might otherwise excel at. 

 The culture of the classroom/school for highly able students must have very 

well trained teachers and a culture in which ability is celebrated. 

 Acceleration and in-depth programs have to be suited to individual differences 

among students, especially concerning the affective dimension.   

Still, several questions were asked which require further discussion:  

 Should the teacher of gifted students be gifted, or is it enough to be highly 

competent? 

 What kind of didactical contract can best fit the needs of high ability students 

in mathematics? 

 What kind of didactical contract can best promote creativity in all students? 

Topic 4:  Culturally dependent and intercultural aspects related to the 

development of creativity in school mathematics and supporting 

mathematical giftedness:  

Following the paper by El Yacobi ―Mathematical Creativity: Impediments and 

Challenges for Africa‖, the group devoted one of its sessions to discussions 

concerning ways for developing creativity and fostering mathematical giftedness in 

schools in different countries. Participants developed a system of criteria for analysis 

and comparison of national school policy, the role of textbooks, management of 

special frameworks, and teacher education. We hope that this system of criteria will 

serve as a starting point for the international study in which the group participants 

take part. 
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The present paper addresses the question of whether critical thinking can be most 

successfully taught in specialized courses (known as general skills approach) or by 

way of integration in the curriculum of regular courses (known as the infusion 

approach). Arguing in favour of the infusion approach, the paper discusses the 

possibility of integrating this approach with taxonomies of critical thinking. The 

qualitative data analyzed in the paper were obtained in a two-year experimental 

teaching of the learning unit ―Probability in Daily Life.‖ The unit was specially 

modified for teaching critical thinking in the infusion approach, while using as well 

as actively teaching Ennis‘ taxonomies. 
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INTRODUCTION 

The field of education has recognized for decades the need to concentrate on the 

promotion of critical thinking (CT) skills. The question is how this can be best 

accomplished. Some educators feel that the best path is to design specific courses 

aimed at teaching CT, which is called the general skills approach. By contrast, 

integrating the teaching of these skills in regular courses in the curriculum is known 

as the infusion approach. The question at the heart of the argument is, whether CT 

skills are general or depend on content and on the system of concepts specific to that 

particular content. According to Swartz (1992), the infusion approach aims at 

teaching specific CT skills along with different study subjects, and instilling CT 

skills through teaching the set of instructional material. Swartz also emphasizes that 

the students should not only employ CT skills in class, but also be able to activate 

them in real-life situations and to recognize situations when these skills should be 

used. For this, an appropriate motivation should be fostered; otherwise these skills 

will remain passive.  

The study on which this paper is based was conducted according to the infusion 

approach. We have combined the mathematical content of an existing learning unit 

"Probability in Daily Life‖ (Lieberman & Tversky, 2001) with CT skills according to 

Ennis' taxonomy, and restructured the curriculum. Further we tested different 

learning units and evaluated the participants‘ CT skills, to examine whether the 

modified learning unit ―Probability in Daily Life,‖ taught in the infusion approach, 

does indeed develop CT (Aizikovitsh & Amit, 2009).   
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The Defining Components of the Theoretical Framework  

This section presents the three fundamental components that this research is based 

on: Ennis‘ taxonomy, the modified ―Probability in Daily Life‖ learning unit, and the 

infusion approach.  

The Infusion Approach 

In light of the evidence that has accumulated in the field of teaching thinking, the 

question arises whether thinking skills are general or content-dependent (Perkins & 

Salomon, 1989). Out of this question there developed four major approaches: the 

general approach, the infusion approach, the immersion approach, and the mixed 

approach. The general approach teaches thinking skills as a range of general skills 

detached from other study subjects, as a separate course in the curriculum. In the 

infusion approach the skills are taught in the framework of a specific study subject, 

and thinking turns into an integral part of teaching specific materials, while general 

principles and terminology of thinking are explicitly emphasized. In the immersion 

approach, the study material is taught in a thought-provoking way and the students 

are ―immersed‖ in the topic of study, without explicit reference to the principles of 

thinking. The mixed approach combines the general and the infusion approaches  

Ennis‘ Taxonomy 

Ennis (1987, 1991) claims that CT is a reflective and practical activity aiming for a 

moderate action or belief. There are five key concepts and characteristics defining 

CT: practical, reflective, moderate, belief and action. In accordance with the 

categories this definition employs, Ennis developed a taxonomy of CT skills that 

include both an intellectual and a behavioural aspect. In addition to skills, Ennis‘ 

taxonomy also includes dispositions and abilities.  In this study, we focus on 

students‘ abilities rather than their dispositions. We have chosen to use Ennis‘ 

definition and taxonomy of CT because it distinguishes between abilities and 

dispositions, and because teaching thinking skills according to a taxonomy suits the 

hierarchical structure of our learning unit in probability studies. 

The Learning Unit "Probability in Daily Life" 

This unit in probability studies is part of the formal high school curriculum of the 

Israeli Ministry of Education. It was chosen because its rationale is to make the 

students to "study issues relevant to everyday life, which include elements of critical 

thinking‖ (Lieberman & Tversky 2001, Introduction p.3). In this unit, students must 

analyze problems using statistical instruments, as well as raising questions and 

thinking critically about the data, its collection, and its results. Students learn to 

examine data qualitatively as well as quantitatively. They must also use their 

intuitions to estimate probabilities and examine the logical premises of these 

intuitions, along with misjudgements of their application. The unit is unique because 

it explores probability in relation to everyday problems. This involves CT elements 
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such as tangible examples from everyday life, evaluating reliability of information, 

accepting or dismissing generalizations, rechecking data, doubting, and comparing 

new knowledge with the existing knowledge. This unit is characterized by questions 

such as ―Define the term ‗critical thinking‘,‖ ―Give examples of a problem while 

using a controlled experiment,‖ ―Give examples of failures and misleading 

commercials,‖ and ―Give examples of a scientific truth that was dismissed.‖ While 

studying the subject, the connection is checked between statistical judgment and 

intuitive judgment, and intuitive mechanisms that produce wrong judgments are 

explored (Aizikovitsh & Amit 2009). While studying the unit, students are expected 

to acquire the tools for CT. In the beginning, students learn the mathematical tools 

necessary for performing calculations, and later on they use the probability part: 

causal connection, and mechanisms of intuitive judgment, which are considered 

more of a psychological projection. 

METHOD 

The instructional model consisted of a learning unit (30 hours) that focused primarily 

on statistics in everyday life situations. This unit was first implemented in an 

interactive and supportive environment for a class of mathematically gifted youth 

participating in the Kidumatica project at the Ben Gurion University of the Negev.  

Seventy-one students between the ages of fifteen and sixteen participated in the first 

round of the experiment, an extra-curricular program aimed at enhancing the CT 

skills of students from different cultural backgrounds and socio-economical levels. 

Probability lessons were combined with CT skills, taught by several teachers, with 

most teaching done by the presenting author. Among the topics taught were bi-

dimensional charts, Bayes‘ formula and conditional probability. CT skills, such as 

raising questions, searching for alternatives and doubting, were evaluated 

quantitatively, using Cornell tests (Ennis, 1996, 2005) and the CCTDI test (Facione, 

1992), as well as qualitatively. The present paper discusses the qualitative findings.  

As sources of qualitative data, we used students‘ products (papers, homework, exams 

etc.), pre and post questionnaires, personal interviews, and class transcriptions. Five 

randomly chosen students were interviewed individually at the end of each lesson 

and again one week after the final class of the course. The personal interviews were 

conducted in order to identify any changes in the students' attitudes throughout the 

academic year. All lessons were video-recorded and all public dialogue was 

transcribed. The teacher also kept a journal (log) on every lesson. Data was 

processed by means of qualitative methods intended to follow the students' patterns 

of thinking and interpretation with regard to the material taught in different contexts.  

QUALITATIVE FINDINGS  

Twenty-seven interviews related to critical thinking were conducted with the 

students towards the end of our course, in order to closely examine their personal 



Working Group 7 

 CERME 7 (2011)  1037 

 

attitude towards mathematics, critical thinking and the development of thinking, and 

to reveal the students‘ thinking patterns in their interaction with ―Probability in Daily 

Life‖ and mathematics. The interviews allowed to create a direct, open and flexible 

dialog with the students, which provided an additional source of information for 

evaluating their critical thinking abilities. An additional body of findings is derived 

from the group discussions aroused by the learning unit, which shows the centrality 

of critical thinking in everyday life. With this set of findings, as with the others, the 

purpose of the analysis was to examine the students‘ patterns of critical thinking in 

the mathematical, social and cultural contexts. In the course of teaching the unit, we 

have interviewed a number of students and asked them a number of questions 

concerning critical thinking. During the interviews we have identified a number of 

recurrent elements presented below. The interviews were of two kinds: closed/ 

structured interviews, where questions were composed in advance, and open/ semi-

structured interviews, where questions were also composed in advance but selected 

and/or modified according to the interviewee‘s answers. In all of the interviews, 

three main elements recurred throughout the students‘ answers: the usefulness of 

critical thinking as an instrument for life and learning; the importance of critical 

thinking as a more empowered attitude towards authoritative sources of information 

and opinion; and finally, the role of critical thinking in promoting the students‘ 

general understanding of the world. 

 The Findings of the Structured Interviews 

To the question, ―What is critical thinking?‖ or the prompt ―Critical thinking is…,‖ 

the students gave the following answers, which define critical thinking in three main 

dimensions: as a tool they can use in life and studies, as an attitude towards authority 

and sources of information, and as a way to improve their general understanding of 

the world. The answers that define critical thinking as a useful tool would say, for 

example:  

It‘s something for which you need to use your brain properly. Something  about critique. For 

instance: an ad in a newspaper that is not true. [B536]  

To know how to check findings, opinions, reliability; to research, to doubt. [R505] 

Not to trust everything [you hear], to check before you decide. Not to believe any odd survey 

[right away]. To think about every thing. [A847]  

The latter definition brings forward a strong aspect of critical attitude towards 

authoritative sources of information, as does the following one: ―In my opinion, the 

importance of critical thinking is that you don‘t take everything they tell you for 

granted, but check whether it‘s true and whether it‘s possible that the person who is 

explaining is wrong, and you accept mistakes."  
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Yet another extensive definition focuses on the critical attitude towards information 

sources, but also makes a strong emphasis on the role of critical thinking in learning 

to understand the world better:  

Often I used to see only the external aspect of things and wouldn‘t really see what they are 

about. All of a sudden things become explicit, something lights on me, and it has to do with 

understanding. When I understand something, it also helps me to understand myself better. I 

have a greater power. When we studied investigation, I felt that my voice was becoming 

strong. [I could ask,] Who is doing the research, how many people, what are the purposes? I 

got power out of understanding, to understand more things better. [E886]  

The aspect of empowerment acquired by mastering critical thinking should be noted 

here as well.  

Also the following definition, ―Every time I study, I discover new things, things are 

becoming clearer to me‖ [A427], focuses on the aspect of improved general 

understanding that critical thinking provides. Another student says, ―If we didn‘t 

have critical thinking we wouldn‘t be able to understand well‖ [Y318]. Finally, one 

student defined critical thinking as ―A way of life‖ [E886],  

While the students' answers elude going into a detailed analysis, they do capture the 

all-encompassing influence of acquisition of critical thinking on the students‘ lives 

and perception of the world.  

To sum up, the main elements in the students‘ definitions of critical thinking are as 

follows:  

(i)  Openness to a variety of opinions and ideas;  

(ii)  Serious consideration of other points of view;  

(iii)  Suspension of judgment when evidence and arguments are insufficient;  

(iv)  Consolidating or changing an opinion when evidence supports doing so;  

(v)  Looking for precision in information, searching for reasons and arguments, 

examining all the possibilities.  

Answers to the question ―Who is a critical thinker?‖ are closely related to the 

definitions of critical thinking itself, but also add an important dimension of personal 

wisdom and intelligence as traits closely associated with critical thinking, as, e.g., in 

the following answers:  

A critical thinker knows how to examine things, put things into question, to go deep and 

think about what s/he sees. [R505] 

A critical thinker for me is an intelligent person, with a lot of world knowledge and life 

wisdom, which they can draw on when they are thinking critically about what they read or 

what they get. They also need mathematical thinking. [S210] 
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To sum up, the main elements of the students‘ definition of the critical thinker are as 

follows:  

(i)  Someone who tends to shape, correct and change their beliefs in light of 

convincing arguments.  

(ii)  Someone who is capable of understanding at least two opposing, well-defined 

points of view on the same subject while maintaining one‘s own standpoint 

regarding the subject.  

In answering the question ―In what ways can critical thinking be developed?‖ the 

students emphasized learning from other people, reading, and the importance of 

patience and perseverance. One student said it can be ―learned from reading books, 

criticisms, articles, listening to other people‘s opinions. In researches they discuss 

methods that one can examine‖ [R505]. Another student emphasized the challenge 

that learning and practicing critical thinking poses, and the importance of insistently 

pursuing it:  

What‘s interesting about critical thinking is that at first everything is very difficult and 

complicated, and then, when you peel off leaf after leaf, you discover some little treasure; at 

first it seems very complex, so you need to remember that all the time you need to keep 

exploring, because as long as we go on it becomes more and more beautiful. [E886]  

In their answers to the question about the ways of developing critical thinking, the 

students named three main abilities that need to be developed:  

(i) The ability to distinguish between opinion and fact: the difficulty of 

distinguishing between utterances expressing the position of the speaker/writer 

on a certain reality, and the expressions of facts/events comprising this reality.  

(ii) The ability to identify information intended to influence the reader emotionally, 

such as using emotional manipulation as a means for presenting an argument 

and persuading the reader.  

(iii) The ability to recognize stereotypes and avoid using them: it is difficult to 

identify overgenerabglization that leads to stereotyping and is likely to create 

bias and acceptance of a stereotype as a scientific fact.  

DISCUSSION  

Acquisition and construction of higher-order thinking skills by students in general 

and mathematics students in particular has become one of the main targets of the 

education system widely accepted by educators around the world. The acquisition of 

these skills will enable the student to function as an active and productive citizen, 

and the challenge at present is to find ways of teaching and developing this approach 

not only in the excellent students but in the total population of students in schools.  
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Higher-order thinking involves applying many different criteria that frequently 

contradict each other, as well as self-regulation of thinking processes (independence 

of others at every stage of thinking). With the qualitative methodology we have 

chosen for this research, it was possible to examine these different aspects from 

several perspectives that enabled observation and interpretation of the educational 

reality in each group and conducting direct dialogue with the research participants 

(Tsabar Ben Yehoshua, 2000). Thus it became possible to point out several 

tendencies that became apparent during the research.  

Analyzing the findings, we have arrived at the following insights regarding the 

process of critical thinking skills construction and teaching: 

(i) It seems that critical thinking skills do not develop spontaneously and that even 

good students acquire them by means of explicit instruction. This finding is in 

direct opposition to Zohar's claim (2000) that learning skills and learning 

strategies develop in the student spontaneously, without direct instruction. The 

findings suggest that being familiar with the taxonomy of critical thinking skills 

has a potential to improve the students‘ success at acquiring and perfecting them.  

(ii) To a large extent, the construction and teaching of critical thinking skills are 

determined by specific contents and tasks the teacher uses. This finding 

corresponds with other researches, such as Bransford (2000). In this research, 

Ennis‘ taxonomy of skills enabled the researchers to choose skills most suitable 

to be taught at each stage of the course, with respect to the contents and the 

increasing difficulty level of the learning unit. 

(iii) It is possible to significantly influence and change the mathematical discourse in 

the classroom and the students' language of critical thinking, by providing 

appropriate conditions and terminology as well as using appropriate instruction 

methods. In the literature, this finding applies not only to older and/or more 

successful students, but also to younger and/or underachieving ones 

(Weinberger, 1992).  

(iv) Excellent students (the Kidumatica group) were capable of operating a greater 

number of skills automatically, quickly, utilizing a minimal degree of conscious 

effort. However, this automatic application of thinking has only been acquired 

after much practice and exposure to different learning contexts. What is more, 

even expert learners are likely to return to a much slower and more conscious 

way of learning when confronted with unfamiliar tasks or connections.  

However, it has to be recognized that providing a systematic terminology for 

describing thinking skills is far from exhausting the problematics of teaching critical 

thinking. For instance, Resnick (1987) expresses a different view, namely, that it is 

difficult to define higher-order thinking skills, but easy to recognize them when used 

by someone. She believes that higher-order thinking is not algorithmic, and that 

thinking patterns are not clearly defined in advance. This type of thinking often 
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concludes with multiple solutions, each of which has its advantages and 

disadvantages, but does not yield a single clear solution. High-level thinking has to 

do with skills in solving problems, asking questions, thinking critically, making 

decisions and assuming responsibility (Ben-Chaim, Ron &  Zoller, 2000; Zoller, 

2001). 

Decision is an essential part solving a problem that involves a gap between an initial 

situation and a final goal and there is no easy, well-known way of finding a solution. 

Nonetheless, based on the findings of this research, it seems that conscious learning 

and explicit discussion of thinking skills in the context of mathematics enables the 

students to more efficiently develop these skills by way of solving probability 

problems. This type of learning emphasizes the development of specific skills in the 

process of solving mathematical problems. The small-scale research described here 

constitutes a small step in the direction of developing additional learning units 

designed to develop critical thinking skills within the traditional curriculum.  

CONCLUDING REMARKS 

This paper has focused on the qualitative findings of our research, which are 

supported by quantitative findings presented elsewhere (Aizikovitsh & Amit 2008, 

2010). The analysis of CT skills and dispositions tests and math tests the students 

took revealed the following improvements 

(i)  In all three iterations of this research design, a moderate improvement has been 

detected in the critical thinking dispositions of all experimental groups. This 

improvement may be attributed to maturation and accumulating life experience 

as well as learning proper. All of these are significant factors affecting the 

development of the students' critical thinking, particularly within the framework 

of probability.  

 (ii) Throughout these iterations, a moderate improvement was also detected in the 

students' critical thinking abilities. As in the case of dispositions, this 

improvement can also be ascribed to maturation, accumulating life experience, 

knowledge in other mathematical fields (e.g. geometry contributes to the 

development of deductive skills), and learning proper.  

Thus, the findings of this research suggest that when teachers consistently and 

explicitly emphasize specific critical thinking skills, the students are more likely to 

succeed in developing them.  
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There is a big difference between high attaining and (highly) gifted pupils in 

mathematics: first, being gifted in mathematics does not necessarily lead to high 

assessment in this subject; second, being high attaining in mathematics does not 

necessarily mean being mathematically gifted – depending on the context in which 

the notion of mathematics and the concept of mathematical giftedness is socially 

constructed. Based on a conceptual approach from systems theory, a model for the 

causality of giftedness and assessment is presented and supported by an empirical 

survey among teachers at a higher secondary German boarding school for high 

attaining pupils. 

Keywords: mathematical giftedness, high attaining, systems theory, teacher 

interview 

INTRODUCTION 

For the purpose of fostering gifted pupils, the identification of those comes first. 

There has been done plenty of research emphasizing the quantitative aspect of 

different kinds of tests that historically range from a solely IQ-test over bringing in 

school marks up to modern multidimensional settings (Heller et al., 2000; Pfeiffer, 

2008). However, in day-to-day school life there is one dominant (non-) identifier and 

fosterer of giftedness, for example, in mathematics: the teacher – and because of the 

viability of the construct, the teacher‘s idea of mathematical giftedness (MG) may 

differ from that of parents or professional mathematicians. 

In order to make up a custom-made material-based program that suits the 

predominant concept of mathematical giftedness at a specific German school for high 

attaining pupils, the manifestation of the construct MG at this specific school and its 

difference to high assessment in mathematics were investigated by qualitative 

teacher interviews. Furthermore, a suitable theoretical model of mathematical 

giftedness is provided. Within that, MG is constructed by an ambivalent 

environment. As this environment on the one hand consists of (the viable notion of) 

mathematics and on the other hand, amongst others, of the educational system with 

its specific schools and mathematics teachers, the degree of being gifted in 

mathematics depends strongly on the maths teachers notion of mathematics. 

Both exceeding and specifying the research question of identifying mathematically 

gifted pupils hitherto, is another question addressed here, too: How can the really 
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mathematically gifted ones be identified in a group of just and indeed mathematically 

high attaining pupils? Are there any characteristics that – again, in the teacher‘s eye 

– distinguishes the gifted from the (just) high attaining ones? Those aspects that can 

be found out by qualitative single case interviews (as it was done here), may deliver 

aspects for the development of more quantitative orientated tests for samples already 

containing only high attaining test persons. 

MATHEMATICAL GIFTEDNESS 

There are several concepts on giftedness. Mathematical giftedness (MG) is even 

more controversial as on the one side there are authors objecting to the existence of a 

specific MG (a. o. Fôlsch, 1977; Treumann, 1974) and on the other side other 

authors testify this specific disposition based on empirical evidence (a. o. Greenes, 

1981; Kruteskii, 1976; Kießwetter, 1992; Käpnick, 1998). We stick to the latter ones 

and see MG as a synergetic potential that consists of two different aspects: a) 

abilities specific to mathematics and b) general personality traits. An incomplete list 

of items is given in figure 1. 

 

Figure 1: Mathematical Giftedness: abilities and traits. 

An approach via Systems Theory 

Because of the apparently vagueness of the concept MG, a conceptual approach by 

terms of systems theory was given in Brandl (2010) that is based on the ―Law of 

cultural differentiation― (Irvine & Berry, 1988) and the so-called anthropological 

approach (Sternberg, 1996). Therein the system MG is seen as an open mental 

disposition construct surrounded by the environment mathematics which features 

necessary structural couplings between the system and its environment that describe 

the influence of predominant philosophical notions about mathematics on a 

conception of mathematical giftedness. Mathematics represents ―environment 2‖ that 

―is the world that creates sense for the system.―  (Krieger, 1996, p. 81). The further 

environmental factors that affect the system MG in a competitive way, too, but which 

do not necessarily endow the system with meaning or sense, are collected in 

„environment 1― (figure 2). 
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Figure 2: System MG and environment(s) interacting by structural couplings. 

So MG manifests in different kinds and shapes depending on the notion about 

mathematics and the current state of the discourse concerning the authorities in 

environment 1. These items can only be detected by entering the field, like a certain 

school, and investigating the predominant notions and characteristics by qualitative 

and quantitative methods. Hence, the question ―Is this person mathematically 

gifted?‖ should be altered to the question ―Is this person mathematically gifted 

within this specific environment(s)?‖. 

Causality of Giftedness and Assessment 

In general, the system MG – as illustrated in Figure 1 and 2 – is seen as an individual 

potential for excellent assessment (Heller et al., 2002; Ulm, 2010). According to 

Ziegler (2009) a high attaining pupil is a person that fulfils a fixed criterion of 

achievement. So, in the first place, excellent assessment of a pupil in mathematics is 

measured by the teacher via recognizing very good marks in mathematics, for 

example. 

A further developed model coming from the models in Heller et al. (2002) or Ulm 

(2010), respectively, for the causality between pupils‘ MG and assessment which 

includes the systemic character, is given in Figure 3. The open mental construct MG 

that already contains some primary general personality traits (figure 1) depends on a 

predominant notion of mathematics in a certain situation which is located in a 

primary environment, the so-called environment 1. A person that possesses that kind 

of MG can develop mathematical competencies which may lead to mathematical 

performance and assessment. The actual formation of an observable performance as 

well as competencies is influenced by some secondary general personality traits 

(such as learning and working strategies, learning and working motivation, ability to 

concentrate, stress coping skills, …) and secondary environmental factors (such as 

familial learning environment, teaching quality in class, atmosphere in school and 

class, peer group, critical personal experiences, …) which operate as moderator 

variables.
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Fig

ure 3: Causality between MG, competencies, performance and assessment. 

As indicated in figure 3 there is no equivalence between performance and MG: the 

arrow from MG to mathematical competencies only points in one direction. 

However, a well-known example for the fact that all dependences must not be seen 

as absolute but rather as possible is the (gifted) underachiever: he or she is MG, but 

his or her secondary moderators let him or her show no performance. On the other 

hand a high attaining pupil does not need to be (highly) gifted. The environment in 

his or her school can allow for very good grades in exams and the A-levels, for 

example, but does that mean that the pupil is a gifted mathematician? Perhaps the 

tasks the pupil had to solve only aimed at computational skills and did not stress on 

any kind of creative approaches at all. Of course, this implication depends on how 

MG is constructed in that specific environment. Therefore in the following paragraph 

an example from an empirical survey at a German school for high attaining pupils is 

sketched that gives insight to 

a) the manifestation of MG at this specific school and 

b) the different notions of being high attaining or highly gifted in mathematics 

from the view of teachers at this specific school. 

AN EMPIRICAL SURVEY 

Description of field and sample: The school is a German boarding school for higher 

secondary education. So the pupils at this school are about between 15 and 18 years 

old. The classes are small and consist of 16 pupils with equally distributed gender. 

All pupils that want to apply for the school must have at least the mark ―good‖ in the 

main subjects German, Mathematics, one foreign language and one natural science. 

Furthermore the average mark in the last two school reports has to be at least ―good‖ 

as well. Pupils that fulfil the requirements with respect to marks have to pass a 

further selection process that consists of the intelligence structure test I-S-T 2000 R 

(Liepmann et al., 2007) and a two-day assessment centre concerning the social skills. 
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In the intelligence structure test pupils must have a total score that makes sure that 

the pupils finally selected are gifted in the sense of achieving very high IQ levels
1
. 

All (eight) mathematics teachers were interviewed in an individual, problem-centred 

and episodic way with focus on their beliefs concerning their notion of mathematics, 

mathematical giftedness and the pupils at their school. 

RESULTS AND CONCLUSIONS 

Transcript excerpts show the predominant concept of MG and different 

characteristics of high attaining versus (highly) gifted pupils in mathematics. 

Quotations from the individual interviews 

Within this paper we limit ourselves to the presentation of quotations from two male 

mathematics teachers and denominate them as A and B. Teacher A is 47 and teacher 

B 59 years old. Both have worked at the school for six years. Teacher A earned a 

PhD in a non-math subject and had a several years experience of working with gifted 

pupils before entering the current school. Teacher B had worked as a teacher abroad. 

Both of them had worked at different secondary schools before entering the current 

school. The interviews lasted 55 and 26 minutes, respectively. Quotations from 

teacher A and B were chosen out of the eight interviewed ones for presentation in 

this paper because of their relative similarity, openness and extensiveness. But as 

there is no right or wrong but only the specific and viable construct of MG this is no 

restriction according to the theoretical background.  

Teacher A: notion of mathematics 

When it comes to their notion of mathematics, teacher A addresses several aspects. 

His answers can be separated according to different topics. So, the themes are listed, 

followed up by some quotes stemming from the interviews
2
: 

- leisure: ―[…] thinking it over relaxed and quietly, this and then concentrating 

on it, that gives a better return‖ 

- philosophical thoughts: ―[…] it must make sense. I mean that philosophically, 

too. Because you said what pupils should answer to what is mathematics. Yes. 

(.) That is a matter of taste either way, but that it makes sense somehow.‖ 

- communicative process: ―Mathematics is a communicative process.‖ 

- logically clearly defined and also communicative intellectual game: ―I hope 

they don‘t see mathematics as deterrent but as (.) a logically clear defined (.) 

and also (.) communicative intellectual game.‖ 

- intellectual appealing world of thought: ―[…] as an appealing, intellectually 

appealing, but that‘s also a matter of taste, intellectual appealing mhh (..) 

world of thoughts‖ 
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- also applications: ―That is a matter of taste either way, but that it makes sense 

somehow. ((hm)) (..) Either just cognitively or by application― 

- intellectual joy, happiness: ―The goals? ((yes)) Well, that the pupils have 

intellectual fun […] Joy, actually that‘s the highest goal.― 

Teacher A: manifestation of MG 

When teacher A is asked for his idea of mathematical giftedness, the interview again 

delivers some main points: 

- intuition; sensing the overall train of thoughts: ―Well, I see that in fact that they 

actually sense the point of it all without that I would have spent many words 

about the problem. […] a kind of intuition, aha, so now there is this and that and 

this. That they sense the overall train of thoughts where the method will lead us‖ 

- interest in alternative definitions and the corresponding consequences: ―[…] it is 

the permanent attempt (.) can‘t we play differently? ((yes, yes)) And if yes, where 

would this lead us to? If no, why doesn‘t it work out?‖ 

- aesthetical sensation and joy: ―Those have more fun than usual. […] Over the 

fact that this is a beautiful construction of the theory ((ah, yes, certainly)) Or: 

what a wonderful exactness! ((mhm)) So this joy over a good construction […] 

they really feel it.‖ 

Teacher A: looking at the structural coupling 

Teacher A has a very high-level and sophisticated notion of mathematics. So, for 

example teacher A emphasises leisure, the communicative process, exactness and 

intellectual joy. Because of the structural couplings between the system MG and its 

environment of mathematics this leads to strong correlations with teacher A‘s idea of 

MG. These correspondences are pointed out by colours and arrows in table 1. 

Notion of Mathematics MG 

• leisure 

• philosophical thoughts 

• communicative process 

• logically clearly defined and also 

communicative intellectual game 

• intellectual appealing world of thought 

• intellectual joy, happiness 

• also applications 

• intuition: sensing the overall train 

of thoughts 

• interest in alternative definitions 

and the corresponding 

consequences 

• aesthetical sensation and joy about 

that 

Table 1: Notion of mathematics and MG of teacher A; coloured text parts correspond 

to each other as also indicated by arrows. 
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Teacher B: notion of mathematics and manifestation of MG 

For the sake of completeness the next summarized quotations give insight to the notion and 

manifestation of mathematics (first quotation) and MG (second quotation) of teacher B; the 

main topics are underlined:  

Maths: ―[…] mathematics brings in a certain kind of systemization. [..] 

Mathematics: to search for, to see and to analyse structures. [..] They should 

(.) see that mathematics (.) is the art of looking at the complicated in an easy 

way. […] Well, that knowledge to have, or are able to gain, an instrument 

by which we understand how the modern world operates. [..] But, of course, 

this is a bit of disenchantment. […] this balancing act between the two 

different approaches to mathematics, on the one hand (.) I don‘t need 

illustration at all ((mhm)) in order to design mathematics as just a glass bead 

game […] and the other hint that I want to give the pupils: mathematics 

always was the answer to concrete questions. […] I think either is important 

to get across. […] Yes, it is inspiration and a bit of chaos, of course. Yes 

((yes, yes)). And, of course, it is also the possibility, the frustration 

tolerance, to begin and to throw away ideas, to have ideas. ((yes)) (..) And 

from this, to see  structures suddenly coming out of this confusion, so you 

can again throw away things and arrange them in a new way ((yes, yes)) Of 

course, there is a certain kind of joy, too. In this respect then there is 

something like mathematical beauty, too, of course.‖ 

MG: ―[…] those really were satisfied with this (..) highly abstract chapter about 

vector spaces ((ok)) they took part in and saw some good connections […] I 

don‘t know if somebody is mathematically gifted. Well, of course, 

creativity, curiosity (.) plays a role, the ability to think out of the box or to 

see connections. Hence, the opposite to being uninspired/dutiful […] what 

happens really often is that they find solutions to problems that I didn‘t 

expect. […]‖ 

Teacher A: high attaining pupils 

When teacher A speaks of the pupils at his school he gives a good profile of these 

high attaining ones and their difference to the mathematically gifted. Again, the 

answers are sorted by main topics followed up by short quotations: 

- want mathematics lessons to be done in detail and precisely: ―The pupils often say 

(.) fully convinced: when we do it very accurately then we understand it best. 

((mhm, yes, yes.)) This is a very clear statement which I get over and over again 

every year ((ok)) In all grades. That means (.) mathematical precision for these 

pupils leads to a better and not a worse understanding‖ 

- want to be active: ―In case of doubt they want to be active ((ok)) not hanging 

around, they are motivated.‖ 
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- are motivated (mainly intrinsic): ―Actually, I think it is mainly intrinsic motivation 

((hm)) just want to be intellectually active. That‘s for sure.‖ 

- are able to work in teams: ―Able to work in teams, social cooperation ((yes)) in a 

positive sense‖ 

- impose an introjected pressure to perform on themselves: ―[..] it is a somehow 

introjected pressure to perform which they impose on themselves, too.‖ 

- have extreme requirements on themselves: ―[…] often it is a very high requirement 

on themselves […] There are pupils weeping, because they only have the grade 

―good‖ […] That means it is an internal pressure to perform on oneself ((hm)) I 

wouldn‘t say that this is the classical grade pressure ((mhm)) but that these are 

pupils that partly have extreme requirements on themselves.‖ 

- don‘t dare to work independently: ―I offer the pupils (.) that when they say they 

don‘t want to take part in class to work independently about this or that 

mathematical aspect in the library (..) that‘s what I offer them, and then do a short 

talk about it ((yes)) in order to differentiate. I offer that, also in other subjects, I 

offer that and who doesn‘t make use of it? The pupils!‖ 

- don‘t want to isolate themselves: ―They don‘t want to isolate themselves‖ 

- don‘t want to miss anything in class: ―[…] and, of course, they don‘t want to miss 

anything in class. [..] They somehow don‘t dare.‖ 

- do well in all subjects: ―The good and very good pupils from advanced math 

courses at normal schools would do well here especially in maths ((hm)) However, 

the pupils here do well in all subjects ((ok)) more or less.‖ 

- are less non-conformistic: ―Well, the pupils here are not more non-conformistic 

than at other schools. Not for sure. […] It‘s just the opposite.‖ 

- are interested: ―They are interested, they are motivated ((ok)) Let it be whatever it 

is, just make sure that it is interesting ((ok, hm)) It has to make sense and it has to 

be interesting‖ 

- are very polite, respectful, sensitive and thus reserved: ―On the interpersonal level 

they are (.) very polite, very respectful, very sensitive ((mhm)) and thus very 

reserved […] just because they are so nice and respectful ((yes)) they don‘t rebel 

so straightforward‖ 

- are distinctively stubborn on an emotional an cognitive level: ―[…] they are 

distinctively stubborn […] in order to convince them to do something in different 

way or that something is better, you really need telling arguments. They have to be 

absolutely convincing […] on the emotional level concerning something, but, of 

course, just as well when it comes to cognitive things ((ok)) […] And the same 

with motivational questions in class. A problem is not interesting as a pseudo 

problem, it really has to be interesting […] In this respect: a global stubbornness‖ 
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- are less qualified to be subordinates: ―Actually they are less non-conformistic than 

at other schools ((ok)) but they are less qualified for being subordinates. ((mhm)) 

Yes. That‘s the point‖ 

Teacher B gives some more aspects: 

- are teacher-orientated: ―I experience the pupils here as interested, teacher 

orientated, committed […] The pupils‘ expectation is more significant than 

elsewhere that the teacher is the one, who knows the things and (.) has to find an 

appropriate way to teach it to the pupils. What I want to say is that they more often 

are less independent than I would actually wish. […] They have the potential to 

work independently, but they don‘t dare. […] On the evaluation sheets that I hand 

out in every course, I always ask on which content we should have had more 

concentrated on or what else they imagine. And then surprisingly often there is the 

answer that I would never have heard at other schools: you will know it best, or, 

that‘s what the curriculum says after all. [..] Well, that objects my experiences 

which I made at other schools.‖ 

- are very dutiful: ―We have many dutiful ones at this school. ((ah, ok, aha)) 

Probably too many dutiful […] Many (…) do mathematics, because they know 

that one needs it and also has to at this school ‖ 

- are resistant to psychological strain: ― […] and they are (..) resistant to the 

psychological strain. They take on very much ((ok)) don‘t show it as much as at 

other schools ((ok)) how much they suffer‖ 

- are eager for reliability: ―They want the teacher to take the lead, because he knows 

what‘s going on. ((yes)) Especially with ours, who are eager for reliability‖ 

- want to write good exams: ―They want to write good exams. […] they definitely 

want to do good A-levels.‖ 

Teachers A and B: high attaining versus (highly) gifted in mathematics 

We chronologically list the important items that refer to the high attaining pupils at 

this specific school in table 2 and contrast them to the mentioned (not necessarily 

additional) characteristics of MG seen by these two teachers. 

High attaining pupils MG pupils 

• want mathematics lessons to be 

done in detail and precisely 

• want to be active 

• are motivated (mainly intrinsic) 

• are able to work in teams 

• impose an introjected pressure to 

perform on themselves 

• have extreme requirements on 

themselves 

• have mathematical intuition: 

sensing the overall train of 

thoughts 

• are interested in alternative 

definitions and the corresponding 

consequences 

• feel aesthetical sensation and joy 

about that more than others 

• are satisfied with highly abstract 
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• don‘t dare to work independently 

• don‘t want to isolate themselves 

• don‘t want to miss anything in 

class 

• do well in all subjects 

• are less non-conformistic 

• are interested 

• are very polite, respectful, 

sensitive and thus reserved 

• are distinctively stubborn on an 

emotional an cognitive level 

• are less qualified to be 

subordinates 

• are teacher-orientated 

• are very dutiful 

• are resistant to psychological strain 

• are eager for reliability 

• want to write good exams 

objects 

• are creative 

• show curiosity 

• are able to think out of the box 

• ―see‖ inner-mathematical 

connections 

• find unexpected solutions to 

problems 

• are the opposite of being 

uninspired/dutiful 

Table 2: Characteristics of high attaining and gifted pupils in mathematics as 

described by teacher A and B opposed to each other. 

Conclusion 

The comparison of the two columns in table 2 shows well the difference between a 

high attaining and a (highly) gifted pupil in mathematics the way it is seen by those 

two exemplary teachers. Most of the aspects listed in the MG column correspond to 

the items listed in figure 1 both for abilities specific to mathematics and general 

personality traits. But especially when it comes to the latter ones, there is an overall 

theme that separates the gifted from the high attaining ones. In the eyes of both 

teachers, a pupil who is a brilliant mathematician features a specific characteristic 

that opposes the description of the typical high-attaining pupil: where a less non-

conformistic, reserved, stubborn, dutiful and teacher-orientated attitude is typical for 

high attaining pupils, mathematical excellence results from creativity, curiosity, out-

of-the-box-thinking, flexibility and the ―opposite of being uninspired/dutiful‖. This 

stands in line with the following quotation from the teacher Carol Fertig at 

Prufrock‘s Gifted Information Blog: ―Flexible thinkers go beyond the bounds of 

orthodox thinking and look for alternatives others fail to see. While rules are used as 

guidelines, they are not used as straightjackets that curb thinking. Flexible thinkers 

are those who are creative problem solvers. Flexibility requires that people escape 

from ruts and try new things. These thinkers are able to shift gears easily. They look 

for new ideas everywhere. They are not afraid of change.‖ (Fertig 2007) 
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Connection to the theoretical background 

By the exemplarily examination of two teacher interviews at this specific school for 

high attaining pupils we could give an answer to the actual manifestation of MG in 

this special context: both teachers have a very high-level and sophisticated notion of 

mathematics. Furthermore it was illustrated in the case of teacher A, how the notion 

of mathematics influences the notion of MG. In system theoretical termini this fact 

shows the structural coupling between the two systems. Concerning the difference 

between gifted and high attaining pupils, the interviews clearly showed that there are 

more and/or other aspects that stand for being gifted in mathematics. Just looking at 

a very good performance in the subject does not mean that the pupil looked at is a 

gifted mathematician: the left horizontal arrow in Figure 3 is not reversible! Those 

aspects may be considered in tests to identify mathematically gifted pupils. 

NOTES 

1. The fact that a psychologically defined numerical IQ exceeds a certain value does not necessarily imply that this 

person is mathematically gifted. 

2. All quotations from the interviews and discussions have been translated from German into English by the interviewer 

and author of this paper. 
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This paper focuses on the development of a theoretical model in which mathematical 

creativity constitutes a predictor of mathematical ability. Furthermore, we examine 

the existence of groups of students that differ across mathematical ability and 

investigate whether these groups present differences in their mathematical creativity. 

The study was conducted among 359 elementary school students in Cyprus, using 

two instruments. The results revealed that mathematical ability may be predicted by 

mathematical creativity. Moreover, the sample can be grouped in three distinct 

categories according to mathematical ability. The categories of students also present 

statistically significant differences in their mathematical creativity, suggesting that 

the level of mathematical ability depends on the level of mathematical creativity.  

Keywords: creativity, cognitive abilities, mathematics. 

INTRODUCTION 

Creativity has been proposed as one of the major components to be included in the 

education of the 21st century (Mann, 2005). Therefore, contemporary curricula 

emphasize the development of students‘ creative thinking (Lamon, 2003). However, 

the conceptualization of creative learning varies due to the diversity of the proposed 

definitions of creativity. In particular, several definitions have been proposed for the 

concept of creativity; some of the definitions focus on process, while others 

emphasize the creative product (Haylock, 1987). For instance, creativity has been 

defined as a continuum of actions, as a process of bringing something new into being 

(Best & Thomas, 2007). In regard to the definitions that refer to the creative product, 

fluency, flexibility and originality are some of the commonly accepted characteristics 

that describe the outcome of the creative action (Torrance, 1995). In contrast to 

general creative ability, as has been defined previously, Gardner (1993) proposed 

that every individual has creative potential in a specific domain. Due to this fact, 

research literature makes a distinction between general and specific creativity (Piirto, 

1999), whereas specific creativity ―is expressed in clear and distinct ability to create 

in one area, for example mathematics‖ (Leikin, 2008). 

THEORETICAL FRAMEWORK 

Defining mathematical creativity 

The lack of a uniform definition of general creativity consequently leads to the 

dearth of a commonly accepted conceptualization of mathematical creativity 

(Haylock, 1997). In some cases, researchers move away from mathematics to search 

ideas associated with creativity in general and then to select those which are the most 
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relevant to mathematics (Haylock, 1987). For example, the definitions given by 

Krutetskii (1976), Ervynck (1991), Silver (1997), Gil, Ben-Zvi and Apel (2007) are 

based on the concepts of fluency, flexibility and originality (Torrance, 1995) in the 

content of mathematics. In this case, fluency refers to the ability of producing many 

ideas, flexibility refers to the number of approaches that are observed in a solution 

and originality refers to the possibility of holding extraordinary, new and unique 

ideas (Gil, Ben-Zvi & Apel, 2007).  

Moreover, several attempts have been made to generate definitions of mathematical 

creativity. These definitions include the abilities to solve problems and to develop 

thinking in structures (Ervynck, 1991), to observe patterns (Laylock, 1970), to 

abstract and generalize mathematical content (Krutetskii, 1976), to discern or choose 

(Hadamard, 1945), to understand which patterns are acceptable (Birkhoff, 1969) and 

to make connections between unrelated ideas (Haylock, 1987). 

Mathematical creativity and mathematical ability 

As Silver (1997) suggested, ―creativity is closely related to deep, flexible knowledge 

in content domains‖ (p. 750). However, there are conflicting results that describe the 

relationship between mathematical creativity and mathematical ability: could 

creativity affect an individual‘s mathematical ability or mathematical knowledge may 

enhance mathematical creativity? According to Meissner (2000), solid mathematical 

knowledge is essential for the development of mathematical creativity. One 

important reason for this necessity is the fact that excellent knowledge of the content 

helps individuals to make connections between different concepts and types of 

information (Sheffield, 2009). Therefore, students who are characterized by 

mathematical accuracy and fluency are more able to think creatively in new 

mathematical tasks by providing original and meaningful solutions (Binder, 1996). 

Moreover, ―creative work involves a certain amount of pre-existing domain 

knowledge and its transformation into new knowledge‖ (Nakakoji, Yamamoto, & 

Ohira, 1999). More specific, prior knowledge consistutes the backbone on which 

new information will be organised and determines the extent to which these 

information will be explored (Sheffield, 2009). On the contrary, other researchers 

proposed that creative potential contribute to the improvement of mathematical 

knowledge. In Starko‘s words (1994) ―students who use content in creative ways 

learn the content well‖. The ability to solve a problem with several strategies or the 

ability to reach different answers in a specific task are valuable evidences of the 

development of mathematical reasoning (NCTM, 2000).  In other words, 

mathematical creativity ―is an essential aspect in the development of mathematical 

talent‖ (Mann, 2005, p. 29). The importance of mathematical creativity to 

mathematical ability is also proposed by Hong and Aqui (2004). In this research, 

Hong and Aqui (2004) studied the differences between high academically and high 

creative students in mathematics. The results verified that creative students in 

mathematics were more cognitively resourceful than their peers who achieved high 
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grades in school mathematics. On the basis of these results, Sternberg (1999) 

acknowledged that the essence of mathematics is to apply knowledge creatively in 

specific circumstances. 

PURPOSE OF THE STUDY 

Despite the fact that the definitions referring to mathematical creativity suggest 

important abilities that may consist this construct, there is a lack of corresponding 

research regarding to the relationship between mathematical creativity and 

mathematical abilities. Therefore, the purpose of the present study is threefold: (1) to 

examine the relationship between mathematical creativity and mathematical ability, 

as they are projected in a theoretically driven model; (2) to trace groups of students 

that differ across the components of mathematical ability; (3) to investigate 

differences in creativity between the groups of students that vary in mathematical 

ability. 

METHODOLOGY 

Sample  

The sample for this study consisted of 359 Grade 4, Grade 5 and Grade 6 students 

from eight elementary schools in Cyprus. One hundred and fourty three students 

attended 4
th

 grade, while 118 and 98 students attended 5
th

 and 6
th

 grade, respectively.  

Instruments 

Each student completed two instruments: the mathematical abilities instrument and 

the mathematical creativity instrument (examples of tasks are presented in Figure 1). 

The mathematical abilities instrument consisted of 29 tasks measuring the following 

abilities: manipulation of quantities (quantitative ability), causal relationships (causal 

ability), visualization and spatial reasoning (spatial ability), processing of similarities 

and differences (qualitative ability), inductive/deductive reasoning (inductive/ 

deductive ability). Students‘ answers were assessed as right or wrong. The 

mathematical creativity instrument included five tasks in which students were 

required to provide: (a) multiple solutions, (b) solutions that were different between 

them, and (c) solutions that none of his/her peers could provide. The assessment of 

students‘ creativity was based on the distinction of students‘ fluency, flexibility and 

originality (Torrance, 1995). A task from the mathematical creativity instrument is 

presented in Figure 1. In this example, fluency referred to the number of correct 

responses that students presented. For flexibility, the different types of responses 

were measured (e.g. whether students used additive or multiplicative structure). 

Originality was calculated by comparing a student‘s solutions with the solutions 

provided by all students and the rarest correct solutions received the higher score. 

Every component of the mathematical creativity instrument was converted to a score 

ranging from 0 to 1, with 1 being the highest score. 
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Figure 1: Examples of tasks from the mathematical abilities and mathematical 

creativity instruments. 

The two instruments were given in electronic form and students worked individually 

in the laboratory of their school in order to complete them. The administration time 

ranged from 40 to 80 minutes. 

Data Analysis 

The objectives of the analysis were first to verify a theoretical model regarding to the 

relationship between mathematical creativity and mathematical ability, secondly to 

trace groups of students that differ across the components of mathematical ability 
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and finally to examine differences between the groups of students. In regard to the 

first objective, confirmatory factor analysis (CFA) was conducted in order to assess 

the fit of the theoretically driven model to the data of the present study. More 

specific, CFA was used to test whether several observed variables (e.g. fluency, 

flexibility, originality) may define a latent construct (e.g. creativity). For the 

purposes of this analysis, the statistical modeling program MPLUS (Muthen & 

Muthen, 2007) was used. The evaluation of model fit was based on three fit indices: 

The comparative fit index (CFI), the ratio of chi-square to its degree of freedom 

(x
2
/df) and the root mean-square error of approximation (RMSEA). According to 

Marcoulides and Schumacker (1996), for the model to be confirmed, the values for 

CFI should be higher than 0.90, the observed values for x
2
/df should be less than 2 

and the RMSEA values should be close to or lower than 0.08. For the 

accomplishment of the second objective, latent class analysis was used to explore 

whether there were different categories of students in our sample whose achievement 

could vary according to mathematical ability. Once the latent class model was 

estimated, subjects classified to their most likely class by mean of recruitment 

probabilities. Afterwards, analysis of variance (ANOVA) was conducted, in an effort 

to investigate differences between groups of students on mathematical abilities 

(spatial ability, quantitative ability, qualitative ability, causal ability, 

inductive/deductive reasoning ability) due to their different degree of mathematical 

creativity (fluency, flexibility, originality). 

RESULTS 

The Validation of the Model 

A-priori we hypothesized that mathematical creativity, composed by fluency, 

flexibility and originality, could predict mathematical ability. Regarding to 

mathematical ability, we assumed that it was composed of five components: spatial 

ability, quantitative ability, qualitative ability, causal ability, inductive/ deductive 

reasoning ability. Figure 2 presents the structural equation model with the latent 

variables (mathematical creativity and mathematical ability) and their indicators. 

The results of the analysis revealed that the theoretical model matched the data set of 

the present study and determined the ―goodness of fit‖ of the factor model 

(CFI=0.990, x
2
=29.269, df=19, x

2
/df= 1.540, RMSEA=0.039). The analysis revealed 

that the statistically significant loadings of fluency (r=.833, p<.05), flexibility 

(r=.925, p<.05) and originality (r=.793, p<.05) consist a first order factor, that of 

mathematical creativity. Moreover, the five cognitive abilities, namely spatial ability 

(r=.306, p<.05), quantitative ability (r=.667, p<.05), qualitative ability (r=.625, 

p<.05), causal ability (r=.475, p<.05) and inductive/deductive reasoning ability 

(r=.725, p<.05) can model the performance of students in mathematics. Mathematical 

creativity contributes to the prediction of mathematical ability (r=.610, p<.05). 
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Figure 2: The structure of the proposed model. 

Categories of students and differences on mathematical abilities and creativity 

The second aim of the study concerns the extent to which students in the sample vary 

according to their mathematical ability. To this end, we examined whether variation 

on mathematical ability leads to discrepancy on mathematical creativity components. 

The latent class analysis (LCA) used a stepwise method-that is, the model was tested 

under the assumption that there are two, three, and four groups of subjects. The best 

fitting model with the smallest AIC (6366.99) and BIC (6467.96) and the largest 

entropy (0.733) indices (Muthén & Muthén, 1998) was the one with three groups.  

Taking into consideration the average group probabilities as shown in Table 1, we 

may conclude that categories are quite distinct, indicating that each class has its own 

characteristics. The means and standard deviations of the three categories of students 

on the specific mathematical abilities are presented in Table 2.  

 Category 1  Category  2 Category 3 

Category 1 (N=111) .878 .122 .000 

Category 2 (N=189) .102  .861 .037 

Category 3 (N=59) .000 .083 .916 

Table 1: Average Latent Class Probabilities. 

Table 2 reveals that students in Category 3 outperformed students in Category 1 and 

Category 2 across all mathematical abilities. Students in Category 2 outperformed 

their counterparts in Category 1. It is important to note that across the three 

categories of students, there are statistically significant differences (p<0.05) among 

all mathematical abilities.  

Due to the differences on mathematical abilities across the three categories of 

students, it can be deduced that our sample can be grouped in three distinct levels of 
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abilities; Category 1 (N=111) consists of low mathematical ability students, Category 

2 (n=189) consists of average mathematical ability students and Category 3 (n=59) 

consists of high mathematical ability students.  

Table 2: Means and Standard Deviations of the three Categories of Students in 

mathematical abilities. 

Regarding to mathematical creativity, Table 3 presents the differences between the 

three categories of students across the three components of mathematical creativity, 

namely fluency, flexibility and originality.  

 

 

 

 

 

 

Table 3: Means and Standard Deviations of the three Categories of Students in 

mathematical creativity. 

In particular, students with high mathematical ability (Category 3) are the high 

creative students as well. Likewise, average mathematical ability students (Category 

2) have an average performance across fluency, flexibility and originality, while low 

ability students (Category 1) have low creative potential in mathematics. The 

differences on fluency, flexibility and originality are statistically significant across 

the three groups of students (p<0.05). 

DISCUSSION 

Creativity is currently discussed as an essential component of the aim ―mathematics 

for all‖ (Pehkonen, 1997). Given the importance of creativity in school mathematics, 

several researchers investigated the relationship between mathematical creativity and 

 Category 1 

X (SD) 

Category 2 

X (SD) 

Category 3 

X (SD) 

Total 

X (SD) 

Spatial ability 1.02 (0.88) 1.32 (1.09) 2.07 (0.96) 1.35 (1.07) 

Quantitative ability  0.80 (0.81) 1.54 (1.04) 3.34 (1.03)  1.61 (1.28) 

Qualitative ability 0.65 (0.82) 1.25 (0.94) 3.14 (0.96) 1.37 (1.23) 

Causal ability 1.02 (0.76) 1.74 (0.83) 2.34 (0.71) 1.61 (0.91) 

Inductive/Deductive ability 1.11 (0.59) 2.57 (0.67) 3.56 (0.65) 2.28 (1.07) 

 Category 1 

X (SD) 

Category 2 

X (SD) 

Category 3 

X (SD) 

Total 

X (SD) 

Fluency 0.93 (0.44) 1.46 (0.57) 2.04 (0.63) 1.39 (0.66) 

Flexibility 1.37 (0.42) 1.83 (0.46) 2.21 (0.38) 1.75 (0.52) 

Originality  1.67 (0.66) 2.20 (0.79) 2.76 (0.73) 2.13 (0.82) 
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school mathematics (e.g. Mann, 2005), but few of them examined the impact of the 

former to the latter. Hence, the first goal of this study was to articulate and 

empirically test a theoretical model, in which abilities in mathematics may be 

predicted by creative potential. In the theoretical model, spatial conception (spatial 

ability), arithmetic and operations (quantitative ability), proper use of logical 

methods (inductive/deductive reasoning), formulation of hypotheses concerning 

cause and effect (causal ability) and the ability to think analogically (qualitative 

ability) constitute mathematical ability, as has been proposed by Krutetskii (1976). 

With respect to mathematical creativity, fluency, flexibility and originality were its 

three components as recommended by Torrance (1995) and adopted by researchers 

on mathematics education (e.g. Silver, 1997). The model extended the literature in a 

way that mathematical creativity is a predictor of mathematical ability.  

Therefore, it appears that the assessment of mathematical creativity can provide 

useful information in regard to students‘ profile and more specifically to their 

mathematical performance. Unfortunately, mathematical tests which are used in 

schools value mainly speed and accuracy and neglect creative thinking abilities 

(Mann, 2005). For this reason, creative tasks should be included in the assessment 

methods of mathematics, in order to capture not only students who do well in school 

mathematics and are computationally fluent but also students who have the potential 

but have not manifested their abilities yet. 

The second aim of the study concerned the extent to which students in the sample 

vary according to their mathematical ability. The analysis illustrated that three 

different categories of students can be identified. Category 1 students had low 

mathematical ability, Category 2 students had average mathematical ability and 

Category 3 students had high mathematical ability. This distinction between the three 

categories of students appeared across the five mathematical abilities. With respect 

to the third aim of the study, an investigation of differences in mathematical 

creativity components, due to the differences in mathematical ability took place. The 

results of the present study verified that the three categories of students varying in 

mathematical ability, reflect three categories of students also varying in mathematical 

creativity. To this end, it can be assumed that creativity is one of the components that 

contribute to the development of mathematical abilities. These results are in 

accordance with Hong‘s and Aqui‘s study (2004).  

To sum up, creative applications of mathematics in the exploration of problems and 

in the teaching of mathematical content are essential (Pehkonen, 1997).  

Encouragement of mathematical creativity in combination with computational 

accuracy is important for students to further develop their mathematical ability and 

understanding (Mann, 2005).  
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This study purports to develop a multiple criteria identification process for 

mathematically gifted students, in an effort to clarify the construct of mathematical 

giftedness. The study was conducted among 359 4th, 5th and 6th grade elementary 

school students in Cyprus, using four instruments measuring mathematical ability, 

mathematical creativity, self-perceptions of mathematical behaviour and fluid 

intelligence. The results revealed that mathematical giftedness can be described in 

terms of mathematical ability and mathematical creativity. Moreover, the analysis 

illustrated that although self-perceptions and fluid intelligence do not consist 

mathematical giftedness, they could predict it. Implications for researchers and 

teachers are discussed.  

Keywords: giftedness, mathematical ability, creativity, self-perceptions, 

intelligence.  

INTRODUCTION 

To meet the challenges of the new millennium, the field of giftedness research has to 

expand its conceptions with revised models and approaches (Ziegler, 2009). Despite 

the number of publications that introduced several conceptions of giftedness, only a 

small number of them have been empirically examined (Stoeger, 2009). Thus, the 

need for more empirical studies in the future is evident. The field-dependent 

character of giftedness was pointed out by Csikszentmihalyi (2000). However, prior 

research in the field of giftedness focused on the examination of general giftedness 

rather than domain-specific giftedness. As a result, there is limited focus on 

theoretical models of mathematical giftedness as well as specially designed 

procedures and instruments for students‘ identification.  

This study attempts to complement the lack of empirical studies in giftedness and the 

lack of studies, models and identification processes focused on mathematical 

giftedness. Specifically, the present study aims to investigate the construct of 

mathematical giftedness in students aged 10-12 years old (4
th

-6
th

 grades) and to 

develop an identification process based on a multiple criteria approach.   

THEORETICAL FRAMEWORK 

Conceptualizations of giftedness  

Although IQ was for decades considered as the only and predominant index of 

giftedness, a major shift was later noted in the research field. Namely, environmental 

influences were acknowledged resulting to the decrease of the influence of 

intelligence (Hartas, Lindsay & Muijs, 2008). At the same end, there were studies 

which have questioned the validity and liability to cultural and social bias of 
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standardized measures such as IQ (Black, 2001). Despite the criticism, Silverman 

(2009) claims that instruments with the richest loadings on general intelligence, such 

as the Wechsler scales, are the most useful for identification for giftedness. Turning 

away from intelligence as an indicator of giftedness, among the conceptualizations of 

giftedness that have been proposed over the years, a widely accepted definition was 

proposed by Renzulli (1978), emphasizing above-average ability and creativity as 

characteristics of gifted individuals. In the area of mathematics, the relationship 

between mathematical giftedness and creativity has also been documented by a 

number of researchers (e.g., Sriraman, 2005).  

Identification of giftedness 

Due to the lack of conceptual clarity as to the nature of giftedness, identification 

processes have varied widely. Identifying gifted individuals raises important issues 

regarding the types of evidence of giftedness and the validity of assessment 

processes, since gifted children will be provided with opportunities not accessible to 

others.  

For gifted children to be identified, researchers should decide upon their 

discriminating characteristics and assess their ability in the specific domain, in our 

case mathematics. In addition to above average mathematical ability and 

mathematical creativity, researchers suggested that gifted students can also be 

identified by examining students‘ learning pace, depth of understanding and interests 

(Maker, 1982). According to other researchers (Hartas, Lindsay & Muijs, 2008), 

information about certain students‘ personality characteristics (e.g., persistence, 

perseverance, resilience), motivation and interests should be collected. Equally 

prevalent is the desire to understand students‘ perceptions with respect to these 

characteristics and behaviours.  

Particularly in the case of mathematically gifted students, researchers should pay 

attention to mathematical abilities of highly able students and characteristics related 

to mathematical reasoning. For example, Krutetskii‘s work (1976) revealed a number 

of characteristics and abilities that mathematically able children possess: ability for 

logical thought with respect to quantitative and spatial relationships, number and 

letter symbols; the ability for rapid and broad generalization of mathematical 

relations and operations, flexibility of mental processes and mathematical memory. 

Moreover, a number of characteristics of mathematical giftedness have been 

proposed by several researchers (Benbow & Minor, 1990; Feldhusen, Hoover, & 

Sayler, 1991; House, 1987; NCTM, 2000; Olszewski-Kubiliyus, Kulieke, Shaw, 

Wilhus, & Krasney, 1990; Sriraman, 2005; Stanley, 1993; Wieczerkowski & Prado, 

1993), such as high spatial ability, the ability to develop unique relations, produce 

original, insightful solutions/methods for solutions or formulate imaginative 

questions and the ability to organise data in such a way to consider patterns or 

relationships.  
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Following, this wide variety of characteristics of gifted individuals calls upon the use 

of a multiple-criteria approach during their identification, employing a combination 

of valid and reliable tools and multiple sources of evidence (Hoeflinger, 1998). 

Among other instruments, tests, self-report questionnaires, teacher rating scales, 

checklists and inventories have been introduced as measures of the identification of 

giftedness. To sum up, both evaluation of academic performance and cognitive 

abilities are used (Naglieri & Ford, 2003), despite their conceptual differences in 

combination with evidence of students‘ perceptions. 

PURPOSE OF THE STUDY 

Having in mind the abovementioned considerations, the purpose of this paper is 

twofold. Firstly, the study attempts to investigate the construct of mathematical 

giftedness which comprises of mathematical ability and mathematical creativity. To 

clarify this concept, the relationship between students‘ self-perceptions, fluid 

intelligence and mathematical giftedness is investigated. Secondly, the study 

purports to develop a valid and reliable identification process for identifying 

mathematically gifted students based on multiple measures. These measures assess 

mathematical ability, mathematical creativity, students‘ self-perceptions with respect 

to mathematical behaviour and fluid intelligence.  

To fulfil the purpose of the study, a theoretical model was a-priori created (see 

Figure 1). In this model, we hypothesized that mathematical giftedness consists of 

mathematical ability and creativity. Furthermore, we assumed that self-perceptions 

regarding students‘ behavioural characteristics in mathematics and fluid intelligence 

would contribute to the prediction of students‘ mathematical giftedness.  

 

 

 

 

  

 

Figure 1: The proposed model. 

METHODOLOGY 

Sample and instruments 

To fulfil the aims of the study, four instruments were administered to 359 students 

ranging from 9 to 12 years of age; the mathematical abilities instrument, the 

mathematical creativity instrument, the self-report questionnaire and the fluid 

intelligence instrument. The mathematical instrument comprised of 29 mathematical 

Mathematical 

giftedness  

Mathematical 

Ability  

Mathematical 

Creativity 

Self-

perceptions  

Fluid 

Intelligence  



Working Group 7 

 CERME 7 (2011)  1069 

 

items measuring spatial, quantitative, qualitative, causal and inductive/deductive 

abilities. The creativity instrument included five open-ended mathematical tasks. The 

self-report questionnaire consisted of 20 statements describing behaviours with 

special focus on mathematics. Students responded on a 5-point Likert scale regarding 

the frequency of each behaviour observed. To measure fluid intelligence, we used the 

subtest Matrix Reasoning Scale from the Wechsler Abbreviated Scale of Intelligence 

(WASI) (Wechsler, 1999). The WASI Matrix Reasoning Scale provides a measure of 

nonverbal fluid abilities using 32 tasks for students of 9 to 11 years old and 35 tasks 

for students older than 11 years. All instruments were group administered in 

electronic form except from the WASI Matrix Reasoning Scale which was completed 

in a hard-copy form.  

Data analysis 

For the analysis of the data confirmatory analysis was employed using the statistical 

package MPLUS. In this study, confirmatory factor analysis (CFA) was used to 

investigate whether the proposed model for the identification of mathematically 

gifted students fits our data. In order to evaluate model fit, three fit indices were 

computed: The chi-square to its degree of freedom ratio (x
2
/df), the comparative fit 

index (CFI), and the root mean-square error of approximation (RMSEA) 

(Marcoulides & Schumacker, 1996). For the model to be confirmed, the values for 

CFI should be higher than 0.9, the observed values of x
2
/df should be less than 2 and 

the RMSEA values should be close to zero.  

RESULTS 

For the construct validity of the model to be evaluated, a confirmatory factor analysis 

(CFA) was employed. CFA showed that all tasks and statements of the four 

instruments loaded adequately (i.e., they were statistically significant, because the z 

values were greater than 1.96) on each factor (see Figure 2). Figure 2, presents the 

structural equation model with the latent and observed variables and their indicators. 

CFA also showed that the observed (students‘ responses to each task and statement) 

and theoretical factor structures (the components of the theoretical model) matched 

the data set of the present study and determined the ―goodness of fit‖ of the factor 

model (CFI=0.923, x
2
=566.627, df=366, x

2
/df= 1.626, RMSEA=0.039).  Therefore, 

the analysis suggested a model representing distinct components that should be 

considered during the identification of mathematical giftedness. Thus, (a) spatial 

abilities, (b) quantitative abilities, (c) qualitative abilities, (d) verbal abilities and (e) 

causal abilities constitute mathematical abilities, while fluency, flexibility and 

originality comprise mathematical creativity. Both mathematical abilities and 

mathematical creativity constitute mathematical giftedness. In addition, the analysis 

revealed that fluid intelligence and self-perceptions of mathematical behaviour could 

predict mathematical giftedness. Moreover, with regard to students‘ self-perceptions 

about mathematical characteristics the data illustrated that they can be organised 
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across five dimensions and should be considered during the identification of 

mathematically gifted students.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The structure of the proposed model. 
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In particular, students‘ descriptions in regard to their (a) learning characteristics, (b) 

interests/curiosity, (c) creativity, (d) social-emotional characteristics and (e) 

mathematical reasoning are important for the identification of mathematically gifted 

students. 

Specifically, the analysis revealed that the five types of mathematical abilities 

measured by the mathematical instrument constitute one general factor, that of 

mathematical ability (F1). In particular, the statistically significant loadings of spatial 

abilities (r=.332, p<.05), quantitative abilities (r=.671, p<.05), qualitative abilities 

(r=.632, p<.05), inductive/deductive abilities (r=.717, p<.05), and causal abilities 

(r=.455, p<.05) verify that these abilities constitute general mathematical ability. The 

data suggest that for this age group the quantitative, qualitative and 

inductive/deductive abilities contribute more than the causal and spatial abilities to 

mathematical abilities. Likewise, the loadings of fluency (r=.836, p<.05), flexibility 

(r=.925, p<.05) and originality (r=.790, p<.05) suggest that these three first order 

factors constitute the second order factor of mathematical creativity (F2). 

Furthermore, one general factor, that of mathematical giftedness (F100), was 

generated from mathematical ability (r=.915, p<.05) and mathematical creativity 

(r=.668, p<.05) as shown by their statistically significant loadings.  

In addition, students‘ self-perceptions of their characteristics with regard to 

mathematics comprise of five factors (F4-F8) with statistically significant loadings; 

learning characteristics (r=.786, p<.05), interests/curiosity (r=.837, p<.05), creativity 

(r=.970, p<.05), social-emotional characteristics (r=.999, p<.05) mathematical 

reasoning (r=.838, p<.05). The data suggest that according to students‘ responses for 

this age group, characteristics describing social-emotional characteristics and 

characteristics describing creative behaviours contribute more than learning 

characteristics, interests/curiosity and mathematical reasoning to their self-

perceptions. 

The structure of the proposed model also addresses that students‘ perceptions and 

fluid intelligence are able to significantly predict students‘ mathematical giftedness 

(r=.216, p<.05 and r=.599, p<.05, respectively).  

DISCUSSION 

Given the controversy prevailing in the field of giftedness, reflected both in the 

variety of concepts and identification processes proposed, the identification of 

mathematically gifted students is considered to be extremely challenging 

(Hoeflinger, 1998). Hence, this study comes to complement the lack of empirical 

studies in giftedness as well as the lack of studies, models and identification 

processes focused on mathematical giftedness. Firstly, the study attempts to 

investigate the construct of mathematical giftedness. Namely, it was expected that 

the relationship between students‘ self-perceptions, fluid intelligence and 

mathematical giftedness, composed by mathematical ability and creativity, would be 
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clarified. Secondly, the study aims to develop a valid and reliable identification 

process based on multiple criteria and instruments. This process is focused on the 

identification of mathematically gifted students at the upper grades of the elementary 

school.  

To fulfil the purpose of the study, a theoretical model was conceived and it was later 

empirically tested and confirmed. With respect to the first objective, data analysis 

revealed that mathematical ability can be defined in terms of five abilities; spatial 

conception (spatial ability), number relationships (quantitative ability),  the ability of 

analogical thought (qualitative ability), experimentation skills (causal ability) and 

logical reasoning (inductive/deductive abilities), confirming the abilities suggested 

by Krutetskii (1976) as characteristics of mathematically able children. Mathematical 

creativity can also be described in terms of fluency, flexibility and originality, as 

proposed by Torrance (1974). Moreover, the findings showed that mathematical 

ability and creativity constitute a more general factor, that of mathematical 

giftedness.  

The model extended the literature to include two specific measures that may predict 

mathematical giftedness, complementing the other two measures, the mathematical 

ability and the mathematical creativity instruments. Specifically, it was shown that 

although fluid intelligence and self-perceptions of mathematical behaviour are not 

components of mathematical giftedness, they could predict it. The finding for the 

predictive power of self-perceptions about mathematics is in accord with other 

researchers who claim that self-efficacy of gifted students contribute to the 

prediction of math performance (Pajares, 1996). Moreover, data analysis revealed 

that students‘ responses to the self-report questionnaire can be organized across five 

distinct factors; (a) learning characteristics, (b) interests/curiosity, (c) creativity, (d) 

social-emotional characteristics and (e) mathematical reasoning. These 

characteristics have been mentioned by researchers listing the traits of gifted students 

(e.g., Hartas, Lindsay & Muijs, 2008; Maker, 1982). 

The findings imply that the identification process of mathematically gifted students 

should include multiple measures in order to capture the variety of characteristics 

that these students present. Since we aim to identify mathematical and not general 

giftedness, instruments measuring mathematical ability and mathematical creativity 

are fundamental. Furthermore, the use of self-report questionnaires such as the one 

reported in this study and a measure of fluid intelligence could be used as 

supplementary means to collect information about mathematical giftedness, since 

they have been found to predict it. In particular, the self-report questionnaire 

addresses a variety of characteristics focusing in mathematics. Therefore, it may 

complement the lack of domain-specific identification instruments for gifted 

students, in this area. At the same time, the fluid intelligence instrument sheds light 

on the relationship between intelligence and giftedness. 
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From the theoretical point, the model may inform the controversial concepts of 

intelligence, giftedness and domain-specific abilities.  This model suggests valid 

evaluation of mathematical giftedness could be made both with processes where 

general and domain-specific abilities and processes are measured. In practice, the 

model is expected to facilitate the identification process of mathematically gifted 

students and to afterwards promote the nourishment of students‘ mathematical talent. 

Namely, teachers could identify gifted students through the identification 

instruments which encompass the components of the theoretical model proposed. 

Certainly, further research is required in order to introduce and examine additional 

instruments that might contribute to the identification of mathematical giftedness. 

Acknowledgements: This work was funded by the Cyprus Research Promotion 

Foundation (Grant: ANTHROPISTIKES/PAIDI/0308(BE)/13). 

REFERENCES 

Benbow, C. P., & Minor, L. L. (1990). Cognitive profiles of verbally and mathematically 

precocious students: Implications for identification of the gifted. Gifted Child Quarterly, 

34(1), 21-26. doi: 10.1177/001698629003400105  

Black, P. (2001) Dreams, strategies and systems. Portraits of assessment past, present and 

future. Assessment in Education, 8(1), 65-85. doi: 10.1080/09695940120033261 

Csikszentmihalyi, M. (2000). Becoming adult: How teenagers prepare for the world of work. 

New York: Basic Books. 

Feldhusen, J.F., Hoover, S.M., & Sayler, M.F. (1991). Identifying and educating gifted 

students at the secondary level: Purdue Academic Rating Scales. Sydney: Hawker 

Brownlow.   

Hartas, D., Lindsay, G., & Muijs, R. D (2008). Identifying and selecting able students for the 

NAGTY summer school: emerging issues and future considerations. High Ability Studies, 

19(1), 5-18. doi: 10.1080/13598130801980265 

Hoeflinger, M. (1998). Developing mathematically promising students. Roeper Review, 

20(4), 244-247. doi: 10.1080/02783199809553900 

House, P.A. (1987). Providing Opportunities for mathematically gifted, K-12. Reston, 

Virginia: National Council of Teachers of Mathematics.  

Krutetskii, V. A. (1976). The psychology of mathematical abilities in 

schoolchildren. Chicago: University of Chicago Press. 

Maker, J. (1982). Curriculum development for the gifted. Rockville, MD: Aspen Systems 

Corporation.  

Marcoulides, G. A., & Schumacker, R. E. (1996). Advanced Capacity equation modelling: 

Issues and techniques. NJ: Lawrence Erlbaum Associates. 



Working Group 7 

 CERME 7 (2011)  1074 

 

Naglieri, J. and Ford, D. (2003) Addressing underrepresentation of gifted minority children 

using the Naglieri Nonverbal Ability Test (NNAT). Gifted Child Quarterly 47(2) , 155-

160. doi: 10.1177/001698620304700206 

National Council of Teachers of Mathematics (2000). Principles and standards for 

mathematics. Reston, Virginia: National Council of Teachers of Mathematics.   

Olszewski-Kubiliyus, P., Shaw, B., Kulieke, M.J., Willis, G.B., & Krasney, N. (1990). 

Predictors of achievement in mathematics for gifted males and females. Gifted Child 

Quarterly, 34(2), 64-71. doi: 10.1177/001698629003400203 

Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted 

students. Contemporary Educational Psychology, 21, 325–344. doi: 

10.1006/ceps.1996.0025 

Renzulli, J. S. (1978). What Makes Giftedness? Reexamining a Definition. Phi Delta 

Kappan, 60(3), 180-184. Retrieved from http://www.pdkintl.org/kappan/index.htm 

Silverman, L.K. (1993)  A developmental model for counseling the gifted. In L. K. 

Silverman (Ed.), Counseling the gifted & talented (pp. 51–78). Denver: Love.. 

Silverman, L.K. (2009). The measurement of giftedness. In L. V. Shavinina (Ed.), 

International handbook on giftedness (pp.947-970). Amsterdam: Springer Science and 

Business Media. 

Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of 

constructs within the professional and school realms. The journal of secondary gifted 

education, 17, 20–36. doi: 10.4219/jsge-2005-389 

Stanley, J. C. (1993). Boys and girls who reason well mathematically. In G. Bock 

& K. Ackrill (Eds.), The origins and development of high ability (pp. 119–138). New 

York: Wiley. 

Stoeger, H. (2009). The history of giftedness research. . In L. V. Shavinina (Ed.), 

International handbook on giftedness (pp.17-38). Amsterdam: Springer Science and 

Business Media. 

Torrance, E.P. (1974). Torrance Tests of Creative Thinking. Bensenville, IL: Scolasting 

Testing Service. 

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: 

Psychological Corporation. 

Wieczerkowski, W., & Prado, T.M. (1993). Programs and strategies for nurturing 

talents/gifts in mathematics. In K. Heller, F. Monks & A.H. Passow (Eds.), International 

Handbook of Research and Development of Giftedness and Talent (pp.443-451). Oxford: 

Pergamon. 

Ziegler, A. (2009). Research on giftedness in the 21
st
 century. In L. V. Shavinina (Ed.), 

International handbook on giftedness (pp.1509-1524). Amsterdam: Springer Science and 

Business Media. 



 

CERME 7 (2011)  

QUESTIONING ASSUMPTIONS THAT LIMIT THE LEARNING 

OF FRACTIONS: THE STORY OF TWO FIFTH GRADERS 
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While standard procedures associated with learning to compute fractions could be 

quickly and easily memorized, many students appear highly vulnerable in cases they 

need to explain aspects of knowledge they had not discerned before. In this article, 

the author provides a window on his own teaching practice and explores the story of 

two fifth-grade students as they try to work out how to perform fraction subtraction 

using diagrams. Analysis of data suggests that familiarity with a limited class of 

examples of computations could be responsible for the constraint of learners‘ 

perception of the possible values a fractional difference might take. Implications for 

the role diagrams could play as tools to occasion students to discover their 

mathematical potential are discussed in light of these findings.  

Key words: Fractions, elementary school mathematics, computations, diagrams 

INTRODUCTION 

Learning of fractions has traditionally been one of the most problematic areas in 

school mathematics. The most comprehensive analyses of fractional meanings stem 

from the work of Kieren (1988, 1993) and the Rational Number Project (Behr, Harel, 

Post, & Lesh, 1992; Behr, Harel, Post, & Lesh, 1993; Lesh, Behr, & Post, 1987). 

This body of research suggests that transition from fractions as operators to fractions 

as numbers is a major hurdle for young learners. Many have no idea what they are 

doing when they are combining fractions and, thus, appear highly vulnerable when 

they forget or misremember an algorithm they had learned to apply but not to re-

construct for themselves.  

In this paper, I provide a window on my own teaching practice to highlight some of 

the themes which have struck me as a teacher and researcher of a group of twenty-

two fifth-grade Cypriots (10-11 yr.). What is to be recounted is part of an ongoing 

work studying the complexities of learning to compute fractions as revealed from the 

use of diagrams. Knowing about diagram use and being able to use that knowledge 

appropriately is a component of visual literacy, which, in the words of Hortin (1994), 

is ―the ability to understand [read] and use [write] and to think and learn in terms of 

images‖ (p. 25). 

The story zooms in on two students (Marvin and Mina) as they try to work out how 

to perform fraction subtraction using rectangular areas. This research is particularly 

important because is based in a cultural context in which students have poor 

individual experiences in using diagrams to compute fractions. 
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THEORETICAL BACKGROUND 

The key theory that has guided and shaped the direction of this work is variation 

theory. It has developed from and is grounded in phenomenographic research, which 

accounts for how the same thing or the same situation could be seen, experienced or 

understood in a limited number of qualitatively different ways (Marton, 1981; 

Marton & Booth, 1997; Bowden & Marton, 1998). Central to this theory is the object 

of learning, that is, there is no learning without something being learned. How this 

something is experienced is constituted by the simultaneous discernment of certain 

aspects or features of what is experienced. Those aspects of an object that come to 

the forefront of our awareness are called dimensions of variation. 

While variation seems to be an important condition for learning, Runesson (2006) 

stresses that it is variation in the critical aspects of the object of learning that is 

significant and not any variation. For students to appreciate or see a mathematics 

concept in a certain way, it is essential to be at least subliminally aware of what is 

exemplary about an example: what aspects, what dimensions can change and still the 

example remains an example of the concept (Mason & Watson, 2005; Watson & 

Mason, 2005). This hints at the kernel of the notion of dimensions of possible 

variation which according to Johnston-Wilder and Mason (2005) underpins all 

conceptual development. The adjective possible is added because different people 

may be aware of different possibilities. Teachers, for instance, are usually aware of 

aspects which can be varied but have not yet occurred to learners. Johnston-Wilder 

and Mason (2005) also note that the variation permitted in each dimension might be 

referred to as range of permissible change because learners may think that the range 

of change is more constrained than is actually the case. Understanding grows when 

they become aware that the range of permissible change is greater than previously 

thought. 

My sense is that the power of variation theory lies in exemplifying what it is possible 

to learn, in terms of what could be discerned, and in locating which 

conditions/aspects are necessary to be present in the learning environment. Worthy 

underlining is that none of these necessary conditions for learning something should 

be perceived as absolute since these ―are relative to the individuals and the situation. 

Nor is there a guarantee that the students will learn if the necessary conditions exist‖ 

(Runesson, 2005, p. 84). 

METHOD AND METHODOLOGY 

Two methodological traditions have contributed to the design of this study: 

phenomenography and action research. Because the ultimate aim of 

phenomenographic research was made clear through the analysis of variation theory, 

I will now elaborate on how action research has also contributed to the development 

of the methods I used.  



Working Group 7 

 CERME 7 (2011)  1077 

 

Mason (2002) notes that action research has become a label for a form of research 

with many different interpretations in practice: it ―has an enormous literature and a 

wide range of detailed methods of implementation, whether for socio-political 

critique or for effecting change in some complex situation‖ (p. 199). For the purpose 

of this work, I consider only one of its variants: teacher research. 

My personal understanding of teacher research is built upon Ainley‘s (1999) 

perspective. As she explains, assuming the role of the teacher or the role of the 

researcher simply refers to ways of behaving, perceptions and expectations other 

people have of that behaviour (Ainley, 1999). The notion of roles is, thus, used ―as a 

deliberate device to recognize and label choices, and to allow me to re-enter 

experiences imaginatively in order to explore other choices which I could have 

made‖ (Ainley, 1999, p. 45). 

During the time my teacher research took place, though I followed the fraction-

related content outlined in the syllabus, I digressed from the way this was presented 

in pupil‘s textbooks because I did not want standard algorithms to dictate my 

practice. My desire to avoid a direct exposure of my students to procedural rules 

along with the low status of diagrams in Cypriot curriculum (Kyriakides, 2009, 

2010), led me to implement a visual component. This was ensured by asking learners 

to produce and partition diagrams as a response to the tasks or by inviting them to 

comment on given diagrams. I intentionally chose the rectangular area instead of the 

circular one as a diagrammatic form because drawing equal parts inside a circle is 

technically difficult. In the words of Ball (1993), 

this difficulty makes it harder to determine whether a child intends to divide the circle 

equally –and just does not know how- or whether the child is even considering the 

importance of equal parts (p. 180). 

Another limitation of the circular model is that it might provide 

a source of simple examples for adding and subtracting, maybe even for other numerical 

operations with fractions, but becomes unwieldy for denominators that are not closely 

related multiplicatively (Watson & Mason, 2005, p. 95). 

Considering the suggestion made by Adams and Sharp (2006) that ―classroom 

research requires an intricate question precisely because the ebb and flow of the 

classroom is taken into account‖ (p. 16), I set out to explore the subsequent research 

question: What are the complexities (if any) of learning fractions as revealed by 

students‘ use of diagrams? The foregoing was an important issue to study because  

though in Cypriot culture school mathematics textbooks introduce the concept of fraction 

with images of partitioned rectangles and circles, they make little or no use of diagrams 

when they show students the way to compute (Kyriakides, 2010, p. 1003). 
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Thus, the use of diagrams in the process of coming to understand and learning to 

calculate with fractions promised to be fruitful in revealing complexities beneath the 

surface of students‘ facility, and lack of it, in calculating with fractions. 

During the analysis conducted on transcripts of single tasks and classroom 

discussions, I became aware that there were some students, whose voices were heard 

more than others across the entire collection of tapes, suggesting that these learners 

could serve as subjects of individual case studies. I have deliberately chosen Marvin 

and Mina to be the focus of the current paper because Marvin‘s sophisticated 

reasoning, which seemed to rise above others with an evident persistence, in the long 

run made it possible for Mina to discover and realize her mathematical potential.  

Using as analytic frames the variation theory as well as personal reflections on 

pedagogy, my goal in the current paper is not only to assess critically two fifth 

graders‘ growth of understanding but to demonstrate, through their story, how it is 

possible for any student to question early constraints and experience the extension of 

personal ―example spaces‖ (Watson & Mason, 2005, p.60). This likelihood is 

important because it could lead to a shift in perspectives and change of individual‘s 

thought with regard to the learning of fractions. As Watson and Mason (2005) 

explain, ―no one has access to all possible elements and features of a potential 

example space associated with a specific topic. …example spaces prevalent at a 

given time may be extended or altered in the future‖ (p. 60).  

CLASSROOM FINDINGS 

In this section, I have chosen to present part of a classroom discussion on subtraction 

of fractions. The quoted transcript has been intentionally split into Episode A (lines 

318-333) and Episode B (lines 413-453). This division is absolutely artificial and it 

does not imply any lack of succession in terms of time or place. Rather, it is meant 

simply to organize structurally the data and facilitate the development of 

commentary later on. The discussion starts with a reference to the example of four 

sevenths minus one half and then shifts to the example of three sixths minus one 

half. What counts in both episodes is not only the content and structure of the 

mathematics itself but also the ways in which it is talked about, perceived and 

assimilated by the involved learners. 

Episode A 

318 Teacher:  Now, we will do something different…I would like you all to think 
what will happen if we have four sevenths minus one half. Who would 
like to come on the board and show us? 

[Bob comes to the board] 

319 Bob: I did one area model and I divided it into seven vertical equal parts and 
I took the four. Then I drew another area model and I divided it into 
two vertical parts and took one… [Then Bob erases his second 
drawing] 
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320 Teacher:  Why did you erase it? 

321 Bob:  It should have been divided horizontally not vertically because here it 
is vertical and here it should be horizontal. 

322 Teacher:  Why? 

323 Bob:  To be able to add? 

324 Teacher:  To add? 

325 Bob: No, to subtract…we should make it the same…you know, to transfer 
these rows to the columns here and vice versa because if they were the 
same all columns, for example, I wouldn‘t be able to see it when I 
would exchange. 

326 Marvin:  Can I say something sir? 

327 Teacher:  Marvin would like to add something, let‘s hear. 

328 Marvin: No sir I don‘t want to add anything I just want to tell you something in 
person. 

[I approach Marvin‘s seat and he whispers to me] 

329 Marvin: To confuse them sir I have an idea: how about showing them three 
sixths minus one half? 

330 Teacher:  And why do you think this will confuse the class? 

331 Marvin:  Well, maybe there will be someone who doesn‘t know. 

332 Teacher:  Will he not know? 

333 Marvin:  That one half for instance is half. 

Episode B 

413 Teacher:  Now, who would like to come up to the board and show us how we 
can find three sixths minus one half by using rectangular areas? 

[Mina is coming up to the board and developing the first rectangle of Figure
1
 1] 

425 Mina: I will draw another area model for one half but instead of a horizontal 
line I will draw a vertical line to divide the area into two equal parts. 

426 Teacher:  Mina could you show us what you are talking about? 

[Mina is developing the rest of Figure 1]  

 

 

 

 

 

Figure 1: Mina‘s diagrams for 3/6-1/2 

427 Mina: I draw a second area model and divide it into two vertical columns and 
shade one. 

428 Teacher:  Yes and then? 

429 Mina: Then I take the rows of the first area and shift them to the second and 
the columns of the second I‘m shifting them to the first one. 

 
   

 
- - = = 



Working Group 7 

 CERME 7 (2011)  1080 

 

430 Teacher:  So Mina has exchanged the rows with columns and vice versa. What 
do we have now Mina? 

431 Mina: We have the same denominators, 12ths. We have 6/12 in the first area 
model and 6/12 in the second. 

432 Teacher:  Can this happen? 

433 Richard:  No. 

434 Teacher:  6/12 minus 6/12, what‘s the result Mina? 

435 Marvin:  It was my idea, I caused you difficulty. 

[Mina is smiling] 

436 Mina: Hm…nothing. 

437 Teacher:  That is? 

438 Mina: 0/12, zero? 

439 Teacher:  So the answer is zero. Well, class I have to say that Marvin asked me 
to work on this example. 

449 Mina: Sir in the beginning I felt a bit strange. I thought that the answer was 
0/12 but I found it strange to be true. 

450 Teacher: Could you tell us why you found it strange? 

451 Mina:  Hm…because sir I haven‘t come across such a fraction before. 

452 Teacher: So what did you learn today? 

453 Mina:  That it happens…it‘s possible to find zero. 

DISCUSSION 

What Marvin proposed confidentially to me in line 329 might have sounded like a 

jump to his classmates -if they listened to what he had said- or as something 

disconnected to the ongoing discussion. However, a deliberate attempt to explore the 

line of thinking that stands behind Marvin‘s words could suggest that when he saw 

one half drawn by Bob, Marvin possibly noticed connections between alternative 

images of one half, predicted how these might be achieved and, in turn, constructed a 

class-like mental object, including all equivalent fractions occupying half of a whole. 

Worthy of consideration here is that in Greek language the fraction 1/2 is not read as 

one half but as one second. This cultural clarification is meant to elucidate any 

triviality or vagueness likely assigned to Marvin‘s statement that one half is half (line 

333). 

The first part of the discussion (lines 318-333) explicitly shows that Marvin does not 

see learning as an absolute event but prefers, instead, to engage himself in the 

―eventing‖ (Mason, 2002, p. 228), by increasing the possibilities and potential he 

recognizes through the structure of his own attention, as he participates in the 

moment by moment flow of unfolding events. The boy does not only integrate what 

he hears, but also consciously searches to extend his own and peers‘ ―example 

space‖ (Watson & Mason, 2005, p. 60) of the difference of two fractions. 
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When I posed Marvin‘s suggestion to the whole class, insightful verbal exchanges 

(lines 413-453) were brought to the fore. As it stood, the case of zero was not an 

ordinary difference of two fractions for the rest of his peers. The case of Mina 

suggests an example. The girl appears competent in drawing and manipulating 

diagrams to show the fractions three sixths and one half (see Figure 1). Evidence also 

exists with regard to her fluency in explaining her actions to secure common 

denominators and thus subtract (lines 413, 425-431). The problematicity lies in the 

interpretation aspect since Mina is observed (face, gestures, tone of voice) to be 

somehow hesitant (lines 434-438) to acknowledge the validity of zero as the 

difference of three sixths minus one half. Her reference to ―nothing‖ (line 436) could 

suggest, on the one hand, an image of ―emptiness‖ for the concept of zero which ―is, 

quite reasonably but probably unconsciously, influenced by the common language 

meaning of nothing‖ (Pirie & Martin, 2000, p. 136). This, in conjunction with her 

expressed confession (lines 449-453) of what she experienced while standing in front 

of the board, could serve as evidence of an internal struggle, which in turn gave rise 

to an awareness that the ―range-of-permissible-change‖ (Watson & Mason, 2005) of 

the difference of two proper fractions is greater than previously thought (line 453). 

An associated implication is that learners make sense of fractional computations 

from what is available to them. This is frankly implied in Mina‘s words: ―I found it 

strange to be true (line 449)… because sir I haven‘t come across such a fraction 

before (line 451)‖. In terms of variation theory (Johnston-Wilder & Mason, 2005; 

Runesson, 2006), familiarity with a limited class of examples of fractional 

computations could hence be responsible for the constraint of learners‘ perception of 

the possible values a fractional sum, difference or product might take. Lakatos 

(1976) notes that mathematics develops as people question the implicit assumptions 

that limit the examples offered or that come to mind. The story of Marvin and Mina 

comes to suggest that placing learners in the situation of board presentation might 

have its ebbs and flows but it could also occasion individuals who, on their own, may 

lack the persistence or courage to try something new (Movshovitz-Hadar, 2008), to 

think creatively.  

What has been described here is a new kind of practice of teaching and learning for 

the participants. Rather than attempt to isolate or emphasize diagrams artificially, I 

came more and more during this paper to note how diagrams could function naturally 

with words, numbers and other symbols used on board, or perhaps in children‘s 

heads. I found that my students moved among these multiple representations in an 

interwoven, fluid process to embody and communicate their growing sense of the 

concept of fractions and the operation of subtraction. This, of course, should neither 

be regarded as an unproblematic, linear task nor as something that can be certain 

(Kieren, 1988, 1993). Watching the gradual change in Mina‘s notion of zero revealed 

complexities but also allowed me to capture a useful description of resolving 

challenges as well as celebrating advantages of my students‘ encounter with 
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diagrams. The contribution of this paper lies, therefore, in exemplifying the 

relationship between diagrams and the process of coming to understand fractions, as 

well as, the roles diagrams could play in promoting individual mathematical 

creativity and supporting students to question the status of an example.  

NOTES 

1. The initial form of Figure 1 was drawn on the classroom‘s board. Soon after it was made, the 

teacher-researcher hastily copied it (by hand) on a piece of paper. Afterwards, based on his 

handwritten rough sketches he constructed a clearer and more accurate copy with the use of 

technology. 
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MATHEMATICAL CREATIVITY  

OF 8TH AND 10TH GRADE STUDENTS 

Roza Leikin and Yona Kloss 

University of Haifa, Israel 

One hundred and fifty-eight 8th graders and one hundred and eight 10th graders 

were asked to solve four multiple solution tasks (MSTs). Creativity is evaluated using 

Leikin's (2009) model that employs MSTs. Problem solving performance of 8
th

 and 

10
th

 graders is compared with respect to correctness of the solutions, and the three 

components of creativity: fluency, flexibility and originality. While success in 

problem solving is highly correlated with fluency and flexibility, originality is shown 

to be a special mental quality. Consistent with other studies, we demonstrate that 

originality determines creativity stronger than fluency and flexibility do. This study 

once again demonstrates the validity of the model for evaluation of mathematical 

creativity by means of MSTs.  

Key words: Mathematical creativity, relative creativity, problem solving, multiple 

solution tasks. 

EVALUATION OF MATHEMATICAL CREATIVITY IN THIS STUDY 

The study presented in this paper is one of a group of studies that evaluate relative 

mathematical creativity in different groups of school students using Multiple 

Solution Tasks. A multiple-solution task (MST) is an assignment in which a student is 

explicitly required to solve a mathematical problem in different ways (see the 

definition and various examples of MSTs in Leikin, 2006, 2009, Leikin & Levav-

Waynberg, 2008). The model utilises the notion of solution spaces (Leikin, 2007). 

Expert solution spaces include the most complete set of solutions known for a 

problem at a particular time. They can be conceived as a set of solutions that expert 

mathematicians can suggest to the problem. These spaces include both individual 

solution spaces, which are collections of solutions produced by an individual to a 

particular problem, and collective solution spaces, which are a combination of the 

solutions produced by a group of individuals. Solution spaces are used here as a tool 

for exploring the students‘ mathematical creativity. 

There is no single, authoritative perspective or definition of creativity (Mann, 2006; 

Sriraman, 2005; Leikin, 2009). There is a diversity of views on creativity and they 

keep changing over time. Based on research literature, Mann (2006) argues that there 

are more than 100 contemporary definitions of creativity.  

We view creativity as personal creativity that can be developed in schoolchildren. 

This view requires drawing a distinction between relative and absolute creativity 

(Leikin, 2009, p. 151).  
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Absolute creativity is associated with ―great historical works‖ (in Vygotsky‘s terms, 1982, 

1984), with discoveries at a global level. Examples of absolute creativity may be seen in the 

inventions of Fermat, Hilbert, Riemann, and other prominent mathematicians (Sriraman, 

2005). Relative creativity refers to discoveries by a specific person within a specific 

reference group, to human imagination that creates something new (Vygotsky, 1982, 

1984).  

Mathematical creativity in school mathematics is usually connected with problem 

solving or problem posing (e.g., Silver, 1997). Kwon, Park, and Park (2006) 

proposed two major criteria for mathematical creativity: the creation of new 

knowledge and flexible problem-solving abilities. Chiu (2009) connected 

mathematical creativity with the students‘ ability to solve routine and non-routine 

problems and to approach ill-structured problems.  

The current study represents uses of a multidimensional creativity scoring scheme 

that takes into account the relative nature of creativity and links creativity with 

problem solving. It draws on the views of Ervynck (1991), Krutetskii (1976), Polya 

(1973), and Silver (1997) that solving mathematical problems in multiple ways is 

closely related to personal mathematical creativity, and suggests evaluating 

mathematical creativity by means of Multiple Solution Tasks (MSTs).  

The model presented herein (Leikin, 2009) makes possible not only an evaluation of 

the students‘ personal mathematical creativity but also of the efficiency of MSTs in 

evaluating such creativity (see Figure 2). The model contains operational definitions 

and a corresponding scoring scheme to evaluate creativity based on three dimensions 

(originality, fluency, and flexibility), as suggested by Torrance (1974). To evaluate 

originality it uses Ervynck‘s insight-related levels of creativity in combination with 

the conventionality of the solutions. Conventional solutions are usually determined 

by the curriculum, displayed in textbooks, and usually taught by the teachers, while 

unconventional solutions are based on strategies usually not prescribed by the 

school curriculum. Conventionality of the solutions refers also to the individual 

student's educational history. 

Fluency (Fl) is detected by the number of solutions in the individual solution space. 

To evaluate flexibility (Flx), we established groups of solutions for the MSTs. Two 

solutions belong to separate groups if they employ solution strategies based on 

different representations, properties (theorems, definitions, or auxiliary 

constructions), or branches of mathematics. With respect to the corresponding 

solution spaces, we evaluated flexibility as follows (see Figures 1 and 2): 10
1

Flx  

for the first appropriate solution (see an explanation of this scoring in the section on 

scoring creativity). For each consecutive solution 10
i

Flx
 
if it belongs to a group of 

solutions different from the solution(s) performed previously; 1
i

Flx  if the solution 

belongs to one of the previously used groups but has a perceptible minor distinction; 

1.0
i

Flx  if the solution is almost identical with a previous solution. A student‘s 
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total flexibility score on a problem is the sum of the student‘s flexibility on the 

solutions in his/her individual solution space.  We evaluate originality (Or ) in 

written settings as follows: If P is the percentage of students in the group that 

produces a particular solution, then (relative evaluation): 10
i

Or , when %15P  

for an insight-based or unconventional solution; 1
i

Or , when 40%15% P  or for 

a model-based or partly-unconventional solution; 1.0
i

Or , when %40P . A 

student‘s total originality score on a problem is the sum of the student‘s originality 

on the solutions in his/her individual solution space. (For the explanation of decimal 

basis we use in the scoring and the decisions about 15% and 40%, see Leikin, 2009). 

The creativity (Cr ) of a particular solution is the product of the solution‘s originality 

and flexibility:
iii

OrFlxCr . Producing flexibly non-original solutions and 

producing repeatedly original solutions is less creative than flexibly producing 

(different) original solutions. The total creativity score on an MST is the sum of the 

creativity scores on each solution in the individual solution space of a problem: 
n

i ii
OrFlxCr

1
.  

 
Flu- 

ency 
Flexibility Originality Creativity 

S
co

re
s 

p
er

 s
o
lu

ti
o
n

 

1 

101Flx   - for the first solution 

10iFlx   - solutions from a 

different group of 

strategies 

1iFlx     - similar strategy but a 

different representation 

1.0iFlx  - the same strategy, the 

same representation 

%1510 PiOr  or for insight / 

unconventional solution 

%40%151 PiOr or for model-

based / partly unconventional 

solution  

%401.0 PiOr  or for algorithm-

based / conventional solution 

ii OrFlx  

Total 

score 
n 

n
i iFlxFlx

1  n
i iOrOr

1  
n
i ii OrFlx

1

 

n  is the total number of appropriate solutions  

%100)( nmP
j

where 
j

m  is the number of students who used strategy j  

Figure 1. Scoring scheme for the evaluation of creativity 

THE STUDY 

Population 

The target population in this study consisted of 108 tenth-grade students and 158 

eighth grade students. The students were from families with a similar socio-

economic level and similar ability levels. The tenth-grade participants, when they 

were eighth-graders, learned according to textbooks identical to those with which the 

eighth-grade participants of the study were learning.   
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Tasks in the experiment 

The tenth-grade and eighth-grade students were asked to perform identical tests. 

There were 4 different variants of the tests distributed in different classes. The 

variants differed in the order of problems and in slight changes in the problems 

themselves (e.g., different numbers in the system of equations – see below, or a 

different context for the word problem). Figure 2 depicts tasks in one of the variants. 

1.  System of 

equations 
1434

1443

xy

yx
 

4. Algebraic 

expressions 

Given: baba ,1 ,  

What is bigger aborba 22 ? 

From Maison (2010) 

2.  Jam  

problem 

Mali produces strawberry jam for several food shops. She uses big jars to deliver the jam 

to the shops. Once, her workers distributed 80 liters of jam equally among the jars. She 

decided to save 4 jars and to distribute the jam from these jars equally among other jars. 

She realized that she had added exactly 1/4 of the previous amount to each one of the jars. 

How many jars did her workers prepare in the beginning? 

3.  Rectangle 

problem 

 

When the sides of rectangle ABCD were enlarged by 2 cm. 

its area enlarged by 24 cm
2
. Find the perimeter of rectangle 

ABCD. 

Figure 2: The test 

The test was combined from the problems that 8
th

 graders had studied before the test 

was administered. Thus, for 10
th

 grades these problems were definitely solvable. The 

problems were taken from different mathematical topics: Task 1- Systems of linear 

equations (SE), Task 2 and 3 - word problems: Task 2 – Jam Problem (JP) according 

to the curriculum could be solved using equations with fractions, Task 3 – Rectangle 

Problem (RP) could be solved using linear equation, Task 4 – algebraic expression 

(AE) – required manipulations with algebraic equations using reduced multiplication 

formulas. Clearly, all the tasks had additional solutions (see Figures 3a, 3b for JP and 

AE).   

The test design also included preliminary evaluation of the creativity embedded in 

the tasks. In our previous research (Leikin & Lev, 2007; Leikin, 2009) we concluded 

that the tasks with higher "embedded creativity" are better tools for the comparison 

of creativity in different groups of students. Thus we searched for those problems in 

which embedded creativity was higher than 200. Figures 3a and 3b display 

calculations of the embedded creativity for JP and AE tasks.  

Figures 3a and 3b demonstrate that an expert problem solver can receive a higher 

creativity score on the AE task than on the JP task. However, when school students 

solve MSTs they rarely receive maximal flexibility and originality scores. In the next 

section of the paper we describe the problem-solving performance of the participants 

in our study. 
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Jam problem:  Mali produces strawberry jam for several food shops. She uses big jars to deliver the jam to the 

shops. Once her workers distributed equally 80 liters of jam among a number of jars. She decided to 

save 4 jars and to distribute jam from these 4 jars equally among other jars. She realized that she 

added exactly 1/4 of the previous amount to each one of the jars. How many jars did her workers 

prepare in the beginning? 

  Fluency Flexibility 

Flxi 

Originality 

Ori 

Creativity 

Cri= Flxi Ori 

J1. System of equations in two variables 1 10 0.1 1 

J1a Another system or variations in solving the system 1 0.1 0.1 0.01 

J2 Equation in 1 variable 1 1  0.1 0.1 

J2.a Another equation  1 0.1 0.1 0.01 

J3 Fractions 1 10 1 10 

J3.a Percents 1  1 1 10 

J4 Diagram   

 

 

 

 

 

 

1 10 10 100 

J5 Insight Solution 1  10 10 100 

 Maximum Total 8 42.2 13.3 221.12 

Figure 3a. Scoring creativity embedded in a JP task 

 

Algebraic expressions: Given: baba ,1 , Which is bigger aborba 22 ? 

  Fluency Flexibility 

Flxi 

Originality 

Ori 

Creativity 

Cri= Flxi Ori 

A1 Algebraic manipulation – straightforward ba 1  1 10 0.1 1 

A3 

Diagram  

1 10 10 100 

A4 
The value of the quadratic expression in several 

points  

 

1 10 1 10 

A2 Algebraic manipulation – reduced 

multiplication bababa ))((  

1 10 10 100 

A5 Symmetry considerations 1 10 10 100 

 Maximum Total 5 50 31.1 311 

Figure 3b. Scoring creativity embedded in an AE task 

FINDINGS 

Differences in the problem solving performance of  8
th

 and  10
th

 graders  

Tenth-grade students achieved significantly higher scores in both correctness and 

fluency, on all four tasks in the test, than eighth-grade students (see Tables 1). This 

finding was not expected since the topics from which the tasks were borrowed are 
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learned in eighth grade. Tenth-grade students were significantly more flexible than 

eighth-grade students on three of four tasks (JP, RP and AE tasks). At the same time 

eighth-grade students were significantly more flexible than tenth-graders when 

solving the system of equations.  Eighth-grade students produced significantly more 

original and creative solutions than tenth-grade students when solving the JP task 

whereas tenth-graders were significantly more original and creative than eighth- 

graders when solving the AE task (see Table 1).  No significant differences were 

found with respect to students' originality and creativity on two of the tasks (SE and 

RP). However, there were non-significant differences in students' originality and 

creativity on the RP task, which were similar to significant differences found for 

another word problem in the test (i.e., JP task). 

Table 1. Problem-solving performance in two groups of students  

T
as

k
 N8=158 

N10=108 

Correctness Fluency Flexibility 0riginality Creativity 

Range 
Mean 

(SD) 
Range 

Mean 

(SD) 
Range 

Mean 

(SD) 
Range 

Mean 

(SD) 
Range 

Mean 

(SD) 

1 
Sys 

8th grade 
0-25 23.48  

(4.54) 
0-5 

1.98 

(0.87) 
0-31 

14.4 

(5.8) 
0-20.1 

1.75 

(3.5) 
0-201 

11.20 

(29.11) 

10th grade 
10-25 24.68 

(1.84) 
1-5 

2.31 

(1.0) 
10-31 

11.99 

(3.5) 
0.1-21.1 

1.28 

(3.13) 
1-202 

10.65 

(31.07) 

F 6.843** 7.89** 15.11*** 1.25 0.02 

2 
JP 

8th grade 
0-25 11.72 

(9.27) 0-3 
0.82 

(0.54) 
0-21 

7.39 

(4.62) 
0-10.2 

1.59 

(3.41) 
0-101 

15.89 

(34.12) 

10th grade 
0-25 16.47 

(9.31) 
0-3 

1.05 

(.58) 
0-20 

8.73 

(4.03) 
0-10.1 

0.59 

(1.65) 
0-101 

5.71 

(16.53) 

F 17.06*** 10.09** 5.92* 7.99** 8.27** 

3 
RP 

8th grade 
0-25 8.83 

(8.45) 
0-2 

0.59 

(0.5) 
0-20 

5.2 

(5.14) 
0-11 

0.87 

(2.44) 
0-110 

8.61 

(24.4) 

10th grade 
0-25 19.06 

(8.45) 
0-2 

1.02 

(0.45) 
0-20 

9.15 

(3.25) 
0-11 

0.44 

(1.1) 
0-110 

4.11 

(11.0) 

F 74.49*** 50.30*** 50.09*** 2.87 3.23 

4 

AE 
8th grade 

0-25 9.13 

(9.27) 
0-2 

0.7 

(0.47) 
0-10 

5.82 

(4.94) 
0-10 

0.66 

(2.18) 
0-100 

6.62 

(21.84) 

10th grade 
0-25 17.44 

(10.11) 
0-3 

1.11 

(0.68) 
0-20 

8.88 

(5.09) 
0-11 

1.51 

(2.83) 
0-110 

13.82 

(26.98) 

F 50.52*** 33.86*** 23.88*** 7.61*** 5.76* 

*p<0.05;      **p<0.01;      ***p<0.001 

Whereas tenth-grade students were significantly more successful and fluent when 

solving all the tasks, the differences between tenth-graders' and eighth-grader' 

flexibility, originality and creativity appear to be task dependent (see Tables 1 and 

2). Tenth-grade participants performed significantly better on all the examined 

criteria when solving AE task. Eighty-three percent of tenth-grade students solved 

this task successfully; 31% of these students found more than one solution to this 

problem. At the same time only 69% of eighth grades managed to solve this task, and 

only 3 of 158 (2%) students managed to solve this problem in 2 ways. We found that, 

first, the algebraic manipulations that the task required appeared to be difficult for 

the eighth-graders and, second, they did not connect this problem to the topic of 
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reduced multiplication formulas. Tenth-graders performed rarer (more original) 

solutions and used more different strategies (i.e., were more flexible) when solving 

the task.  

Our findings pertaining to students' problem-solving performance on the SE task are 

different. As on the other tasks tenth-grade students were more successful: 100% 

tenth-graders vs. 98% eighth-graders produced appropriate solutions to the system of 

equation. Though students from both groups were more successful when solving this 

task, the differences between the students from tenth and eighth grades were 

statistically significant (taking into account the correctness of the solutions). As on 

all other tasks tenth-graders were more fluent when solving the SE. However, tenth-

grade students produced more "repeating" solutions when solving the SE, while 

eighth-grade students were more flexible: by presenting both algebraic and graphical 

solutions (e.g, 60 of 158 (38%) eighth-graders solved the system graphically vs. only 

10 of 108 (9%) tenth-graders). Higher flexibility of eighth-grade students on the SE 

task was quite surprising since tenth-grade students have more available tools for 

solving the system. A symmetry-based solution was produced by 3 (2.7%) tenth-

grade students and by 6 (4%) students from 8
th

 grade. These solutions contributed to 

the differences in originality of the solutions which appeared to be non-significantly 

better for eighth grade students. 

Summary 

Although the differences between eighth- and tenth-graders appeared to be 

significant on many criteria for different problems in the test, the ranges of the scores 

on all the criteria were similarly low for all the participants. The highest scores 

received by eighth- and tenth-grade students were equal on all the tasks and all the 

criteria except fluency and flexibility scores for SE and AE tasks. Only tenth-graders 

produced 4 and 5 solutions to SE while the solutions varied mainly within the space 

of algebraic solution strategies. Only 2 tenth-graders produced 3 solutions for the AE 

task, of which 2 were based on different solution strategies. Moreover, flexibility 

mean-scores for all the tasks except SE task are lower than 10. This finding reflects 

the fact that only a small number of students produced more than 1 solution to a 

particular problem. Additionally, when the students produced several solutions most 

of them were repetitive. 

Based on these findings we argue that Israeli school mathematics teaching is not 

directed towards the development of mathematical creativity. Both for eighth- and 

tenth-graders we expected better results with respect to all the criteria presented here. 

Moreover, while students in tenth grade are more successful and fluent in solving the 

problems than eighth grade students, this success and fluency can be attributed to the 

additional tools that students have attained during 2 more years of school. We cannot 

say that students from tenth grades are consistently more flexible than eighth grade 

students.  
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CORRELATIONS BETWEEN THE DIFFERENT COMPONENTS IN THE 

MODEL 

One of the most interesting findings in this study is related to the examination of 

correlations (by Pearson correlation coefficient) between different criteria in the 

scoring scheme on each one of the problems.  Table 2 demonstrates correlations 

received for the fours tasks in the test. 

Table 2:  Pearson correlation coefficient for correctness and different components of 

creativity 

N=266  Fluency Flexibility 0riginality Creativity 

SE Correctness     

Fluency     

Flexibility     

0riginality     

JP Correctness     

Fluency     

Flexibility     

0riginality     

RP Correctness     

Fluency     

Flexibility     

0riginality     

AE Correctness     

Fluency     

Flexibility     

0riginality     

*p<0.05;      **p<0.01;      ***p<0.001 

First we find that correlations among the three components of creativity, as presented 

in the model, are significant and, thus, we consider the model reliable. Second, while 

correlations between correctness, fluency and flexibility are significant for all the 

tasks, correlations between originality and correctness are not necessarily significant. 

Moreover, even when significant, correlations between correctness and originality 

are low (see Table 2). That is, students who solve mathematical problems in multiple 

ways more successfully than other students are not necessarily more original. This 

observation is consistent with the findings that follow a comparison between 

problem solving performance of eighth and tenth grade students on 3 of 4 tasks: SE, 

JP and RP.  

Correlations between fluency and flexibility are always significant at different levels. 

For the tasks in this study, the Pearson correlation between fluency and flexibility 

varies from 0.53 to 0.85. This finding allows us to argue that fluency and flexibility 

are strongly related to each other, and very reasonably, students who produce more 

solutions also have a chance to produce more solutions that are different. However, 
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on some problems fluency does not necessarily lead to flexibility. Both the values of 

Pearson correlation for SE task (Table 2) and the comparison of tenth-graders' and 

eighth-graders' problem-solving performance on the SE task support this observation 

(Table 1). 

Interestingly, correlations between originality and flexibility and between creativity 

and flexibility are significant but low.  At the same time, originality and creativity 

are highly correlated (Table 2). While our model suggests an identical scale for 

scoring flexibility and originality, and the calculation of creativity includes 

flexibility and originality symmetrically (Figure 1), originality (in our model) 

appears to be the main criterion for determining creativity.  This finding is consistent 

with the common view of creativity as production of novel ideas (both on relative 

and absolute levels), and thus it proves the validity of the model presented in this 

paper. 
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The paper presents two empirical studies that examine employment of multiple 

solution tasks (MSTs) for the development of creativity. Based on the findings of the 

two studies we compare development of fluency, flexibility and originality in two 

different learning environments: a problem-solving workshop for pre-service 

mathematics teachers and a geometry course for high school students. The two 

studies compare development of creativity in groups of participants with different 

attainment levels. Similarities in the findings of these studies led us to several 

theoretical hypotheses. Students' flexibility and fluency significantly increased in 

both studies. Students' originality decreased non-significantly. We demonstrate that 

originality appears to be the strongest component in determining creativity. 

Key Words: mathematical creativity, multiple solution tasks, developing creativity 

THEORETICAL BACKGROUND 

The studies presented in this paper consider creativity as a dynamic characteristic 

that can be developed if appropriate learning opportunities are provided to learners 

(Vygotsky, 1930/1984; Sheffield, 2009; Subotnik et al., 2009; and Yerushalmy, 

2009). According to Leikin (2009) we distinguish between absolute and relative 

creativity as follows: Absolute creativity is associated with ―great historical works‖ 

(in Vygotsky‘s 1930/1984 terms), with discoveries at a global level. Relative 

creativity refers to discoveries by a specific person within a specific reference group, 

to human imagination that creates something new (Vygotsky, 1930/1984). Whereas 

absolute creativity is quite easy to identify, we lack tools for the identification of 

relative mathematical creativity. 

Our conception of creativity utilizes the views of Ervynck (1991), Krutetskii (1976), 

Polya (1973) and Torrance (1974). Following the perspective suggested by Torrance 

(1974) we consider three categories: Fluency relates to the continuity of ideas, flow 

of associations, and use of basic and universal knowledge. If time is unlimited it 

refers to the pace of solving a procedure and switches between different solutions. If 

time is limited it refers to the number of solutions generated by a solver.  Flexibility 

is associated with changing ideas in producing a variety of solutions and refers to the 

number of different solutions generated by a solver. Originality is characterized by a 

unique way of thinking and unique products of a mental activity. Additionally, we 

accept Ervynck's (1991) position that an insight-based solution is an indication of 
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creativity. Based on these definitions Leikin (2009) proposed a model that evaluates 

mathematical creativity by means of multiple solution tasks (see also Leikin & Kloss, 

in the proceedings of this conference, Levav-Waynberg & Leikin, 2009). A multiple-

solution task (MST) is an assignment in which a student is explicitly required to 

solve a mathematical problem in different ways. We use the notion of solution spaces 

(Leikin, 2007) which enables us to examine the various aspects of problem-solving 

performance using MSTs. Expert solution spaces include the most complete set of 

solutions to a problem known at a particular time. Expert solution spaces include 

conventional and unconventional solution spaces. Individual solution spaces, which 

include all the solutions displayed by an individual, are used here as a tool for 

exploring the students‘ mathematical creativity and for assessment of the potential of 

a task to evaluate mathematical creativity. Collective solution spaces include all the 

solutions produced by a group of students.  

We will shortly explain the model and demonstrate its use in the two studies.  

DESCRIPTION OF THE RESEARCH INSTRUMENT 

To analyze students' performance on a certain MST, the first step is to construct its 

expert solution space, which is the collection of solutions proposed by researchers 

and students. The scoring scheme for the evaluation of creativity of an individual 

solution space is borrowed from Leikin (2009). The number of all the appropriate 

solutions in one's individual solution space indicates one's fluency. Flexibility is 

measured by the differences between appropriate solutions in one's individual 

solution space. To carry out the analysis of flexibility, solutions of a specific MST in 

an expert solution space are divided into groups according to the level of differences 

between the solutions. The first solution presented in a certain solution group is 

scored 10 even if it is the only solution in the individual solution space. Additional 

solutions from the same, already represented, group receive a score of 1 or 0.1, 

depending on the degree of difference between the two solutions. 

The originality of a student's specific solution is measured by how rare its solution 

group is in the mathematics class to which the student belongs. Solutions from a 

solution group that recur in more than 40% of the individual solution spaces of a 

certain class are scored 0.1. Solutions from less frequent solution groups (15%-40%) 

are scored 1. Solutions are considered to be most original if they belong to groups 

with a frequency lower than 15%. The originality of these solutions is scored 10. The 

originality score for the same solution group may vary in different classes as a result 

of its different rate of recurrence in those classes. The border values of 15% and 40% 

for different levels of originality were established based on experimentation (Leikin, 

2009).  

The decimal basis of the flexibility/originality scores makes it easy to interpret the 

total flexibility/originality score. For example, a total flexibility score of 21.3 means 

that the individual solution space contains two solutions belonging to different 
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solution groups, one solution that uses a solution strategy similar to one of the 

previously used ones but different in some essential characteristics (e.g., 

representation), and three solutions that are repetitive. If the total originality score is 

21.3 for a solution space, this means that the solution space includes two original 

solutions, one solution that is partly original, and three conventional (non-original) 

solutions.  

The data analysis of the two studies described in this paper employed the model, and 

we compared development of fluency, flexibility and originality in two different 

learning environments: a problem-solving course for pre-service mathematics 

teachers (PMTs) and a geometry course for high school students. Similarities in the 

findings of these studies have led us to several theoretical hypotheses which will be 

presented in this paper. 

STUDY 1:  EMPLOYING MSTS IN A PROFESSIONAL DEVELOPMENT 

COURSE  

This study examines development of problem-solving expertise in PMTs through 

employment of MSTs at a professional development course (Leikin & Guberman, in 

preparation). Problem-solving expertise in this study was determined by correctness 

of PMTs' solutions and their mathematical creativity (as defined above).  

Setting 

Twenty-seven pre-service mathematics teachers (PMTs) who were studying towards 

their B.Ed. in elementary school mathematics participated in the research. They took 

part in the Problem-Solving course during the 3
rd

 or 4
th

 year of academic studies. One 

of the researchers conducted a teaching experiment focusing on MSTs. 

When coping with MSTs during the course, PMTs were encouraged to compare their 

individual solution spaces and discuss the quality and aesthetics of different 

solutions in the collective solution spaces. We analyzed changes in teachers' 

mathematical creativity and their success in solving MSTs.  The pre-test was given to 

PMTs during the 2
nd

 lesson of the 56-hour courses and the post-test during the last 

lesson of the course. Each test lasted approximately 90 minutes. 

We compared the development of problem solving expertise in two groups of PMTs 

who participated in the course: HA (high achievers) and LA (low achievers). For this 

purpose we examined PMTs' achievements at three elementary mathematics courses 

(Arithmetic, Algebra and Euclidian Geometry) which were central to the professional 

development program in which participants of this study took part. The division of 

the PMTs into two groups -- HA and LA -- was based on the mean score (Mm) they 

received in the three courses. The HA group included participants with Mm between 

85 and 97, whereas the LA group included participants with Mm between 70 and 84. 

This division generated an approximately equal number of PMTs within the groups 

(13 LA and 14 HA).  
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Mathematical tasks in the study 

The problems used in the study were chosen based on the following considerations: 

 The tasks are non-conventional with respect to the standard Israeli textbooks 

while their solutions require knowledge from elementary school mathematics 

curriculum only. Thus we assumed that study participants were able to approach 

the problems in at least one way.  

 The problems belong to different mathematical topics and require knowledge of 

different mathematical concepts.  

 Each of the problems allows performing at least 2 different solutions.  

Task: Solve the following problem in as many ways as possible  

Two gears, one with 15 teeth and the other one with 20 teeth, fit together 

as shown in the figure. Each gear has a marked tooth as indicated in the 

figure. After how many rotations of the gears will the marked tooth be 

together again for the first time? 

Figure 1: Example of a task used in this study 

Data analysis  

Each individual solution space in the pre- and post-test was scored for correctness, 

fluency, flexibility, originality and creativity. The tool reliability of the model was 

confirmed by the significant high correlations between all the criteria. We compared 

scores for the participants' problem-solving expertise on the pre-test and post-test for 

all the criteria for each of the two groups – HA and LA. We also compared problem 

solving performance of HA and LA on the pre-test and post-test. The comparison 

was performed using T-tests and Repeated Measures ANOVA.  

Findings 

Table 1: Changes in success and creativity – Study 1 

 Success Fluency Flexibility Originality Creativity 

 
HA 

Mean 

(SD) 

LA 

Mean 

(SD) 

t 

HA 

Mean 

(SD) 

LA 

Mean 

(SD) 

t 

HA 

Mean 

(SD) 

LA 

Mean 

(SD) 

t 

HA 

Mean 

(SD) 

LA 

Mean 

(SD) 

t 

HA 

Mean 

(SD) 

LA 

Mean 

(SD) 

t 

Pre-

test 

66.2 

(20.2) 

62.9 

(26.9) 
0.35 

2.25 

(.8) 

2.1 

(.9) 
.57 

21.7 

(8.3) 

21.3 

(9.9) 
.09 

3.3 

(4.5) 

3.1 

(4.7) 
1.27 

30.6 

(45) 

38.9 

(62.3) 
.386 

Post-

test 

100 

(0) 

86.6 

(22.8) 
2.26* 

6.8 

(1.4) 

4.7 

(1.4) 
2.81** 

51.1 

(12.3) 

35.1 

(14.7) 
3.0** 

1.2 

(.8) 
.5 (.4) 2.70* 

48.5 

(36) 

15.8 

(18.3) 
3.06** 

t 5.8*** 3.13**  9.47*** 4.2***  5.63*** 3.28***  1.53 2.12  .92 1.4  

T 33.8 23.7 F= 

1.03 
4.55 2.6 F= 

5.93* 
29.4 13.8 F= 

5.54* 
-2.1 -2.6 F= 

.005 
17.9 -23.1 F= 

2.63 

During the course we observed meaningful changes in PMTs' problem-solving 

expertise. Contrary to pre-test at which PMTs' solutions were non-systematic, mainly 

based on trial and error strategy, at post-test, when solving the problems, PMTs used 
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systematic mathematical concepts and rules. Only at post-test PMTs employed a 

variety of representations, e.g., algebraic expressions, tables, number line, diagrams. 

HA and LA began their participation in the course with similarly low results on all 

the examined criteria: correctness, fluency, flexibility, originality. The differences 

between these two groups on all the criteria were not significant.  

Both HA and LA significantly improved their correctness, fluency and flexibility 

through their participation in the course. Changes in fluency manifested in the 

number of solutions produced by PMTs to each one of the problems: from 0, 1 or 2 

solutions at pre-test to 2 to 8 solutions at post test. The flexibility changed from one 

type of solution to each of one of the problems on the pre-test to four types of 

different solutions on the post-test. At the same time, the improvement of 

correctness, fluency and flexibility in HA was higher than in LA. The differences in 

the increase of fluency and flexibility between HA and LA were significant. As a 

result, on the post-test, correctness, fluency and flexibility in HA became 

significantly higher than in LA. These differences [probably] explain teachers' 

[mistaken] belief that MSTs are appropriate for implementation with high achievers 

only. However, as noticed above, our study clearly demonstrates that MSTs are an 

effective tool for the development of PMTs' problem-solving expertise both in HA 

and LA. 

Contrary to the findings related to fluency and flexibility, originality in both groups 

of participants decreased non-significantly from pre-test to post-test. We assume that 

the increase of flexibility caused the decrease in the numbers of original solutions 

that PMTs were able to produce. The decrease in originality was [non-significantly] 

lower for HA and, as a result, originality in HA was significantly higher than 

originality in LA.  

Correlation between originality and creativity was higher than correlations between 

fluency and creativity and between flexibility and creativity. Additionally, the 

changes in creativity were similar to changes in originality and different from 

changes in fluency and flexibility. Thus, we hypothesize that originality is the major 

component that determines creativity.   

STUDY 2:  MSTs IN SCHOOL GEOMETRY  

This study explores systematic implementation of Multiple Solution (Proof) Tasks 

(MST) in school geometry (Levav-Waynberg, in progress; Levav-Waynberg & 

Leikin, 2009, submitted). In addition to the development of a mathematical creativity 

compound of fluency, flexibility and originality, in this study we examine 

development of the connectedness of students' geometry knowledge as reflected in 

the multiple proofs that they produce. We compare the changes in geometric 

creativity and knowledge on high level (HL) students versus regular level (RL) 

students. 
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Setting 

Three hundred and three tenth-grade students from 14 instructional groups 

participated in this study. The classes were divided between experimental and 

control groups HL and RL. In this paper we address the study involving the 

experimental group only.  

Students in the experimental group were consistently encouraged to perform and 

discuss various proofs to geometrical statements during a whole school year. The 

students were given a pre-test (at the beginning of the school year) and a post-test (at 

the end of the school year). Each test included 2 proof problems and lasted 60 

minutes. Students were asked explicitly to perform as many proofs as they could for 

each one of the problems.  

 

Figure 2: Example of a MST in Study 2 

Data analysis  

Each individual solution space was scored for correctness, connectedness, fluency, 

flexibility and originality. Connectedness was scored according to the number of 

concepts and theorems in the individual solution space relative to the total number of 

concepts and theorems in the corresponding expert solution space. Fluency, 

flexibility, originality and creativity were scored according to the scoring scheme 

described earlier in this paper. Repeated measures MANOVA was performed in 

order to compare the development of the different criteria (for the experimental and 
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control groups of HL and RL). The tool reliability was confirmed by significant 

correlations between all the criteria. High correlations were found between 

correctness, connectedness, fluency and flexibility, on the one hand, and between 

originality and creativity, on the other hand. Originality appeared to be the strongest 

component in determining creativity 

Findings 

Table 2: Changes in success and creativity – Study 2 

 Success Fluency Flexibility Originality Creativity 

 
HL 

Mean 

(SD) 

RL 

Mean 

(SD) 

F(1,165) 

HL 

Mean 

(SD) 

RL 

Mean 

(SD) 

F(1,165) 

HL 

Mean 

(SD) 

RL 

Mean 

(SD) 

F(1,165) 

HL 

Mean 

(SD) 

RL 

Mean 

(SD) 

F(1,165) 

HL 

Mean 

(SD) 

RL 

Mean 

(SD) 

F(1,165) 

Pre-test 
83 

(23) 

67 

(30) 
45.3 
*** 

(Time) 

3 

(1.5) 

2 

(1) 88.1 

*** 

23 

(9) 

18 

(8) 45.4 

*** 

2.4 

(4.5) 

1.2 

(2.9) 
0.4 

55 

(129) 

19 

(52) 
0.002 

Post-

test 

96 

(14) 

88 

(21) 

4.8 

(2.3) 

3.1 

(1.5) 

30 

(10) 

23 

(9) 

1.6 

(3.5) 

1.5 

(3.7) 

48 

(164) 

24 

(62) 

(Time× 

group level) 

F (1,165) 

2.8 

 
 4.6*  1.1  1.5  0.16  

 

Students of HL and RL improved significantly the correctness of their solutions, 

without significant differences between the participants of RL and HL. 

Connectedness of students‘ knowledge improved non-significantly in groups of both 

HL and RL, but in contrast to the changes in correctness, changes in connectedness 

were significantly higher in HL than in LA. All the groups improved their fluency 

and flexibility over time. These findings also show that fluency and flexibility are 

strongly based on knowledge. Students of HL demonstrated a significantly higher 

change in fluency in comparison with the students from RL group. 

There was no significant effect of the experimental intervention on originality. For 

HL students the mean originality score decreased while there was a slight increase in 

originality for RL students (although this difference between HL and RL was not 

significant). We explain this phenomenon by the relative nature of the evaluation of 

originality in our study: when students become more fluent they have less chance to 

be original.  

When focusing on the most original solutions produced by the students in this study 

we found that these solutions were produced by HL students only.  

DISCUSSION 

The two studies presented in this paper examined employment of MSTs in two 

different educational settings. In Study 1, we used MSTs in the problem-solving 

course for pre-service mathematics teachers (PMTs), comparing development of 

PMTs' creativity in high achievers (HA) and low achievers (LA). In Study 2 we 
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implemented MSTs in school geometry; we compared development of geometry 

knowledge and creativity in high level (HL) and regular level (RL) students. These 

two studies demonstrate several common phenomena (see Figure 3).  

The graphs in Figure 3 show the changes in correctness, fluency, flexibility and 

originality found in the two studies for the different groups of participants (LA 

versus HA groups for Study 1 and RL versus HL in Study 2). 

 Correctness  Fluency ( 10) Flexibility ( 10) Originality 

Study 1: 

Employing 

MST in the 

course for 

PMTs 

    

Study 2: 

Employing 

MST in 

school 

geometry 

    

***p<0.001   **p<0.01     

Figure 3:   Developing problem-solving expertise by employing MSTs: Two studies 

We found that in both studies:  

a.  Participants at both levels significantly improved their problem solving 

correctness, fluency and flexibility.  

b. The improvement in all the criteria was shown for participants of both levels: 

high level (HA/HL) and lower level (LA/RL).  

c. The improvement of fluency (in both studies) and flexibility (Study 1) was 

significantly greater for the high level participants than for participants of lower 

level. (In Figure 2 this is depicted by a bigger slope for HA/HL than for 

LA/RL).  

d. Originality of the solutions decreased non-significantly in high level 

participants (in Study 1 also in low level participants). 

*** 

* 

 

** 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

*** 

* 

 

High Achievers (HA)  

Low Achievers (LA) 

High level (HL) 

Regular level (RL) 
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e. Correlations between the three combined components of creativity (fluency, 

flexibility and originality) and the creativity outcome are significant. 

f. Correlations between fluency and and flexibility as well as between originality 

and creativity are high.  

g.  Correlations between originality and creativity are higher than 0.9 

Figure 3 summarizes the changes in all the examined components in the two studies. 

The consistency of the findings concerning the increase of fluency and flexibility 

along with the decrease in originality validates the model. The two studies 

demonstrate that MSTs are an effective didactical tool.  The comparison between 

control and experimental groups in Study 2, which was not the focus of this paper, 

strengthened this assertion by the findings that experimental HL group, which 

systematically employed MSTs, improved significantly higher on its connectedness, 

fluency and flexibility than the control group.  

We hypothesize that in the fluency-flexibility-originality triad, fluency and 

flexibility are of a dynamic nature, whereas originality is a "gift". We 

demonstrate that originality appeared to be the strongest component in determining 

creativity.  

The strength of the relationship between creativity and originality can be considered 

as validating our model, being consistent with the view of creativity as an invention 

of new products or procedures. At the same time, our studies demonstrate that this 

view is true for both absolute and relative creativity.  

Based on the research findings, we hypothesize that, one of the ways of identifying 

mathematically gifted students is by means of originality of their ideas and solutions. 

Systematic research should be performed to examine our hypotheses.  

Finally, we assume that developing mental flexibility and fluency in and of 

themselves is of great importance. Probably other types of activities, such as problem 

posing (which includes elaboration and generalization) and mathematical 

explorations, are also effective in developing originality, but this assumption 

requires a different empirical investigation. The model presented in this paper can be 

useful for such an investigation. 
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This study combines theories related to collective learning and theories related to 

mathematical creativity to investigate the notion of collective mathematical 

creativity. Collective learning takes place when mathematical ideas and actions, 

initially stemming from an individual, are built upon and reworked, producing a 

solution which is the product of the collective. Referring to characteristics of 

individual mathematical creativity, such as fluency, flexibility, and originality, this 

paper examines the possibility that collective mathematical creativity may be 

similarly characterized. The paper also explores the possible relationship between 

individual and collective mathematical creativity. 
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Many studies have investigated ways of characterizing, identifying, and promoting 

mathematical creativity. Haylock (1997), for example, and more recently, Kwon, 

Park, and Park (2006) assessed students‘ mathematical creativity by employing open-

ended problems and measuring divergent thinking skills. Leikin (2009) explored the 

use of multiple solution tasks in evaluating a student‘s mathematical creativity. What 

many of these studies had in common was that they focused on the mathematical 

creativity of individuals. This study focuses on the collective, not as the aggregation 

of a few individuals, but as a unit of study. Although some of the studies mentioned 

above acknowledged the effect of classroom culture on the development of 

mathematical creativity, and others considered the creative range of a group of 

students, these studies did not necessarily investigate mathematical creativity as a 

collective process or as the product of a collective endeavour.  

This study combines theories related to collective learning and theories related to 

mathematical creativity to investigate the notion of collective mathematical 

creativity. The notion of collective creativity has been used to investigate creativity 

in several contexts including the work place (Hargadon & Bechky, 2006) and the 

global community (Family, 2003). In those cases, collective creativity was 

considered to occur when the social interactions between individuals yielded new 

interpretations that the individuals involved, thinking alone, could not have 

generated. Can the notion of collective creativity also be applied to mathematics 

education?  

THEORETICAL BACKGROUND 

Two main issues are at the heart of this study, the nature of mathematical creativity 

and the collective nature of mathematical learning. This section begins by describing 
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three key components of mathematical creativity: fluency, flexibility, and originality. 

These components are mentioned in several studies which view creativity as ―an 

orientation or disposition toward mathematical activity that can be fostered broadly 

in the general school population‖ (Silver, 1997, p. 75). The section then describes the 

collective nature of mathematical learning.   

Fluency, flexibility, and originality 

Silver (1997) related fluency to ―the number of ideas generated in response to a 

prompt‖ (p. 76). He claimed that the use of ill-structured and open-ended problems 

in instruction may encourage students to generate multiple solutions developing 

fluency. Leikin (2009) referred to fluency as the pace at which solving proceeds and 

measured the number of solutions produced by a student. 

Flexibility, according to Silver (1997) refers to ―apparent shifts in approaches taken 

when generating responses to a prompt‖ (p. 76). Leikin (2009) evaluated flexibility 

by establishing if different solutions employ strategies based on different 

representations, properties, or branches of mathematics. At times, it helps to think of 

flexibility in relation to its counterpart, fixation. In problem solving, fixation is 

related to mental rigidity (Haylock, 1997). Flexibility is then shown by overcoming 

fixation or breaking away from stereotypes. Haylock further differentiated between 

content-universe fixation and algorithmic fixation. Overcoming the first type of 

fixation requires the thinker to consider a wider set of possibilities than at first is 

obvious and extend the range of elements appropriate for application. The second 

type of fixation relates to when an individual adheres to an initially successful 

algorithm even when it is no longer appropriate. Originality is related to creating 

new ideas. For example, the systems model of creativity suggests that when an 

individual employs the rules and practices of a domain to produce a novel variation 

within the domain content, then that individual is being creative (Sriraman, 2009). 

With regard to mathematics classrooms, this aspect of creativity may manifest itself 

when a student examines many solutions to a problem, methods or answers, and then 

generates another that is different (Silver, 1997). Leikin (2009) measured the 

originality of a solution based on its level of insight and conventionality according to 

the learning history of the participants.  

The collective nature of mathematical learning  

Different studies have taken into account the social context of mathematical learning. 

For example, Yackel and Cobb (1996) introduced the notion of sociomathematical 

norms to describe "normative aspects of mathematical discussions that are specific to 

students' mathematical activity." (p. 458). They were interested in how normative 

aspects of mathematics discussion are developed, such as what counts as 

mathematically different, mathematically efficient, and mathematically elegant. 

While these norms are important for guiding interactions between individuals, they 

are not necessarily indicative of the individuals acting as a collective.  



Working Group 7 

 CERME 7 (2011)  1106 

 

According to Martin, Towers, and Pirie (2006) collective mathematical 

understanding emerges from coactions. Coactions describe particular mathematical 

actions carried out by an individual but which are ―dependent and contingent upon 

the actions of the others in the group‖ (p. 156). Collective understanding does not 

necessarily occur whenever two or more people collaborate or interact. Instead, 

―coacting is a process through which mathematical ideas… initially stemming from 

an individual learner, become taken up, built on, developed, reworked and elaborated 

by others…‖ (p. 156). 

Research aims  

According to Haylock (1997) there are two main approaches to recognizing 

creativity. The first is to consider the cognitive process which is indicative of 

creative thinking. Overcoming fixation is one such process. The second approach is 

to consider the product which indicates creative thinking has taken place. An original 

solution would be one such product. The first aim of this study is to explore both the 

process involved in collective mathematical creativity as well as the product of 

collective mathematical creativity. 

The three key components of creativity discussed above, fluency, flexibility, and 

originality, are sometimes related to the process (Shriki, 2010) and sometimes related 

to the product (Haylock, 1997). The second aim of this study is to examine if and 

how the notions of fluency, flexibility, and originality used when describing 

individual mathematical creativity may also be used to describe collective 

mathematical creativity. That is, is it possible to speak of collective fluency, 

collective flexibility, and collective originality?   

Finally, although the aim of this study is to explore the emergence of collective 

mathematical creativity and describe its nature in elementary school mathematics 

classes, it also acknowledges the significance of individual mathematical creativity. 

Thus the third aim of this study is to explore the interrelationship between individual 

mathematical creativity and collective mathematical creativity.   

METHODOLOGY 

One fifth grade and one sixth grade class participated in this study. The sixth grade 

teacher had 14 years experience teaching fifth and six grades. The fifth grade teacher 

had eight years experience teaching fifth and sixth grades. Both teachers taught 

according to the mandatory mathematics curriculum using state approved textbooks. 

The teachers did not collaborate with the researcher and were not explicitly 

implementing a program aimed at promoting creativity. During the school year, each 

class was observed approximately ten times. During classroom observations, the 

focus was on students‘ interactions with materials, other students, and teachers and 

the ways in which ―ideas are picked up, worked with, and developed by the group‖ 
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(Martin, Towers, & Pirie, 2006, p. 152). All lessons were video recorded and 

transcribed by the researcher who also took field notes during the observations. 

RESULTS 

In this section I describe three classroom episodes that illustrate different aspects of 

mathematical creativity. The first episode was taught by the first teacher. The second 

and third episodes were taught by the second teacher. For each episode I describe the 

main aim of the lesson, the classroom interactions, and the mathematical creativity, 

individual and collective, observed.  

Episode 1: Collective fluency and collective flexibility?   

This episode was taken from a sixth grade class, in the middle of the school year, 

where the main topic of the lesson was multiplication of decimal fractions. The class 

had already been introduced to this topic and had already practiced the procedure for 

multiplying decimal fractions during previous lessons. The teacher put the following 

problem on the board, __ × __ = 0.18, and asked the class, ―What could the missing 

numbers possibly be?‖ Many children raise their hands while the teacher comments, 

―There are many possibilities.‖ She then calls on one at a time: 

Gil:  0.9 times 0.2. 

Teacher: Another way. There are many ways. 

Lolly: 0.6 times 0.3. 

Teacher: More. 

Tammy: 0.90 times 0.20. 

Teacher:  Would you agree with me that 0.2 and 0.9 is the same [as 0.90 and 0.20]? I 

want different. 

Miri: I‘m not sure. 9 times 0.02. 

Teacher: Nice. Can someone explain what she did? 

(The teacher and students then review the rules for multiplying decimal fractions.) 

First, we note that although Gil and Lolly gave different answers both answers may 

be considered similar in that they consisted of two numbers with one digit after the 

decimal point. The teacher does not acknowledge their similarity. However, when 

Tammy attempts to break the mould, the teacher does not accept the answer because 

0.9 is equal to 0.90. This relates to sociomathematical norms and the establishment 

of what it means for solutions to be different. In this case, the teacher is establishing 

that merely expanding a number from 0.9 to 0.90 does not qualify for difference. She 

then requests a different solution, which is supplied by Miri. 

Tom: What about 0.18 times 0.1? 

Tad: No. 
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Gad: 0.18 times 1. 

Toby: 18 times 0.1? 

Many students: 18 times 0.01. 

Teacher: Let's move to another problem 

This episode illustrates how one child may have the germ of an idea but another 

child may develop it. In the first vignette, Gil, factoring 18 into 9 and 2, comes up 

with one solution. Tammy attempts to use the same factors as Gil, but is not 

successful. Miri then follows up on the idea, producing an additional solution. The 

same scenario occurs in the second vignette. Tom has the idea of factoring 18 into 1 

and 18 but comes up with an incorrect solution as witnessed by Tad. Gad follows up 

on the idea and comes up with a correct solution. Toby also attempts to find a 

solution with the same basic factors which is then corrected by other students in the 

class. 

In this episode we also see an illustration of collective fluency which seems to have 

been promoted by the teacher. The teacher has the class working together to produce 

many different solutions to the same problem. Up until this point in the lesson, the 

class came up with five different correct solutions. Perhaps, if more time was 

available, the class may have produced more solutions. 

Regarding flexibility, we note that the second solution, 0.6×0.3 followed more or 

less the same strategy as the first solution 0.9×0.2. The last three solutions, 9×0.02, 

0.18×1, and 18×0.01, may also be considered similar to each other. Each example 

consists of one factor which is a whole number and a second factor which is a 

decimal fraction with two digits after the decimal point. Thus, it seems as though this 

problem promoted collective fluency but not necessarily collective flexibility. Only 

one student, Miri, was successful in employing a different strategy, a sign of 

flexibility. And yet, Miri's solution came after Tammy's suggestion. Although the 

teacher did not accept Tammy's solution as being different from the first, it was 

Tammy who attempted a solution with two digits after the decimal point. Perhaps, 

the flexibility manifested in Miri's correct solution was the result of working on 

Tammy's suggestion. Perhaps, Miri understood what was meant by a solution being 

different and had the courage to think flexibly after Tammy paved the way. In other 

words, it is possible that in this case collective flexibility refers to a collective 

process and not necessarily that the group, as a whole, produced solutions based on 

different strategies.  

Episode 2: Individual or collective originality? 

This episode took place in the fifth grade classroom with the second teacher. The 

students had previously been introduced to decimal fractions, had learned to convert 

back and forth between decimal fractions and simple fractions, and had recently 

learned to add and subtract decimal fractions. The main topic of the current lesson 



Working Group 7 

 CERME 7 (2011)  1109 

 

was reviewing addition and subtraction of decimal fractions.  The following 

problem, taken from the classroom textbook, was given as a homework assignment, 

and, at the request of one of the students, was reviewed in class. 

Complete the following sequence:    
100

,
100

,
100

,
100

30
,

100

5
 

The following discussion ensues: 

Teacher: After 30/100, mmm hundredths, and again, mmm hundredths, and again. 

They want a sequence. What is a sequence? 

Oren: It continues with jumps. 

Teacher: Equal jumps. The jumps must be equal. What types of jumps are there? 

(A few students say out loud different numbers: 25 and 25/100.) 

Teacher: That‘s the size of the jump. You mean to add 25/100. 

Oren: Can the jumps be in multiplication? 

Teacher: Wonderful. That‘s exactly what I mean. If I jump by adding 25/100 then the 

next will be 30/100. Now, you mentioned another type of jump. We didn‘t 

learn that yet…it‘s part of next year‘s syllabus. But, there are also 

multiplication jumps. Who said that going from 5/100 to 30/100 means that 

I added 25 [hundredths]. I can also multiply… 

Sam: By 6. 

Sarah: 180. 

Teacher: 180 hundredths. 

At this point it is worthwhile to note that although multiplication of simple fractions 

and decimal fractions had not yet been introduced, Oren came up with this idea by 

himself. Furthermore, although it is technically part of next year‘s curriculum, the 

teacher does not dismiss this idea. Finally, two more children contribute to the idea 

by carrying out the actual multiplication 

Oren: That‘s what I did at first. But I thought it was a mistake. 

Teacher: Is that allowed? 

Tina: I thought that it would be a mistake. 

Noam: But then you get big numbers. 

Teacher: So, you can use a calculator. 

Note that at least two children thought of multiplying but ended up dismissing the 

possibility for various reasons. Noam, who claims that he would end up with ―big 

numbers‖, shows signs of content fixation. This may have been brought on by 

previous textbook examples which refrained from using ‗big‘ numbers. The teacher 
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is quick to negate this excuse, keeping the door open for additional possibilities. 

Noam then takes Oren‘s idea one step further, by considering division. 

Noam: Then you can also divide. 

Teacher: You can divide, but not here (referring to the jump from 5/100 to 30/100). 

Noam: You can multiply by 6 and then divide by 3. 

Teacher: Ok. That‘s also a type of sequence. Multiply by 6, divide by 3, and then 

again multiply by 6 and divide by 3. 

Tina: But, that‘s not good. You need equal numbers. 

Teacher: This is a different type but it is certainly acceptable. Let‘s try it. 

Tina: But, it won‘t come out. You need equal numbers. 

Teacher: Let‘s just say that when the textbook requests a sequence, they generally 

don‘t mean this type. They usually mean jumps that are the same each time. 

But, this is definitely a sequence. 

Tina: But, they are not all equal. 

Aaron: You can also have more than two types of jumps. Multiply, divide, and add. 

Noam expands on the idea of multiplication and division jumps by including both in 

the same sequence. This is a novel idea, which the teacher accepts. Yet, the teacher 

does not succeeded in convincing Tina that two types of jumps may also be 

considered a sequence. While conceding that this type of sequence may not be the 

norm, the teacher attempts to legitimize thinking that may be outside the norm. At 

the end of this vignette, Aaron, who has previously remained silent, but apparently 

has been listening, joins in and adds yet another novel idea.  

Looking back, it is apparent that several children displayed original ideas. First, we 

have Oren. The children had not yet learned multiplication of fractions and yet, he 

considers the possibility. Then there is Noam who suggested employing both 

multiplication and division in the same sequence and raises the possibility that the 

jumps do not have to be equal. Recall that the teacher had previously said that a 

sequence consists of equal jumps. Finally, Aaron suggests employing three 

mathematical operations at once in the same sequence. Perhaps, employing 

multiplication and division may be allowed because they are essentially inverse 

operations. But to consider addition in the same sequence is indeed novel. So, who 

displayed original thought? Certainly, Oren, Noam, and Aaron suggested novel 

ideas. Yet, looking at the sequence of events, it also seems that each student built on 

the previous student's idea. So, was Oren the only student to display original thinking? 

Perhaps, taken together, we can say that this is an illustration of collective 

originality.  

Episode 3: Individual or collective flexibility? 
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This episode is actually a continuation of the previous episode. The teacher presents 

another problem from the book. 

Teacher: Let's look at another problem. Build a sequence that has in it the numbers 

0.2 and 1.1. 

(Four children raise their hands.) 

Aaron: Add 0.9. 

Teacher: You're saying to place them next to each other and then the difference is 

0.9. Then what would be the next number? 

Judy: 2. 

Teacher: And then? 

Mark: 2.9. 

Teacher: But who says that the two numbers have to be next to each other? 

Tali: You can do 0.3. 

Teacher: Jumps of 0.3. (The teacher writes on the board 0.2, 0.5, 0.8.) 

Aaron: You can put the sequence in backwards order and do subtraction. 

Teacher: Ok. You can start with 1.1. 

In this episode, the class is working on an open-ended or ill-defined task. Unlike the 

previous task in the previous episode where the first two numbers in the sequence 

were given, in this task, two numbers are given but are not placed in any specific 

order. The teacher takes advantage of the situation in order to promote flexibility. In 

other words, she seems to be less interested in promoting fluency and more interested 

in trying to encourage the students to think of various ways of placing the numbers. 

She then raises another suggestion, moving in an entirely different direction than the 

ones suggested by the students.  

Teacher: I have another idea. You can expand the numbers. (The teacher writes on 

the board 0.20, leaves a lot of space, and then writes 1.10.) 

Tomer: 0.9. 

Shay:  Nine and a half. 

Teacher: 0.90 so the expansion is by 10 and then I can do jumps of 0.45. Is that 

allowed? 

Tomer: Yes. 

This last part is interesting because it seems that the teacher is also displaying 

flexible thinking and joining the collective effort to come up with various ways of 

placing the two numbers in a sequence. If we look at the different solutions to this 

problem, we may count four solutions where each solution stems from a very 
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different way of combining the numbers into a sequence. Perhaps, we can call this 

collective flexibility. 

DISCUSSION 

When reviewing the episodes presented in this paper, it is possible to discern both 

the process and product of collective mathematical creativity. Regarding the 

collective process, we focus on the interplay of ideas put forth by individuals which 

is then woven together. When describing the product of collective mathematical 

creativity, we look not only towards the individual solutions but towards the end 

product of the collective process. For example, in the first episode, one student put 

forth an idea, another expanded it, another assessed the correctness of a solution, and 

the teacher clarified boundaries. The end product consisted of five solutions brought 

forth by the collective. On the one hand, this is similar to the notion of a collective 

solution space which is ―a combination of the solutions produced by a group of 

individuals‖ (Leikin, 2009, p. 134). On the other hand, rather than looking at each 

solution as the product of one person‘s creativity and then merely collecting them 

together, we look at the five solutions as the product of the collective.  

Throughout this paper fluency, flexibility, and originality were used to describe 

mathematical creativity related to the collective. In the first episode, we reflected on 

collective fluency as a product of the collective effort and pondered the possibility of 

discussing collective flexibility. Can we talk about a collective being flexible? 

Perhaps collective flexibility may refer to the dynamic process by which one student 

leads the group in one direction which then reminds another student about the 

possibility of another direction. Together, the group tries out various strategies and 

possibly produces solutions based on different mathematical properties or different 

representations. Thus collective flexibility may be used to describe a process as well 

as a product. Regarding originality, it seems almost far fetched to talk about 

collective originality. Originality presumes a unique or novel idea. If the idea is 

unique, is it not individual? Leikin (2009) suggested that originality is relative, that a 

solution‘s novelty is relative to the solutions produced by the group. And yet, 

although a solution may be unique, it may be the product of a collective process of 

creativity. Which brings us to the question, what is the relationship between 

individual and collective mathematical creativity?   

Although the focus of this study was on collective mathematical creativity, one 

cannot help but notice the many instances of individual mathematical creativity. 

Raising the idea that the jumps of a sequence do not have to be equal, illustrates how 

one student was able to break away from a stereotype. By focusing on collective 

mathematical creativity this study does not claim that individual mathematical 

creativity is not important. On the contrary. As noted by Martin, Towers, & Pirie 

(2006) a musical performance, such as a jazz improvisation, is highly dependent on 

the creativity of each individual player. Yet, together, the musicians create a 
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performance that is more than the sum of its parts. So too, individuals, working on a 

mathematics problem, may each contribute insights, ideas, and directions building 

eventually to a collective idea. At the end of the second episode, one student came up 

with the original idea of creating a sequence that employed three mathematical 

operations. This idea was not put forth in a vacuum. Before him, there was a student 

who introduced the idea that a sequence may employ two operations and before him 

a student who introduced the idea that the jumps in a sequence do not have to be 

equal. In other words, the students built on each other‘s ideas coming up with many 

different solutions as well as some very novel solutions. So, can we say that the final 

original idea was only that of the one student? Or, might we say that the final 

original idea was the product of the collective?  

In considering the relationship between individual mathematical creativity and 

collective mathematical creativity, we might also consider affective issues. On one's 

own, a student may lack the persistence sometimes necessary for creative 

mathematical thinking or the courage to try something new (Movshovitz-Hadar, 

2008). Working as a collective may actually encourage students to keep at it and try 

new ideas. In other words, by promoting collective mathematical creativity we may 

also be promoting individual mathematical creativity.  

This paper combined two fields of study, collective learning and mathematical 

creativity, in an initial investigation into the notion of collective mathematical 

creativity in elementary school classrooms. Many questions remain. What is the 

teacher‘s role in this endeavour? Will the same types of tasks used to promote 

individual mathematical creativity promote collective mathematics creativity as 

well? What are the ramifications of the age of the students? Additional research is 

necessary in order to answer these as well as other questions.   
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This paper describes a series of workshops conducted among mathematics teachers. 

The aim of the workshops was to develop creative mathematical activities among the 

teachers. The analysis of the transcripts is focused on two kinds of such activities: 

transfer of a method and hypotheses‘ formulation and verification. The results show 

a considerable improvement in the teachers‘ ability and their attitude towards 

creative mathematical activities. 

Keywords: creativity, hypotheses‘ formulation and verification, transfer of a method 

INTRODUCTION 

Mathematics education should harmonize with the socio-economical need of 

preparing people to everyday life. In many professions creativity, ingeniousness and 

a creative attitude to problems are required even from a young person who just 

entered the field. At the same time, that creative side of education is almost absent at 

school. Mathematics teaching very often has an imitative and reproductive character. 

It is focused on elementary activities and skills leading the students to learn 

schematic behaviours. This is because the teachers are not sufficiently prepared to 

promote creativity in mathematics among their students. They do not have sufficient 

knowledge, skills, experience and didactical tools to develop creative mathematical 

activities among their students (Klakla, 2008; Maj, 2006). The essential condition for 

the development of the skills needed for different kinds of creative mathematical 

activities among students is the deep understanding of those issues by the 

mathematics teachers. Only then the teachers can effectively form and develop these 

activities in their work with the students. According to Nęcka (2005) ―a creative 

teacher will educate creative pupils, a not much creative teacher will rather 

discourage pupils from unconventional thinking‖ (p. 201). 

THEORETICAL BACKGROUND 

According to Ervynck (1991) mathematical creativity is the ability of problem 

solving and/or developing structural thinking by taking into consideration the logical 

and deductive nature of mathematics. He gives some examples of creativity in 

mathematics: the ability to formulate a valuable definition by using the concepts 

which ensure the usefulness of the defined object in a later theory; the 

mathematization of basic ideas taken from a real context which were initially the 

base of a mathematical problem. Therefore, according to him mathematical creativity 

is both the ability of creating mathematical objects and discovering mutual relations 

between them. Ernest (2008) sees creative mathematical activity as solving 
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problems, using mathematical methods or performing investigative work; this 

usually includes the formulation of more complex tasks. It requires a novelty and 

an insight into the choice of transformations and the choice of the elements of a task 

that could be used in order to create a sequence of such transformations. For Lakatos 

(2005) mathematics is not predictable, you cannot create it step by step in a specific 

direction. You can rather compare it with discovering a new territory during which 

the ‗trip‘ could be pointless. It is similar to mathematical thinking, which contrary to 

ready-made knowledge is a creative activity which allows the possibility of mistake. 

From the above we can conclude that mathematical creativity is related to different 

kinds of creative mathematical activities. A detailed description of such activities has 

been worked out by Klakla (2002) who distinguishes seven kinds of creative 

mathematical activities, which are present in an essential way in activities of 

mathematicians. These are: (1) hypotheses‘ formulation and verification; (2) transfer 

of a method; (3) creative receiving, processing and using mathematical information; 

(4) discipline of thinking and critical thinking; (5) problems‘ generation in the 

process of the method transfer; (6) problems‘ prolonging; (7) placing the problems in 

open situations. These activities can be formed through multistage tasks which 

consist of series of tasks, problems and didactic situations which have a specific 

structure. They are based on problematic situations and connect different kinds of 

creative mathematical activities with each other in complex and rich mathematical-

didactic situations.  

From the previous activities, the transfer of a method, which is described in literature 

also as ‗analogical transfer‘, is for some researchers the main (or even the only) 

means to solve novel problems (Reeves & Weisberg, 1994; Polya, 1957). In order to 

undertake the transfer of a method, firstly you have to familiarize with a problem‘s 

solution based on an idea. The analysis of the solution makes you realize the essence 

of that idea by abstracting any unimportant data or context. This leads to the 

awareness of the class of tasks for which the idea of the solution will function. For 

this class that idea becomes an effective method of reasoning. Sometimes the trials of 

a method‘s transfer can be made beyond the class of the tasks, i.e. in similar, 

analogous or general situations. Then the method requires some modifications and 

the trials can be successful or not (Klakla, 2002). It is very important to put students 

in a situation in which the transfer of a method fails. 

Another important aspect of creative work in mathematics is formulating and 

verifying hypotheses. The creative mathematician puts hypotheses in situations when 

s/he has some premises but does not have a sufficient proof. Such situations may 

occur in the work of both a mathematician and a student. The difference lies in the 

cautiousness of the mathematician which is based on previous experiences. By 

working on some mathematical situations one can perform various empirical 

investigations: calculations in some concrete cases, experimentations with drawings 

or reasoning based on analogies. However, accepting that the discoveries are not 
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enough to state that they are true is not easy for the students. There is a need for 

formal and conscious evaluating of all stages of reasoning (Klakla, 2002). 

METHODOLOGY 

In this paper we present a part of a wider research (Maj, 2009) carried among a group 

of mathematics teachers. We mainly analyse fragments of the workshops, which 

show the work of the teachers in the direction of the transfer of a method and 

hypotheses‘ formulation and verification. 

A group of seven teachers of mathematics (of gymnasium and high schools) took 

part in a series of workshops from March to September 2006. The workshops were 

organised as part of the Professional Development of Teachers Researchers (PDTR) 

project, during the mathematics course. The main content of that course was solving 

different kind of mathematical problems which were supposed to be challenging for 

the teachers. The workshops were organised around three multistage tasks. They 

consisted of solving some chosen tasks – open-ended problems and discussing the 

possibilities of introducing the students to the particular problems. The main aims of 

the workshops were: 

 developing the skills of undertaking creative mathematical activities among 

mathematics teachers,  

 raising the mathematics teachers‘ awareness of the need to develop creative 

mathematical activities among students. 

We will present an analysis of four fragments of the workshops; these fragments are 

related to the first and the second multistage task. The analysis was conducted in the 

direction of answering the following questions:  

 Did the teachers gladly engage in working on multistage tasks (emotional 

aspect)? 

 Did the teachers use the transfer of a method or the transfer of a method with 

modifications? 

 Did they formulate some problems, put questions, hypotheses and did they 

verify them? Were the formulated problems non-trivial? 

 Were discipline of thinking and critical thinking evident in the way of 

verifying the hypotheses?  

 What was the role of the instructor during working on multistage tasks? 

The data collected comprised of an audio recording of the workshops (24 lesson 

hours) and notes. After this, a full transcription of the audio recording and analysis of 

this transcription was made. 
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Example of the multistage tasks used at the workshops 

Task 1 – ‗Lengthening the sides of a triangle‘ 

An acute triangle ABC is given. Construct the triangle A‘B‘C‘ by lengthening each 

side of the given triangle ABC by its own length in the same sense of circulation. 

Compare the area of the triangles A‘B‘C‘ and ABC. Give the ratio of their areas. 

 What happens with the ratio of the areas when you make 2-times, 3-times, 

n-times (n N+) longer the sides of the triangle ABC? 

 Consider analogous situation for a convex quadrilateral ABCD. 

Task 2 – ‗Butterfly‘ 

An acute triangle ABC is given. Through any point P which belongs to the inside of 

the triangle, three lines parallel to the every side of the triangle are drawn. The lines 

divide the triangle ABC of the area S into six parts. Three of them are triangles of 

areas S1, S2, S3. The figure which is comprised of these three triangles with the 

common vertex P is called ‗butterfly‘. The three triangles are called the ‗wings‘ of 

the ‗butterfly‘ (Figure 1).  

 

Figure 1. The initial situation of the task ‗Butterfly‘. 

Without any suggestions on the direction of enquiry the teachers were asked by the 

instructor: ―What questions would you like to ask to that situation?‖. 

RESULTS 

Four fragments of the workshop will be analysed. The dialogs were realised either 

between the instructor (I) conducting the workshops and the teachers (T) or between 

the teachers. 

The ‗Lengthening the sides of a triangle‘ task was the first to be considered at the 

workshops. During the work on the task three methods of solving were used: proper 

‗cuttings‘, use of a particular formula of the triangle‘s area and use of triangles of the 

same areas. Then the teachers had the task to prolong the initial situation by 

changing the number of lengthening into 2-times, 3-times and n-times: 

1  I: So we have the task: we are lengthening 2-times the triangle‘s sides… 

2  T2: Lengthening 2-times … (on the blackboard): 
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 The height is the same (ACB‘ and ABC) and the base is 3-times longer (the triangle 
ABB‘). 

3 T1: 2-times. 

4 T4: But it depends on which triangle we are talking about… 

5 T2: Exactly, maybe we‘re talking about this one (he is showing the triangle ACB‘) 
and here the base is 2-times longer. 

6 I: So write the area. 

7 T1: 2S. 

8 I: And now what? 

9 T2: Now… 

10 T3: Where else is 2S? 

11 T2: And now here… Here it will be the same (the triangle ABC‘), won‘t it be? 

12 T1: Yes. 

13 T2: Because there is the base AC and the height here (he is showing). And the third 
connection (he is drawing a triangle CBA‘), here is again the same, 
I mean 2S. Now, what about these ones? (the other triangles: CA‘B‘, 
AB‘C‘, BC‘A‘). 

14 I: Yes, what about it? 

15 T1, T3: It is 2-times bigger (the triangle AB‘C‘). 

16 I: When I told you about this student, what I said about this and this? (ACB‘ and 
AB‘C‘) [the story of a 12-year old student who solved that problem] 

17 T2: I must have missed it… what is happening here? (he is thinking) 

18 T1: I also… I must have missed it too. 

19 I: He compared this one with this one (ABC and ACB‘) and then this with this one 
(ACB‘ and AB‘C‘). 

20 T4: And then he turned this situation and there he had the same heights (ACB‘ and 
AB‘C‘). 

21 T2: So he compared this with this, the heights are the same, so it has to be 4S. 

22 T1: Once again! 

23 T2: It will be 2·2S – because of that (he is showing on the drawing). 

24 I: He is now comparing this triangle and this triangle (she is showing). 

25 T2: The height is the same (showing) and the base is 2-times longer, so the area is 2-
times bigger than this one (2S), so 4S. 

26 T1: I see now! 
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27 T2: The same is here 4S and 4S (he is writing the areas for the triangles which are 
left). 

28 I: So the previous ratio was 1/7, what is now? 

29 T2: Now we have 3 times 4 and 3 times 2, so 18 plus one, so 1/19. 

Comment. In spite of the fact that the third solution (‗triangles of the same areas‘) 

was introduced by the instructor (by giving some clues) as an alternative solution, 

the teachers liked that way the most. Probably it was because of its elegance and 

simplicity. And they chose that method for solving the next problems. Although that 

method seemed to not require advanced knowledge, when the teachers wanted to 

transfer it on the analogous task they had difficulties.  

Analysis. The example of that task shows that by solving an analogous problem you 

can develop an important creative mathematical activity – transfer of the method 

(Klakla, 2002). Although the method was quite easy, using it in the next problem 

was challenging for the teachers. They started asking questions by themselves, 

explaining to each other and after such discussions we can say that they really 

familiarised themselves with this method and understood it. The important fact was 

that group work gave them the opportunity for such common discussions.  

The other prolonging of the task contained a quadrangle instead of a triangle: 

30 I: Let‘s work on the next task: a quadrangle. 

The teachers are working silently; they are drawing, cutting the figure into triangles. Then 
they are discussing in pairs (or triads) trying to use the method of 
triangles of the same areas: 

31 T7: These ones are for sure equal, these also, but I have too many of these Ps… 

32 T4 and T1 (they obtained the result 1/5 and are happy like children): I have it, 
hurrey!!! 

33 T3 asks T4: How to calculate this? 

34 T4: You have to only notice that 
S2+S4=S1+S3. 

35 T3: How nicely you wrote it! 

36 T2 (drawing): 

37 T7: It can‘t be in 2, you have to do it in 4 
(divide the quadrangle in 
triangles). 

38 T5: You should do it in 4 from the beginning. 

39 T1: In 4? Aha! I also did it in 2. 

40 T2: 2P1+2P2+2S1+2S2 = 2P+2P plus P –that initial one, that is 5P. 

Comment. This time the teachers did not have any problems with the transfer of the 

assumptions of the task. They started working in small groups. Their strategy was to 

divide the initial quadrangle into triangles and this was done in two ways. In both 

cases the teachers were searching for triangles of the same areas with these which 

arose as the result of the division of a triangle. Therefore they modified the previous 
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method of solving and they transferred it into the new problem. But not all managed 

to do it so easily (e.g. T7 in [31] or T3 in [33]). After T2 presented his solution on 

the blackboard a discussion on how many triangles should a quadrangle be divided 

into started.  

Analysis. In this fragment the teachers undertook a creative mathematical activity – 

transfer of the method of solution on an analogous task (Klakla, 2002). They did it 

by themselves without any suggestions. They tried to transfer the method which they 

used in the case of triangles. When it showed that it cannot be transferred directly 

they modified it in such a way to use it also in the case of a quadrangle. It is worth 

noting the joy that the solution of this task gave them [32]. It is also important to 

underline the special role of the instructor who only initiated the problem and then 

backed out and let the teachers decide by themselves how to solve it. 

The next two fragments are related to the second multistage task called ‗Butterflies‘: 

41 I: What more can we ask about that situation? 

42 T4: Maybe what is the ratio of the painted areas to the non-painted? 

43 T3: No, if they are similar triangles, we can ask… 

44 I: Similar triangles… So the wings of the butterfly are similar triangles to …? 

45 Everybody: To the initial one. 

46 I: To the initial one… Are they? 

47 Everybody: the property (of similar triangles) Angle – Angle – Angle 
(corresponding angles are the same), because they are lines parallel to 
the sides. 

48 T3: Are they similar to each other? 

49 I: Exactly, are they? 

50 T1: If all of them are similar to the initial one, then they are similar to each other. 

51 I: Yes, and on what base we can conclude it? 

52 T1 and T3: On transitiveness. 

53 I: Of the relation? 

54 T1 and T3: Relation of similarity. 

55 I: Ok. In what scale are they similar to each other? The same scale, different scales? 

56 T4: Probably it can be done to be the same scale. 

57 T3: It depends on the point P. 

58 T6: It depends on the position of the point P. 

59 I: On the position of the point P… Listen, where would have to be the point P in 
order for those scales to be the same? Is it possible to answer that 
question? 

Teachers are discussing…  

60 T3: The centroid of the triangle? 

61 T4: Maybe in the equilateral triangle? 
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Comment. After formulating and solving some problems proposed by the teachers, 

the instructor asked another question [41] that made the teachers put other questions 

and hypotheses. The first one [42] could be connected with the first multistage task, 

but the next question of T3 [43] is related to the property noticed on the drawing. 

Actually, most questions of the teachers were not specified that is why the 

instructor‘s interventions were needed. This resulted in discipline of thinking and 

critical thinking of the teachers (Klakla, 2002). 

Analysis. In this fragment the teachers showed an ability of putting hypotheses and 

the need of verifying them. They had the ideas on what directions can be taken 

during considering that task. They formulated non-trivial problems, they were 

engaged in investigation (Ernest, 2008). Their language was characterized by a lack 

of precision, thus their talk had to be complemented by the instructor. But eventually 

the teachers started supplementing each other‘s talk. 

In the next fragment the teachers continued the work on the task ―Butterfly‖ by 

searching another relation in the initial situation: 

62 T2: T3 has something. 

63 I: T3, show us what you have. 

64 T3: But I‘m not sure if it is true, it‘s a question for now… 

65 T2: Put a hypothesis! 

66 Everybody: Put a hypothesis! 

67 T3: But it‘s not a theorem! 

68 T2: A bold hypothesis and a good hypothesis is precious by itself. 

69 T4: I‘m not sure if it can be related to the point P – that the sum of the heights of the 
small triangles equals the height of the big one. 

70 I: T3, show us what you have. 

71 T3: I don‘t know if it is so. For now it is only a conjecture (she draws on the 
blackboard): 

 

 For sure those heights (red lines) give us the height of the triangle ABC. The 
question is if it is x – if that height and the height of that triangle (1 
and 2) are equal!    

Comment. In this fragment we can observe how the workshop participants forced 

one of them to put a hypothesis. The reaction of the teachers showed us on the one 

hand the willingness of searching a hypothesis and on the other hand the joy of 

putting it [68]. It also proved that the participants of the workshop became aware of 

undertaking mathematical activities and their significance. Putting a hypothesis 
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resulted immediately in a trial of its verification. T3 knew that the sum of the heights 

(in red) is equal to the height of the triangle ABC, but she had doubts if the heights 

of the triangles 1 and 2 had the same length. Although the drawing suggested that it 

is so, the teacher was careful in formulating the theorem. Her reasoning was 

characterized by discipline of thinking (Klakla, 2002). 

Analysis. The described fragment showed us that the teachers noticed that the work 

on the task makes sense when you put other hypotheses and try to verify them. The 

teachers had a need of prolonging the task and this explains the fact that when one of 

them made an observation, the others forced her to present it and then everybody was 

working on its verification (in the later part of the workshop). When they finished 

working on a previous problem they started searching for new relations and new 

ways of prolonging the task by trying to use the whole potential of the given 

situation.  In the short presented fragment many kinds of creative mathematical 

activities appeared: putting and verifying hypotheses, prolonging the task and 

discipline of thinking (Klakla, 2002). Moreover, the work was accompanied by 

intense emotions. 

CONCLUSIONS 

The presented fragments reveal the character of the teachers‘ and the instructor‘s 

work. The first multistage task ‗Lengthening the sides of a triangle‘ had the aim to 

introduce the teachers to creative mathematical activities. Already during solving 

that task the first tentative attempts of independent thinking and undertaking 

different kind of creative mathematical activities appeared. The teachers tried to 

transfer the method of ‗triangles of the same areas‘ into an analogous problem. This 

made them aware that firstly you have to familiarize with a problem‘s solution in 

order to realize the essence of the idea. Only then you can use that method to solve 

another problem even if it needs some modification (Klakla, 2002). That leads to 

noticing the whole potential of a task and developing mathematical methods.  

Later, we observed a greater freedom in putting questions, hypotheses‘ formulation 

and verification. The teachers decided by themselves what they want to work on, 

what they want to discover and what relation they want to investigate, which all fit in 

the frame of mathematical creativity according to Ervynck (1991). The formulated 

hypotheses were non-trivial; the teachers made a progress in expressing their 

thoughts, in being more careful during verifying their hypotheses and in transferring 

their reasoning into analogous problems. Additionally, we could observe the 

satisfaction that teachers felt when they succeeded in solving the tasks. The role of 

the instructor was minimalized to the only necessary actions: delicate suggestions of 

the directions of searching, small numbers of clues, evaluating discipline of thinking 

and critical thinking of the teachers.  

Creative mathematical activities do not develop spontaneously. The conscious 

attitude of the teacher can be formed through the personal experience of different 
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forms of such activities. Creativity requires conscious didactical methods and tools 

on every educational level (Maj, 2009). The multistage tasks used during the 

workshops support the development of activities such as transfer of a method and 

hypotheses‘ formulation and verification (Klakla, 2002; Maj, 2009). In order to 

transfer a method of solution or reasoning, the teachers have to have the opportunity 

to work with such series of tasks, try to use the worked out methods, experience the 

situations in which they cannot be used or the situations in which in order to use 

them, they have to modified them. Open-ended problems and rich mathematical 

situations favour the formulation of hypotheses. The actions of the instructor should 

make the teachers aware of the need for verifying them. At the same time, the 

participants of the workshops have to feel that they can stand on their own feet and 

they do not need the help of the instructor any more. That confidence can improve 

their professional development. 
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In the paper, the authors investigate experimentally the notion of ―competence‖ 

applied to mathematical education, more precisely the idea by which teaching 

cognitive and metacognitive strategies could allow pupils to learn mathematics 

better. They first identify the psychological model of this perspective and then 

underline the insufficiency of that approach, showing that pupils‘ solving strategies 

are not independent of situations and solving contexts. 

Key words: competence, cognitive strategies, meta-cognitive strategies, didactical 

situation. 

Key competences for lifelong learning are a combination of knowledge, skills and 

attitudes appropriate to the context. They are particularly necessary for personal 

fulfilment and development, social inclusion, active citizenship and employment. 

[...]Mathematical competence is the ability to develop and apply mathematical 

thinking in order to solve a range of problems in everyday situations, with the 

emphasis being placed on process, activity and knowledge.  

Recommendation of EU from December 18, 2006 
22 

INTRODUCTION 

The notion of competence is often used for explaining differences in the levels in 

mathematics; but the origins of these differences are never explained. Nowadays, the 

competence is used in relationship with talent for explaining the differences in 

creativity.  

The recent notion of ―competence‖ reintroduces the ancient idea that teaching 

cognitive and metacognitive strategies will allow pupils to solve problems in a better 

way and hence to learn mathematics more efficiently. As a result of evolution of this 

perspective, a didactical model based on a psychological model with origin in 

information processing was developed. This model focuses on the development of 

pupil‘s mathematical thinking (Novotná & Sarrazy, 2009).  

The model supposes that for being efficient, the taught strategies have to be 

independent of situations and contexts of solving. The aim of this paper is to 

challenge this hypothesis. 

                                           
22

 http://europa.eu/legislation_summaries/education_training_youth/lifelong_learning/c11090_en.htm 



Working Group 7 

 CERME 7 (2011)  1126 

 

THEORETICAL FRAMEWORK AND QUESTIONS 

The psychological model referred to in this paper is a theoretical follow-up of works 

of W. Kintsch, J.G. Greeno (1985), M.-C. Escarabajal (1986) (among other) built on 

the theory of scheme developed in artificial intelligence: either the scheme is 

identified and thus allows interpretation of information contained in the assignment 

(processing from the scheme to its components), or the subject transfers elements 

from the task to the scheme which allows integrating pieces of information. In this 

perspective, solving a problem consists of application of a solving scheme. To 

understand a problem means to make it calculable. In reality, the pupil has to identify 

useful elements in the wording of the assignment and find a sequence of 

relationships from the surface characteristics in order to end in a numerical 

operation. In this point of view, a mistake is considered as selecting an inappropriate 

scheme or as a ―shift of meaning‖.  

Three invariants structuring psychological models can be found. Our observations 

suggest they inspire teachers to use various lesson plans (see e.g. Roiné, 2009): 

1. Apply a scheme: In order to understand a problem the pupil must construct a 

representation of the problem from the pieces of information that he/she selects 

and that he/she interprets in a conceptual scheme. He/she must refer to 

knowledge that allows him/her to apply the solving scheme corresponding with 

the problem to be solved. 

2. Develop heuristics: The pupil should be able to check validity of his/her 

interpretation. When looking for a suitable solution, he/she must develop 

heuristics: select the operation, control the validity of his/her result, e.g. by using 

the so called ―analogical transfer‖ of a solving procedure already known to be 

efficient for a problem with whose solution the pupil is familiar, to the solution 

of a new problem which he/she is supposed to solve. 

3. Make the pupil become aware of the used procedures: The teacher must make the 

pupils realize what procedures of checking have been used. The pupils should 

also be able to adapt these procedures to use in other contexts.  

Even if the principles allow description of what ―experts‖ (good pupils) do, nothing 

guarantees that these pupils will use the procedures efficiently. The idea of teaching 

competences lies in the implicit principle by which teaching cognitive strategies 

allows to prefer the transfer of knowledge from one solving context to another. This 

is the principle that we will call the principle of transversality. This principle will be 

investigated in the following text in the framework of the Theory of Didactical 

Situations (Brousseau, 1997). 
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METHODOLOGY
23

 

The experimental protocol is relatively simple: The same task is assigned to 9-10-

year old pupils in four different situations. What makes this task unusual/special is 

the fact that it involves an unusual use of multiplication, not common in school 

practice. In fact, the pupil has to use his/her knowledge of multiplication to discover 

that the assigned task does not involve this operation. We call such problems 

―pseudo-multiplicative‖; in the text they are labeled as ―PPM‖. 

The problem can be formulated simply: If the pupil is able to distinguish between 

PPM and usual problems in a given context, then, according to the principle of 

transversality (inherent in the psychological model), he/she should manifest it also in 

other similar contexts. If not, we can conclude that this principle is not valid and 

therefore it is wrong to expect any improvement if cognitive and metacognitive 

strategies are taught. 

Four PPM were presented in four different school situations: 

1. ―Evaluation by the experimenter‖ 

If we know that one car covers the distance between the town A and B in 6 

hours, how long will I take before 3 cars cover the same distance? 

2. ―Mathematical competition‖ 

A ship covers the distance between Marseille and New York in 6 days. How long 

will it take 3 ships to cover the same distance?  

3. ―Evaluation by the teacher‖ 

A snail is at the bottom of a well. He decides to leave the well. We know that it 

will take him 6 days to get out of the well. How long will it take three snails to 

get out of the well? 

4. ―Warning‖ 

If we know that one biker covers the distance between the towns A and B in 6 

hours, how long will it take 3 bikers to cover the same distance if they set off 

together? 

Each of these four target problems was assigned to pupils from seven classes in four 

different situations (N = 155). All these situations are situations of evaluation 

because in each of them the pupil must demonstrate that he/she is able to carry out 

what is requested. These situations differ in the degree of analogy to common 

situations in three aspects: their level of formality, the types of input linked to them 

(individual vs. collective; the result of evaluation taken into consideration by the 

teacher or not) and the position of the proposer of the assignment. 

However, each of the situations may be described in many more details:  

                                           
23
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 Situation 1 (―a researcher‘s practice‖): It is the experimenter who proposes the 

assignment; the pupils were informed in advance that the test would not be 

marked; intentionally other information about the test was not disclosed (Will the 

teacher, the parents be informed about the results? Will the results be 

communicated publically in the classroom to other pupils? ...) 

 Situation 2 (explicit frame ―a mathematical competition between classes‖): This 

test is presented to pupils as a competition between classes in which each class 

chooses which of the posed problems will be assigned to the other classes. The 

test was divided into two phases: in the first phases the rules of the competition 

were presented and then each pupil posed a problem and then submitted it to the 

experimenter. The test itself was carried out in the second phase, a few days later, 

and the researcher posed his own problems. Here, the nature is not individual as 

in the other situation but collective.  

 Situation 3 (explicit frame ―summative evaluation at the end of term‖): Each 

teacher was asked to carry out such evaluation that they would normally use in 

the end of the term. This evaluation should in addition include the target 

problem. Here, the nature of the activity is clear to pupils: individual and marked 

by their teacher. 

 Situation 4 called ―warning‖ (frame ―experience of a researcher‖): The aim of 

this situation is to verify that pupils are able to correct a ―defective‖ problem 

assignment. That is why the pupils were informed of presence of both non-

calculable and calculable (classical) problems in the given set of problems. 

Below is an example of the two forms:  

Non-calculable form:   If we know that one biker covers the distance between the 

towns A and B in 6 hours, how long will it take 3 bikers to cover the same 

distance if they set off together? 

Calculable form: A decorator paints one wall of a building in 6 hours. How much 

time will 3 decorators need for painting the same wall if they decide to work 

together?  

Note: In case of all four situations, the target problems were included in a longer set 

of problems with both unusual problems (e.g. incomplete assignments ...) and 

classical problems.  

RESULTS AND ANALYSES 

Table 1 and Figure 1 present detailed results of the types of answers to PPM (in 

percentages) for each school level in mathematics in the four situations. 
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  Good pupils  Average pupils  Weak pupils 

  S1 S2 S3 S4  S1 S2 S3 S4  S1 S2 S3 S4 

 Exact 20,5 32,6 43,5 91,1  14,3 31,1 33,3 73,8  10,0 20,8 14,6 71,1 

 No 

answer 
0,0 0,0 8,7 8,9  1,8 1,6 8,3 14,8  2,5 4,2 10,4 13,3 

 Calcul-

ation 
79,5 67,4 47,8 0,0  83,9 67,2 58,3 11,5  87,5 75,0 75,0 15,6 

 N 39 46 46 45  56 61 60 61  40 48 48 45 

Table 1: Frequency (in %) of types of answers to PPM 

 ―Exact‖: The student provides the answer included in the assignment without 

doing any calculation 

 ―No answer‖: No answer provided.   

 ―Calculation‖: The pupil multiplies (6x3)  

 

 

 

 

 

 

 

 

 

Figure 1: Histogram of success in PPM for each situation and with respect to pupils‘ age 

levels 

1) It is clear that in all four situation pupils find PPM difficult. These difficulties 

on the  one hand reveal insufficient mastering of multiplicative structures, but 

they can also be interpreted as the effect of didactical contract (for this notion 
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see Brousseau, 1997; Sarrazy & Novotná, 2005) connected to the proximity of 

classical multiplicative problems; it is highly probable that the problems are 

caused by both of the factors. 

2) The results for situation 4 clearly show that pupils are able to distinguish 

between ―non-calculable‖ and ―calculable‖ problem ( ; s.; p. < .001). 

3) Frequency of success increases with the pupils‘ school level ( ² = 7,89; s.; 

p < .02); This phenomenon is more evident when the degree of formality increases 

and when the evaluative nature is strong (as in case of situation 3).  

4) Finally, a similarity of profiles of results can be observed in case of all three 

school levels in all four situations; one can conclude that the difference is a 

difference in degree but not in situational competences (because the profiles are 

similar). 

These two last results (3 and 4) seem to confirm our hypothesis but in a reverse 

direction, good pupils get better results regardless of the situation. Factor analysis of 

correspondences allows us to assess the role the two factors (level of competence and 

type of situation) play in handling of the task and to examine what the most valid 

statement is; see Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Simple factor analysis of correspondence. Types of answers to PPM, types of 

situations and pupils‘ school level 

The results of factor analysis of correspondence clearly show that production of 

answers to the same problem is, regardless of the pupils‘ school level, more strongly 

linked to the situation than to mathematical abilities: in the set of pupils ² = 88,01; 

s.; p. < .001. 
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Situation 4 is not typical (because it is a situation where pupils are warned about the 

possible presence of untypical problems). The analysis verifies that the result holds if 

we do not consider the three first situations ² = 8.19; s.; p. < .02. 

This result allows to contradict the initial hypothesis that production of an answer to 

the same task is independent on the solving context. Pupils‘ decisions are more 

determined by the type of situation than by their competences in mathematics. In 

other words, the notion ―task‖, central in cognitive psychology, fails to provide 

meaningful feedback on the pupil‘s work. The principle of transversality is not valid 

here and consequently cannot be classified as one of the constituents of the base for 

cognitive improvement enabling development of pupils‘ mathematical thinking. 

CONCLUSION 

In specific situations, a considerable proportion of pupils do not find themselves 

capable of providing an answer that does not require any numerical calculation if 

they are not warned of this possibility before they start work. Thus, although it was 

the same assignment, pupils from S1, S2, S3 and S4 did not solve the same problem. 

Our results show that the reasons are not to be looked for in the pupil‘s psychology 

but in the situation that, by the limitations that define it, imposes certain forms of 

attitudes. The ―official‖ relationship, aimed at this type of the task, is not present in 

majority of primary school pupils. However, it cannot be concluded that this 

relationship cannot be established as the results obtained in situation 4 confirm.      

This research also highlights the didactical weaknesses of those approaches that 

come out from a limited conception of the situation (the situation of the system 

―subject-task‖). This definition does not correspond to the observation reported in 

this paper: the observed variations from one situation to the other – that must not be 

regarded as simple artefacts – are not comprehensible if the situational dimension of 

pupils‘ activities is overlooked. 

As one of the authors has already demonstrated (Novotná, 2009), models guided by 

psychological modelling of the activity often result in the situation when pupils 

regard problems as mere tools of evaluation, not as an occasion to learn mathematics. 

Consequently, problems tend to be conceived as tools that enable division of pupils 

between those who succeed and who fail. 

What we propose is to proceed in the opposite direction than described in the 

previous paragraph by re-centering teacher‘s and pupils‘ activities on problems 

themselves (see Novotná, 2009, Sarrazy, 2002). We need tools that would allow the 

pupils to develop a living culture of problems and that would change pupils to 

―experts in problems‖. Only then will they regard problems as tools necessary for 

their learning and as an opportunity for mutual visits to some regions of 

mathematics. 
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This means we must develop a less didactically narrow relationship towards 

mathematical problems in pupils, guide them to regard problems as work, and, let us 

stress this again, not merely as an instrument used by the teacher for instruction and 

for evaluation. This form of problem knowledge could develop in pupils some kind 

of mathematical culture that would trigger, among other, a more homogeneous 

behaviour of classes. 
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We explore different types of behavior during the problem posing process by looking 

at the ways students value the problem data in solving and extending their own 

posed problems. Based on the outcomes of these analyses we explain the differences 

in students‘ success and failure in the problem posing approaches in relation to the 

level of understanding the solution of a problem and the novelty of the posed 

problems. We notice that the more the student advances in the abstract dimension of 

the problem and its context, the more mathematically relevant are the newly 

obtained versions. The abstraction level of the solution process determines the 

novelty of the newly posed problems and it seems to be a good predictor of the 

child‘s creative potential. 

Key-words: problem posing, problem reformulation, novelty, creativity 

INTRODUCTION 

Mathematical creativity raises special interest due to its links with mathematical 

giftedness and advanced mathematical thinking. Once considered a valid research 

subject only in relation with professional mathematicians, the focus on mathematical 

creativity has shift in the last decade towards the creativity of schoolchildren in 

classroom settings. However, there is an ongoing controversy about how to define it 

and what tasks allow identifying creative behaviors. A source of such tasks is 

problem posing (PP). In this study, we focus on the key elements students use in the 

problem posing process. More specific, we explore how students value the problem 

data in solving and extending their own posed problems. We compare students‘ 

behaviors during the process of modification of a posed problem in order to identify 

the differences among them. Based on the outcomes of these analyses, we try to 

explain the differences in students‘ success and failure in PP approaches in relation 

to their potential for mathematical creativity.   

There  are  different  terms  that  are  used  in  reference  to  problem posing,  such  as  

problem  finding,  problem  sensing,  problem  formulating,  creative  problem-

discovering, problematizing, problem creating, and problem  envisaging  (Dillon, 

1982; Jay & Perkins, 1997). In the present study, we adopt Silver‘s (1994) position, 

in accordance to which „problem posing refers to both the generation of new 

problems and the re-formulation, of given problems‖. 
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The literature on PP shows that this activity is important from various perspectives 

and emphasizes connections between PP and creativity. For example, Jensen (1973) 

considers that for being creative in mathematics students should be able to pose 

mathematical questions that extend and deepen the original problem as well as solve 

the problems in a variety of ways; therefore, exhibiting PP capacities is a condition 

of mathematical creativity. From another perspective, Silver (1997) argued that 

inquiry-oriented mathematics instruction which includes problem-solving and 

problem-posing tasks and activities can assist students to develop more creative 

approaches to mathematics. 

The question still remains: To what extent the production of problems validate or not 

students‘ creative capacities? Some studies are reserved in this respect. For example, 

Yuan & Sriraman (2010) conclude that ‖there might not be consistent correlations 

between creativity and mathematical problem-posing abilities or at least that the 

correlations between creativity and mathematical problem-posing abilities are 

complex‖. Silver‘s (1997) statement suggests that any relationships between 

creativity and problem posing might be the product of previous instructional 

patterns. Other studies, for instance Haylock (1997) and Leung (1997), who did not 

agree that there was correlation between creativity and problem posing in 

mathematics, did not take instruction into consideration. To answer the question, 

thus involving us into the existent controversy in the literature, we have analyzed the 

problems devised by students who voluntarily responded to a PP task. 

Before entering the details of our study, we have to face another, related question: 

how do we identify creative behavior in students, or, a more tackled one: how do we 

define creativity? In a large sense, creativity is defined as «the ability to make or 

otherwise bring into existence something new, whether a new solution to a problem, 

a new method or device, or a new artistic object or form» (Encyclopædia Britannica). 

The definition of creativity benefits of a large spectrum of studies, going from broad 

characterizations to particular aspects about problem identification, problem posing 

and problem solving (e.g. Csikszentmihalyi, 1998). The topic of mathematical 

creativity also received much attention from researchers who focused on defining, 

characterizing it, or establishing criteria for its assessment (see for example, 

Ervynck, 1991; Freiman & Sriraman, 2007; Silver, 1997; Sriraman, 2004). 

In this paper, we will step out of adopting a certain definition of mathematical 

creativity. We prefer to specify some aspects of creativity by exemplifying situations 

in which student‘s behavior is certainly non-creative. Through comparison, 

behaviors that are situated at distance from these examples will shape certain 

features of creativity.  
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METHODOLOGY 

Usually, in the Romanian schools, students are not asked to pose problems. They are 

trained in problem solving, and once the problem is solved, it is not even followed by 

a heuristic stage that could lead to modifications of the initial text. Consequently, 

because there is not a PP practice in the common Romanian classes, we can 

undoubtedly consider that PP is a task with creative potential. 

The participants in the study were 120 students from grades 3 to 6 who voluntarily 

answered to a call for problems, from a total of 220 students who participated to a 

mathematical summer camp. The students in the camp were selected from 89,872 

students via a two-round national competition; therefore their experience in problem 

solving was high. During the camp, the students were asked to create two problems – 

one easy and one difficult, and to deliver their proposals, including the problems 

solutions, after a few days.  

Subsequently, we have chosen and interviewed 40 respondents. The choice was 

made depending on the nature of the problems posed by the students and their 

proposed solutions. 

We structured the protocol interviews around questions such as: Can the given data 

of your problem be changed? (And, if yes, can you devise new data that fit your 

problem?) Are there redundant/ insufficient data in your proposal? Can you define a 

more general situation? Is there any interesting particular case? What happens if you 

change a smaller/larger part of the problem?, etc.  

During the interview session, the students had about 15 minutes to re-read their 

initial proposals and to think to the addressed questions. After this reflection time, 

the discussion started individually and followed children‘s ideas until the interviewer 

had a clear image of the student‘s approach. Along each interview, other questions 

have been addressed, suggested by the students‘ answers. 

DATA ANALYSIS 

In the next sections, we present some of the students‘ reactions that are relevant for 

the different contexts identified in the gathered data. From the database of 240 of 

problems posed by the children of our sample, we first selected the problems that 

were likely to be far away from common, usual and conventional school problems. 

The term conventional has been used in the literature in relation with solution spaces 

(Leikin, 2007), to express that a solution respects the recommendations made by 

curriculum and it can be found in textbooks. Here we use it in the same spirit, as an 

expression of what it is expected, usual and habitual at a given grade, in the context 

of a given school curriculum.  

In order to better explain the selection strategy, we start the presentation with a 

standard conventional problem, proposed by a 5
th

 grader, Sorin:  
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What are the values of x if: 

(a)   7+x ≤ 40- 5x5 +30 

(b)   x - 4 + 7 ≥ 30+5-20:4 

The problem posed by Sorin is a classic exercise in each textbook or workbook. In 

addition, the text is elliptic: we realized from his solving that Sorin‘s presumption 

was to solve the inequations in the set of natural numbers (He gives for (a) the 

solution x {0,1,2,3,…,37,38}, and for (b): x {27,28,29, … ∞}). For these reasons, 

this problem was framed in the category conventional, even if one can say that it is 

―too algebraic‖ for the student‘s age (12 years old). 

Other students, however, posed problems that, although they might be recognized as 

conventional, they were put in a context that made them interesting. This is the case, 

for example, for one of the problems proposed by Patricia (grade 6): 

Martha and Helen invented a game: ―maximal sums‖. Martha tells Helen:  

―- We have two numbers a and b. Knowing that [a, b]  (a,b) = 34, find the maximal 

sum!‖ 

Help Helen by solving this problem! 

Patricia‘s problem resorts to a conventional situation that evokes the formula  

 [a, b]  (a, b) = a  b. However, some features of the problem: game style, characters 

that have a conversation, the case-analysis necessary for solving, and the invitation 

addressed to the reader to get involved in the solving are mostly unusual in the 

common teaching strategy. Therefore, we take these features as testimonies in favor 

of Patricia‘s originality in posing this problem.  

While we use the term originality in relation with a person‘s behavior, we shall use 

the term novelty as a quality of the outcome of the process (for example, as quality of 

the problems resulting from the posing process). Novelty might be defined as 

surprising connections between the concepts or elements involved within a problem. 

As in the case of the term ―conventional‖, we define the habitual connections 

between concepts as the ones promoted by the school curriculum and by the 

problems found in the textbooks. Surprising connections are not habitual. From this 

perspective, the smallest common multiple is strongly connected to product of 

numbers, factors and prime numbers. The vast majority of the textbook problems 

related to this concept will involve in some way the product between the numbers. 

Taking into account the students‘ age, we generally considered as a sign of novelty 

the cases when symbols and mathematics formula were not presented in the problem 

text, although they contributed to the solving.  

Going back to Patricia‘s problem, we can say that her proposal displays novelty, 

since she asks a question about the sum of the numbers, while we would be 

expecting something about their product.  
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As far the relationship between originality and novelty of the results is concerned, 

we observe that all combinations are possible (maybe except the one no originality – 

novel result). Nevertheless, we had to distinguish between originality and training. 

To clarify this aspect, we analyze the solution given by Claudia (grade 6) to the 

problem she proposed: 

I am 13 years old and my sister is 3 years younger than me. What will be the difference of 

ages between us 5 years later?  

The problem can be considered a mathematical charade (the difference between the 

ages remains constant!). However, the solution given by Claudia shows that she was 

not aware of this fact: 

―Let‘s note by x the difference of ages between the two sisters. 

 x=13+5-(13-3+5) 

 x=18-(10+5) 

 x=18-15 

 x=3 (years)‖ 

In Claudia‘s case, the problem text moves away from the conventional style. 

However, is it the result of a creative capacity or just the consequence of intensive 

training? Silver (1994) connects problem re-formulation to problem solving: „when 

solving a nontrivial problem a solver engages in this form of problem posing by 

recreating a given problem in some ways to make more accessible for solution‖. 

From Claudia‘s solution, we can see that she does not understand an essential fact in 

the logic of a problem: a problem should not be formulated only for the sake of the 

algebraic game, but its data should have consistency. The algebraic mechanism 

mobilized by Claudia in solving the problem is not consistent; it is just a way to 

encrypt what one can deduce through a brief analysis of the text. 

This example is an argument in favor of the assumption that the degree of 

conventionality of a problem is not enough to decide whether the student acts or not 

creatively when devising a problem. At this stage of argumentation, some 

explanations are needed. Because the sample is composed of students who 

participated at a very selective contest, they are familiar with the problems 

vehiculated during previous competitions. This is why, although some students‘ 

proposals look non-standard, these problems are, in fact, similar to problems 

belonging to the sets used for training. From this point of view, the respective 

problems are considered already known, conventional. 

It was obvious in our sample that, in achieving the problem posing task, many of the 

students were influenced by „problem models‖ they knew, and they actually 

proposed re-formulations of these models. For this reason, in order to refine the 
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analysis, we looked closer at the ―distance‖ between the posed problem and the 

possible model from which the student seemed to start.  

We further analyze students‘ proposals from this perspective.   

Consider, for example, one of the Teona‘s (grade 6) problems: 

On a 20x20 square table colored in 2 alternative colors (like a chess table) one must 

position rectangular tiles that cover exactly 2 squares. The tiles can be positioned 

vertically or horizontally. Can we fill in the table with 199 tiles, if the squares from the 

ends of one of the diagonals were cut? 

In its „classical‖ shape, the problem was about a chess table (8x8), from which two 

squares from diametrically opposite corners were cut. Teona gave a more general 

case of this problem, keeping the same context, but varying the dimensions of the 

table. The starting model is quite obvious since she even refers to 2 color-squares, 

albeit this information is not needed in the text of the problem (but, it is an important 

reference point for the solving).  

Another example is the one of Stefan (grade 6): 

Andrei and Bogdan play the following game. Each of them has a candy box. They 

alternatively take a number of candies from 1 to 6 inclusively, and put them into an urn. 

The one who first puts the 100
th

 candy wins.  Andrei is starting. How many candies 

should he put into the urn for the first time, in order to secure his victory? 

Stefan‘s proposal is closely connected to a known game (called „Who tells first 

100?‖), where two children successively say numbers from 1 to 9, which they add to 

the previous sum. The winner is the one who first arrives at 100. By changing the 

data and the context (which is no more purely mathematical but related to daily life), 

Stefan manifests flexibility in thinking. Stefan, as well as Teona, has built analogies 

of already known problems.  

In general, what we noticed is that the students reacted to the problem posing task by 

resorting to analogies that reflect a near transfer (Salomon & Perkins, 1989) even if 

they had complete freedom in processing the task, including the non-compulsory 

reporting of the task.  

However, we also found some situations of what we considered to be far transfer. 

For example, Paul (grade 6) proposed the following problem: 

Andrei goes to the shop and buys 10 chocolates. For each chocolate he gets a ticket and 

with two tickets he can buy a new chocolate [and, of course, a new ticket – a.n.]. How 

many chocolates does Andrei get? 

This problem seems not to start from a previous model (fact confirmed during the 

interview). We account that this problem moves away from both conventional and 

training problems because the student combines the idea of equivalent exchange with 

successive iterations.  
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A general conclusion of the previous paragraphs is that when facing a problem 

posing task, the students proceed through analogy. They start from a known problem 

and vary one or more parameters, obtaining a re-formulation of the starting model. 

Thus they resort to a transfer, usually near transfer, most frequently based on 

analogy. However, a more restrained category of students tries to create novel 

contexts within the problem posing task.  

A MORE FOCUSED ANALYSIS 

In the second part of the study, we wanted to see how deeply the students entered the 

philosophy (and the mathematical mechanisms) of the problems they proposed. More 

precisely, because the re-formulation can be done on various tiers of understanding 

of the solving, we have analyzed the relationship between the deep understanding of 

the solution and the quality of the final problem. We thus realized that the degree of 

novelty of a problem is not enough to conclude that the student is mathematically 

creative. 

We first discuss below some answers given by Teona (see the problem above) during 

her interview. In order to have an insight into the mechanisms used by Teona when 

she moved from the ―model problem‖ to her proposal (mainly characterized by new 

dimensions of the table), we asked: 

a) What would happen for a 13x13 table?  

b) What would happen for a 20x20 table? Is it possible to cover such a table (from which 

2 squares have been cut) with 1x3 tiles? 

Although Teona found relatively easy the argument for 13x13 (the answer is no 

because of the odd number of squares), she failed to find the answer for the 1x3 tiles 

(which is based on divisibility and which, also, constitutes the deeper argument for 

the no answer for the odd number of squares). Thus, she unnecessarily restricted the 

range of numbers she could use to make up a new problem. The term unnecessarily 

expresses the fact that those restrictions originate from the student, internally, and 

not from the situation described in the problem‘s text. In the terms of Haylock 

(1997), she remained ―prisoner‖ of a content-universe fixation. 

Nevertheless, this was not the case for Stefan (see his problem above). The questions 

in his interview have been focused on the relevance of the numbers 6 and 100 for his 

problem. He not only was able to explain accurately his solution, but he was also 

able to give the following generalization: 

‖Let‘s say that each child can take away between 1 and n candies and the winner is the 

one who puts the candy number m into the urn. Then the first player wins (no matter how 

the second proceeds) if n+1 does not divide m, and the second may win (no matter how 

the first plays) in the opposite case.‖ 
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This generalization witnesses deep understanding of the way in which the variation 

of the parameters can influence the result.  

Paul‘s case (see above the text of his problem) is even more interesting. Although his 

proposed problem is novel, the interview showed us that Paul remains at a 

superficial, concrete and numerical level of understanding. For example, Paul was 

not able to propose any new situation in which after all the possible exchanges are 

made, the child in the story has no ticket at all.  

We have now a list of examples to point out to the question: How does the transfer 

made by some students in problem posing process relate to creativity? 

The deep understanding of a problem determines flexibility in devising new 

problems, because deep understanding allows exploring the relationships between 

the elements of the problem at different levels. Thus, the level of understanding of 

the solution is decisive for the variety of the new problems developed by the 

students.  

In order to clarify this aspect we resort to a complexity-abstraction scale, in which a 

gradual progression from operating with concrete objects to operating with symbols 

and symbol systems is seen as a spiral development with different tiers of 

abstraction. Constructing abstraction implies reorganizing previous knowledge by 

incorporating it within new systems, which are hierarchically structured (Singer, 

2007). 

At an immediate, superficial level of understanding, we will find students that keep 

the problem at a concrete tier, just changing, for instance, the numerical data. For 

example, on such scale, Teona remains anchored of the chess table and she is not 

able to climb up on the spiral to a more abstract level, where she would use 

divisibility without physical support. This means a minimal understanding of the 

connections among the elements from the problem text (numerical data, parameters, 

constraints – Singer & Voica, 2008).  

In order to better illustrate the way in which this scale functions, we return to the 

problem posed by Sorin. Although his problem looks abstract, he is at a low level on 

the scale because he cannot satisfactorily operate with that abstraction.  

At a higher level are situated the students that modify large parts of the problem 

model and advance in the direction of abstraction-generalization. In this last case, the 

newly posed problems are similar to the ―models‖ only at an abstract tier – that of the 

mathematical structures that describe the problem.  For example, Stefan makes a 

clear jump in abstraction, because he gives a strong algebraic generalization.  

CONCLUSIONS AND FURTHER RESEARCH 

We included in this paper examples of problems proposed by students of 11-13 years 

old. On this gamut of ages, we found that students of our sample are at different 
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levels of abstraction capabilities, although all of them were selected via complex 

mathematical tests. We noticed that the more the student advances in the abstract 

dimension of the problem and its context, the more mathematically relevant are the 

newly obtained versions. Supplementary evidence in sustaining this claim is offered 

by Paul‘s case: his problem is surprising, original, but because he does not master the 

abstracting possibilities beyond his proposal, he cannot make variations. We see this 

– namely, the role of abstraction ability in creative output – as a potential avenue for 

further research about the differences between mathematical creativity and creativity 

in general. 

In conclusion, if the student is able to construct coherent and novel variations in 

problem posing activities by changing some parameters of his/her posed problem and 

he/she understands the consequences of these changes, then he/she proves capability 

for deep transfer creative approaches.  

By assessing the distance between the conventional model of a problem – frequently 

met by the students in their solving activity – and the final problem emerged along 

the interviews, we noticed that in some cases there is a considerable leap. This 

advancement can indicate disposition toward mathematical creativity. In all the cases 

we analyzed, it is connected to student‘s capacity to effectively operate with abstract 

information. Therefore, this capacity might be a feature of mathematical creativity.  
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CREATIVITY IN THREE-DIMENSIONAL GEOMETRY: HOW 

CAN AN INTERACTIVE 3D-GEOMETRY SOFTWARE 

ENVIRONMENT ENHANCE IT? 

Paraskevi Sophocleous & Demetra Pitta-Pantazi  

Department of Education, University of Cyprus 

This paper reports the outcomes of two empirical studies undertaken to investigate 

the creative abilities of sixth grade students in three-dimensional (3D) geometry and 

to analyse the way in which an interactive 3D geometry software environment 

enhanced that abilities of two students. The analysis indicated that students‘ creative 

abilities in terms of fluency, flexibility and originality were very low in both studies. 

But the interactive 3D geometry software improved the creative abilities of students 

who worked in this environment. The interactive geometry environment offered 

opportunities to students to imagine, synthesize and elaborate. It appears that 

enhancing students‘ ability to imagine, synthesize and elaborate may be a way to 

enhance students‘ creative abilities. 

Key-words: 3D geometry, interactive environment, creativity, imagining processes, 

synthesizing skills, elaborating skills 

INTRODUCTION  

Creative performance is an essential part of doing mathematics (Pehkonen, 1997). 

This recognisable value of creativity in mathematical thinking led a number of 

researchers to define, assess and promote creativity in various mathematical concepts 

such as problem solving, problem posing and two dimensional geometry (e.g., 

Pehkonen, 1997; Leikin & Lev, 2007; Levav-Waynberg & Leikin, 2009; Pitta-

Pantazi & Christou, 2009). Technology was proposed by a number of researchers as 

a tool that promotes students‘ mathematical creative abilities (Mevarech & 

Kramarski, 1992; Dunham & Dick, 1994; Clements, 1995; Subhi, 1999). However, 

although substantial work has been done in this area, little attention has been given 

to the ways in which technology can enhance mathematical creative abilities and 

processes. In this paper, we tried to examine the impact of an interactive 3D 

geometry software environment on students‘ creative abilities and processes in 3D 

geometry.  

THEORETICAL BACKGROUND 

Creativity and mathematics 

Creative thinking is an essential aspect of the Integrated Thinking Model and 

involves ―using and going beyond the accepted and reorganised knowledge to 

generate new knowledge‖ (Iowa Department of Education, 1989, p. 7). In the same 

line, Ervynck (1991) argued that creativity is an important factor of advanced 
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mathematical thinking and refers to it as process of creating new knowledge, in other 

words ―making a step forward in new direction‖ (p. 42), based on previous 

knowledge.  

The creation of new knowledge is not simply a process, but it is a multicomponent 

process. More specifically, the new knowledge is created by imagining, synthesizing 

and elaborating processes with accepted or reorganised knowledge (Iowa 

Department of Education, 1989). In other words, creative thinking involves 

imagining processes which require original ideas through intuition, visualisation, 

prediction and fluency. Creative thinking also involves synthesizing skills which 

depend on the abilities to combine parts to form a new whole using analogies, 

summarizing main ideas in one word, hypothesizing and planning a process. 

Elaborating skills refer to the abilities to develop an idea fully by expansion, 

extension and modification (Iowa Department of Education, 1989). In the same line, 

Levav-Waynberg and Leikin (2009) describe mathematical creativity as the act of 

―integration of existing knowledge with mathematical intuition, imagination, and 

inspiration, resulting in a mathematically accepted solution‖ (p. 778).  

A number of researchers characterised and evaluated creative responses in 

mathematics mainly by fluency (the number of acceptable responses), flexibility (the 

number of different ideas or categories of responses used) and originality/novelty 

(the relative infrequency of the responses) (Torrance, 1974; Leikin & Lev, 2007). 

Creativity, mathematics and technology integrated environment 

In the literature we come across two conflicting views regarding the relationship 

between creativity and technology (Clements, 1995). One view is that technology 

enhances only uncreative, mechanistic thinking. The second view is that technology 

is a valuable tool of creative production (Clements, 1995). This is in line with the 

argument of the National Advisory Committee on Creative and Cultural Education 

(1999) on the role of technology who suggests that technology enables students to 

find new modes of creativity. The results of empirical studies showed that 

technological environments enhance students‘ creative abilities too. More 

specifically, Mevarech and Kramarski (1992) found that students who participated in 

problem solving activities using the Logo environment had higher creative scores in 

specific parts of the Torrance Test of Creative Thinking (TTCT) than students who 

participated in Guided Logo environment. Subhi‘s (1999) research extended these 

results and indicated that problem solving via the Logo environment can enhance 

creativity in all figural and verbal domains of TTCT. Furthermore, in a study by 

Dunham and Dick (1994) students who used graphing calculators appeared to be 

more flexible problem solvers.  

We could argue that most of the studies conducted until now on the impact of 

technology in students‘ creative abilities are ―results oriented‖. They concentrate 

only on whether a specific software environment may enhance or not students‘ 
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creative abilities. In this study, we try to examine the ways in which 3D geometry 

environment enhances students‘ creative abilities and processes while being 

engrossed in the task.  

THE PRESENT STUDY 

Purpose 

The purpose of this paper was to investigate students‘ creative abilities in 3D 

geometry and to examine the impact of an interactive 3D geometry environment on 

these abilities. More specifically, we address the following questions:   

(a) What were students‘ creative abilities in 3D geometry in terms of fluency, 

flexibility and originality? 

(b) Can an interactive 3D geometry environment enhance students‘ creative abilities? 

(c) How did an interactive 3D geometry environment enhance students‘creative 

abilities and processes in 3D geometry? 

Participants and procedure 

To answer the first research question, we conducted two empirical studies on two 

kinds of 3D geometrical abilities that young students are expected to perform 

according to the Cypriot mathematics curriculum: 3D rectangular arrays of cubes 

(Study 1) and nets (Study 2).  

In Study 1, a hundred and twenty one 6
th 

grade primary school students (54 males 

and 67 females), ranging from 11 to 11.5 years of age completed two 3D rectangular 

arrays of cubes tasks. The first task required students to create as many constructions 

with nine cubes as possible (9-cubes constructions). The second task called students 

to create as many constructions as possible with four cubes and surface area equal 

with 18 square units (4-cubes constructions). In Study 2, a hundred and twenty eight 

6
th

 grade primary school students (59 males and 69 females) completed two nets 

tasks. These tasks required from students to create as many cube nets and cuboid nets 

as possible. It needs to be stressed that all tasks used in both studies asked students 

to find multiple solutions, a characteristic of creative mathematical activity (Leikin & 

Lev, 2007). To evaluate students‘ mathematical creative abilities we measured: 

fluency (number of correct constructions), flexibility (number of different types of 

constructions or categories of constructions) and originality (extraordinary, new and 

unique constructions) (Torrance, 1974). Every response in the two 3D arrays of 

cubes tasks and in the two nets tasks was given a score from 0 to 4 for each one of 

these three dimensions (fluency, flexibility and originality). These scores are relative 

and based on the categories raised from all of the students‘ answers.  

To answer the second and third research questions, we used a case study approach 

because it was the most appropriate to respond to the ―how‖ research questions 

according to Yin (2003). In addition to this, this approach offers in details the 
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description of a specific situation and provides an example of ―real people in real 

situations‖ (Cohen, Manion & Morrison, 2000, p. 181). We selected two sixth grade 

students who participated in the two studies with creative tasks. These two students 

worked for two sessions, one hour each, on four 3D geometry activities, which were 

the same with those that they worked in paper. They used two applications of an 

interactive 3D software environment, DALEST; a powerful tool in the teaching of 

3D geometry which provides conditions of observation and exploration (Christou et 

al., 2007). The first application, Cubix Editor, can be used by students to ―create 3D 

structures built of unit-sized cubes‖ (Christou et al., 2007, p. 4). The second 

application, Origami Nets, can be used by students to create different nets of various 

3D geometric figures. The two students were asked to read again the task 

instructions that they solved earlier on paper and this time solve them with the use of 

the software. The students‘ work on DALEST applications was videotaped and at the 

same time the researcher was taking notes. The researcher was recording the 

students‘ comments during the time that they were working on the software, their 

strategies and constructions on each task.   

This second part of the paper was conducted in the frame of the European project 

InnoMathEd (this project is funded with the support of the Lifelong Learning 

Programme of the European Union). 

Data analysis 

To investigate students‘ creative abilities in 3D geometry, we conducted descriptive 

analysis on both studies. To examine the ways in which DALEST applications 

environment enhances students‘ creative abilities and processes in 3D geometry, we 

analysed students‘ strategies in the creativity tasks which they solved with the 

software and tried to undeline the different creative thinking skills which arose from 

students‘ solutions. The presentation and discussion of students‘ solutions to the four 

creativity tasks are organised around three phases: (a) the phase before students 

express creative abilities (before students give numerous, different and unusual 

responses), (b) the creative phase and (c) the expansion phase.   

RESULTS 

Creative abilities in 3D geometry in paper 

Table 1 presents the mean and the standard deviation of students‘ performance in the 

creative tasks in both studies in terms of fluency, flexibility and originality. The 

means of students‘ performance shown in Table 1 are all smaller or equal to one, 

since scores of students in fluency, flexibility and originality were divided by four 

(the maximum score). 
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CREATIVE TASKS FLUENCY 

(SD) 

FLEXIBILITY 

 (SD) 

ORIGINALITY 

 (SD) 

TOTAL 

 (SD) 

STUDY 1 (N=121) 

9-cubes constructions  0.49 (0.30) 0.48 (0.30) 0.45 (0.30) 0.47 (0.29) 

4-cubes constructions 0.25 (0.22) 0.23 (0.20) 0.23 (0.20) 0.24 (0.20) 

STUDY 2 (N=128) 

Cube nets 0.48 (0.29) 0.44 (0.29) 0.44 (0.27) 0.45 (0.27) 

Cuboid nets 0.22 (0.19) 0.19 (0.15) 0.19 (0.14) 0.20 (0.15) 

Table 1: The means and standard deviations of students‘ performance in creative tasks 

on study 1 and 2 in terms of fluency, flexibility and originality 

According to Table 1, the total mean performance of students in creative tasks in 

both studies was below 0.5. These tasks appear to be very difficult and complicate to 

solve on paper and students probably did not have the opportunity to solve similar 

tasks in their mathematical textbooks in the past. However, it seems that students‘ 

creative abilities are better in some tasks than others. More specifically, the total 

mean of creative performance of sixth grade students in Study 1 in the task with 9-

cubes constructions ( =0.47) was double the mean of performance in the task with 

4-cubes constructions ( =0.24). The same pattern appears in Study 2 where 

students‘ mean performance in cube nets task ( =0.45) was double the mean 

performance in cuboid nets task ( =0.20). We hypothesise that students provided a 

larger variety and more unique solutions in tasks which are given to them without 

any ―limitations‖ than in tasks with certain ―limitations‖. Specifically, in the 9-cubes 

constructions task students were free to create constructions without any limitations 

in regard to the size of the surface area. On the other hand, in the 4-cubes 

constructions task, students were asked to create constructions with a specific size of 

surface area (18 square units). Similarly in Study 2, students were more creative 

while working with the cube nets, since all the faces were equal, instead of working 

with the cuboid nets where not all faces were equal.  

Moreover, students in both studies had a higher mean score in fluency rather than in 

flexibility and originality. Therefore, it appears that students tended to be more fluent 

than innovative. They provided a number of answers but not always were these of a 

great variety or unique.  More specifically, almost all students of Study 1 made at 

least one 9-cubes construction. This was usually a nine cubes tower or a cuboid 

3X3X1. Many of them provided one to four 9-cubes constructions and only twenty 

students made more than five constructions with nine cubes. Therefore, the mean 

score in fluency was 0.49. In addition to this, many of the students of Study 1 created 

one to four different types of 9-cubes constructions and only fourteen students 

produced more than five different types of 9-cubes constructions. Thus, their total 

mean score in flexibility was 0.48. Students‘ originality score was also under 0.50 

( =0.20), since only a small number of students created ‗irregular‘constructions 
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(with small base or to have a specific shape). In the task where students asked to 

create 4-cubes constructions with surface area 18 square units, sixty students could 

not create such as construction. Almost all students who created a correct 4-cubes 

construction had as one of their constructions a tower (an alignment of four cubes). 

Only eight students created more than five 4-cubes constructions and the rest of them 

created up to four constructions (fluency). In addition to this, only three students 

build four different types of 4-cubes constructions and the rest of the students, who 

responded correctly, gave up to three different types of constructions (flexibility) 

which were not very unique (originality). Thus, students‘ fluency ( =0.25), 

flexibility ( =0.23) and originality scores ( =0.23) were very low. 

From table 1, it can be deduced that students of Study 2 were more able to construct 

many, different and unique cube nets than cuboid nets. All students that completed 

these creativity tasks in Study 2, produced at least one cube net and this was the 

cross-net, but only twenty four students produced more than five cube nets. This is 

why students fluency score was under 0.50 ( =0.48). Many of the students created 

up to four different types of cube nets, but only thirteen students constructed more 

than five different types of cube nets (flexibility), which however were not unique 

(originality). Thus, students‘ flexibility ( =0.44) and originality scores ( =0.44) 

were under 0.50. In the cuboid nets tasks, more than half of the students did not 

create any net and only five students produced more than five cuboid nets. The rest 

of the students created at least one cross cuboid net and this is why their fluency 

score was very low ( =0.22). Students who produced cuboid nets were able to 

construct at the most three different types of cuboid nets. Only five students created 

more than four different types of cuboid nets (flexibility). In addition to this, 

students‘ cuboid nets were not innovative, since many of them were either the cross-

net or T-net (originality). This is why the flexibility ( =0.19) and originality scores 

( =0.19) were very low. 

Creative abilities in 3D arrays of cubes in an interactive 3D geometry environment 

The phase before creativity. In this phase, students explored the functions of the 

software by creating the constructions they already drew on paper.  More 

specifically, for the task with the 9-cubes constructions both students created a tower 

of nine cubes and a cuboid 3X3X1. These were the most ―popular‖ constructions in 

students‘ paper solutions.  For the task with 4-cubes constructions, both students 

constructed only a tower of four cubes. These explorations allowed students to 

visualise the constructions that they had already created on paper. They could see 

their constructions from different perspectives by rotating them and check their 

solutions with the use of the ―statistics window‖. The ―statistics window‖ shows the 

number of cubes used and the surface area of the constructions.  

The creative phase. Through the visualisation processes and the checking potential 

that the software environment offers, both students provided six different types of 9-
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cubes constructions. It was notable that students built these constructions by 

expressing their ideas fluently and without any assistance from the researcher. 

Sample of students constructions are given in Figure 1. These 9-cubes constructions 

appear to be difficult to be drawn on paper. In addition to this, students selected to 

build construction with ―big base‖ (the number of cubes at the base is more than the 

number of cubes of other layers of the constructions).  

(a) (b)  (c)  

Figure 1: Students‘ 9-cubes constructions  

In the task where students were asked to create 4-cubes constructions with 18 square 

units surface area, both students started making hypothesis about which cube to 

move from the original tower (their first construction) to transform it to a different 4-

cubes construction and checked simultaneously their solutions using the ―statistics 

window‖. They repeated this procedure (see Figure 2) until they provided a number 

of constructions. Student A provided nine 4-cubes constructions and Student B made 

five 4-cubes constructions. They stopped this step-by-step procedure when they 

realised that they could not find any other solution. 

  
 

Figure 2: A step-by-step procedure for providing 4-cubes constructions  

The expansion phase. In this phase, students appeared to use their intuition and 

imagination to extend their constructions. They tried to provide unique constructions 

employing a modified version of their previous constructions. More specifically, 

Student A constructed an additional 9-cubes construction by removing some cubes 

from the base of his previous construction and adding them on other layers above 

(see Figure 3(a)). Student B constructed another 9-cubes construction by removing 

cubes from the top of his previous construction and extending it horizontally (see 

Figure 3(b)). Similarly, in the 4-cubes constructions task both students created two 

further constructions without depending on the step-by-step procedure (see Figure 

3(c) and Figure 3(d)). The step-by-step procedure, which characterised their way of 

processing during the creative phase, was replaced in the extension phase by their 

intuition and imagination.  
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9-cubes constructions 4-cubes constructions 

(a)  (b)   (c) (d)  

Figure 3: Students‘ constructions in the expansion phase 

Creative abilities in nets in an interactive 3D geometry environment 

The phase before creativity. The two students when solved the nets tasks on paper 

produced only the cross-net for cube and cuboid. This cross-net, according to 

Stylianou, Leikin and Silver (1999) is considered as the easiest since it can be 

straightforwardly ―opened up‖ whereas other nets need more transformations. 

Students claimed that they remembered it from their mathematical textbooks. In this 

phase, students created a cross cube net and a cross cuboid net in the software 

application, Origami Nets and checked whether these nets could be folded.  

The creative phase. In this phase, both students observed and explored unfolded 

cross-net of cube and cuboid and tried to plan a process. In both tasks, students kept 

four squares or rectangles attached together in a row and moved the other two 

squares around that row (see Figure 4). Similar process was used by students in the 

study by Stylianou et al. (1999) and was characterised as systematic. With the above 

procedure, both students managed to construct 6 cube nets and 4 cuboid nets. 

Cube nets 

    
 

Cuboid nets 

 
 
 

       
 

     
Figure 4: A step-by-step procedure for creating cube nets and cuboid nets 

The expansion phase. In this phase, both students used their intuition to extend their 

constructions of cube nets and cuboid nets which were created previously during the 

creative phase. Students tried different combination of squares by adding or 

substracting squares or rectangles and tried fold them up. Students employed this 
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strategy and succeeded in ―extending‖ their answers by providing three extra 

solutions for the cube nets and one extra solution for the cuboid nets. Students‘ 

―extended‖ constructions of cube nets and cuboid nets are given in the Figure 5.  

Cube nets Cuboid net 

(a) (b) (c)  
(d)  

Figure 5: Students‘ cube nets and cuboid net in the expansion phase 

It is important to note that during the creative phase as well as in the expansion 

phase, the two students justified their solutions and at the same time they worked in 

the interactive environment. Their approach was not at all mechanistic (i.e. give an 

answer by chance, check and correct it).  

Overall, the two students were able to construct many, different and unique solutions 

in the four creativity tasks in the interactive 3D geometry environment. They 

expressed a more creative performance in this interactive 3D geometry environment, 

by visualising their ideas and using their intuition and imagination (imagining skills), 

by planning a step-by-step procedure and hypothesizing (synthesizing skills) and 

finally by extending and modifying their previous solutions (elaborating skills).  

DISCUSSION 

The current paper examined sixth grade students‘ creative abilities in 3D geometry 

and the ways in which an interactive software environment enhanced their creative 

abilities and processes.  

Overall, the results of the two studies indicated that students‘creative abilities in 

terms of fluency, flexibility and originality were very low. But the interactive 3D 

geometry software environment enhanced the creative abilities of students who 

worked in that environment, by facilitating them to provide more, different and 

unique solutions. This finding confirms previous studies results about the value of 

technology as a tool for creative production (Clements, 1995; Subhi, 1999). 

Moreover, we found through the two case studies that the interactive 3D geometry 

environment forced and also enhanced students‘ imagining, synthesizing and 

elaborating thinking skills. More specifically, it seems that during the phase before 

creativity, students used mainly imagining processes, while during the creative phase 

they used a combination of imagining and synthesizing skills. During the expansion 

phase, they used a combination of imagining, synthesizing and elaborating skills. 

These processes appear to have empowered students‘ creative performance.  
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Mathematics teaching and learning should include much more than routine tasks, 

which appeal to memory and drill, being complemented by others, mathematically 

more rich and challenging, as problem solving and investigations, that push for 

reasoning, creativity and connections. So teachers must have the ability to choose, 

formulate and adjust tasks according to their intended objective. In this paper we 

present some mathematical pattern tasks to use in elementary mathematics classes 

that, intending to be challenging, can develop students higher order thinking and 

creativity.  

Key words: Challenging tasks, investigations, teacher education, elementary 

teachers 

INTRODUCTION 

The new Portuguese curriculum proposes a different perspective about the learning 

and teaching of school mathematics, with great challenges for both teachers and 

students. Despite of being well written and transparent about its aims, pathways for 

implementing these changes in real classroom settings are not fully defined and can 

be very complex and difficult to accomplish by the teachers when they haven‘t 

innovative instructional materials, and in fact only a few are available yet. More than 

ever we only can have students engaged in knowledge and critical citizenship if 

school and teachers promote creativity in their own classroom - being creative both 

in developing curriculum to get higher levels of students understandings through 

adequate tasks and in promoting creativity in students work. In this setting we are 

designing a two-year project to develop a research-based professional development 

curriculum focused on mathematics tasks, which will assist teachers in their practices 

and teachers in their initial preparation of grades k-6. Our attention is directed not 

only to mathematical themes of the curriculum but also to cross-mathematics 

processes - communication, problem solving and reasoning. Thus we intend to draw 

sequences of tasks, materials, expectations for each, and methodological notes about 

their use, and in particular selecting illustrative episodes of students‘ creative 

solutions of the tasks and teachers‘ creative ways of exploring them.  

THEORETICAL FRAMEWORK  

Teacher education and school mathematics  

Literature identifies the major obstacles to reforms as teachers‘ lack of familiarity 

with innovative instructional practices and tools, teachers‘ lack of understanding of 
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mathematics they teach and their inability to communicate mathematics with students 

in ways other than direct instruction; and teachers‘ reluctance to conform to new 

methods of teaching due to their beliefs about what students need to know (Heibert 

et al., 2007). Several researchers (Raymond, 1997; Remillard & Bryans, 2004; 

Schoenfeld, 2008) suggest that teachers‘ knowledge, beliefs and attitudes influence 

their actions in the classroom and their interactions with students. Towards a 

mathematics preparation, Ma (1999) claims that teachers must have a profound 

understanding of fundamental mathematics to provide teaching and learning 

processes. In this pathway reflection plays an important role as the reconstruction of 

the teachers‘ experience and knowledge (Hodgen, 2003). Actually, teachers with 

more explicit and organized knowledge tend to use with their students more 

conceptual connections, appropriate representations and active student discourse 

(Warren, 2006).  

Nowadays, widespread tendencies in mathematical education suggest that effective 

learning requires that students be active and reflexive when they are involved in 

significant and diversified activities. This idea follows a way of thinking where 

higher order and critical thinking skills are privileged, where lectures are substituted 

by dialogue and discovery methods. According to Boaler (2002), different teaching 

methods are not just vehicles to produce more or less knowledge, they shape the 

nature of knowledge production and define the identity of students toward 

mathematics through the practices in which they involve. As such, teachers must 

have an in-depth understanding of the mathematical thinking of their students. In 

doing so, they can support the development of their mathematical competence 

(Franke et al., 2007). Further, they need an understanding of how to mobilize this 

knowledge for their students‘ learning. We believe that students‘ mathematical 

thinking must support teachers‘ practice so teachers must construct or adapt good 

mathematical tasks to use in the classroom. They should have the capacity to be 

creative for themselves in the tasks they propose but be also mathematically 

competent to analyse their students solutions. 

Research shows that learning heavily depends on teachers. They must make a set of 

decisions during the instructional process that depend on various factors affecting 

their actions, including how to interpret the curriculum and select curricular 

materials and strategies to use in the classroom. Within this context we as teacher 

educators have to design good mathematical tasks that should be used to achieve a 

variety of goals, in particular further mathematical understanding and creative 

thinking in order to motivate students to learn. So we have the dual responsibility of 

preparing mathematics teachers, both mathematically and didactically, and discuss 

the way tasks can be designed and refined for the purposes of promoting 

mathematical understanding.  
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Mathematics tasks and the development of mathematical knowledge 

Having an explicit understanding of how and why mathematical tasks are used in 

teacher education gives us insight into what qualities a good task must have. 

However, it does not automatically provide us with the ability to design good tasks. 

The designing of good tasks requires an interface between the theoretical and the 

practical, between the intended and the actual, between the task and the student. The 

process of designing mathematical tasks is a recursive one that applies to the creation 

of entirely new tasks as well as it does to the adaptation (or refinement) of already 

existing tasks (Liljedahl et al., 2007). Serpinska (2003) regards the design, analysis 

and empirical testing of mathematical tasks, whether for the purposes of research or 

teaching, as one of the most important responsibilities of mathematics education.  

What students learn is largely influenced by the tasks given to them (Stein & Smith, 

1998). In fact, the tasks used in the classroom provide the starting point for the 

mathematical activity of students (Doyle, 1988) and the way of implementing a task 

determines its cognitive level. Its nature significantly influences the type of work that 

is done in math class; they should be diverse in nature and in context, giving rise to a 

variety of representations, using different resources and promoting discussion. 

Discussion that focuses on cognitively challenging mathematical tasks, namely those 

promoting flexible thinking, reasoning and problem solving, is a primary mechanism 

for promoting conceptual understanding of mathematics (Smith et al., 2009). Such 

discussions give students opportunities to share ideas and clarify understandings, 

develop convincing arguments, develop a language for expressing mathematical 

ideas and learn to see things from other perspectives (NCTM, 2000).  

Although discussions about higher-level tasks provide important opportunities for 

students to learn and to promote creativity in their solutions, they also present 

challenges to the teacher who must determine how to organize discussion built from 

a diverse set of responses. The teacher must decide what aspects of a task to 

highlight, how to organize the work of students, what questions to ask to challenge 

those with different levels of expertise and how to support students without taking 

over the process of thinking for them and thus eliminating the challenge (NCTM, 

2000). Giving students too much or too little support or too much direction can result 

in a decline in the cognition demands of the tasks (Stein et al., 1998). On the other 

hand, mathematical challenging tasks are not just difficult tasks or with a higher 

level of mathematization (Holton et al., 2009; Stillman et al., 2009) but much of the 

challenge may be provided by the teacher.  

Patterning tasks are a specific kind that allows a depth and variety of connections 

with all topics of mathematics leading to consider patterns as cutting across all of 

mathematics education, both to prepare students for further learning and to develop 

skills of problem solving and communication (NCTM, 2000; Orton, 1999; Polya, 

1945; Vale et al., 2009). Thus we will give special attention to this kind of tasks, 
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mainly for representations they raise (very different and usually taking the shape of 

analogies, drawings, manipulative or tables). Research shows that the use of multiple 

representations is beneficial in the teaching and learning of mathematics (Tripathi, 

2008). Our previous research analyzed the impact of an intervention centred on the 

study of patterns in the learning of mathematics concepts (Vale et al., 2009; Barbosa, 

2009). Since patterns are powerful in the mathematics classroom and can suggest 

numerical, visual and mixed approaches (Orton, 1999) and exploring growing 

patterns in elementary levels lays in the foundation for the algebraic reasoning (e.g. 

Usiskin, 1999; Rivera & Becker, 2008) we designed a didactical experience 

grounded on figural patterns as a suitable context to get expression of generalization 

and contribute to approach algebraic thinking.  

The research has also shown that pattern tasks are a fruitful focus to support teacher 

inquiry and students learning towards the implementation of the current curriculum 

orientations. Moreover, patterning tasks challenge for different representations and 

to look for creative ways to reach the solutions; for instance, if students look for 

different ways of counting a collection of elements in figures, or a general rule of a 

growing figurative pattern. We identify the five different interconnected 

representations proposed by Clement (2004) for the mathematical ideas: pictures, 

manipulative, written symbols, spoken language and relevant situations. They must 

be used in mathematics lessons in order to provide a lens for making sense of 

students‘ solutions and responses and can be a guide for teachers to plan their 

lessons. We privilege problem tasks that require manipulative because, in doing so, 

specially young students seem to create a more significant and long-lasting 

experience, becoming involved in their own learning (NCTM, 2000; Weiss, 2006; 

Vale, 2003).  

Challenge and creativity in the mathematics classrooms 

We can read in ICMI Study 16 (Barbeau & Taylor, 2005) that mathematics is 

engaging, useful, and creative. The sentence itself was a challenge for us in the way 

that it conducted us to wonder what can we do to make it accessible to our students. 

In the last decades we developed our work and research around problem solving 

which led us to believe that it can be a fruitful context to engage both students and 

teachers to perceive those mathematics characteristics. A problem solving approach 

can reflect the creative nature of mathematics and give students opportunities both to 

learn mathematics and to feel the way in which mathematicians develop 

mathematics. 

Learning mathematics is much more than facts, memorizing and mastering rules, 

techniques and computational algorithms, despite their importance and role. It entails 

incorporating experiences and conceptual understanding to solve different tasks like 

problems, investigations, games and puzzles, that promote mathematical knowledge 

in a reflective way, and developing creative processes to get solutions.  
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We only can be creative if we are attracted and challenged by the task. Challenging 

situations provide an opportunity to think mathematically. Holton et al. (2009) 

defend the importance of challenge in mathematics classroom when they state: 

―Students can become unmotivated and bored very easily in ―routine‖ classroom 

unless they are challenged and yet it is common to hold back our brightest students‖ 

(p. 208). A mathematical challenge occurs when the individual is not aware of 

procedural or algorithmic tools that are critical to solve the problem and seems to 

have no standard method of solution. So he/she is required to engage in some kind of 

reflection and analysis of the situation, possibly putting together several factors, 

therefore having to build or invent mathematical actions to get the solution. Those 

challenges must respond to the situation with flexibility and imagination (Barbeau & 

Taylor, 2005; Powell et al., 2009). 

Challenging tasks usually require creative thinking. Creativity begins with curiosity 

and involves students in exploration and experimentation drawing upon their 

imagination and originality (DFES, 2000). Creativity is typically used to refer to the 

ability to produce new ideas, approaches or actions and manifest them from thought 

into reality. The process involves original thinking. According to the Wikipedia 

creative thinking is a mental process involving creative problem solving and the 

discovery of new ideas or concepts, or new associations of the existing ideas or 

concepts, fuelled by the process of either conscious or unconscious insight. For 

Meissner (2000) there are several descriptions for creative thinking having not a 

standardized answer. But this author claims that creative thinking may develop as a 

powerful ability to interact between reflective and spontaneous internal 

representations. An examination of the research that has attempted to define 

mathematical creativity found the lack of a consensual definition. According to 

several researchers (Leikin, 2009; Polya, 1981), we also believe that creativity can be 

developed if we provide students with tasks that, allowing autonomous approaches, 

can generate new insights in underlying mathematical ideas. As we said before we 

are timely in the new national curriculum, so we designed some mathematics tasks 

fitting 1-6 grades, admitting multiple approaches and providing the development of 

creative processes of solution. We hope that we can motivate students to involve in 

class and challenge them for mathematics activity. 

EXAMPLES OF CHALLENGING MATHEMATICAL TASKS FOR THE 

CLASSROOM 

In a constructivist perspective the exploratory tasks in several contexts increase the 

development of students‘ knowledge and mathematical skills. In this setting, while 

mediator between students and mathematical knowledge, the teacher must offer 

students diversified tasks that allow them to access mathematical content as well as 

to highlight and develop mathematical processes such as to experiment, conjecture, 

investigate, communicate and create, contributing to a more effective learning of 



Working Group 7 

 CERME 7 (2011)  1159 

 

mathematics. On the other hand, good tasks must call for mobilization, integration 

and application of different knowledge. According to NCTM (2000) a task is a good 

one when it deals or serves as an introduction to fundamental mathematical ideas that 

constitutes an intellectual challenge to students and allows different approaches.  

We present four examples of tasks included in the research plan, of different nature 

and designed to different grades. Some of them intend to develop number sense 

while others stress algebraic thinking or geometric and spatial reasoning. However, 

they have a common objective: to develop new approaches and creative ideas. That 

is, the tasks must provide multiple solutions in order to raise the student flow of 

mathematical ideas, flexibility of thought and originality in the responses. According 

to students‘ age, the teacher may encourage the use of manipulative materials so that 

children can have an useful involvement in the task. 

We briefly discuss possible ways of exploration of the tasks.  

Task 1. Visual Counting - The shells 

 

The sea girl organized this way the shells she caught yesterday.  

Can you find a quick process to count them?  

 

 

Fig 1: Shells 

We claim that a previous work with counting tasks in figurative settings can be a 

particularly good way to develop skills of seeing (identification, decomposition, 

rearrangement) to facilitate similar processes in growing pattern tasks. In fact, in the 

exploration of growing patterns in figurative sequences it is crucial for students to 

see the relations among successive terms in order to translate visual patterns into 

numerical expressions conducting to the generalization process - the heart of 

algebraic thinking.  

Numerical expressions translating students‘ thinking in seeing the collection of 

shells arranged in this manner must be explained. For instance 

40 = 4x4 + 4x6 = 3x(4x4) – 2x(2x2) = 2x(4x4 + 2) +4 = … 

―Four rows of four shells and four rows of six shells‖ or ―Three 4x4 squares minus 

two overlapping 2x2 squares‖ or ―A 4x4 square plus two above, its reflected image 

and 4 shells more in the reflection axis‖. 

The horizontal representation stresses the equivalence of the numerical expressions 

and allows a new meaning of the equal sign. Our expectations of students‘ creativity 

in this task lay in the different original ways of seeing/counting the number of shells. 
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Task 2. Figurative growing patterns - Trucks 

Observe the pattern. 

 

 

 

 

          Fig 2: Trucks growing pattern 

1. Sketch the next figure. 

2. What is the area of each figure if the little square is the unit? Write a numerical 

expression translating a way to calculate that number. 

3. Describe with a written explanation how you could construct the figure 25. 

4. Describe with words how you could determine the area of any figure of the sequence. 

5. Explain, to a fellow that doesn‘t believe in your rule, why does it work. 

We intend that students look for a pattern, describe it, and produce arguments to 

validate it using different representations. The previous work with visual counting 

may help to see a visual arrangement that changes in a predictable form and write 

numerical expressions translating the way of seeing, in order to make it possible the 

generalization to distant terms. 

Students must be encouraged to observe and see the figures in different ways and to 

register those several modes in a table looking for a functional relation (Table 1) 

using more or less formal representation. Creativity can be revealed in the search of 

different ways of seeing the arrange, in order to choose the best way to get an 

expression of far generalization. 

 

 

 

 

 

 

         Table1: Registration of modes of seeing 

Task 3. The Euclid‘s Game 
Number of players:2  

Material: - a hundred chart 

   - overhead projector pens or translucent marks 

Fig. 1 

 

Fig. 2 Fig. 3 
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Development: 

Toss who is player 1. The 1
st
 player chooses a 1-100 number and marks this number on 

the chart. The 2nd player chooses and marks any other number. 

In turn, the player subtracts any two marked numbers in order to find a difference that 

has not yet been selected. The players play alternately until they cannot choose a chart 

number. The player who can mark the last number wins. 

Play the game several times. Try to discover a winning strategy. 

Throughout games students can develop a greater motivation for mathematics work. 

The links between the game and mathematics are sometimes surprising and 

unexpected: the fact that a game has a simple mathematical explanation and its 

knowledge may entail the possibility of gain provides a good way to enjoy 

mathematics, its beauty and power. The Euclid‘s game is a numerical one in which, 

with a few persistence, students will be able to discover patterns in the numerical 

structure and relations in a flexible manner in order to reach a winning strategy. The 

fluency of basic knowledge to relate the numeric data collected must give insight to 

the underlying mathematical concepts in the task and associate them to produce the 

bright idea of the solution.  

The hundred chart may be replaced by a table of 6x6, for example, to facilitate and 

not becoming boring to perform several calculations.  

The general conclusion about the game is complex and may be presented as follows: 

Let n and s the numbers chosen, respectively, by the 1
st
 and the 2

nd
 player. Let d = 

gcd (n, s); Let m = Max {n, s}. Then the game ends after m/d steps. 

It is the evenness of m/d that determines the winner. So if the 2
nd

 player knows how 

to play, the 1
st
 hasn‘t any possibility of winning: if the 1

st
 chooses an even number, it 

is enough for the 2
nd

 to choose its half to take immediate winning; if the 1
st
 chooses 

an odd number, it is enough for the 2
nd

 to choose its double, to take immediate 

winning, or then the successive even number to warrant victory after a number of 

steps equal to the chosen number.  
However, students can take partial conclusions based on particularization with 

various numbers resulting from several games. For this purpose it is useful to ask 

questions such as: 

Compare the patterns of numbers marked in each game. Can you explain why some 

games have so few numbers marked and others so many? 

If the first player chooses the number26, what number should I choose to be sure of 

winning? 

If I start the game by choosing an odd number can I win? How? 

Task 4. The Cube Problem 

From a square sheet of paper, draw the net of a cube with the largest possible 

volume. Then build the cube by folding. 
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This problem involves geometric and spatial reasoning. 

Many nets can be drawn in a square sheet of paper but there is only one that fits the 

condition. Fig 3 shows some different attempts students may do to get the solution. 

This one – the last drawing in Fig 3 – may be achieved either by drawing or by 

folding. It is necessary insight and divergent thinking to admit one face of the cube 

divided into four triangles. This requests a novel idea. However, the evolution in the 

consideration of the different nets as suggested by Fig 3, as well as the intuitive 

notion of balance and symmetry, may provide this good idea.  

 

 

 

 

 

        Fig 3: Different attempts to optimize 

 

Another promising exploration for elder students is the relation between maximum 

volume/area. The construction of those successive figures with dynamic geometry 

software may be a good tool to discover the solution and to verify that it is indeed the 

optimal one. 

TO CONLUDE 

Mathematics tasks are not the only feature in promoting mathematical challenge. In 

this endeavour, the teacher has a critical role in the process of fostering mathematical 

learning of students. To provide students with challenging situations is in itself a 

challenge for teachers. They have to choose adequate tasks and help students to carry 

on with appropriate assistance. This implies a wide and deep knowledge of the 

mathematics they teach and also a didactical one, in order to interpret students 

discourse and support students who are working on in new situations. 

Creativity is new for us as a research field. We expect some results about the impact 

of teaching and learning elementary mathematics students with the support of these 

tasks and about if they are real opportunities to obtain creative solutions that 

contribute to the learning process. To check these goals we privilege classroom 

communication including questioning, oral presentations, written work and 

discussions, as well as focusing on the analysis and comprehension by the teachers 

of their students‘ mathematical thinking.  
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INTRODUCTION 

Affect has been a focus of increased interest in mathematics education for the last 

fifteen years. At Cerme 7, Working Group 8 was as stimulating and interesting as it 

had been in previous years with once again an atmosphere of collaboration between 

the 20 participants of the group. 13 research papers were submitted to the group and 

12 were accepted for presentation after the review process. In the proceedings, 11 

papers and two poster presentations were included, each of which investigated the 

multifaceted world of Affect.  

The coordinators scheduled the seven conference sessions so that each participants 

paper could be presented to and discussed within the group. Fruitful discussion was 

encouraged by presenters also taking the role of responder to another paper, allowing 

the interactions between the papers to be highlighted. The program was scheduled in 

such a way as to enable the discussion to go beyond the papers, to a reflection on the 

structure and dynamics of the affective domain in an attempt to develop and expand 

the field in new directions. To this end, the first five sessions, based on the presented 

papers, were organized around five thematic topics: 1) Attitudes, 2) Beliefs, 3) 

Affect in mathematics thinking and learning, 4) Beliefs and Attitudes-Change, and 5) 

Other issues on Affect. In the two last sessions the work presented in the group was 

further discussed and possible new directions in the field were highlighted. 

Specifically the group discussed how to get a deeper insight into the affective 

constructs based on the questions: (a) How are the different constructs related to 

each other? What are the similarities and differences? (b) The different role of 

qualitative and quantitative approaches in the development of the Affective Domain.  

(c) The affective domain and other areas in the sphere of mathematics education. (d) 

Ideas for further studies. 

The structure of the affective domain 

Research into affect has always been accompanied by a discussion of the various 

definitions of the affective concepts (e.g. Di Martino & Zan, 2010). Therefore the 

goals of this working group on affect remained the clarification of the definitions 

used, the introduction of new concepts in order to broaden the field and the 

elucidation of the relation between the affective constructs. A starting point for this 

discussion was McLeod‘s (1992) first categorization of the affective constructs. 

McLeod (1992) introduced the categories of beliefs, attitudes and emotions, each 
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distinguished by certain characteristics. Beliefs were seen as the one end of a 

continuum, more cognitive, more stable and less intense and emotions to be at the 

other end, affective, less stable and more intense. The context of the discussion of the 

group took a socio-constructivist perspective on learning continuing from the 

previous two working groups. This theoretical framework is characterized by its 

focus on the situatedness of learning and problem solving and by the close 

interaction between (meta)cognitive, motivational and affective factors in students‘ 

learning (Op‘t Eynde et al., 2006). 

The concept of attitudes was presented to the group (Pepin; Pezzia & Di Martino). 

The authors moved beyond the simple definition that is attitude as the positive or 

negative degree of affect in relation to mathematics, to the model proposed by Di 

Martino and Zan (2010). The two studies investigated students‘ and teachers‘ 

attitudes shifting from the normative approach, measuring students‘ and teachers‘ 

attitudes towards mathematics, to an interpretive approach investigating causes that 

may shape students‘ and teachers‘ attitudes towards mathematics.  An issue raised in 

the discussion was the nominalization in comparative studies (Pepin), the same 

statement may be used with different meaning in different context. The poster 

presentation by Vanköš was also related to students‘ attitudes towards mathematics. 

Other concepts discussed in the group referred to self related beliefs, particularly 

self-concept and self-efficacy beliefs (Kleanthous; Panaoura et al.; Tuohilampi). In 

an attempt to clarify the concepts used and establish the relation between them, the 

discussion concluded that both self-concept and self-efficacy beliefs include  

individuals‘ evaluation of their ability in a domain, their confidence and how they 

see themselves in comparison to others. Kleanthous investigated students‘ self-

efficacy beliefs and their dispositions to study mathematically demanding courses. 

Panaoura investigated differences in primary and secondary students‘ self-concept, 

self-efficacy beliefs and actual performance. Tuohilampi drawing from self beliefs 

and motivational theories (achievement goals) investigated the discrepancy between 

real and ideal self, a new direction in the field of affect. In the same realm and in the 

context of achievement motivation (Elliot & Church, 1997) the fear of failure was 

introduced as a self-evaluative framework (Pantziara & Philippou). In this study the 

authors investigated the causes of students‘ fear of failure by considering students‘ 

characteristics, family background and teachers‘ practices, once again revealing the 

complex world of affect. 

New concepts were introduced and discussed in the group such as Personal Meaning. 

Vollstedt investigated the impact of context and culture on the different kinds of 

students‘ personal meaning in two different countries. Another new issue in the 

group was Resilience. Lee and Johnston-Wilder investigated ways to develop a 

mathematically resilient community of learners, who were confident enough to 

recruit other pupils to their way of thinking about effective ways to learn 

mathematics and to communicate those ways to teachers. Identity (Heyd-
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Metzuyanim & Anna Sfard) was also introduced to the group as a collection of 

narratives that are told by or about individuals, narratives that are reifying, 

endorsable, and significant. 

In an attempt to interpret the nature of affect in the social context of mathematics 

classrooms, new theoretical frameworks were presented. Lewis introduced the 

Reversal Theory. The foundation of this theory is the structure of the motivational 

landscape, and its eight constituent motivational states. Students experience the 

world as they move or reverse, between opposite states. Commognitive theory 

(Heyd-Metzuyanim & Anna Sfard) was also presented. This framework recognizes 

the centrality of communication in all our activities, including uniquely human forms 

of learning and thus mathematical learning. In the same vein, Edwards‘ poster 

presentation referred to the impact of friendship groups on mathematical reasoning. 

Intentionally changing affect was an important issue in this group‘s discussion as in 

the previous two affect groups. The studies by Pezzia and Di Martino and by 

Stylianides and Stylianides described intervention programs specifically designed to 

change teachers‘ and student teachers‘ affect.   

Research methods for investigating affect 

Various research methods were presented designed to investigate the multifaceted 

and complex affective domain. Some of the studies introduced qualitative 

approaches, such as observations and interviews (e.g.Heyd-Metzuyanim & Anna 

Sfard; Vollstedt) and others used quantitative approaches (questionnaires) 

(e.g.Tuohilampi). The trend in the group was for their research methods to combine 

qualitative and advanced quantitative approaches (e.g SEM, Chic, Rasch) 

(Kleanthous & Williams; Lee & Johnston-Wilder; Panaoura et al.; Pantziara & 

Philippou) and also to use both teachers‘ and students‘ narratives (Peppin; Pezzia & 

Di Martino; Stylianides and Styliades). 

Discussion and further considerations 

The discussion of the results focused on the development and clarification of the 

concepts and instruments in the domain. The contribution of a combination of 

qualitative and quantitative methods to this development was stressed. Clarity of the 

concepts within the domain was further enhanced by an increasing unity in the 

language used. The new concepts introduced may develop and refine existing 

concepts but the definitions of these new concepts must combine with or grow out of 

the existing ones. A second focus was the relation between different constructs in the 

affective domain and their connection to other areas in the realm of mathematics 

education such as problem solving and students‘ achievement in geometry, algebra 

etc. Several different relations have been revealed, such as the relation between 

students‘ negative/positive affect and achievement. The complex nature of these 

relations was also stressed, revealing that students characterized by the same 

affective constructs may behave differently in a mathematical learning context. 
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A third focus was the change in teachers‘ and students‘ affective constructs, 

considering how change can happen and how to instigate lasting change. Through 

the discussion different approaches to the stability of affective constructs emerged. 

The difference between state and trait was discussed and also the issue of the 

resistance to change in teachers‘ and students‘ affect. In addition, the distinct 

characteristics of intervention programs that changed affect in teachers were 

revealed. A last issue was whether the change in teachers‘ affect is also mirrored in 

their practices. 

A last focus was the need to deepen our knowledge of the structure and dynamics in 

the affective domain. To this aim we followed Hannula‘s new theoretical framework 

on affect (Hannula, 2011). The framework is based on the integration of emotions 

with cognition and motivation, providing a dynamic approach to affect by using 

different angles. The broad distinction between affective states and traits is 

approached through an angle of motivation, cognition and emotion and at the same 

time through a psychiological, psychological and social angle emphasising the 

dynamics of the different constructs involved. 

The concluding remarks of the group included the necessity of continuing the 

research in the affect field using multi-method approaches; qualitative analysis of 

structures could describe patterns in students‘ engagement in the learning process 

while quantitative analysis of structures could focus on affective traits. Collaborative 

research between the members of the group was discussed. The work will go on. 

NOTES 

1. We would like to acknowledge the contribution of Clare S. Lee in proof-reading the final version of the introduction.  

2. Special thanks to the members of our group, Clare S. Lee, Gareth Lewis, Julie-Ann Edwards, Karen Skilling and Sue 

Johnston-Wilder for proof-reading the papers of the group. 
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The purpose of the present study was to investigate students‘ self-beliefs about using 

representations as a useful tool for understanding geometrical concepts and for 

solving geometrical tasks. The interest was concentrated on finding the differences 

between primary and secondary education in respect of students‘ self-concept 

beliefs, their self-efficacy beliefs about using representations and their real 

performance in geometry. Results indicated that, as was expected, secondary school 

students‘ performance is higher in all the dimensions of geometrical figure 

understanding. There is a coherent model of self-concept dimensions about the use 

of representations for understanding the geometrical concepts, which becomes more 

stable across the educational levels.  

Keywords: representations, self-beliefs, self-efficacy, self-concept, geometry 

INTRODUCTION 

Students experience a wide range of representations from their early childhood years 

onward. Mathematics textbooks use of variety of representations in order to enable 

students to better understand mathematical concepts. In geometry, the understanding 

of mathematics requires that there is not any confusion between mathematical objects 

and the respective representation (Duval, 1999). In education it is important to 

investigate how pupils use and react to each teaching tool or procedure and what 

beliefs or conceptions develop. The present work correlates the students‘ beliefs 

about the use of representations in the learning of geometry with their respective 

performance on using them. Researchers embrace the belief that the development of 

geometrical concepts is multifaceted (Walcott, Mohr, & Kastberg, 2009) and agree 

that concept formation in geometry is potentially different from concept formation in 

other mathematics disciplines. We consider the present study to be a contribution to 

the extension of theoretical approaches of the cognitive and affective processes that 

underlie understanding in the learning of geometry.  

Representations and the teaching of geometry in mathematics education 

The importance of studying and teaching geometry is well established in the 

literature and is stressed in contemporary mathematics curricula not only as an 

autonomous mathematics field, but also as a means to develop other mathematical 

concepts. Through the study of geometry, students are expected to learn about 

geometric shapes and structures and how to analyse their characteristics and 

relationships (NCTM, 2000), building understanding from informal to more formal 

thinking and passing from recognizing different geometric shapes to geometry 
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reasoning and geometry problem solving. Geometry is typically regarded as a 

difficult branch of mathematics for many students. As a mathematical domain, 

geometry is to a large extent concerned with specific mental entities, the geometrical 

figures. At a mathematical level, geometrical figures are mental entities, which exist 

only based on their definitions and their properties. But, a distance is identified 

between the geometrical-mathematical meaning of these specific concepts and 

students‘ personal meanings of geometrical figures, since, in students‘ minds, they 

are often related to real objects or are dealt with as pictures. 

During the past twenty years, several mathematics educators have investigated 

students‘ geometrical reasoning based on different theoretical frames. For example, 

van Hiele (1986) developed a model referring to levels of geometric thinking, 

Fischbein (1993) introduced the theory of figural concepts and Duval (1999) 

reported the cognitive analysis of geometrical thinking. Duval distinguishes four 

apprehensions for a geometrical figure: perceptual, sequential, discursive and 

operative. Each has its specific laws of organization and processing of the visual 

stimulus array. To function as a geometrical figure, a drawing must evoke perceptual 

apprehension and at least one of the other three dimensions. Each has its specific 

laws of organization and processing of the visual stimulus array. Particularly, 

perceptual apprehension refers to the recognition of a shape on a plane or in space. It 

indicates the ability to recognize, in the perceived figure, several sub-figures. 

Sequential apprehension is required whenever one must construct a figure or 

describe its construction. Discursive apprehension is related to the fact that 

mathematical properties represented in a drawing cannot be determined through 

perceptual apprehensions.  

In geometry, three registers are used: the register of natural language, the register of 

symbolic language and the figurative register. In fact, a figure constitutes the 

external and iconical representation of a concept or a situation in geometry. It 

belongs to a specific semiotic system, which is linked to the perceptual visual 

system, following internal organization laws. As a representation, it becomes more 

economically perceptible compared to the corresponding verbal one because, in a 

figure, all the relations of an object with other objects are depicted. However, the 

simultaneous mobilization of multiple relationships makes the distinction between 

what is given and what is required difficult. At the same time, the visual 

reinforcement of intuition can be so strong that it may narrow the concept image 

(Mesquita, 1998). Geometrical figures are simultaneously concepts and spatial 

representations. According to Mesquita (1998), an external representation has the 

nature of an object when the geometrical relationships utilized in the construction of 

the representation can be reutilised. In this case, it is possible to infer geometrical 

relationships from the construction of the figure; these geometrical relationships, 

such as parallelism, right angles etc. may be used in geometrical reasoning and proof. 

In the case when the representation has the nature of an object, the visual perception 

of the figure is consistent with the verbal statements of the problem. On the contrary, 
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when the external representation has the nature of an illustration, it is then 

impossible to directly extract a geometrical relationship from the construction of the 

figure and in this case the figure seems to ‗‗mislead‘‘.  

Self-concept and self-efficacy beliefs in mathematics 

Cognitive development of any concept is related with affective development. 

Affective domain in mathematics education is an area to which considerable research 

attention continues to be directed (Leder & Grootenboer, 2005). The relationship 

between affective factors and learning in mathematics is not simple, linear or 

unidirectional; rather it is complex and convoluted (Grootenboer & Hemmings, 

2007). The relationship between cognition and affect has attracted increased interest 

on the part of mathematics educators, particularly in the search for causal 

relationships between affect and achievement in mathematics (Panaoura, Gagatsis, 

Deliyianni & Elia, 2009). Marsh and Craven (1997) maintain ―enhancing a child‘s 

academic self-concept is not only a desirable goal but is likely to result in improved 

academic achievement as well‖ (p. 155). The anticipated improvement of student 

performance is based on the existence of a reciprocal relationship between self-

concept and academic achievement (Marsh, Trautwein, Ludtke, Koller & Baumert, 

2005). 

The literature suggests that there is an influential connection between affective 

mathematical views and performance in mathematics (Ai, 2002; Schreiber, 2002). 

One‘s behavior and choices, when confronted with a task, are determined by one‘s 

beliefs and personal theories, rather than one‘s knowledge of the specifics of the 

task. Beliefs is a multifaceted construct, which can be described as one‘s subjective 

―understandings, premises, or propositions about the world‖ (Philipp, 2007, p. 259). 

In the present study, attention is concentrated on the self–beliefs and their relation to 

the performance.  

According to Pajares (2008) ―self-efficacy should not be confused with self-concept, 

which, as a broader evaluation of one‘s self, is often accompanied by the judgments 

of worth or esteem that typically chaperone such self-views‖ (p. 114).  Self-efficacy 

beliefs refer to matters related to one‘s capability and revolve around questions of 

―can‖, whereas self-concept beliefs refer to matters related to being and reflect 

questions of ―feel‖. Academic self-concept is referred to as self-perceptions of 

ability, which affects students‘ effort, persistence, anxiety (Pajares, 1996), and 

indirectly their performance. Self-concept includes beliefs of self-worth associated 

with one‘s perceived competence (Pajares & Miller, 1994). Besides an individual 

impression, students could develop their academic self-concept externally through a 

comparison with their classmates (Wang, 2007). People who believe that they are 

capable of performing academic tasks use more cognitive and metacognitive 

strategies, and, regardless of previous achievement or ability, they work harder, 

persist longer, and persevere in the face of adversity.  People with a strong sense of 

efficacy approach difficult tasks as challenges to be mastered rather than as threats to 
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be avoided. They have greater intrinsic interest in activities and they set themselves 

challenging goals and maintain a strong commitment to them (Pajares, 2008).  

Based on the above, the purpose of the present study was to investigate students‘ 

self-beliefs about the use of representations for solving geometrical problems in 

relation to their self-efficacy beliefs, their self-concept beliefs and their real 

mathematical performance in primary and secondary education. The main purpose of 

the study was twofold: (1) to identify the statistically significant differences between 

primary and secondary school students concerning their understanding in the various 

geometrical figure dimensions and (2) to propose and validate a framework which 

describes the components of students‘ self-beliefs to solve tasks involving different 

geometrical figures and mainly the interrelations between those different types of 

beliefs. 

METHOD 

The study was conducted among 1086 students, aged 10 to 14, of primary (Grade 5 

and 6) and secondary (Grade 7 and 8) schools in Cyprus (250 in Grade 5, 278 in 

Grade 6, 230 in Grade 7, 328 in Grade 8). A test with 12 tasks (Deliyianni et al., 

2009) was constructed and a questionnaire with 23 items was developed. The test 

consisted of three groups of tasks: (1) the first group of tasks includes two tasks 

concerning students‘ geometrical figure perceptual ability and their recognition 

ability, (2) the second group of tasks includes area and perimeter measurement tasks, 

which examine students‘ operative apprehension of a geometrical figure. Three other 

tasks require a reconfiguration of a given figure, while a task demands  to synthesize 

two given figures in a new one, (3) the third group of tasks includes verbal problems 

that correspond to discursive figure apprehension.  

A questionnaire (Table 2) was developed for measuring students‘ beliefs about the 

use of different types of representations for understanding geometrical concepts such 

as the area and the perimeter. Items were created with responses using a 5-point 

Likert scale ranging from 1=strongly disagree, to 5=strongly agree. The reliability of 

the whole questionnaire was high (Cronbach‘s alpha was 0.807 and 0.856 for 

primary and secondary education respectively).  

RESULTS 

In respect of the first objective of the study, we present the results of the multivariate 

analysis of variance in order to identify the significant differences between primary 

and secondary school students concerning their performance in the different aspects 

of geometrical figure understanding. Then the collected data of the questionnaire 

about self-concept beliefs were first subjected to exploratory factor analysis in order 

to examine whether the factors that guided the construction of the questionnaire were 

presented in participants‘ responses. We present the statistically significant 

differences for self-beliefs factors in respect of students‘ grades. Finally we present 

the results of the confirmatory factor analysis, indicating the structure of the specific 
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affective factors, their main interrelations and the differences between primary and 

secondary education.  

In order to determine whether there are significant differences between primary and 

secondary school students concerning their performance in the different aspects of 

geometrical figure understanding, a multivariate analysis of variance (MANOVA) is 

performed. Overall, the effects of students‘ educational level (primary or secondary) 

are significant (F6,1079=34.43, p<0.001). The presentation of the results in Table 1 is 

indicative.  

  X     SD X     SD 

Geometrical figure perceptual 

ability 

F1,1079=79.51, p<0.001 0.62 0.38 0.45 0.41 

Students‘ recognition ability F1,1079=38.81, p<0.001 0.62 0.26 0.72 0.27 

Operative apprehension of a 

geometrical figure 

F1,1079=74.34, p<0.001 0.49 0.35 0.32 0.31 

Place value modification tasks F1,1079=36.03, p<0.001 0.45 0.42 0.31 0.38 

Verbal problems (7,8) 

Verbal problems (9,10,11) 

F1,1079=105.38, p<0.001 

F1,1079=0.03, p=0.85 

0.63 0.40 

0.25 0.31 

0.38 0.4 

0.24 0.21 

Table 1: Means and standard deviations of students‘ (primary and secondary 

education) performance on specific types of geometrical tasks 

The principal component analysis of students‘ responses to the items of the 

questionnaire revealed five factors (KMO=0.887, p<0.001) with eigenvalues greater 

than 1. Varimax rotation was used and as a consequence uncorrelated factors were 

revealed (Costello & Osborne, 2005). The eigenvalues, percentages of variances 

explained by factors and the factor loadings of the items are presented in Table 2.  

The first factor corresponded to students‘ beliefs about the use of representations and 

materials for the better understanding of mathematical concepts (F1). The items at 

the second factor expressed students‘ self-efficacy beliefs in using representations 

for the understanding of geometrical concepts (F2). The third factor represented their 

self-efficacy beliefs about solving problems of area (F3), while the fourth factor 

represented their self-efficacy beliefs about solving problems of perimeter (F4). The 

fifth factor corresponded to students‘ self-concept beliefs about the use of diagrams, 

figures and representations in understanding mathematical concepts and their beliefs 

in using them as useful tools for explaining their geometrical thinking. 

Analysis of variance (ANOVA) indicated that there were statistically significant 

differences in respect of grades for the factors F1, F2, F3 and F5. Those results 

depended on post-hoc analyses by using Scheffe. Specifically in the case of F1, there 

were differences at the means (F3,1060=4.943, p<0.001)  of the Grade 5 with the Grade 

7  and the Grade 8 ( X 5=3.62,  X 6=3.73, X 7=3.92, X 8=3.88). In the case of the 

students‘ self-efficacy beliefs about using representations (F2), the statistically 

significant differences (F3,999=7.349, p<0.001) were found between the Grade 5 with 

Grades 7 and 8  ( X 5=3.66,  X 6=3.84, X 7=3.95, X 8=3.92). The results were 
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different in the case of students‘ self-efficacy beliefs about solving geometrical 

problems of area (F3,1057=4.237, p<0.005). The differences were between Grade 5 and 

Grade 8 with Grade 6 and Grade 7 ( X 5=3.84, X 6=3.76, X 7=3.72, X 8=3.59). In the 

case of self-concept beliefs about using representations in order to solve or explain 

problems (F3,1034=4.377, p<0.005), the differences were between Grade 7 with  all the 

other Grades ( X 5=3.60,  X 6=3.71, X 7=3.83, X 8=3.64).  

Item F1 F2 F3 F4 F5 

The diagrams (e.g. circle area, rectangle area, number line) are useful 

tools for the problem solving in mathematics 

The use of materials (e.g. fraction circles, dienes cubes) is important for 

the primary school students. 

The construction of a figure or a diagram is useful for the problem solving 

in mathematics. 

.53 

.62  

.67 

    

I prefer solving problems which present the data at a schema.  

I can easily solve area problems.  

I can easily explain the solution of a perimeter problem verbally.  

I can easily solve problems which present the data at a schema.  

I can easily solve problems which present the data verbally.  

If someone asks me to explain the solution of an area problem, I prefer to 

do it verbally.  

I can easily indicate the data of a perimeter problem at a geometrical 

schema.  

I prefer solving problems perimeter problems which present the data only 

verbally.  

 

.70 

.78 

.79 

.70 

.56 

 

.69 

 

.59 

 

.73 

   

I can easily solve the problems of area which need the construction of a 

schema.  

I am very good in solving area problems.  

The schemata help me in solving area problems.  

 

 .68 

.69 

.64 

  

I can easily solve the problems of perimeter.  

I can easily explain to my classmate the solution of a problem of a 

perimeter by using a schema.  

I can easily find the perimeter of a figure.  

 

  .55 

.65 

 

.59 

 

I can easily use formulas for solving problems of perimeter (e.g the 

perimeter of a rectangle is 2X (length + width)). 

The good student in mathematics can present his/her solution and explain 

it by using many different ways.  

For the correct solution of a mathematical problem, the use of an equation 

is necessary.  

I find it easy to explain at my classmate how I have solved an area 

problem by using a formula (e.g. rectangle area=widthXlength). 

When I solve an area problem I construct a schema.  

If someone asks me to explain the solution of a perimeter problem I prefer 

to do it by using a schema.  

    .65 

.48 

.59 

.67 

.47 

.51 

Eigenvalues  7.87 5.28 2.92 1.85 1.45 

Percentage of variance explained  30.1 16.7 8.77 6.01 4.20 

Cumulative percentage of explained variance  30.1 46.8 55.5 61.5 65.7 

Table 2: Factor loadings of the factors against the items associated with participants‘ 

beliefs 
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In order to confirm the structure of students‘ self-concept beliefs in respect of the use 

of geometrical representations, a CFA (Confirmatory Factor Analysis) model was 

constructed by using the Bentler‘s (1995) EQS programme. The tenability of a model 

can be determined by using the following measures of goodness of fit: x
2 

/df <1.95, 

CFI>0.9 and RMSEA<0.06.  Firstly, a first-order model was examined within the 

structural equation modeling framework. This model involved only one first-order 

factor, which associated all the items involved. This model did not have a good fit to 

the data and therefore, could not be considered appropriate for explaining students‘ 

behavior.  

Figure 1 presents the results of the model that fits the data reasonably well for both 

the levels of education (primary education: x
2 

/df= 1.14, df= 208, CFI=0.972 and 

RMSEA=0.020, secondary education: x
2 

/df= 1.45, df=209 CFI=0.949 and 

RMSEA=0.03). The second-order model, which is considered appropriate for 

interpreting students‘ self-representation beliefs, involves the 5 first-order factors, 

which were the results of the above exploratory factor analysis and one second-order 

factor. The first order factors regressed on a second order factor explaining the 

students‘ self-beliefs about using geometrical representations for solving geometrical 

tasks and understanding geometrical concepts, indicating that those factors are not 

independent.   

The loadings of the whole model are higher in the case of secondary education 

almost in all cases. It is an integrated model of self-beliefs factors concerning the use 

of representations for solving geometrical tasks which becomes more stable across 

the educational levels, as a result of the continuous experiences in the teaching 

procedure and the more precise self-representation about the cognitive and affective 

performance. Students realize which tools and external or internal procedures help 

them to understand better the geometrical concepts. 

There is a high statistically significant interrelation between the students‘ beliefs 

about using representations and their self-concept beliefs about using them for 

solving or explaining the solution of geometrical tasks [primary school (0.847), 

secondary school (0.876)], indicating that students who believe that representations 

are useful tools for understanding geometrical concepts tend to use representations in 

order to solve tasks and in order to explain to someone else the solution of a 

problem. At the same time students who use representations have already positive 

beliefs about the usage of this learning material. As was expected, the highest 

statistically significant interrelation is between students‘ self-efficacy beliefs for 

solving tasks concerning the concept of area with their self-efficacy beliefs for 

solving tasks concerning the concept of perimeter [primary school (0.923), secondary 

school (0.925)]. Students develop similar self-efficacy beliefs for both the concepts 

because in primary education they solve many problems, which ask them at the same 

time to find the area and the perimeter of a geometrical figure. Students with high 

self-efficacy beliefs about their ability to use representations, express positive beliefs 

about the use of representations on teaching and learning. The relation is higher in 
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secondary education (0.853) than in primary education (0.728) where students have 

more experiences with Euclidean geometry, they have more positive beliefs about 

the usefulness of representations and they have more positive self-efficacy beliefs. 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1. Brm= beliefs about the use of representations and materials, SEr= Self-efficacy beliefs 

about using representations, SEa= Self-efficacy beliefs about using representations for the concept 

of area, SEp= Self-efficacy beliefs about the using representations for the concept of perimeter, 

SCr= Self-concept beliefs about using and explaining geometrical representations, 2. The first and 

second coefficients of each factor stand for the application on the model of primary and secondary 

education. 

Figure 1: A confirmed model of students‘ self-beliefs about using representations in 

solving geometrical tasks 

DISCUSSION 

The first objective was to identify the statistically significant differences between 

primary and secondary school students concerning their understanding of the various 

geometrical figure dimensions and the second was to propose and validate a 

framework, which describes the components of students‘ affective performance to 

solve tasks involving different geometrical figures and mainly the interrelations 

between those factors. In respect of the first objective, differences existed in the 

geometrical figure understanding performance of primary and secondary school 

students. Particularly, secondary school students‘ performance was higher in all the 

dimensions of the geometrical figure understanding relative to the primary school 

students‘ performance. The performance improvement can be attributed to the 

general cognitive development and learning taking place during secondary school. In 

fact, the secondary school curriculum in Cyprus involves many concepts already 

known and mastered during primary school. This repetition of concepts leads to 

higher performance even though primary and secondary school instructional 

practices differ. 

Brm 

.847   .876 

SEr 

SEa 

SEp 

SCr 

Self-beliefs 

.607   .987 

.623   .979 

.833   .686 

.963  . 978 

.811   .834 

.628   .653 

.859  .840 

.923 .925 

.816  .830 
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Students‘ self-efficacy beliefs in using representations are lower in primary 

education. The results were different in the case of the self-efficacy beliefs about 

solving geometrical problems with the concept of area where the means are lower in 

secondary education. Students at Grade 7 have high self-concept beliefs about using 

representations in order to explain solutions of geometrical tasks. Actually there is an 

increase up to this age and then there is a decrease. It seems that students start having 

a more precise self-image about their abilities and do not overestimate their abilities. 

Confirmatory factor analysis indicated that there is a stable coherent model of 

affective dimensions about the use of representations for understanding the 

geometrical concepts. It becomes more stable across the educational levels as a result 

of the continuous experiences. General beliefs about the use of representations are 

related to the self-concept beliefs about using them as a tool to explain geometrical 

tasks problem solving. Students seem to connect the concept of area with the concept 

of perimeter and for this reason they have similar self-efficacy beliefs. It seems that 

there is a need for further investigation into the subject with the inclusion of a more 

extended qualitative and quantitative analysis.  
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This presentation reports on a comparative study of English and Norwegian pupils‘ 

attitude toward mathematics, using a mainly qualitative questionnaire to develop a 

deeper understanding of the factors that may shape and influence pupil attitude. 

Albeit based on a small statistical sample, in both countries students‘ attitudes has 

very similar trends between grades 7/8 and 10/11. However, pupils‘ qualitative 

comments showed that the most influential factors were due to pupils‘ experiences in 

their respective mathematics classrooms and larger school environments. It is 

argued that by comparing it was possible to deepen our understanding of pupil 

attitude as a socio-cultural construct, and as a ‗lived‘ construct influenced by the 

meanings that are made in different contexts. 

Keywords: pupil attitude towards mathematics; comparative study; situated-ness of 

pupil attitude.  

INTRODUCTION 

Much research has been conducted in the area of ‘affect in mathematics education‘: 

in terms of the role of emotions in mathematical thinking in general; in terms of the 

role of affect in learning; and of the role of affect in social contexts such as the 

classroom (Hannula, Evans, Philippou & Zan, 2004). Particular attention has been 

given to the influence of socio-cultural context on the formation of beliefs, and it is 

generally accepted (e.g. Op ‗t Eynde, De Corte & Verschaffel, 2006) that students‘ 

mathematics-related beliefs are ―more complex, personal and context-specific ... than 

is generally thought.‖ (p. 68) They argue that students‘ previous experiences in 

instructional environments were closely associated with beliefs.  

Whilst the definitions of, and relationships between, constructs such as ‗belief‘, 

‗attitude‘, ‗emotions‘ and ‗values‘ have been an area of great concern (Zan, Brown, 

Evans & Hannula, 2006), it is also unclear how to measure these, what influences 

them and how they are comparable across countries or cultures. Comparisons of how 

these constructs are ‗lived‘ in different contexts and cultures (or countries), can not 

only identify similarities and differences, but are likely to deepen our understandings 

of what we mean by ‗affect in mathematics education‘.   

THEORETICAL FRAMEWORK 

Without making  judgement on any particular constructs and frameworks, for our 

comparative study where culture is likely to play a significant role, the socio-

constructivist view of learning and emotions appears most appropriate, as it stresses 
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the situatedness of learning activities and connects the ‗cognitive, conative and 

affective factors in students‘ learning‘ (Op ‗t Eynde et al., 2006).  

The theoretical framework of ‗attitude‘ used in this study builds on Zan and Di 

Martino‘s work (2007) who had investigated this construct for many years in an 

Italian project. Students are asked three ‗questions‘ (see fig 1) and given the 

opportunity to ―tell their own story with mathematics through an autobiographical 

essay‖ (p.163). Analyses of their data identified three core themes: 

Emotional disposition towards mathematics expressed with ―I like/dislike mathematics‖; 

Perception of being/not being able to be successful in mathematics, expressed with ―I 

can/cannot do mathematics‖; 

Vision of mathematics expressed with ―mathematics is ...‖  

(Zan & Di Martino, 2007, p.163) 

 

Fig. 1: Triad of Zan and Martino (2007)   

The rationale for choosing this scheme is that the scheme provides a strong link to 

practice and the educational experiences of pupils. Moreover, students are given the 

opportunity to narrate their story (Bruner, 1990), and it is not important whether the 

story is ‗likely‘ or ‗true‘, but students‘ perceptions of what they have done, the 

underlying reasons, and the types of situations they encountered are at the core of 

this frame. This is of interest. According to Bruner (1990) the narrative is concerned 

with the explication of the person‘s intentions ‗in the context of action‘ and through 

the telling of stories, one is likely to able to make sense of events, or work out 

meanings of actions and processes.  

THE STUDY 

In previous studies the author developed an understanding of identity and ‗culturally 

figured worlds‘ (Holland, Lachicotte, Skinner, & Cain, 1998) in mathematics 

classrooms in England (and other countries) and it emerged that national educational 

traditions are a large determinant and influence on teacher pedagogic practice and 

I like/dislike 

mathematics … 

Mathematics is … I can/can‘t do … 

because because 

because 
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classroom culture. More recently, she investigated Norwegian and English 

classrooms, in particular with respect to ‗attitude towards mathematics‘. The 

collected data (for this study) consisted of qualitative questionnaires and selected 

lesson observations. The qualitative questionnaire was based on three 

questions/statements (‗I like/dislike mathematics because ...‘; I can/cannot do 

mathematics because ...‘; ‗Mathematics is ...‘) where pupils could add their 

comments, describe their experiences and generally tell their story. The 

questionnaires were administered to 307 Norwegian pupils in grades 6 to 11, 

altogether to 13 groups/classes (distributed over several schools), and the same 

(translated) questionnaires to 194 English pupils in grades 7 to 11, altogether to nine 

groups/classes.  

It is acknowledged that the data sets are too small and are not likely to be 

representative for England or Norway. However, in terms of catchment areas and 

situation of schools, they are comparable: the English data were taken mainly in one 

inner city comprehensive school in a large city in the Mid-North of England; and the 

Norwegian data were taken mainly in one ‗inner city‘ school of the largest city in the 

Mid-North of Norway. Considering that the population of the whole of Norway is 

only half of the population of London, it may not be appropriate to talk about ‗inner 

city schools‘ in Norway; but by Norwegian standards the schools was situated in a 

large city environment.  

Moreover, and in terms of the validity of the data, the data were analysed on the 

basis of the author‘s understandings of the construct of ‗attitude toward mathematics‘ 

and its potential influences. The main questions addressed are: 

(1) How do students perceive their learning of mathematics, and what are the aspects 

of their attitude towards mathematics? 

(2) What are the main influences which appear to shape pupil attitude towards 

mathematics?  

(3) What are the similarities and differences in the different settings, and how does 

that influence our understandings of the ‗attitude‘ construct? 

In terms of analysis the main emphasis was on discovery rather than testing of 

theory, and the analysis involved category generation and saturation based on 

constant comparison as advocated by Glaser and Strauss (1967). Concepts emerged 

from the data, they were checked and re-checked against further data, compared with 

other material, strengthened and refined, similar to a procedure described by Woods 

(1996). Di Martino and Zan (2010) used a related way of analysing their data.  

Moreover, the author tried at one level to maintain the coherence of the groups‘ 

responses in schools, by analysing the responses with respect to selected 

observations. At another level s/he analysed across cases with each country, using 

the conceptual framework of ‗attitude‘ and testing the hypotheses offered by the 

literature, and building explanations and theorisations grounded in the data. On a 
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third level, she looked for similarities and differences of pupil attitude towards 

mathematics across the two countries and contexts. However, due to the additional 

cross-cultural dimension, it was important to address the potential difficulties with 

cross-national research, in particular issues related to conceptual equivalence, 

equivalence of measurement, and linguistic equivalence (Warwick and Osherson, 

1973). Particularly important were the validity checks with respect to the 

‗questionnaires‘, and considerable time was spent amongst researcher colleagues to 

ensure ‗equivalent‘ meanings and constructs. In this respect, it was important to 

locate and understand mathematics classroom practices and the classroom cultures in 

England and Norway, and it was useful to draw on knowledge gained from previous 

research conducted by the author, which highlighted the complex nature of 

classroom practices and environments in the two countries. In addition, national 

curriculum documents and guidelines (including textbooks) were analysed in order 

to study the contextual background of mathematics classrooms and the potential 

influences of these texts in each country.   

THE FINDINGS 

Albeit based on a small sample, it is interesting to compare the two data sets 

quantitatively: interestingly more students like mathematics in Year 8 in Norway 

than in Years 7 or 9 in England, and especially the English Year 9 data (which are 

comparable in terms of age) ‗stick out‘ there. At school leaving age (Year 10 for 

Norway, Year 11 for England) slightly more pupils like mathematics in the 

Norwegian schools than in English ones. It is also interesting to note that the same 

trend that Hodgen, Küchemann, Brown and Coe (2009) claimed, namely the drop of 

interest in mathematics from age 12 to 14, can also be claimed in both the Norwegian 

and the English data. However, after age 14 it seems that the interest increases again, 

and this is evident in both countries‘ data sets: in Norway the positive attitude toward 

mathematics in Year 10 even overtakes the Year 8 ‗marks‘. Thus, it is suggested that 

Hodgen et al. (2009) may have found a similar increase in interest, had they surveyed 

older children. Perhaps the most interesting finding here is that the ‗trends‘ in 

attitude, going from Years 7 to 11, are similar in both countries‘ data sets. The pupil 

comments appear to suggest that this was the case because students had accepted 

that, given the right conditions, they were ready to work at this subject in order to get 

good grades in their (compulsory) school leaving examinations, which in turn were 

likely to give them more opportunities in life. Thus, the ‗exchange value‘ of 

mathematics, and this is linked to the assessment system, appears to influence pupils‘ 

attitude towards mathematics.   
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England    

(194 pupils) Like 

mathematics 

Indifferent Dislike 

mathematics 

Y7 (age 11/12) 

74 pupils- 3 classes  

(31/74=)  42%  

 

9 % 

 

49% 

Y9 (age 13/14) 

57 pupils- 3 classes  

(22/57=)  39%  

 

16% 46% 

Y11 (age 15/16) 

63 pupils- 3 classes  

(26/63=) 41 %  

 

22 % 37% 

Norway    

(278 pupils) Like 

mathematics 

Indifferent Dislike 

mathematics 

Y8 (age 13/14) 

41 pupils- 2 classes  

(18/41=)  44%  

 

22% 34% 

Y9 (age 14/15) 

158 pupils- 6 classes  

(51/158=)  

32%  

 

23% 45% 

Y10 (age 15/16) 

79 pupils- 3 classes  

(36/79=)  46%  16% 38% 

Table 1:  Pupil attitude (%) per year group and country  

Analysing the qualitative comments, this paper argues in support of ‗pupil attitude 

toward mathematics‘ as a socio-cultural construct that connects the cognitive, 

motivational and affective factors in students‘ learning of mathematics. Leaning on 

the work of Op ‗t Eynde et al. (2006) the author contends that pupil attitude is 

embedded and shaped by the context in which it develops. Looking across pupils‘ 

comments (on the questionnaires) there were seven themes that emerged from the 

data:  

(1) Mathematics for jobs and ‗later life‘;  

(2) Mathematics is interesting, but hard and challenging for some, and boring and 

frustrating for others; 

(3) Repetitive nature of mathematics in classroom lessons; 

(4) Importance of working in groups (also for thinking) and support of friends; 
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(5) The role of the teacher;  

(6) The support of the family and primary school for being able to do 

mathematics; 

(7) Examinations play an important part, both in terms of individual success as 

well as what doing mathematics means. 

Taking the example of Theme 1 (Mathematics for jobs and ‗later life‘), and looking 

across pupils‘ comments, it appears that in terms of liking/disliking mathematics 

most students stated that ‗mathematics is necessary for life‘. In Norway, this is 

supported by curricular guidelines. Large scale international comparative studies in 

mathematics and science (TIMSS; PISA) have shown that Norwegian pupils perform 

relatively poor and significantly lower than the mean of other countries (e.g. Grønmo 

& Onstad, 2004), and there has also been noted a decrease in recruitment to science 

related studies (Schreiner, 2008). This, together with the low performance on 

international achievement tests, is likely to have influenced the Government in terms 

of increasing the emphasis on sciences and mathematics education.  

Many pupils in the study had dreams of particular professions and needed 

mathematics to fulfil those dreams.  

‖You get to learn new skills and it will help you later on in life … because algebra 

etc can help you in jobs such as an accountant...‖ (EY7-SO) 

―… Maths can be tiring, but it opens opportunity doors.‖ (EY11- U8) 

―... I struggle with any work ... my dream is to become a police officer and you need 

to have a GCSE in maths.‖ (EY9- JF) 

However, this emphasis on the utilitarian aspect of mathematics, in the sense of 

using it as a means to achieve their own particular ‗distant‘ goal, was more evident in 

English pupils‘ comments than in Norwegian answers (from the questionnaires). 

This can be understood in the light of the different contexts in which pupils were 

working and living. In particular, the education system in England expects pupils to 

direct their studies very early, and pupils have to decide latest at the GCSE level (age 

16) what kind of line they want to pursue at A level, which in turn has implications 

for further study (e.g. Higher Education) and hence for job opportunities. This also 

means that depending on their A level choices, they may not have any mathematics 

instruction after GCSE. In Norway every child has the right for upper secondary 

education regardless of their grades at the end of compulsory schooling (grade 10), 

and they have to continue mathematical studies for at least another two years after 

age 16.  More than 95% of students in Norway continue with upper secondary 

education, either in ‗professional‘ (e.g for apprenticeships) or ‗theoretical‘ (e.g. 

traditional upper secondary mathematics and science) tiers. 

Theme 2 (Mathematics is interesting, but hard and challenging for some, and boring 

and frustrating for others) and theme 3 (Repetitive nature of mathematics in 
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classroom lessons) are interrelated. Approximately half of the pupils, in particular 

those who seemed to succeed in mathematics (according to their comments), talked 

about mathematics as a ‗challenging‘, ‗interesting‘ but ‗hard‘ subject to learn. Others 

characterised it as ‗boring‘, ‗non-creative‘ and ‗confusing‘. These perceptions went 

right through all classes, ages, and achievement groups.  

―It is fun and easy and very interesting subject … I like being made to think in maths 

… I also like to be made to write and do many activities in maths. I love maths so 

much that I make sure I don‘t forget a calculation …‖ (EY7- TO) 

 ―... it is boring and it does not allow you to be creative. ... mathematics is also very 

complicated as you have to use many different formulas… it is stressful..‖ (EY11- 

U12) 

Pupils‘ perceptions were often linked to particular classroom practices and 

atmospheres. For example, many Norwegian pupils commented that it was a very 

theoretical subject where topics build on and connect to one another, and where very 

little practical work was done. 

―I don‘t like mathematics because it is such a theoretical subject. If you miss one 

theme the class works on, you don‘t get the next theme. Mathematics builds 

upwards. And it is some calculations I don‘t get so I have given up, so now I‘m lost 

in mathematics classes. In addition, I have fear of failure in this subject, so I don‘t 

give a crap about anything called mathematics.‖ (NY9- GN1) 

English pupils perceived the nature of mathematics more rigidly as ‗getting the right 

answer‘, and where little creativity is encouraged.  

―... I find it easy to understand and because it is the same wherever you go. Numbers 

are always the same in every country, so anyone can do it. With maths, the answer is 

either right or wrong, whereas with other subjects like English and History, there are 

many different answers.‖ (EY11- DB) 

―There is always a key book so there is always just one correct answer.‖ (NY9- GN5) 

 ―... it is boring and it does not allow you to be creative. ... mathematics is also very 

complicated as you have to use many different formulas....‖ (EY11- U12) 

In terms of classroom practices, and particularly in Norway, pupils commented on 

the repetitive nature of lessons, with textbook work and teacher presentation playing 

the main role. 

 ― … mathematics could be funny if it was varied and not just writing … I don‘t like 

mathematics because it is too much of the same thing.‖ (NY9- GN2) 

 ―... it is not an interesting subject. There is nothing fun towards this subject and a lot 

of it just feels like you‘re doing the same thing all the time. I like the class I am in 

and how we really understand things ...‖ (EY11- U13) 
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―.. once you learn how to work out an equation or formula, you keep repeating the 

same method and there is always one correct answer. ...‖ (EY11- U14) 

However, pupils wanted to work ‗differently‘, in a problem solving way and with 

more open questions (than provided by textbooks), in order to develop a better 

understanding of the mathematics. 

―I like problem solving. I think it is fun. I like to think and reflect long, because I 

then have a better chance of understanding. I become really happy when I manage to 

solve the problem. With Pascal‘s triangle it was quite fun and I got the system, but 

when we went back to calculating arithmetic problems again I became bored. … 

there should be more variation in the teaching. All we do is star down in to a book all 

the time. I find it a total waste of useful time.‖ (NY6- GN10) 

Whilst not being able (for limited space) to explain all themes, the seventh theme 

(Examinations play an important part, both in terms of individual success as well as 

what doing mathematics means) provided evidence of examinations influencing 

pupils‘ attitudes.  

―I‘m good at it and I like it because it‘s good trying to work it out. But sometimes I 

don‘t like it, because of exams …‖ (EY7- DB) 

―.. good because when you leave school you will have good exam results and you 

will be brainy. Also if you go to university you will get really good grades, and if 

you get good exam results in university then you will get a really good job.‖ (EY7- 

GE) 

It seemed that the assessment system played a crucial role in pupils‘ perceptions of 

what mathematics is and how to become a ‗proficient‘ mathematics learner. For 

example, in both countries, but more in England, pupils practice on examination 

questions several months before the examination. This means that nearly all 

curriculum teaching is suspended, and pupils and teachers go over past examination 

papers- ‗teaching to the test‘. Examinations appear to define whether a pupil is ‗good 

at maths‘ or not.   

CONCLUSION 

This article argues in support of ‗pupil attitude towards mathematics‘ as a socio-

cultural construct that connects the cognitive, motivational and affective factors in 

students‘ learning of mathematics. Leaning on the work of Op ‗t Eynde et al. (2006) 

the author argues that pupil attitude is embedded and shaped by the context in which 

it develops. Furthermore, and looking at the qualitative data, one can conclude that 

the main dimensions identified by Op 't Enyde et al. (ibid) are represented: beliefs 

about self; beliefs about social context; and beliefs about social norms in pupils' own 

classes. 

Interestingly, whilst there are differences which can be seen to be accounted for by 

differently ‗figured‘ environments, there are also many similarities. For example, it 
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was interesting to see that, albeit based on a small sample, in both countries students 

had a positive attitude towards mathematics in year 7/8, which dropped in Year 9, 

and increased again in years 10/11. The pupil comments appear to suggest that this 

was the case because students had accepted that, given the right conditions, they 

were ready to work at this subject in order to get good grades, which in turn were 

likely to give them more opportunities in life. Thus, the ‗exchange value‘ of 

mathematics, and this is linked to the assessment system, appears to influence pupils‘ 

attitude towards mathematics.    

In terms of differences it was interesting to see how pupils ‗lived‘ their mathematics 

worlds, in school and ‗at home‘. Pupil attitude appeared to be influenced by several 

factors which in turn were influenced by the different contexts in which pupils (and 

teachers) were working. For example, most pupils in both countries perceived 

mathematics as ‗non-creative‘ and ‗theoretical‘. However, the perceptions that 

underpinned these notions were different. In Norway ‗theoretical‘ was explained as 

connected and topics logically building on each other. In England, however, the 

connotation was that it was theoretical if one could ‗understand the workings out and 

how numbers and statistics work‘, in short a more formulaic approach - different 

from making connections in mathematics. This is likely to be influenced by how 

mathematics is perceived, also by teachers.   

In theoretical terms, it is argued that the seven before mentioned themes influence 

and shape pupil attitude towards mathematics. Whilst not being entirely new 

constructs, the identified influences emphasise the situatedness of ‗pupil attitude 

towards mathematics‘ within a ‗meaningful‘ environment. Furthermore, it has been 

shown how these constructs are intrinsically interwoven, and come together in 

‗attitude towards mathematics‘, when pupils write about their experiences. Thus, it is 

claimed that it is not enough to identify the factors that may shape and influence 

pupil attitude, but more importantly to study how these are ‗lived‘ by pupils, what 

meanings are made in classrooms and in different contexts, and how the factors 

interrelate and can be understood. 
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THE PUPILS‘ VOICE IN CREATING A MATHEMATICALLY 

RESILIENT COMMUNITY OF LEARNERS 

Clare Lee and Sue Johnston-Wilder  

Open University and University of Warwick 

We report on our work with one school to develop a mathematically resilient 

learning community. Pupils acted as Ambassadors to take the ways of working 

developed together into their mathematics classes and to bring the voice of all the 

pupils to our meetings. We describe our work within the school and what the pupils 

told us about the way that they learned mathematics and the way that they felt their 

learning could be improved. The knowledge we gained was shared with the teachers 

in the school. Some staff welcomed the ideas; others felt threatened by the notion of 

working in different ways. We argue that in order for the school to develop into a 

mathematically resilient learning community a change in thinking is needed by many 

mathematics teachers.  

Keywords: Mathematical Resilience, community of learners, pupil voice 

INTRODUCTION 

In this paper, we report on a single cycle within an ongoing action research project 

undertaken in one school to facilitate formation of a mathematical learning 

community, where pupils learned from teachers and from each other, and teachers 

sought to learn from each other and the pupils. The intention behind the development 

of this community was to start to work towards increasing the overall attainment of 

the school‘s pupils in mathematics examinations taken at age 16. Schools in England 

are increasingly concerned about their pupils‘ attainment in mathematics as they can 

be judged to be ‗failing to meet the needs of their pupils‘ if examination results in 

mathematics fall below an arbitrary measure. There is also an agenda, driven by 

government agencies, to increase the number of students studying STEM (science, 

technology, engineering, and mathematics) subjects at University (Roberts, 2002).  

THE CONTEXT 

We work regularly alongside teachers of mathematics, and recently began an action 

research project focussed on the notion of mathematical resilience (Johnston-Wilder 

& Lee, 2010a), the first cycle of which was reported in Johnston-Wilder and Lee 

(2010b). The first cycle indicated that, in addition to raising mathematical resilience, 

working in this way also raised attainment of the pupils in a difficult situation.  

The cycle of action research presented here took place in an all-girls school in an 

urban setting in the West Midlands region of England. The school is considered a 

‗high attaining school‘, as it is always towards the top in school league tables. 

However, the managers saw a problem; the overall results in English examinations 

were always higher than in mathematics. As a result of our previous work, the 
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Advanced Skills Teacher in maths invited us to work with the mathematics 

department in order to see whether we could help to narrow this gap. The cycle 

reported in this paper focused on introducing pupils and selected teachers to 

strategies for engaging and empowering pupils in learning mathematics, building 

their understanding of mathematical resilience and using them as conduits for 

change. We worked with pupils in Year 8 (aged 12-13 years) to change their stance 

towards learning mathematics and thereby raise their attainment (Dweck, 2000). 

Our particular role was to enable the pupils to have an informed mathematical voice 

and to allow that voice to be heard. We were concerned that, when we asked the 

pupils how their mathematical learning could be improved, most pupils would give 

stereotypical or naive answers because they had not experienced different ways of 

learning mathematics. We knew from the theoretical considerations discussed below 

that, for example, increasing the pupils‘ ability and opportunity to take part in 

mathematical discussions, and encouraging them to work collaboratively, would 

enable them to surmount some of the barriers that learning mathematics often 

presents and to become more mathematically resilient. The results clearly showed 

that many of the pupils already knew this.  

Typically for an English school, the school had grouped its pupils into classes for 

mathematics according to their attainment in internal examinations. The teacher of 

each of these 12 classes or ‗sets‘, chose two girls to take part in the project as 

‗Ambassadors‘. The girls were chosen because of their ability to speak out and take a 

lead within their own group. We had, in the community of Ambassadors, a mixture 

of girls in terms of mathematical attainment and mathematical confidence.  

THEORETICAL BASIS 

The way that we worked in the school was based on the ideas of building 

mathematical resilience that we have published elsewhere (Johnson-Wilder & Lee, 

2010a, 2010b). Our underlying intention was to encourage the teachers to act to 

make the classroom a more positive place to be and one where barriers to learning 

mathematics could be overcome. If mathematics is difficult to master, and we see 

that it often is, then pupils need to develop a positive adaptive stance towards 

mathematics which will allow them to continue learning despite barriers and 

difficulties. This positive adaptive stance towards mathematics we have named as 

mathematical resilience (Johnston-Wilder & Lee, 2010a). Characteristics of 

mathematical resilience as we have described it include perseverance when faced 

with mathematical difficulties, working collaboratively with peers, having the 

language skills needed to express mathematical understandings and having a growth 

theory of mathematical learning (Dweck, 2000). Any learning may require resilience 

at times and can be actively promoted (Newman, 2004); however, we argue that 

pupils particularly require resilience in order to learn mathematics because of various 

factors that include: the type of teaching often used (Nardi & Steward, 2003; Ofsted, 
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2008), the nature of mathematics itself (Mason, 1988; Jaworski, 2010) and pervasive 

beliefs about mathematical ability being ‗fixed‘ (Dweck, 2000, Lee, 2006).  

It has been established that emotions have an important role in mathematical 

thinking generally (McLeod, 1992) and that powerful affective structures are a key 

factor for effective mathematical learning (Goldin, 2002). We see resilience as an 

important positive affective construct. Resilience enables pupils to make positive use 

of their affective domain and is built when teaching takes account of the four aspects 

of affect: emotions, attitude, beliefs and values (Hannula, Evans, Philippou, & Zan, 

2004). We consider that building mathematical resilience offers a way to counter the 

well-known global affective structures that impede mathematical learning, 

commonly called ―maths anxiety‖ (Richardson & Suinn, 1972). We see teaching for 

resilience as facilitating a positive self-belief or self-efficacy in pupils learning 

mathematics, which have been shown to be influential factors determining the 

interpretation and appraisal processes constituting their affective responses and 

emotions (McLeod, 1992).  

In this study, we wanted to develop a mathematically resilient community of 

learners, who were confident enough to recruit other pupils to their way of thinking 

about effective ways to learn mathematics and to communicate those ways to 

teachers, thereby including both teachers and pupils in the purpose of improving 

mathematical learning in the school. Communicative aspects of resilience were 

particularly important to us in this project. We aimed to promote dialogic interaction, 

thereby enabling intra-mental ideas to subsequently become inter-mental (Vygotsky, 

1981). The strategies that we asked pupils to use arose from work such as Vygotsky 

(ibid) and Lee (2006), which show that thinking and communicating are intricately 

intertwined. For example, we invited the pupils to try making mathematical videos 

and peer teaching. We have previously demonstrated (Lee and Johnston-Wilder, 

2010) that video-making is a device that can be used in mathematics departments to 

increase pupil articulation and autonomy, so we incorporated video-making into this 

cycle. Peer teaching has also been demonstrated (Lee, 2006) to increase articulation, 

change pupils‘ mathematical identities and increase agency.  

what we Did 

Our work with the school consisted of three days over half a term spent with the 

mathematics Ambassadors and additional time emailing and meeting three times with 

representatives of the teachers in order to plan and review the days. We were joined 

by a drama teacher from Creative Partnerships (www.creative-partnerships.com), 

whose role was to inform about and model the use of drama to support mathematical 

learning. Drama can be seen as enabling dialogic communication and therefore this 

expert practitioner added to our expertise in building a mathematically resilient 

community. We used the three days in two distinct ways. Firstly, we introduced the 

pupils to different ways of learning about mathematics. Secondly, we used the days 
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to enable the pupils to collect and analyse data about the ways that Year 8 pupils in 

the school felt would be effective in enabling them to learn mathematics.  

On the first day, we introduced a questionnaire to examine how pupils felt about the 

way school encouraged them to learn maths. The questions we asked derived from 

the work of Dweck (2000) on fixed and incremental theories of learning and the 

work of Fennema and Sherman (1976) on assessing attitudes to mathematics. We 

asked the Ambassadors to examine the questionnaire and to suggest changes to make 

questions more accessible to their peers and any extra questions that may be needed. 

The original questionnaire was changed in the light of the Ambassador‘s suggestions 

and they administered the questionnaire to their mathematics groups. We collated 

pupils‘ responses before our next day in school, when we asked the Ambassadors to 

analyse the response data and identify points that seemed important to them. They 

reported finding this both challenging and interesting. We also asked Ambassadors 

to keep journals describing their feelings about, and reactions to, the mathematics 

they were learning and the way that they were learning it, both in lessons and during 

our days with them. The Ambassadors were asked to focus in their journals on their 

own and their peers‘ feelings and reactions and that their journals were not to 

critique teachers or record any negative personal reactions other than to learning 

mathematics. These journals were brought to the second and third day workshops 

and each pupil drew attention to important points in their journal. 

Therefore our data on the way that the mathematics learning community developed 

in this school consisted of: field notes about our plans for the days and the reasons 

for revisions of the plans, field notes about our discussions with the teachers in the 

school and the drama teacher, evaluations from the pupils from the day workshops 

and notes from our discussions with them, the results from the questionnaire on 

attitudes to mathematical learning and the Ambassadors‘ journal entries along with 

the pupils own analyses of both the questionnaire results and the journal entries.  

What we found out 

The Questionnaire Results  

The Ambassadors distributed the questionnaire to all the pupils in their mathematics 

classes, collected the completed questionnaires and posted them to us for analysis. 

Therefore the responses we have represent the views of all the Year 8 girls in 2010. 

We entered the responses into a spreadsheet, created pie charts and asked the 

Ambassadors to tell us what the results indicated to them. Thus our analysis of the 

questionnaire results is informed by the Ambassadors. The results showed that many 

of the attitudes to learning displayed by the Year 8 girls in this high-achieving school 

corresponded to those that we would see as resilient. For example, 78% said that they 

worked hard in mathematics lessons and 80% agreed with the idea that ‗I can get 

smarter at maths if I work hard‘. However, 16–20% of the girls were rather more 
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disaffected; it appears that the school will need to work with this cohort and engage 

them in mathematics in order to raise the school‘s attainment in mathematics. 

We were struck by how resilient in general our respondents appeared to be; 94% 

reported being sure that they would be able to learn new work in all subjects. This 

level of confidence dropped by 6% when pupils were asked specifically about 

mathematics; nevertheless, 88% of the girls were confident in their ability to learn 

more mathematics. The resilient stance of the majority extended to their willingness 

to undertake tasks even if they knew that they might not ‗do well‘ at the task; only 

17% said that they would not engage with such tasks. 

This resilient stance was not so evident when we asked if they ―... sometimes would 

rather get good marks than understand the work.‖ Only 40% agreed and a further 

33% were not sure, leaving 27% valuing understanding over good marks. A further 

78% said that they preferred getting a good mark to being challenged. Such results 

may indicate that the majority of pupils in the school are currently motivated by the 

idea of ‗good marks‘ rather than understanding mathematics. This attitude is further 

emphasised by the fact that 53% disagreed with the statement ―In addition to getting 

a right answer in maths, it is important to understand why the answer is correct.‖ and 

58% did not disagree with the statement ―It does not really matter whether you 

understand a mathematics problem if you can get the right answer.‖ 

The answers also showed that for many of the pupils mathematics is ‗a chameleon‘ 

(Johnston-Wilder & Lee, 2010a). 24% of the girls were not sure that studying 

mathematics would help them earn a living and 23% thought studying mathematics 

might be a waste of time; for such girls, mathematics lessons did not help them to 

distinguish how mathematics appears or is useful in the world outside school.  

The data showed that 28% of Year 8 girls enjoy mathematics all the time, 55% some 

of the time but 17% not at all. It is to be expected that the girls did not all indicate 

that they enjoyed mathematics all the time; however, that 17% of the girls do not 

enjoy mathematics at all in the early years of their secondary school careers is rather 

worrying and, we suggest, underlies the relatively lower attainment in mathematics. 

The Workshop Days 

The tasks that we used during the workshop days involved learning with ICT using 

Grid Algebra (Hewitt, n.d.) and Autograph software, making videos (see Johnston-

Wilder and Lee (2010b) for a description of this in another context) to explore where 

mathematics can be found in the real world, some drama activities as well as data 

analysis. Our notes from the days, and the pupil‘s own evaluations, show that all 24 

girls enjoyed making the videos: the particular elements that they mentioned about 

the days were the team work, being able to go outside, using ICT in the form of 

video recorders, the boost that the activities gave to their confidence and the fact that 

the activities were more interesting and fun than they had expected. One of the pupils 

who worked with Grid Algebra wrote in her evaluation of the day: ‗something like 
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nth term is usually boring but we understood it‘. After being asked to show the class 

their work on Grid Algebra, one girl wrote ‗I enjoyed making the presentation as I 

learned more about algebra. I would like to do something like this in my lessons as 

we could perform to each other and learn more‘. 

Pupils particularly valued finding out some mathematics as part of a group and they 

enjoyed both working with friends and working with people that they had not 

worked with before. A pupil wrote: ‗we brought our confidence out, writing and 

really being creative‘. The elements of choice they were offered were also important, 

as were using visual aids and sharing work. Another pupil wrote: ‗all the projects 

were interesting and my thoughts about maths have really changed‘. The pupils also 

mentioned enjoying the more active way of learning that they were offered and that 

they would like to do such activities more often in their mathematics lessons. 

The Journals 

The pupils gave us permission to take their journals away for analysis. We noticed 

ideas in the data that informed us about the pupils‘ learning; we collected like ideas 

together and reflected on the import of what they were saying. From this we devised 

‗stable categories‘ (Cohen, Manion & Morrison, 2007) that reflected the key ideas 

discussed by the pupils. A draft letter to the teachers was constructed from this 

information. This letter was discussed with the Ambassadors during the third day 

workshop and the quotes given below either come directly from the pupils‘ journals, 

were recorded during the discussions of the letter or are from the wording of the 

letter agreed with the Ambassadors. 

We discovered that these pupils intuitively knew ideas about effective teaching and 

learning of mathematics that were supported by research literature. For example, they 

either knew or had discovered that, in the best lessons, teachers talk less and 

consequently pupils talk more. Many of the journals mentioned that mathematics 

teachers talk too much. ―When we are not involved enough we lose focus so we 

would like less teacher talk, more pupil work and more expectation of effort.‖ 

It is important that pupils feel able to ask their teachers when they do not understand 

and that the teachers ―explain and help if we are stuck‖. Peers are also important to 

learning; the Ambassadors said that classmates should be allowed to help one 

another and recognised that pupils learn best when they can support each other and 

‗have a laugh occasionally‘. Contrary to the questionnaire results, the Ambassadors‘ 

descriptions of lessons valued understanding and reported that pupils liked lessons 

where all are given a chance to understand the essential elements. The timing of the 

lessons was important; according to the pupils, lessons should be well timed and not 

involve ―sitting still for too long and being bored‖. The pupils are aware that they do 

not do well in an environment where the work is ―boring and repetitive‖.  

The journals also made clear that the pupils ―would like teachers to have higher 

expectations of us‖. They wanted more challenge and felt they would be more 
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engaged when challenged. ―We don‘t mind hard work. We are not afraid to work 

hard.‖ They liked teachers to be sufficiently strict in lessons to ensure that pupils 

learn, but not so severe that they discourage questions and problems. Pupils stressed 

that they like teachers who set high expectations and expect them to do well. Pupils 

enjoy working on difficult questions ―that will help us in the long run.‖  

These pupils would like more variety in mathematics lessons, less book work, a 

diversity of tasks and more group work. They do not believe they learn or remember 

when working solely from books. They like to be active, interacting with other 

people, giving presentations, working independently and completing projects or 

extended work. They said such activities boosted their confidence and helped them 

learn to work independently. They enjoyed it when a pupil prepared and taught part 

of a lesson; they said it is useful when pupils work at the board for the rest of the 

class to consider and question. They see value in complex tasks, using a range of 

skills in a lesson. Similarly, they would like projects and extended work.  

―We would like more interactivity, more games and interesting activities, more practical 

work and creative tasks, like making and testing helicopters as some did this term. We like 

more fun activities and we like adventures ... We like maths we can recognise in the real 

world‖.  

The pupils like to learn using computers and said computers are not just for playing 

games. They felt that work such as making presentations using ICT helped them to 

learn and those who had opportunity to use Grid Algebra recognised its value. They 

also suggested that they should be given optional ICT tasks for homework. 

Pupils would like to support each other more; they asked for more group activities, 

team work and collaborative work. ―For example, one day this term, we did a GCSE 

problem and had to work as a group. It went well and everyone enjoyed it and began 

to work as a team.‖ Sometimes, teachers could split the class into ―those who can do 

it and those who can‘t.‖ The pupils pleaded: ―Make sure all pupils understand the 

topic‖. They recognised that they needed to be proficient in using the mathematics 

register if they were to fully understand and become confident in using mathematics. 

―We would like teachers to give us more help on the meaning of words.‖  

The working environment was important; the pupils liked the room to be not too hot 

so that they could concentrate well and they liked interesting wall displays. The 

ethos of the class was crucial; pupils needed a relaxed environment where they could 

feel trusted and allowed to talk to one another whilst working. They do not enjoy 

working in silence: ―we don‘t like the atmosphere of silence and it makes us feel 

locked in. We like it when people are talking, getting on with interesting work and 

able to ask questions with a helpful teacher.‖ They also told us that they did not like 

to be asked if they did not know – it made them feel ―dumb.‖   
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CONCLUSION 

We were struck by the extent that the pupils‘ ideas resonated with research about 

learning mathematics and our own research about how pupils become more 

mathematically resilient. Pupils understood the importance of collaborative learning 

(Wiliam, 2008; Mercer & Littleton, 2007) and how important it is for the pupils to 

use the language of mathematics (Vygotsky, 1981; Lee, 2006). They also understood 

the importance of variety in keeping them motivated and interested. 

There was a contradiction in the data concerning the importance of understanding. In 

the questionnaire, only 27% unequivocally valued understanding over getting good 

marks, whereas the Ambassadors‘ journals clearly plead for the teachers to ―Make 

sure all pupils understand the topic‖. This could be a false dichotomy; it is likely 

that the pupils appreciate that, when they understand their work, they get good marks 

in examinations. It seems more likely from the questionnaire results that the dialogue 

in school values marks over understanding and that the pupils‘ plea about 

understanding should be listened to, if attainment in mathematics is to be improved. 

The majority of pupils were willing to form a learning community in order to learn 

more about succeeding in mathematics. Most of them willingly presented their views 

about what they thought best helped them to learn mathematics. Those few who were 

less willing told us that they did not expect to be listened to and hence considered the 

process a waste of time. They became more willing as it became clear that the data 

they provided was recorded and considered. However, their conviction that teachers 

would not listen was partly supported. The teachers themselves, who had all been 

willing participants at the start of the process, became divided along a continuum by 

the second workshop. There were some who dropped in on the pupil days to see what 

was going on, discussed ideas with us and invited their pupils to demonstrate new 

ideas. However, others were deeply suspicious; they came to share lunch with us but 

were reluctant to talk and did not allow pupils write in their journals during lessons. 

Other mathematics teachers varied between these two extremes. 

Why the divergence of attitudes on behalf of the teachers who had agreed to take part 

in the project in the first place? We know, from teachers who have discussed the 

ideas with us, and from the completed journals, that the reluctant teachers have a 

view of teaching that conforms with the stereotypical teaching described by Nardi 

and Stewart (2003). Therefore, the changes that were being promulgated may have 

appeared to deskill these teachers, possibly making them feel incompetent.  

The data collected from the Year 8 ambassadors conformed to the way research 

defines ‗effective‘ teaching: active, reflective, collaborative and grounded in the real 

world (Askew & Wiliam, 1995). Many of the pupils said firmly that they were not 

afraid of ‗hard work‘; they enjoyed being challenged, and working on complex, 

tractable problems. This view is far from the atomised practice of mathematics 

teaching prevalent in many schools in England. However, from our data, based in the 
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pupils‘ experience, we argue that part of enabling the school to develop into a 

mathematically resilient learning community will be a change in identity (Holland, 

Skinner, Lachicotte, & Cain,1998) on the part of some of the mathematics teachers; 

moving from practices that tend to be repetitive, and focussed on techniques, to 

working with the pupils to develop mathematical understanding; moving from 

teacher as deliverer of knowledge, to pupil as an active, resilient participant in the 

learning process.  

The pupil data clearly confirms our previous research that, if pupils are to become 

sufficiently mathematically resilient to overcome the barriers presented in learning 

mathematics, they must be more involved at all stages in the learning process. They 

must feel that they have the ability, opportunity, time and confidence to work to 

overcome any obstacles that are presented in learning mathematics. Therefore, they 

must feel supported by teachers and their fellow pupils, be challenged by the 

activities used and have time to fully engage in and succeed with their mathematical 

learning. Their questions must be fully answered and understanding should be valued 

over everything else. Above all pupils must not be made to feel ―dumb‖. 
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"YOU UNDERSTAND HIM, YET YOU DON'T UNDERSTAND 
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Einat Heyd-Metzuyanim and Anna Sfard 
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Leaning on commognitive theory, we attempt to demonstrate how affective, social 

and cognitive aspects of learning can be treated with the same set of theoretical 

concepts and analytical tools. This will be done by developing the basic idea of 

learning mathematics as interplay between activities of mathematizing (talking 

about mathematics) and subjectifying (talking about the participants of the 

discourse). We shall exemplify our proposed tools of analysis on a group of usually 

successful 7
th

 grade mathematics students whose ability to benefit from significant 

opportunities for learning is shown to be highly sensitive to how they identify 

themselves and their peers.  

Keywords: identity, social interactions, affect, commognitive theory, discourse 

analysis. 

Affective aspects of learning mathematics such as attitudes and beliefs have been 

studied extensively both for discovering differences between groups and for finding 

relations between those aspects and mathematics achievement (i.e. McLeod, 1992). 

However, emotional reactions during mathematics learning have received less 

attention (Leder & Forgasz, 2006), and, in particular – their interaction with the 

cognitive processes of mathematics learning have seldom been researched. Social 

aspects such as status and positioning in class has received growing attention in 

recent years (Lerman, 2000), yet less work has been done about the links between 

social interactions and the emotional and cognitive processes going on within the 

individual student in class. 

Most probably, the lack of studies dealing with the interaction between 'affective' 

reactions, cognitive processes and social interactions stems from the fact that very 

specific, dissimilar conceptual frameworks and research tools have been used for 

studying each of these three arenas. Therefore, the long term goal of our research is 

to contribute to the effort of creating a unified framework, where cognitive and 

affective, as well as individual and social aspects of learning would all be seen as 

members of the same ontological category, to be studied with one integrated system 

of tools, grounded in a single set of foundational assumptions. In what follows, we 

report on the conceptual tools we have developed, while trying to address this 

challenge. We also exemplify the usage of these tools in an interesting episode of 

social, emotional and cognitive conflict in class. 

The proposed conceptual framework leans on the 'commognitive' theory, which 

recognizes the centrality of communication in all our activities, including the 
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uniquely human forms of learning. This theory, stemming from participationist (Lave 

& Wenger, 1991) and discursive theories (Harré & Gillette, 1994), maintains that 

thinking can be viewed as an interpersonal form of communication and mathematics, 

being a particular way of thinking, turns out to be a special form of discourse (Sfard 

2008).  

Learning mathematics can be seen as interplay between two concomitant activities: 

that of mathematizing – communicating about mathematical objects; and that of 

subjectifying, that is, communicating about participants of mathematical discourse. 

Of all subjectifying activities, the most consequential for learning seems to be that of 

identifying – the activity of talking about the properties of persons rather than about 

what the persons do. Scrutinizing the activity of mathematizing is the commognitive 

counterpart of cognitive analysis, whereas studying the activity of identifying means 

attending to all those phenomena that other researchers label with adjectives such as 

affective, interpersonal or social. The empirical material presented in this article 

demonstrates how the activity of identifying may interfere with the activity of 

mathematizing, and thus with the learning of mathematics. 

The Study 

The study was held over a period of 5 months, in an extra-curricular program, where 

one of us taught three groups of 7
th

 grade students: students with very high scores in 

mathematics, with moderate-to-high scores, and with low scores. In each group there 

were 4 students, 12 students overall (7 boys and 5 girls). The episode discussed here 

occurred during the 11th lesson with the moderate-to-high achievers group. This 

group included two boys - Ziv and Dan, and two girls - Edna and Idit. Generally 

speaking, Ziv and Dan had a history of high achievement in mathematics, Idit was 

generally successful though in some areas she encountered problems, and Edna had 

usually moderate scores. 

The lessons were video filmed by 3 stationary cameras, directed at the student's 

fronts. Additionally, all written material performed during the lesson was collected. 

The recordings were transcribed in Hebrew, and the examples given here were 

translated into English by the authors. 

The episode was chosen for deep and thorough analysis because of the very high 

occurrence of subjectifying utterances that accompanied what appeared to us as an 

inexplicable block in the advancement of the group towards a solution of a given 

mathematical problem. The students were presented with a worksheet containing a 

problem called the Chocolate Factory Problem   (Figure 1).  Its purpose was to help 

students to advance toward a discourse on fractions (though fractions were not 

explicitly mentioned).  

What mystified us was the fact that the participants seemed impervious to one 

student's (Ziv) seemingly lucid and cogent explanations and that the eventual eye-
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opening effect came from what looked to us as a much less coherent and quite 

opaque argumentation of another student (Dan). In what follows we show that much 

more than scrutinizing the flow of the "mathematical content" of the conversation is 

necessary in order to understand what blocked the learning process.  

 

The Chocolate Factory 

The chocolate factory produces four different types of chocolate bars, all of the same size, as shown 

in the drawing. 

 

 

 

 

 

 

When bars get damaged, the factory can‘t sell the chocolate in its original package. The factory 

donates the damaged bars after repacking them in bags. Each bag contains the amount of chocolate 

equal to one type-D piece and two type-B pieces. 

1. In how many different ways can one pack such a bag? 

2. What are these ways? 

3. How can you be sure you have found all the possible ways? 

Fig. 1: The Chocolate Factory problem 

Mathematizing  

While participating in mathematical discourse, interlocutors combine mathematical 

keywords and mediators into mathematical objects. Indeed, to act as a competent 

participant in mathematical discourse, one has to realize (translate) words such as 

numbers, functions or sets with the help of other mathematical words and mediators. 

A mathematical object is a mathematical signifier together with its realization tree, a 

hierarchically organized set of all the realizations of the given signifier, together with 

the realizations of these realizations and so forth. 

One way to analyze the activity of mathematizing is to follow the flow of 

mathematical objects, that is, to try to identify the ways in which the participants 

realize the focal signifiers at different points in the process of solving the problem.  

One important question that can be answered on the basis of this information is that 

of the effectiveness of communication: We can decide in a systematic, testable 

manner whether two interlocutors are speaking of the same object while using the 

same words. 

A B C D 
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Let's take a close look at how two of the students, Ziv and Dan, realized the signifier 

a bag[containing] the amount of chocolate equal to one type D piece and two type B 

pieces (which we shall shortly term 'the required bag', or simply 'bag') while trying to 

solve the Chocolate Factory problem.  

Dan's first try   

As evidence by numerous utterances during the first minutes of the episode, Dan and 

the two girls had considerable difficulty trying to understand the question. 

Apparently, they were unable to unpack the complex 'bag' signifier so as to be able to 

start thinking about any realization procedure. After grappling with the question for 

three minutes, a breakthrough occurred and Dan offered an idea:  

Dan: so it‘s actually they say that they mean this.. that one like this, 

each piece of one type, of type D, equals two of type B 

[pieces] right? (lines 233-235) 
 

Dan had arrived at the (wrong) impression that the word equal in the description of 

the task signify the relation between the amount of chocolate in a type-D piece and 

the amount of chocolate in two type-B pieces (in other words, 1/3 = 2/5).  Not 

surprisingly, this interpretation stymied his further attempts at solving the problem. 

Indeed, from here, it was not clear what the words "number of different ways to pack 

such bag" could possibly refer to. His idea was questioned by the teacher, who 

encouraged Ziv to offer his alternative solution. 

Ziv's try 

Ziv remained silent throughout the conversation between Dan, the girls and the 

teacher. During the first 10 minutes of the episode he worked on his own solution. 

When he eventually spoke up, his proposals flowed one after another, contributing to 

the gradual emergence of a coherent realization tree for the requested 'bag'. 

Ziv: O.K. (..) the first way (.) is the way they showed us, which is one stripe from here 

(points to Bar D) and two from here (Bar B, see fig 2. No. 1), that‘s the first way
24

. 

The second way is to take all these (Bar C) and two from here (Bar B, see No. 2). A 

third way is to take a=ll
25

 these (Bar A), two from here (Bar B, see No. 3). Now let‘s 

move here (points to Bar C). A third way is to take a=ll these (Bar A), and all this 

part (Bar C, see No. 4), all the six-, all the-, these 

1. 2. 3. 4. 

                                           

24
The visual realizations of the students‘ words are our interpretations, based on the way the students pointed on the 

worksheet 

25
The transcription signs are as follows: = marks   - a prolongation of the syllable; (.) marks a very short halt. 
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Fig 2. Ziv's realizations of the requested 'bag'. 

In spite of the ostensive clarity of Ziv's explanations (supported by suggestive 

pointing), his classmates claimed they were unable to understand what he was 

saying. This left space for Dan's new take on the problem. 

Dan's second try 

After his 2B=D proposal was rejected by the teacher, Dan went back to coping 

solitarily with the problem, hardly paying attention to Ziv's solution. He then 

volunteered to explain his own solution to the girls and set out into a long and 

somewhat muddled explanation. 

Dan: Uh- the chocolate factory did, um- things-, ah like, did a defected [pack], and did that 

the defected chocolates pack, will be this size, O.K? (Pointing up and down a D 

rectangle, see fig. 3-1) .. and in this size (fig 3-2). Right? Wait. (Turning the worksheet 

towards himself) If it‘s actually in this size, then why? Ah, I got it. ‗nyway he did in 

this size, O.K? (pointing to D, fig 3-1) And in this size (pointing to B, fig 3-2). Two 

different packs. Now, they have a few types of packs, and they wanted actually, each, 

each pack of the defected [packs] they wanted actually to make it into such a pack 

(pointing to D, fig 3-1). They only have two types of packs, that they can get, and they 

can‘t change the size of the packs, so they have to insert [it]. Now, here (pointing to 

bar A, fig 3-3) there are many small ones, so they can actually divide them so they be 

put into such [a pack] or such [a pack] (fig 3-1 and 3-2). That‘s why they asked you 

here, if you can pack such a bag with squares of type A alone, so yes… So actually you 

can divide them so they'll be in this (pointing to bar D, fig 3-1), or like this (bar B, fig 

3-2) because they are bi-, they're small. (Lines 536-554). 

1. D piece 2. 2B pieces 3. type A pack 

Fig 3 – The diagrams Dan was pointing to (the pointed parts are shaded gray) 

Apparently Dan had arrived at a realization of a 'bag' he was quite content with 

(though it was wrong, again). He figured there are two 'legitimate' types of chocolate 

bars: one of the size of a single D piece, and one of the size (shape) of two B pieces. 

Thus, his realization tree for the requested 'bag' was as depicted in fig 4. 

 

 

 

 

Fig 4 – Dan's realization tree for the signifier 'bag containing the amount of chocolate 

equal to 1 type D piece and 2 type B pieces' 
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Surprisingly enough, the girls, who earlier insisted they 'don't understand a thing', 

now showed signs of comprehension. Idit claimed she understood Dan, and Edna 

offered: "and then it's like ten cubes" (line 557).  

What was happening here? These students seemed to be learning from the participant 

who himself was struggling for understanding, and who offered a realization which 

was much too blurred and ambiguous to be helpful. All this happened after they let 

the obvious opportunity for learning slip away – after remaining unimpressed by a 

solution which, according to the observers, was not only correct, but also presented 

quite clearly and convincingly. Although nobody seemed to doubt the correctness of 

Ziv's solution, no visible effort was made to find out what his proposal was all about.  

We found no evidence for the other students being even interested in Ziv's 

explanation.  

In order to understand what was happening, it was necessary to look into what we 

claim is a process that always runs in parallel to 'mathematizing', the process of 

'subjectifying' and, in particular, 'identifying'. 

SUBJECTIFYING  

Subjectifying could be about oneself (1
st
 person subjectifying), about others (3

rd
 

person subjectifying) or stated explicitly toward the subject of the communication 

(2
nd

 person subjectifying). Following Sfard & Prusak (2005) we shall denote every 

subjectifying utterance with a specific notation that will clarify who the informer, the 

subject and the receiver of the communication are. Thus the notation EdnaZivTeacher 

will signify an utterance about Ziv, made by Edna and directed at the Teacher.  

Subjectifying acts can be verbal or non-verbal (such as in gestures, facial expressions 

or meaningful intonation of the voice). They can also be direct or indirect. Direct 

subjectifying utterance refers directly to the subject (such as Dan (to Ziv): "no one 

can understand you"). Indirect subjectifying acts are acts that can be interpreted as 

being about one of the participants, even if the object of the act is not stated 

explicitly (such as when Ziv says about the other student's failure to comprehend "so 

they should try harder", indirectly stating he himself is superior to the others in his 

mathematical performance: in other words, this utterance may be marked ZivZivB). 

Moving from subjectifying to identifying 

By using the term 'identity', we refer to Sfard & Prusak's definition of identity as a 

narrative. More specifically,  

"identities may be defined as collections of stories about persons or, more specifically, as 

those narratives about individuals that are reifying, endorsable, and significant" (Sfard 

&Prusak, 2005, p.  16) 

Sfard & Prusak made the distinction between narratives of current identity which 

consist of stories about the actual state of affairs, and designated identity "consisting 

of narratives presenting a state of affairs which, for one reason or another, is 
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expected to be the case, if not now then in the future." (p. 18). This distinction will 

serve us when we look at different designated identities the participants are 

attributing to one another during this episode, and how such designated identities 

might conflict with the current 1
st
 P identities the participants hold. 

One of the most problematic obstacles for studying the mechanisms of identity 

building is the inaccessibility of some of the ‗identity narratives‘ during a non-

intrusive observation of students in class. Our first task, therefore, was to prepare an 

operational means for extracting ‗identifying processes‘ (processes of identity 

building) from the natural discourse of the students in class and, in particular, for 

deciding which subjectifying utterances could count as identifying. We did this by 

assessing how general the subjectifying message is. At the lowest level of 

generalization we placed utterances in which an interlocutor evaluates what she just 

did or is about to do (e.g., Idit: "I didn't understand a thing"). A remark about a 

general characteristic of the speaker's or other person's participation (such as Edna: 

"When Ziv speaks I never understand him") was classified as representing a higher 

level of generalization. We decided that the highest level of reification occurs when 

rather than assessing the participation (what people do), the speaker evaluates 

properties of a person (what the person is or has) or of this person's memberships 

(with whom the person belongs), e.g., Dan (to Ziv): "You'll never be a teacher". Such 

reifying utterances are identifying by definition. However, general participation 

evaluation and even specific participation evaluation utterances can sometimes add 

up to form a coherent identifying narrative, provided they are recurring and 

consistent. 

Most researchers interested in students‘ identities rely in their analysis exclusively 

on students‘ verbal 1
st
 person identification, such as those obtained in interviews. 

And yet students of this age seldom talk extensively about themselves, and thus these 

are the non-verbal and indirect subjectifying actions which may often be a major, 

sometimes the only, ‗window‘ to students‘ first-person identities. In our analysis, we 

found that when examined in the context of verbal direct identity narratives, 

repetitive, consistent non-verbal and verbal indirect subjectifying actions may often 

provide the most valuable information about how the students view themselves and 

others.  

Additionally, emotional declarations and gestures are key signs of significance, and 

thus indicate which narratives and activities are important for the interlocutors.  It 

can be reasonably assumed that whatever an emotionally loaded statement is, it has 

something to do with the student's identity – with how the student sees herself in the 

longer run. For instance, when Ziv solemnly hides his face behind his worksheet, 

avoiding eye contact and sitting ubiquitously quiet after remarking that Edna has 

'understood' Dan and not him, we may assume he's emotionally hurt and that 'being 

understood', and 'explaining better than Dan' is  important for his 1
st
 P identity. 
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To summarize, we will define identifying utterances (which may be either verbal or 

non-verbal) as those subjectifying acts that signal that the identifier considers a 

given feature of the identified person as permanent and significant. 

Technique of analyzing identifying actions  

In order to understand the identifying processes going on in this episode, we 

extracted all the subjectifying verbal and non-verbal acts made by the participants.  

These utterances were inserted into four tables (one for each student), each table 

containing all the group member's references toward the subject of the table. Looking 

at the tables, it appeared immediately that most of the subjectifying actions were 

made about Ziv. His table was the richest in subjectifying utterances in general, and 

in 2
nd

 and 3
rd

 P utterances in particular. In other words, not only was Ziv the 

participant who talked directly about himself the most, he was also the one who got 

the most attention from the other participants. As we shall shortly see, this attention 

was far from being positive, at least on the part of the other students. 

In the following table
26

, we bring examples of the most telling subjectifying acts 

from Ziv's table, those which can be classified as 'identifying' according to the 

definition made above.   

Looking at this table, and from the analysis of all the subjectifying acts in the 

transcript, a clear picture of the identifying processes going on in this episode 

emerged. Let's first look at Ziv‘s 1st P identifying. It included a few main themes: 

First, Ziv made it clear that he thought himself superior to the others (especially to 

Idit and Edna). Second, he was very competitive with Dan (for instance by trying to 

‗beat‘ Dan and insulting him when he attempted to catch up). Finally, he seemed to 

get very hurt when the girls failed (or refused) to understand him conveying that 

'being a leader of the mathematical discussion' was an important part of his identity. 

The Teacher‘s 3rd P subjectifying of Ziv was very consistent, verbal and direct, and 

thus it could safely be claimed she was identifying Ziv as the most competent 

participant (mathematically speaking) in the group, and as one who could, and 

should, help the others understand the task.  

The girls (both Edna and Idit) consistently identified Ziv as an "Incapable teacher" 

who may be smart but does not know how to explain. He was identified directly by 

Edna as condescending and admittedly complied with this identity, for instance by 

rolling his eyes at Edna's disability to comprehend him (though all the students had 

long histories together, thus it might be that the interaction seen here was rooted in 

the long past of their acquaintance). 

 

                                           

26
Out of space restrictions, the structure of this table is different from the one used for our analysis. The analysis table 

used a column for each participant, where all his/her utterances about Ziv were documented. 
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Table 1 – Ziv's subjectifying acts 

It can be reasonable to conclude that the combination of Ziv‘s arrogant behaviour 

and ‗superior‘ 1st P identity as enacted by him during the lesson - combined with the 

―he‘s the competent leader‖ 3rd P identity afforded to him by the Teacher - created a 

clear resistance from the girls to learn anything from him. Look at Edna, for instance, 

at the point when Ziv was trying to explain his solution to her (the 3
rd

 time around) 

and she aggressively rejected it (see table 1, line 3). From her point of view, at this 

particular moment, she was offered a very undesirable identity by Ziv, and indirectly 

by the teacher - that of the 'little, inferior', perhaps even 'incapable' student. If she 

had cooperated by 'understanding' Ziv, she would have simply approved this identity, 

something she probably very much wanted to avoid. 

Dan, on the other hand, being confused himself and showing no condescending 

behaviour, was much less threatening. In other words, his acts offered no 

endangerment for the girls designated identities as 'intelligent learners'.  

To conclude, what we see here is a struggle of identities. As a result of this struggle, 

something very basic was missing from the students' discourse which would enable a 

useful learning process: a teaching-learning agreement. Sfard (2008, p. 283) coined 

this term for the implicit understanding, formed between two or more interlocutors, 

that one of them is the 'teacher' who has the authority to determine what is 'true', and 

the others are the 'students' who 'learn'. In our case, it is clear that the teacher 

believed such an agreement should exist, and as Ziv was making signs he had solved 

the problem, it was natural from her point of view, that he would take the role of the 

Speaker, object 

and addressee 

What is said (and how) Subjectifying category 

TeacherZIVZiv Teacher: [explain your solution to the others] 

because you're the only one who understood [the 

question] (line 99) 

Verbal 2nd P specific 

participation evaluation 

DanZIVZiv Dan (quietly, while Ziv starts explaining again): 

Enough, Ziv, you won't be a teacher. (line 678) 

Verbal 2nd P designated 

identifying 

EdnaZIVZiv+Teacher Edna (to the Teacher, in an annoyed voice): He 

just- he talks to me like I'm his [little] girl! (to Ziv, 

mummifying angrily a 'teaching voice') Ziv, you 

understand that if it's ^so and so^ than it's this and 

that? Yeah?! (Turning back to the teacher) That's 

how he talks to me! (line 704) 

Verbal and Non-verbal 

identifying of a complex 

type: Edna speaking of 

how she thinks Ziv is 

identifying her. 

IditZIVTeacher+Others Idit: No [I didn't understand Ziv]. Ziv talks to 

himself and he thinks everyone is listening to him 

so he (mummifying a 'babbling' voice) >pa pa pa pa 

pa, wa wa wa wa wa< (line 443) 

Verbal 3
rd

 P General 

participation evaluation 

and non-verbal 

identifying  

ZivZIV+DANEdna Ziv (to Edna, in an annoyed voice) Ah! Like you 

understand him [Dan], and me you don't? (sits back 

and looks hurt: covers part of his face with the 

worksheet, avoids eye contact and seems to 'close 

up') (line 555) 

Verbal + Emotional-Non-

Verbal 2nd P specific 

participation evaluation, 

highlighting the rivalry 

between Ziv and Dan. 
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'teacher'. However, as this agreement would endanger the designated identities of the 

girls, they strongly rejected it, even at the price of blocking their advancement in 

solving the presented problem. 

CONCLUSIONS  

This case shows how powerful processes of identifying may be in hindering 

mathematical discourse. The way the student chooses to participate in the 

mathematical discourse is affected not only, and perhaps even not mainly, by her 

mathematical competence, but also by her 1
st
 P identity. Of principal importance here 

are her designated identities constructed by herself and by other participants.   

It should also be noted that it is not always the 'weak' or peripheral students who pay 

the social price during participation in mathematical discourse. As Ziv's behaviour 

shows, it is the strong student who would sometimes be hurt. 

Finally, teachers' actions, even if well-intended and performed in the attempt to 

advance the mathematical discourse in the class, can fuel and shape 

counterproductive identifying interactions among the students. As we have shown, 

such identifying interactions may hinder the learning process, achieving an effect 

exactly the opposite to the one intended by the teacher.  
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Many students have certain beliefs about problem solving that tend to impact 

negatively on their engagement with problem solving.  Previous interventions that 

achieved a positive impact on some of these student beliefs lasted over extended 

periods of time, thereby producing research knowledge that cannot be easily 

replicated in other settings.  Findings from a 4-year design experiment in an 

undergraduate mathematics course suggest that it is possible to achieve a notable 

positive impact on 4 common and counter-productive student beliefs about problem 

solving with an intervention of duration as short as 75 minutes.   

Keywords: beliefs, problem solving, classroom interventions, design experiments 

INTRODUCTION 

Students‘ ability or willingness to engage with the important mathematical activity of 

problem solving is shaped by students‘ beliefs, ―the set of understandings about 

mathematics that establish the psychological context within which individuals do 

mathematics‖ (Schoenfeld, 1985, p. 5).  According to Schoenfeld (1985), ―[o]ne‘s 

beliefs about mathematics can determine how one chooses to approach a problem 

[…] and how long and how hard one will work on it‖ (p. 45).  

Many students believe that those who understand the content can solve assigned 

problems in five minutes or less (Schoenfeld, 1992).  Students with this belief tend to 

―give up working on a problem after a few minutes of unsuccessful attempts even 

though they might have solved it had they persevered‖ (Schoenfeld, 1992, p. 359).  

Also, many students tend to believe that ―[t]here are always numbers in formulations 

of math problems‖ (Callejo & Vila, 2009, p. 116) or other clearly identifiable 

mathematical referents such as formulas.  Students with this belief tend to give up 

working on problems that do not fit in with their expectations, because they cannot 

see how to make progress on these problems (see, e.g., Callejo & Vila, 2009). 

These student beliefs not only interfere with students‘ ability to engage productively 

with problem solving, but also often lead to low success rates and negative reactions 

to mathematics more broadly (e.g., Furinghetti & Morselli, 2009).  Previous studies 

(e.g., Perrenet & Taconis, 2009; Philippou & Christou, 1998; Swars et al., 2009) 

developed interventions that impacted positively on students‘ problem-solving 

beliefs, and identified specific features of the respective interventions that seemed to 

have played major role in their success (e.g., an emphasis on the history of 

mathematics).  Despite the significance of these interventions, their success cannot 

be easily replicated in other settings due to their long duration and the associated 

large number of variables that were not explicit parts of the interventions but 
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possibly influenced their outcomes (the interventions lasted from 10 weeks to several 

years). Would it be possible to develop interventions of short duration in 

mathematics classrooms that would impact positively on students‘ problem-solving 

beliefs?  Such interventions would be more easily replicated in other settings than 

long-term interventions, for they would allow more control over confounding 

variables. Evidence from a 4-year design experiment we conducted in an 

undergraduate mathematics course suggests that a notable positive impact on 

students‘ problem-solving beliefs can be achieved with an instructional intervention 

of duration as short as 75 minutes.  With this intervention we targeted specific 

student problem-solving beliefs that tend to impact negatively on students‘ problem-

solving engagement.  Specifically, we aimed to promote the following 4 learning 

goals.  Help students: 

1. Recognize that some problems they perceive to be ―unsolvable‖ can actually be 

solvable and within their capabilities (Goal 1);  

2. Realize that effective problem solving requires perseverance (Goal 2); 

3. See that the formulation of a mathematical problem can include more than just 

clearly identifiable mathematical referents (numbers or formulas) (Goal 3); and 

4. Appreciate that problem solving can be a satisfying or enjoyable activity (Goal 4). 

THEORETICAL FRAMEWORK 

―[B]elief systems are composed mainly of ‗episodically‘-stored material‖ and 

episodic memory ―is organized in terms of personal experiences, episodes or events‖ 

(Nespor, 1987, p. 320).  Thus, beliefs can often be traced back to vivid memories of 

highly influential episodes that shape people‘s interactions with subsequent events.  

Following Nespor‘s work, we aimed to engineer a dramatic and positive episodic 

memory for our students that would overpower their earlier episodic memories.  This 

new episodic memory would be engineered by means of purposeful implementation 

of a carefully-designed problem.  Below, we discuss design and implementation 

features of such a problem that can be used to impact positively on students‘ beliefs, 

with a focus on the 4 learning goals.  Our theoretical framework has 2 components, 

which emerged both from prior research and knowledge from our design experiment. 

Component A: Problem design features 

The problem should have a memorable name (feature A1) so that students can more 

easily store in and retrieve from their episodic memory their engagement with the 

problem. The remaining design features relate explicitly to the 4 learning goals.  

To promote Goal 1, the problem should initially appear to be unsolvable to students 

and, of course, should be presented to the students in a way that leaves open the 

possibility that it can actually be unsolvable (feature A2).  At the same time, 

however, the problem should be within students‘ capabilities (feature A3a): if the 

students persevere, they should be able to solve the problem within reasonable time 
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by working in small groups and by receiving (perhaps) limited scaffolding from the 

instructor.  If under these conditions students solve the problem, Goals 2 and 4 are 

also promoted: students are expected to see that their perseverance paid off (Goal 2) 

and feel satisfaction/accomplishment for solving an ―unsolvable‖ problem (Goal 4). 

To further promote Goals 1, 2, and 4, the problem‘s solution should involve 

achievement of multiple milestones (feature A3b).  If it involved only one milestone, 

then, once a student in a small group had an insight into the solution, the other 

students would be deprived of opportunities to: (a) offer something substantial to the 

solution of a problem they originally perceived unsolvable (cf. Goal 1), (b) see their 

own perseverance as a contributive factor to the solution (cf. Goal 2), or (c) 

experience personal satisfaction from their engagement with the problem (cf. Goal 

4). To promote Goal 3, the problem should include few clearly identifiable 

mathematical referents, which should offer by themselves insufficient data for the 

problem‘s solution (feature A4).  The fact that students will need to consider other 

kinds of referents can help expand their view about what counts as a legitimate 

referent.  

Component B: Problem implementation features 

The problem implementation should involve a set of conceptual awareness pillars 

(CAPs; Stylianides & Stylianides, 2009) that aim to help students become more 

aware of specific beliefs that are to be challenged or formed during students‘ 

engagement with the problem (feature B1).  CAPs is a ―construct that … describe[s] 

instructional activities that aim to direct students‘ attention to their conceptions 

[understandings, beliefs, etc.] about a particular mathematical topic [such as problem 

solving]‖ (ibid, p. 322).  CAPs at the beginning of the intervention can help students 

become more aware of their original beliefs, while CAPs at the end can help them 

reconsider these beliefs in relation to new beliefs provoked by the intervention. 

The assumption underlying feature B1 is that the more aware students are of their 

existing beliefs, the more likely they will be to problematize and potentially change 

these beliefs when they engage in a problem-solving situation that challenges their 

existing beliefs and encourages the formation of alternative beliefs.  This assumption 

finds support in the literature.  For example, Nespor (1987) noted the following: 

[Trying to change or shape teachers‘ beliefs] would mean helping teachers and 

prospective teachers become reflexive and self-conscious of their beliefs and, as 

Fenstermacher [1979] suggests, presenting objective data on the adequacy or validity of 

these beliefs.  However, this can result in transformations of teachers‘ beliefs and 

practices only if alternative or new beliefs are available to replace the old. (p. 326)  

The features we discussed in Component A, along with the experience of solving the 

problem, are expected to provide students with objective data that they can use to 

judge the validity of their original beliefs and begin to develop new ones. Feature B2 

concerns the instructor‘s critical role in the implementation of the problem 

(Stylianides & Stylianides, 2009).  We view the instructor as the representative of the 
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mathematical community in the classroom and thus as the guarantor that the 

development of new knowledge will be consistent with conventional understandings 

(feature B2a).  Also, the instructor organizes and facilitates social interactions among 

the classroom participants so that new knowledge in the classroom (including 

solutions to mathematical problems) is interactively constituted (feature B2b).  

Related to the latter aspect of the instructor‘s role is the implementation by the 

instructor of scaffolding strategies and CAPs.   

METHOD 

The findings we report in this paper were derived from the last research cycle of a 4-

year design experiment (e.g., Cobb et al., 2003) we conducted in a semester-long 

mathematics course for prospective elementary teachers in the United States.  The 

design experiment included 5 research cycles of implementation, analysis, and 

refinement of a set of instructional interventions that aimed to promote students‘ 

mathematical knowledge (including beliefs).  The students pursued different majors 

and tended to have weak mathematical backgrounds.  Our overarching objective was 

to develop effective instructional interventions to promote hard-to-achieve goals and 

also theoretical frameworks that would help explain how the interventions achieved 

their goals.  Only one of the interventions explicitly aimed to promote the 4 goals we 

focus on here.  This intervention was implemented toward the middle of the course.     

The problem used in the intervention: a solution outline and design features 

Below is the problem we used in the focal intervention, called the Blonde Hair 

Problem (BHP).  This is a slightly modified version of a problem we found in 

Philippou and Chiristou (1995, p. 132).  Next we outline a solution to the problem 

that our students develop by the end of their engagement with the problem.  

 

The first hint (line 5), together with the fact that the ages are natural numbers (line 

15), reveals that there are 8 possibilities for the children‘s ages. With regard to the 

second hint (lines 8-9), although we are not told the number of Pythagoras‘ address, 

we can infer that Pythagoras knows this number since he is trying to see how this 

hint could be useful to him (line 10).  Eventually, Pythagoras concludes that he is 

still unable to figure out the children‘s ages (lines 10-11).  This suggests that there 

are at least 2 possibilities in which the sum of the ages is equal to the number of 
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Pythagoras‘ address; the only two possibilities in which this happens are 1, 6, 6 and 

2, 2, 9.  In the final hint (line 12), the hair color is a distraction; the relevant 

information is that there is an oldest child.  So the ages of Hypatia‘s children are 2, 2, 

and 9.  (Given that the ages can only be natural numbers, for a child to be recognized 

as older than another child their ages should correspond to different natural 

numbers.) The BHP fulfills features A1-A4 of our theoretical framework.  Regarding 

feature A1, it has a memorable name, which includes a color referent that is not only 

atypical for names of mathematical problems but also a distraction to the problem‘s 

solution.  The BHP provides only 2 numbers (3 and 36), which are the only clearly 

identifiable mathematical referents in the problem and by themselves offer 

insufficient data for a solution (feature A4).  Also, it includes some distractive 

information (e.g., the hair color) and some ―mystifying‖ information, which however 

turn out to be crucial for its solution (e.g., that Hypatia had an oldest child).  Thus, 

the problem may initially appear to be unsolvable (feature A2).  Features A2 and A4 

are further satisfied by the fact that the BHP cannot be solved by application of a 

formula and does not fit in any traditional domain (algebra, geometry, etc.).  

Regarding feature A3, the BHP can be solved using only basic concepts and 

systematic listing/elimination of cases, and so it can be accessible to students of 

varied backgrounds (feature A3a).  Also, its solution involves 3 milestones, each 

corresponding to one of the hints (feature A3b).   

Implementation plan for the problem in research cycle 5 

The problem‘s implementation was done according to a highly refined lesson plan 

(outlined below) that we developed during our design experiment.  The lesson plan 

derived from: critical comparison between different versions of the plan over the 5 

cycles of the design experiment and the relative success of these versions in 

promoting Goals 1-4, relevant literature, and our emerging theoretical framework.  

1. The instructor presents a PowerPoint slide entitled ―Blonde Hair Problem‖ that includes 

the problem statement, without commenting on whether the problem is solvable or not.  

The students read the BHP and think about it individually.  After a few minutes students 

are expected to start laughing or wonder whether the instructor is joking with them by 

presenting to them such a ―weird‖ problem.    

2. When the students do that, the instructor maintains a serious tone and asks the students to 

respond individually and in writing to the following prompts (CAPs).   

CAP 1: Describe your initial reactions to the BHP. 

CAP 2: Does this problem differ in any way from most of the other problems you 

encountered in mathematics classes before?  If so, how? 

The instructor is careful not to say anything that could influence students‘ responses 

to the CAPs (e.g., that the problem is solvable).  CAPs 1 and 2 aim to help make 

students more aware of their original thoughts about the BHP, including their current 

beliefs about problem solving (cf. feature B1).   
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3. The instructor collects the students‘ responses to CAPs 1 and 2.  At this point, he assures 

the students that the BHP can be solved mathematically, encourages them to think 

carefully about the information that each hint may give them, and asks them to continue 

their work on the problem (first individually and then in their small groups).  Telling the 

students at this point that the BHP is solvable is important because, otherwise, many 

students would give up on the problem.  This instructional move is consistent with our 

view of the instructor as the representative of the mathematical community (cf. feature 

B2a) and the fact that students need some scaffolding (in this case 

encouragement/reassurance) in order to overcome their original conviction that the BHP 

is unsolvable (cf. feature B2b). 

4. The small groups work on the BHP independently until all of them come up with a 

solution.  It is important that all groups solve the BHP prior to a whole group discussion, 

because, otherwise, the groups that would not solve the problem would not benefit from 

the experience in regard to Goals 1, 2, and 4.  The instructor provides necessary 

scaffolding only to those groups that really need it. 

5. The whole class discussion focuses on the mathematics of the BHP, not on students‘ 

experience with solving the problem.  One of the small groups is asked to present first its 

solution for the consideration of the rest of the class.  Other groups present alternative 

solutions as appropriate.  Based on our experience, most groups will come up with all 8 

possibilities for the first hint, but few will list these possibilities in a systematic way to 

show that these are all the possibilities.  The issue of systematic enumeration is brought 

up for discussion by the instructor. 

6. The instructor provides some historical remarks on the 2 characters in the BHP and asks 

the students to respond individually and in writing to a new CAP. 

CAP 3: Describe your experience with working on the BHP. CAP 3 is intended to 

help students reconsider their original reactions to the BHP in relation to their 

subsequent experience of working on and solving the problem.  

7. The instructor collects the students‘ responses to CAP 3 and the class period ends (time 

elapsed: about 60 minutes).  At the beginning of the next period, the instructor returns 

students‘ responses to CAPs 1-3 and poses a new CAP: 

CAP 4: (A) Read your responses and compare what you wrote at the beginning of 

your work on the BHP [cf. CAPs 1 and 2] and at the end [cf. CAP 3].  (B) Share your 

observations with the other members of your small group.  

Activity A aims to help the students reflect on the anticipated sharp contrast between 

their reactions to the BHP at the 2 different stages of the problem‘s implementation.  

In communicating these observations to the other members of their small group in 

Activity B, the students are expected to become more aware of possible changes in 

their beliefs, thereby making it more likely that students‘ engagement with the BHP 

will become an influential episodic memory for them. 
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Data and analytic method 

The data come from the implementation of the focal intervention in research cycle 5, 

which was conducted in 2 sections of the course taught by the first author and 

attended by a total of 39 students.  The implementation in each section lasted 

approximately 75 minutes.  We used videos of the focal seminars and field notes of 

students‘ small-group work in order to create an account of how the BHP was 

implemented and examine whether it matched the lesson plan we outlined earlier.  

Also, we coded written data from all 39 students to assess their learning related to 

the 4 goals.  Students‘ responses to CAPs 1-3 offered data for examining the short-

term impact of the intervention.  Their responses to a question in the last homework 

assignment of the course (2 months after the implementation of the BHP) offered 

data for examining its possible long-term impact.  In that homework question, we 

asked the students to individually consider all the activities done in the course (more 

than 40 activities), identify 3 activities they felt contributed the most to their 

learning, and write a paragraph for each activity explaining what they found useful 

about it.  A notable methodological consideration is the open phrasing of the 

questions.  By not directly eliciting student comments related to the 4 goals in CAPs 

1-3 and the homework question, we aimed to obtain valid data about the possible 

effectiveness of the intervention.  We coded independently all responses, compared 

codes, and discussed disagreements until we reached consensus.  We did not code 

students‘ responses to CAP 4, for these were based on their responses to CAPs 1-3.   

Coding students‘ responses to CAPs 1-3 

Regarding Goal 1, the relevant data came from the combined consideration of 

students‘ responses to CAPs 1 and 3.  We coded students‘ responses to CAP 1 using 

2 codes: (a) ―the problem is unsolvable‖ and (b) ―do not know how to solve the 

problem.‖ Although it was possible for a student to produce a response that fitted 

neither code, all responses ended up receiving one of the 2 codes. A precondition for 

us to say there was evidence a student made progress in Goal 1 was that the student‘s 

response to CAP 1 received code a. No claim could be made for responses that 

received code b. For the subset of students whose responses received code a, we also 

examined their responses to CAP 3 to see whether there was evidence to suggest they 

got any insights related to Goal 1. Such evidence included comments that a problem 

they originally perceived to be unsolvable was actually within their capabilities. 

Regarding Goals 2 and 4, we examined students‘ responses to CAP 3.  Depending on 

whether there was evidence for one or both goals, each response to CAP 3 could 

receive a code for one or both goals.  Regarding Goal 3, the relevant data came from 

the combined consideration of students‘ responses to CAPs 2 and 3.  Given that no 

student explicitly wrote in response to CAP 2 that the BHP was a legitimate or a 

solvable problem, students‘ responses to CAP 2 could not provide by themselves 

sufficient support for learning related to Goal 3.  There needed to be also some 

evidence in their responses to CAP 3 to indicate an expansion in their conceptions of 
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the nature of referents a (legitimate) mathematical problem can have.  A student‘s 

response to CAP 3 could potentially provide by itself sufficient evidence for Goal 3.  

Coding students‘ responses to the homework question at the end of the course 

We analyzed students‘ responses to the homework question at 2 levels.  At the first 

level we identified all the students who included the BHP in their list of 3 activities 

and we examined whether there was evidence in their responses to suggest 

understanding related to each goal.  A response could receive up to 4 codes (one 

corresponding to each of the 4 goals).  At the second level we focused on the 

students we identified in the first level, and we examined whether a student‘s 

response to the last homework assignment got any of the same codes that the student 

got for his/her responses to CAPs 1-3.  Repeated codes were considered as evidence 

for sustained (long-term) student learning related to the goals that corresponded to 

those codes. 

RESULTS 

The implementation of the intervention in the 2 sections of the course played out in 

almost identical ways, and was faithful to the lesson plan.  So below we discuss 

together our findings based on data from all 39 students in the two sections.      

Short-term impact of the intervention: Responses to CAPs 1-3 

For each goal, students‘ responses to CAPs 1-3 offered evidence that more than 35% 

of them developed understanding related to that goal: 36% for each of Goals 3 and 4, 

54% for Goal 1, and 77% for Goal 2.  Regarding Goal 1, out of the 26 students who 

had originally deemed the BHP unsolvable (thereby setting 67% to be the maximum 

possible percentage for Goal 1), 21 of them ended up recognizing that a problem that 

appears to be unsolvable can actually be solvable and within their capabilities.    

Long-term impact of the intervention: Responses to the last homework question 

Given that the students could choose from more than 40 activities in the last 

homework question, we can say that the number of students who included the BHP 

in their list of 3 activities was a lower bound of the actual number of students who 

found the BHP important for their learning: for some students, the BHP could come, 

for example, 4th or 5th on their lists, but they could only list 3 activities (the data do 

not allow us to investigate this issue further).  Also the fact that the question was 

asking students to identify and comment on the influence of individual activities 

rather than on collections of activities that had a specific effect on their learning 

helped address the issue of the possible contribution activities other than the BHP 

had on students‘ problem-solving beliefs.  The lower bound we identified for the 

long-term impact of the intervention was markedly high: 13 students.  The responses 

of 77% of these students offered evidence of understanding related to each of Goals 

1 and 2.  The corresponding percentages for Goals 3 and 4 were 54% and 46%. 
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To explore sustained learning, we checked whether a student‘s response to the last 

homework assignment got any of the same codes the student got for his/her 

responses to CAPs 1-3.  The percentages of repeated codes for each of Goals 1-4 

were 88%, 82%, 57%, and 100%, respectively. Thus, we may say that the 

intervention had a rather long-lasting effect on students‘ learning. In their 

explanations about why they chose the BHP in their list of 3 activities, students 

articulated broader implications of their engagement with the BHP for their problem-

solving beliefs, which is a positive outcome of the intervention.  For example, Aleara 

(all names are pseudonyms) noted that her engagement with the BHP changed her 

―whole outlook on how to solve problems‖ and learnt that one does not ―need 

specific numbers, or even variables, when solving a problem.‖ ira said she used to 

get angry and give up when she was given a problem she did not think she could 

solve; she ―either didn‘t do it or waited for someone else to solve it and copied their 

answer.‖  Her experience of independently solving the BHP was fulfilling and helped 

challenge her prior way of thinking about problem solving. Finally, Evans noted that 

the BHP taught him the importance of perseverance. 

DISCUSSION 

The combined evidence for the short- and long-term impact of the intervention was 

more robust for Goals 1 and 2.  The similar outcomes in relation to these 2 goals 

might be explained in terms of their possible relationship.  Students who hasten to 

conclude that certain problems are ―unsolvable‖ are likely to lack perseverance with 

working on such problems.  The converse can also be true.  Although the impact of 

the intervention in Goals 3 and 4 was not as powerful as in Goals 1 and 2, the 

positive results are encouraging given the short duration of the intervention and the 

difficulties encountered by research and practice in promoting Goals 3 and 4.  A 

possible explanation for the lower impact in Goal 3 is that changes in students‘ 

beliefs about the legitimacy of different referents in a problem would require 

students to carefully examine the referents in the BHP.  For methodological reasons, 

we avoided channeling students‘ activity to any particular direction (cf. the open 

phrasing of CAPs), and so we did not guide students to conduct such an examination.  

Regarding Goal 4, the lower impact of the intervention might be attributed to the 

challenges involved in getting university students who tend to have negative 

attitudes towards mathematics to explicitly say that problem solving can be 

enjoyable. The contribution of the paper is not limited, however, to showing that the 

focal intervention ―does‖ or ―can‖ promote the 4 learning goals.  Consistent with the 

2 primary intents of design experiments, our design experiment had, in addition to 

the pragmatic concern to promote the 4 goals, a theoretical concern to explain how 

the intervention supported the goals.  Due to the lack of a randomized controlled 

experiment, we could not establish the specific contribution of each design and 

implementation feature in promoting each goal.  However, we identified a ―package‖ 

of design and implementation features whose collective function can yield the 
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desirable outcomes.  The multiple research cycles of our design experiment enabled 

us to compare different versions of the intervention, thereby allowing us to identify 

weaknesses of the early versions of the package and generate possible explanations 

for what provoked these weaknesses that informed subsequent refinements. 

Regarding the issue of replicating the intervention in other settings, the following 

aspects of the intervention suggest its potential to be successfully incorporated into 

different educational programs at both the school and university levels: (a) it has a 

short duration and a stand-alone nature; (b) it involves ideas that are accessible to a 

wide range of student populations; (c) it targets beliefs that prevail in a wide range of 

student populations; and (d) its design and theoretical underpinning were not 

contingent upon special characteristics of the research participants in our study. 
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In this paper arguments are presented for a qualitative approach to researching 

affect in order to illuminate a richer, more complex and more dynamic motivational 

and emotional landscape in relation to children‘s experience of school mathematics. 

Reversal Theory is introduced as an approach to motivation and emotion which can 

provide a richer description of the phenomena than has been done hitherto. Data 

from the literature is re-analysed using Reversal Theory as a lens to provide 

insights. Conclusions are drawn about the implications for future research. 

Keywords: Disaffection; Motivation; Attitude to School Mathematics; Reversal 

Theory 

INTRODUCTION 

Disaffection 

Disaffection with school mathematics education is a major problem. It is not just an 

educational problem, but an individual tragedy as well as having social and 

economic consequences. In the last 30 years there has been a great deal of research 

on attitudes to mathematics, much of it documenting and quantifying the worryingly 

high level of negative attitudes to mathematics amongst young people (Underwood, 

2009). 

A recent report into mathematics education by the Royal Society notes the 

widespread nature of current concern, ‗no decade since the 1970‘s has seen so much 

being written about the disaffection young people appear to have for science and 

mathematics‘ (The Royal Society, 2008, p.171). The report points out that there has 

not been enough quality research into this area, and cites only three studies in 

relation to mathematics. 

Affect and Attitude 

In order to understand disaffect, it is important to understand affect. However, this is 

not easy to accomplish as the field is fragmented and confusing (Hannula , 2006; Zan 

& Di Martino, 2007). Theorisation of affect has been strongly influenced by the 

framework suggested by McLeod (1987), and this has informed the CERME 

working model of affect (Hannula et al., 2010). However, research to date on affect 

has been dominated by attention to attitude. Although the study of attitude has 

helped to identify and document disaffection with school mathematics, and has 

provided useful comparative data across countries, gender and social class, it has not 

provided explanatory evidence for achievement (Furnham, 2009;  Ma & Kishor, 
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1997). Thus there is strong evidence of a consensus that real insight and explanation 

will only come with a widening of the study of affect. 

Schorr and Goldin (2008) argue : 

 ‗We share with other researchers the need to study affect more deeply than the study of 

attitude permits.…But it is increasingly clear that the functioning of affect is far more 

complex than is suggested by considerations of positive versus negative emotions and 

attitudes.‘(p.132) 

WIDENING THE STUDY OF AFFECT : MOTIVATION AND EMOTION 

To investigate disaffection more fully, I propose that a focus on motivation and 

emotion, and a widening of the methodologies used will provide a deeper, richer and 

more dynamic picture of the landscape, and thus create new insights. More recently, 

there have been studies giving a more fine-grained picture of motivation and affect in 

educational settings (Op't Eynde, De Corte, & Verschaffel, 2006; Zan & Di Martino, 

2007). 

It has been argued that classroom contexts, pedagogy and teacher attitude and 

behaviour are critical to engaging the motivation of students (Boaler, 2010; Pintrich, 

2003; Zembylas, 2005). But there is a need to understand more fully the motivational 

factors that influence how students engage or disengage in mathematics. One such 

study was conducted by Nardi & Steward (2003). They used the acronym TIRED to 

describe the factors identified.
27

 Yet underneath these broad factors there are 

motivational mechanisms and needs involved that need further investigation. 

Much of the literature on motivation has focused on achievement goals, but it has 

been argued that a broader research focus is required to capture the richness of 

motivational impact (Weiner, 1990). To do this, it is necessary to delve more deeply 

into aspects of motivation and emotion to find exactly what is going wrong for 

disaffected individuals. Vygotsky (1986) argued that cognition and affect are 

indivisible, and that emotion, motivation, attitude and beliefs all interrelate in a 

seamless web. He advocates a more holistic approach, as does Zembylas (2005), 

arguing that we can understand the inter-relatedness of motivation, emotion, values, 

goals and beliefs (in addition to cognition) - what Vygotsky called the ‗fullness of 

life‘ – via the use of ethnographic methodologies which he believes create space for 

the voices of those studied. 

Aside from achievement goals, there are other formulations of motivational needs. 

One such influential formulation is that the basic needs are for competence, 

autonomy and relatedness (Deci & Ryan, 1985). However, as research has begun to 

develop a more detailed, qualitative picture of motivation and emotion, a good deal 

of complexity has been encountered. At the same time, a range of motivational 

                                           

27
 TIRED stands for : Tedium; Isolation; Rote learning; Elitist; Depersonalisa 
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factors and motivational and emotional phenomena that do not fit neatly into current 

theorisations have emerged, as the following makes clear. 

Evidence of Motivations : 

Schorr and Goldin (2008) point out that the complexity of affect in the social 

contexts of mathematics classrooms is exceptionally difficult to characterise for the 

purposes of research. The variety of emotions they report was substantial, including: 

curiosity, anticipation, frustration, anger, fear, excitement, pride, pleasure, elation, 

satisfaction. They note a number of important aspects of the motivational climate that 

encourages students to engage with the mathematics. These include an emotionally 

safe environment; the central importance of social interactions; relationships based 

on dignity and respect. Important as these are, it is not clear how they relate to 

motivational needs.  

Swain (2005) studied the complex and multiple motivations of adult underachievers 

adopting mathematics education later in life, and found that ‗to help my children; to 

prove that I can do it; for understanding, engagement, enjoyment‘ were more 

frequent and important motivators than utility. Swain also reports evidence of the 

excitement and pleasure of these adults in being able to do mathematics, ―It‘s 

exciting.‖‖ I enjoy doing it.…‖ ―It gives you a buzz....it‘s exciting.‖ Again we come 

across evidence that mathematics can be a source of pleasure and satisfaction for its 

own sake. Such evidence is also reported in Buxton (1981, p.132). 

Theorising about emotions in the literature has been dominated by attention to 

anxiety or a limited set of negative emotions, and yet a whole range of other 

emotions has been reported, as referenced above. It has proved difficult to provide 

any theoretical or explanatory framework for many of these emotions, and they are 

rarely related to other aspects of motivation or affect. For instance, how does anger 

occur? How does excitement relate to motivation? These are important questions that 

need to be explored in a research setting. The CERME working group has set the 

agenda: 

‗One apparent main focus for research and practice in this domain has been to develop 

richer theoretical frameworks using aspects and develop better concepts and instruments, 

preferably combining qualitative and quantitative methods. The frameworks should 

recognise the close relation between beliefs, motivation and competence.‘ (Hannula et al., 

2010, p.32) 

One such framework that addresses these challenges is Reversal Theory.  In the rest 

of this paper I set out some key aspects of the theory, and an analysis of data sources 

from the literature that evidence the application of the theory in the context of 

mathematics education. 
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REVERSAL THEORY 

Reversal Theory was developed over 30 years ago as a way of trying to explain and 

illuminate problematic behaviour of young people. This led to a focus on the 

subjective experience and the meanings ascribed by children to their own behaviour. 

The foundation of the theory is the structure of the motivational landscape, and its 

constituent eight motivational states. Time and space will not allow a detailed 

exposition of the theory, but a full description can be found in the literature, and is 

perhaps summarised best in Apter (2001). A motivational state is defined as a 

distinctive orientation to the world based on a fundamental psychological value. 

Methodologically, Reversal Theory is a structural phenomenological approach, in 

that it begins with subjective experience, but seeks to find structure in the complexity 

of that experience. Our experience is ordered into four fundamental domains: 

  means-ends, about directionality or purpose;   

  rules, including expectations, conventions, norms, customs, and the constraints 

put on us by social contexts of various sorts;  

  transactions, which is those people or things we interact with; and  

  orientation, which is a focus on self or identification with external entities – 

‗the other‘. 

One of the key insights of Reversal Theory is that we can experience each of these 

four domains in two, entirely opposite ways. So, for instance, with the means-ends 

domain, we can experience it as focusing on the goal or outcome, or we can 

experience it as focusing on the journey rather than the destination.  The former is 

defined as the telic motivational state (or serious in everyday language). The latter is 

defined as the paratelic or playful state. In the case of the former, we are interested in 

goals or outcomes, and progress towards them. The latter involves doing things for 

their own sake – in effect, for the pleasure and excitement for its own sake.  

This aspect of our motivational make-up has strong resonance in many aspects of 

human experience, but it is not well represented in current theorisations of 

motivation. Specifically in the educational context, there is significant evidence that 

fun and excitement (both associated with the paratelic state) are important. The 

evidence from (Buxton, 1981; Swain, 2005) and others, above confirms this. One of 

the advantages of Reversal Theory as a framework for studying motivation in an 

educational context is that is does account for phenomena that are evidenced in 

research, but which resist classification in terms of current theorising. Examples 

include : 

 the notion that high arousal can be experienced in a pleasant way (as 

excitement or thrill). This runs counter to the notion, often adopted in mathematics 

education research, that high arousal is always experienced negatively (as fear or 

anxiety). 
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 That motivationally, goals do not always drive our experience and behaviour. 

 Reversal Theory proposes motivational needs that are poorly explained or 

absent from current motivational research in education. These include: rebelliousness 

and anger; altruism – the need to help others. It will be instructive to see if there is 

evidence of these in mathematics education contexts, and to widen the theoretical 

base to include them. 

 The theory gives an account of primary emotions and their relationship to 

motivational states. 

What Reversal Theory states is that one will always (at any one moment) experience 

the world as either serious (telic) or as playful (paratelic), but never both at the same 

time. What is very different about this treatment of motivational states (as opposed, 

for instance to trait descriptions), is that we frequently reverse between states. 

The other domains and states describe aspects of our motivational experience. The 

domain of rules can be experienced as conformity or negativism. The domain of 

transactions can be experienced as mastery or sympathy, and relationships can be 

experienced as self-oriented (autic) or other-oriented (alloic). When we are in a state, 

it colours every aspect of our felt experience – from what we are paying attention to, 

to what we value, to how we view events, and the emotions we experience. More 

specifically, each motivational state has associated a value, a feeling, a way of 

experiencing, and associated emotions. People move between states (and 

combinations of states) frequently. And since these states are opposites, not only are 

we bi-stable, but we are multi-stable. That is, we can literally, be different people at 

different times. In this way, Reversal Theory captures the dynamic and changeable 

(and even contradictory) aspects of our personality, emotions and motivation. 

In summary, we can see that our motivation shifts around (by reversals and by 

changes of focus) in a dynamic flow. There is strong evidence to show that 

motivational efficacy and psychological health requires that we have available and 

experience all eight states in the daily course of our lives, and psychological 

dysfunction caused by inability to do this is well documented (Apter, 2001). It is 

very interesting to speculate how, and to what degree these eight states are available 

to students (or not) in typical mathematics lessons. 

REVERSAL THEORY IN MATHEMATICS EDUCATION: TWO 

EXAMPLES 

Reversal Theory has been applied successfully as an explanatory framework in many 

areas of human experience, such as child guidance, psychotherapy, drug addiction, 

anti-social behaviour, smoking cessation, sporting performance (Apter, 2001). In 

educational terms it has been used much less. In the UK the Learning and Skills 

Council evaluated a psychometric instrument based on the theory very positively, 

and stated: ‗There is an impressive amount of empirical evidence which supports 
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Reversal Theory ...which has major implications for how we think about learning 

styles.‘ (Coffield, Moseley, Hall, & Ecclestone, 2004, p.54) 

The first step in my own research has been to identify data and evidence for the 

constructs set out In Reversal Theory. Two examples will be briefly described here. 

Reversal Theory perspective on the case of Frank 

The case study of Frank (Op't Eynde & Hannula, 2006) was addressed by the 

contributors to the issue of Educational Studies in Mathematics, devoted to affect. 

An alternative analysis is presented here. 

Perhaps the most interesting data about Frank is the map of his dynamically 

changing emotions. Using the ideas from Reversal Theory we can use the sequence 

of his emotions to infer the motivational states. Frank is reported as being a little 

nervous about the task, and this suggests that he is in the serious state. In fact, in 

subtask 1 we see that he is worried, which suggests serious/high arousal. This is 

likely to be caused by the problems he encountered in his progress. However, he then 

finds a solution, arousal decreases, and he becomes relieved. Reversal theory 

predicts that in the serious state the emotion will move from anxiety to 

relaxation/relief as arousal lowers (as the solution is found). 

In subtask 2 he again encounters a problem and gets stuck. This time he panics. I 

interpret this to be a stronger form of anxiety, due presumably to his perception of 

the depth of his ‗stuckness‘. That is, he can‘t see a way to progress. The panic causes 

him to reach for the calculator, which is seen as a strategy to make progress. It is 

possible that the panic is amplified by the fact that using the calculator brings him 

into conflict with other aspects of his motivational system (e.g. possibly a mastery-

based self belief that if you are clever, you don‘t need it). Without the data, we can 

only speculate. However, he does invoke a sound learned strategy for dealing with 

problems (and unpleasant high arousal) in mathematics contexts – stop and think. 

This seems to work, as he says ‗I know again what I have to do‘. The emotions map 

shows that at some stage the panic changes to frustration/anger. This indicates that a 

reversal has taken place. His inability to make progress in the serious-conforming 

state has triggered a reversal from conformist to rebellious state, and the anxiety has 

now changed to anger. He now seeks to move outside of his own norms – to break 

the rules (whatever they are perceived to be). Is this where he impulsively reaches for 

the calculator? 

When he finally reaches the end the emotion reported is pride. This suggests a shift 

of focus from the serious (which appears to have been the operative state so far) to 

that of self-mastery with the felt transactional outcome being experienced as 

winning. This analysis enables us to evidence the dynamic flow through motivational 

states within the problem-solving process, and more specifically we are able to relate 

states to the associated emotions. We can see also evidence of reversals, and change 

of focus of motivational state. 
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Quiet disaffection revisited 

The qualitative research by Nardi and Steward (2003) is one of the most influential 

analyses of disaffection with school mathematics. Below is a summary of the 

analysis of one of the interviews conducted with two 14- year old girls. Clearly, the 

interviews were not conducted with the intention of examining the complete 

motivational and emotional landscape for each participating individual. Nonetheless, 

it is possible to determine, even from this short extract, some key aspects of 

individual motivational factors. I identified in the interview transcript any 

motivationally or emotionally significant statements or segments. There were 

approximately thirty such statements. For each one the implied motivational 

inferences were tabulated.  

Examples include : 

―I don‘t like being shouted at‖   ―I need things explaining‖ 

―I like it when it‘s fun‖    ―I remember it better when it‘s fun‖ 

―I need to know why it‘s important  ―I need to know the rules‖ 

―Not knowing the answer makes...  ―I enjoy it more when I understand it‖ 

..me feel stupid‖ 

―Maths makes me panic. (then)...  ―I need to do it my own way‖   

..I don‘t know what to do‖  

―Talking to friends helps me to understand‖ 

If I use Reversal Theory as a framework or as a lens to refract the data through, I 

encounter these points: 

(Self)Mastery. The need to understand is a very strong focus for the interviewees. 

There are many statements here reflecting that. Having something explained to us is 

an important component of being able to understand. When I understand it I can do 

it, and when I can do it I enjoy it more. Not understanding can leave us feeling 

powerless (‗oh my god I can‘t do it‘), or humiliated. There are a numerous comments 

about feeling stupid. There is also evidence here of the issue of agency. For student 

J, there is clearly a power tussle in which she obviously needs to assert her own way 

of doing things. 

Seriousness. Many of the comments here are about the lack of a sense of purpose. 

They demonstrate that both girls need to know why they are doing this. Comments 

like ‗what‘s the point in it?‘ and ‗I don‘t see what it would help us with‘ can be 

viewed as cries for a sense of purpose and direction. 

Playfulness. Playfulness is not about play in the everyday sense of the word, but 

about enjoyment in the moment. It is related to fun, but also to excitement, intrigue, 

curiosity. It is arousal-seeking, and so is also often associated with risk-taking. 
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However, when arousal is low, playfulness will be experienced as boredom or 

sullenness, and there is good evidence of that here. It is interesting to note that ‗fun‘ 

is mentioned a number of times by both girls. They make the association with being 

more interested, paying more attention and remembering better. Activities that were 

‗different‘ (i.e. not following the book) sparked playfulness, as did practical 

activities like looking through catalogues. 

Conformity and rebelliousness. Conformity is about fitting in – complying with the 

norms, expectations and rules of the socio-cultural environment. There are quite 

specific and distinct rules and expectations that operate in mathematics classrooms 

(even though they may not be explicitly codified), and students will want to know 

what they are. Comments like ―I don‘t get most of maths. It‘s really weird.‖ ‖I do 

everything differently to Mrs R because I don‘t understand how most of the time‖, 

give away the discomfort caused by the students not understanding the ‗rules of the 

game‘. And even when they do, it is sometimes not sufficient to create mastery (―you 

remember how to write it out but not how to do it.‖) This is particularly interesting, 

because there is often a received notion that all pupils need to do in school 

mathematics is to follow the rules and the correct answer will follow. This evidence 

shows that even disaffected students (or maybe especially disaffected students) know 

that this is not the case. In contradiction to this, all healthy individuals will also 

spend time in the rebellious state, and will need to express this in some way. This is 

rarely legitimised in a school setting, and perhaps in mathematics classrooms least of 

all. Unfortunately, this is an opportunity lost, as constructive cognitive and 

behavioural rebelliousness can be extremely creative, and is a requirement for 

mathematicians at a higher level.  

In these sequences, we do see evidence of rebelliousness operating. For student C, 

boredom or sullenness creates the need to raise arousal levels, and when associated 

with the rebellious state, involves doing something ‗naughty‘ (‗winding up my little 

brother‘) to raise arousal. Playfulness + rebelliousness + low arousal can cause 

problems when expressed in a classroom (as every teacher knows!). What is 

interesting is that C knowingly chooses to express this outside of the classroom, 

which demonstrates and element of mature self-regulatory behaviour. An element of 

rebelliousness is also expressed later by C in her rejection of the teacher‘s way of 

doing things, and her assertion of her need to do it her own way. 

Sympathy and other. There is some evidence here of the importance of 

relationships, and the need for affinity. Many comments refer to the need to have 

friends around. But friends also play a quite specific role in terms of being able to 

discuss, and the need to ask questions and receive explanations.  

There is also evidence of interesting motivational sequences reported here. One is: 

‗Maths makes me panic. When I panic I don‘t know what to do. When I don‘t know 

what to do I feel stupid.‘ Motivation here shifts from serious to self-mastery (losing). 

Another sequence goes: ‗I need to understand. When I understand, I can do it. When 
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I can do it, I enjoy it more.‘ The sequence moves from self-mastery (winning) to 

paratelic enjoyment. It will be interesting to find evidence of other such sequences in 

further research. 

So we can see from this interview evidence of all states being operative in the 

mathematical experience of these two girls. Of course, because we are in a state, does 

not mean we experience it positively or gain the satisfaction from the state, and that 

is often the case here. 

CONCLUSION 

Recognising the agenda of the CERME working group on affect, ideas have been 

presented from a wider point of view than the study of attitude and beliefs, and I 

have presented a theoretical framework that offers one answer to the call for a more 

holistic approach that relates motivation to emotion and other aspects of affect. 

Reversal Theory has significant potential to provide an explanatory framework for 

mapping the motivational and emotional landscape of students in mathematics 

classrooms, and to provide a coherent basis for integrating theory about different 

aspects and contructs in the affective field. 

The next stage of my research is to apply a multi-method approach to  investigating 

how these phenomena manifest in the experience of young people in mathematics 

classrooms. 
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The present study aims to investigate what factors affect students‘ dispositions to 

study further mathematics in Higher Education (HE) and the role of students‘ maths 

self-efficacy in particular. A questionnaire was designed for the purposes of this 

study and was distributed to 563 adolescent students in Cyprus. The validity of the 

scales designed to measure students‘ dispositions and maths self-efficacy was 

investigated using the Rasch model. It was found that students‘ maths self-efficacy 

had a statistically significant effect on students‘ dispositions to study further 

mathematics but when students‘ mathematics course was included in the model 

maths self-efficacy was not statistically significant anymore. Possible reasons for the 

non-significant effects are discussed drawing on some qualitative data from this 

study. 

Keywords: dispositions, further mathematics, HE studies, mathematics self-efficacy  

LITERATURE REVIEW 

The problem of students dropping out of mathematics, especially advanced 

mathematics has become one of the major contemporary concerns of educators, 

parents and politicians (Ma, 2001). Students‘ dispositions towards mathematics 

influence their decisions to choose advanced mathematics at school and to pursue 

further studies in mathematically demanding courses in Higher Education (HE). A 

considerable number of studies have investigated the role of students‘ mathematics 

self-efficacy in students‘ decision making for choosing a major course (e.g. Betz & 

Hackett, 1983; Hackett & Betz, 1989; Pajares & Miller, 1994). Most of these studies 

support Hackett‘s argument (1985) which highlights the critical role self-efficacy 

beliefs play in the academic and career choices of students.  

The importance of considering students‘ self-efficacy beliefs, in addition to test 

scores is stressed in recent research findings, mainly because of its positive effect on 

students‘ academic choices (e.g. Pajares & Miller, 1997; Chen & Zimmerman, 2007). 

Chen and Zimmerman (2007) argue that perceived academic self-efficacy positively 

influences students‘ academic choices, academic performance, effort and persistence 

as well as choices in careers related to mathematics and science. Nevertheless, the 

relationship between self-efficacy and outcome expectations is not always consistent. 

According to Usher and Pajares (2009) ―a student reasonably confident in her 

mathematics capabilities may choose not to take an advanced statistics course‖ 

(p.89). 



Working Group 8 

 CERME 7 (2011)  1230 

Bandura (1986) initially defined the notion of self-efficacy as "people's judgments of 

their capabilities to organize and execute courses of action required to attain 

designated types of performances" (p.391). With regards to mathematics, Hackett 

and Betz (1989) defined mathematics self-efficacy as ―a situational or problem-

specific assessment of an individual's confidence in her or his ability to successfully 

perform or accomplish a particular [mathematics] task or problem‖ (p. 262). 

Mathematics self-efficacy has been assessed broadly in terms of individuals' 

judgments of their capabilities to solve specific mathematics problems, perform 

math-related tasks, and succeed in math-related courses (Betz & Hackett, 1983).  

Bandura (1986) cautioned that, because judgments of self-efficacy are task and 

domain-specific, "ill-defined global measures of perceived self-efficacy or defective 

assessments of performance will yield discordances" (p. 397). As Pajares and Miller 

(1995) point out measures of self-efficacy should be specifically tailored to the 

criterial task being assessed. They argue that mismatch between self-efficacy and 

criterial task assessment is a recurring theme in educational research, often 

producing confounded relationships and ambiguous findings.  

Pajares and Miller (1995) also remarked that the confidence assessment should 

consist of students' judgments of their confidence to solve specific problems rather 

than of global confidence statements infused with personal judgments of self-worth. 

In addition, they argued that such global statements decontextualise efficacy beliefs 

and transform the construct of self-efficacy into a generalized personality trait rather 

than the context-specific judgment Bandura (1997) suggested it should be.  

In a recent study in England, called ―Keeping open the door to mathematically 

demanding courses in Further and Higher Education‖, Wake and Pampaka (2007) 

reported the use of contextualised questions with mathematics problems to measure 

students‘ mathematics self-efficacy and to investigate its effect on students‘ 

dispositions to study further mathematics. They argue that students‘ mathematics 

self-efficacy is a multidimensional construct which could be measured separately for 

applied and pure mathematics. Furthermore, Pampaka, Kleanthous, Hutcheson and 

Wake (in press) found a positive effect of students‘ mathematics self-efficacy on 

students‘ dispositions to study further mathematics in HE, and they noted the effect 

of gender and mathematical attainment on students‘ mathematics self-efficacy. 

The present study aims to investigate the effect of students‘ mathematics self-

efficacy on their dispositions to study further mathematics in HE in a different 

cultural context, namely Cyprus. We build on previous research by Williams et al. 

(2008) for the ESRC-TLRP project ―Keeping open the door to mathematically 

demanding courses in Further and Higher Education‖ which investigated students‘ 

dispositions to study mathematically demanding courses in HE and the effects of 

different socio-cultural backgrounds. We hypothesise that students‘ mathematics 

self-efficacy will have a positive effect on students‘ dispositions to study further 

mathematics as the literature in different educational contexts suggests.  
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METHODOLOGY 

For the purposes of this study a questionnaire was designed and distributed to 563 

students aged 16-17 years old, attending four different upper secondary schools 

(lyceums) in Cyprus (boys N=266, girls N=297). Additional semi-structured 

interviews were conducted with a subset of 22 students, who were selected according 

to the year group and mathematics course they were attending. We drew on 

previously validated instruments from the ESRC-TLRP project for designing the 

questionnaire used in this study. We used the same scale designed for the ESRC-

TLRP project, to measure students‘ dispositions to study further mathematics in HE 

(DISP.MATHS). The DISP.MATHS scale consists of 5 items aiming to capture 

information on students‘ dispositions to studying mathematically demanding subjects 

in the future in HE. This scale was translated into Greek and revalidated using the 

Rasch model. Cronbach α for this scale is α=0.93. An indicative item of the 

DISP.MATHS scale is the following:  

My preferred options for any future study will include: 

   a lot of mathematics 

quite a lot of mathematics  

a moderate amount of mathematics 

as little mathematics as possible 

no mathematics 

    Don‘t know 

In order to measure students‘ mathematics self-efficacy we used some items from the 

mathematics self-efficacy (MSE) scale designed for the ESRC-TLRP project, which 

consists of contextualised questions with mathematics problems (Wake & Pampaka, 

2007). Additional items were designed according to the mathematics curriculum for 

each year group. These were again contextualised questions with mathematics 

problems drawn from the national textbooks of mathematics for lyceum. The items 

for the MSE scale were presented by the question: ―How confident are you in your 

ability to solve each maths problem?‖. Students were asked to rate their confidence 

in solving sixteen mathematics problems ranging from 1= Not confident at all to 4= 

Very confident, without actually solving the problems.  

A total of thirty-one items were developed with twenty items drawn from the 

national mathematics textbook for lyceum and a further eight items drawn from the 

MSE scale used in the ESRC-TLRP project. Three additional items were included in 

the scale in ―pure‖ mathematics areas because most MSE items drawn from the 

ESRC-TLRP project dealt with modeling and applying mathematics (Wake & 

Pampaka, 2007). The thirty one self-efficacy items (sixteen on each questionnaire) 

were organised into four different versions of the questionnaire, which were 



Working Group 8 

 CERME 7 (2011)  1232 

appropriately adjusted according to the year group and mathematics course the 

students were attending (Advanced or Core mathematics). Cronbach α for the MSE 

scale was α = 0.91. Examples of a ‗pure‘ and an ‗applied‘ MSE item are given in 

Figure 1.  

D6. Solving equations in algebra with square roots, such as: I am … 
 

1 Not confident at all 

2 Not very confident 

3 Fairly Confident 

4 Very confident 

 

32793 2 xxx  

 

D14.Solving practical problems involving quadratic equations, 

such as: 

I am… 

 

    

 

A golfer hits a ball so that its 

height, h metres, above horizontal 

ground is given by h = 20t – 5t
2
. 

Find when the ball is 5 metres 

above the ground by solving 

5 = 20t – 5t
2
. 

 

Figure 1: An ‗applied‘ (bottom) and a ‗pure‘ (top) item from the MSE scale 

In summary, therefore, our MSE instrument meets Pajares and Miller‘s (1995) urge 

for specificity in assessment when measuring students‘ mathematics self-efficacy, 

due to its contextualised questions for eliciting students‘ self-efficacy in solving 

specific mathematics problems.  

FINDINGS 

The validity of the scales was investigated separately using Rasch analysis. 

According to Bond and Fox (2007) Rasch analysis provides indicators of how well 

each item fits with the underlying construct. Model fit statistics and item analysis 

was carried out for each scale using Winsteps, a software application for carrying out 

Rasch analysis (Bond & Fox, 2007). Tests of fit showed acceptable fit suggesting 

that our instruments could be used to measure the desired constructs, since there 

were no statistically significant misfitting items in any of the scales. 

Once the Rasch analysis was conducted to check scalability, a step-wise model 

selection procedure was adopted to build generalized linear models (GLM) in the 

statistical software ‗R‘. Students‘ mathematics self-efficacy (MSE) was used as an 

explanatory variable to model students‘ dispositions to study further mathematics 

(DISP.MATHS). Other variables used in these models were background variables 

1 Not confident at all 

2 Not very confident 

3 Fairly Confident 

4 Very confident 
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such as gender, socio-economic status (SES) measured in terms of their parents‘ 

occupation, and students‘ mathematics course (Advanced or Core mathematics). 

The model in table 1 shows the effect of MSE on students‘ dispositions to study 

further mathematics in HE (DISP.MATHS). Clearly the F-value (F=9.886, p=0.00) 

shows the model below is statistically significant although it can only explain 6% of 

the variance of DISP.MATHS (R
2
= 0.061). In this model MSE and gender were 

statistically significant for predicting students‘ dispositions to study further 

mathematics but students‘ SES was not.  

Table 1: Generalised linear model (GLM1) for predicting DISP.MATHS. 

 

In table 2 a second generalised linear model (GLM2) is presented with mathematics 

course (MATHS.COURSE) included in the model as an explanatory variable. When 

MATHS.COURSE was introduced in the model MSE and GENDER were no longer 

statistically significant. In the model below the F-value (F=54.5, p=0.00) shows the 

model is statistically significant and it explains 33% of the variance of 

DISP.MATHS (R
2
=0.3284). 

Surprisingly, when mathematics course was introduced in the model MSE was no 

longer statistically significant. In all the models built, students‘ mathematics course 

(MATHS.COURSE) was a statistically significant predictor for DISP.MATHS which 

might explain why the relationship between MSE and DISP.MATHS is not 

statistically significant. Apparently, students who are more self-efficacious in 

mathematics tend to choose Advanced mathematics at school so the effect of MSE is 

‗hidden‘ in students‘ choice of mathematics course. 

DISP.MATHS ~  MSE + SES + GENDER 

Coefficients     

 Estimate   Std. Error t-value p-value 

(Intercept)    -0.76231       0.26335         -2.895       0.00395 **  

MSE             0.30183       0.05924          5.095       4.82e-07 *** 

SES[T.low]     -0.42433       0.27809         -1.526       0.12762     

SES[T.medium]  -0.25212       0.26469         -0.952       0.34127     

Gender[T.Male]  0.49288       0.16640          2.962       0.00319 **  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Table 2: Generalised linear model (GLM2) for predicting DISP.MATHS. 

Further analysis showed that students who attend Core mathematics have lower 

mathematics self-efficacy (MSE) and are negatively disposed towards studying 

further mathematics in HE (DISP.MATHS). On the contrary, students who attend 

Advanced mathematics are more self-efficacious in mathematics and are positively 

disposed to studying mathematically demanding courses in HE. These differences are 

illustrated by the boxplots in figure 2. 

 

 Figure 2. Students‘ mathematics self-efficacy and dispositions by mathematics course 

 

DISP.MATHS ~ MSE + SES + GENDER + MATHS.COURSE 

Coefficients     

 Estimate Std. Error t-value p-value 

(Intercept)           0.58807        0.24083      2.442       0.0149 *   

MSE                   0.04402        0.05306      0.830       0.4072     

SES[T.low]           -0.24675        0.23549     -1.048       0.2952     

SES[T.medium]        -0.07073        0.22419     -0.315       0.7525     

Gender[T.Male]        0.20595        0.14206      1.450       0.1477     

Maths.course[T.Core] -2.20956        0.14992     -14.738      <2e-16 *** 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Insights from the qualitative data of the study 

In order to interpret the non-significant effect of students‘ mathematics self-efficacy 

on their dispositions to study further mathematics in HE, we draw on the qualitative 

data of this study. We chose to present here two case studies of students who were 

interviewed twice over a period of one year, because these two students were 

considered to be representative cases of students with high and low mathematics 

self-efficacy. They are both taking Advanced mathematics at school: a male student 

(Charalambos) and a female student (Chryso). They both aspire to study 

mathematically demanding courses in HE; Charalambos aspires to study Civil 

Engineering and Chryso wishes to study Computer Science. Although they are both 

attending Advanced mathematics at school their self-efficacy in mathematics differs 

tremendously.  

When Charalambos was asked where he will rank mathematics in terms of difficulty 

comparing to his other subjects he seemed quite self-efficacious about mathematics:    

Interviewer: Where will you rank mathematics? 

Charalambos: For me? For me it‘s the easiest.  

Similarly, when he was asked about the contextualised questions with mathematics 

problems for the MSE scale he responded quite confidently: 

Interviewer: Is there something you saw on the questionnaire that you would like to 

comment on?  

Charalambos: I think it is important if we can think about general exercises, like say there 

were some exercises which weren‘t part of the school curriculum but we 

can solve them. This is important because based on our knowledge 

regardless if we had never seen them before we could, if we thought about 

them, solve them.  

On the contrary, Chryso seems less confident about mathematics and she uses the 

word ‗phobia‘ when she refers to mathematics: 

Interviewer: I wanted to ask you about your relationship with mathematics in general, 

what do you think about maths? If you want to you can go back to primary 

school or gymnasium. What experiences have you had with mathematics?  

Chryso: In previous years, in primary school I was very good.  But then when I went to 

gymnasium, I don‘t know I had a phobia, I didn‘t do so well. At gymnasium 

I had B but sometimes I had C.  So it was a bit harder for me. I didn‘t like it 

much either but ok now I think it is useful and it‘s worth the effort to try. 

The reason for this ‗phobia‘ were not her mathematics teachers she argues, but her 

low self-efficacy in mathematics made her feel stressed and worried about 

mathematics. 
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Interviewer: What was the reason maths gave you a hard time at gymnasium? Do you 

think it had something to do with your teachers or with the curriculum that 

is being taught? 

Chryso: No the teachers, all right they played a role but ok sometimes… They were good, 

the teachers I had, but I don‘t know, I was a bit stressed and scared.  

Interviewer: Only in mathematics or in other subjects as well?  

Chryso: Yeah basically mathematics because I didn‘t like it much and I don‘t know 

sometimes I was afraid I won‘t do well and things like that. 

During their interview both students seem to have chosen Advanced mathematics to 

enable them to study mathematically demanding courses in HE. Chryso explains: 

Interviewer: You said you have chosen advanced mathematics although you are afraid of 

maths? 

Chryso: Yeah. 

Interviewer: What led you to this decision? 

Chryso: Because I liked computer science and I wanted to pursue it, I knew it required [of 

you] to know maths and physics, you needed them. OK I can‘t say I didn‘t 

like mathematics at all, I liked it but not as much as some other subjects.  

Students were also aware that they would have to face challenging mathematics 

during their studies. Charalambos seems to be quite confident about the mathematics 

he will have to do at university: 

Interviewer: Do you think that Civil Engineering will have lots of maths for the degree? 

Charalambos: Yes. 

Interviewer: Are you prepared for that? To face lots of mathematics during your studies?  

Charalambos: Ok (laughs). I feel I can do it, but I don‘t know what I have to face exactly. 

I saw more or less what subjects are being taught. Maths and Physics but I 

don‘t know exactly. 

On the other hand, Chryso‘s low mathematics self-efficacy almost made her change 

her mind about which studies to follow in HE. This indicates the effect students‘ 

mathematics self-efficacy can have on their decision making for future studies in HE.  

Chryso: Last year when we were about to make our choices I was thinking not to choose 

computer science because the other subjects would be difficult for me 

despite the fact that I was good at computer science. I was thinking that 

maybe the other subjects will be difficult for me physics, mathematics… 

DISCUSSION AND CONCLUSION 

In this study we sought to explore students‘ dispositions to study further mathematics 

in Higher Education and the effect of students‘ mathematics self-efficacy. Our 



Working Group 8 

 CERME 7 (2011)  1237 

statistical analysis showed that students‘ mathematics self-efficacy is statistically 

significant for predicting students‘ dispositions to study further mathematics, which 

aligns with previous research findings (Betz & Hackett, 1983; Hackett & Betz, 1989; 

Pajares & Miller, 1994). Nevertheless, when students‘ mathematics course was 

introduced in the model students‘ mathematics self-efficacy was no longer 

statistically significant. This is probably because the mathematics course ‗masks‘ the 

effect of MSE; more self-efficacious students in mathematics tend to choose 

Advanced mathematics at school.  

Moreover, we argue that students‘ mathematics self-efficacy is an important factor 

influencing some students‘ decision making for future studies in HE and we have 

illustrated this with some qualitative data from this study. We also found that 

students‘ mathematics self-efficacy varies across the spectrum of confidence in 

mathematics to math-phobia. 

A possible explanation for the non-statistically significant effect of students‘ 

mathematics self-efficacy on their dispositions to study further mathematics could be 

students‘ inaccurate ratings of their self-efficacy in mathematics. This aligns with 

Chen and Zimmerman (2007) who argue that students are generally not well 

calibrated or accurate in prejudging their capabilities to solve mathematical 

problems. Chen and Zimmerman (2007) also argue that researchers should examine 

the difficulty of the tasks that elicit students‘ judgments. Although our instrument 

was validated using Rasch analysis students might still have overestimated or 

underestimated their self-efficacy in mathematics.  

Another plausible explanation why students‘ mathematics self-efficacy was not 

statistically significant in some models could be the multicollinearity between the 

explanatory variables of the model. This serves as a warning to studies that adopt 

correlational designs in this complex, multi-collinear field. It should be noted that 

previous research in the area of mathematics self-efficacy is mostly quantitative in 

nature. Apparently, students‘ mathematics self-efficacy needs to be further 

investigated by integrating quantitative and qualitative research methods.  
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AN EXAMINATION OF THE CONNECTIONS BETWEEN SELF 

DISCREPANCIES‘ AND EFFORT, ENJOYMENT AND GRADES 

IN MATHEMATICS 

Laura Tuohilampi  

Helsinki University 

Research studies show that there is a connection between individuals‘ behavior and 

the discrepancies between their perceived, self-related skills and ideals: for example, 

high expectancies without success may lead to mathematics anxiety. In this study a 

hypothesis of a quadratic connection between self-discrepancies and desired 

learning action is formulated: an ideal level of discrepancy will associate with 

desirable action, whereas too large or too small a discrepancy will associate with 

undesirable action.  The connections between examined variables were found to be 

non-linear, statistically significant associations; some evidence in support of the 

hypothesis was found. 

Keywords: self discrepancy, effort, enjoyment of mathematics, self concept, self 

beliefs. 

INTRODUCTION 

Research in mathematics-related attitudes has put emphasis on studying linear 

relationships between different dimensions of affect and achievement. In this article, 

some theoretical elaboration and empirical results about a more complex model will 

be presented. This examination is a continuation of the investigation by Tuohilampi 

(2011), in which the threats and possibilities of internal discrepancies in one‘s self-

concept were presented. 

self-concept 

Self-concept seems to be a compendious and essential, but intricate, construct. It has 

been divided into the material self, the social self, the spiritual self and the pure Ego 

by James (1890). Later on, it is said to contain certain essential ingredients:  self-

related beliefs, which may or may not be valid (self image), the emotional and 

evaluative connotations around those beliefs (self-esteem), and a consequent 

likelihood of responding in a particular way (behavior) (Burns, 1982). Self can be 

viewed from two very different angles: self as a subject (I) and self as an object (me) 

(Harter, 1999). According to Bandura (1986), self-concept is a composite view of 

oneself that has formed through direct experience and evaluations adopted from 

significant others. 

Burns (1982) has identified three roles of self-concept: to maintain inner consistency, 

to interpret experiences, and to determine a set of expectations. Self-concept is 

powerful and resilient, which is mostly a consequence of maintaining inner 

consistency. The strength of one‘s self-concept affects the interpretations of the 



Working Group 8 

 CERME 7 (2011)  1240 

experiences of a person. Further, the self-image determines the expectations of a 

person‘s experiences and the expectations of his / her success. A person with poor 

self-image does not expect any success, which leads to either behavior or the 

adoption of an interpretation of circumstances that fulfills the prediction in order to 

maintain inner consistency. A person not only has certain beliefs within him/herself 

which need to be fulfilled, but also the perceived beliefs of other people in their 

social environment. 

self-perceptions and behavior 

Perceptions of one‘s self-concept inspire, or cause, an individual‘s behavior (Burns, 

1982). The connection between self-perceptions and behavior has been confirmed by 

empirical research.  For example, mathematics anxiety is determined by outcome 

expectancy and outcome value (Kyttälä & Bjôrn, 2010). In view of the effects of self 

on behavior, achievement and self-esteem, what perception of self should we be 

striving to instil in ourselves and others? 

According to Bandura (1986), competent functioning requires both skills and self-

beliefs of efficacy to work out effectively, and further, perceived self-efficacy is a 

judgment of one‘s capability to accomplish a certain level of performance, whereas 

an outcome expectation is a judgment of the likely consequence such behavior will 

produce. A circle of production can thus be described: good achievement implies 

better self-image (Marsh, Byrne & Shavelson, 1988), better self-image implies better 

performance (Bandura, 1986; Korpinen, 1990), which again leads to better self-

image.  

According to Harter (1999), self-concept has three types of functions. Firstly, there 

are organizational functions to provide expectations and to give meaning to life. 

Secondly, there are protective functions to maintain and maximize the pleasure. 

Thirdly, there are motivational functions to ―energize the individual to pursue 

selected goals‖, and to ―identify standards that allow one to achieve ideals in the 

service of self-improvement‖ (Harter, 1999, p. 10). 

real self and ideal self 

An individual not only has perceptions of the real self, but also of the ideal self. An 

initial idea of the relationship between real self and ideal self was presented as early 

as 1890 by James‘ formula of self-esteem as a ratio of success and pretensions. The 

idea is that self-esteem can be enhanced by increasing the nominator (success, which 

can be seen as real self) or reducing the denominator (pretensions, which can be seen 

as ideal self) (James, 1890). The difference between real and ideal selves is then 

something to work on, as unrealistic pretensions can be risky: it is important for an 

individual not to fail when pursuing the ideal self; failure will result in negative 

outcomes, such as anxiety and depression. Further, the discrepancies between the 

success of pursuing an ideal and the importance of that ideal is a determinant of 

one‘s level of self-esteem (Harter, 1999). 



Working Group 8 

 CERME 7 (2011)  1241 

Other discrepancies emerge from the disparity between real and ideal selves. The 

idea of the magnitude of the disparity between ideal and current self was first 

explored in the work of Rogers and his colleagues (Rogers & Dymond, 1954). In 

Roger‘s view, this disparity was the main cause of an individual‘s maladjustment. 

The idea of inequalities was operationalized, for example Butler and Haigh (1954) 

designed Q-sort task to measure the difference; subjects were instructed to sort cards 

to describe themselves on the day (self-sort) and to describe their ideal person (ideal 

sort). 
28

 

The disparity between real and ideal selves seemed to have some negative effects, 

such as poor self esteem (Harter, 1999). However, Harter writes that Rosales and 

Zigler have argued that the disparity could also be considered as an inspirer of 

desired action. Thus, the function of the disparity would be positive. In addition, 

Rosales and Zigler have presented that at some point the significance of the disparity 

might start to decrease. This suggests a quadratic function: diminutive difference 

would not provide any positive effect onto motivation, nor does large difference, 

whereas a suitable difference would generate a motive for the desired behavior.  

From that point of view, the increased disparity developed with age is not necessarily 

detrimental; it can also be seen as a more effective way of encouraging motivation. 

Quite apart from considerations of the magnitude of the disparity, the same 

discrepancy, when associated with a negative sense of one‘s real self, may produce 

more distress than if it is associated with a more positive evaluation (Harter, 1999). 

As Bandura (1986) wrote, self theories have had difficulty explaining how the same 

self-concept can give rise to diverse types of behavior. By examining the disparity, 

its magnitude, its sign (whether the value of the discrepancy is negative or positive), 

and its starting point (the degree of the basis of the discrepancy, i.e. the degree of the 

real self), some improvements to the self theories might follow.  

Aims and hyphotheses 

As Tuohilampi (2011) has pointed out, the idea that the connection between self-

discrepancy (disparity between the real self and the ideal self) and desired action can 

be quadratic needs to be examined. The association between these variables is 

quadratic, if both large and small discrepancies connect with minor action, whereas 

moderate discrepancy connects with good action. If the connection does appear 

quadratic, one needs to determine the best conditions, i.e. the optimum amount of 

discrepancy to ensure good action. This requires the direction of the connection to be 

from discrepancy to action; otherwise one has to study the possible benefits of 

connection in the opposite direction, i.e. from action to discrepancy.  

                                           

28
 Q-sort (or Q-method, Q-technique), developed by William Stephenson, in which the items are put in an order of 

representativeness or significance for the individual (Block, 1961).   
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Based on the previous studies, the hypothesis is that the connection is from 

discrepancy to action, and that if the discrepancy is too large or too small, the 

motivation to bridge that gap is depressed. In the case of the discrepancy being too 

large, this is because the goal appears unattainable, and this leads to academic 

frustration; in the case of the distance being too small, it is because of the lack of a 

perceived challenge. If the distance between the real self and the ideal self is a 

negative number, i.e. the value of the ideal self is smaller than the value of the real 

self, no hypotheses as to how this may affect action are available from previous 

studies. However, an educated guess is that in that case the motivation to act as 

desired is potentially destroyed. 

The study presented in this paper concentrates on the type of the connection when 

discrepancy is considered to be independent variable, and effort, enjoyment of 

mathematics and last grade in mathematics are considered to be dependent variables. 

The direction of the connections, however, cannot be revealed in this study, as this 

requires longitudinal analysis.  

Specific research questions are: 1. Are there any associations between discrepancy 

and a) effort, b) enjoyment of mathematics (referred to as: EoM), and c) the last 

grade awarded in mathematics (referred to as: grade)? 2. If the association exists, 

what sort of is it regarding a), b), and c)? 3. What numerical value of discrepancy is 

connected to best values of a), b), and c)? 

Method 

The present analysis is based upon data collected from December 2009 to January 

2010 in Finland. The participants were aged 13 to 15 years. The data was collected in 

four local authority areas (kunnat; singular: kunta), and the numbers of participants 

in each kunta was 120 (598), 100 (472), 186 (540), and 0 (373); the sample size for 

each kunta is given in parentheses, giving a response rate of 20 %. The total number 

of participants was 406. 

Data was collected as part of a research project, the aim of which is to investigate the 

affects of a learning environment called Opit.  The kunnat differ in their application 

of Opit: some have used Opit for a long time; some started to use Opit at the time of 

the first data collection (three collections were carried out altogether); some have not 

used Opit at all.  Opit is a Finnish learning environment that consists of a variety of 

tools, such as basic applications, customer service, technical support and teacher 

training.  

In the questionnaire that was used to collect data, there were questions from several 

existing instruments. In this study, the following instruments were applied: Students‘ 

view of learning mathematics, developed by Rôsken, Hannula, Pehkonen, Kaasila 

and Laine (2009), with sections on competence, effort, enjoyment of mathematics, 

difficulty of mathematics, and confidence; Patterns of Adaptive Learning Scales 

(PALS), developed by Midgley & al. (2000), with sections on mastery goal 
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orientation, performance-approach goal orientation, performance-avoidance goal 

orientation, avoiding novelty, classroom mastery goal structure, classroom 

performance-avoidance structure, parent mastery goal, and parent performance goal; 

and Self-Regulation, developed by Schwarzer, Diehl and Schmidz (as cited in Diehl, 

Semegon, & Schwarzer 2006). 

In this study, the data was used to find out exploratory results concerning the 

hypothesis. In the data, there were items that measured perceptions of present skills 

and abilities (students‘ competence, confidence and self-regulation). These items 

were used to formulate mean variable of perceived self, representing students‘ real 

self. Items for mastery goal orientations (MGO) represent students‘ ideal self, as they 

measure how students wish to act. Discrepancy is then defined as the distance 

between perceived self and their ideal goals (MGO minus mean variable of perceived 

skills). The justification for choosing these items comes from previous theory: 

mastery goal orientations can be seen as pretensions (James, 1890); or as ideal self 

(Burns, 1982); the sum of competence, confidence and self-regulation can be seen as 

perceived skills, i.e. real self (e.g. Rogers & Dymond, 1954; Harter, 1999; Burns, 

1982).  

Results  

The analysis started by looking at the distributions of ‗discrepancy‘, ‗effort‘, ‗EoM‘ 

and ‗grade‘. All distributions, except the ‗grade‘, could be interpreted as normal 

according to their histograms and absolute values of skewness and curtosis (all 

absolute values < 1) albeit the tests gave an alternative result (e.g. Nummenmaa, 

2009). The parameters were: discrepancy ~ N (0.18 ; 1.05
2
), range [-3 ; 3.5]; effort ~ 

N (3.25 ; 0.84
2
), range [1 , 5]; and EoM ~ N (2.93 ; 0.96

2
), range [1 , 5]. Grade had a 

near normal distribution, but the absolute value of the curtosis was slightly over 1. 

Mean of the ‗grade‘ was 7.88, variance was 1.36
2
,
 
and range was [4 , 10]. 

Reliability of all the factors were examined by Cronbach‘s alpha, though discrepancy 

had to be disassembled into perceived skills (confidence + competence + self-

regulation) and into mastery goal orientation. The values of the alphas were: 

skills=.91, MGO=.84, effort=.77, EoM=.87. None of the reliabilities could be 

improved significantly by removing items.  

The second phase of the analysis was to examine the scatter plots. When taking 

‗discrepancy‘ as the independent variable and other variables as dependent, none of 

the connections (discrepancy-effort, discrepancy-EoM, discrepancy-grade) seemed 

linear. On the contrary, when allowing the ―fit line‖ to be loose (―loess‖ in SPSS-

program), the connection seemed rather quadratic in nature, as expected by the 

hypothesis. This was the case for all the connections, except the connection between 

discrepancy and grade. However, the connections were not very clear. 

How to examine the quadratic connection? According to Kendrick (2005), one way 

to better see whether two variables are quadratically connected is to view their 
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contingency table. This is what was done next. The variables were categorized, the 

contingency tables formulated and the distributions of percentages were interpreted 

(Kendrick, 2005). This time one could clearly see that the connection was either 

quadratic or at least curvilinear in two of the cases, discrepancy-effort, discrepancy-

EoM (see tables 1, 2, and 3). 

The significance of this result can be determined statistically by using the χ
2
-

independence test for a null hypothesis ―There is no association between 

independent variable ‗discrepancy‘ and dependent variables ‗effort‘, ‗EoM‘, 

‗grade‘‖. To satisfy the conditions of the test, the number of categories of variables 

was decreased: only about 20% of the cells may have frequency of less than 5, while 

the frequencies of all cells ought to be more than zero (e.g. Nummenmaa, 2009). At 

this point, the variables ‗effort‘, and ‗EoM‘ were condensed into three categories: -

1=not at all or not very much, 0=neither a lot nor a little, 1=quite a lot or very much; 

‗grade‘ was also distributed into three categories: 1=poor grade, 2= moderate grade, 

3=good grade; and ‗discrepancy‘ into 5 categories: -2=orientations much less than 

interpreted skills, -1= orientations less than interpreted skills, 0=orientations in line 

with interpreted skills, 1=orientations higher than interpreted skills, 2=orientations 

much higher than interpreted skills. 

For all the variable pairs (discrepancy-effort, discrepancy-EoM, discrepancy-grade), 

the null hypothesis ―there is no association between‖ was rejected. The exact results 

were: discrepancy-effort χ
2
(8)=19.99, p=.01; discrepancy-EoM χ

2
(8)=14.92, p=.06; 

discrepancy-grade χ
2
(8)=107.28, p=.00. Although the p-values were not all under 

.05, the trend was similar in all cases. Whether the null hypothesis got rejected 

incorrectly in any of the cases seems unlikely because of this trend as well as the 

theory behind what has been tested.  

To view the connections, see the tables below. To make interpretation easier, the 

highest percentages have been bolded if the value is very high or remarkable: these 

values bend the connections from clearly linear.  

Finally, a comparison was made between the linear and quadratic models linking the 

variable pairs. When discrepancy was an independent variable and effort was 

dependent variable, the results were: p=.35 in linear model, p=.07 in quadratic 

model, R
2

linear=.00, R
2

quadratic=.01. When enjoyment was dependent variable, 

discrepancy again independent, the results were: p=.02 in linear model, p=.00 in 

quadratic model, R
2

linear=.01, R
2

quadratic=.047. When grade was dependent variable, 

and discrepancy independent, the results were: p=.00 in linear model, p=.00 in 

quadratic model, R
2

linear=.16, R
2

quadratic=.18. The differences were not very obvious; 

neither of the models seemed very suitable in any of the connections. However, the 

coefficient of determination (R
2
) is not a reliable measure if the connection is not 

monotonic, i.e. for example, quadratic (e.g. Nummenmaa, 2009). 
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  Discrepanc

y 

    Total 

  -2 -1 0 1 2  

Effort -1 2 11 27 10 8 58 

  15,4% 14,1% 13,4% 10,4% 47,1% 14,3% 

 0 3 36 94 44 3 180 

  23,1% 46,2% 46,5% 45,8% 17,6% 44,3% 

 1 8 31 81 42 6 168 

  61,5% 39,7% 40,1% 43,8% 35,3% 41,4% 

Total  13 78 202 96 17 406 

  100% 100% 100% 100% 100% 100% 

Table 1: Contingency table ‗discrepancy‘-‗effort‘ 

  Discrepanc

y 

    Total 

  -2 -1 0 1 2  

EoM -1 5 20 55 31 10 121 

  38,5% 25,6% 27,2% 32,3% 58,8% 29,8% 

 0 5 30 96 40 7 178 

  38,5% 38,5% 47,5% 41,7% 41,2% 43,8% 

 1 3 28 51 25 0 107 

  23,1% 35,9% 25,2% 26,0% ,0% 26,4% 

Total  13 78 202 96 17 406 

  100% 100% 100% 100% 100% 100% 

Table 2: Contingency table ‗discrepancy‘-‗enjoyment of mathematics‘ 

  Discrepanc

y 

    Total 

  -2 -1 0 1 2  

Grade Poor 0 2 23 26 10 61 

  ,0% 2,6% 11,4% 27,4% 58,8% 15,1% 

 Moderate 4 21 107 60 5 197 

  33,3% 26,9% 53,2% 63,2% 29,4% 48,9% 

 Good 8 55 71 9 2 145 

  66,7% 70,5% 35,3% 9,5% 11,8% 36,0% 

Total  12 78 201 95 17 403 

  100% 100% 100% 100% 100% 100% 

Table 3: Contingency table ‗discrepancy‘-‗grade‘ 

Interpretation 

As far as the first connection, discrepancy-effort, is concerned, we can clearly see 

that the discrepancy should be negligible or negative rather than positive.  However, 

the interplay is complicated to explain. If discrepancy causes effort, it is because 
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those whose skills are perceived as poor or who have high aspirations start to put in 

more effort. If effort causes discrepancy, it is either because those putting in a lot of 

effort without reaching their goals may revise the interpretation of their skills 

downwards, or those who like working hard set themselves too high aspirations as a 

realistic vision. The causations may even be circular. To be exact, those having large 

positive discrepancy are more likely to be connected with no effort, those having 

moderate positive or negative discrepancy or large negative discrepancy are more 

likely to be connected with moderate or strong effort. Counter to the hypothesis, 

negative discrepancy does not connect to putting in nonexistent effort. The result in 

the case of large positive discrepancy, however, supports the hypothesis that 

aspirations which are too high in relation to one‘s perceived skills do not result in 

increased effort. 

In the second table, the connection seems to be curvilinear, to the point of being 

quadratic, but the cause-result relationships are hardly clear: the high frequency in 

cell1,1 can be explained by claiming either that dislike of mathematics has led to 

lowered orientations or that lowered orientations has led to the dislike, whereas the 

high frequency in cell1,5 may be explained by claiming that the non-fulfillment of 

high orientations has led to dislike but it can hardly be claimed that dislike has led to 

high orientations. Again, those having moderate positive or negative discrepancy are 

more likely to be connected with moderate or strong enjoyment of mathematics, but, 

this time large negative discrepancy is more likely to be associated with no 

enjoyment of mathematics, which is supported by the hypothesis. 

The third connection seems to be somewhat similar. Moderate discrepancy connects 

with good or moderate grades, whereas large positive discrepancy clearly connects 

with poor grades. However, this time the connection between large negative 

discrepancy and poor grades is not obvious. The causation is again complicated: 

either poor achievement has led to high orientations (the wish to do better) or too 

much discrepancy has led to poor achievement.  

The results printed above were subjected to further comparison by carrying out 

checks on the connections of all the independent variables (effort, EoM and grade) 

with 1) mean variable of competence, confidence and self-regulation (referred to as: 

skills), and 2) MGO. All the connections were clearly linear, and most of the 

correlations were quite strong and positive: Rskills - effort=.61, Rskills - EoM=.66, Rskills - 

grade=.62, RMGO - effort=.59 RMGO - EoM=.57 RMGO - grade=.23, wherein R=Pearson 

correlation. This means, that although high orientations correlate positively with 

examined variables and perceived skills correlate positively with examined 

variables, the effect changes if the distance between the two variables (perceived 

skills and orientations) is taken into account. Thus, there is strong evidence for the 

importance of this kind of perspective. 

However, the analysis did not give a good model for the connections. This may be 

due to the fact that the number of subjects examined turned out to be on the low side. 
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Consequently, there was only a small number of cases showing large positive or 

large negative discrepancy (i.e. extreme cases), which limited the possibilities for 

statistical analysis. In future studies, this has to be taken into account: one has to pay 

attention to the number of participants. 

Discussion 

Previous studies of self discrepancies show that there are connections between 

perceptions of the self and behavior (e.g. Burns, 1082; Kyttälä & Bjôrn, 2010). The 

results of this study confirm this connection: perceptions of self can be separated 

from aspirations, and the disparity between the two gives an interesting perspective 

to examine the self. However, even a small discrepancy was connected with poor 

behavior, which was against the suggestion that some degree of the disparity would 

be necessary to emerge motivation, brought out by Harter (1999).  

The results in this study linked the best connection to either small negative 

discrepancy or to no discrepancy at all. This means that those students who have 

high feelings of their skills, as well as those students who do not feel so competent 

but can set their goals very moderately, can enjoy mathematics, put effort on it and 

are able to get better grades. This suggests that it is good for a student to either be 

able to trust on own abilities, or to have realistic view on own skills and proceed step 

by step rather than trying to take huge leaps. 

What are the causations of the connections? Bandura (1986) argues that competent 

functioning requires skills and self-beliefs of efficacy to work out effectively, but 

how can these efficacy feelings be improved? Perhaps those students, who tend to set 

their goals realistically, experience feelings of success more often, which again 

strengthens their ability feelings. If so, is the large discrepancy one cause for losing 

ability feelings? Do some students protect their inner consistency (Burns, 1982) by 

setting unrealistic aspirations to make sure they are not able to achieve them? If this 

is the case, students‘ protective functions (Harter, 1999) seem to overrun 

motivational and organizational functions. This suggests that the discrepancy is 

rather a protection of self than an initiation of desired behavior. 

This study gives some preliminary results in the field of self-discrepancy‘s 

connections in mathematics, and builds the basis for further hypotheses. 
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What impact do context and culture have on the kinds of personal meaning 

constructed by students of the lower secondary level in the context of learning 

mathematics at school? To answer this question, this paper takes the perspective of 

students from Germany and Hong Kong as examples for cultures from the West and 

the Confucian Heritage Culture in East Asia. The concept of personal meaning will 

be developed denoting the personal relevance a person assigns to an object or 

action. Personal meaning is put in a concept framework of didactics and educational 

psychology and the relation to context and culture is shown. Finally, exemplary 

results from a qualitative study enriched with exploratory statistical analyses 

suggest the cultural impact on the construction of different kinds of personal 

meaning. 

Keywords: personal meaning, culture, context, learner‘s perspective, East/West 

INTRODUCTION 

Humans have a ―need for meaning‖ and ―[a]lthough meaningful learning and 

meaningful life seem to be different concepts, it is quite possible that they have the 

same origin‖ (Vinner, 2007, p. 6). If meaningful learning is a special case of ―man‘s 

search for meaning‖ (ibid), this specific human attitude does not disappear before 

entering the classroom. Meaning is also sought inside the classroom when students 

engage in learning and dealing with subject contents. Thus, the demand for meaning 

in education has been detected for many years, and meaningful learning has been 

identified as one of the major goals of education (ibid, p. 10). 

Meaning seems an important topic when considering learning processes in school in 

general, and in learning mathematics in particular. But what exactly do we mean 

when we talk about meaning? Do students and educators intend the same thing when 

using this term? And taking the students‘ perspective, which meaning do students 

construct when dealing with mathematics in a school context? Does culture play a 

significant role for the construction of (personal) meaning? The last two questions 

are answered in the qualitative study reported on in this paper. 

The study is included in the context of research on Educational Experience and 

Learner Development, which focuses on the learners‘ perspective of their own 

educational process. The paper‘s main focus is the development of the theory of 

personal meaning and hence, first presents different interpretations of the term 

meaning. The concept of personal meaning is then developed with regard to the 

perspectives of German and Hong Kong students. The two countries represent 
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cultures from the West and the Confucian heritage in East Asia. The theoretical part 

of the paper concludes with the relation of personal meaning with context and 

culture. The theory then is illustrated with exemplary results of the study presenting 

the influence of culture on the construction of meaning. 

FROM MEANING TO PERSONAL MEANING 

A review of the relevant literature shows that the term meaning is used in very 

different contexts denoting different concepts. In education, we think about 

meaningful learning, and, even within the field of mathematics education, the term 

meaning can be used in different ways. The absence of a commonly accepted 

interpretation of meaning has resulted in a diversity of interpretations. This is due to 

a mixture of philosophical and non-philosophical interpretations as Kilpatrick, 

Hoyles, and Skovsmose (2005a, p. 2) point out: ―on the one hand, we may claim that 

an activity has meaning as part of the curriculum, while students might feel that the 

same activity is totally devoid of meaning‖. Different kinds of meaning can also be 

reconstructed when we turn to the students‘ perspective (Kilpatrick, Hoyles, & 

Skovsmose, 2005b, p. 9): 

Some students find it pointless to do their mathematics homework; some like to do 

trigonometry, or enjoy discussions about mathematics in their classrooms; [...] other 

students are told that because of their weakness in mathematics they cannot join the 

academic stream. 

Although many interpretations of the term meaning relate to very different aspects, 

Howson (2005, p. 18) distinguishes two different aspects of meaning: 

those relating to relevance and personal significance (e.g., ‗What is the point of this for 

me?‘) and those referring to the objective sense intended (i.e., signification and referents). 

These two aspects are distinct and must be treated as such. 

In this paper the terms personal meaning denotes the personal relevance of an object 

or action, and objective meaning a collectively shared meaning of an object or action 

(Vollstedt, 2010) [1]. 

To maintain the productive range of interpretations, the criterion of personal 

relevance here defines the term personal meaning of an object or action (Vollstedt 

& Vorhôlter, 2008, pp. 29–31). It comprises the following aspects: objective 

meaning, usefulness, goal, purpose and value. Therefore, depending on the context, 

personal meaning can have an intentional as well as functional character. In addition 

to these aspects, I assume that personal meaning is subjective and individual, that the 

construction of personal meaning is context bound and that personal meanings can, 

but do not have to be reflected on (Vollstedt, 2010). 

RELATIONAL FRAMEWORK OF DIDACTICS AND EDUCATIONAL 

PSYCHOLOGY 
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The concept of personal meaning can be found in a relational framework of different 

concepts from mathematics didactics, the didactics of Educational Experience and 

Learner Development, and educational psychology. These concepts are understood 

to have an impact on the construction of personal meaning as they denote aspects 

which are personally relevant for the students. Let us assume we have a context in 

which an individual is dealing with a certain situation. In school, this might be a 

learning context in which a student deals with a mathematical problem. This student, 

let us call him Toby, judges the situation solely with respect to his personal attributes 

and goals. Toby automatically answers the question whether dealing with the 

situation makes sense to him, i.e. whether it is personally relevant, or not. He also 

considers in which way a possible following action might affect his personal goals. 

Appraisal of the situation requires different concepts from mathematics didactics, the 

didactics of Educational Experience and Learner Development, and educational 

psychology. Toby might judge differently depending e.g. on his mathematical beliefs 

(Op ‗t Eynde, Corte, & Verschaffel, 2002). He might also be influenced by his 

interpretation of the developmental tasks he is dealing with at that point in time 

(Havighurst, 1972), a concept prominently discussed in the research context of 

Educational Experience and Learner Development. In addition, judgement is 

influenced by different aspects of learning motivation; a concept from educational 

psychology (Wild, Hofer, & Pekrun, 2001). The academic self concept, i.e. Toby‘s 

judgement of his abilities in mathematics and how he perceives them (Môller & 

Kôller, 2004), is relevant for the process of constructing personal meaning. Also, the 

three basic needs for autonomy, competence, and relatedness (Ryan & Deci, 2002) 

are believed to play a decisive role. 

PERSONAL MEANING IN RELATION TO CONTEXT AND CULTURE 

Personal meaning cannot be constructed in a vacuum but is related to context. In this 

study, the term context covers both situational context (i.e. the context of the learning 

situation in terms of topic and the situation in the classroom) and personal context. 

The personal context may consist of the student‘s personal traits (i.e. aspects which 

concern the student‘s self like his/her self-concept, motivation, or beliefs) and his/her 

personal background (i.e. aspects regarding the world around the student like his/her 

socio-economic status, migration background, or learning and cultural environment) 

(Vollstedt & Vorhôlter, 2008). Mercer (1993, pp. 31–32) takes the student‘s 

perspective when he describes context in the following way: 

What counts as context for learners […] is whatever they consider relevant. Pupils 

accomplish educational activities by using what they know to make sense of what they are 

asked to do. As best they can, they create a meaningful context for an activity, and the 

context they create consists of whatever knowledge they invoke to make sense of the task 

situation. (Italics in original, MV) 



Working Group 8 

 CERME 7 (2011)  1252 

According to Mercer, the students decide which information and experiences are 

relevant to deal with the posed task. 

In my study, Mercer‘s description is interpreted in a broad way. In a learning 

situation not only knowledge but also beliefs, goals or other kinds of personal traits 

or background may be relevant for the students. According to Leung, Graf, & Lopez-

Real (2006), these are subject to cultural influence as culture has a strong impact on 

how learning takes place in any learning situation. This is consistent with Mercer 

(1993, p. 43), who states that learning in the classroom depends both on culture and 

context as it is: 

(a) culturally saturated in both its content and structure; and (b) accomplished through 

dialogue which is heavily dependent on an implicit context constructed by participants 

from current and past shared experience. 

Both culture and context of a learning situation differ greatly in the Confucian 

Heritage Culture of East Asia and the Western traditions, as they are based on 

Chinese/ Confucian and Greek/Latin/Christian traditions respectively (Leung, 2001). 

As students from East Asia outperformed Western students in large scale 

comparative studies, it is interesting to see whether cultural differences can provide 

an explanation for these significant differences. Therefore, Leung (2006) examined a 

number of different characteristics of the Chinese/Confucian culture. He shows that: 

there are indeed different cultural values pertinent to education that may explain the 

differences. This is of course no proof that differences in student achievement are caused 

by cultural differences. But in the absence of clues from variables at other levels, it is 

probable that culture does matters [sic]. (Leung, 2006, p. 44) 

Therefore, one can stress that ―the impact of cultural tradition is highly relevant to 

mathematics learning‖ (Leung, Graf, & Lopez-Real, 2006, p. 7) and therefore, also 

for personal meaning constructed in the context of learning mathematics at school. 

Leung (2001) describes six features relevant for mathematics education distinct for 

East Asian and Western cultures. These features are not understood as dichotomies 

but as continua on which the relative position of countries from East Asia or the 

West differ. They are product (content) vs. process, rote learning vs. meaningful 

learning, studying hard vs. pleasurable learning, extrinsic vs. intrinsic motivations, 

whole class teaching vs. individualised learning, and pertaining to the competence of 

teachers: subject matter vs. pedagogy. All these aspects relate to complex underlying 

cultural differences and not just different kinds of established practice (Leung, 2001; 

for detailed discussion of the differences cf. Vollstedt, 2011). As the aspects given 

above are relevant for the learning context of mathematics, they are supposed to 

influence the students‘ processes of constructing personal meaning. Accordingly, the 

aim of this study is to contrast different types of personal meaning constructed in 

Germany and Hong Kong. 

THE STUDY 
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The study is based on 34 guided interviews conducted in Germany and Hong Kong 

with students of the lower secondary level (about 15-16 years old). Seventeen 

students participated from each country; all attended the highest school type in the 

respective educational system. In Hong Kong, I collaborated with schools using 

English as medium of instruction so as to conduct the interviews in English. 

The guided interviews lasted for about 35 to 45 minutes and began with a sequence 

of stimulated recall (Gass & Mackey, 2000). For this, the students were shown a five 

to ten minutes video abstract of the last lesson they attended. Their task was to 

verbalize and reflect on the thoughts they had during the lesson. The interviews then 

tackled various topics inspired by the relational framework of personal meaning (see 

above) to come as close as possible to the aspects related to learning mathematics 

which are personally relevant for the students in a school context. Students were for 

instance asked about their associations of the words mathematics and mathematics 

lesson, they were interrogated about their beliefs with relation to mathematics, 

mathematics lessons and their learning of mathematics as well as about their 

feelings, their learning strategies, their goals and so on. 

The data was coded in the style of Grounded Theory (Strauss & Corbin, 1996) by 

developing concepts directly from the interview material as well as theory-governed, 

taking the theoretical framework of the study as sensitising concepts into account. 

The coding was done partly in teamwork, partly independently but together with a 

team member so that the results could be discussed afterwards, and – after having 

received consistent results – partly on my own. By comparison and by using a coding 

paradigm, relations between concepts were disclosed so that core categories were 

developed denoting 17 different kinds of personal meaning. They vary in their 

orientation towards mathematics and the self so that a broad range is covered from 

the fulfilment of duty and the wish for cognitive challenge when dealing with 

mathematics to the experience of social relatedness. They can be grouped in seven 

different types of personal meaning. 

Strictly speaking, the model of personal meaning presented above is also a result 

from the study as the concept and the relational framework were specified and 

developed further throughout the research process. To assure validity, the results as 

well as aspects which lacked clarity from my Western perspective were later 

discussed with Hong Kong professors of mathematics education as well as Hong 

Kong mathematics teachers. 

After reconstructing the kinds and types of personal meaning, they were analysed 

with respect to the students‘ cultural background. Bound to the reconstructive 

framework, I opted not to generate hypotheses concerning cultural differences or 

similarities on a theoretical basis with relation to the relevant literature. Instead, I 

conducted exploratory statistical analyses using the software SPSS (version 15) to 

generate culture-specific hypotheses from the data. Hence, the unspecific and 

undirected hypotheses used in the t-tests of my study are strictly speaking not ‗real‘ 
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hypotheses. On the contrary, I only checked whether differences exist between the 

two places to generate hypotheses about similarities and differences between the two 

places from empirical data. Statistics therefore acted as a means to conduct 

exploratory analyses instead of making general statements about Germany and Hong 

Kong. 

To obtain a measure of the students‘ personal preferences, the relative frequency of 

every kind of personal meaning was coded for every student. In order to achieve this, 

the codings of every kind of personal meaning were counted. Then, the percentage of 

codings of one kind of personal meaning was calculated from all codings of personal 

meaning of this student. These relative frequencies formed the basis for the 

calculation of t-tests. From these results, empirically grounded hypotheses were 

generated for the relation between different kinds of personal meaning and the 

students‘ cultural background. The results are rather tentative as each sample only 

includes 17 students. Therefore, to support these results with a non-parametric test, 

the Mann-Whitney-U-test was calculated. This paper only includes the results of the 

t-tests, because the results from the two tests were comparable (for further 

information cf. Vollstedt, 2011). 

DISCUSSION OF EXEMPLARY RESULTS 

As described above, seven different types of personal meaning could be generated. 

Here, example discussions include the type fulfilment of societal demands. The 

characteristics for this type of personal meaning are that it is personally relevant for 

the students to deal with mathematics and to learn mathematics to gain appreciation 

by other people due to their achievement, as well as to fulfil certain requirements for 

their intended future profession. The type consists of four different kinds of personal 

meaning. In examinations, it is important for the students to prepare themselves for 

examinations as passing the exams may result in opportunities in their personal 

future or their education. In addition, the students intend to create a positive 

impression and impress others through their achievement in mathematics. With 

respect to their future vocation, students must fulfil vocational prerequisites to 

ensure admission e.g. to their chosen field of study. Regarding duty, it is personally 

relevant for the students to meet the demands perceived as unavoidable as well as to 

deal with performance pressure. 

When looking at fulfilment of societal demands, no significant differences could be 

found between Germany (MGer = 12.91, SEGer = 5.21) and Hong Kong (MHK = 12.70, 

SEHK = 4.99), t(32) = .12, p = .905, Cohen‘s d = .04. This, however, does not 

automatically imply that underlying kinds of personal relevance do not show 

significant differences as opposite results may cancel each other out. Similar as with 

the type itself, no significant differences could be found for duty and vocational 

prerequisite. The differences between results from Hong Kong and Germany for 

positive impression and examination turned out to be significant as will be shown in 

more detail below. 
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As no significant differences could be found with the two kinds of personal meaning 

duty (MGer = 4.17, SEGer = 2.33, MHK = 4.08, SEHK = 2.44; t(32) = .10, p = .918, 

d = .04) and vocational prerequisite (MGer = 4.94, SEGer = 2.73, MHK = 5.08, 

SEHK = 3.06; t(32) = -.14, p = .891, d = .-0.05), it seems personally relevant for Hong 

Kong as well as German students to learn mathematics either because it is a school 

subject or due to other‘s expectations of them. In both countries students also 

consider some mathematical competencies relevant for their desired future vocation. 

Therefore, learning mathematics appears meaningful in preparation for future 

vocational demands. 

When looking at positive impression and examinations, the results of the two coun-

tries are quite different. On the one hand, creating a positive impression of oneself in 

others seems more important for German students (Mger = 3.57, SEGer = 2.54) than for 

those from Hong Kong (MHK = 0.78, SEHK = 1.80), t(32) = 3.70, p < .01, d = 1.27, as 

the value of the effect size Cohen's d is positive and bigger than 0.8. At first glance, 

this result seems surprising, as keeping face, acting according to others' expectations 

and worrying about others' opinions are aspects of social orientation and, therefore, 

part of the Confucian Heritage Culture (Leung, 1998). 

The differences between Germany and Hong Kong can be traced back to the 

category of appreciation by other people with the appreciation of the teacher being 

the focal aspect for German students. A possible interpretation of these results with 

respect to (lesson) context and culture might be found in the different importance of 

oral participation in class, and examinations respectively. Oral participation is highly 

important in German lessons as it comprises a great share in the overall mark 

students get for a subject. In addition, performance measurement is continuous and 

dependent on the teachers‘ judgement rather than on examination boards (Kaiser, 

1999). Therefore, it is of great importance for German students to continually create 

a positive impression of themselves for their teachers. In Hong Kong the focus lies 

on whole class teaching instead of individualised learning (Leung, 2001). Hence, 

oral participation in lessons is not as important. Accordingly, in the Hong Kong 

educational system, great importance is placed on results of examinations – an aspect 

which may historically be related to the prevalent belief in the Confucian heritage 

culture that practice makes perfect (Li, 2006). This goes along with the historic role 

of examinations in China. As early as 597 AD examinations were designed to choose 

savants for government positions. Therefore, it was possible to further social 

advancement by taking examinations (Leung, 2008). This attitude is still prevalent 

today. Today particularly the Hong Kong Certificate of Education Examination 

(HKCEE, similar to GCSE in the United Kingdom) is of great personal relevance for 

students. At the time of interview, students were going to take it in one to two years 

time, but already this early on it was governing their thoughts. Therefore, studying 

hard, practising a lot (rote learning as a necessary step towards deep understanding 

of the contents), and extrinsic motivation resulting from the importance of the results 
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from HKCEE are crucial aspects for Hong Kong students (Leung, 2001; Vollstedt, 

2010). This, then may be an explanatory approach for the differences detected with 

examinations: examinations seem to play a more important role in Hong Kong 

(MHK = 3.71, SEHK = 3.16) than in Germany (MGer = 0.47, SEGer = 0.90), t(18.6) = 

-4.06, p < .01, d = -1.39 as the value of Cohen's d is negative and |d| > .8. A similar 

situation did not arise in Germany with relation to the Abitur (University Entrance 

Examination) or other kinds of regular examinations. Two possible explanations are 

suggested here: On the one hand, as stated above, oral participation has a stronger 

weight for marks in Germany than regular examinations have. On the other hand, the 

Abitur exams are taken one year later than the HKCEE so that they may not have 

been as acute for the students during the interviews as for the Hong Kong students. 

CONCLUSION 

When considering meaningful learning in a school context, it makes sense to take the 

perspective of the students as they are the people focused upon. Therefore, one must 

ask what is personally relevant for them when learning and dealing with 

mathematics. Characterizing personal meaning with the help of the criterion of 

personal relevance encompasses the range of interpretations denoted by the blurred 

concept of meaning. Theoretical coding of interview data from Germany and Hong 

Kong led to 17 different kinds of personal meaning covering aspects such as 

fulfilment of duty, cognitive challenge, and social relatedness. All these are 

personally relevant for students to deal with mathematics or learn the contents. 

Varying in degrees of relation to mathematics and the self, the 17 kinds of personal 

meaning could be grouped into seven types. 

The paper discusses exemplary results including the four underlying kinds of 

personal meaning of the type fulfilment of societal demands. As shown above, no 

sound statements can be made on type level, as the results of the underlying kinds of 

personal meaning may be oppositional and cancel each other out. Therefore, only the 

results from the kind level were discussed in more detail. Here, no differences could 

be found for duty and vocational prerequisite, whereas differences became apparent 

for examination and positive impression. The students‘ cultural backgrounds were 

considered as a possible explanation for the differences detected in the last two kinds 

of personal meaning. Some instances of lesson culture as well as cultural beliefs 

were related to the results suggesting possible explanations: the cultural belief that 

practice makes perfect and the historic role of central examinations is prevalent in 

Hong Kong whereas in Germany oral participation in lessons plays a greater role. 

Therefore, the results of the qualitative study reported on in this paper suggest that a 

connection may be drawn between some personal meanings and the context, as well 

as the culture in which they had been constructed. In the East Asian and Western 

culture other kinds of personal meaning seem universal. This of course does not 

prove that culture is the reason for these differences. However, it may provide a 
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partial explanation. To provide more conclusive evidence, the hypotheses developed 

in this study will be tested on a broader field of data. 

NOTES 

1. The German term for personal meaning we use in our research is Sinnkonstruktion. Objective or collective meaning, 

on the other hand are equivalent to Bedeutung. 
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Affective factors are strictly intertwined and have a strong influence on teachers‘ 

professional practices. Literature underlines that primary teachers often have a 

negative attitude towards mathematics. For these reasons it is fundamental that 

professional development programs in primary mathematics teaching consider 

affective issues. In this study we analyze – describing the case study of Teresa, an 

experienced primary teacher with negative attitude towards mathematics – the effect 

of a Portuguese in-service program in mathematics and its teaching for primary 

teachers that includes, among its goals, the development of a positive attitude 

towards mathematics and its teaching. 

Keywords: attitudes towards mathematics, primary teachers‘ education, beliefs, 

emotions, teachers‘ professional development.  

INTRODUCTION AND THEORETICAL BACKGROUND  

Many researchers have underlined the influence of several factors on teachers‘ 

effectiveness: Shulman (1986) highlights the role of subject matter knowledge, 

pedagogical knowledge and pedagogical content knowledge, others scholars (for 

example Ernest, 1989) underline the role of affective factors. As Tsamir and Tirosh 

(2009) claim, mathematical subject knowledge, pedagogical knowledge and affective 

factors are strictly intertwined and have a strong influence on teachers‘ professional 

practice. Therefore a professional development program in mathematics teaching 

limited to cognitive and pedagogical issues is ―doomed to failure unless placed 

within an affective frame in which teachers have space to question mathematics and 

mathematics teaching‖ (Hodgen & Askew, 2006, p.41).  

Literature shows that the common traits shared by many primary teachers (they are 

non specialist in mathematics and have often had negative experiences with 

mathematics as students) could generate uncertainty, low perceived self-efficacy as a 

teacher (Tschannen Moran et al., 1998), negative emotions such as shame (Bibby, 

2002) and anxiety (Hannula et al., 2007) and produce ―deep seated beliefs [that] 

often run counter to contemporary research on what constitutes good practice‖ 

(Liljedahl, 2007, p.320). 

Adapting the model proposed by Di Martino & Zan (2010) for attitude towards 

mathematics, we characterize attitude towards mathematics and its teaching by three 

strictly interconnected dimensions: emotional disposition towards mathematics and 

its teaching, vision of mathematics and its teaching, and perceived competence in 

teaching mathematics. According to this theoretical framework, primary teachers‘ 
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common traits could generate a negative attitude towards mathematics and its 

teaching.   

For these reasons it appears to be very important, both for the teacher as a person and 

for the quality of mathematics teaching and learning, that education programs for 

primary teachers focus on the several aspects that characterize the affective side. 

Nevertheless there are few professional development programs focalised on affective 

aspects (above all for what concerns in-service primary teachers) and ―there has been 

little theoretical or empirical research exploring teachers‘ emotional relationship with 

mathematics‖ (Hodgen & Askew, 2007, p.470).  

Reporting some major trends in teacher education research, Krainer and Goffree 

(1999) stress the increasing importance of ―teaching stories‖, seeing case studies as:   

an outcome of teachers‘ efforts to investigate into their own teaching (…) for them as an 

additional circle of reflection, for other colleagues and researchers as an insight into 

teachers‘ challenges and change. (Krainer & Goffree, 1999, p.230)   

The issue of our study is related to the theme of understanding, by means of  small 

scale qualitative research, teachers‘ opportunities to change their attitude towards 

mathematics.  

We focus on PFCM (Programa de Formação Continua em Matemática): a Portuguese 

in-service primary teacher education program that includes among its goals the need 

to develop a positive attitude towards mathematics and its teaching in order to 

improve mathematical learning in primary school. Some studies on PFCM and its 

effects on teachers have been conducted by Portuguese researchers, above all teacher 

educators directly involved in the program (e.g. Menezes, 2008; Canavarro & Rocha, 

2010). These studies underline the good results of the program together with some 

obstacles (usually organizational difficulties).  

Our study is different from the others mentioned above, mainly for two fundamental 

aspects: first, it is focused on teachers‘ change related with the affective domain of 

mathematics education; second, it offers an external point of view (the authors are 

not Portuguese and they are not involved in the PFCM program). This aspect can be 

of some relevance: most research on mathematics teacher education is conducted by 

teacher educators studying the teachers with whom they are working and ―we do 

need more external research‖ (Adler et al., 2005, p. 371). 

In this paper we will briefly describe the PFCM‘s structure and, through the analysis 

of one case (Teresa), we will evaluate what elements of PFCM either hinder or 

promote change in an experienced teacher with a deeply seated negative attitude 

towards mathematics.  

methodology  

This paper is based on the analysis carried out for the first author‘s doctoral thesis. 

Four teachers have been involved in the research, chosen according to two common 
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features: their declared negative attitude towards mathematics and their feeling that, 

consequently to their involvement in PFCM, something changed in their attitude 

towards mathematics and its teaching. In this paper - due to the limited space - we 

only describe the case of Teresa. It seems to us particularly interesting because we 

recognized in Teresa all the common and critical traits highlighted by the literature 

on primary teachers; moreover her declared attitude towards mathematics and 

previous experiences with mathematics as a student are particularly negative. These 

elements, in our opinion, make of Teresa a real challenge for PFCM‘s efficacy. 

We used a qualitative and interpretive approach. This methodological choice follows 

our attention to the processes below the teacher‘s change and not only to the 

certification of the possible change. We believe that qualitative analysis can 

highlight these processes. As Bruner (1986) states, narrative is the primary way in 

which we organize our own experience, trying to give it a meaning. Furthermore, the 

meanings given by teachers to their own professional development experience has an 

influence on their practice. For these reasons the main focus of the analysis has been 

on Teresa‘s narratives.   

Data collection was realized during the second year of Teresa's participation in the 

program. It included two observations of two-hours school lessons (two hours each) 

and a semi-structured interview a week after each observation. Each interview went 

on for about two hours. The first observation was in the first term, while the second 

observation took place in the third term. Moreover our first author could see Teresa‘s 

first-year portfolio: it is a 45-pages document including an introduction, her 

reflections upon two activities carried out in the first year and her conclusions.    

Context 

PFCM (Programa de Formação Continua em Matemática) is a national in-service 

program started in 2005, as a response by the Education Ministry to the Portuguese 

students' worrying results in mathematics emerging from PISA 2003 survey. The 

main aim of the program is to improve the quality of mathematics teaching in 1
st
-6

th
 

grade through teachers' professional development in mathematics and didactics.  

From 2009/2010 PFCM has also had the goal of helping teachers to implement the 

new Mathematics Curriculum (Ponte et al., 2007). PFCM and the new Curriculum 

are oriented by a socio-constructivist model of teaching and learning processes, 

where mathematical knowledge is built in the classroom mainly through problem 

solving and ―investigation‖ activities. As Ponte (2001, p.1) claims ―there is a parallel 

between the activity of the research mathematician and the activity of the pupil in the 

classroom‖. The author describes investigation activity in the classroom as follows: 

―A mathematical investigation stresses mathematical processes such as searching 

regularities, formulating, testing, justifying and proving conjectures, reflecting, and 

generalizing. When one starts working on an investigation, the question and the 

conditions are usually not completely clear and making them more precise is the first part 
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of the work. That is, investigations involve an essential phase of problem posing by the 

pupil—something that in problem solving is usually done by the teacher. However, 

investigations go much beyond simple problem posing and involve testing conjectures, 

proving, and generalizing.‖ (Ponte, 2001, p.3)  

The new Mathematics Curriculum and the PFCM are proposing a neat break with 

―traditional methods‖ of Portuguese primary schools. These were mainly based on 

knowledge transmission, with a central focus on drilling exercises and learning by 

heart definitions or procedures. In order to make this revolution, teachers need to 

acquire new pedagogical and mathematical competences. As the national 

coordinators of the program recognize
29

, primary teachers‘ professional development 

needs to be based on the improvement of pedagogical content knowledge, reflective 

attitude about professional practice and, in many cases, on a change of ―attitude‖ 

towards mathematics and its teaching.  

PFCM‘s goal is to promote professional development starting from teachers‘ 

reflection on their own practice. Indeed, the main features of PFCM are its close 

relationship with teacher practice and school context and the long duration. The 

training program lasts two school years and it is composed by two typologies of 

sessions: (i) Group sessions (two per month, three hours each) involving 8-10 

teachers and held in the school after the curricular school-time. In these sessions, 

teachers and tutor discuss the mathematics curriculum, wondering about the content 

and pedagogical knowledge needed to plan lessons and possible obstacles in their 

classes. They also discuss questions arising from supervision; (ii) Individual 

supervision sessions of classroom work (about ten hours per year), where the teacher, 

with the trainer's help, implements selected tasks explored in the previous whole-

group working sessions. 

The development of the teacher's reflective attitude is also promoted through the 

editing of a portfolio.  

Teresa’s story 

In the first meeting, Teresa (a very experienced teacher) introduces herself saying ―I 

have never liked maths‖. Her story with mathematics is a story of difficulties. In the 

first interview she tells that, when she was a pupil, she was terrified by multiplication 

tables and counting: 

Teresa: I did not like tables and I was afraid…I was afraid of counting money. I was 

terrified of counting money. I got stuck on it, I got stuck! I am not able to 

count money! 

Maria: According to you why did you get stuck on counting? 

                                           

29
 Comissão de Acompanhamento, 2005. Programa de Formação Contínua em Matemática para professores do 1.o 

Ciclo, unpublished document. 
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Teresa:  My father had a grocery shop…At that time there were many coins. He 

knew that I did not like to count the coins and he obliged me to count and I 

failed! Then he beat me (she laughs).   

The emotional charge of this story is clear. It is interesting and surprising, at the 

same time that, in Teresa‘s view, this experience has not had any impact on her 

difficulties in mathematics. She strongly rejects Maria‘s hypothesis about the 

relationship between her experiences at home and her attitude towards mathematics. 

She explains that, in her family, two brothers out of four have their father‘s maths 

genes. Describing her father, she says that he ―adored‖ maths and that he had an 

extraordinary intelligence in this field. She seems to suggest that if she were as gifted 

as her brothers she would not have been beaten. 

Teresa tells about her aversion towards memorization (and towards all topics that she 

links to memorization like tables, numbers…) and, vice versa, her appreciation for 

visualization in mathematics. Her very few positive marks in mathematics as student 

(in grade 8) are linked to particular topics like geometry:  

Teresa: When I got those marks, I do not know the reason. But I remember that I 

was able to see everything quickly! I discovered all. I don‘t know…I adore 

geometry! 

The discovery of visual strategies in mathematics represented a turning point for 

Teresa: in her experience as a student they were accepted only in few topics and 

contexts. Starting from the new approach to mathematics met in PFCM (based on the 

use of  multiple problem solving strategies including visual ones, not limited to 

geometry) Teresa thinks back to her experience as a student. This reflection, together 

with the experience in PFCM, convinces her about the need, for students, to use 

different strategies in mathematics and to seek their preferred ones and, for teachers, 

to give prominence to all the different strategies used by the students.  

In grade 10 Teresa chose a humanistic course of study and ―turned away from 

mathematics‖. Three years later, she enrolled in a university course necessary for 

becoming primary teachers in Portugal and during the first two years she took 

mathematics courses. She describes this experience with mathematics as very 

difficult but positive. Teresa was enthusiastic of her teacher: 

Teresa: I had a wonderful mathematics teacher. Even now I love him, he is my life! 

(… ) I had again good marks with him and I did not like maths at all!  

In spite of this last positive experience as a student, Teresa seems to be still confined 

in the role of someone who does not like maths. In her long teaching experience 

(almost thirty years) Teresa had never been involved in a significant mathematics 

development program before PFCM. 

TERESA and the PFCM 

In the first interview, Maria asks Teresa why she decided to enrol in PFCM. 
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Maria: Why did you decide to enrol in PFCM last year? 

Teresa: First of all we are obliged
30

 to enrol in some teacher development program. 

Then I thought that I had to follow something new related with maths…I 

haven‘t done mathematics for too long, I do not like mathematics and I 

think I have to learn something more because we have to start with the new 

Curriculum. So I thought that I had to enrol. And I like it very much. 

Maria: Did you enjoy it? 

Teresa: I enjoyed it. I liked my trainer very much, I think that he has been 

wonderful, he taught much. He has been excellent!  

From this excerpt it emerges that, although Teresa decided to enrol in a teacher 

development program for an extrinsic reason, it was nevertheless her need to be 

ready for starting with the new Curriculum that addressed her towards the PFCM. 

Moreover, Teresa underlines the role of the trainer in triggering her enthusiasm for 

the first year of the project. Afterwards she gives more details about what she had 

learned from her trainer, also observing him to put his suggestions into practice.  

Teresa: F. taught us…taught me…if I noticed that then the others noticed 

too…simple and practical words: ―look, look again, try to explain with your 

words, pay attention, reflect, how did you do this thing? Are you able to 

explain how you did that? Ah explain! Try to write it down‖. Because many 

students are not motivated to write and explain what they know, what they 

have done (…) F. taught me this way to ask students to explain how they 

have done something. We used to order them: ―not like this! Not like this!!‖ 

But this is not the right way to teach this thing! (…) 

F.‘s suggestions about the way to interact with students during maths lessons (―the  

simple and practical words‖) and his behaviour in the classroom are related with a 

view of mathematics in which error is not the focus. Arguing skills and comparison 

between different strategies become the main points. This new way of viewing 

mathematics seems to cause a radical change not only in Teresa‘s beliefs towards 

mathematics, but also in her emotions and attitude. It seems that now mathematics 

―is totally different‖ for her: 

Teresa: I think that [mathematics] is difficult, I keep thinking that it is difficult, 

anyway I like it much more. I think that…it is totally different. 

Maria:  Why do you like it now and before you disliked it? 

Teresa: Sure. Because…how can I explain that? Why do I like it much more now? 

Because there is not a unique way to do things! 

                                           

30
 Actually it is not compulsory, but it is needed to have career progression.   
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At the beginning of the second year of the PFCM two significant events happened: 

Teresa was assigned another tutor and the new Curriculum started in its first 

implementation. As the first interview shows, Teresa lives dramatically the change 

of tutor. She feels that the significant path started with F. is definitely interrupted:  

Teresa: I need to learn much more about mathematics. Do you understand? Much 

more! It is what F. did with us: he taught maths. 

Maria: Then do you need to continue this path? 

Teresa: Exactly! Because, after all, we have done all on the surface. Do you 

understand? On the top! Now we need to go in depth!  

She attributes that to the inexperience of J. (the new tutor): unlike F., J. is not a 

school teacher and Teresa thinks she cannot deeply understand teachers‘ needs and 

difficulties. Moreover, the overlap of commitments linked to the start of the new 

Curriculum caused the lack of time for reading and studying in depth mathematical 

or teaching-related issues. According to Teresa, the previous year she positively 

faced the changes in her practice, because it was a gradual change and teachers had 

the time to both share and manage this change. Moreover, she recognizes some 

aspects of disorganization in the start of the new Curriculum, for instance there were 

no texts or handbooks ready for the new Curriculum. The work load, the 

uncertainties and the lack of an adequate support cause negative emotional reactions 

in Teresa and, according to her, in her colleagues. She claims: ―we cry‖!   

The second interview is carried out in May, at the end of the second year of PFCM. 

The stress period has gone, Teresa is surely more relaxed and she shows a renewed 

enthusiasm towards the experience in PFCM. She is conscious that she changed her 

practice from the traditional way towards an inquiry oriented mathematics teaching. 

This change gave such unexpected results with students, that Teresa tells Maria with 

emphasis, underlying her happiness: 

Teresa:  Students from a school on the mountains getting A mark! I was admired! I 

was so happy! (…) I think that the few things made the last year have 

opened their minds and perspectives and they got A in maths!!! 

She has not a definitive idea about the validity of her new method to teach maths: 

Teresa: Perhaps this way to do maths is easier. Or rather it teaches to work better 

and then the students do everything more easily. I am not able to discover 

that! I need time to understand. Perhaps they understand more and if they 

understand they do better. Perhaps this new way makes it easier to 

understand. 

She keeps attributing this success principally to the action of F.: 

Teresa:  He gave me a different perspective about mathematics, completely different. 

More practical, I do this in my classroom now. It is all a discovery! All, all, 

all! And I don‘t know how I can be so ahead with mathematics now. 
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The enthusiasm of Teresa is not only justified by the good marks of her students but 

also by the changes in pupils‘ attitude towards the mathematical activity: 

Teresa: It is very nice that they [students] realize that one answers in one way, 

another in a different way, another in a further way…but all the ways are 

right! ―teacher, I have done it different from you!‖ I find it funny! 

Due to these results Teresa‘s perceived self-efficacy as mathematics teacher grew:  

Teresa: Now I think that I would be able to orient a group of teacher, do you 

understand? Help other colleagues! Now I feel that I have the capacities to 

do that! Now I know how to explain the new Curriculum. 

She reports an episode in which other primary teachers recognized her as an expert in 

mathematics and she is aware that her beliefs about mathematics have changed: 

Teresa: Some days ago a colleague told me: <Teresa, you that are learned in maths, 

explain that thing to me>. He said that and I thought I have never been 

learned in maths, they wouldn‘t believe that I didn‘t like maths! But it is 

true! Now I think that I view maths in another way and in another form.   

This professional change makes Teresa more confident about possible results with 

pupils in the future. She is now convinced about her ability to obtain the expected 

goals of the new curriculum. Teresa concludes the second interview showing her 

awareness that with PFCM and the implementation of the new curriculum she has 

started a path towards autonomy in teaching maths and she wants to continue it:  

Teresa:  This year has been an experience. Now we have to begin to get organized. 

In this growth, Teresa changes also her consideration of the textbook: from the 

feeling of being discouraged without it, to the idea that the textbook is only the 

starting point to develop teaching ideas individually.  

Conclusions  

Teresa is a difficult case: she has a personal history with mathematics full of 

difficulties and her emotions towards mathematics are strongly negative; moreover, 

she is a very experienced teacher with very deep-seated beliefs about mathematics 

and its teaching. The analysis of her case shows that, despite these difficulties, at the 

end of the two years of PFCM Teresa, her emotions and beliefs have changed 

radically. It is true that the main reason to enrol in PFCM was extrinsic (the need for 

career progression), but this decision gives Teresa the chance to engage in an 

unexpectedly significant developmental path:  

Teresa:  Sometimes we leave for a journey and we don‘t know why! But when we 

discover new things during the journey, we find new perspectives on life!   

Teresa‘s change happens as a consequence of the encounter with a ―different 

mathematics‖, introduced by the tutor, that Teresa implements both in the group 

sessions and in the classroom (the tutor in this phase represents a model and also a 
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facilitator). The change in Teresa‘s view of mathematics is relevant also because it 

elicits an emotional change: Teresa begins to appreciate mathematics (―now I like it 

because I see that there are many ways to do the same thing‖). In PFCM Teresa has 

had the possibility of developing a new idea of mathematics, to learn aspects of 

mathematics that she ignored and to appreciate a more open method to teach 

mathematics (related and consistent with her new view of mathematics). This 

possibility has originated a virtuous process in which Teresa develops the pleasure to 

do and teach maths, increasing her perceived self-efficacy towards mathematics and 

its teaching. In this process Teresa changes her attitude towards mathematics and  

she is rewarded and also comforted by students‘ reactions (and results) to her new 

way of teaching mathematics. 

It is a process and, like all processes, on the one hand it is full of crossroads and on 

the other hand it needs time (we cannot expect to get radical changes without time 

expense). The structuring of PFCM (through the group sessions where the teacher 

can explain his/her doubts and the continuous support of the tutors) provided a great 

help to Teresa in overcoming the crossroads she met; concerning the time variable, in 

our analyses we could notice how the second year was crucial to realize the change 

in Teresa's attitudes and practices (it is important to underline that PFCM is one of 

the few in-service teachers programs lasting for two years).  

We are aware that our analysis is limited to a single case, nevertheless we think that 

this case has the strength of an existence theorem in mathematics: a radical change of 

in-service teachers‘ attitude towards mathematics and its teaching is possible also 

when it appears to be very difficult to be realized.  

Furthermore, as emerges from our analysis, the change we observed is due to 

PFCM's specifical features, that provided the necessary conditions to overcome the 

teacher's difficulties, by paying attention to content, to teachers‘ practice and to the 

affective side of teaching at the same time. We think that Teresa's case sheds light on 

the great potential of this teacher education model for the professional development 

of in-service teachers.  
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This paper presents some results of a larger study that concern the causes of 

students‘ fear of failure in mathematics. Data was collected from 321 sixth grade 

students through a questionnaire comprising five-point Likert-type scales measuring 

among other constructs students‘ fear of failure and self-efficacy beliefs: An 

observation protocol was developed to identify teachers‘ practices fostering 

students‘ fear of failure. Findings revealed that fear of failure is a complicated 

affective construct based on several sources such as family context, students‘ 

characteristics and teachers‘ practices. The implications of these findings for 

understanding and improving students‘ behaviour in the mathematics classroom are 

discussed.  

Keywords: primary students, fear of failure, self efficacy, teachers’ practices. 

INTRODUCTION 

Research on achievement motivation provides empirical data about the nature and 

consequences of fear of failure (FF) (Conroy & Elliot, 2004; Macgregor & Elliot, 

2005). Particularly, in Educational Psychology, achievement motivation theory 

emphasizes FF as a determinant of students‘ behaviour and performance (e.g. Elliot 

& Church, 1997), however there is little research on reasons why individuals are 

fearful of and motivated to avoid failure in mathematics. In recent studies the origins 

of FF were found in students‘ family context (parental socialization) and in students‘ 

associated feelings of shame (Macgregor & Elliot, 2005). In mathematics education, 

negative feelings have been reported by researchers such as fear, anxiety and 

frustration and their relation to students‘ mathematics performance (Ho et al., 2000) 

has been established. However, there is a need to investigate causes of students‘ FF 

in the mathematics classroom.  

In this respect the present study investigates variations in students‘ internal and 

family characteristics and focuses on teachers‘ practices in the mathematics 

classroom that may cause students‘ FF. By raising awareness of the negative 

consequences of students‘ FF on their mathematical performance and on their stance 

towards mathematics, we believe that the results of the study will shed some light on 

factors that may lead to the development of FF in mathematics and inform teachers 

about desirable and undesirable practices in the classroom.  

THEORETICAL BACKGROUND AND AIMS 

Fear of Failure in Educational Psychology 
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Research on motivation identified the motive to avoid failure or more commonly fear 

of failure, as an energizing means for human behaviour (Conroy & Elliot, 2004). 

Mcgregor and  Elliot (2005, p.219) state that FF is a self-evaluative framework that 

influences how the individual defines, orientates to, and experiences failure in 

achievement situations. More explicitly, an individual with a high FF perceptually 

and cognitively orientates to failure-relevant information and thus encounters anxiety 

prior to, and during, task engagement. He/she seeks to avoid failure by avoiding the 

situation, by quitting or withdrawing effort, or by trying hard to succeed and thus 

avoid failure. The core emotion of FF is most likely shame, a devastating emotion 

that entails a sense of one‘s global incompetence. Other origins underlying students‘ 

FF mentioned by these researchers were students‘ relationship with their parents and 

social background. Specifically, students‘ high in FF had mothers who punished 

failure but reacted neutrally when the students were successful or they had mothers 

who set high standards for achievement but believed that their children could not 

reach them. Among other causes of students‘ FF identified by researchers is the 

experience of embarrassment, the devaluation of one‘s self-esteem and also that 

important others may become upset, Conroy, Poczwardowski and Henschen, 2001 

(in Conroy & Elliot, 2004). In the context of the hierarchical achievement goal 

framework proposed by Elliot and Church (1997), motive-based and goal-based 

variables appeared to be an integral part. Elliot and Church (1997) assert that FF 

negatively predicts adaptive behaviour. Particularly, FF is found to negatively 

predict mathematics performance and interest through achievement goals (e.g. 

Zusho, Pintrich & Cortina, 2005) and it is negatively correlated to self-efficacy 

beliefs (Pantziara & Philippou, 2006). 

Fear of failure in Mathematics Education  

In mathematics education, a term that is close in meaning to Fear of Failure is 

mathematics anxiety (Ho, et al., 2000). Mathematics anxiety has been investigated as 

a two dimensional construct, in a two factor model comprised of affective and 

cognitive dimensions. Affective anxiety refers to an emotional component of anxiety 

such as fear, feelings of nervousness, tensions etc. Cognitive anxiety refers to the 

worry component of anxiety which is often displayed through negative expectations, 

preoccupation with failure and self-deprecatory thoughts (Ho et al., 2000, p.2). The 

conceptual nature of fear of failure as developed in the realm of Educational 

Psychology we believe is closer to the cognitive anxiety as described above.  

Similar results to the ones in Educational Psychology have been reported in 

mathematics education with mathematics anxiety correlating negatively to students‘ 

mathematics performance and behaviour. The indirect effects of mathematics anxiety 

are worth noticing, even in cases when the negative correlation with performance is 

poor, such as students‘ negative attitudes to mathematics, avoidance of mathematics 

classes and elementary school teachers spending less time in teaching mathematics. 

(Ho et al., 2000; Pantziara & Philippou, 2006).   
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We limited our attempt to investigate multiple sources underlying FF in mathematics 

to the context of a socio-constructivist perspective on learning (Op‘t Eydne, De 

Corte & Vershaffel, 2006). More specifically Op‘t Eydne et al. (2006) recognised the 

close relation between (meta) cognitive, motivational and affective factors in 

students‘ learning and problem solving. They believed that students‘ understanding 

of, and behaviour in the mathematics classroom is a function of the interaction 

between who they are (their identity), and the specific classroom context. Students‘ 

identity, their values and what matters to them and in what way is revealed to them 

through their emotions (Op‘t Eynde et al., 2006). In this respect, students‘ attitudes 

toward mathematics are the outcomes of a conscious or unconscious personal 

evaluation of mathematics, the students‘ self and their mathematics learning 

situations.  

Based on this theoretical framework and in an attempt to inform educators as to the 

factors creating students‘ FF, we investigated variables regarding students‘  

mathematical performance and self-efficacy beliefs, mothers‘ and fathers‘ 

educational background, as well as variables referring to the context of learning 

mathematics (teachers‘ practices) that may influence students‘ FF for mathematics. 

Self-efficacy beliefs 

Friedel, Cortina, Turner, and Midgley (2007) refer to academic self-efficacy as 

children‘s confidence in their ability to master new skills and tasks, often in a 

specific academic domain such as mathematics. In this study we consider self-

efficacy beliefs in relation to broader types of tasks (mathematics tasks) and not to 

specific ones (e.g. fraction tasks) to attain broader results; but not seeking to 

establish a general competence construct. 

Numerous studies have found that students with high self-efficacy beliefs are more 

devoted, show intense interest, work harder, persist longer and have fewer adverse 

emotional reactions when they come across difficulties, than students who doubt 

their capabilities (Zimmerman, 2000). Also self-efficacy beliefs were found to be 

related to mathematical performance (Zimmeramn, 2000; Pantziara & Philippou, 

2007).  

Students‘ self-efficacy beliefs which manage the demands of academic tasks were 

found to have an emotional influence by decreasing their stress, anxiety and 

depression, Bandura, 1997 (in Zimmerman, 2000). Moreover self-efficacy beliefs 

were found to be more predictive of mathematical performance than students‘ 

mathematics anxiety, Pajares and Kranzler, 1995 (in Zimmerman, 2000). These 

results suggests that educators should focus more on fostering positive 

characteristics in students, like self-efficacy rather than merely diminishing negative 

characteristics like anxiety and FF. 

Instructional practices 
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Elliot and Church (1997) draw attention to the role of teachers‘ practices in the 

classroom; they note that if the setting is strong enough, it alone can establish 

situation-specific characteristics that lead to different motivational constructs, either 

in the absence of a priori propensities or by overwhelming such propensities. Earlier 

studies in the context of achievement motivation and mathematics education 

specified various classroom instructional practices that contribute to the development 

of different patterns of motivation and achievement outcomes (e.g. Ames, 1992; 

Patrick, Anderman, Ryan, Edelin & Midgley, 2001; Stipek et al., 1998).  

Achievement motivation theorists, relying on a large literature on classroom 

environments, proposed six sources that contribute to the classroom motivational 

environment represented by the acronym TARGET (Task, Authority, Recognition, 

Grouping, Evaluation and Time). All these sources have been examined with regard 

to teachers‘ specific practices. Several studies in classroom environments have 

shown that teachers‘ different practices in each of these sources ended in different 

levels of students‘ motivation in the classroom. In the mathematics education 

domain, Stipek et al.‘s (1998) study, referring to instructional practices and their 

effect on learning and motivation, found that the affective climate was a powerful 

predictor of students‘ motivation and mastery orientation.  

The various and vital consequences of students‘ FF in the mathematics classroom 

together with the absence of studies investigating the sources of their FF obliged us 

to identify the origins of this construct by investigating students internal and 

contextual characteristics. In this respect, the purpose of this study was: 

 To test the validity of the measures of the factors, fear of failure and self-

efficacy, in a specific social context. 

 To indentify students‘ characteristics (mathematical performance, self-efficacy 

beliefs, mothers‘ and fathers‘ educational background) which affect the level 

of their fear of failure. 

 To identify teachers‘ practices that trigger students‘ fear of failure, using an 

observational protocol that includes convergent variables referring to 

instructional practices in the classroom. 

METHOD 

The participants were 321 sixth grade students (136 males and 185 females) from 15 

intact classes and their 15 teachers. All student-participants completed a 

questionnaire reflecting among other motivational constructs (achievement goals, 

interest), fear of failure and self-efficacy beliefs.  

We further collected information about the students‘ parents, including their 

educational background. We measured students‘ mathematics performance through a 

specially constructed mathematics test on fractions. Most of the tasks comprising the 

test were adapted from published research and specifically concerned students‘ 
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understanding of fraction as part of a whole, as measurement, equivalent fractions, 

fraction comparison and addition of fractions with common and non common 

denominators (Lamon, 1999). 

Herman‘s Fear of Failure scale (Elliot & Church, 1997) was used to measure 

students‘ FF; Herman‘s 27-item Fear of Failure scale was revised by Elliot and 

Church (1997) who tested its reliability (Cronbach‘s a=0.88) and construct validity. 

A specimen item from the nine items we used in the study was ―I often avoid a task 

because I am afraid that I will make mistakes‖. Students‘ self-efficacy beliefs were 

measured using the five scale measure of the Patterns of Adaptive Learning Scales 

(PALS) (Midgley et al., 2000). The items measured students‘ perception of their 

competence to do their work in the classroom.  A specimen item was ―I‘m certain I 

can master the skills taught in mathematics this year‖ which the researchers reported had 

a reliability of a=0.78. We adjusted the items in the scale to measure students‘ 

perception of competence in the mathematics classroom. 

For the analysis of teachers‘ instructional practices we developed a protocol for the 

observation of teachers‘ practices in mathematics in the 15 classes. The 

observational protocol was based on the convergence between instructional practices 

described by Achievement Goal Theory and the Mathematics education reform 

literature. Specifically, we developed an inventory of codes around six constructs, 

based on previous literature (Ames, 1992; Patrick et al., 2001; Stipek et al., 1998), 

which were found to influence students‘ motivation and achievement. These six 

constructs were: task, instructional aides, practices concerning the task, affective 

sensitivity, messages to students, and recognition.  

The construct task included algorithms, problem solving, teaching self-regulation 

strategies, open-ended questions, closed questions, constructing the new concept on 

an acquired one, generalizing and conjecturing. We also checked whether teachers 

made use of instructional aides during their lesson. Practices concerning the task 

included the teacher giving direct instructions to students, asking for justification, 

asking multiple ways regarding the solution of problems, pressing for understanding 

by asking questions, dealing with students‘ misconceptions, or seeking only for the 

correct response, helping students and rewording the question posed. Behaviour 

referred to affective sensitivity included teachers‘ possible anger, using sarcasm, 

being sensible to students, having high expectations of the students, teachers‘ 

interest towards mathematics or teachers‘ fear for mathematics. Messages to students 

included learning as students‘ active engagement, reference to the interest and value 

of the mathematics tasks, students‘ mistakes being part of the learning process or 

being forbidden, and learning as receiving information and following directions. 

Finally, recognition referred to the reward for students‘ achievement, effort, behavior 

and the use of external rewards by the teachers. During two 40 minute classroom 

observations for each teacher, we were able to identify the occurrence of each code 

in each structure.  
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RESULTS 

Since we have conducted an exploratory factor analysis involving 302 students 

concerning the same scales (Pantziara & Philippou, 2006), in the present study we 

have proceeded with Confirmatory Factor Analysis using structural equation 

modelling and the program EQS (Hu & Bentler, 1999) in order to identify the factors 

corresponding to fear of failure and self-efficacy beliefs. To this end, we followed a 

process including the reduction of raw scores to a limited number of representative 

scores, an approach suggested by proponents of Structural Equation Modelling (Hu 

& Bentler, 1999). Particularly, regarding FF, some items were deleted because their 

loadings on the factor were very low and some items were grouped together because 

they had high correlation with each other. The reliability for the factor FF was 

Cronbach‘s a=.726 and for the factor Self-efficacy was Cronbach‘s a=.710. The 

correlation between the factors was -.609. 

To assess the fit of a two factor measurement 

model with correlation between the factors 

(FF and self-efficacy) we used maximum 

likelihood estimation method and three types 

of fit indices: the chi-square index, the 

comparative fit index (CFI), and the root 

mean square error of approximation 

(RMSEA). The chi square index provides an 

asymptotically valid significance test of 

model fit. The CFI estimates the relative fit 

of the target model in comparison to a 

baseline model where all of the variable in 

the model are uncorrelated (Hu & Bentler, 

1999). The values of the CFI range from 0 to 

1, with values greater than .95 indicating an 

acceptable model fit.  Finally, the RMSEA is 

an index that takes the model complexity 

into account; an RMSEA of .05 or less is 

considered to be as acceptable fit.  The fit 

indices supported good fit of the model as 

Figure 1 shows (x
2
 =68.908, df= 43, p<0.000; CFI=0.961 and RMSEA=0.044). In 

order to investigate the second aim of the study, regression analysis was performed 

to determine which of the antecedent variables (self-efficacy beliefs, students‘ 

mathematics performance) predicted students‘ FF. Multiple regression analysis 

revealed that self-efficacy beliefs and students‘ performance were negative 

predictors β=4.346, F(36.413), p<0.001 of students‘ FF. Specifically, the regression 

equation was:  

Students‘ FF=4.346 -2.18 x self-efficacy -3.52 x mathematics performance. 

Fig 1: Two factor measurement model 
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One-way ANOVA (GLM1) indicated a statistical significant difference between the 

FF of students whose fathers had different educational background, F(5, 290) = 

2.569, p<0.05. Hochberg‘s GT2 post-hoc test revealed that students whose father 

had low educational background (gymnasium) reported a higher fear of failure 

(M=2.584) than students whose father had higher educational background 

(postgraduate studies), (M=1.996). No statistical significant difference was found 

between students‘ FF whose mothers had different educational background.  

Investigating the third aim of the study, we used one-way ANOVA (GLM1) to 

identify possible significant differences between students‘ FF placed in different 

classes. The analysis showed significant differences between classrooms in students‘ 

FF, F(14, 300) = 2.545, p<0.05. Gabriel post-hoc test identified that students in class 

11 and in class 13 had non–significant means. Specifically students in class 11 

declared the highest FF in mathematics (Mean=2.93) and students in class 13 the 

lowest FF in mathematics (Mean=2.06). Worth noticing is that students in class 11 

performed better in mathematics (Mean=10.20) than students in class 13 

(Mean=9.11). 

Analysis of the teachers‘ observations 

To assess teachers´ practices we calculated the mean score of each code for the two 

observations using the SPSS and creating a matrix display of all the frequencies of 

the coded data from each classroom. Each cell of data corresponded to a coding 

structure. Being aware that FF constitutes a complicated construct, a first analysis of 

the observational data involved isolating the two classes at the highest and lowest 

extremes of specified motivational construct and comparing the means of each code 

in the six structures to identify commonalities and differences in teacher behaviours 

and instructional practices in the two classes. This approach is similar to the one 

used by Patrick et al. (2001).  

T11 (the teacher in class 11 where the highest FF appeared) had 15 years of 

experience, a strong background in mathematics and a master‘s degree in 

mathematics education. T13 (the teacher in class 13, where the lowest FF appeared) 

had 29 years of experience, and lower qualifications in mathematics. As far as it 

concerns the task, T11 used more problem solving activities than T13, while T13 

used more routine activities than T11. Teacher 11 used less open-ended questions 

and more closed questions than T13.  During the observations teacher T11 taught 

problem solving strategies, while T13 did not. T11 did not connect new 

mathematical knowledge with the students‘ excising knowledge and he/she did not 

make connections between the mathematical ideas while T13 did so. T11 did not 

give students the opportunity to generalize or conjecture while T13 did so. T11 made 

use of visual aids in the mathematics lesson, while T13 did not. Relating to practices 

concerning the task, T13 was observed giving direct instructions to students while 

T11 did not. T11 asked the students to provide reason for their choices and solution 

plans more than T13 while T13 was observed asking for multiple solutions for a 
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problem and pressed students for understanding more than T11. Dealing with 

misconceptions was observed in T11‘s class while in many cases T13 accepted the 

correct responses from students without any explanation. While both teachers gave 

individual help to their students, T11 gave more individual help than T13. As far as 

practices of affective sensitivity were concerned T11 was observed in some instances 

showing anger and using sarcasm while T13 did not. None of the other affective 

variables were observed. With respect to messages sent to students, both teachers 

informed students that erroneous answers were part of the lesson with T11doing so 

with greater frequency than T13. Concerning recognition, both teachers rewarded 

students for their mathematical performance, while T11 also verbally rewarded the 

students‘ for their efforts. T11 gave rewards publicly to the students. 

CONCLUSION 

Regarding the first aim of the study, data revealed that factors referred to the two 

motivational constructs (FF and self-efficacy beliefs) were confirmed as present in a 

different social context. The data referred to the second aim of the study revealed 

that a source of FF could be traced to students‘ family context (Macgregor & Elliot, 

2005). The explanatory factors for these findings were the fathers‘ job, social status 

and the consequences of these factors (e.g earnings) or the help students receive 

whilst engaged in their work at home. In addition, students‘ mathematics 

performance and their self-efficacy beliefs were found to predict negatively their FF. 

Numerous studies (e.g. Ho et al., 2000; Pantziara & Philippou, 2006; 2007) revealed 

that students‘ mathematics performance negatively predicts students‘ FF. Naturally 

students with low mathematics performance may more often experience feelings of 

shame and incompetence in the mathematics classroom, both feelings were found to 

be implicated in students‘ FF (e.g. Mcgregor & Elliot, 2005). Moreover, other 

studies (Pantziara & Philippou, 2007) revealed the negative relation between 

students‘ self-efficacy beliefs and their FF. Students‘ positive self-efficacy beliefs 

concerning their ability to manage academic task demands, influence them 

emotionally and thus decrease their stress, their anxiety and depression. In addition 

the positive relation between students‘ self-efficacy beliefs and their mathematics 

performance may contribute to a limitation of their FF. Instructional and social 

influences are found to be the most influential source of students‘ self-efficacy 

(Zimmerman, 2000). Therefore this study indicates that educators who work in such 

a way that students‘ self-efficacy beliefs are raised will help the students confront 

unpleasant situations.   

Regarding the third aim of the study, we uncovered that students‘ FF in mathematics 

is sensitive to the classroom context, finding statistically significant differences in 

students‘ FF from different classes. We found that teachers‘ practices contributed to 

students‘ different motivational constructs (e.g. FF) in line with other studies 

(Patrick et al., 2001; Stipek et al., 1998). Here we discuss these practices in parallel 

with the findings of other studies, being aware that the identification of teachers‘ 
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practices is not easy to attempt. Students in the class with the highest FF had higher 

average mathematics performance than students in the class with the lowest FF. This 

complexity may be due to the close interaction between teachers‘ practices and 

students‘ other motivational and cognitive factors (Opt‘ Eydne et al., 2006). 

Our results indicate that affective sensitivity is the most predictive structure for 

students‘ FF, which is in line with the results of Stipek et al. (1998). Stipek et al. 

(1998) revealed that teachers‘ positive affect was the most predictive variable in 

students‘ positive emotions. Our conclusion was based on observations showing that 

in a class with high FF, the teacher had knowledge of and used practices that have 

been shown to raise students‘ positive affect (use of problem solving activities, 

giving help, errors part of the lesson). However even the traces of anger and sarcasm 

in the classroom might have proved to be stronger than these positive practices in 

affecting students‘ FF. Anger and sarcasm may bring shame and embarrassment to 

students, which are both found to be origins of students‘ FF. Similarly, Patrick et al. 

(2001) described classes characterized by negative motivation in which teachers 

insulted students. Another practice found to affect students negatively belongs in the 

category recognition and refers to making rewards to students public. Rewarding 

publicly may raise competition between students affecting them negatively (Ames, 

1992). Practices from the category task, such as the use of open – ended questions, 

making conjectures, and connecting new knowledge to existing knowledge were 

observed in the class with low FF. These practices were found by researchers 

(Patrick et al., 2001; Stipek et al., 1998) to raise students‘ motivation and our results 

indicate also may be considered as diminishing students‘ FF. From category 

procedures concerning the task, discussing multiple solutions of a problem and 

pressing students for understanding were also observed in class with low FF. Lastly 

giving individual help to students was also a practice observed in the low FF class. 

Fear of failure is found to be a multiphase and complex structure with various 

consequences in students‘ performance and behaviour. More research is needed to 

illuminate origins of students‘ FF especially in the educational setting. Such 

information will guide teachers so as to avoid certain practices that increase students‘ 

FF and therefore use practices that raise students‘ motivation to learn mathematics. 
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INTRODUCTION 

Maria Luiza Cestari 

The presentations and discussions based on written papers submitted to Working 

Group 9 focusing on language and mathematics reveal a multiplicity of theoretical 

backgrounds and, at the same time, the use of methodologies from different areas of 

research, particularly from social sciences. The mathematical topics and the way in 

which they have been analysed demonstrate that this area of research in Mathematics 

Education continues to be in constant expansion. This fact reflects the intersection of 

disciplines from different areas of knowledge which contribute to illuminating the 

complexities observed in mathematical lessons. 

In connection with the structure and group dynamics, the sections were divided into 

time slots of 40-45 minutes for each presentation and had as a basic schedule the 

following steps: 1. Authors presented the main ideas of their papers including 

research questions, theoretical framework, methods and main findings. Some have 

also showed a video or introduced transcriptions of the empirical material. 2. 

Clarifications requested by the audience; 3. First discussant commented on the paper 

and raised questions or issues for discussion; 4. Small group (2- 3 participants) 

discussed together in order to point out issues which caught their attention; 5. A 

whole-group discussion. 6. Second discussant made central remarks and gave 

feedback to the author. On many occasions, at this point, the author responded to the 

comments, and included new insights concerning the understanding of his work.  

For the presentation of posters we organized a special conference section: the authors 

displayed their posters before the section began, participants had the opportunity to 

read them and during the section a short time slot was allocated to every author. 

Participants were invited to comment and discuss special issues and contribute new 

ideas.   

In relation to the topics approached by the authors, as has been observed and pointed 

out in earlier Working Groups, the variety of mathematical concepts and ways to 

treat them in discourses has been remarkable. From a total of 10 papers, four have 

focused on mathematical concepts, four on ways in which mathematics has been 

treated in classrooms conversations and two related to teacher‘s identity and 
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bilingual students. It is important to mention that in the majority of studies, empirical 

material – in general from classrooms – is included. This fact has facilitated the 

group discussions particularly with respect to the focus on the object analysed and 

implications for theoretical development. 

In the first group of papers the mathematical concept has been the focus, for example 

the one by Rønning analysing 8-year-old pupils engaged in activities related to 

different aspects of symmetry: reflection (design of symmetric pictures in various 

ways) and rotation (building three dimensional objects and being encouraged to talk 

about them using mathematical words). Coppola, Mollo and Pacelli also analyse 

episodes involving children from primary school. They show convincingly how 

―actions of shortening the language sentences and checking the equivalence between 

two sequences in two activity systems, allowed the children to construct the concept 

of equivalence‖.           

Morgan and Alshwaikh in a teacher experiment with students from a secondary 

school in year 8 (ages from 12 to 13 years) that includes the class teacher, the 

researchers and a student teacher are concerned with ―the evolution and use of a 

system of gestures for communication about movement in three dimensional space‖. 

They make distinctions between movements related to 2D and 3D space showing the 

contrast between everyday vs. specialised resources, using the concept of rotation. 

Another study where the mathematical concept has been the focus is the one by 

Bardelle. From a pragmatic perspective, particularly the functional linguistics and a 

semiotic approach, she analyses how the concept of infinite and unbounded sets is 

used among seven second-year undergraduate mathematics students. The author 

pointed out that they do not recognize the importance of mathematical definitions. 

Her data showed also that different systems of representation evoke different 

meanings related to ―bounded/unbounded‖ and ―finite/infinite‖ sets.    

Among the second group of papers, four of them focus on the social interaction in 

the classroom. The first one by Brandt and Hôck analyse transcribed interactions by 

dyads using a framework provided by conversation analysis. Two collaborative 

processes are identified and compared illuminating chances and as well impediments 

in problem solving situations. They pointed out the possibilities of a collective 

cognitive convergence being productive and also provoking limitations to the 

moment when the problem is not anymore perceived as the focus of conversations. 

The second one by Gellert presents an exemplary episode between a teacher and two 

students discussing the decimal place value system in a class of fourth graders at a 

primary school. The concept of contention is used to locate a point which presents 

different possibilities for interpretation. One of the concluding remarks is related to 

the fact that ―the engagement in the point of contention and the arguments seem to be 

difficult and unfamiliar‖ especially at these pupils‘ age. The third study by Ingram, 

Briggs and Johnston-Wilder focuses on turn-taking in secondary mathematics 

lessons including pupils aged 12-13 years, also with a conversation analysis 
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approach. In all lessons it has been observed that turn-taking is controlled by the 

teacher. Three situations have been identified from the turn-taking analysis, all of 

them involving self-selection of a pupil as the next speaker. Ingram and colleagues 

locate the first when pupils ask their own questions; the second when they initiate or 

perform repairs related to the teacher‘s previous turn or a peer‘s turn and the third 

when they respond to indirect teacher questions. At the end of this study, the author 

elaborates on an open question related to the effectiveness of this kind of interaction 

compared to the more ―traditional‖ interactions between teacher and pupils. We 

could say that this question has been open for a quite long time in this area of 

research. And the fourth study by Planas and Morera is related to two theoretical 

constructs: revoicing (―re-telling‖) and collective mathematical argumentation. Data 

from secondary mathematical classrooms are analysed by a group of mathematics 

teachers and researchers. Some of the data shows how students‘ use of revoicing can 

reinforce mutual understanding. The authors exemplify this phenomenon when ―a 

student partially explains an argumentation, and another in the group uses revoicing 

to emphasize particular aspects of that argumentation…‖ This additional information 

is recognized as a facilitator for a more adequate mathematical understanding. 

The third group of studies includes the works by Tatsis and Ní Ríordáin. Tatsis 

presents a study where language is conceived as a tool for shaping teachers‘ identity. 

Data consists of a collection of narratives registered during an in-service training 

course.  Typical examples show how the notion of identity as narrative can be more 

operational than the beliefs and attitudes approach to teaching. Ní Ríordáin 

introduces a working model for improving mathematics teaching and learning for 

bilingual students. This model has been elaborated basically from data generated in 

the Irish context. The focus is on the transition from Irish language Gaeilge-medium 

mathematics education to English-medium mathematics education in Ireland. The 

description of the working model includes Mathematics Understanding, Pedagogy 

and Culture and the so-called quartet: Mathematics Understanding, Bilingual 

Factors, Conceptions of Mathematics and Language Use.  

From the brief presentation of papers above we can identify three main research 

focuses: 1. the mathematics content and how it is conveyed in communication; 2. the 

interaction in the classroom; and 3. new topics emerging from recent theoretical and 

methodological developments, for example, mathematics teachers‘ identity. Even 

though the group of participants in this Working Group 9 has been changing from 

conference to conference, we still have a stable commitment to advance knowledge 

in this research area of mathematics education. 
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This paper explores some of the ambiguities inherent in the notions of finite/infinite 

sets and bounded/unbounded sets for what concern Euclidean spaces. The study, 

carried out with seven mathematics students, shows that wrong attitude towards 

mathematical language is a major source of misconceptions about cardinality and 

boundedness. In particular, everyday use of mathematical terms combined with a 

lack of coordination of different representations proves to be a hindrance in the 

conceptualization of basic properties of subsets of Euclidean spaces. 

INTRODUCTION 

In the last years research in mathematics education has pointed out the central role of 

language in the learning of mathematics and has addressed this topic from a variety 

of perspectives.  

The complexity of ‗mathematical language‘ does not depend on the symbolic 

component only, but on all of the semiotic representations used in mathematics, such 

as symbolic notations, diagrams, figures, and verbal texts as well. 

From the point of view of semiotics many studies stressed the importance of both 

treatment within the same semiotic system and conversion between different 

representations of mathematical objects as well (Janvier et al., 1987; Duval, 1993).  

From a pragmatic perspective, and in particular within the functional linguistic 

framework some studies (e.g. Pimm, 1987; Morgan, 1998; Ferrari, 2004) provided 

ideas to interpret some language-related difficulties in the learning of mathematics. 

For example Ferrari (2004, p. 384) claimed ―that students‘ competence in ordinary 

language and in the specific languages used in mathematics are other sources of 

troubles‖. In particular some studies pointed out difficulties arising from the 

overlapping of everyday language and mathematical language (see e.g. Tall, 1977; 

Cornu, 1981; Mason & Pimm, 1984; Ferrari, 2004; Kim, Sfard & Ferrini-Mundy, 

2005; Bardelle, 2010). But not enough attention has been paid to the fact that most of 

mathematical terms are borrowed from everyday language and used with meanings 

different from everyday-life usage. The aim of this paper is to focus on this topic. In 

particular here we deal with the concept of boundedness and infiniteness of subsets 

of Euclidean spaces. The study of metric spaces and their properties is basic in the 

curricula of mathematics undergraduate students and the concept of boundedness is 

fundamental for the learning of other topological properties such as compactness. 
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Research questions 

This research is aimed at investigating some typical students‘ behaviours concerning 

the recognition of bounded or unbounded subsets of 
n
, endowed with the Euclidean 

distance. For example, some students seemingly justify that ‗a set is unbounded 

because it has infinite elements‘. In particular, the study explores the interplay of 

pragmatic aspects with the flexibility in switching between different representations 

of bounded/unbounded sets and finite/infinite sets. In particular the research 

questions are: 

 How the everyday meanings of the words ‗finite/infinite‘ and 

‗bounded/unbounded‘ influence students‘ behaviour in the resolution of 

problems involving such words? 

 What is the role of the formal definition of ‗bounded/unbounded set‘ and 

‗finite/infinite set‘? 

 What are the factors (problem formulation, system of representation of the set, 

context, etc.) that might influence the way words like ‗bounded/unbounded 

set‘ and ‗finite/infinite set‘ are interpreted and used by undergraduate 

students?  

THEORETICAL FRAMEWORK 

The functional linguistics approach 

Functional linguistics is a theoretical perspective (in the frame of pragmatics) that 

studies language in relation to its functions rather than to its form. According to this 

framework, the main functions of language are the ideational, interpersonal and 

textual ones (Halliday, 1985). In particular, the interpersonal function involves social 

and cultural aspects of language and language use, including the processes of 

dynamic and negotiated meaning generation through interaction.  

Here I adopt the pragmatic notion of register, which has been thoroughly discussed 

from a functional linguistics perspective by Leckie-Tarry (1995). A register denotes 

a linguistic variety based on use that is a conventional pattern or configuration of 

language that corresponds to a variety of situations or contexts. Ferrari (2004), 

following Leckie-Tarry (1995), distinguishes between ‗colloquial registers‘ and 

‗literate registers‘. The former refer to the linguistic resources adopted in spoken 

communications prevalently but also in informal written communication such as sms 

messages, e-mails, etc. whereas the latter refer to written-for-others texts mainly such 

as books but also to formal spoken communication such as in academic lectures. 

Ferrari (2004, p.387) argued ―that the registers customarily adopted in advanced 

mathematics share a number of features with literate registers and may be regarded 

as extreme forms of them‖ and provided evidence to corroborate this claim.  
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Semiotic approach 

As mentioned before, registers used in mathematics are highly literate; in fact, the 

development of mathematics but also its teaching and learning requires the 

introduction of a variety of representations such as symbolic notations, verbal texts, 

geometrical figures, diagrams and so on. According to Duval (1993) there cannot be 

noésis without sémiosis, where sémiosis denotes the production of a semiotic 

representation and noésis denotes the conceptual learning of an object. Moreover 

Duval states that the cognitive functioning of human thought needs multiple semiotic 

systems and he applied his ideas to the learning of mathematics where very different 

representations occur. Duval makes a distinction between treatment of a 

representation, which is a transformation (manipulation) within the same semiotic 

system, and conversion (translation) between different semiotic systems
31

. For 

example, computing the sum of two fractions is an example of treatment, whereas 

translating a fraction into an equivalent decimal expansion is an example of 

conversion.  

THE EXPERIMENT 

The research involved seven second year undergraduate mathematics students at the 

University of Eastern Piedmont in Italy. The students were attending a Geometry 

course focused on point set topology and on introductory algebraic topology. 

Students had already dealt with the concept of finite/infinite set and of 

bounded/unbounded set in 
n
, endowed with the Euclidean metric, in their first year 

classes.  In this second year course the definition of finite/infinite set is supposed as 

well known, whereas the definition of boundedness of a set is generalized to an 

arbitrary metric space, paying particular attention to 
n
 with Euclidean metric. This 

study focused on Euclidean spaces only. The data have been collected from 

individual interviews. The interviews were semi-structured and based on two 

different kinds of questions.  

Q1-questions 

The first kind of questions were aimed to recognize if a given set in 
n
 with 

Euclidean metric is unbounded and infinite. The sets were given by their graphical 

representation or by symbolic notations and in this case, whenever it was useful and 

possible, students were encouraged to represent it in the Cartesian coordinate system. 

Some examples of given sets are {1/n, n  -{0}}, {(x,y)  
2
 : x

2
+y

2
=1},         

 {(x,y)  
2 

: y=x}, {(x,y)  
2 

: xy=1}, {(x,y,z)  
3
 : x

2
+y

2
=1, z=3},    

(x,y,z)  
3
 : x

2
+y

2
=3}, {(x,y)  

2 
: y=sin x}, etc. 

                                           

31
 Duval used the term ‗register‘ referring to a semiotic system; here ‗register‘ is used with its pragmatic meaning only.    
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Q2-questions 

The second kind of questions were aimed to understand the meaning of 

‗finite/infinite set‘ and ‗bounded/unbounded set‘ used to answer to Q1-questions. 

Students were asked to say what is an infinite and unbounded set or to produce some 

examples.  

The interviews were carried out in order to help students to achieve a proper 

understanding of the subjects as well as to identify their behaviours and the concept 

images (Tall & Vinner, 1981) they were adopting. The term ‗concept image‘ is used 

―to describe the total cognitive structure that is associated with the concept, which 

includes all the mental pictures and associated properties and processes‖ (Tall & 

Vinner, 1981, p. 152) . The generation of the concept image of an individual can be 

influenced also by the concept definition that is ―a form of words used to specify that 

concept‖ (Tall & Vinner, 1981, p. 152). The concept definition can be different from 

the formal concept definition, i.e. a definition accepted by the mathematical 

community at large. Moreover Tall and Vinner introduced the evoked concept image 

as the portion of the concept image which is activated at a particular time. The 

concept image may have conflicting aspects that may be evoked at different times. 

When such conflicting aspects are evoked simultaneously they cause a cognitive 

conflict. In particular, Q2-questions investigated the concept definition and Q1-

questions were aimed to study the influence of the symbolic and graphical 

representation on the concept image. The interviews were conducted, when 

appropriate, in order to cause cognitive conflicts helping students to understand the 

concepts involved.  

SELECTED FINDINGS 

Just two students (students A, E) out of seven showed no kind of problems dealing 

with the topic of this study. The remaining students presented difficulties that seem, 

as we shall see shortly, to be due to their lack of skills for the treatment of symbolic 

expressions, lack of coordination of representations of subsets of 
n
 (n=1,2,3) and 

also to the improper adoption of colloquial registers.  

In what follows only the responses about the sets {(x,y)  
2
 : x

2
+y

2
=1} and {1/n, n 

 -{0}}  are presented. This choice is due to the fact that the students were familiar 

with them and their conversion into the related graphical representation was within 

their reach and did not require a previous treatment of the symbolic representation, 

which would have been beyond the purpose of this study. Some results concerning 

more examples of sets, which were provided ad hoc to some of the students in order 

to better recognize their concept image, are also presented.  

Table 1 summarizes the students‘ answers concerning the boundedness of the set 

{(x,y)  
2
 : x

2
+y

2
=1}. 
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Student {(x,y)  
2
 : x

2
+y

2
=1} Explanation 

A Bounded ―{(x,y)  
2
 : x

2
+y

2
=1} [-1,1]x[-1,1]‖ 

B Unbounded 
―x

2
+y

2
=1 has infinite solutions, therefore the set is 

unbounded‖ 

C Bounded ―It is a circumference, it is bounded‖ 

D Bounded ―It is a circumference and hence it is bounded‖ 

E Bounded ―{(x,y)  
2
 : x

2
+y

2
=1} [-1,1]x[-1,1]‖ 

F Bounded ―It is a circumference, it is bounded‖ 

G Bounded ―It is a circumference, it is bounded‖ 

Table 1: Answers to the question on the boundedness of {(x,y)  
2
 : x

2
+y

2
=1}  

The first thing to say is that all students, except B, recognized at a first glance that 

{(x,y)  
2
 : x

2
+y

2
=1} is a circumference in the plane and were able to represent it 

graphically. Students A and E showed a literate use of mathematical language 

(literate register) and preferred the symbolic representation. The remaining students, 

except B, could not explain why the set is bounded. Therefore such students, among 

the others, were encouraged to say when a set is bounded/unbounded.  

The set  {1/n, n  -{0}} revealed itself to be more troublesome for students.  Table 

2 summarizes the answers about its boundedness. 

Student {1/n, n  -{0}} Explanation 

A Bounded ―{1/n, n  -{0}} [0,1]‖ 

B Unbounded ―It is unbounded because n varies in ‖ 

C Unbounded 
―It is unbounded on the right…the naturals are  

infinite and hence there is no end for this set‖ 

D  Unbounded ―It is unbounded because there are infinite n‖ 

E bounded ―It is contained in [0,1]‖ 

F bounded ―The set is bounded from above and below‖ 

G Unbounded ―It is not bounded because you get infinite fractions‖ 

Table 2: Answers to the question on the boundedness of {1/n, n  -{0}}  

Only three students (A, E and F) answered correctly. Since the explanation of student 

F, even if correct, seemed to be not so usual as a topologic argument, some 

investigations were conducted in his interview (see below).  The remaining four 

students, among the others, were encouraged also after this question to give the 

definition of bounded/unbounded set and of finite/infinite set. In this case some 

students evoked a concept definition which was different from the one evoked after 
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the first question. Table 3 summarized the responses of students about their concept 

definition of the boundedness of a set.  

Student What is a bounded/unbounded set in 
n
? 

A  ―A set X is bounded if there exists a ball B such that X B‖ 

B 

She was not able to give a definition but she gave the closed interval [0,1] 

as an example of bounded set in  and the interval ]0,1] as an example of 

unbounded set in . She could not come up with an example in 
2
 

C ―A set X is bounded if there exists a ball B such that X B‖  

D 

She answered ―An unbounded set 

is an infinite set‖ when she 

referred to sets that she could not 

visualize 

She answered ―A bounded set is a set 

placed in a limited space‖ when she 

referred to sets that she could visualize 

E ―A set X is bounded if there exists a ball B such that X B‖ 

 F 
―A set X is bounded if there exists a ball B such that X B or a product of 

intervals that contains it‖ 

G 

She answered ―An unbounded set 

is an infinite set‖ when she 

referred to sets that she could not 

visualize 

She answered ―A set is bounded when, 

from the drawing, it is in a narrow 

space‖ when she referred to sets that 

she could visualize 

Table 3: Answers to the question on the concept definition of bounded/unbounded set  

For what concern the concept of finite/infinite set all students grasped its correct 

meaning. All students did not give the formal definition but used a more colloquial 

(colloquial register) but effective argument as showed in Table 4.  

 

Student What is a finite/infinite set in 
n
? 

all 
All students answered that a finite set is a set with a finite number of 

points (or elements) 

Table 4: Answers to the question on the concept definition of finite/infinite set 

Data shows that students use an everyday meaning for the boundedness of a set even 

if their concept definition is correct and given with a literate register. Such a meaning 

is sufficient to give an answer to problems where the set is already drawn in the 

Cartesian coordinate system or students can sketch its graphical representation. In 

this case the definition of ‗bounded‘ used in the everyday meaning in Italian 

language that is ―something that has limits referring to space or time‖ clearly fits 

with the concept definition of students D and G. Moreover, it seems that also 

students C, F adopted this colloquial meaning since they are not able, at least 
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apparently, to provide an explanation to the boundedness of the circumference 

(Table 1) even if their concept definition coincide with the formal one (Table 3). One 

has to highlight that this everyday meaning is not more sufficient in order to answer 

to problem {1/n, n  -{0}} (Table 2). In this case all the students who gave an 

incorrect explanation (B, C, D, G) did not think of sketching the set, neither of 

working within the symbolic system to find an appropriate ball of  containing it. 

The symbolic aspect of the representation of this set seemed to evoke in these 

students the idea of infinite elements connected to the set of natural numbers, indeed 

a set that tends to infinity and hence with no upper bound. Here the matter is not that 

students did not understand the concept of ‗infinite set‘. Rather, the first evoked 

meaning of ‗infinite‘ in this context is colloquial, that is ―something that never ends 

with reference to space and time‖ indeed something which is unbounded. The 

problem is not even that they could not represent it graphically. Indeed, the students 

were asked to sketch it and they did it correctly (sometimes with some help). After 

that they recognized that they were dealing with a bounded set. Notice that student B 

seemed to apply this reasoning also for the circumference since she could not sketch 

it (Table 1). During the interview students were asked to explain their apparently 

incoherent behaviour. Some examples of responses are: 

G:                 I used  I used ‗infinite‘ in order to justify that a set was unbounded because I 

imagined an infinite set as a set stretching to infinity.        

C:                I think more to the idea of infinity in order to decide about the boundedness 

of a set. 

The research proves also the everyday usage of the term ‗finite‘ by student D, as one 

can see from the following transcript:  

1  I: Is {(x,y)  
2
 : x

2
+y

2
=1} unbounded? 

2 D:  It is a circumference [she draws it] ... it is bounded 

3 I:  It is infinite? 

4 D:  It is closed, not infinite. 

5 I:  What does it mean that a set is finite? 

6 D:  It is limited in space. 

7       I:                   Is the set [in its graphical representation] 

x

y

 

                               bounded? 

8 D:  Yes, it is 

9 I:  It is infinite/finite? 

10 D:  It is finite 
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11 I:  Can you find points belonging to it? 

12 D:  yes, for example (1/2,1/2), (1/3,1/3), etcetera, (1/n,1/n) …..no, then it‘s  
infinite! 

13 I:  Why did you answer finite before?  

14 D:  Because it seems finite from the drawing. 

Also in this case the use of the colloquial register (colloquial definition of ‗finite‘) 

prevailed on the literate one (mathematical definition of ‗finite‘). When she was 

asked to convert the set in the symbolic system she immediately could give the 

proper answer. This behaviour as the previous ones show that students are not aware 

of the role of mathematical language and of its functions.    

Finally the research highlights another kind of behaviour due to a misleading 

interpretation of mathematical language. Student F showed no kind of problems with 

sets like in Table 1 and 2. Problems arose with sets like {(x,y)  
2 

: y=sin x},    

{(x,y)  
2 

: xy=1}, {(x,y)  
2 

: y=arctg x}, etc. where functions are involved. In 

this case the recognition of well known functions (both graphical and symbolic 

representations) evoked a meaning of ‗boundedness‘ related to functions rather than 

sets. The following transcript shows this fact: 

1  I: Is {(x,y)  
2 
: y=sin x} bounded or unbounded? 

2 F:  Bounded because it can assume values between -1 and 1 

After some explanation about his wrong answer he declared  

 F: I think that the set [{(x,y)  
2 

: y=sin x}] was in ….. if I see something 

simple like 8
x
 =8

y
 or y=sin x I don‘t see the other particulars. 

Finally, the formal concept definition of bounded/unbounded set was showed to the 

students (B, D, G) that did not manage to provide it and they were asked if they 

remembered it. Student B answered that she could not remember it and the other two 

that they knew it but they did not think to use it.   

DISCUSSION AND TEACHING IMPLICATIONS 

This paper provides an example of a wrong use of mathematical language by some 

Italian mathematics undergraduate students. In particular, these students do not 

recognize the importance of mathematical definitions. Mathematical terms, such as 

‗bounded/unbounded‘ and ‗finite/infinite‘, evoke different meanings at different 

times. This is a typical thinking habit that concerns the everyday-life language. In 

mathematical language, as well as scientific languages in general, terms are usually 

coined with one meaning only in order to avoid interpretative problems. This 

purpose should be shared with the students in order to prevent improper use of 

mathematical language. Moreover, since data showed that different systems of 

representation evoke different meanings of ‗bounded/unbounded‘ and 

‗finite/infinite‘, another goal of mathematics education should be promoting 

flexibility in switching from one representation to another. By ‗promoting flexibility‘ 
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I mean, helping students not just to learn how to shift from a representation to 

another, but also to think of doing so, that is to work at metacognitive level. Actually, 

the students involved in this experiment, when prompted, were able to switch 

between the symbolic representation of sets and their graphical representation. 

Finally, we have to add that most of the students involved have great difficulty in the 

manipulation of symbolic representation (or ‗treatment‘ in the sense of Duval 

(1993)). This issue has not been investigated in this research but it might be 

interesting to explore causes and connections between weakness in the treatment 

within the symbolic system and lack of awareness of the role of language in 

mathematics.  

In my opinion a good practice of teaching, in order to promote the learning of the 

concept of  boundedness of sets, should include not only the formal definition, but 

also examples of sets satisfying the definition as well as examples of sets that do not 

verify it. The choice of examples has to be done in order to evoke possible cognitive 

conflicts, for example like those presented in this paper. Some examples related to 

other topics can be founded in Tall and Vinner (1981). Moreover, when possible, 

following the idea of Duval (1993), sets have to be presented in at least two kinds of 

semiotic representations. Finally, a good practice should include the assignment of 

exercises requiring students to make explicit their concept definitions in order to 

help them to focus on the proper meaning of concepts.  
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MATHEMATICAL JOINT CONSTRUCTION AT ELEMENTARY 

GRADE - A RECONSTRUCTION OF COLLABORATIVE 

PROBLEM SOLVING IN DYADS 

Birgit Brandt and Gyde Hôck  

Elementary dyads solving arithmetical problems have been the focus within this 

study. With regard to an interactional theory of learning mathematics, the 

exploratory focus are the students‘ acts and how these acts function on the emerging 

joint construction. Analysing the structure of individual participation brings light 

into joint construction mechanisms, described as different `types´ on the basis of 

Christine Howe´s research project (Howe 2009). The micro-analytical analysis of 

transcribed discourses will highlight significant differences in the participation of 

one child interacting in two different dyads as well as in the emerging types of joint 

constructions. 

INTRODUCTION 

On the basis of social interaction as a fundamental element for individual learning, 

joint construction is giving a great chance of supporting each others ideas in the 

process of problem solving. Considering international studies aiming at the complex 

structure of interaction in peer group work, there are two main trends to mention. On 

the one hand, these studies focus on asymmetric peer group constellations, where 

there is one advanced group member taking the lead, to support the zone of proximal 

development (Vygotski 1978). On the other hand, they point out mainly symmetric 

dyads or groups, which are moving towards a new (mathematical) understanding in a 

more balanced way, by resolving socio-cognitive conflicts, emerging by different 

perspectives or strategies in peer interaction (e.g. Bearison, Magzamen, & Filardo 

1986). Coordinating the different perspectives, the result of a joint constructed 

process can become more than an addition of different ideas or propositions.  

TYPES OF CO-CONSTRUCTION IN PEER INTERACTION  

Howe (2009) has been looking into the processes of joint construction in the 

developed collaborative settings for 8 to 12-year-old pupils, exploring motion under 

different conditions. In many years of research, Howe has focused on collaborative 

learning processes, collecting data from various group settings, and their way of 

creating an idea for a reasonable solution. Throughout these years, Howe has been 

following the question of how the underlying processes can transform the individual 

knowledge of each group member. In an extensive re-analyses, she concentrates on 

finding certain structures in the problem solving process of groups, to gain some 

hints of how the learners can progress by taking part in collective problem solving 

processes. Howe‘s analyses lead to two main forms of co-constructive processes, 

named as Type 1 and Type 2 joint construction (p.217).  
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Type 1 indicates a discourse, where there are different group members involved in 

the process of problem solving, in a very balanced way. Everyone participates 

individually with their own ideas and, as a group, coordinate all contributions ―into a 

relatively advanced whole‖ (p. 217). Given the fact that there are different ideas to 

consider, it needs a ―coordination of competing perspectives‖ (p. 217) within the 

group. In the quoted study, Howe concentrates on ―groups where members were 

different as regards ideas expressed at pre-test‖ (p. 223). Thus her examples are 

mainly considering the phenomenon of coordinating competing perspectives, 

although she does not restrict this Type 1 to situations where different opinions are 

discussed. The basic idea of this type is a relatively equal allocation of substantive 

contributions among the group members, which is consistent with a symmetric group 

constellation.  

Type 2 describes a constellation where ―only one idea has to be considered‖ (p. 218), 

as one group member is suggesting one idea which is accepted by the others. In this 

context, Howe underlines that ―less advanced children progress when they work with 

more advanced peers‖ (p. 219). That does not mean that this type excludes 

constellations where the main idea is presented by a less advanced pupil, but 

―relatively advanced children are likely to be the source of appropriate ideas whose 

acceptance results in Type 2 joint construction‖ (p. 219). Thus, Type 2 can be 

characterized by unequal distributed substantive contributions of different members 

to the joint construction, which often goes along with asymmetric group 

constellations
32

  

The types represented by Howe serve us as a basis for our own reconstructions, on 

the empirical data of elementary pupils, solving mathematical problems. During our 

research, we found Type 1 and Type 2 in different variations and mostly in the 

allocation to asymmetric and symmetric constellations, as assigned above. We will 

expose this allocation in two different dyadic constellations, where one child is 

involved in both. In addition, we encountered a phenomenon of joint construction 

which in its whole dimension could not be classified by the existing types.  

THE EMPIRICAL STUDY: COLLECTIVE PROBLEM SOLVING  

As above mentioned, this paper is focused on the general idea of an interactional 

theory of learning mathematics and deals with everyday classroom interactions. 

Particularly, we analyse videotaped peer interactions, which originate from the 

project ―Collective problem solving‖
33

 and has been based on the concept of learning 

by participating in collective argumentation processes (Krummheuer 2007). relying 

on the capability of the others leading to a result.  

                                           
32

 A more or less active participation in a problem solving process is not to compare with a ―freeriding-effect―, where 

there are members of the group not been focussed on the shared task and only 

33
 The project was sponsored by the Zentrum für Lehrerbildung, Schul-und Unterrichtsforschung of the Goethe-

Universität Frankfurt (Feb. 2009 – Jan. 2010). 
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Methodological and analytical Background  

In this study, collaborative learning will be discussed as a theoretical question, 

concerning a general understanding on how children learn. The research is design-

based, which means that the object of investigation is the real-world-practice, which 

reverts to theoretically founded learning materials. In our study, the theoretically 

deduced collaborative learning settings were prepared by the involved teachers, for 

the application in their classrooms. Therefore, ―...design-based research is concerned 

with using design in the service of developing broad models of how humans think, 

know, act, and learn.― (Barab & Squire 2004, p. 5). We will not evaluate the settings, 

but we will explore the execution of them in the peer interaction. Given the fact that 

this empirical study occurs in every day classrooms, moments of collaborative 

learning environment can be accomplished, which render the possibility of collective 

problem solving.  

We adopt qualitative methods for the analysis of transcribed interaction processes. 

The basic analysis method is a turn-by-turn reconstruction of the interaction 

processes that originate from ethno-methodological conversation analysis (basically 

pointed out in Sacks 1998). In addition, we reconstruct the participation structure by 

decomposing the everyday concept ‗speaker‘ into more detailed analytical elements 

(cf. Krummheuer 2007). We included the production design in our analysis to trace 

the responsibility for the ideas emerging in the (joint) construction. Following 

Goffman‘s (1981) idea of decomposing, each utterance consists of three analytical 

aspects:  

a) gestical or acoustical appearance, b) formulation and c) idea/motive. For in-stance, 

person A can introduce an idea to the discourse and person B can repeat the utterance 

more or less literally (e.g. as a kind of ratification), or can express the idea with their 

own words (e.g. to establish a common understanding). Taking into account the 

responsibility these aspects have, there are four ways of participation for the speaker 

of the actual utterance (+ gestical/acoustical appearance): 

Role of the actual speaker Idea Formulation 

author
34

 + + 

ghostee + - 

spokesman - + 

relayer - - 

 The last two forms (spokesman and relayer) ensure a stabilization of the negotiation 

of meaning, while the other two forms (author and ghostee) are challenging that 

negotiation, in the sense of enrichment as well as in the sense of threat to 

communication. Each interactive process is kept alive by balancing the two elements 

                                           

34
 The denominations are adopted from Levinson (1988, p. 172). 
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– and the success of group work among pupils depends on the fact how the differing 

ideas can be associated with each other in the interactive process.  

Design of the study  

The research project took place in two elementary schools in Frankfurt 

a.M./Germany. At the beginning of the project, the two classes were joining the third 

grade, and after the summer holidays we continued with both classes during the first 

half of the fourth grade. The mathematic lessons we filmed were held by their 

mathematic teacher. Together with both teachers, we were developing four different 

main themes of arithmetical problem solving:  

Theme Form of cooperation Start Grade 

written subtraction think – pair – square individual 3
rd

 

division with remainder math-conference 
35

  

number sequences pair – double-pair collaborative 4th 

word problems pair – cross-over-pair  

Over the whole period of the project, rules for cooperation were asked in classroom 

discussions and matched to the currently passed collaboration (cf. the ―thinking 

together project‖, e.g. Mercer & Littleton 2007). The above mentioned pairs were 

kept in the same combination together during the whole project (cf. Edwards 2007). 

It was interesting to follow the development of how two partners, who had to discuss 

considerably about the organisational way of co-operating, became dyads who were 

then able to better focus on the task itself, given the fact that there was less 

distraction from collaborating within the process of joint construction.  

In this article we are concentrating on two transcripts of the last set of lessons, where 

two pupils are constantly working together on word problems. The first three lessons 

of this last theme were based on long-term constellations of dyads, trying to discover 

the arithmetical structure of a word problem and designing a diagram
36

 of their 

strategy, as the following example is representing:  

  

 

 

 

 

 

 

                                           
35

 In a small group of four pupils, each has to present their individual solution they worked out beforehand 

36
 This diagram is called ―Rechenbaum‖ in German. 

Your class teacher has asked you to bring some 

lego bricks to school, because you have to build 

something with it. All the children of your class 

are putting their lego bricks on the table. On 

table one there are 85 bricks, on table two there 

are 53, on table three there are 105 and on the 

last table there are 47 bricks displayed. 



Working Group 9 

CERME 7 (2011) 1296 

 

In the last lesson of this subject, the dyads were split and arranged into new pairs, by 

changing the partners (cross-over method). The main focus of our analysis is now on 

a dialog of a long-term dyad in the last setting: Josefine and Janina and the 

remaining money. We will contrast their dialog with an excerpt of the subsequent 

cross-over phase: Josefine and Belen and their cookie-task. By contrasting these two 

dyads, we encountered significant differences between the work flow of a long-term 

dyad and the interactional approach of a complete new collaboration. Following 

Howe, the joint constructions of the partnership between Josefine and Belen could be 

clearly classified as Type 2, in an asymmetric constellation (whereas Josefine is the 

‗better mathematician‘). The collaboration between Josefine and Janina, instead, 

does show some interesting characteristics which could not be found clearly 

classified within the two main types described by Howe.  

Collaboration Process A: Josefine and Janina and the remaining money 

Josefine and Janina are two female pupils which have been observed by the teacher 

as children with very similar performances in mathematics. Generally, both are able 

to resolve  mathematical problems in the normal lessons, without further support. 

Their grading  is usually quite high and they are seen as more competent in 

calculating and solving problems than most of the other children in their class. In the 

beginning phase of their team work they still had to discuss a lot about their way of 

organising the work flow. But during the lessons, the understanding towards each 

other was increasingly growing, to a point where many elements were resolved in a  

non- verbal way, by taking for granted that the other one understands and thinks 

similarly. For somebody supervising the two pupils, one got the impression of a dyad 

which collaborates on a very harmonic and equal basis, being productive and target- 

oriented, as you can see by the following extract of transcript: 

86  M1  who is calculating/ 

87  Jo  both 

88  <
37

 Ja  [pushes Josefine] thirty-nine divided by >three 

89  <Jo                                                                         >three yes 

One girl from another group, next to them, is asking who is responsible in their dyad 

for calculating the result. There are actually quite a number of teams, where the 

group members  are dividing the tasks between themselves, such to have a clear 

responsibility of who is writing, reading, calculating or supervising the time. In this 

case, the spontaneous answer is ―both‖, and it goes to show how serious the 

participants take on the instructions from the teacher of really working t o g e t h e r. 

This a typical sequence  which  characterizes their way of collaborating, and it will 

be highlighted by the following transcript. 

60 Jo   well once again\ reading the word problem. You have been saving your 

                                           

37
 < signals simultaneously voiced utterances. In the utterances the overlapping is marked with >. 
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61   pocket money for quite a while to be able to buy some presents. 

62   Altogether you own 39 Euros. You want to keep one third. With the 

63   leftover (Rest)
38

 you spent 8 Euros on your parents.  

65 Ja   well then we have to calculate 

66  Jo   well this divided by three somehow/ but then there is 

67      a remainder\ (Rest) 

68  Ja   yes remainder (Rest) is (incomprehensible) no with the leftover (Rest) 

69      you spend eight Euros 

70  Jo   yes 

71  Ja   well thirty-nine Euros divided equals by divided
39

 …no one third divided 

72      thirty-nine Euros divided by three 

73  Jo   yes 

First of all, Josefine starts the problem-solving process by reading the task out loudly 

one more time. By reading the word problem out loud, she shares the information 

with her partner and provides some structure to a concrete beginning of the problem- 

solving process<60-63>. This starting point is implying the minimum which is 

required for a co-constructive process, as both are focused on the same problem. 

Janina is taking the next turn and makes the p oint of seeing the need to calculate 

<65>. She also demonstrates her interest to deal with the problem together with her 

partner by using the personal pronoun ―we‖. It is  not clear if she would have 

completed her remark, but Josefine is offering the first idea how to translate the word 

problem into an arithmetic operation. Josefine‘s idea is paraphrasing an important 

part of the word problem ―one third‖, into a concrete division by using ―divided by 

three‖ <66>. Both seem to agree on this translation offered by Josefine, because 

there is no debate arising – this sequence is actually demonstrating a first 

mathematical idea shared between each other as a joint construction. 

In the following lines, the word ―leftover/remainder‖ (Rest) is shifting into the centre 

of attention as Josefine brings this point into consideration <67>, and Janina is at 

first assenting, but then feeding back the word ―leftover/remaind er‖ to the text, to 

underline the fact that with the ―leftover‖ you spend eight Euros <68/69>. Josefine 

does agree with Janina‘s point of view, by saying ―yes‖ <70>. Her affirmation could 

be also interpreted as a signal for only listening and letting the partner keep the turn, 

but in both interpretations no contradiction emerges on the stage of interaction. The 

next turn is taken by Janina, with the attempt of translating their ideas into a first 

mathematical term. At first, it seems quite confused what Janina is trying to express 

in line<71>, but in the end she brings up the term 39 : 3 <72>, and Josefine does 

                                           

38
 In the original transcript, the girls were using the German word „Rest― which stands for both left over and remainder. 

This caused the problem of mixing the meaning of the `leftover´ in the word problem with the understanding of division 

with remainders. 
39

 ―Divided by― is translated as ―geteilt durch― in German and sometimes just the word „durch― is representing the 

meaning of division in an everyday language: <71-73-German> also 39 Euro gete ilt ist durch…nein ein Drittel durch 39 

Euro geteilt durch 3. 
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agree without having any problems of understanding <73>. In a similar way, they 

agree on having a remainder for this term, but after calculating the term, they assert: 

95  Ja   no there is no remainder (Rest) 

96  Jo   that‘s right, there is no remainder (Rest) ... this will be thirteen 

After a short pause, Josefine proposes minus as a new operation to get a kind of 

―remainder/leftover‖ (Rest). Janina contributes with a new first calculation for the 

word problem and they finish the problem in the following way: 

102  Ja   thirty-nine minus eight 

106
40

 Jo   minus eight equals thirty-one\ ..and now 

109  Ja   divided by three 

113      wait a moment this will be ten but now you have one Euro leftover (übrig) 

114  Jo   yeah this will be ten remaining one 

At the end, both are happy of having achieved a ―remainder‖ (Rest) and they do not 

doubt their solution, even though they tie their result to the situation presented in the 

word problem <113, 114>. They close this word problem with the written answer: 

She has got 10 remaining 1 for herself. Thus, by starting with 39 minus 8, they 

jointly ‗produce‘ a number (31) which ensures a remainder taking 3 as divisor.  

The prompt way of supporting the input of the partner is characteristic of their joint 

constructions, and during th e whole problem-solving process their way of 

communicating grows from this supportive answering to an overlapping 

conversation, where the last word or two are repeated by each other, before 

completing the sentence, up to a collective cognitive convergence
41

 where the ideas 

and sentences are merging into each other. Thus, only by taking utterances of both 

partners together, a substantive contribution to the joint construction will occur. The 

detailed analyses of their participation leads to the perception of having two equal 

―authors‖ within this problem- solving process, as they are both carrying forward 

their partner‘s ideas and joining their input into one whole joint construction, where 

in the end they can sign their result to the word problem on a working sheet, agreeing 

that they both understand their approach to the solution. 

Collaboration Process B: Josefine and Belen and their cookie-task 

In contradistinction to Josefine and Janina‘s highly symmetric joint construction, we 

are going to show another sequence of team work between Josefine and another 

female pupil of her class, named Belen. This dyad is a new constellation; these two 

                                           

40
 Missing lines refer to a side dialogue. 

41
 The phenomenon  of collective cognitive convergence in groups of  people, who are interacting frequently together, 

has been discussed by several studies. For different aspects of collective cognitive convergence in cooperative learning 

see Teasley et.al. (2008). In particular, van Dyke Parunak, is engaged in this development between group members who 

work together over quite a long period of time, loosing the capability of questioning themselves and being aware of the 

advantage of differing and contrasting ideas (e.g. Parunak et.al 2009). 
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pupils did not work together on mathematic problems before this lesson. Belen is 

usually having some problems in solving mathematical tasks alone, which requires a 

lot of support by the teacher in the everyday lessons. Alike the dyad we have 

analysed above, this new team is taking the task as a problem which has to be 

resolved together – joint construction has also been built by these two  pupils, but in 

a complete different approach than before. 

Again, Josefine is setting up a joint focus by repeating the task as a spokesman of the 

teacher ―well now we have to think up of a word problem‖ <45>. Belen throws in 

immediately an idea where Tom and Kim own respectively 55 and 50 clothes. Jose 

fine‘s reaction shows a sceptical attitude which is demonstrated by her way of 

questioning Belen‘s input. After rejecting Belen‘s first idea, Josefin e phrases the 

following: 

51  Jo   .. well wait let‘s do it rather let‘s do it well mhmh on Sunday a 

52  Christmas market takes place at the Opernplatz \ (square in front of the 

53  opera) there\ there  Belen sells  Belen has– has got a 

55  <Jo   stall - has got hund red >eigh   ty cookies 

56  <Be                                         >eighteen 

57  Jo   of these she sells ninetyfive\ so Josefine has got also a stall.. she has.. 

58  Be   three. fourhundredfifty 

Josefine induces her  contribution as something new, not related to the former idea of 

Belen <51>. After rejecting Belen‘s input,  he places emphasis on the idea of 

working together: Within her new attempt of creating a word problem, she integrates 

Belen as a protagonist <53>. This could be seen as a kind of a face-saving act 

towards Belen after face-threatening her by rejecting Belen‘s idea (cf. Brandt & 

Tatsis 2009). Furthermore, she reverts to the underlying structure of Belen‘s 

suggestion, using two people (Belen and Josefine) and a certain amount of objects 

(cookies). But Josefine doesn‘t leave it to the additional term Belen verbalised, as 

she is bringing in the subtraction by selling the objects <55>. At several stages, 

Belen contributes single numbers at the right moment <56-58>, such that Josefine 

can integrate them into their word problem while creating it. Later, Josefine prompts 

Belen to calculate: 

110  Jo   Belen now strain your head do you know what this plus that is 

111    [pointing at the work sheet] 

112  Be   this is (incomprehensible) 

113  Jo   threehundredfive plus hundredninety 

114  Be   becomes than fourhundredninetyfive 

Belen is also joining the process of developing the task, by calculating an addition 

problem which Josefine confers on her <113-114>. By analysing this new dyad, it 

highlights that Josefine, after taking on Belen‘s first idea as a ghostee, is leading the 

team work process like a tutor, as she is the more capable one. She takes on the part 

of being the ―author‖ of the word problem structure and of the final result. Belen 
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takes part as a ―spokesman‖ and ―relayer‖. Thus, she is integrated in the joint 

construction of Josefine‘s idea. 

COMPARING AND CONCLUSION 

Collating the two dyads, there is a special form of joint construction to emphasize: In 

the interaction between Josefine and Janina there is not even one moment of 

misunderstanding and there is no antithesis to the suggestion of a single person (like 

the direct rejection of Belen‘s idea). They collectively reject their first joint 

construction  (39 : 3) without even questioning each others ideas. Another interesting 

phenomenon is how the turn-taking is accepted by both partners in all moments of 

their problem solving. There is never a dissent between them which leads to a 

conflict or even a contradictive discussion. They are both responsible for creating 

their solution in a complete balanced way. This means that the joint constructions in 

their word problem solving process could not be classified as Type 2 – there may be 

one idea considered through the collaborative process of Josefine and Janina, but it is 

not a ―relatively advanced contribution of one child becom(ing) a group product‖ 

(Howe, 2009, p.217, 218). Instead the two partners show a complete equality of how 

they develop and coordinate their resolution. Considering Type 1 as a coordination 

of substantive contributions from more than one child into a relatively advanced 

whole (Howe, 2009, p.217), it also does not encompass the complete phenomenon of 

Josefine´s and Janina´s join t constructions process, although it may fall under the 

category of Type 1, being a very special subcategory. It is a conjointly creation of a 

common idea, where the single turns of both partners gear into each other – and both 

partners are aware of this common idea just from the first glow in the interaction. 

Thus, this subtype involves elements of collective cognitive convergence and can be 

described as follows: Joint construction of one united idea, in complete symmetry, as 

one idea has to be considered from both partners from the beginning. 

Something new is constructed, a new idea unfolded without any dissent, but 

resolving a ‗joint problem‘ – even if the solution is not responding ‗correctly‘ to the 

problem. In our example, the ‗mistake‘ Josefine and Janina do is underlining the 

singularity of their joint construction – there is actually a real ‗problem‘ to solve 

together and they find a collaborative way to surmount the difficulty. 

This example of Josefine´s und Janina´s collaboration is highlighting the chances 

and impediments of working in dyads over a longer period of time, as collective 

cognitive convergence can be very productive on the one hand, as there are less 

misunderstandings between the team members, but on the other hand it can lead to 

such closeness that problems are not perceived anymore (cf. Parunak et. al 2009). 

Using the cross-over method as well as pair-square to bring in new ‗experts‘ with 

new ‗ideas‘ from outside, can help to detect these ‗blind alleys‘ and offer new 

incitements for working more productively. 
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CONSTRUCTED LANGUAGE IN A PRIMARY SCHOOL CLASS 
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We analyze two episodes of a teaching experiment involving children of primary 

school. The children, handling a procedural language they previously constructed, 

single out equivalence rules. So they construct the concept of equivalence intuiting a 

semantic equivalence in the language. We adopt a qualitative approach mainly 

based on observational and ethnographic methods. We present a data analysis 

regarding how the children, in interaction, co-construct the solutions to the tasks, 

according to the activity theory and the epistemological triangle.   

Key words: procedural language, equivalence, interaction 

INTRODUCTION AND THEORETICAL BACKGROUND  

The study we are presenting is part of a wider research, whose main aim is to analyse 

the relationship between language and the development of logical tools through 

linguistic-manipulative activities, in primary school classrooms. By logical tools we 

mean the skill to find and choose different strategies to solve problems regarding 

logical tasks. The activities regard both assertive and procedural aspects of the 

language. Both aspects play a fundamental role in the development of child‘s 

mathematical thinking (Gerla et al., 1990). In this paper we refer to a simple 

procedural language.  

Our theoretical background refers on the one hand to the social-genetic 

constructivism  (Perret-Clermont, 1979; Iannaccone, 2010) and to the contributions 

of the soviet cultural-historical school (Vygotskij, 1934; Leont‘ev, 1978), on the 

other hand to formal logic [1] (Kneale, 1962). The latter can represent a basic point 

of reference for the study of the development of mathematical thinking provided it is 

seen as the explicit expression of the strong relationship among the language, the 

construction of mathematical objects and the development of mathematical concepts. 

Mathematical objects arise not only through abstraction processes from the direct 

experience, but also through the language objectification, through the singling out of 

manipulation rules of linguistic objects and through the intuition of the equivalence 

among different procedures. According to the Vygotskian theories, the use of the 

symbols deeply affects the cognitive functioning. Thinking cannot be traced back 

only to abstract processes of knowledge and reasoning, but it is feed with motor and 

sensory processes; the tools, intended as ―mediation devices‖ between the individual 

and the social context, modify the whole flow and the structure of the mental 

functions, transforming and affecting the actions (Anolli, 2005). Symbols are 

intended as ―tools‖ supporting the accomplishment of the actions required by the 

context and the activities which the individuals are engaged with (Radford, 2000). 
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Concerning signs in the Activity Theory Leont‘ev agrees with Vygotskij in that tools 

mediate activity. Psychological processes are based on the activity. It represents the 

reference global unit, which is naturally social and so it implies necessarily the 

interaction among the different actors. Activities consist of goal-oriented conscious 

actions. The actions consist of automatic operations which are independent from the 

nature of the activities (Anolli, 2005). In the subsequent developments of the activity 

theory Leont‘ev includes the rules and the division of the work inside the community 

(activities‘ systems), maintaining that an activity and its progress require a social 

coordination and a meanings‘ sharing (Ligorio, 2010). According to the socio-

genetic constructivism, on some conditions the peers interaction represents the key 

for a cognitive progress and moreover the cognitive activity cannot be studied 

without considering the social and cultural contexts in which this activity is carried 

out (Perret-Clermont, 1979; Iannaccone, 2010). Thinking, and so mathematical 

thinking, cannot be considered as an individual information processing, but 

―thinking is a form of social praxis‖ (Wartofsky, 1979; Radford et al., 2005). The 

construction of new mathematical knowledge is based on the relations built in the 

classroom interactions between signs/symbols and concrete or abstract 

objects/reference contexts. Signs themselves do not have an isolated meaning, which 

has to be constructed by the learner. The meaning given to the not yet familiar 

systems of symbols is continuously enriched by the mediation with suitable reference 

contexts (Steinbring, 2000).  

The use of the symbols in the culture of mathematics teaching is constituted in a specific 

way, giving social and communicative meaning to letters, signs and diagrams during the 

course of ritualized procedures of negotiation (Steinbring, 1997).  

An important theoretical tool to describe and analyze the processes through which 

the children, in an activity system, construct new mathematical knowledge is the 

epistemological triangle. 

[...]the epistemological triangle is used for modeling the nature of the (invisible) 

mathematical knowledge by means of representing relations and structures the learner 

constructs during the interaction (Steinbring, 2006).  

The characteristic of the epistemological triangle consists in the mutual relations 

among the three vertices of the triangle, ―sign/symbols‖, ―object/reference context‖, 

―concept‖. These relations are not fixed a priori, they constitute a balancing system. 

As the knowledge develops in an interactive way, the interpretation of the systems of 

signs and the corresponding reference contexts modify (Steinbring, 2000; 2006). 

RESEARCH PURPOSES   

Our research hypothesis is that activities based on the creation and the handling of 

simple procedural languages, in a context of social interaction, can spur in the 

children a reflection about the language functions and the use of symbols. The aim is 

to lead the children, by group activities, to a change in the representation and in the 
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use of the language, from being only a communication tool to being also an object to 

manipulate. We believe that such a change could be an important process in the 

development of mathematical thinking and that through manipulation the 

construction of new mathematical knowledge could be facilitated. With regard to the 

activities we describe in this paper, we expect that the children would carry out 

interactive processes of constructing the concept of equivalence. 

THE METHODOLOGY AND THE PARTICIPANTS 

The participants were 24 children, aged 9-10 years, from a fourth grade class on a 

primary school, working in small groups in a period of about three months. We 

adopted a qualitative approach mainly based on observational and ethnographic 

methods. The activities referred to the ―poor informatics paradigm‖ [2]. During the 

activities our role was to ask questions in order to stimulate thought processes 

without correcting any errors. We collected a corpus of data consisting of videotapes, 

audio recordings, ―observable traces‖ (Vermersch, 1994) [3], initial and final tests 

and narrative interviews (ongoing and at the end of the activities). We analyzed: 1) 

how the children, in interaction, co-constructed the solutions to the tasks; 2) the 

cognitive representation of the tasks‘ solution that the children, individually, 

developed during and after the activities. In this paper we present only some results 

of the data analysis regarding point 1), according to the activity theory (Leont‘ev, 

1978; Engestrôm, 2001) and the epistemological triangle (Steinbring, 2000; 2006).   

DESCRIPTION AND ANALYSIS OF THE ACTIVITIES 

We identified different situated activity systems (Leont‘ev, 1978; Engestrôm, 2001) 

by analyzing the video recordings and by transcribing the communicative 

interactions among the children in the activities progress. We transcribed the 

communicative exchanges using a lightened version of the Jeffersonian system 

(Jefferson, 1985). We analyzed the systems according to the three levels of the 

activity theory (Leont'ev,1978; Engestrôm, 2001): the level of the goal-oriented 

activity (the given task); the level of the actions the children carried out to solve the 

task; the level of the operations underlying the performed actions.  

In this work we focus on two activity systems that are part of a teaching experiment 

starting with a problematic situation in which there is a ―child-robot‖ in a room. The 

other children have to ―invent‖ the instructions in order to make the child-robot 

move. After several discussions and negotiations, the children create a language 

constituted by letters. The interpretation of each letter is a basic movement of the 

robot. Therefore, a word of the language is a ―program‖, since it is a sequence of 

elementary instructions. The invented language with its (translated) interpretation is:  

A is Forward; I is Backward; N is Turn to the north; S is Turn to the south; E is Turn 

to the east; O is Turn to the west; LO is West side step; LS is South side step; LN is 

North side step; LE is East side step; F is No-moving [4]. This first phase ends with 
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the institutionalization of the language: the children write it on a billboard after the 

negotiation and the sharing by all the groups. Furthermore, the classroom walls are 

labelled with the cardinal points.  

The aim of the two activities we are going to present is to bring out some semantic 

equivalence rules in the language [5] in the first activity and to get children use these 

rules in the second activity. 

The construction of the equivalence rules 

At the beginning of the first activity the groups have to represent on a squared sheet 

[6] two sequences of symbols of the language: 

EAISAAALELO and NAEEANNLELELO. In Fig. 1 

there is an example of the children‘s 

representation. Then, for any sequence, they 

have to answer the following questions: Is the 

path you have drawn the shortest one for the 

robot to achieve the goal? Can you make it 

shorter by replacing some instructions with 

some others? Which instruction can be 

replaced? With which ones? How come? 

 

Below we report two episodes in which the action is shortening the sequences, 

previously represented. We identify the operations that the children carry out and the 

tools they use in order to construct the rules. 

Excerpt n.1 

In the following excerpt [7] we can observe how a group, working on the first 

sequence, constructs the rule ―AI = F‖: 

1  S1: we can remove Backward in this way (pointing and touching the sequence on 

the worksheet) 

2  S2:  Backward and [...] 

3  S3: let‘s remove this Forward here (.) and this Backward (pointing AI in the 

sequence touching the worksheet) 

R1 encourages the children to observe pairs of adjacent instructions 

4  R1:  for example if I go forward and then backward (.) what happens? 

5  S4 and S5:  [[I come back on the same tile]]  

6  R1:  and so? 

7  S5:  I have to remove Forward and Backward 

Figure 2 
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R1 draws the group‘s attention to the fact that the task is ―to replace‖ instructions 

and not only ―to remove‖ them 

8  R1:  what can we put instead of Forward and Backward? What do Forward and 

Backward correspond to? 

9  S5:  to nothing (0.5) (looking at the billboard with the instructions) to No-moving  

In this example, the activity is built collaboratively by the children, which in turn 

(lines 1, 2, 3) try to find a solution to the questions asked by the researcher. The 

strategy pursued by the group is to remove the instructions. The operations are the 

specific modalities of execution by which the action is performed: in this example 

they correspond to the use of the sheet as a mediation device. For example, in lines 1 

and 3 the children point at the sheet on which the instructions are written. In line 5, 

two children answer in choir to the researcher stating that ―by forward and 

backward‖ it is possible to come back on the same tile. This verbal formulation is the 

result of the previous interaction with the other children. The researcher reminds the 

children of the task: it is about ―replacing‖ and not only ―removing‖. So a child (line 

9) says that ―Forward and Backward‖ can be replaced with ―nothing‖. The operation 

―looking at the billboard‖ moves the attention of the group to the language. The 

children answer that ―Forward and Backward‖ can be replaced with ―No-moving‖. In 

the development of this first action it seems that the group is approaching to an 

insight of a semantic equivalence in the language (lines 5, 9). After the response of 

the child about the ―No-moving‖ (line 9), the group goes on with the activity, 

interacting with the researchers, making marks on the sheet, simulating the 

movements of the robot and referring to the context in which they are working.  

Afterwards a child sums up trying to answer the questions. The group asserts that the 

initial sequence can be simplified. 

10  S4: (reading again the task) which instructions can be replaced? Backward and 

Forward (.) we have replaced with No-moving (.) then (.) with what? With No-

moving and we said it (.) How come?  

11  S3:  because (.) forward and backward is always the same thing so you might as 

well keep still (.) 

The group receives the second sequence. In the following excerpts there is the 

construction of the rule ―LELO = F‖. After the negotiation of the task inside the group 

and with us, a child crosses by the pencil the instructions LELO on the sequence. 

Another child asks for an explanation 

12  S2:  why did we remove them? 

13  S4:  because (.) no look at=look at! (pointing the worksheet) Wait! As before (.) see 

(.) we said orally (.) because at the end we always come back to the same point 

14  S2:  ok (0.5) 

15  S4:  so these [instructions] here can be removed 
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R2 asks for explanations about the abbreviations and about the marks on the sheet 

16  S4:  These as before (0.5) which actually get [us] reach always the same point 

17  R2:  So we can replace them (.) with what? 

18  the group:  [[nothing]] 

19  R2:  and which is the instruction for nothing? 

20  the group:  [[No-moving]] (looking at the billboard with the instructions) 

Finally, as for the first sequence a child sums up in order to answer the questions  

21. S4:  which have to be replaced? (0.5) East side West side North East (0.5) (looking 

at the sheet with the task) with what? (.) with No-moving (.) and then (.) how 

come? Because (.) because you always come back to the same point 

The other members of the group nod and confirm. S4 while giving us the sheet 

22.S4:  ‗cause then (.) at the end (.) if it is really how we did (.) the solution (.) we can 

do differently (.) that is on the contrary (.) in the way that (0.5) that we have to 

lengthen the path (.) as for example (.) like here (.) but we have to get it longer 

23.R1:  longer (.) but always reaching the same point? 

24.S4:  yes (.) 

The previous excerpt shows that the children are constructing the concept of 

equivalence step by step. At every step every child spontaneously recovers what the 

other children have built. The children, after they have understood and internalized 

the rule, try alternately to solve the task. At the same time they reflect on the answers 

given by the others (lines 12 to 15). Furthermore, they construct new rules referring 

to how the other rules have been previously constructed by other children (line 13, 

lines 16 to 20). We cannot claim that in another situation or educational context the 

same interactional situation would arise. It is interesting to notice that the activity of 

rules‘ creation is a socially constructed culturally situated (lines 19, 20, 21) activity. 

Besides it is mediated by both materials and linguistic cultural artefacts. 

The use of the equivalence rules 

The second activity we analyze follows the singling out of the equivalence rules, 

which have been institutionalized by writing them on the blackboard. The task is to 

verify if the two symbols sequences of the language SAAIAEEAFLSLNLNAAANN and 

SAFAEAFLN3AN are equivalent, using only the equivalence rules. Only afterwards 

the groups have to verify the task by drawing the corresponding paths. We report an 

excerpt regarding the communicative exchanges of the resolution process of a 

different group from the one of the previous activity. We identify the operations and 

the tools. A child reads the task aloud and reads the two sequences. At first the 

group concentrates on the instructions. 

Excerpt n.2 
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1 S1:  Turn to the south (.) then there is Forward (0.5) it is replaced with No-moving 

(0.5) because it stays in the same point (0.5) then AA then E (.) Turn to the 

east (0.5) then it always stays in the same point (pointing EE in the sequence) 

(0.5) Forward (.) Backward [...] they aren‘t equivalent (.) because there is 

South side and here there isn‘t (moving from a sequence to the other one 

touching the sheet) (0.5) but let‘s see now (.) we have to check it yet 

Hurriedly the group states that the sequences are not equivalent and soon it passes to 

verify the answer representing the corresponding paths. Nevertheless, using the 

drawing the children get confused, they don‘t succeed in reaching a correct solution 

and there is not agreement.  

2  S3:  they always arrive at the same point (0.5) no (.) they don‘t always arrive at the 

same point  

3  S4:  yes (.) they are equivalent (0.5) look (.) it‘s the same tile  

4  S2:  it‘s not true look that this is the yellow tile (0.5) and this (.) 

5  S1:  ok let‘s revise the path 

At this point the researcher suggests reading the task again. Then the group goes 

back to the symbols dropping the drawing. After a discussion the children conclude 

6  S2: (looking at the two sequences in the first of which there is LSLNLN, in the 

second one there is LN)  the robot takes a step south side (pointing by his hand 

the wall labeled with the south-card) and then it takes a step north side 

(pointing by his hand the wall labeled with the north-card) if then you write 

North side (.) it‘s the same thing because here there is one instruction more (.) 

but they always are equivalent 

7  S3:  so are they equivalent? 

8  S2:  wait (.) 

9  S1:  N (0.5) South (.) Forward (.) it‘s ok (.) No-moving it‘s ok (0.5) it‘s ok 

10 S3:  is it ok? 

 11 S2: the instructions are ok 

In the excerpt the group applies the equivalence rules, previously constructed, to the 

two sequences given in the task. At first (line 1) the children‘s action is oriented to 

the solution of the task in the shortest time. The ―hurry‖ is due to the competition 

among the groups and it leads the children to mistake. The operation in this case is 

―reading the task‖ hurriedly and not carefully and ―representing the paths‖ on the 

sheet. In lines 2-5 we can observe how the children, debating one another, realize 

that their solution does not fit the task. The discussion seems to activate a real 

awareness of the error. The researcher by a guidance action leads again the group to 

a deeper reflection about the task. The action of ―reading again the task‖ changes the 

initial goal of the children from giving a solution in the shortest time to giving a 
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correct solution. This action involves new operations: a child represents the 

movements of the robot ―pointing out the cardinal points‖ fixed on the walls (lines 6-

10). Again the interaction in the group allows the co-construction of the solution and 

also the awareness of the initial error.  

The concept of equivalence 

The process of constructing the concept of equivalence can be described by the 

epistemological triangle (Fig. 2). In the activity systems different kinds of signs are 

produced (Steinbring, 2006). There are verbal formulations (in both the activities): 

the children use everyday language expressions, which can represent preliminary 

forms of interactively produced signs useful to construct mathematical concepts; 

―touching deictics‖ (above all in the first activity): the children touch the small 

squares on their worksheet simulating by the fingers the robot‘s movement; 

―pointing deictics‖ (above all in the second activity): the children point out by their 

hands the walls labeled with the cardinal points; drawings: the children use graphical 

representations as a support in the task resolution. Besides the children produce and 

handle the language‘s symbols. Really the latter turn out to be the most useful to gain 

the goal of the activities. Indeed, especially in the second activity, when the children 

use the drawing they do not succeed in solving the task, while they are successful 

when they use and handle the symbols of their language.  The meaning of the signs is 

produced by the children in a continuous reference to what they employ as reference 

context, that is, the worksheet with the task, the billboard with the symbols of the 

language (in the first activity), the blackboard with the rules (in the second activity) 

and the walls labeled with the cardinal points. Through the continuous mediation 

between signs and reference context they construct the concept of ―equivalence‖.  

 

 

 

 

 

 

 

Figure 2 

In both activities the concept of equivalence comes out in the repeated use of 

expressions like ―is the same thing‖. The use of expressions like ―it remains always 

on the same point‖, ―it comes back to the same tile‖, ―you come back always to the 

same point‖ points out that the first step of the construction is the singling out of 

simple equivalence rules (as an example AI=F). Showing that the composition of 

some instructions is ―the same‖ than the composition of other ones, the children 

Concept: 
equivalence 

Sign/symbol:  
verbal formulations, touching deictics, 
pointing deictics, drawings, language‘s 

symbols 

Reference context:  
worksheet with the task, billboard with 

the symbols of the language, 
blackboard with the rules, walls labeled 

with the cardinal points 



Working Group 9 

CERME 7 (2011) 1310 

 

―construct mathematical knowledge‖, because in doing this they identify an 

equivalence relation. The produced signs are ―mathematical signs‖ because they 

denote a semantic equivalence relation in the language. The understanding of the 

equivalence is not an end in itself, since it is basic for the construction of the 

―mathematical objects‖, which arise just from unifying equivalent ―words‖ [8].  

In the collective discussion among the groups, taking place after the activities, it 

emerges how the children‘s previous knowledge strengthens the mediation between 

signs and reference context and the whole construction process of the ―new‖ concept. 

―The signs have to be interpreted, and this interpretation requires experiences and 

implicit knowledge-one cannot understand these signs without any presuppositions‖ 

(Steinbring, 2006). Indeed the children refer to the already known notion of 

equivalence regarding weights and measures. Besides it is interesting the comparison 

they do with the ―synonymous‖ words in the Italian language. In their ―new 

language‖ two syntactically different words are two sequences with different 

symbols. These words are ―equivalent‖ if, even though they are different, they have 

the same meaning where the meaning is the robot‘s movement.  

CONCLUSIONS    

According to our research hypothesis, the shared creation of a language and its 

manipulation allowed the children to acquire the awareness that symbols depend on 

the context of use and that they presume an agreement in the community of the 

receivers (Ferrari, 2002). Moreover the language, seen as a manipulation object as 

well as a communication device, was a basic tool in the knowledge construction, an 

―amplifier‖ of the intellectual capabilities (Bruner, 1996). Although the activities 

don‘t deal with argument strictly linked to mathematical school topics, they aim to 

stimulate linguistic skills which are basic for the mathematical knowledge 

construction. By the analysis of the activity systems it comes out how in a particular 

educational situation the children, freely interacting, were able to co-construct a 

socially shared meaning of the concept of equivalence. The actions were negotiated 

and shared by the groups. So the underlying operations became common and 

understandable. The actions of shortening the language sequences and checking the 

equivalence between two sequences, in the two activity systems, allowed the 

children to construct the concept of equivalence. The operations generated by the 

actions spurred a continuous mediation between reference context and signs/symbols 

produced and handled by the children (Leont‘ev, 1978; Steinbring, 2006). The 

repeated use of expressions like ―is the same thing‖ highlights that the children intuit 

a semantic equivalence relation in the language. They arrive gradually to the concept 

of equivalence, through the singling out of simple equivalence rules. 

NOTES 

1. Formal logic is seen as the expression of an historical path bringing to a change of the language‘s role in mathematics. 

This path starts with the passage from the rhetorical algebra to the symbolic one and keeps up to modern logic. 
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2. According to this paradigm it is possible to develop abilities near to a data processing frame by means of simple and 

―poor‖ materials. The children become ―inventors‖ (they code a language), ―interpreters‖ (they decode a language), 

―manipulators‖ and users of ―programs‖ in the language (Gerla et al., 1990).  

3. According to Vermersch (1994) the traces are the material signs produced by the children during the activities, such 

as intermediate and final written notes and outcomes. 

4. As an example, AAIS is a word corresponding to the temporal sequence of actions: take a step forward, take a step 

forward, take a step backward, turn to the south.  

5. We call equivalent sequences representing paths which, starting from the same initial position, allow the robot to 

arrive at the same end position. An example of an ―equivalence rule‖ is AI = F since both the words represent ―no-

moving‖. So as an example, the sequence AIA is equivalent to the sequence A. 

6. The squared sheet simulates the classroom‘s tiled floor and N,O,S,E represent the cardinal points labelling the walls.  

7. In the excerpts we denote by S1, S2,...the students and by R1, R2,...the researchers involved in the activities 

8. This is the point of view of formal logic which shows how mathematical models can be constructed starting from the 

used language (closed terms) and from a suitable equivalence relation. 
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CONTENTION IN MATHEMATICAL DISCOURSE IN SMALL 

GROUPS IN ELEMENTARY SCHOOL TEACHING 

Andrea Gellert 

University of Duisburg-Essen 

Abstract. The paper presented refers to the elaboration of the theoretical construct 

called ―focusing teaching strategies‖ within the research project ―Probing and 

Evaluating Focusing Instruction Strategies in Elementary Mathematics Teaching 

(ProFIT)‖. By teachers‘ interventions an attempt is made to create a learning 

situation, in which the joint attention is focused on a critical feature of a 

mathematical problem. Especially the following two perspectives are investigated: 

How can the teacher make a mathematical reasoning need more accessible for 

students and in which way can the needs be developed in the common discourse? 

And: How can pupils understand a mathematical reasoning need and how are they 

able to agree on it? 

Keywords: interpretative discourse analysis, focusing teaching strategies 

INTRODUCTION: CONTENTION IN MATHEMATICAL DISCOURSE 

Mathematical classroom interaction is a complex process. In the research project 

―Probing and Evaluating Focusing Instruction Strategies in Elementary Mathematics 

Teaching (ProFIT)‖, the interaction competence of mathematics teachers will be 

worked out by means of videotaped small group discussions with four pupils and one 

teacher. The five participating teachers are from one school so the video data 

consists of 40 videos of group discussions and the associated school lessons. 

Selected sequences, in which a contention or disagreement is evolved interactively, 

will be interpreted by theory-based analyses for further elaboration and 

differentiation of the theoretical construct ―focusing instruction strategies‖. The 

project is related to social, interactionist and epistemological theories, which are 

associated with discursive learning and the construction of new mathematical 

knowledge. 

Furthermore, it will be analysed for how focusing teaching strategies affect concrete 

discourse situations and pupils‘ learning processes with an aim of a deeper 

understanding of the nature of mathematical classroom discourses. This is also 

elaborated by means of interpretation of the students‘ reaction in the selected video 

episodes. The special analysis refers to the interaction evolved by the contention to 

the apparent mathematical content and to the interplay between them. 
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THEORETICAL BACKGROUND 

Mathematical Discourse and discursive learning 

The particular mathematical discourse is part of the social teaching and learning 

activity in school. It especially attends to clarifying jointly identified problems and 

statements, which are related to the mathematical content of a task on which not all 

participants agree. From a sociologist perspective, discourses are subjected to certain 

rules determining who can say what in which way and under which circumstances. 

Nevertheless, these rules are not rigid. They can be changed and indeed are changed 

frequently (Miller 2006, 202f.). The teaching practice of mathematics in elementary 

schools often does not comply with these changes. For example in the pattern of the 

―thematic procedure of mathematization‖ elaborated by Voigt (1990, 305), the 

teacher tries to achieve a pretended uniqueness in the interpretation of ambiguous 

mathematical classroom objects. However, the ambiguity of these objects admits 

numerous initial points for classroom discussions (e.g. Voigt 1990; Steinbring 1994; 

Sôbbeke 2005).  

The communicative classroom exchange about these different views and the 

development of intersubjectivity through the participants‘ negotiation processes are 

fundamental for the learning of mathematics in social interaction (Voigt 1994). So 

the pupils involved in these learning processes depend on communication with other 

people, e.g. classmates, parents, teachers or others, because fundamental learning 

demands constructing actively and negotiating dialogically new general relations 

between already existing segments of knowledge. Miller (1986) speaks about ―basic 

theories‖ to acquire applied knowledge. Moreover, discourses are a necessary 

condition for them to emerge. 

In his epistemological research, Steinbring speaks of ―new mathematical 

knowledge‖, which ―has to exceed the old knowledge systematically‖ (Steinbring 

2005, 61). Thus, new mathematical knowledge is understood as an extension of the 

old knowledge at the same time. Hence, the construction of new knowledge in 

mathematics lessons takes place in a tension between consistent base knowledge and 

new knowledge relations, which is in need of fundamental reorganisation and 

enhancements of knowledge systems. For ―mathematical knowledge‖ being 

negotiated interactively, the subject ―mathematics‖ cannot be understood as a 

predetermined matter but has to be interpreted in accordance with the 

epistemological conditions of their dynamic, interactive development (compare 

Steinbring 2005, 34f.). 

Interaction patterns and routines in the mathematical classroom 

From an interaction-theoretical and epistemological point of view, teaching and 

learning processes are seen as dynamic and reflexive. In this process, teachers and 

students jointly constitute the classroom‘s reality by interaction. So the situation is 

necessarily influenced by interaction and communication patterns (Mehan 1979; 
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Bauersfeld 1988; Wood 1994). They are mutually produced by the routines of 

teachers and students (Bauersfeld 1988). The teacher reverts to a functioning 

repertoire of procedures of acting and communication patterns, which are 

internalized by his/her own school and teaching experiences (Bauersfeld 1980) and 

from which he/she can hardly diverge. The students adapt their behaviour and over 

the time, teacher and students jointly and interactively produce particular regularities 

in their behaviour and their way of communicating. Finally, they form steady 

routines for the behaviour in different classroom situations. So future situations 

become predictable for the students, the focus of their attention can be conducted to 

unknown or problem oriented mathematical situations (Voigt 1984; 1990). Thus, 

routines are important and useful: they are responsible for classroom interaction 

being as trouble-free as possible. 

However, if these routines become patterns, by which teacher and students are so 

well-attuned to each other that a deeper mathematical understanding is not possible, 

learning can be delayed. The tripartite exchange (teacher‘s question – student‘s 

response – evaluation by the teacher) as well as the often-discussed funnel pattern 

described by Bauersfeld (1988) show in their analyses only an unsatisfying 

mathematical understanding by the students. Often, it is sufficient to follow the 

signals given by the teacher to react to the teacher‘s question adequately. Thus, 

Steinbring demands: 

The intended uniqueness of communicative, mutual understanding on the layer of 

interaction through the funnel pattern or the interactive negotiation of significance has to 

be absorbed, referring to the epistemological content of mathematical knowledge, by 

establishing theoretical ambiguity (Steinbring 1994, 205; Translation: AG). 

If there are any created possibilities for producing theoretical ambiguity and if they 

are embedded in the interactive process, discourses are developed, in which 

mathematical meaning is negotiated and the understanding of mathematical 

strategies is supported. 

Contention in mathematical discourse 

Discourses constitute a basic method to solve interpersonal problems of coordination 

(Miller 2006, 13). The first aim of discourse is that a controversial question, the 

Quaestio, is answered by the persons communicating together (Miller 1986, 143). 

According to Miller, these negotiations of contention are fundamental for learning. 

For Kamii (1986) too, conflicts (cognitive as well as social) are central, because 

social influences probably lead to conflicts. Thus, children have to try to 

approximate their divergent perspectives and by this learning processes can be 

initiated. In the presented project episodes from small group discussions are 

interpreted, in which a res controversia, a controversial question or statement, can be 

observed. The video episodes are selected by sequences in which there is a kind of 

irritation, initiated by a student or the teacher. 
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The focusing pattern 

In several aspects, the teacher‘s role is decisive. He has to apprentice, whereas 

teaching in this case is not meant as transporting subjects, but arranging favourable 

learning conditions (see also Cooney 1988; Mason 1987): 

The teacher‘s role is seen as providing learning situations in which students have to 

contribute their own potential for actively reconstructing knowledge, for establishing a 

personal relationship towards his knowledge (Steinbring 1994, 91; Translation: AG). 

Thus, it is in question how new mathematical knowledge can be developed in 

classroom discourse and how the teacher can make his/her contribution to 

accompany children on their way to autonomous learning. Bromme et al. (1990, 2f.) 

speak of an epistemological dilemma in the teacher‘s role and in his/her activities. 

The teacher moves steadily in an intermediate field between his/her own knowledge 

of mathematics science and the already existing students‘ knowledge.  Thus, it is also 

in question, to what extent teachers are able to dissociate from their own ideas and 

intentions and to what extent they are open to the children‘s knowledge structures. 

However, this openness is equated neither with an unreflective orientation towards 

the students nor with the exploratory character used in clinical interviews. The 

teacher‘s openness is understood with regard to the interpretation of the children‘s 

constructions and reasoning attempts.  

Wood (1998) characterized this teaching practice with the concept of the focusing 

pattern. She highlights the importance of involving the children in the teachers‘ 

process of interaction and structuring: The teacher gives the students the possibility 

to make the mathematical content as well as making the discourse accessible for 

them. He provokes them to explaining and reasoning, and to discussing their ideas 

with other students. Thus, the teacher‘s intention is different: focusing the students‘ 

attention on a critical aspect of the problem, raising a question that turns the 

discussion back to the students leaving him/her with the responsibility of clarifying 

the situation (Wood 1994).  

For example, this is possible by demanding them to write down his/her statements or 

reasons. The notation can probably help to clarify his/her own reasoning, because 

supported by the possibility of pointing to something he/she is perhaps able to 

explain more decidedly. On the other hand, for the students listening it affords an 

opportunity to follow up the given explanations and reasons. Additionally, this 

course creates possibilities of connecting their informal explications with the formal, 

in their cultural setting. Students start to realize that the symbols have a mathematical 

meaning. The teacher has to anticipate which aspects are critical or rather 

controversial, and he/she has to focus on clarifying questions, for example. One aim 

is to draw the joint attention to important aspects, so that these aspects do not fade 

out nor that the topic is changed without having been clarified. The students should 

be aware of the teacher‘s expectation that they are responsible for understanding the 
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explanations and reasons given by their classmates and that they are responsible for 

asking upcoming questions, and thereby creating an opportunity to clarify a 

mathematical aspect (Wood 1994).  

In his investigations of argumentation processes, Schwarzkopf (e.g. 2000) also 

pointed out that classroom discussions can be structured by the teacher through 

guiding the students‘ attention to a reasoning-needed and/or a discussion-worthy 

statement. Thus, a reasoning need must be demanded explicitly by the teacher. The 

objects, on which the attention is focused, are jointly produced in the interactive 

process in spite of different functional parts:  

Thus, argumentations are not arbitrarily opened by the teacher, but they arise from the 

interaction between teacher and students (Schwarzkopf 2000, 588; Translation: AG). 

As students should have the opportunity to hold their own point of view, they also 

should accept others‘. In meetings with the teachers being involved in the project 

ProFIT, an attempt was made to create awareness for this kind of learning as well as 

to sensitize these teachers to their own routines. 

RESEARCH QUESTIONS AND FIRST IDEAS OF AN ANALYSIS 

The preliminary analyzing aspects interaction, mathematical content and the 

interface between them arise from these theoretical considerations: 

The interaction 

In a first analysis of the discursive context, three different types of context are 

distinguished: Report Ways, Inquiry and Argument. This distinction is based on a 

grid developed by Wood and Turner-Vorbeck (2001). They used this grid for 

structuring and planning discursive contexts on the basis of their own research, 

experiences, and analyses. The context type Report Ways is mainly related to the 

comparing and contrasting of mathematical students‘ solutions in classroom 

discussions. The Inquiry-Type implies reasoning and questioning based classroom 

discourse, while for the Argument-Type, justifying and challenging is central. A first 

pre-analysis within the project ProFIT showed that the grid is useful for a first pre-

structuring of the episodes on an interaction level. Using the grid as an instrument 

for reconstruction, in particular the following questions arise: How does the teacher 

develop opportunities for different students‘ responses during the interaction? When 

does a firstly reporting context exceed to an inquiring or an argumentative context?  

The mathematical content 

The tasks together with the mathematical learning environments are the 

indispensable base of autonomy in teaching, but the interface of the teacher‘s and 

students‘ activities are fundamental, too (Bromme et al. 1990, 2f.). As already 

mentioned in the theoretical part, the fundamental assumption from an interaction-

theoretical perspective on teaching is that the objects of discourse should be 
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―ambiguous‖, i.e. open to different interpretations by the participants (Voigt 1994, 

77). As it provides numerous opportunities for discourses in classroom, this 

ambiguity can produce arguments. But this is only possible if the teacher is aware of 

that ambiguity and if he/she incorporated it as a constitutive element in the 

mathematical discourse. The richness of mathematical structures is a possible basis 

for explaining, reasoning and perhaps also for clarifying contentions. Thus, the 

following research questions are of interest: To what extent does the ambiguous 

mathematical content comprise something structural in its topic, its presentation, its 

visualization, etc., what is interpreted in the classroom interaction by the students as 

well as by the teacher? What kind of understanding of the ambiguous mathematical 

content becomes explicit by each participant? 

The interface between interaction and mathematical content 

Within an interpretative analysis, neither the mathematical content nor the interaction 

can be considered in an isolated way. This is because of the teacher‘s consideration 

to create learning situations by maintaining a collective focus on a critical feature of 

the mathematical content. Thus, the investigation is about how a joint collective 

focus can be conducted on the mathematical content. Questions related to this 

analytical focus are: Where is the interface, which determines if students follow a 

social or a mathematical logic in teaching-learning-processes? Where does the 

inquiry, which refers to the mathematical content, start; is there even a trigger? And 

is this particular interface a barrier, which one has to overcome? How far is it 

possible to interrogate, in a special manner, the fact that contention is clarified by 

statements related to the mathematical content? Which role do the students‘ 

interpretations, hypotheses and reasons play? 

ANALYSIS OF AN EXEMPLARY EPISODE: DISCUSSION ABOUT 20 TENS 

The exemplary episode originates from a small group discussion between four fourth 

graders (Ferdi, Frank, Kevin and Laura) and their mathematics teacher in primary 

school during the research project ProFIT. For all involved participants it was the 

first small group discussion within the research project. The teacher has several years 

of teaching experience and conducted eight small group discussions during the 

project.  

Choice of the scene – epistemological description of the point of contention 

The episode was chosen because a point of contention 

develops during the interaction. This controversial point 

displays the different possibilities for the interpretation of a 

depiction produced by the pupils during class (see image). 

The ambiguity of the representation of the number is the 

reason for the potential point of contention. The epistemological point of view can be 

interpreted, according to the point of view, an empirical-concrete or a relational. If 
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the visual depiction with squares, strokes and dots has an empirical-concrete 

interpretation, the concrete use of the working material consisting of a hundreds 

board, a tens bar and a unit cube come to the fore. These materials, or rather the 

iconic depiction of the materials is used conventionally and ―collected‖ in the 

referring boxes – labelled H, Z, E (English: H, T, U). This interpretation of the 

representation of the number can be described as a classified accumulation of objects 

in 3 boxes: 3 H-boards, 2 Z-bars and 5 E-cubes. 

If the interpretation is symbolic-relational, the labelling is not interpreted as names 

for the boxes but rather depict place values in a place-value-table. In this case the 

decimal relation between the different place-values is important: 10 E equals 1 Z and 

10 Z equals 1 H. So the quantity of symbols in one column of the place-value-table 

shows how many of the according place values have to be chosen. 

This interpretation of the representation of the number can be described as a 

relational arrangement of units in three columns of place-value-tables: 3 symbols in 

the H-column, 2 symbols in the Z-column and 5 symbols in the E-column. 

Obviously, in the symbolic-relational interpretation there might be the conflict that it 

has to be abandoned from the ―additional‖ characteristics of the symbols, i.e. the 

iconic meaning connected with the symbols: hundreds board, tens bar and units cube. 

Which forms of the mathematical point of contention can arise in this setting? First, 

it could be questioned which point of view is appropriate, the empirical-concrete or 

the symbolic-relational interpretation? (In a discussion with young pupils the 

differences are not named systematically and explicitly, but they have to be 

reconstructed afterwards from the descriptions and explanations of the pupils.) A 

further mathematical point of contention might be how to deal with the 

representation of the number as a place-value-table with filled-in symbols: Is the 

special iconic aspect of signification abandoned, or does it frequently play a role in 

the discussion and so leads to a different interpretation of the ―place-value-table‖ to 

―sorting boxes‖? 

The exemplary episode 

Before the episode starts the children explain why this figure can only represent the 

number 325 and no other. They explain it only using the symbols square, stroke and 

dot. After that the following episode starts:  

1 Teacher: But, like I said, this is not obvious to me. So that…without the place 

value table, that‘s clear. Over there I see, ok I know one square we 

said equals a hundred, doesn‘t it? ... A stroke you said  

          #equals     #and a dot equals one. 

 2 Ferdi:  #equals ten.               #dot. What about? 
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 3 Teacher: It doesn‘t equal but it‘s similar. We agreed on this in the second or 

third grade. Now, if I see that, ok (covering the place-value-tabel). But 

now I also have my place-value-table. 

 4 Frank: (..) But there is also written tens. You can say you‘ve got zero tens. 

For example that the tens mean a zero. It also might be that the tens 

mean 100. The number over there. (.) 

 5 Kevin: Yes, but when…This is, it is written there. One stroke is a ten and then 

when we, if there is a ten above it, then we know that stroke needs to 

be put in there, if there are tens. And therefore a stroke is one ten and 

so on. 

 6 Teacher: But these are twenty, right? (pointing on the two strokes) 

 7 Kevin: Yes, these are twenty. 

 8 Teacher: But twenty tens. And twenty tens are# 

 9 Kevin: #No. Two strokes are two, two strokes are two strokes, which are on 

the ten‘s place 20. 

10 Teacher: But these are twenty tens. (first pointing at the two strokes than at the 

Z for the tens) 20 times 10 don‘t equal 200? 

11 Kevin: This is not about multiplication. 

Description of the episode 

The teacher says that for her it is not obvious to read only the number 325 in the 

figure and she refers to the convention introduced in the second and the third grade 

that one square means 100, one stroke ten and a dot one, without reference to the 

frame and the letters H, Z and E (in English: H, T, and U). Further, she describes this 

particular frame and the caption as a place-value-table and points at the combination 

of both. Frank and Kevin comment on the teacher‘s contribution. Then, she refers 

only to the two strokes and asks whether these are 20. Kevin agrees. The teacher 

refers to the place-value-table and says that they are 20 tens. Kevin negates this. The 

teacher repeats her statement referring to the Z as a caption for the tens and asks 

whether 20 multiplied by 10 equals 200. Kevin disagrees referring to the actual act of 

the arithmetic operation and the topic changes. 

The coping with the mathematical point of contention in the interaction during 

the episode – a summarizing interpretative analysis  

Already at the beginning of the presented episode the teacher indicates a reasonable 

point and tries to conduct the collective focus to the contention of the combination of 

frame and letters in terms of an interpretation as place-value-table on the one-hand 

with the symbols inside on the other hand interactively (She says that the pre-given 

explanations are not obvious for her (l. 1)). By this, she reveals her own more 

symbolic-rational mathematical interpretation of the whole presentation, as she 
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labelled it as a place-value-table (l. 1). Without observing the students‘ reaction, 

probable interpretations are: The teacher tries to make her own mathematical 

interpretation obvious for the students or she is aware of the ambiguity of the 

mathematical object and tries to conduct the joint attention focus to this point. 

Related to the interpretation of the symbols inside, she repeats the classroom 

convention referring to an agreement in passed grades: ―We agreed…‖ (l. 3).  

Frank and Kevin take the teacher‘s statements as a cause for clarifying their 

interpretations in more detail and react with new explanatory statements for their 

interpretations (l. 4, 5). The participants do not comment on Frank‘s statement, 

wherefore it is not interpreted any more. Kevin ―reads‖ his interpretation of symbols 

once again: ―it is written there‖ (l. 5). In doing so, his interpretation is bound to 

everyday life situations. He probably interprets the frame as a kind of case, an 

assortment box, which has to be filled: ―if there is a ten above it, then we know that 

strokes need to be put in there‖. What has to be put in is indicated to him by the Z. 

Probably frame and caption assist in the sorting. He does not indicate seeing any 

relation to the place-value-table.  

This is followed by another question from the teacher, in which she interprets the 

two strokes differently. She considers the two strokes isolated and describes them as 

20, instead of two tens. She asks whether the students agree that these two strokes 

are 20. In her statement she does not mention the two strokes explicitly, but with 

―these‖ she gives a deictic reference and points on the two strokes, so that this 

interpretation seems to be plausible (l. 6). Kevin agrees on the convention that one 

stroke is a tens (l. 5) and two are twenty (l. 7). So, from an interactional point of 

view, these first lines of the episode can be labelled as an inquiry context.  

Related to the mathematical content, the ambiguity of such a representation becomes 

obvious. The teacher has a rather symbolic-relational point of view. She probably is 

aware of the ambiguity and tries to conduct it to the supposedly joint attention focus. 

Kevin has a more empirical-concrete point of view and for him only one 

interpretation seems to be possible: the interpretation of a kind of case, a kind of 

assortment box. 

Initiated with the word ―No― in line 9 Kevin disagrees and contradicts the teacher‘s 

statement, and discussion becomes more challenging. For him, the two strokes lying 

on the tens‘ place are 20, the quantity of strokes (two) lying on the tens‘ place is 

crucial. Here, he changes his reasons. His statement is not consistent with his 

statements before. He uses a more symbolic-rational understanding, without taking 

the place-value-table explicitly into consideration. This was not carried out at this 

point; the teacher does not follow this interpretation up.  

The teacher‘s introducing ―But‖ in line 10 also gets another, more justifying 

emphasis. The discussion‘s context changes more to the direction of an 

argumentative context (l. 8-11). She repeats her general statement in line 8 related to 
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a concrete reference to the figure (l. 10, once again deictic, supported by pointing on 

the figure) and connects the presentation of strokes with the Z by using 

multiplication, analogous to the place-value-table. She puts into question whether 20 

times 10 equals 200. For Kevin it is not to be debated whether 20 times 10 equal 200, 

at least he does not react to it. But he does not accept the operative connection 

between 20 and 10 in the form of multiplication, which for him seems not to be 

permitted at this moment (l. 11). For him, the contention is originated in the 

interaction on the mathematical content. The presentation of the number 325 is not 

controversial for him, but the teacher‘s statements are worth discussing. The 

teacher‘s constant attempt to focus on another possible interpretation of the 

mathematical content fails (l. 11); the discussion moves onto another topic. 

Specific communicative elements within the cause of small group interaction 

If one follows the special communication in dealing with points of contention in this 

setting it can be seen that the teacher tries different measures to put the point of 

contention into the focus of all participants; i.e. she initiates the point of contention. 

First, she questions the obviousness of the children‘s explanations (l. 1). Then, she 

tries to focus on the controversial point by referring to known conventions and to 

contrast different points of view by hiding and showing the labels (l. 3). Later, she 

tries to provoke the pupils with her remarks by bringing single elements of the 

representation into discussion again (ll. 6-10). 

In the exemplary episode the pupils deal very differently with the teacher‘s 

strategies. First, they feel asked to give new explanations (Frank, l. 4; Kevin, l. 5). 

Next, only Kevin communicates with the teacher. Here, Kevin agrees on some of the 

teacher‘s remarks and contradicts others. They do not reach a consensus. 

CONCLUDING REMARKS 

The interpretations at that early time of the research project led to the conjecture that 

it is possible to initiate and discuss mathematical contention with children at the 

elementary school age, but it is challenging to focus the attention on special aspects 

of the interpretation. In the exemplary episode, the pupils engage in a new way of 

communication and discussion, but deal with it in different ways. The engagement in 

the point of contention and the arguments seem to be difficult and unfamiliar.  

The research questions mentioned in the article are the leading questions for the 

presented research, which cannot be answered yet. So it is still in question as to 

whether and to how far it is possible to interrogate in reference to the mathematical 

content. This barrier could not be overcome in this episode. So for the teacher‘s role 

two challenges become obvious: On the one hand the release of his/her own 

interpretation of mathematical signs and symbols and on the other hand the teacher‘s 

consideration to create a joint collective focus interactively, including the discourse 

about a cooperatively identified contention. The interest in this research has been 
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shown through the discussed episode and points out the difficulties of a change of 

the established classroom discourse to new forms of discourse. It is the concern of 

the research project ProFIT to work out more exactly what and where the key points 

discussed above are. 
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This paper focuses on turn-taking in secondary mathematics classrooms. Sixteen 

lessons in four mathematics classes for pupils aged 12-13 years were observed and 

video recorded and then analysed using a conversation analysis approach.  The 

analysis of the data reveals differences in the patterns of turn-taking from those 

discussed in the thorough analysis by McHoul (1978).  In particular, three types of 

situation arise where pupils self-select as next speaker: to ask a question; to initiate 

or perform a repair; and finally to respond to an undirected teacher‘s question.  The 

last of these in particular raises some important questions about the teaching and 

learning of mathematics. 

INTRODUCTION 

Classroom interactions between pupils are widely held to be an important feature of 

the mathematics classroom, and a large number of existing studies have explored 

specific features such as how questions are asked and answered, and when and how 

pupils participate (Sfard & Kieran, 2001; Yackel & Cobb, 1996).  The aim of these 

studies has often been to develop an understanding of the relationship between these 

interactions and learning.  We do not yet know what interactional features of 

classroom discourse result in successful learning, though we may have strong 

opinions about the value of explanation, argumentation and discussion.  We do 

however know that the structure of interactions play an important role in how pupils 

perceive and learn mathematics (Wood, Williams, and McNeal, 2006).  There are 

also observable differences between pupils in the extent to which they participate in 

whole class discussions (Ball 1993; Boaler, Wiliam, & Brown, 2000).  The vast 

majority of these existing studies focus on the content of the interactions, particularly 

on how teacher‘s support or scaffold pupil‘s interactions.  In this study, we examine 

instead the structure and local management of turn-taking which constrain the 

content of interactions. 

THE ALLOCATION OF TURNS 

Turn-taking has received considerable attention in the research literature (Maroni, 

Gnisci, & Pontecorvo, 2008; Sinclair & Coulthard, 1975), in particular as one of the 

notable differences between natural conversational discourse and classroom 

discourse.  There are rules that govern who can speak, for how long they can speak 

for and also constrain what can be said.  Whilst there are rules that characterise all 

conversational interactions, there are often more constraints on formal interactions, 

such as those that take place in classrooms.  These rules are often unsaid, yet by 

analysing interactions between participants we can find evidence that these rules are 
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being oriented to by participants; this is particularly clear when these rules are 

violated (a deviant case) and participants are sanctioned.   

In this paper, we particularly focus on the systematic rules that govern whole class 

discourse.  Sacks, Schegloff and Jefferson (1974) outline the rules for the 

construction of turns in natural conversation and McHoul (1978) develops these for 

formal classroom discourse.  Features common to both systems include the rules that 

only one speaker speaks at a time and that a change of speaker occurs and often 

reoccurs.  Where natural conversation and classroom discourse differ is in the 

allocation and management of speakers. 

In Sacks et al.‘s (1974) rules for governing speaker change in natural conversation, 

at a point where it would be relevant for the speaker to change (a transition-relevance 

place), the current speaker can select the next speaker and thus the turn belongs to 

the selected participant.  If the current speaker has not selected the next speaker, then 

another speaker can self-select.  If neither of these two scenarios occur, the current 

speaker can continue the turn.  These rules apply to any transition-relevant place.  

McHoul‘s (1978) analysis of discourse from geography classrooms results in an 

adaptation of these rules, highlighting the different roles of the teacher and the 

pupils. 

When the teacher is the current speaker, then the teacher can select the next speaker.  

If the teacher does not select the next speaker, then the teacher must continue the 

turn.  When a pupil has been selected by the teacher to speak and becomes the 

current speaker, they then can select the next speaker and the teacher takes the next 

turn. (It is worth noting that in McHoul‘s data there are no instances where the pupil 

selects anyone except the teacher as next speaker).  If the pupil does not select the 

teacher as next speaker, then other speakers can select as next speaker with the 

teacher having the right to self-select first.  If the teacher does not self-select at the 

transition relevance place then the current speaker (the pupil) may continue. 

McHoul‘s systematic analysis of turn-taking makes it clear that the pupils are 

restricted in their roles in the local management of turn-taking and that it is the 

teacher who controls and manages the allocation of turns.  The teacher participates in 

the interactions with some preformed idea of what should be said and done during 

the lessons; they have a lesson plan that the pupils are expected to follow.  

Discussion occurs within well-established norms of participation between teachers 

and their pupils (Yackel & Cobb, 1996).  Furthermore, the interactions often begin 

with some additional instructions to the pupils about the nature of their participation 

that will be considered acceptable, such as ―put up your hands‖ or ―you need to 

explain why‖.  These rules which govern turn-taking in the mathematics classroom 

determine the ways in which different activities are performed. For example, the 

teachers‘ control of turn-taking determines the topic of interactions. 
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The rules which govern turn-taking in natural conversation provide an ―intrinsic 

motivation for listening‖ (Sacks et al. 1974, p.43).  Participants need to monitor the 

interaction for possible transition relevance places for opportunities to take the next 

turn and for information concerning what will be acceptable in that next turn.    As 

turns are pre-allocated, then this need to listen and monitor what is being said is lost.  

Teachers can circumvent this problem to some extent by nominating the next speaker 

at the end of their turn, but more frequently the next speaker is selected following the 

pupils bidding for the next turn by raising their hand. 

Turns can be allocated by the current speaker nominating by name, gesture or by eye 

gaze.  They can also be more generally solicited where the next speaker is not 

selected but the current turn has been constructed such that it places constraints on 

the next turn.  In this situation, it is possible that more than one participant may take 

the next turn, violating the rule that only one participant speaks at a time.  The 

number of participants in a classroom context means that some form of allocation of 

turns is needed. Traditionally the teacher nominates the next speaker, again often 

following bidding for a turn by the pupils raising their hands. 

THE STUDY 

The data for this paper is taken from a collection of lessons video recorded in the 

UK.  This collection includes a total of sixteen mathematics lessons delivered by four 

different teachers.  For each teacher, one class of 12-13 year olds is video recorded 

between three and six times over a period of six weeks.  The extracts presented 

below each feature just one of these teachers, though with only one exception, the 

accompanying discussion applies to all the teachers in the sample. 

The videos were transcribed using Jefferson‘s (2004) system, with [ ] indicating 

overlapping speech, (1.1) indicating a pause of 1.1 seconds and underlining 

indicating emphasis. These transcripts were analysed alongside the video recordings 

using a conversation analysis approach (Seedhouse, 2004), focusing on the local 

turn-by-turn organisation of the interaction.  This means that the analysis is based on 

what is evidenced as relevant to the participants through their interactions.  In other 

words, ―analysing the interpretations that participants display, rather than creating 

their own‖ (Barwell, 2003, p. 201). Consequently, social identities and roles, such as 

pupil or teacher, are only attributed to speakers where it is clear from the interaction 

that the participants themselves are orienting themselves to these roles and identities.   

In this paper, the roles of teacher and pupil are used as the allocation of turns, 

number of turns and length of turns all indicate that the participants are adopting the 

roles of teacher and pupil in these interactions. 

For the purposes of this paper, only whole class interactions are analysed.  

Interactions that occur when the pupils are working as individuals or in small groups 

are ignored. 
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ANALYSIS 

McHoul‘s analysis does not include pupils selecting the next speaker, as in his data 

this is always the teacher; McHoul also claims that a pupil only speaks when the 

teacher has allocated the turn to them.  In this paper, we examine instances in 

mathematics lessons where pupils have self-selected as next speaker and this is not 

sanctioned by the teacher or by other pupils.  Within these instances, there are also 

occasions where pupils have selected another pupil as next speaker. 

There are three types of situation in the data where pupils self-select as next speaker.  

The first of these is when pupils are asking their own questions. 

231 Teacher: one in eight. ok. if I cancel them down, that and that cancels. that and 
that cancels I‘m left with (0.7) a tenth. so, 

232 Pupil1: how do you know that cancels with that 

233 Teacher: how do you know that this cancels down 

234 Pupil1: yeh 

235  (1.1) 

236 Teacher: if I multiplied it out you‘d see tha- that (0.3) I have a factor of eight on 
the top and a factor of eight on the bottom.  

In these situations, the pupil is also changing the topic of the interactions.  In the 

current data, pupils rarely ask questions during whole class interactions; the number 

of questions asked in these instances only ranged from zero to two. On each 

occasion, the pupil‘s question is asked at a transition relevance place, so that the 

teacher‘s current turn is not interruption.  In the above example, the teacher often 

uses the discourse marker ‗so‘ to mark a change in the topic of conversation, thus 

whilst offering a gap in which an opportunity for the current speaker to change 

exists, it is clear that the teacher is intending to keep the current turn. 

The second situation is when the pupils are initiating or performing a repair (see 

McHoul, 1990 for more detail on repair in classrooms). 

29 Teacher: one in ni:ne. so has that gone up or gone down 

30 Pupil1: gone down 

31 Teacher: probability‘s gone 

32 Pupil1: u[p  ] 

33 Pupil:   [up] 

34 Pupil: up 

35 Teacher: probability‘s gone up, it's more likely now that you're going (.) to get 
(0.3) the (.) red cross. so Miles (.) choose one 

In the above extract, both of the teacher‘s turns are directed at pupil1, whose 

immediate answer, ‗gone down‘, is incorrect.  Whilst the teacher offers pupil1 the 

opportunity to self correct by re-asking the question and gesturing the correct 
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answer, his peers also self-select to give the correct answer.  These situations are 

very rare in the data and the above extract is the only example where the pupils are 

not sanctioned for taking the turn.  However, in this case, the pupil who had the right 

to the turn also gave the ‗correct‘ answer and the teacher maintains eye contact with 

this pupil throughout the exchange, thus the other pupils have been ignored.  

The final situation where pupils self-select is in response to an undirected question 

from the teacher. This occurs whenever the teacher requires a response but has not 

selected the next speaker, either by name or gesture.   

131 Teacher: what‘s the probability? 

132 Pupil1: a hal[f     ] 

133 Pupil2:        [[a ha]lf    ] 

134 Pupil3:        [fifty fifty] 

135 Teacher: fifty fifty, a ha:lf, good. 

In the extract above, three pupils offer an answer, virtually simultaneously, and the 

teacher accepts both variations of the answer offered.  In the extract below, both 

correct (seven) and incorrect answers are given: 

176 Teacher: what total will go (5.4) ((draws diagonal boxes on the board)) 

177 Pupil1: seve[n ] 

178 Pupil2:        [si ]x 

179 Teacher: what total would go diagonally across the [board] 

180 Pupil3:                                                                     [six     ] 

181 Pupil4: seven 

182 Teacher: seven good. seven would be the most likely and ... 

In both these situations, the pupils have the right to speak as the teacher has elicited a 

response yet no specific pupil has been nominated to speak.  Any or all of the pupils 

can choose to answer, possibly simultaneously.  This seemingly violates the rule that 

only one participant may speak at once.  However, these types of teacher questions 

are usually followed in the data by simultaneous ‗correct‘ responses suggesting that 

they are used when a large number of the pupils, but not necessarily all, are expected 

to know the answer.  Consequently, if we view the interaction as between the teacher 

and the class of pupils as one participant, the rule is not violated.  Additionally, the 

control over the interactions by the teacher is maintained. 

Where different pupils offer different answers, as in the second extract above and the 

extract below, these are often given so that a different answer ‗interrupts‘ a previous 

answer.  In the extract below, the two contrasting answers result in a discussion, 

lasting over three minutes, in which several pupils self-select as next speaker.  The 

pupil turns with an asterisk are the only pupil turns where there teacher has selected 

the pupil as the next speaker. 
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255 Teacher: which ticket would you prefer? 

256 Pupils: second one 

257 Teacher: why 

258 Pupil: cause it‘s got 

259 Pupil1: it doesn‘t [matter     ] 

260  Pupil:                 [it doesn‘t] matter 

261 *Pupil1: because ((inaudible)) you‘ve still got a chance of winning, cause those 
numbers could come out. 

262 Teacher: but which one‘s got a greater chance of winning. 

263 Pupils: same one/they‘ve both got the same chance/the second one/same 

264 Pupil: they‘re both the same 

265 Teacher: good. 

... 

270 Teacher: ok. both these this is the thing about probability people (0.4) don't 
necessarily always think mathematically they think about (.) what they 
see. these have exactly the same chance of winning on the lottery   

271 Pupil: yeh 

272 Pupil: yeh [but   ] 

273 Teacher:        [exact]ly (.) the same chance. 

274 Pupil2: it‘s not a very good ch[ance. ] 

275 Teacher:                                      [what?] 

276 *Pupil2: it‘s not a very good chance 

277 Teacher: for both of them equally 

278 *Pupil2: for that (.) one two three four five six 

279 Teacher: it has exactly (.) the same chance (.) of winning 

280 *Pupil2: but there's more chance of that one winning cause there's a different 
array of [numbers] 

281 Teacher:               [ok          ] ((inaudible)) listen again. ... 

... 

296 Pupil2: that one‘s got more chance 

297 Teacher: why 

298 *Pupil2: because it‘s a different variety of numbers 

299 Pupil: and 

300 Pupil: don‘t and him 

301 *Pupil2: you never ever get one two three four five six.  [you migh]t get three 
[((inaudible))] 
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Here, the pupils are initially asked which lottery ticket they would prefer, one with 

the numbers one, two, three, four, five and six or one with the numbers three, seven, 

twelve, thirty eight, thirty nine and forty six.  This initial question is not specifically 

directed at a particular pupil and several pupils give the answer ―the second one‖.  

The teacher‘s following question, ―why‖ continues to be directed at the class as a 

whole and three different pupils offer an answer.   

So far, all the pupils have had the right to speak and stop talking as soon as the 

teacher begins to gesture to the pupil in line 261 that the turn is theirs.  This offers 

further support for the suggestion that the rules that only one participant can speak at 

a time is not in fact violated if we treat the pupils in the class as one participant.  

Additionally, McHoul‘s assumption that pupils do not self-select is also not 

contradicted as the question was directed to the class and the class has responded.  

However, in line 299 a pupil, not only self-selects as the next speaker but also her 

turn is directed towards pupil2 and a response is expected from pupil2.  So, here is 

an example where a pupil has both self-selected for the current turn and selected the 

next speaker which is not the teacher.   

This extract is then followed by several pupils both talking concurrently and 

directing their turns towards other pupils.  Unfortunately, several pupils talking 

concurrently makes the content undecipherable for transcription.  However, whilst 

these interactions clearly deviate from the rules governing turn-taking in the formal 

classroom environment (McHoul 1978), close examination of the video indicates that 

the pupils are not in fact violating the rules for turn-taking in natural conversation 

(Sacks et al. 1974).  Whilst there are several pupils talking at once, their talk is not 

directed to the class as a whole but to an individual pupil elsewhere in the class.   

We would argue that there are now several interactions occurring simultaneously, 

each with the same topic.  Analysing groups of interacting pupils individually, the 

rules of turn-taking are adhered to.  For example, observing the two pupils who 

spoke in lines 299 and 300, their later turns are directed towards each other, there is 

minimal overlap in their turns, with one cutting off their turn if they both begin talk 

at the same time,  and the gaps between their turns are minimised.  The two pupils 

compete for the floor and attempt to persuade the other that their answer is ‗correct‘ 

whilst not violating the rules for turn-taking.  Here the roles of teacher and pupil are 

not evident until the teacher takes a turn and the pupils end their turns. 

In all the lessons in this study, turn-taking is tightly controlled by the teacher.  All 

the teachers in this study control the topic through their turns and the questions that 

they ask and the pupils are constrained to answer these question (Barwell, 2003, p. 

205).  Many of the answers rely on pupils remembering facts, procedures or tasks 

undertaken in previous lessons.  A few questions require pupils to offer explanations 

for their previous answers.  The teacher from whom the extracts in this paper have 

been taken differs from other teachers in the study in that the majority of questions 

asked by him in the lesson are not followed by the nomination of a pupil to answer; 
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instead, they are directed to the class as a whole.  Where questions are not directed at 

a particular pupil (or small group of pupils) the possibility arises for multiple 

respondents and multiple answers.  In the lessons of the teacher discussed in this 

paper, when different answers are offered by different pupils an argument between 

pupils often ensues; the teacher often encourages these debates by asking the pupils 

to justify their answers.  In these arguments, each pupil offers justification for their 

own particular answer and attempts to convince other pupils that their own answer is 

correct.  Whilst pupils in all the lessons in the study are remembering, describing and 

explaining during whole-class interactions, only in these arguments are pupils using 

mathematical argument to justify, refute and convince others (Barwell, 2003; Mason, 

Burton, & Stacey, 2010).  In this study, such discussions occur only in the lessons of 

the teacher used in this paper, though they do occur in the majority of his lessons. 

We know from Mercer and Littleton‘s (2007) work on the Thinking Together 

approach that the classroom environment and culture have a significant impact on 

the extent to which pupils will dispute or disagree with their peers. Further analysis 

of these discussions from a conversation analysis approach is needed to identify 

which features of the classroom environment and culture the pupils are in fact 

orienting to. 

CONCLUSIONS 

In this paper we have outlined three types of situation in mathematics classroom 

interactions which are not considered by McHoul‘s (1978) systematic analysis of 

turn-taking.  All three situations involve the self-selection of a pupil as next speaker.  

The first occurs when pupils ask their own questions, something we as teachers 

ourselves value in our lessons.  If we consider the self-selection of a pupil in order to 

ask questions within McHoul‘s rules of turn-taking, some interesting questions are 

raised about the pedagogic relationship between encouraging pupils to ask questions 

and the implications this might have on classroom management.  Pupils also self-

select to initiate or perform repairs, either on the teacher‘s previous turn or a peer‘s 

turn and repair in mathematics classrooms is an area of further investigation 

elsewhere. 

Finally, pupils self-select in order to respond to undirected teacher questions.  We 

make the suggestion that when teachers ask questions that require a response but an 

individual is not selected to make this response, by treating the whole class as a 

single participant, the rules that govern turn-taking in natural conversation are in fact 

not violated.   

In the situations where self-selection by different pupils results in an ‗argument‘ or a 

point of contention (Gellert, 2011) between pupils raises further questions.  It is clear 

from the videos and the transcripts that there is something qualitatively different in 

the justification given by pupils when they are attempting to persuade a peer in an 

‗argument‘ that their answer is correct, than when a teacher has asked them to justify 
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their answer.  The motivation to provide a justification is intrinsic to the pupil when 

they need to convince a peer, and is often done passionately, as can be seen from the 

emphasis placed on the words in the transcript above.  When justifying an answer to 

a teacher, the motivation often appears to be extrinsic as the justification is given in 

response to a request from the teacher.  We believe that these ‗arguments‘ are a 

positive feature of mathematics classrooms but are they actually effective in terms of 

learning.  Is there any difference in the understanding and the depth of mathematics 

considered as a result of these discussions compared to the more ‗traditional‘ 

interactions between the teacher and their pupils?  
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In this paper, we consider data arising from student-teacher-researcher interactions 

taking place in the context of a teaching experiment making use of multiple modes of 

communication and representation to explore three-dimensional shape. As 

teachers/researchers attempted to support student use of a logo-like formal language 

for constructing 3D trajectories in a computer microworld, a system of gestures 

emerged to represent the various types of turn in 3d space. We focus on the ways 

students coordinated the multimodal resources available in the classroom. In 

particular, we discuss how this system of gestures was adopted and adapted by 

teachers and students, drawing on both mathematical and everyday discourses.  

Keywords: everyday discourse, gesture, multimodality, three dimensional space 

INTRODUCTION 

As human beings living in a three-dimensional world, we continually experience 

shape and motion within that world. Yet the mathematical description and analysis of 

these aspects of our experience appear to be exceptionally difficult for learners. In 

particular, we note issues identified by research in relation to identification and 

operation with angles (Clements & Battista, 1992) and recognition of connections 

between the physical contexts of corner, turn, and slope (Mitchelmore & White, 

2000). A common approach to explaining such difficulties has been to identify 

conflicts between students‘ intuitions, built on their everyday experiences, and 

formal mathematical definitions of such concepts and operations on them. 

Our experience of the world, however, is not purely physical but is mediated by 

language and other semiotic resources (Vygotsky, 1986). Mathematics teachers 

attempt to structure the mediating resources available to students by providing forms 

of language, visual and physical resources, digital technologies, etc. that are 

designed to offer mathematical ways of experiencing the world. In this paper, we 

draw on data from a teaching experiment, part of the ReMath project
1
, focussing on 

three-dimensional shape. The sequence of lessons was designed to provide students 

with multiple modalities of mediating resources. We aim to consider the ways 

students coordinated the resources provided in the classroom with those brought 

from their everyday discourses. In particular, we focus on the development and use 

of a system of gestures to represent the various types of turn in three-dimensional 

space. 
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EVERYDAY AND MATHEMATICAL LANGUAGE 

Although mathematical discourse is perhaps most notably characterised by its use of 

formal notations and uniquely mathematical vocabulary, this is only part of the story. 

As in many other specialised domains, the mathematics register incorporates 

considerable use of what may be termed ‗ordinary‘ or everyday language in order to 

make mathematical meanings (Halliday, 1974). While some parts of this ‗ordinary‘ 

language are used in ways compatible with everyday usage, others diverge subtly or, 

in some cases, radically. Rather than interpreting failure to use such language in 

‗correct‘ mathematical ways as evidence of lack of mathematical understanding, it is 

possible to see it as a consequence of students continuing to make use of ‗everyday‘ 

linguistic patterns in circumstances when specialised usage is more appropriate. 

Students draw on the resources of an everyday discourse while their teachers expect 

them to be situated within a specialised school mathematics discourse. 

MULTIMODALITY – DIFFERENT MEANING POTENTIALS 

The bulk of existing research into mathematical communication has focused on the 

semiotic systems of language and algebraic notation. Research concerned with 

students‘ use of diagrammatic, graphical or gestural forms has tended to approach 

these as vehicles for access to students‘ ‗understanding‘ or ‗representation‘ of 

mathematical concepts rather than as forms of communication (though there are 

exceptions to this, e.g. Chapman (2003), Alshwaikh (2010)). There is, however, a 

major trend towards recognising the multimodal nature of communication and the 

importance of studying the contributions made by different modes of communication 

and representation. Each of the various available semiotic systems provides a 

different range of meaning potentials (O'Halloran, 2005). In investigating the 

meanings that students make within such a multi-semiotic environment, it is thus 

important to consider their use of all these modes and the relationships between 

them. 

Moreover, wherever mathematical communication takes place in face-to-face 

contexts, gesture and actions also play a part. Kress, Jewitt, Ogborn & Tsatsarelis‘ 

(2001) multimodal analysis of communication in science classrooms shows teachers 

and students making use of a ―complex ensemble‖ of modes, including gesture 

alongside speech, writing, images, etc. There has been recent research interest in the 

use of gestures in mathematics teaching and learning. Much of this has focused on 

the gestures used by students, analysing the contribution made by gesture to learning 

and mathematical meaning making (e.g. Radford, 2009). In considering gestures 

used by teachers, studies have shown teachers and students making shared use of 

gestures initiated by student communication efforts (Arzarello, Domingo, Robutti, & 

Sabena, 2009; Maschietto & Bartolini Bussi, 2009) and teachers using deictic 

gestures as mediating resources (Bjuland, Cestari, & Borgersen, 2009).  
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In this article, we consider the evolution and use of a system of gestures for 

communication about movement in three-dimensional space, focussing on how these 

gestures related to other semiotic systems in use. Our particular interest is in how 

students adopted a system of gestures offered by the teacher/researcher team. 

EMERGENCE OF A NEW SEMIOTIC SYSTEM: PLAYING TURTLE IN 3D 

The episodes we discuss here arose during a teaching 

experiment involving a multi-semiotic interactive 

learning environment, MachineLab Turtleworld 

(MaLT). This environment, designed by the 

University of Athens Educational Technology Lab 

(ETL) ReMath project partners, incorporates a 3D 

turtle geometry, driven by a Logo-like language 

(see Figure 1). It also includes variation tools for 

direct manipulation of variables, though we do not 

discuss this component of the software in this 

paper (see Kynigos & Latsi, 2007). The pedagogical plan used in the London-based 

teaching experiment was designed to allow us to investigate the meanings students 

would make in relation to 3D geometry through their semiotic activity in the 

multimodal context. In addition to the resources offered by MaLT itself, the social 

environment of the teaching experiment was intended to allow, and indeed 

encourage, communication through talk and various paper-and-pencil based forms of 

representation and the use of physical manipulatives as well as through the computer 

software itself. 

The teaching experiment was conducted in a state secondary school in London with a 

Year 8 class (aged 12-13 years). The students had no 

previous experience with MaLT or other forms of Logo. A 

sequence of nine lessons was taught collaboratively by the 

class teacher, the researchers and a student teacher 

attached to the class. In each lesson a video record was 

made, focusing on the teacher or researcher during whole 

class interaction and on a selected student or group of 

students during individual or group tasks. The video aimed 

to capture gestures and the various visual and physical 

resources available, including the computer screen when in 

use. Microphones similarly captured teacher talk and most 

student contributions during whole class interactions and 

talk within a group of students or between students and 

teacher during group or individual work. Episodes in 

which use of multiple semiotic modes was evident were 

selected for transcription. See Morgan & Alshwaikh (2009) for details of the 

transcription methods used with such multimodal data. 

 
Figure 4: MaLT gesture codes 

 Figure 3: MaLT screenshot 
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As we started to view the video data collected during use of MaLT, it was noticeable 

that the teachers and researchers made extensive use of gestures in an apparent 

attempt to support students‘ planning and execution of constructions. One significant 

type of gesture was a set of stereotyped hand and arm movements, often associated 

with use of the terms turn, pitch and roll and the associated Logo instructions (see 

Figure 2). This set of gestures constitutes a new semiotic system, linked with, but not 

identical to, both the linguistic description of movement and the symbolic system of 

Logo. They may be considered iconic gestures (McNeill & Levy, 1980; Roth, 2001), 

in that each bears a visual resemblance to the anticipated trajectory of an object 

moving in 3D space (or a turtle moving in the simulated 3D space of MaLT). 

Students also made use of these and other gestures to support their communication 

about turtle movement. Although the students used ‗these‘ gestures to indicate that 

their hand and arm movements resembled those used by the teachers/researchers, we 

believe, as will become apparent, that the students made use of them in different 

ways, thus construing different meanings.  

For the teachers and researchers, using these gestures as ways of thinking and 

communicating seemed to emerge as a natural consequence of our experience with 

two-dimensional versions of Logo. In Papert‘s seminal Mindstorms (1980), he 

argued that turtle geometry is useful for learning because it is body syntonic, ―firmly 

connected to children‘s sense and knowledge about their own bodies‖ (p.63). This 

connection to personal bodily knowledge may be operationalised through ‗playing 

turtle‘, either literally by walking along a path, enacting the instructions given to the 

turtle, or metaphorically in the imagination. Encouraging and supporting students to 

‗play turtle‘ has become a standard part of Logo pedagogy. The metaphor of ‗playing 

turtle‘ thus formed part of our experience of ‗Logo culture‘ and constituted for us a 

more or less implicit theory about learning with Logo. 

Our partners ETL incorporated the idea of body syntonicity as an explicit theoretical 

justification for their own pedagogical plan, implemented in Athens, suggesting 

manipulating a model of an aeroplane to help students connect with the 3D logo 

commands (http://remath.itd.cnr.it). We adopted a similar initial activity in 

introducing MaLT to London students, using a model aeroplane to demonstrate a 

trajectory of turns and moves as described in Episode 1 below. We then substituted 

gestures (hand and arm movements without holding a model) for the movement of 

the aeroplane and incorporated these into our communications about three-

dimensional movement throughout the teaching experiment. As students moved on 

to drawing 3D objects, no longer connected with the context of aeroplane 

trajectories, the hand and its movements came to be used as representations of the 

Logo turtle. 

We now present two episodes from the teaching experiment in which the teachers 

and researchers modelled use of gestures to ‗play turtle‘. Then we present an analysis 
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of an episode of a student‘s use of similar gestures. Finally, we discuss differences in 

the ways gestures were used by teachers/researchers and by the students. 

Episode 1: In the introductory session with MaLT, the first author (CM) introduced 

the notion of turtle movement using a toy aeroplane. She accompanied the physical 

movement of the aeroplane with a verbal description, using and stressing the terms 

pitch (up/down), roll (right/left) and turn (right/left) in synchrony with the associated 

movement. After this initial introduction, students were set the task of using the 3D 

Logo language to construct the trajectory of an aeroplane taking off. On observing 

how we and other members of the teacher/researcher team supported students‘ 

attempts at this task, we noticed that we made use of iconic gestures in which the 

movement of the hand resembled the desired movement of the ‗aeroplane‘/3D Logo 

turtle. Sometimes a gesture was used synchronously with an ‗equivalent‘ word or 

Logo symbol; at other times a gesture appeared to be used, without equivalent verbal 

or symbolic language, in order to elicit such language from the student. Although 

this use of gesture had not been planned, in the course of the lesson a system of 

gestures emerged, supplementing the planned use of everyday and formal language. 

Episode 2: In a later lesson, recognising that some students were still having 

difficulty distinguishing between the different kinds of turn, we planned an activity 

to make more explicit links between the gestures and the language of 3D movement. 

At this stage, the system of gestures had become a code for us, mapping each change 

in the relationship between hand and arm in a one-to-one relationship to the language 

of 3D turns and hence to the formal Logo terms as shown in Table 1.  

Hand/arm relationship 3D turn language Logo formalism 

 Down 

(more fully ‗Pitch down‘) 

PD 90 

Table 1: Mapping gesture-language-Logo formalism 

In this activity the class teacher (GD) used her arm and hand to act out the role of the 

turtle drawing a ‗door‘ under instruction from the class. Once a movement was 

agreed to be correct, the corresponding instruction was entered into Logo and the 

consequent figure displayed. GD was careful to follow the conventions of the gesture 

system in order to emphasise the relative nature of turtle movement. 

 

CM Ok. Look at the way that Miss‘s hand is 

pointing. Which way has she got to turn it now? 

S1 Down 

CM OK. Would you turn your hand down 

please? 
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S1 No 

Ss  [laugh] 

CM Was that right? 

S1 No 

Table 2: ‗Down‘ doesn't mean ‗down‘ 

 Thus, for example, she turned her hand in a pitch down gesture when given the 

instruction to go down, even though this resulted in her hand pointing horizontally 

(see Table 2). Although student S1 used a term down that was part of the code 

system, he used it in an everyday sense to indicate movement towards the ground. 

This resulted in conflict for students between their intended outcome and the visual 

feedback provided. The conflict was resolved as shown in the following extract.  

CM It wasn‘t was it? So which? Can you think about which way to turn? 

S2 [indecipherable] 

GD What did you say S2? 

S2 Sideways 

GD Sideways? Which way? Right or left? [GD uses her left hand to point to the 

right and left sides of her right hand] 

S2 Right  

CM Ok, everybody agree with that? [GD turns her hand TR] Does that look 

right? 

Ss Yeah 

It is worth noting that student S2 again used an everyday term sideways, though in 

this case a term that was not also part of the formal system. The teacher GD revoiced 

this instruction, offering the terms right and left – terms with formal places in the 

code system as well as everyday meanings. GD‘s additional deictic gesture, pointing 

to the right and left sides of her hand, served to indicate the desired plane of 

reference for right/left. This deictic gesture might be considered to serve as a form of 

scaffolding for developing the formal code, as all terms in the code must be 

interpreted relative to the current plane of the hand. On the other hand, by offering 

students a choice of just two acceptable answers, their attention may be focussed 

very narrowly on that choice, rather than on the underlying principle. 
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Table 3: T draws a wall 

Episode 3: T, having constructed one rectangular wall, was trying to construct a 

second wall perpendicular to the first. She explained what she was trying to draw 

using language and gesture. Her words are shown in Table 3, together with a verbal 

description and a sketch of the 

accompanying gesture. The switch 

(lines 3 - 4) between right and left hands 

appears to be a response to the physical 

difficulty of achieving the desired 

position with the right hand (see Figure 

3). It allows T to maintain the direction 

the fingers are pointing (down).  This 

may be taken to represent the turtle 

heading within the vertical plane 

parallel to the screen. However, in 

switching arms, she changes the 

relationship between arm and hand from a turn to a pitch gesture. We use turn and 

pitch within the conventions set up by the teachers/researchers and the Logo 

language, not to suggest that T associates her gestures with these terms. On the 

contrary, she does not appear to attach significance to the distinction, using turn in a 

generic, everyday way, focusing solely on the position of her hand and the direction 

in which her fingers are pointing in order to describe the intended turtle movement. 

While she is to some extent ‗playing turtle‘ with her hand, she defines the turtle‘s 

movements using position and heading at the corners of her imaginary wall rather 

than by using turn and distance as required by the Logo language. The use of the turn 

and pitch gestures is thus not supporting her move into using Logo code and may 

indeed have made her communication with teachers/researchers less effective. 

 Figure 5: T switches hands 
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CONTRASTING GESTURES: IMAGING VS. IMAGINING 

In Morgan & Alshwaikh (2008) we considered the difference between the ways in 

which teachers/researchers and students were using the ‗same‘ gestures, and 

distinguished between the two notions of imaging and imagining. We defined 

imaging as using an iconic gesture to create an image of the construction of the turtle 

path. The movement of the hand mimics the movement of the turtle: the forearm is 

held parallel to the current heading of the turtle and the hand is moved to define the 

next heading. In contrast, for student T the relationship between forearm and hand 

did not appear to have significance: she was willing to substitute a pitch down 

gesture with her left hand for a turn right gesture with her right. We characterise her 

use of gesture as imagining, referring to her mental image of the desired outcome. 

Such use appears to have both iconic and deictic characteristics. In this episode, as in 

several other episodes within the data set, the student‘s gesture points to the desired 

direction of movement, rather than mimicking the required type of turn. Our 

conclusions related to a disjunction between students‘ everyday experience of 3D 

space and the movement of a turtle in MaLT, interpreted as a cognitive difficulty in 

imagining one‘s body moving freely in that space. We noted at that time the 

possibility that students might be drawing on everyday communicative resources 

rather than on the formal systems proposed by the teacher-researcher team and by the 

Logo language. We now develop our analysis of the relationship between everyday 

and specialised discursive resources for describing 3D turning. 

DISCUSSION: EVERYDAY VS. SPECIALISED RESOURCES 

When movement is restricted to a 2D space, rotations are only possible around an 

axis perpendicular to (and outside) the plane. Our everyday experience is most 

commonly confined to movement experienced as more or less within a plane (i.e. 

travelling on the surface of the earth) and everyday English language reflects this, 

using the single word turn to denote any form of rotation. Even when rotations out of 

this plane are experienced they are generally referred to using the generic turn, 

modified by a description of the sense of the rotation (e.g. clockwise) or of the 

heading following the rotation (e.g. up or down). 

In contrast, in 3D space rotations are possible around any line in the space, though 

any rotation may be defined as a combination of rotations around a set of three 

mutually perpendicular axes
2
. Consequently, in order to specify rotations in 3D, three 

different words are required. In English (and Logo) the terms pitch and roll are 

adopted in addition to turn. Turn itself acquires a specialised use, referring to 

rotation around an axis perpendicular to the plane in which the moving object is 

currently located, while maintaining its everyday generic use. Thus it is possible to 

say: ―In 3D space there are three types of turn – pitch, roll and turn.‖ As everyday 

discourse does not systematically distinguish different types of turning, it is common 
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to omit specific reference to the process altogether, simply providing the heading 

following the turn.  

Another difference between everyday language and the formal language of Logo and 

of the introduced gesture system lies in the ways that directions are used. In Logo 

and the gesture system, right/left and up/down are always defined relative to the 

current heading. In everyday discourse while right and left are usually used in a 

similar, relative way, up and down are more commonly used to refer to absolute 

directions relative to the earth. Gestures used to indicate turns in everyday discourse 

may also tend to be deictic – pointing in the direction of the turn – or hybrid like 

student T‘s gestures, rather than purely iconic – mimicking the trajectory of the 

movement. 

As students talked about their work on tasks such as drawing a room, constructing a 

revolving door, etc., they tended to use only directions to describe their turtle turns, 

omitting the verbs that would define the type of turn. Thus, rather than saying turn 

right or pitch down they would say simply right or down (or possibly use an 

indeterminate verb go right or go down). Such elision is compatible with everyday 

usage in which down and right are unambiguous: down towards the centre of the 

earth; right relative to the vertical axis of the body and the direction in which the 

whole body is facing. Alternatively, as seen in Episode 3, students would coordinate 

everyday language and gesture, using only the word turn while indicating the 

direction of the turn by a gesture.  

A particular source of difficulty in coming to use the Logo formalism lies in the fact 

that the formal terms turn and roll are both modified by right and left. It was 

noticeable that, even as students became more familiar with the formal language, roll 

was used less frequently than either pitch or turn. This is consistent with the 

everyday focus on direction rather than type of movement. Students talked about 

their desire for the turtle to go up or down, right or left, then associated these 

directions with the formal pitch and turn but had no distinct everyday way of 

referring to the desired outcome direction of roll. 

Unlike the situation described by Arzarello et al, where ―the teacher uses the same 

gestures as the students and rephrases their sentences using precise mathematical 

language‖ and thus ―supports the students towards a correct scientific meaning‖ 

(2009, p.106), in the situation presented in this paper the teachers/researchers 

themselves developed and then used a new set of gestures in an attempt to support 

students‘ development of new formal language, an attempt that appears justified 

according to Roth‘s review of studies of gesture in teaching (2001). On the other 

hand, Roth also suggests that students may interpret teachers‘ metaphoric gestures as 

iconic, with negative consequences for their understanding of scientific concepts 

(p.377). In the case presented here, students adopted the teachers/researchers‘ iconic 

gestures as if they were deictic. We have argued that this adaptation is likely to be 

related to the characteristics of students‘ everyday language and gesture use and 
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mismatches between these and the formal descriptions provided by the introduced 

system of gestures and the formal languages of mathematics and Logo. As a 

consequence the intended use of ‗playing turtle‘ as scaffolding to support students‘ 

development of the formal description of motion in 3D was less effective than hoped. 

NOTES 

1
The ReMath project (Representing Mathematics with Digital Technology), was funded by the European Commission 

Framework 6 Programme IST4-26751. 

2
In fact, two axes is the minimum required but can result in more complex sequences of turns. 
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A WORKING MODEL FOR IMPROVING MATHEMATICS 

TEACHING AND LEARNING FOR BILINGUAL STUDENTS 
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The role of language in teaching and learning mathematics has been well 

documented amongst mathematics educators (e.g. see Barwell, 2009; Clarkson, 

2007) and those in the fields of social science, sociology and linguistics (e.g. 

Cummins, 2000). However, there is a need for the development of a model for 

improving the teaching and learning of mathematics for bilingual students. A 

number of theoretical models have been developed (see Ellerton, 1989; Gawned, 

1990) over the years that have proved useful for investigating language related 

issues in the teaching and learning of mathematics but the model presented in this 

paper is concerned with issues that mathematics teachers who have bilingual 

students in their classrooms need to take into consideration.  

INTRODUCTION 

Mathematics is made meaningful through the use of language and students should be 

enabled to communicate adequately the language of mathematics. Consequently, the 

role of language in teaching and learning mathematics has been well documented 

amongst mathematics educators (e.g. see Barwell, 2009; Clarkson, 2007) and those 

in the fields of social science, sociology and linguistics (e.g.Cummins, 2000). 

However, there is a need for the development of a model for improving the teaching 

and learning of mathematics for bilingual students. A number of theoretical models 

have been developed (see Ellerton, 1989; Gawned, 1990) over the years that have 

proved useful for investigating language related issues in the teaching and learning 

of mathematics but the model presented in this paper is concerned with issues that 

mathematics teachers who have bilingual students in their classrooms need to take 

into consideration. The working model presented in this paper is derived from data 

generated by a variety of methods in the Irish context. The authors‘ research is 

concerned with Gaeilgeoirí (students who learn through the medium of Gaeilge 

(Irish)) in the transition from Gaeilge-medium mathematics education to English-

medium mathematics education in Ireland. This transition can take place at the 

primary to secondary interface or at the secondary to third level interface. Data 

generated from the second to third level transition is utilised for the development of 

the working model. It is anticipated that other English as an additional language 

(EAL) students would present comparable similarities when encountering the 

English mathematics register for the first time. Thus, the working model presented in 

this paper can provide a basis for investigation within other mathematical learning 

contexts in which EAL students are present.  This research is the first of its kind to 

be undertaken in the Irish context and accordingly significant contributions have 
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been made both nationally and internationally to this area of mathematics education 

(see Ní Ríordáin & O‘ Donoghue, 2009).  

THE IRISH CONTEXT 

Ireland has two official languages – Gaeilge (Irish) and English. Consequently, 

primary and second level education is provided through either language medium, 

dependent on the location of the school (all-Irish speaking region) and if it is a 

designated Gaelscoil (Gaeilge-medium primary level school) or Gaelcholáiste 

(Gaeilge-medium second level school).  This rise in popularity of attending Gaeilge-

medium education is significant with approximately 8% of primary school children 

and 3% of second level students studying through Gaeilge (Gaelscoileanna Teo., 

2008). However the majority of these Gaeilgeoirí (students who learn through the 

medium of Gaeilge) face an imminent transition to English medium mathematics 

education, be it at second or third level education in Ireland. The integration of these 

students into English-medium mathematics classes is of concern to the author and 

consequently a working model has been developed exploring the issues that teachers 

of bilingual mathematics students need to take into consideration when engaged in 

mathematics education. 

THE STUDY 

Because of the diverse nature of the topic, a co-ordinating framework that exposed 

the various components of the field was needed. Both Ellerton‘s (1989) and 

Gawned‘s (1990) frameworks provided a theoretical structure for the design 

methodology. Ellerton‘s (1989) model shows the need to link the various aspects of 

language factors in mathematics learning and it demonstrates that culture occupies 

the entire classroom, and that communication within this culture is of key 

importance. Communication and language become central factors in issues such as 

socio-linguistics, natural language, psycho-linguistics, problem solving and 

classroom discourse which intersect with each other, and with most parts of the 

framework. Gawned (1990) acknowledges that the language of the classroom has a 

very important influence on students‘ understanding of mathematics, and that each 

classroom has a unique culture of its own. Gawned (1990) also discusses the 

discourse patterns found in mathematics classrooms. They tend to be dominated by 

rules, function within strict relationships and are teacher centred. Thus, this 

framework reflects the nature of mathematics classrooms and how language plays a 

key role in learning, particularly the language of the teacher and the textbook, while 

also highlighting the cultural influences on mathematics education. These models 

establish the need to link the various aspects influencing language and mathematics 

learning, while depicting the centrality of the teacher.  

Fifteen Gaeilgeoirí, who had studied mathematics entirely through the medium of 

Gaeilge (13 years of schooling) until they began third level education, took part in 
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the study. All Gaeilgeoirí completed a detailed questionnaire and follow-up semi-

structured interviews were undertaken with seven of the Gaeilgeoirí. During the 

interview completed a language-use survey (Clarkson, 2007), along with responding 

to questions based on specific themes. The primary aim of the questionnaire was to 

gain an insight into how language has impacted on the transition from Gaeilge-

medium to English-medium mathematics education from a pedagogical, cultural and 

personal perspective.The purpose of the interview was to obtain an understanding of 

the language employed by Gaeilgeoirí when immersed in mathematical problem 

solving, to establish their perceptions of mathematics and of mathematical learning, 

while appraising their experiences of the transition to English-medium mathematics 

education. Analysis of the questionnaire and interviews involved both quantitative 

(SPSS, Version 15) and qualitative aspects (NVivo), which is in line with the mixed 

methods approach employed in this study.  

DESCRIPTION OF THE WORKING MODEL 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A model for improving mathematics teaching and learning for bilingual 

students. 

The first relationships to be discussed are that of the triad of Mathematics 

Understanding, Pedagogy and Culture. They are examined in pairs initially with a 

final discussion on the group as a whole.  

Mathematics Understanding - Pedagogy 

The general consensus when questioned on what they believe ‗understanding 

mathematics‘ to be was one of an instrumental perspective (Skemp, 1978). Being 

able to solve mathematical problems using mathematical formulae and correct 

procedures reflected one‘s ability at understanding mathematics. Granted 
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instrumental understanding plays a significant role in mathematics learning but none 

of the participants interviewed relayed an importance of knowing ‗why‘ (Skemp, 

1978). However pedagogical aspects need to be taken into consideration when 

engaged in a discussion on learners‘ perspectives of mathematics. Through 

discussion it became obvious that the participants‘ lecturers/tutors place an emphasis 

on procedural knowledge for the learning of mathematics and little time is given to 

the development of conceptual understanding. Because of this emphasis 

Gaeilgeoirí‘s learning strategies revolve around the continual practice of tutorial 

questions and previous exam papers. Rote learning is relied on and fostered through 

success in examinations. So for Gaeilgeoirí, their acuity for procedural methods in 

learning and understanding mathematics is rewarded by a system that instinctively 

promotes this type of knowledge.    

Mathematics Understanding - Culture 

Gaeilgeoirí entering Irish third level education are emerging from a learning 

environment immersed in the Irish language and culture. They are required to adapt 

to a learning environment steeped in the English language and cultural practices. 

Therefore Gaeilgeoirí are required to use mathematical tools within this new 

environment with little regard given to previous language/cultural practices. The 

assumption is that all students have done mathematics through English. Cultural 

differences played a significant role in the transition for these students. Many felt 

that the other students in their courses perceived them as being different   

Tomás: Sometimes when in class I stand out a little bit because of my English isn‘t 

up to their level…they‘d know like because my accent and stuff that I‘m 

different. 

This in turn prevented them from engaging in discussions that arose during tutorial 

times. They lacked confidence in their ability to partake in mathematical discussions 

and ask questions through the medium of English. The lack of use of Gaeilge for 

academic, cultural and social purposes hindered their progression at third level 

education. 

Pedagogy - Culture 

Too often mathematics students are required to use procedures of the discipline 

without acquiring and embracing the culture of the discipline (Brown, Collins & 

Duguid, 1989). All Gaeilgeoirí interviewed highlighted the didactical approach 

employed by many lecturers/tutors at third level education in Ireland. Gaeilgeoirí 

were presented with abstract concepts and independent examples. Thus Gaeilgeoirí 

were exposed to the procedural tools of mathematics but lacked ‗authentic activity‘ 

in order to truly understand the conceptual tools being employed (Brown, Collins & 

Duguid, 1989). The culture of third level institutions is to promote independent 

autonomous learners which Gaeilgeoirí found difficult to adapt to and they felt that 

lecturers/tutors were unapproachable. Consequently, there appeared to be a fear of 
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being perceived as ‗different‘ and ‗weak‘, with Gaeilgeoirí rarely seeking help with 

any mathematical difficulties they were encountering.  

Mathematics Understanding - Pedagogy - Culture 

Mathematics understanding, pedagogy and culture are interdependent in the triad – 

neither can be understood without the other.  In order for Gaeilgeoirí to develop 

mathematical understanding, pedagogical practices are of key importance, which in 

turn are evocative of cultural influences. Mathematics is a product and a function of 

culture and unfolded through pedagogy.  

The next sections will look at the upper section of the working model which consists 

of the quartet of Mathematics Understanding, Bilingual Factors, Conceptions of 

Mathematics and Language Use. The relationships between each pair will be 

discussed. 

Mathematics Understanding – Bilingual Factors 

Colm: Going from Gaeilge to English is hard at times...it has made the transition to 

college maths difficult for me but I‘m getting used to it. 

Although the majority of Gaeilgeoirí interviewed found the general transition from 

second to third level education relatively easy, having to transfer from learning 

mathematics through Gaeilge to learning mathematics through English impacted on 

their learning and understanding of the subject. The main source of difficulty was the 

actual ‗language of mathematics‘ i.e. the mathematics register. They all referred to 

problems they encountered with mathematics terminology they had acquired at 

primary and second level through the medium of Gaeilge but were unaware of the 

English equivalent on entering third level. For example, basic operations such as 

addition (simiö), subtraction (dealö) and division (roinnt) caused problems for 

Gaeilgeoirí. Gaeilgeoirí were also confused by similar words in English e.g. 

―multiple‖ and ―multiply‖ and may have been unsure of the difference in meaning. 

Whereas in Gaeilge two dissimilar words are used – ―iolraí‖ (multiple) and ―meadö‖ 

(multiply), thus lessening the confusion when interpreting and answering a question. 

Similarly, the syntax and semantics of the Gaeilge language lends itself to a clearer 

understanding of what is being described. For example, in Gaeilge a passage reads 

―It is called the Highest Common Factor the number that is highest, which is 4‖ 

(directly translated) compared to ―The highest of these, called the Highest Common 

Factor, is 4‖ in an English version. Therefore, when mathematical problems are 

presented in ‗complex‘ English it is a source of confusion for Gaeilgeoirí in this 

study. Gaeilgeoirí highlighted the expectation on the behalf of lecturers/tutors that all 

students has learnt their mathematics through English and thus their learning needs 

were not catered for in the transition. Clearly, Gaeilgeoirí require assistance in the 

initial transition and perhaps if appropriate teaching interventions were introduced 

this transition process may be eased as well as improving mathematical 

understanding. The fact that all students interviewed are relying on rote learning in 
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order to pass examinations and thus are seen to ‗succeed‘ at mathematics, the type of 

understanding being developed is not the desired and one would question if this has 

significant implications down the line for future mathematics learning and career 

development.   

Mathematics Understanding – Conceptions of Mathematics 

In a previous section the participants‘ conceptions of mathematics were examined 

and it was found that the majority had a narrow perception of mathematics in that 

they strongly believe it only consists of ‗numbers‘, ‗formulae‘ and using ‗numbers to 

solve problems‘. This perception partly stems from the mode of teaching employed at 

second and third level education. Didactical teaching is the norm where repetitive 

practice of questions is encouraged. Thus, Gaeilgeoirí are not gaining a deeper 

insight into the subject area as a consequence of the teaching methods they have 

encountered. What was surprising for the author was given the emphasis that 

Gaeilgeoirí placed on problems they encountered with mathematics terminology and 

the change in the language of learning, little saw a relationship between mathematics 

and language. If Gaeilgeoirí lack awareness of the influence of language on 

mathematics learning and understanding then this may have repercussions for their 

mathematical understanding. Language plays a key role in mathematics learning and 

understanding and awareness of this is crucial when immersed in a new language of 

learning. The author believes that this awareness of language as a source of difficulty 

may actually help the students‘ mathematical understanding in the transition from 

Gaeilge-medium to English-medium education.     

Mathematics Understanding – Language Use 

During the interview Gaeilgeoirí were asked to complete a Language Use Survey 

(see Clarkson, 2007). This consisted of identifying what language(s) they used in 

answering the individual word problems on the test instrument. Gaeilgeoirí were 

given the option of selecting English only, English and Gaeilge, or Gaeilge Only. 

Gaeilgeoirí drew on their first language of learning when answering some of the 

mathematics word problems even though all of the problems were presented in 

English. Gaeilge was used primarily for thinking out a problem and conducting 

mental operations such as addition and multiplication of numbers as this was what 

they described as ‗normal‘ and ‗natural‘ to them. Given their complexity at times to 

describe their use of languages it appears to be a subconscious action and ingrained 

in their process skills when engaged in mathematical problem solving and 

understanding.  

Bilingual Factors – Conceptions of Mathematics 

Gaeilgeoirí‘s conceptions of mathematics revolved around the belief that it consists 

of numbers, problem solving and using formulae. The majority saw the transition 

between languages as ‗relearning‘ mathematical words and concepts through the new 

language of instruction. There was no recognition of transferring mathematical skills 
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from one language to another or drawing on skills developed in both languages to 

solve mathematical problems. This demonstrates their lack of awareness of the fact 

that they do use Gaeilge relatively often when engaged in mathematics (previous 

section) and therefore are drawing on both languages. Due to this lack of awareness, 

Gaeilgeoirí saw no real advantage to having two languages for learning mathematics. 

Perhaps if Gaeilgeoirí were more aware of the influence of language on mathematics 

learning this may ease the transition and improve their mathematical understanding.  

Conceptions of Mathematics – Language Use 

Gaeilgeoirí consider language competency in one or both languages as irrelevant to 

mathematics learning and understanding. They view the purpose of language as 

solely for reading questions, but they do not see this as an important step in solving a 

mathematics problem. Gaeilgeoirí failed to make a connection to language as a 

facilitator of understanding. They considered mathematical content solely as the 

source of difficulty. As a consequence this may be acting as a barrier to developing 

their mathematical skills and understanding.  

Bilingual Factors – Language Use 

There was a clear lack of understanding by Gaeilgeoirí of their use of their 

languages. It was only through probing that the students began to realise that they 

use Gaeilge, even if it was ―only just for simple things like adding and multiplying‖ 

(Liam). They failed to see an advantage to having two languages for learning 

mathematics, but perceived it as occurring in one language or the other at a given 

time. The author strongly feels that this lack of awareness of language use and 

connection with mathematics learning may be acting as an obstacle to the 

development of Gaeilgeoirís‘ mathematical understanding.   

Mathematics Understanding - Bilingual Factors – Conceptions of Mathematics - 

Language Use 

Mathematics understanding, bilingual factors, conceptions of mathematics and 

language use are interdependent and neither can be understood without the other. 

The primary aim is to develop mathematical understanding but for Gaeilgeoirí 

significant bilingual factors, conceptions and language use need to be taken into 

consideration in the development of this understanding.    

IMPLICATIONS FOR THE IMPROVEMENT OF MATHEMATICS 

TEACHING 

The focus of this investigation has been on Gaeilgeoirí in the transition from Gaeilge 

medium to English medium mathematics education. Clearly the teacher is going to 

play a significant role in facilitating this transition. The following are a number of 

suggestions for teachers that can be incorporated into their pedagogic practices 

(Anstrom, 1999), consistent with the working model developed. It is important that 

mathematics teachers develop innovative strategies for teaching mathematics to 
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Gaeilgeoirí so to challenge the high ability bilingual students, while ensuring weaker 

bilingual students are catered for. When in the transition between language mediums, 

Gaeilgeoirí will be integrated with all English students. No facilitation is made for 

Gaeilgeoirí e.g. separate classes, extra tuition. Thus, the recommendations suggested 

below are good practices that may help improve mathematics teaching across the 

board, not just specific to catering for bilingual students. We need to improve the 

quality of mainstream instruction so as to make language and mathematics content 

comprehensible for Gaeilgeoirí, and accordingly cater for their pedagogic, cultural, 

linguistic and mathematical needs.  

 Teachers need to make mathematics accessible to Gaeilgeoirí and this can be 

achieved through introducing problem solving activities. By involving 

Gaeilgeoirí in solving interesting, real-life problems it will encourage critical 

thinking, in conjunction with basic skills development and practice and 

accordingly change their conceptions of mathematics as consisting solely of 

numbers, formulae, etc. These real-life problems can be directly linked to 

Gaeilgeoirí‘s cultural background thus facilitating the development of 

mathematics understanding and a more student-centred pedagogical approach 

(Buchanan and Helman, 1993). Through demonstrating to Gaeilgeoirí that their 

prior experiences are of importance, awareness of the Gaeilge language and its 

importance in developing mathematical understanding will be emphasized. 

Moreover, the content of mathematics should not be ‗dumbed‘ down for 

Gaeilgeoirí in the transition; these students have the potential to excel. 

 It is important to teach the language of mathematics. From the author‘s findings 

it is clear that the language of mathematics is a source of difficulty for 

Gaeilgeoirí in the transition. Command of the English mathematics register will 

play an important role in the development of Gaeilgeoirí‘s mathematical ability 

and easing the challenges encountered with bilingual factors when transitioning 

to a new language of learning. Therefore, Gaeilgeoirí will require ample 

opportunities to hear, speak and write mathematically. This is proposition is 

centred on the connection between pedagogy and mathematics understanding 

whereby improving Gaeilgeoirí‘s ability to use the English mathematics register 

will facilitate engagement on mathematical thinking, while encouraging students 

to justify ideas orally and in writing (Corasaniti Dale and Cuevas, 1992).  

 Mathematics teachers should create language supportive environments. 

Planning classroom discourse that is inclusive of Gaeilgeoirí demands that 

teachers create mathematical environments and instructional situations that 

support students‘ linguistic and conceptual development. By integrating reading 

and discussion with mathematics content, it supports the development of 

academic language skills and encourages greater depth in the students‘ 

understanding of the mathematical topic. By adopting such strategies in the 
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mathematics classroom it facilitate the development of Gaeilgeoirí language use 

and improve their conceptions of mathematics. 

 Teachers should vary instructional methods. By doing so they will provide 

Gaeilgeoirí with an opportunity to learn in different ways, through individual, 

small group and whole class work (Buchanan and Helman, 1993). These methods 

could include direct instruction, guided discovery, cooperative learning, and 

computer assisted learning. By varying the instructional methods it will allow for 

the improved pedagogical practices leading to a deeper understanding of 

mathematical concepts, while developing Gaeilgeoirí‘s language use.  

 Finally, assessment should be authentic and meaningful (August and Pease-

Alvarez, 1996). Naturally, assessment should have a specific and clear purpose. 

It may need to take place through the medium of English and in Gaeilge, 

depending on the language proficiency of the students and so as to truly reflect 

Gaeilgeoirí‘s mathematical ability and understanding. For Gaeilgeoirí, the test 

item should incorporate aspects associated with their cultural background and 

allow for bilingual factors that may influence their performance on the 

assessment. The teacher should aim to use a variety of measures such as 

portfolios, observations, anecdotal records, interviews, checklists, and criterion 

referenced tests (August and Pease-Alvarez, 1996). By employing a variety of 

methods it will allow for assessing Gaeilgeoirí‘s mathematical understanding of 

key concepts while examining their language use facility.      

CONCLUSION 

Knowledge of the difficulties that Gaeilgeoirí may experience in the transition to 

English-medium mathematics education in the hands of a discerning teacher can 

prove fruitful for easing the transition for Gaeilgeoirí. Although the findings 

emerging from this research are specific to the Irish context, they are important 

because of their applicability to other bilingual contexts. The working model 

presented can be employed in order to investigate other EAL learning contexts in 

order to improve the teaching and learning of mathematics for bilingual/multilingual 

students. Given the increasing number of students learning in a dominant language 

that is not their first language, these findings are important to mathematics education 

(Adler, 2001).    
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Type your abstract here. The purpose of this paragraph is to draw attention to the 

style for abstracts, which is Normal, italic, and the length is up to 10 lines. In this 

report we draw on interactionist theories in (mathematics) education to better 

understand classroom processes of collective mathematical argumentation. We 

discuss students' uses of revoicing in different situations of mathematical learning 

taken from two recent micro-ethnographic studies in Barcelona and Tarragona, 

Spain. We document two examples that shortly illustrate two ``positive'' uses of 

revoicing in peer interaction: i) to ensure mutual understanding; and ii) to foster 

more explanations. We finish with comments on what is new in our research and 

how it needs to go in new directions to explore other uses of reviocing that appear 

when considering a more critical perspective in the analysis of classroom data. 

INTRODUCTION 

Language and discursive practices shape the concepts and processes that organize 

much of the everyday situations in the mathematics class. In their work, Enyedy et al. 

(2008) refer to revoicing as a discursive practice to promote a deeper conceptual 

understanding of school mathematics by positioning students in relation to one 

another, facilitating debate and fostering mathematical argumentation. The study we 

present here draws on this broad notion of revoicing to examine communication and 

mathematical argumentation in peer interaction. We discuss students' uses of 

revoicing in different situations of mathematical learning taken from two recent 

micro-ethnographic studies in Barcelona and Tarragona, Spain. This approach is part 

of our more general focus on the role of language as a social resource in the 

construction of collective mathematical argumentation in classroom settings.  

Various works have examined teachers' uses of revoicing and interpreted this 

practice as an essential part of what the teacher does during the process of instruction 

(see Krussel, Edwards & Springer, 2004; or O'Connor & Michaels, 1996, among 

others). So far, there has been much more empirical literature developed on teachers' 

revoicing than on students' revoicing in peer interaction. Our study is a contribution 

to the more reduced group of works on students' revoicing, specifically for the area 

of mathematics education. We claim that the construction of the students' 

mathematical discourses is highly orchestrated by what other students say and how. 

Our data from small groups and pairs reinforces evidence to support the importance 

of knowing the students' reactions to the ways in which their peers ``re-tell'' their 

words while engaged in mathematical tasks.  
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Before exemplifying data on some of the uses of revoicing in students' interaction, 

we start with theoretical considerations on the notions of revoicing and collective 

mathematical argumentation. We then move on to a brief summary of our methods in 

the analysis of classroom data, and discuss preliminary findings centered on 

―positive‖ uses of revoicing. We finish by suggesting some of the problems 

regarding the exclusive interpretation of revoicing as a facilitator. Our current 

analysis needs further examination from a more critical perspective that also signals 

practices of revoicing as markers of legal talk and talkers in the mathematics class. 

THEORETICAL FRAMEWORK 

This section introduces how the notions of revoicing and collective mathematical 

argumentation are conceptualized in our work. We point to inspiring literature in the 

effort to establish empirical connections between these two interactional 

accomplishments. We claim that revoicing is an important part of the processes that 

lead to argumentation, although we recognize that the relationships between these 

two practices are problematical: revoicing may be used for different (social) 

purposes and may have different implications, some of them with no clear orientation 

towards mathematical learning. 

Revoicing  

An assumption of the interactionist theories in (mathematics) education (see, for 

instance, Voigt, 1996; or Krummheuer, 2011) is that talk among students (and 

between students and teachers) needs to be analyzed as discursive practices through 

which (mathematical) knowledge is constructed. Some examples of these discursive 

practices are revoicing, questioning, requesting, telling, or managing. The practice of 

revoicing essentially tries to repeat some or all of what has been said in a preceding 

turn as the basis for a shift in the interaction. This repetition can be manifested in 

two forms, either as a linguistically ``exact'' copy or as a reformulation. Despite the 

linguistic possibility to repeat a sentence exactly, from a social point of view and 

taking into account the recursivity thesis by Giddens (1979), we understand that 

every instance of the use of language is a potential modification of that language at 

the same time as it acts to reproduce it. Thus we find it more adequate to associate 

revoicing to conceptual reformulation rather than linguistic repetition.  

O'Connor and Michaels (1996) indicate three main uses of revoicing in teachers: 1) 

to position students in differing alignments and allow them to (dis)claim ownership 

of their position; 2) to share reformulations in ways that credit students with teachers' 

warranted inferences; and 3) to scaffold and recast problem-solution strategies of 

students whose first language is not the language of teaching. These uses have been 

documented by these authors as having the effect to focus group discussion and 

scaffold conversation on the basis of what is said, when, how, with whom... 

However, drawing on these three uses, the work by Forman and Ansell (2001, 2002) 

is focused on the examination of the students' voices. These authors analyze 
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conversational moves in the ``follow-up'' part of the Initiation-Response-Feedback 

sequence in mathematics lessons with frequent practices of revoicing. Although there 

is a clear emphasis on the social dimension of the IRF sequences and obstacles to the 

students' voices are recognized, revoicing is primarily seen as a facilitator in the 

interaction. 

Collective mathematical argumentation  

By ―collective argumentation'‖ we mean the interactional accomplishment given by: 

1) representing a task or problem alone; 2) comparing representations within a small 

group of peers; 3) explaining and justifying the various representations to other 

members of the group; 4) reaching agreement within the group; and 5) presenting the 

group's ideas and representations to other participants in the class to test their 

acceptance (see Brandt & Schütte, 2010, for a similar interpretation that expands on 

the idea of argumentation from an individual to a collective notion). Like Cobb 

(2008), we understand that situations of collective argumentation are mathematical if 

they are organized around specific ways in which tools and procedures are used to 

achieve mathematical goals. This is still a very general conceptualization of 

argumentation if we pay attention to the mathematics, but it becomes useful because 

it puts the emphasis on the processes of teaching and learning.  

Sfard and Kieran (2001) have also discussed the role of the students' interaction in 

processes of collective mathematical argumentation. These authors interpret 

collective mathematical argumentations as interactive processes in the learning of 

how and when to participate in school mathematics discourses. They analyze the way 

in which students express themselves throughout their mathematical talk by means of 

discursive tools that help advance towards the construction of shared meanings. In 

particular, certain practices of revoicing in the resolution of mathematical tasks are 

interpreted as a social tool in the students' exploration of what counts as an accepted 

and ``repeatable'' reasoning in the mathematics classroom.  

In the situated context of our work, revoicing becomes a reformulation of language 

to achieve new possibilities for further mathematical argumentation. The attempt is 

collective and entails a complex system of voices (Planas, 2011). It makes sense then 

to consider what it means for a student to participate in the ``legal'' process of 

constituting a culture of argumentation in the classroom. In this report, we look at the 

―unanimous'‖ voice of the interaction, instead of pointing to individual voices trying 

to grasp what becomes necessary for them to gain membership while moving from 

one state of participation to another. At future stages, however, our study ventures to 

contribute to the much reduced group of works on the act of using revoicing socially 

in the delimitation of voices in the mathematics classroom. 

EMPIRICAL CONTEXT  

Our two research projects [1] share an interest in the qualitative analysis of narrative 

classroom data. Since 2005, we have been collaborating with a group of mathematics 
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teachers [2] to develop inquiry-oriented tasks that are to be proved as facilitators of 

collective mathematical argumentation in small group and pair discussion. The 

implementation of tasks together with the characterization of situations of collective 

argumentation by means of the Toulmin's scheme (2007) has provided considerable 

information regarding students' reasoning in peer interaction. We have recently 

started to analyze broader discursive practices to include language and social issues 

in our analysis of how students help each other through talk in their joint 

construction of mathematical argumentations. The integration of mathematical, 

language and social issues guides our current process of gaining theoretical and 

empirical understanding.  

In the context of the group of mathematics teachers and researchers, we examine data 

from secondary mathematics classrooms that were first chosen to validate the 

implementation of tasks. Up to now, we have searched for examples of students' 

revoicing in two main sets of data coming from two classrooms in two schools. We 

have had various meetings --some with the teachers-- to comment on classroom 

lessons represented through video data. The meetings have been oriented by three 

main questions: 1) What is the evidence of revoicing in this lesson (if any)? 2) In 

what sense are two examples of revoicing similar/different? And 3) what are the 

explicit uses to which different practices of revoicing are put? In what follows, we 

introduce two examples of peer interaction that hold the potential to make more in 

depth investigations of other episodes involving a variety of practices of revoicing. 

EXAMPLES OF FINDINGS  

In this section, we describe processes of using revoicing as a resource. We document 

two types of ``positive'' revoicing. They are thought of as positive because they 

contribute to the continuity of peer interaction and mathematical argumentation. The 

two examples that follow illustrate two uses that prompt: i) mutual understanding, 

and ii) more explanations. These uses of revoicing seem to require forms of 

communication, argumentation, and interaction that would otherwise be difficult to 

achieve. Furthermore, these uses help interpret how the interaction is to be read: the 

degree of respect or resistance towards the students involved, with an eye to the 

mathematical contents or the lack there of, etc.  

More generally, our examples show that mathematical learning gains ``strength'' 

when it is invoked by one student and re-invoked by other students in the context of 

peer interaction. Data shows different students using correct mathematical reasoning 

that ―does nothing on its own'' until it is reconstituted by others through talk. In a 

large variety of episodes, the argumentation is first introduced by one of the students 

in the small group, and then becomes an object of negotiation through conversations 

in which revoicing helps distribute turns among speakers. There are also episodes in 

which revoicing becomes a strategy to overcome occasional interruptions in some of 

the students' mathematical implication during the resolution of the task. 
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Students' use of revoicing to reinforce mutual understanding  

In group discussions among three or more students, there is a ``positive'' use of 

revoicing that contributes to making one of the student's ideas available to the rest of 

the members in the group, and helps reinforce mutual mathematical understanding. 

We have several examples of episodes in which a student partially explains an 

argumentation, and another student in the group uses revoicing to emphasize 

particular aspects of that argumentation, provide additional information, and to 

facilitate a more adequate mathematical understanding from her/his peers.  

In the example below, documented in Morera (2010), we find four students --Elba, 

Joan, Carles and Uriel-- trying to find out how to transform one line segment onto 

another by means of a rotational superposition. The students are using a dynamic 

geometry package to identify the right place to construct the rotation centre. 

Although the four students are working together in the same small group, they are 

working on two different computers next to each other. The distribution into two 

pairs --Elba and Joan, and Carles and Uriel-- leads to the development of two 

different initial approaches to the problem (see Figures 1 and 2, with the given line 

segments printed in black). 

 

Figure 1. Elba & Joan's approach Figure 2. Carles & Uriel's approach  

Two approaches to the resolution of the problem can be inferred from the transcript 

of the group discussion: while Elba and Joan plan to construct the segments by 

joining the ends and then drawing the perpendicular bisectors, Carles and Uriel draw 

the perpendicular bisectors from the initial line segments. There is a moment when 

Elba and Joan realize that Carles and Uriel are not considering the ends of the given 

line segments. This is the starting point of the following dialogue [3] in which the 

two pairs bring together their ideas: 

Joan: Shall we talk about what we've been doing?  

Elba: I was discussing it with Joan... Maybe, if we drew the perpendicular bisectors here, 

they would coincide at the same point [see the red point in Figure 1].  

Uriel: It's impossible for the perpendicular bisectors to coincide over there! [see the red 

point in Figure 2]  

Joan: [to Uriel] If we drew the perpendicular bisectors here [3], where the two points 

come together, not the two line segments, they would coincide at the same point.  
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Carles: Ah, okay! I thought you meant this one!  

Uriel: So did I! 

Due to our focus on the identification of practices of revoicing in the construction of 

collective mathematical argumentations, we only represent the part of the transcript 

in which the use of a particular revoicing --with the exact repetition of a sentence in 

this case-- helps overcome a misunderstanding in the resolution of the problem. In 

the transcript above, Elba introduces a mathematical argumentation that leads to 

confusion as it is not clear for Carles and Uriel which line segments are for the 

perpendicular bisectors. Following an intervention by Uriel that confirms this 

confusion, Joan repeats Elba's explanation and includes a short clarification in- 

between –―... where the two points come together, not the two segments...'‖-- that 

helps Carles and Joan expand their understanding of the problem. The whole 

transcript offers more evidence of this interpretation.  

This first example illustrates the collaboration among the students in the group. Joan 

might have completely reconstructed Elba's sentence and started with a new 

explanation, instead of building into his peer's explanations. More generally, this 

example points to the deep social dimension in the elaboration of mathematical 

argumentations in the classroom. Argumentation emerges in conversational contexts 

and is oriented toward an audience. The context and audience determine how many 

details and mathematical clarifications are needed to go on with reasoning, as well as 

to what extent certain explanations may be publicly considered as ―repeatable'‖.  

In another context, the sentence ―If we drew the perpendicular bisectors here, when 

the two points come together, not the two segments, they would coincide at the same 

point‖, might not represent a ―good‖ mathematical argumentation: there is no 

indication as to the meaning of `two points coming together', or which two line 

segments are being referred to. The sentence needs to be interpreted at least in 

relation to what has been said in previous turns, and what knowledge Elba and Joan 

have of their peers' reasoning. The adequacy of a mathematical argumentation in the 

social context of the classroom is informed by its mathematical quality, but also by 

the representations that the students (and the teacher) have of how mutual 

comprehension is facilitated.  

Next, we offer a second example of collective mathematical argumentation in peer 

interaction with a slightly different use of revoicing that reinforces the occasions for 

mathematical talk, and fosters further interaction among students. 

Students' use of revoicing to foster more explanations 

Students need ways of talking that help them deal with lack of clarity in other 

students' contributions in the resolution of mathematical tasks. Some students' use of 

revoicing acts as an enquiry for the expansion of a point that has not been fully 

understood. In our research, this use tends to happen in pair work situations in which 

a student wants another student to clarify a mathematical position and elaborate more 



Working Group 9 

CERME 7 (2011) 1362 

 

on a specific idea. The example below shows the collaboration between two 

students, Anna and Ona, to find the quantity of squares in a chessboard. 

Teacher: Work in a pair and collaborate with each other, okay?  

Ona: First we should reflect on the problem on our own.  

Anna: Yeah, we need to know what to talk about [...]  

Ona: [A few minutes later, to Anna] What are you writing here?  

Anna: Just counting all the squares in an easy way.  

Ona: Do you have the number?  

Anna: It's one, four, nine, sixteen... they are always square numbers.  

Ona: So you're saying that they are always square numbers? ... And easy?  

Anna: Yeah. You know why? [She points to a page in her notebook with many numbers 

and her written resolution]. You have one big square with sixty- four small squares, 

that's eight times eight. Then you have four squares with forty-nine squares, you see, 

seven times seven [see Figure 3]. You see that? 

 
Figure 3. Anna and Ona's approach  

The excerpt above illustrates a classroom situation in which two students have been 

working separately for a few minutes and then come together to comment on their 

approaches to the problem of the squares in a chessboard. Anna has developed a 

complete and mathematically correct written resolution for this problem, but starts 

explaining it to her peer in a rather synthetic way – ―Just counting all the squares in 

an easy way.‖ At the end of the conversation (the entire episode is not reproduced 

here), Ona comes to agree that there is an ``easy'' way to count all the squares in a 

chessboard; it is improbable that this agreement has been facilitated by Anna's 

interventions in which she seems to expect her peer to mathematically ``read'' 

through her words. This second example is similar to the first one, in that revoicing 

is used by Ona as an instrument that helps provide a way of testing Anna's claims on 

both the mathematics and the simplicity of the resolution method.  

Anna initiates her explanations as if interacting with a mathematically ``ideal'' peer 

that would share and quickly understand her reasoning. In this context of interaction, 

Ona's use of revoicing acts as a way of forcing attention to who the peer is and what 

her specific needs are to gain agency in sharing a particular mathematical 

argumentation. Here, the use of revoicing facilitates Ona with the role of one who 
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invokes a sort of participation that controls the sharing of reasoning. Anna's 

notebook contains a complete resolution of the problem, and by pointing to it she 

evokes an ―ideal‖ reader that might feel sufficiently satisfied with the written text. 

Ona's reaction, with the repetition of a sentence and the emphasis on the idea of 

simplicity, makes it difficult to avoid further explanations and offers the possibility 

in practice to develop a discourse based on the resolution of the problem.  

As in the first example, cooperation among students is required for the achievement 

of collective argumentation. Ona's use of revoicing contributes to a new conversation 

with the inclusion of more explicit explanations of the resolution processes that have 

been followed by Anna. It is necessary that Anna accepts the new basis for this 

conversation. When revoicing, as an instrument, is put to work it requires the 

involvement of all parties. Ona, Joan or any other student, on their own, do not have 

enough agency to convert the reformulation of sentences into an instrument with the 

purpose of serving collective mathematical argumentation.  

Although the empirical relationship between revoicing and collective mathematical 

argumentation still remains unclear in our work and interpretations of the episodes 

need to be reinforced with complementary perspectives, we can say a few things at 

this time. We have chosen two examples of ``positive'' revoicing for this report, but 

we do not affirm that revoicing either expressly leads to more argumentation or more 

collaboration among speakers. We have data with practices of revoicing that do not 

turn into ``more mathematics and/or more collaboration.'' The status of revoicing as 

an instrument for the sake of mathematical conversations appears linked to the social 

nature of this practice. In Planas and Civil (2002), some of the social issues of 

influence on the interpretation of discursive practices in classroom settings were 

already documented, with specific attention to recognition among peers. In our 

second episode, for instance, Ona's revoicing is effective because Anna is willing to 

explain her reasoning. Nevertheless, what would happen if Anna imagined her peer 

as an obstacle in her learning? Would she give detailed answers to her questions? 

FINAL REMARKS  

Together with the interest in examining relationships between revoicing and 

collective mathematical argumentation, a research focus on revoicing in mathematics 

classrooms raises many other questions. What is new in our work is the interest in 

the exploration of some of the critical functions that are carried out by practices of 

revoicing that are initially linked to ``positive'' uses only. Much remains to be done 

in this direction, and in fact, we are still at the stage of empirically illustrating 

―positive‖ uses and ―generating suspicion‖. It is not clear whether one can critically 

examine revoicing in the strict context of the micro level of the small group or the 

whole class with no attention to the multiplicity of voices from the different and 

various macro levels that have an influence on how discourses are re-elaborated in 

classroom settings. The repetition of a sentence may serve as a strategy to foster 
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mutual understanding and mathematical explanations, and at the same time represent 

messages of incorrectness, doubt, disapproval... depending on who the speakers are.  

It seems unlikely that a one-dimensional view on revoicing or any other discursive 

practice, based on either mathematical or social issues, helps gain a better 

understanding of how mathematical conversations are prompted in classroom 

settings. On the one hand, from the joint perspective of language and mathematics, 

we cannot claim that all ``significant'' mathematical meanings are maintained the 

same when a sentence is reformulated, neither can we affirm that ―repetitions‖ 

always stand for evidence of learning. This uncertainty points to serious 

methodological obstacles, especially when trying to justify processes of individual 

mathematical learning that are constructed in contexts of conversation with frequent 

practices of revoicing. On the other hand, from the joint perspective of language and 

social interaction, even when a sentence is repeated exactly the same, we still cannot 

guarantee that the context and the interpretation have not varied. The precision of the 

language of mathematics and the complex social discourses around it (e.g., `who is 

considered as mathematically competent', `what is expected to be included in school 

mathematics') makes it difficult to answer all these questions without adopting a 

multi-dimensional view on how everyday situations in the mathematics classroom 

are organized. 

NOTES 

1. The work is part of Projects `Estudio sobre el desarrollo de competencias discursivas en el aula de matemáticas', 

EDU2009-07113, and `Contribuciñn al análisis y mejora de las competencias matemáticas en la enseńanza secundaria 

con un nuevo entorno tecnolñgico', EDU2008-01963, both funded by the Spanish Ministry of Science and Innovation. 

The two authors are members of the Research Group `Educaciñ i Competčncia Matemŕtica', SGR2009-00354, 

recognized by the Catalan Department of Universities. The second author owns Grant BES2009-022687. 

2. The Group EMAC --Catalan acronymus for Critical Mathematics Education-- is supported by Associaciñ de Mestres 

de Rosa Sensat, and partially funded by Project `Diagnosi de necessitats socials i educatives de l'aula multilingüe: 

aproximaciñ des del cas de matemŕtiques', ARFI-1-2009-00052, Catalan Government. 

3. All dialogues have been translated from Catalan to English by the first author. 

4. The bold format is used in our transcripts to mark the exact moment in which revoicing appears. 
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EPISTEMOLOGICAL AND SEMIOTIC ISSUES RELATED TO 

THE CONCEPT OF SYMMETRY  

Frode Rønning 

Sør-Trøndelag University College, N-7004 Trondheim, Norway 

This paper emerges from a classroom study where 8 year-old pupils are engaged in 

activities having to do with different aspects of symmetry (reflection and rotation). 

The pupils‘ language is analysed on the basis of an epistemological analysis of the 

mathematical concept isometry and certain issues that might be relevant for the 

pupils‘ conceptual development are discussed. Semiotic theory focusing on the 

epistemological aspect of signs and symbols plays an important role in analysing the 

classroom episodes.  

Keywords: Symmetry, epistemology, semiotics, signs and symbols 

INTRODUCTION 

This study is based on empirical data from a three years research and development 

project where two mathematics educators collaborated with the teachers at a local 

primary school with the intention of introducing and reflecting on new ways of 

approaching the teaching of mathematics. In this paper I will analyse two classroom 

episodes from two consecutive days involving the same pupils. Both episodes can be 

said to relate to the concept of symmetry, albeit in somewhat different ways. In the 

first episode the pupils are given tasks where it is explicitly stated that the aim is to 

design symmetric pictures in various ways. It is implicitly understood that what is 

meant is reflection symmetry. In the second episode the pupils were building three-

dimensional objects and they were encouraged to talk about these objects, using 

mathematical terms. Part of the discussion turned out to be about what the pupils 

could observe when the objects were rotated. In this paper I will discuss and analyse 

different ways that the pupils express properties of geometrical objects that in 

scientific terms would be labelled symmetry properties. This discussion will relate to 

challenges involved in linking seemingly different mathematical experiences to one 

common mathematical concept, namely the concept of symmetry. More precisely I 

will formulate the aim of the paper in the following way: Characterise the discourse 

that emerges when pupils investigate various aspects of symmetry, and identify 

epistemological issues involved in the conceptual development process that is 

observed. 

THEORETICAL BACKGROUND 

What is symmetry? 

In mathematical terms symmetry is connected to the concept of isometries. An 

isometry is often defined as a bijective map between two metric spaces that is 

distance preserving (Weisstein, 2010). In particular if both metric spaces are the 
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Euclidian plane and the map operates on points in the plane, two figures are called 

congruent ―if and only if one can be transformed into the other by an isometry‖ 

(Coxeter & Greitzer, 1967, p. 80). In the plane there are four isometries; reflection, 

rotation, translation and glide reflection. The concept of symmetry is usually 

connected to invariance with respect to isometries. A bounded pattern that is 

invariant under certain reflections or rotations is said to have reflectional or 

rotational symmetry. These are the only isometries for bounded patterns but for 

unbounded patterns all four isometries are possible. The ideas of isometries for 

bounded patterns in the plane can easily be extended to 3-space.  

In school geometry the term symmetry is in the early years used almost 

synonymously with reflection, and the work with symmetry is often supported by the 

use of mirrors. However, one is also supposed to work with other isometries in 

school. In the Norwegian National Curriculum it is written under the topic 

Geometry: ―One studies dynamical processes like reflection, rotation and translation‖ 

(Utdanningsdirektoratet, 2006, p. 59, my translation). In light of this, and the 

mathematical discussion of symmetry above, it can be argued that it is desirable that 

pupils should develop a concept of symmetry that includes all the Euclidian 

isometries.  

Concept development 

Concept development in mathematics is in many instances a matter of making 

meaning out of signs. I use the term sign here in the sense of Pierce: ―A sign is a 

thing which serves to convey knowledge of some other thing, which it is said to 

stand for or represent― (Peirce, 1998, p. 13, emphasis in original). A sign could 

therefore be a symbol, a word (written or spoken) or a gesture. In line with Peirce, 

Steinbring emphasises that a sign has two functions, a semiotic function – something 

that stands for something else – and an epistemologic function as the sign contains 

knowledge about that what it stands for (Steinbring, 2005, p. 21). What the sign 

stands for is in Steinbring‘s terms called the object or the reference context. The 

relation between sign and object is illustrated in Steinbring‘s epistemological 

triangle (2005. p. 22), presented in Figure 1. 

 

 

     

 

 

Figure 1. The epistemological triangle 

Object/reference context Sign/ symbol 

Concept 
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This triangle is inspired by the triangle presented by Ogden and Richards 

(1923/1948). They write that ―[b]etween the symbol and the referent there is no 

relevant relation other than the indirect one, which consists in its being used by 

someone to stand for a referent‖ (p. 11, emphasis in original). Using Steinbring‘s 

terms this means that the connection between the sign and the reference context is 

not a priori given but it is determined by epistemological conditions of mathematical 

knowledge and has to be mediated through the mathematical concept. Steinbring 

emphasises that the system illustrated in the epistemological triangle is not a static 

system. It is developing, based on actions by the learner, and interaction between 

teacher and learner(s) (2005, pp. 22-23). Steinbring mentions (2006, p. 136) that one 

can think of triangles connected in a chain to illustrate concept development. This 

has been explicitly used by Farrugia (2007) who uses a chain of triangles (p. 1205) to 

analyse how the concept of multiplication develops from addition of equal groups. 

This linking of triangles into chains can be seen as similar to the concept semiotic 

chains that has been used e.g. by Walkerdine (1988), and also by Presmeg who 

describes them as chains of ‗signifier – signified‘ where ―[t]he new signifier stands 

for all that went before‖ (2002, p. 302). In the context of the epistemological triangle 

this means that the sign/symbol in one triangle can become the object/reference 

context for a different sign/symbol in a new triangle, and this chaining usually leads 

to greater abstraction.  

In this paper I will develop a new way of using Steinbring´s theoretical framework 

where the concept development is seen not as one chain of epistemological triangles 

leading to greater abstraction but instead it is seen as two independently existing 

chains that are merged into one, which then can be developed further. I compare this 

to van Hiele (1986) who, in his description of levels, states that when going to higher 

levels of thinking ―different structures can be coordinated into one new structure, so 

that each of the original structures can be understood as parts of it‖ (p. 52). I propose 

here a way of using Steinbring´s theory to explain a phenomenon that is similar to 

what van Hiele refers to as coordinated structures (p. 52). I will also propose a 

categorisation of signs depending on which of the two chains they belong to. 

THE CLASSROOM SITUATION 

The research was done as part of a project where two mathematics educators 

collaborated with the teachers on a primary school over a period of three years. We 

(the mathematics educators) participated in meetings with the teachers where lessons 

were planned and we also participated in some of the lessons, and in meetings 

afterwards where the lessons were discussed. Our role in the lessons varied, from 

being a passive observer to taking an active part in the teaching of the pupils. The 

episodes reported on in this paper took place towards the end of the three-year 

period. 
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The first episode is taken from a lesson with 8-year-old children (3
rd

 grade, in 

December) where I planned a number of different activities in which the concept 

symmetry (i.e. reflection) was central. The activities were set up on different tables in 

a large classroom and the pupils, working in groups of four-five, moved from one 

activity to the other. I followed one of the groups and video recorded their work. One 

teacher was supervising each activity. The second episode took place in the same 

class on the following day. Here the pupils worked with plastic shapes that could be 

built together to form 3D-objects. The pupils were allowed to use the plastic shapes 

freely to build whatever they wanted but I engaged in conversations with them about 

the objects where I tried to draw attention to geometrical concepts and start a 

discussion about these. The episode involves two of the girls that also were on the 

group I followed in episode 1. The episode developed from an utterance from one of 

the girls, which I found interesting and which led to a conversation where the pupils 

and I inquire into the properties of some of the objects that have been constructed. 

The conversation following the utterance that caught my interest was video recorded 

but not the situation leading to the utterance itself. The dialogue is analysed using the 

epistemological triangle as a tool to gain insight into the conceptual development of 

the pupils.  

Episode 1 

In one of the tasks in the lesson the pupils were given a large sheet of paper on which 

a straight line was drawn, and a selection of different plastic shapes. The task was to 

use the shapes to make a picture symmetric about the drawn line. Harry chooses to 

make his picture by placing pairs of equal shapes on each side of the given line, such 

that they touch the line. Eileen suggests another way of doing it by making the 

picture shown in Figure 2, where the shapes do not touch the line. She says ―then we 

know that there is one like this in between‖. When asked to explain what she means 

by this she takes another square which she places on top of the line with one half on 

each side (Figure 3). Then she says: ―This I just take away and then I know that it is 

the same length between‖. I interpret that she by ―the same length‖ here refers to that 

the distance from the given line to the two squares is the same. Hence, she links 

symmetry to distance.  

 

 

 

 

 Figure 2     Figure 3 



Working Group 9 

CERME 7 (2011) 1370 

 

Another task was based on the figure shown in Figure 4. The task was to colour the 

petals of this ―flower‖ (the petals are numbered for the purpose of this paper) to get a 

symmetric picture. The pupils had mirrors available, which they 

could use as a tool. Eileen first colours petals 1 and 4 purple. 

While doing that she says ―It is these two, because it is the one 

right across.‖ She uses the mirror to check and she says: ―If I place 

the mirror here, then it must be the one right across.‖ 

 

     Figure 4 

She repeats the words ―right across‖ several times and the 

result is that she colours petals 2 and 5 yellow and finally 3 

and 6 blue. The result is shown in Figure 5. After having 

completed the pictures she places the mirror in various 

positions and inspects the image in the mirror. In one 

position she observes that ―this is blue [both in the mirror 

and on the paper], so this is correct‖. However, she is 

puzzled by the other colours, and remarks that ―something  

Figure 5 

is strange‖. She realises, after several attempts, that no matter how she  

positions the mirror, she will not see the same picture in the mirror as on the paper. 

She can find a position where the blue is right, and the others are not, and similarly 

for the yellow and the purple. Holly is sitting beside Eileen and she has made a 

picture based on the same principles as Eileen. Holly makes the same observation as 

Eileen, that there is no position for the mirror where the picture in the mirror equals 

the picture on the paper. Holly finds a solution by stating ―these two [petals] must 

swap places‖. While saying this she points to two petals with different colours. 

Eileen follows Holly‘s solution and starts ―recolouring‖ the picture (Figure 5) so that 

one of the yellow petals is coloured blue and one of the blue petals is coloured 

yellow. The areas between the petals are recoloured in a similar way.  

The two tasks described here are different in terms of what is varying and what is 

fixed. In the first task the reflection axis is fixed and the shapes can be chosen and 

placed freely. In this case both Eileen and Harry choose figures equal in shape and 

colour, which they place on either side of the axis. Eileen also expresses something 

about equal distance. In the second task the underlying structure of the picture is 

given, only the colours can be varied. In this context Eileen first considers pairs of 

petals independently and colours each pair such that the petals ―right across‖ get the 

same colour. When the three pairs have been coloured she is able to see the figure as 

a whole. Then she observes that something is not right, and by using the mirror she 

corrects her first solution.  

4

1

2
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6
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In these tasks the word symmetry was actively used, and with the understanding that 

it meant reflection, so I will argue that what I can see from this episode are various 

ways the concept reflection mediates between different signs and different reference 

contexts. A common feature in all reference contexts was the mirror which was 

available as a tool. Signs that can be observed for these reference contexts include 

―equal distance‖ and ―right across‖.  

Episode 2 

In this episode Eileen and Holly have built a tetrahedron and a square pyramid. I ask 

them to describe the difference between the two objects and Holly says, pointing to 

the tetrahedron: ―This looks the same if I tilt it but this [the pyramid] doesn‘t‖. 

Following this I initiate a conversation with the girls about the objects they have 

constructed. An octahedron and an icosahedron also become part of the conversation. 

The conversation is centred around words like ―tilting‖ and ―spinning‖ and to what 

extent the objects look the same when these operations are performed. Eileen holds 

the octahedron and looks at it in various positions. Then she says: ―This will be the 

same always. No, it won‘t – not always. Now it is with the tip towards me. And if I 

place it like this, it is like this‖. She shows with her hands where the tips point in the 

various positions. Later the girls compare the tetrahedron and the pyramid and Eileen 

says that they are ―almost equal‖. When asked why they are only almost equal she 

says that ―there are four here, and here there are only three‖ which I interpret to mean 

the number of triangles meeting at a corner. Holly repeats her initial observation 

concerning the tetrahedron: ―And this one is possible to turn around without seeing 

any difference‖.  

At this stage the conversation makes an unexpected turn when I, for the first time in 

this episode, introduce the word ―symmetry‖. The following dialogue takes place.  

Frode: How about symmetries on this one? [Referring to the pyramid] 

Holly: [places her hand like a vertical plane] 

Eileen: It is possible to place it there. [also showing with her hand. See Figure 
6] 

Holly: It is possible to place it there. It is possible to place it everywhere. 
If I take … If I take it from there .. that is also possible. 

Frode: Mmm. But does it, … if I, if I turn it around like this [rotating 90 
degrees], does it look the same now, for each time I rotate it?  

Holly: For each time you rotate like this, yes, but not if you had rotated like 
this. [rotating 45 degrees. See Figure 7] 
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  Figure 6      Figure 7 

Afterwards the rotation of both the octahedron and the icosahedron is discussed and 

Eileen shows among other things how the octahedron can be rotated 90 degrees and 

she compares it to a spinning wheel.  

The important observation to be made here is that the introduction of the word 

‗symmetry‘ immediately leads to a shift in the discourse. The girls stop talking about 

rotation and both of them introduce an imaginary mirror, indicated by their hands as 

shown in Figure 6. Shortly afterwards they go back to rotation as soon as I use that 

word again and their gestures adjust to this context (Figure 7).  

ANALYSIS OF THE EPISODES  

The most striking observation in Episode 2 is the impact that the introduction of the 

word symmetry has on the development of the conversation. When I ask about 

symmetries, the pupils link to the reference context mirror. When I later ask about 

turning and start rotating the object they immediately switch back to the discourse 

about rotation and give examples of possible and impossible rotations. The criteria 

for possible rotations that are applied are based on what can be done in order to keep 

the visual appearance of the object the same. Investigating the various objects the 

pupils physically move the objects to illustrate positions where they look the same 

and where they do not look the same, when seen from the same angle. The signs that 

are used by the pupils are turn, spin, tilt, move and I also use the word rotate. These 

signs are used to describe a reference context, which is about rotating the objects in 

3D-space and identifying positions where the visual appearance is the same. In 

mathematical terms the pupils are distinguishing between operations that belong to 

the rotational symmetry group of the object and operations that do not belong to this 

group.  

In the discourse involving the mirror, and invoked by using the sign (word) 

symmetries, the criteria for what is possible are based on where the mirror can be 

placed. The pupils use their hands as an imaginary mirror, place their hands in 

various positions, and say ―it is possible to place it here, it is possible to place it 

there‖. This can be seen as an exact parallel to what the same two pupils did with the 

star pattern in Episode 1 where they worked with a real mirror. In Episode 1 the 
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mirror was placed in different positions and they judged positions as possible or 

impossible based on the properties of the pattern. When there were no possible 

positions for the mirror the pattern had to be changed.  

Based on these observations I will propose a classification of the signs that are used 

in two groups. In the symmetry discourse the signs describe properties that the object 

has or has not. The object may acquire the property if suitable changes are done to it 

but in a given state it either has or has not the property in question. I denote the signs 

in this category static signs. In the rotation discourse the signs describe actions that 

can or cannot be performed on the object. I denote these signs dynamic signs. 

Table 1 shows examples of signs from the two categories that can be found in the 

investigated episodes.  

Static signs Dynamic signs 

There is one like this in between 

Same length between 

It is the one right across 

This is blue, so this is correct 

These two must swap places 

It is possible to place it there 

This looks the same if I tilt it 

This will be the same always 

For each time you rotate like this 

But not if you had rotated like this 

Table 1 

DISCUSSION 

The concept of isometry, containing the four operations reflection, rotation, 

translation and glide reflection, is constructed such that the set of isometries for a 

given pattern forms a group, hence the set should be closed under compositions 

(Armstrong, 1988). It is therefore possible to define the isometry concept in 

completely abstract terms without the need of a reference context. However, the 

reference context has a role as a motivation for the concept. The concept ―needs this 

‗reference context‘ as an ‗exemplary embodiment‘ of a structure or a relation‖ 

(Steinbring, 2006, p. 139). All reference contexts that are described in the episodes 

in this paper could have the role as ―exemplary embodiments‖ for the concept 

isometry, or symmetry, as would be the term (sign) most naturally used in a school 

setting. However, the sign symmetry is by the pupils only connected to some of the 

reference contexts. The situation here is similar to what has been described by 

Nührenbôrger and Steinbring when they observe divergent constraints between the 

theoretical nature of mathematical knowledge in the construction processes and the 

need for each individual learner to construct his/her own understanding of the 

mathematical knowledge (2009, p. 112). The word symmetry is in everyday language 

used to denote reflection. When one says that something is symmetrical it is 

implicitly understood that reflection symmetry is meant. When symmetry is 

introduced in school it is also common that the first activities that the pupils are 

exposed to are about reflection symmetry. This tradition was kept in the lessons 
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reported on here, as can be seen from Episode 1. The epistemological structure that 

has been established through these activities could then be described by an 

epistemological triangle with different signs (of a static character) and different 

―mirror activities‖ as the reference contexts and the concept that mediates between 

sign and reference context I call reflection. Similarly an epistemological structure 

called rotation could be described using the dynamic signs and their corresponding 

reference contexts.   

When symmetry is used to denote congruence transformations in general all the 

activities reported in the episodes have to do with symmetry, and what is presented is 

a variety of signs and reference contexts connected to this concept. An 

epistemological triangle covering these episodes could therefore be constructed in 

this way (Figure 8). Here I have inserted typical examples of signs that occur in the 

episodes. 
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Figure 9 

However, for the pupils the signs in Figure 8 belong to two different epistemological 

triangles, one for the static signs and one for the dynamic signs. In order to develop 

the general concept of isometry these epistemological triangles have to be merged 

into one. This triangle could further be linked to new triangles leading to further 
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abstraction where eventually the sign D4 (dihedral group, see e.g. Armstrong, 1988) 

could be a sign used for the square pyramid as a reference context, where the 

mediating concept is the symmetry group of the pyramid. It is important to note that 

there is not one chain leading to an abstract sign for isometry (D4) but a branched 

chain where at some point two different signs have to take the role as the reference 

context for the same (new) sign (see Figure 9).  
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LANGUAGE AS A SHAPING IDENTITY TOOL: THE CASE OF IN-

SERVICE GREEK TEACHERS 
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The paper presents a part of a study that focuses on the analysis of various teachers‘ 

identities. The teachers participated in an in-service training course and their 

narratives were used and complemented by other data to construct – from our point 

of view – the various identities. Characteristic examples are presented in order to 

show that the notion of identity as narrative can be more operational than the 

traditional ‗beliefs and attitudes‘ approach, since it may overcome the obstacles 

related to that approach. 

Keywords: identity, teacher training, narrative 

INTRODUCTION 

Teaching mathematics and mathematics itself can be both considered as 

communicational activities, which would not be made possible without language. In 

fact, for some researchers mathematics by itself is a language (e.g. Usiskin, 1996). 

However, regardless of the acceptance of that ‗radical‘ view, it is widely accepted 

that the way language is used in any setting – including classrooms – may affect the 

establishment of a community of learners (Wenger, 1998) and shape or constitute the 

participants‘ identities (Sfard & Prusak, 2005). This last view was the trigger of the 

study presented here. The main aim was to relate teachers‘ narratives with their 

participation in a training course. Our interest was not theory-driven; given the large 

number of studies on teachers‘ beliefs (e.g. Chamberlin, 2010; Cooney & Shealy, 

1997; Franke et al., 1998; Leder, Pehkonen & Tôrner, 2002), we wanted to see if the 

notion of identity can be more useful (i.e. operational) in teacher training and what 

narratives would be related to the various identities. 

THEORETICAL FRAMEWORK 

As mentioned earlier, the literature in teachers‘ and students‘ beliefs concerning 

Mathematics is vast and evolving. An important and common conclusion is that 

teachers‘ beliefs and their practice are related. It is interesting however, what 

Warfield, Wood and Lehman (2005) note: 

… the relationship between teachers‘ beliefs and their instruction is not as direct as 

sometimes thought. Beliefs do not necessarily form a cohesive unit; it is not unusual for 

an individual to hold contradictory beliefs making it difficult to determine how particular 

beliefs influence instruction (Pajares, 1992; Pearson, 1985). (p. 442) 

The idea that beliefs may not form a cohesive unit is indicative of the weaknesses of 

the particular approach. In our search for a theoretical and analytical tool to better 
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understand the hows and the whys in teachers‘ behaviour, we realized that the 

concepts of belief and attitude were not operational in Blumer‘s (1969) sense. Sfard 

and Prusak (2005) claim that ―the assumption that an intention (or tendency) exists in 

some unspecified ―pure‖ form independently of, and prior to, a human action was a 

dubious base for any empirical study‖ (p. 15). To put it simply, some researchers 

assumed that beliefs are located somewhere ―inside‖ – or ―outside‖ – the person and 

they can be merely expressed by language or other non-verbal actions; this justifies 

the extended use of questionnaires and interviews. But what if a person holds 

conflicting beliefs? How can we explain the fact that although teachers are not 

pleased with their practice they usually resist to reforms? The notion of identity as a 

narrative may be used to overcome such obstacles and to provide us direct access to 

the teaching and learning process. Sfard and Prusak (2005) differentiate between: 

... actual identity, consisting of stories about the actual state of affairs, and designated 

identity, consisting of narratives presenting a state of affairs which, for one reason or 

another, is expected to be the case, if not now, then in the future. (p. 18) 

Consequently, by seeing learning as the way to close ―the gap between actual and 

designated identities‖ (Sfard & Prusak, 2005, p. 19) we can operationalise the notion 

of identity, i.e. use it as a tool to explain our teachers‘ practices in training and 

eventually teaching. The way this was done in our study is shown in the next section. 

CONTEXT AND METHODOLOGY 

Fifty five in-service teachers (35 female and 20 male) had enrolled in the obligatory 

course named ―Didactics of Mathematics‖, which is placed in the second – and last – 

year of their training. In order to participate in the training course they had to meet 

two requirements: over five years (and less than 25 years) of teaching in schools and 

passing a national exam. The duration of ―Didactics of Mathematics‖ was one 

semester (three hours weekly). These teachers had little – if any – experience with 

enquiry classroom approaches (Cobb & Bauersfeld, 1995) or realistic mathematics 

(De Lange, 1999; Freudenthal, 1978), although most of them expressed their 

willingness to be informed about them. 

The study was based on the assumption that teachers‘ identities (actual and 

designated) may account for their choices concerning their teaching practice.
1
 The 

following types of data were on our disposal: 

(a) transcribed discussions and notes taken during the course, 

(b) notes made after the sessions, based on our recollection of events that occurred 

before, during or after the sessions, 

(c) teachers‘ handwritten texts taken during sessions, 

(d) teachers‘ texts produced as part of their assessment. 
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We initially assumed that our main source of data would be (a) and (b), while (c) and 

(d) could be used complementarily. Soon we realised that (c) and especially (d) were 

a reliable source of teachers‘ designated identities, although sometimes the relation 

was implicit. In the present paper, however, we focus only on data (a) and (b), in 

order to demonstrate the flow of our research. Following Sfard and Prusak‘s (2005) 

categorisation, three types of identifying stories may be used: 

AAC = an identifying story told by the identified person herself. This story we call A‘s 

first-person identity (1st P). 

BAA = an identifying story told to the identified person. This story we call A‘s second-

person identity (2nd P). 

BAC = a story about A told by a third party to a third party. This story we call A‘s third-

person identity (3rd P). (p. 17) 

Our main aim was to use the above data to identify – from the researcher‘s point of 

view – the teachers‘ emerging identities. Our analysis was guided by the following 

principles: 

a) The teachers‘ identities came from our interpretations of the data at hand. 

b) No predetermined categories were used or invented for the identities, thus all 

titles used from now on were put after the analysis. 

c) The data did not come from our explicit request to the teachers to talk about 

themselves (or somebody else), but are selected from fragments when a person 

is explicitly or implicitly referring to herself or somebody else.
2
 

d) Since it was impossible to obtain all types of data (e.g. 1st P, 2nd P and 3rd P 

stories) about all participants our analysis is far from providing a ‗complete‘ 

account of all identities – if such an account can ever exist. 

e) The fact that the teachers knew that they are assessed by their participation 

(which included many assignments and a final one that was given to them 

three weeks before the end of the course) is taken as a contextual element 

(thus, it cannot be isolated in order to study its effect). 

The analytical scheme is summarised in Table 1, where (a), (b), (c) and (d) stand for 

the types of data mentioned before. As shown in Table 1 we were interested in actual 

and in designated identities. According to Sfard and Prusak (2005) ―Designated 

identities give direction to one‘s actions and influence one‘s deeds to a great extent, 

sometimes in ways that escape any rationalization‖. (p. 18) 

 Data types Story types Formulations 

Actual Identity  (a) (b) (c) (d) AAC BAA BAC Assertion  

Designated Identity (a) (b) (c) (d) AAC BAA BAC Wish, commitment, 

obligation, necessity 

Table 1: Methodological scheme 
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For brevity reasons, we have chosen particular examples to demonstrate our analysis. 

These examples are not supposed to reflect by any means a ‗general trend‘ among the 

teachers; they rather represent some of the most characteristic identities that emerged 

during the training course. 

RESULTS OF THE STUDY – EXAMPLES OF TEACHERS‘ IDENTITIES 

Most teachers participated actively in the training course, which seemed a good 

opportunity for them to: 

a) familiarise themselves with group work and contemporary approaches in 

mathematics education, and 

b) express their views on (their) teaching as a complex and demanding task. 

It is obvious that the teachers‘ identities were highly related to their occupational 

demands. This is not to say that there were not any narratives related to other aspects 

of their lives; however, these were significantly few, appeared rarely and most of the 

times not during the session hours. This is totally justifiable by the context of the 

situation: the teachers participated in a training course provided by an instructor they 

had never seen before, thus they were reluctant to talk about other things than their 

work. Next we present some characteristic identities that we have encountered. 

The politically-active teacher identity 

The excerpt that follows is taken from a task that the teachers were asked to work on 

and comment. The task started by showing the advertisements of the three major 

Greek mobile telecommunication companies; their common element was the focus 

on the ‗population coverage‘ which ―is over 99%‖ or ―touches 100%‖. The focus 

from a teaching point of view was intended to be the use and misuse of percentages, 

together with the notion of limit. But once the task was presented a teacher reacted 

and the following discussion took place between him, another colleague and the 

instructor (and author of the paper). Our notes are in brackets, where we also put a 

code to signify the type of story told: 

Teacher A: I am sorry [for the interruption], but I believe that you [the instructor and at 

the same time designer of the task] shouldn‘t use the companies‘ names in 

this task. [BAA] 

Instructor: Why? 

Teacher A: Because it‘s like ‗pushing‘ the students to buy or use a mobile phone from 

these companies. [BAA] 

Teacher B: But there are no other companies in Greece! 

Teacher A: Yeah, but it‘s still like hidden advertisement! These tasks shouldn‘t be in the 

textbooks... 
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Instructor: But the names [of the companies] are there because they are taken from real 

advertisements. I didn‘t want to delete the names, or put something like: 

―Company A‖ and ―Company B‖. [AAC] 

Teacher A: ... and it reminds me of some other tasks with hidden advertisements – but I 

don‘t remember now. Anyway, it‘s a pity that the whole educational system 

is working with market rules. I believe that in a while companies will take 

over schools. [BAC] And we [teachers] will be just their employees... I can 

see it coming. [AAC] 

Some teachers showed their agreement with Teacher A‘s remarks; others said things 

like: ―Come on, don‘t be so stuck with your politics!‖. So, he continued by saying: 

Yeah, yeah... You know what? I will never agree to such kind of policies! [AAC] 

Later on, during the break we had the chance to discuss a bit on his views on 

teaching and the current situation in Greek educational system. His main point was 

that teachers were trying hard to overcome their financial problems (due to their low 

salary) but the government does nothing to assist them. Actually, according to him 

every reform is to the wrong direction: 

And every now and then they [the government] come up with a new big plan. And 

they‘ve never been in a real classroom, [BAC] where I have to teach 25 to 30 

students. [AAC] And some of them [children of immigrants who sometimes 

do not have the chance to attend extra Greek language courses] don‘t even 

speak Greek! [BAC] And what do I do? [AAC] Did you hear the story about 

that teacher who was giving extra-school Greek language lessons to 

children? She got herself into real trouble! [BAC] That‘s why we need to 

support each other! [AAC] 

The previous transcripts are rich in the actual and designated identities involved. 

And actually, one can find data not only for teachers‘ identities, but also for the 

identities of the instructor and the policy maker(s). By focusing on Teacher A we can 

firstly locate the utterances which are directly related to his identity:  

Actual identity: 

 where I have to teach 25 to 30 students. [AAC] And what do I do? [AAC] 

Designated identity: 

 And we [teachers] will be just their employees... I can see it coming. [AAC] 

 Yeah, yeah... You know what? I will never agree to such kind of policies! 

[AAC] 

 That‘s why we need to support each other! [AAC] 

From the above it is obvious that Teacher A‘s identity does not comprise of only the 

above short narratives, but should be enriched by his narratives about the other 

participants. Thus, we may conclude that this identity includes narratives about 
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teachers who feel on the one hand helpless in their own classrooms and on the other 

hand threatened by the reforms who – according to them – are driven by ‗market‘ 

criteria (e.g. of competitiveness or productivity). This usually leads them to organise 

themselves around politically-oriented syndicates, which are most of the times 

sceptical to any reform movement.  

The intelligent teacher identity 

There was only one teacher‘s narratives related with the particular identity – we will 

name him Teacher C. In the second session of the course this teacher – who was 

always sitting alone in the first line of desks – invited me to visit his personal 

website. It turned out that the site was part of the Mensa members, i.e. the people 

whose IQ was measured within the upper 2% of the general population. Thus, the 

first narrative of that teacher already had a title – ―Mensa member‖ – and some 

electronic content (mainly ‗artistic‘ landscape pictures shot by him). During a break 

of the third session we talked about the site and he was eager to talk about his main 

interest, photography: 

I hope you enjoyed it. It‘s my big passion [photography]. Sometimes it takes me hours to 

get a proper shot. I prefer shooting landscapes. [AAC] 

During all sessions he showed great interest in all tasks, especially those that 

included non-standard solution paths. Usually, he was the first that completed the 

task; this fact irritated some of his colleagues: 

Teacher D: Come on, you always finish first! Give us some time too! [BAA] 

Teacher C: I never asked you to hurry up! [AAC] 

Instructor: It‘s okay, you have as much time as you need. 

Teacher E: Yeah, because he is so intelligent he thinks we‘re all the same! [BAC] 

Instructor: Please... 

Teacher C: Come on, colleague...   

At the end of the course he was one of the few who came individually to express his 

gratitude for the organisation and the realisation of the course and his views on 

teaching:  

I think we should take advantage of all opportunities for training. And our teaching 

should not be based on the ‗average student‘, but on each person‘s 

characteristics, which make him unique. [AAC] Something which is not easy 

at all. And you also have the head of the school who puts pressure on you... 

[AAC] [BAC] 

Until the present moment he keeps sending informative emails about his new 

collections of photographs. However, it is worth mentioning that his final assignment 

was far from showing signs of uniqueness or originality (Tatsis, in press). The above 

transcripts can be categorised as follows: 
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Actual identity: 

 It‘s my big passion [photography]. Sometimes it takes me hours to get a proper 

shot. I prefer shooting landscapes. [AAC] 

 Come on, you always finish first! Give us some time too! [BAA] 

 I never asked you to hurry up! [AAC] 

 Yeah, because he is so intelligent he thinks we‘re all the same! [BAC] 

 And you also have the head of the school who puts pressure on you... [AAC] 

Designated identity: 

 I think we should take advantage of all opportunities for training. And our 

teaching should not be based on the ‗average student‘, but on each person‘s 

characteristics, which make him unique. [AAC] 

The intelligent teacher identity is comprised of two components, stories of the 1st P 

type and stories of the 2nd and 3rd P types. The 1st P stories talk about a teacher who 

has more interests than teaching (in our case photography) and seems to be aware of 

the fact that his abilities should not raise a barrier between him and the his 

colleagues. Actually, he was participating in all discussions, trying – like all the rest 

– to express his view and eventually convince the other participants. His view on the 

teacher‘s positioning between policy makers, school authorities, parents and students 

was not much different than the one presented before: the teacher is most of the time 

helpless when s/he has to confront most classroom and out-of-classroom problems. 

Other teacher identities 

Other identities that have emerged include the insecure teacher identity (in two 

different manifestations) and the passive teacher identity (expressed as an 

indifference to participation). 

The insecure teacher identity in the first manifestation comprised of short narratives 

on the teacher‘s inability to cope with mathematical tasks; there was no explicit 

attempt to justify this fact, only continuous requests for clarification concerning the 

tasks contained in the session. The teachers related to this identity relied highly on 

the instructor‘s expertise to evaluate their work and they rarely showed any initiative 

during group work. However, they seemed to be working hardly with their 

colleagues, always striving to deliver their work on time. 

The insecure teacher identity in the second manifestation comprised of teachers‘ 

narratives on their insecurity and how it is justified on the grounds of improper 

mathematical background. These narratives included stories about a mathematics 

teacher who – in a certain moment of their school life – halted their learning of 

mathematics by his attitude towards teaching and towards ―those who were not so 

good in maths‖ (according to a female teacher who was explaining her attitude 
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during a whole group discussion. The teachers related to such narratives usually 

delivered poor assignments and always asked for more ‗loose‘ assessment. 

The passive teacher identity was manifested as an indifference to active and 

meaningful participation; in other words, those teachers were usually more interested 

in the deadline for the next assignment than its content. Some of them arrived late for 

the session or even asked to leave earlier. There was one teacher who asked to 

deliver an assignment in handwritten form, because she doesn‘t have a PC at home 

and she doesn‘t have time to work in the PC laboratory that was available to them 

(note that all teachers in the particular course had already at least one course in new 

technologies). Most of them were asking for extending the deadline for giving the 

assignment, because they were busy (although during the training course they are 

free from their teaching duties). Most of their narratives were focused on their 

difficulty in managing all factors of the Greek educational system. Some narratives 

were focused on particular issues, like the new textbooks: 

Teacher F: Especially the 5th grade book is so hard. You know, they [the authors] have 

put so hard maths in it! And it‘s so dense! Children don‘t understand what 

I‘m talking about! For example, once we were dealing with decimals and I 

had to go over and over again the same chapter... [AAC] 

Teacher G: Yeah, and the 6th grade book is also hard... 

Teacher H: The previous ones were better... 

CONCLUSIONS 

By observing and analysing the teachers‘ identities we have found some 

commonalities, which may be attributed to their common experiences gathered from 

years of teaching in the Greek schools – and from years of practice in the Greek 

educational system. One such commonality is the ‗resistance‘ expressed by most 

teachers to employ any ‗novel‘ approaches, which is related to an actual identity-

narrative of a ‗helpless‘ teacher caught between the various forces that are active in 

the system classroom-school-society. These narratives were complemented with 

narratives about policy makers (eventually personalised in the face of the ministers 

of education or university professors holding decision-making governmental 

positions). At the same time, these teachers sometimes used their teaching experience 

to justify their insistence on ‗traditional‘ teaching approaches or to criticize the new 

textbooks – which proved to be one of their favourite and most provocative topics of 

discussion. 

Concerning our methodological scheme, which was based on Sfard and Prusak‘s 

(2005) approach, we realised that in order to efficiently describe teachers‘ identities 

we need first, second and third person narratives, together with other elements 

related to their participation in a community of learners (in our case the community 

of the training course), e.g. their willingness to adhere to the norms established. 
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Few teachers‘ narratives included elements from their out-of-school life; these were 

related to their hobbies or to general topics related to politics or current significant 

events. 

Some teachers‘ designated identities-narratives included statements like ―I hope that 

my (teaching) practice will be improved once I get back to school‖, but it was 

obvious that they were mostly interested in making their teaching effective but at the 

same time easier, i.e. without conflicts (e.g. with parents or the school principle), 

tensions (e.g. related to classroom management issues). This was apparent in their 

participation and their work, which sometimes could not move beyond what has been 

discussed or suggested during the session.
3
 This is not in line with the view that 

learning should pose challenges to the learner in order to stimulate his/her interest. 

Finally, returning to our initial aim, the notion of identity as a narrative seems more 

operational for the purpose of analysing teachers‘ participation in a learning process. 

The sources of these narratives can vary from verbal interactions to written 

assignments; the more varied the spectrum of data, the closer the researcher can get 

in the actual and designated identities of any participant.  

NOTES 

1. When we talk about teachers‘ practices or behaviours we refer to them as either observed by the researcher or 

expressed in teachers‘ narratives about them. 

2. This is the major difference between our approach and Sfard and Prusak‘s (2005) approach. 

3. The content of the teachers‘ work is not the focus of the present paper. What can be noted is that sometimes when the 

teachers were asked to design tasks for their classrooms they merely reproduced (by slightly changing the data) the tasks 

that were given to them during the sessions. 
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SCOPE AND FOCUS 

Working Group 10 discussed research that addresses how diversity influences 

possibilities for practice in mathematics education. The three elements highlighted 

within the group were as follows. By diversity we understand that students, teachers, 

parents and many other participants in mathematics education, as well as the contexts 

where mathematics education takes place, are becoming more complex and varied. 

Diversity might be expressed in terms such as gender, ethnicity, culture, language, 

social and socio-economic status, disability, qualification, life opportunities, 

aspirations and career possibilities, etc. Contexts are diverse in terms of the variety 

of sites where mathematics education takes place, and the differences in the 

organization and structure of practice in such contexts—schools, homes, workplaces, 

etc. By possibilities of practice we understand that, in most concrete situations of 

mathematics education, the multiple diversities mentioned above intersect, posing 

challenges to actual learning and teaching practices, as well as to their improvement. 

Finally, when talking about research, we focus our understanding on the systematic 

reflection, of either empirical or theoretical ways in which diversity affects 

possibilities of mathematics education practice. 

We were particularly interested in theoretical, methodological, empirical or 

developmental papers focusing on the social, cultural and political challenges/issues 

of mathematics education. The enlarged focus of the group (in relation to previous 

CERMEs) meant that cultural diversity was only one of the possible focuses for the 

current conference. Thus our appeal was also directed towards researchers who work 

with sociological, anthropological, discursive, political and philosophical 

perspectives to read mathematics education practices. We accepted for presentation 

and publication fifteen papers and four posters. The array of themes, methodologies 

and theoretical frameworks was diverse, which allowed a rich discussion among the 

participants. 

THE PAPERS DISCUSSED 

Some of the papers attempted a reconceptualisation of some of the core notions that 

underpin much of the research in mathematics education, particularly in issues 

concerning the social, cultural and political dimensions of mathematics education. 

Tine Wedege articulated Ole Skovsmose‘s notion of foreground to Pierre Bourdieu‘s 

theory of habitus. Annica Anderson and Eva Nñren proposed to articulate the work 

of Pierre Bourdieu and Gert Biesta to current research in mathematics education, 
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namely by exploring the notion of agency. Annica Andersson also took on the notion 

of agency to discuss an analytical framework for understanding interplays between 

contexts and students‘ agency. David Kollosche invited us to posit mathematics and 

its education in the social arena, where school mathematical practices can be 

associated with processes of alienation. Charoula Stathopoulou, Karen François and 

Darlinda Moreira made a critical review of the way European researchers are dealing 

with the insights coming from ethnomathematics. Troels Lange and Tamsin Meany, 

examining the discourse around national testing in Australia, showed how discourses 

and practices outside schools pose severe restrictions to the teaching and learning of 

mathematics. These papers were essays with theoretical discussions addressing 

central dimensions connected to the relationship between society, politics and 

mathematics education. 

Papers involving empirical work enabled the participants to reflect about different 

national realities regarding the teaching and learning of mathematics in relation to 

cultural, social and political issues. Uwe Gellert and Hauke Straehler-Pohl, in a 

German context, discussed innovative ways to address issues of differential access to 

powerful mathematics knowledge. Nöria Gorgoriñ and Montserrat Prat, in a Spanish 

context, addressed the impact of teachers‘ social representations on the immigrant 

students‘ learning of mathematics and their identity. Andualem Tamiru 

Gebremichael, Simon Goodchild and Olav Nygaard showed students‘ perceptions 

about the relevance of mathematics in Ethiopia. Behiye Ubuz discussed the current 

status and future pathways for doctoral programs in mathematics education in 

Turkey, and how these programs contribute to a diversity of views on what counts as 

mathematics education research in this country. Richard Barwell and Cristine 

Suurtamm show how, in a Canadian context, it is possible to articulate important 

current social concerns (in this case, climate change) with the teaching and learning 

of mathematics. 

We also had a cluster of papers addressing the relationship between school 

mathematics and out–of–school mathematics. Toril Rangnes explored the 

collaboration between school and a building company regarding mathematics 

learning conversations among 8
th

 grade pupils. Javier Díez-Palomar and Sandra 

Torras-Ortín analysed the process of attribution regarding the relationship between 

school and family mathematics. Sarah Crafter and Guida de Abreu examined how 

teachers make sense of embedded everyday mathematics at home in relation to 

parents‘ practices. Richard Newton and Guida de Abreu, in a similar way, discussed 

parent and child interaction when completing primary school-style mathematics. 

These papers addressed the issues of transitions between different contexts of 

practice when a diverse set of participants meet in various sites of mathematics 

education. We also had four posters for presentation. Joana Latas and Darlinda 

Moreira described an ethnomathematical approach in a regular public Portuguese 

school. Petra Sevensson addressed students‘ foregrounds and rationales for the 
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learning of mathematics. Javier Díez-Palomar and Sandra Torras-Ortín described the 

research project FAMA, which seeks to relate family mathematics with adult 

education. Finally, Ana Mesquita addressed issues of parental involvement in 

children‘s mathematical achievement.  

DIVERSITY AND THEORETICAL PERSPECTIVES 

In order to deal with the diversity of papers, the group felt the need to  recurrently 

discuss some core notions that underpin the research presented. Some of these 

notions are agency, identity, and the complex relation between the individual learner 

and his/her social environment. This discussion was enriched by the diversity of 

theories deployed by the participants in their research. Most of these frameworks 

come from fields such as contemporary philosophy, sociology, anthropology and 

cultural psychology. The group were challenged by different terminologies used by 

the participants in their research and an attempt was made not to unify them, but to 

find a common ground where different notions were enacted in a clear way. There 

was agreement on the idea that, rather than a fixed and unified understanding of a 

notion, we should highlight the differences and the common points of each one. The 

need for further efforts concerning the theoretical and philosophical strengthening of 

the core notions we use in our work was enhanced by the variety of disciplinary 

backgrounds represented in the group participants.  

ORGANIZATION AND FUTURE 

The leading team chose a different way of organizing the presentation of papers  this 

year. Instead of having the author of the paper presenting his or her own work, we 

decided that the presentation of one‘s papers would be done by another author, who 

had 5 minutes to briefly present the paper and raise some initial questions to 

motivate the next 25 minutes of discussion. This strategy proved to be a productive 

way of organizing the sessions, and all participants agreed that the discussion which 

followed went further than if the own author had presented his or her paper. It also 

encouraged more in-depth reading of the papers in the group. 

In the final session the group discussed its ‗spirit‘ and role in CERME. There was 

consensus that this working group provides a forum for delegates to present research 

addressing less mainstream concerns of relevance for understanding the social, 

cultural and political constitution of mathematics education practices. The broader 

theoretical frameworks to study mathematics education practices, focusing on their 

political, cultural and sociological dimensions, were another trend that united the 

diversity of papers. Diversity was understood in the wider sense of diverse theories 

and methodologies, but also diversity of concerns and practices that become visible 

when we displace mathematics education from the classroom, the framework where 

we usually conceptualize it in, to a multiplicity of contexts where it is being 

practiced and made sense of. This way, diversity has the power to ‗estrange‘ us to the 

self-evidence of mathematics education as an established field of research.  
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In this paper we elaborate on the notion of agency. We relate agency to Skovsmose‘s  

and Biesta‘s frameworks respectively. Both Skovsmose and Biesta are concerned 

with citizenship education, mathematics education and the purpose of education 

from a critical position. We explore if and how Skovsmose‘s and Biesta´s 

frameworks respectively relate to agency.  
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INTRODUCTION 

The purpose of this paper is twofold, to widen our understanding of different 

approaches to the notion of agency in relation to mathematics education, and to 

explore the compability of Skovsmose‘s and Biesta´s frameworks respectively in 

relation to agency and to each other (Wedege, 2010). As a starting point we 

understand agency in a dialectic relationship to structure (Roth, 2007) and as a 

dynamic feature
42

 of human beings to act independently and to make choices. 

Sometimes the choices are conscious; however at some times we act as agents not 

being aware of our options (Cohen, 1994). Agency is not just individual; it is 

exercised within social practises. As Holland, Lachicotte, Skinner, & Cain (2003) put 

it: ―Agency lies in the improvisations that people create in response to particular 

situations‖ (p. 279).  

In this paper firstly we investigate the notion of agency in relation to earlier research 

addressing agency in mathematics education. We thereafter relate agency to 

Skovsmose‘s theories of critical mathematics education (1994, 2005). The third part 

of the paper discusses Biesta‘s (2009) and Biesta and Tedder‘s (2006) theoretical 

framework for understanding agency in mathematics education. In the last section of 

the paper we discuss how the different frameworks and agency may add to our 

understanding of mathematics education practices.  

As we both authors use the notion of agency in our research respectively (Norén, 

2010, Andersson & Valero, 2009; Andersson, 2010 forthcoming), and both 

Skovsmose and Biesta theoretically have inspired our different research projects we 

find it fruitful to explore and elaborate on the notion of agency cooperatively in this 

paper. One argument is that understandings of agency in Skovsmose‘s philosophy of 

critical mathematics education and in Biesta and Tedder‘s (2006) may enable a way 

to use the theories and hence a way forward in analyzing agency in discursive 

practices in mathematics classrooms. 
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AGENCY IN MATHEMATICS EDUCATION RESEARCH 

During the last years there have been increasing attentions in mathematics education 

research addressing the notion agency. For example Boaler (2002), Wagner (2007) 

and Grootenboer and Jorgensen (2010) all refer to Pickering‘s (1995, p. 21) 

metaphor the dance of agency. Pickering has elaborated on scientific practices and 

looked at science as practice and culture. To him the ‗dance of agency‘ takes the 

form of a ‖dialectic of resistance and accommodation‖ (p. 22):  

Within an expanded conception of scientific culture, however – one that goes beyond 

science-as-knowledge, to include the material, social, and temporal dimensions of science 

– it becomes possible to imagine that science is not just about representation. /…/ /…/. 

But there is quite another way of thinking about science. One can start from the idea that 

the world is filled not, in the first instance, with facts and observations, but with agency. 

The world, I want to say, is constantly doing things, things that bear upon us not as 

observation statements upon disembodied intellects but as forces upon material beings (p. 

5f). 

As people we respond to material agency such as in winds, heating or winter. 

Pickering goes on describing how humans as agents seem to be different from non 

human agency like: ―the weather, television sets, or particular accelerators‖ (p. 15). 

Humans are active and intentional beings. Pickering links Foucault‘s elaboration on 

temporal emergence and the displacement of the human subject (Foucault, 1977) via 

the notion of agency. According to Pickering (1995) human agency has an 

intentional and a social structure. The ‗dance of agency‘ manifests itself at the human 

end in the intertwining of free and forced moves in practice.  

Boaler (2003) uses the ‗dance of agency‘ metaphor when illustrating the importance 

for mathematics learners to have an empowering identity in relation to school 

mathematics. To know when to draw on mathematical ideas and to be able to solve 

mathematical problems is a critical part of the dance of agency according to Boaler. 

Grootenboer and Zevenbergen (2007) note that mathematics teachers have to engage 

in a ‗dance of agency‘ when to decide to encourage students‘ own agency as 

mathematicians or rearrange to the requirements of standard procedures or forms of 

representation. Wagner (2007) investigated students‘ voice in utterances, he wanted 

to discuss with the students who had agency in the discourse and who had control in 

the classroom communication. Grootenboer and Jorgensen (2010) combine the work 

of Boaler (2003) and the work of Burton (2001) to illustrate how teachers work 

together to solve mathematical problems. Teachers‘ sense of agency allowed them to 

expand their sense of learning and achievement through the solving of mathematical 

tasks, relying on the members of the group, their individuals‘ knowing, and the 

collective knowing of the group. Powell (2004) uses the notion of agency and 

motivation to avoid deterministic theories and to resist deficiency explanations of 

African-American students‘ failure in mathematics in the US. Powell‘s research 

study among 24 sixth graders gave ―evidence of the mathematical achievement of 



Working Group 10 

CERME 7 (2011) 1391 

 

students of colour as a byproduct of their engagement of their agency‖ (p.10). Powell 

found that the students initiated investigations, reasoned and progressed in building 

foundational understanding of certain mathematical ideas.  He continues saying that 

understanding agency ―is particularly important since both failure and success can be 

located within the same set of social, economic, and school conditions that usually 

are described as only producing failure‖ (p. 6).  

The last example we present comes from a Danish context, where Lange (2010) in 

his study on 10-year old children concludes that children seem to be suspended 

between two conflicting experiences: from the practical and creative school subjects 

and the school subjects, like mathematics, not so creative but important for their 

future. In the practical and creative school subjects students experience they have 

more space for agency than in mathematics classrooms
43

. 

From this we infer that the research mentioned above seem to draw on differently 

theoretical standpoints such as socio cultural ones (research referring to Pickering‘s 

‗dance of agency‘ and Lange) and critical theories (Powell). 

SKOVSMOSE‘S PHILOSOPHY OF CRITICAL MATHEMATICS 

EDUCATION  

In this part of the paper we explore the notion of agency in relation to Skovsmose‘s 

work on critical mathematics education. 

Towards a philosophy of critical mathematics education, including agency 

Skovsmose developed his philosophy of critical mathematics education based on the 

Frankfurter school. The influence of Habermas and the philosophy of Critical Theory 

can be traced in his work ―Towards a philosophy of critical mathematics education‖ 

(1994).  

Critical Theory has changed its emphases since its beginning with the Frankfurter 

school. Today it has included contributions from structuralism, feminism and lately 

postmodernism and post colonialism (Popkewitz, 1999). The different perspectives 

have various assumptions regarding definition of power and the self. One influence 

of post modernity is from Foucault and his conception of power as productive and 

positive, not repressive and negative. Power is then conceptualised as working in two 

directions and not as a one-way surveillance technique of power. The late Foucault 

(1980, 1982) saw discourse as a medium through which power relations produced 

speaking objects – in our view this relates to the concept of agency even though 

Foucault did not discuss agency, but related to human beings as agents  

Critical mathematics education emphasizes social justice issues and students 

empowerment through mathematics education. In Skovsmose‘s work, (1994), a basic 
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assumption is that implicit as well as explicit functions of mathematics education are 

of importance for society and democracy (see also Skovsmose, 1998; Skovsmose & 

Valero, 2001). According to a thesis of mathematics as a formatting power 

Skovsmose finds mathematics as ―an essential instrument when technological 

authority is exercised. Mathematics is part of technological empowerment‖ (1998, p. 

201). When he spoke about the formatting power of mathematics Skovsmose says it 

was a way to try to address the relationship between mathematical knowledge and 

power (2005). Skovsmose also articulates that mathematics education serves as a 

gatekeeper, to who will get and who will not get access to the information and 

communication structures in society (1994, 1998, and 2005). He concludes saying 

that the learner is a member of society and mathematics can be a source for decision-

making and action makes mathematics education a critical feature in society. 

When conceptualising Critical Theory ―as an interdisciplinary attempt to raise 

awareness of problematic socio-political states of affairs‖ (Skovsmose 2005, p. 130) 

Skovsmose relates to post-modernism. He also relates to Foucault and his description 

of technologies of the social, the connections between power and knowledge, and to 

discourse. To Skovsmose it seems obvious that knowledge can be expressed in ways 

of acting. 

Is agency part of Skovsmose‘s writings? 

Certain forms of acting and communicating in the mathematics classroom may 

support the development of citizenship. According to Skovsmose (1998) citizenship 

is about to face the ―output‖ from authorities, but also to provide an ―input‖ to 

authority. Education for citizenship ―also presupposes participation‖ (p. 199). 

Skovsmose states that ―mathematics education could play an important role in 

developing critical citizenship‖ (2005, p. 132). To Skovsmose ―empowerment‖ 

seems to refer to a person in an informal meaning; as to have the capacity to speak 

for oneself. We believe this reasoning of Skovsmose applies to the notion of agency 

in terms of students‘ capacity to act independently and to make personal choices in a 

situation. Intentionality and action presupposes agency. 

Skovsmose (1994) does not use the concept agency explicitly, in his writings it is an 

evasive concept that conceals behind expressions as empowerment, intentionality, 

action and choice. He writes: 

Actions cannot be described in mechanical or in biological terms; and if a person‘s 

behaviour can in fact be described in such a way, then behaviour is not a part of his or her 

actions. It is not a personal action to breathe or to let one‘s hair grow. This I see as the 

first essential condition for performing an act: indeterminism must exist, or, the acting 

person must be in a situation where choice is possible. The person acting must have some 

idea about goals and reasons for obtaining them (p. 176). 

Skovsmose writes that it does not make sense to talk about human action when a 

person is forced to do something or when a person is doing something out of a habit 
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or as a reflex, like when combing your hair.  To be called action a person‘s intentions 

must be present in what is done. ―Intentions are examples of intentionality directed 

towards action‖ (p. 177). But a person may not always be aware of her/his intentions. 

Intentions are grounded in a ―landscape of pre-intentions or dispositions‖ (p. 178). 

Skovsmose divides dispositions in background and foreground. Background belongs 

to the history of a person, and foreground to the possibilities a certain social situation 

makes available for the person to perceive as her/his possibilities. The dispositions of 

a person reveals when a person comes to action. Skovsmose sees learning as caused 

by the intentions of the learner and learning has to be performed by the learner: 

Students will enter school with ideas, hopes and expectations. Intentions are inherent 

within every human being. /…/. But the demands of the situation in school too often 

result in broken or ignored intentions. When students‘ intentions are ignored, it seems 

impossible for students to perform actions, which could fulfil negotiated intentions (p. 

187).  

Skovsmose (2005) articulates that possible structures behind social events may be 

much more complex than those explanatory principles which are conceptualised 

within contemporary sociology. He writes: 

Social practices, or collective actions, can appear to be so complex that no ‗acting 

subjects‘ (a person, a group of persons, an institution, a government, an organisation) can 

be identified. The very existence of an acting subject may appear impossible. Such 

actions I will refer to as happenings. A happening is certainly not a natural phenomenon 

and it cannot be explained within a framework borrowed from the natural science. 

Happenings are social constructions and achievements, which pack together a density of 

contingencies. In a happening, the involved persons are doing something, but it seems out 

of control as of what this could imply (p. 135f). 

As an example of a happening he addresses Woodstock, the music festival. Persons 

taking part in a happening may not be aware of their role in it, and they may not have 

any control. In a happening there is no defined acting subject and a happening cannot 

be explained as a sum of human actions. But, we inquire, if agency is looked upon as 

a result of social practices, can a happening then be explained in the terms of 

agency? 

There is a possibility to see happenings and intentions as intersecting. When 

intersecting the notions converge close to the notion of agency; as the capacity of 

human beings to act independently and to make choices of their own, though they 

not always may be aware of it, and as a result of social practices, as stated in the 

beginning of this paper. 

Another way of understanding Skovsmose and the notion of agency is when 

Skovsmose suggest students and teachers to work within an investigative landscape, 

in contrast to the exercise paradigm. Skovsmose writes that working within the 



Working Group 10 

CERME 7 (2011) 1394 

 

investigative paradigm provides recourses for working with investigations as a 

learning milieu. He finishes his article with the following sentence: 

My only hope is that finding a route among the different milieus of learning may offer 

new resources for making the students both acting and reflecting and in this way 

providing mathematics education with a critical dimension (2001, p. 131). 

We conclude that Skovsmose within a critical paradigm concerns democratic aspects 

of mathematics education, part of that is the intentions of students and their role as 

acting and reflecting subjects in mathematics classrooms. To us the notion of agency 

seems to work well with Skovsmose‘s critical mathematics education.  

BIESTA‘S PHILOSOPHY OF (MATHEMATICS) EDUCATION  

In this part of the paper we explore the notion of agency in Biesta‘s (2009) and 

Biesta‘s & Tedder‘s (2006) writings. Biesta‘s (2006) philosophy of education is 

influenced by philosophers such as Dewey and Derrida.  

Biesta (2009) discusses the purposes of education against a background of, what he 

understand as ―the new language of learning‖(p.6), that is e.g. the rise of theories 

emphasising teachers more facilitating role in relation to the active role students‘ 

play in their construction of knowledge, the shift of responsibility for education 

turning education ―from a right into a duty‖ (p.5). He concretizes his reasoning with 

examples from citizenship education and mathematics education and we find these 

examples interesting to emphasis in relation to Skovsmose‘s writings and the concept 

of agency. 

Biesta‘s (2009) way of understanding the purpose of education as such he describes 

with the qualification, the socialisation and the subjectification functions. The 

qualification purpose provides students with skills and knowledge required for 

particular professions, further studies or more general as an introduction to modern 

culture. Biesta argues that the qualification function is obviously a major function of 

schooling. The socialisation function has to do with the purposes to ―become 

members of and part of particular social, cultural and political ‗orders‘― (ibid p.40). 

Biesta elaborates this purpose further:  

But even if socialisation is not the explicit aim of educational programs and practices, it 

will still function in this way as, for example, has been shown by research on the hidden 

curriculum. Through its socializing function education inserts individuals into existing 

ways of doing and being and, through this, plays an important role in the continuation of 

culture and tradition – both with regard to its desirable and its undesirable aspects. (ibid 

p. 40) 

The last purpose of education Biesta refers to is the subjectification process. Biesta 

writes that education has an impact on the processes of becoming a subject. In 

education newcomers do not only get inserted into existing orders, they also get to 

know how to become independent of such orders. The subjectification process, 
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understood as a process of becoming thus relates to a way of independence and being 

agentic. An example of the subjectification process is Biesta‘s reasoning about a 

citizenship education taking political agency seriously:  

Political knowledge and understanding (qualification) can be an important element for the 

development of political ways of being and doing (subjectification), just as a strong focus 

on socialisation into a particular citizenship order can actually lead to resistance which, in 

itself, can be taken as a sign of subjectification (p. 42).  

We agree with Biesta when he concludes that whether all education actually  

contributes to subjectification of students is debatable. However, 

any education worthy of its name should contribute to processes of subjectification 

that allow those educated to become more autonomous and independent in their 

thinking and acting; thus becoming agentic in our understanding of agency. He 

continues discussing the subjectification function in mathematics education as 

raising possibilities for students becoming a person who ―through the power or 

mathematical reasoning is able to gain a more autonomous or considered position 

towards tradition and common sense― (p.43). To us the last quote seems to be an 

argument for agency as a notion relating to Biesta‘s philosophy. Biesta exemplifies 

his arguments with e.g. exploring moral possibilities of mathematics, e.g. dealing 

with division in relation to sharing – suggestions we think connects very well with 

Skovsmose‘s theory about critical mathematics education.  

Agency in Biesta and Tedder‘s writings 

Biesta and Tedder (2006) put forward two key ideas for understanding agency, 

theoretically mainly building on the work by Emirbayer & Mische (1998). The first 

idea is that agency ―should not be understood as a capacity, and particular not an 

individual‘s capacity, but should always be understood in transactional terms, that is, 

as a quality of the engagement of actors with temporal-relational contexts of action‖ 

(p.18). They refer to an ecological understanding of agency, ―i.e. an understanding 

that always encompasses actors-in-transaction-with-context, actors acting by-means-

of an-environment rather than simply in an environment‖ (ibid p. 18). The second 

key idea is that agency should not be understood as a possession of the individual, 

rather that something that is achieved‖ (ibid p. 18) in relation to the particular 

context. They continue: ―the idea of achieving agency makes it possible to 

understand why individual can be agentic in one situation but not in another. It 

moves the explanation away, in other words from the individual and locates it firmly 

in the transaction (ibid p.19).  

Concluding, Biesta suggests that we engage in a discussion about the purposes of 

education, where he sees the notions of qualification, subjectification and 

socialisation as important and interrelating components. His examples from 

citizenship education and mathematics education highlight possibilities for further 

discussion within these areas. As we understand agency in Biesta‘s and Tedder‘s 
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words as achieved in relation to/transaction with time and context, narrow in the 

focus, from the larger purpose of education to the individual within education. We 

see it as one way to further elaborate on relations and intersections between the 

individual, society and mathematics education. 

CONCLUSIONS 

What we intended is to widen our understanding of different approaches to the 

notion of agency in relation to mathematics education, and to investigate the notion 

of agency in relation to Skovsmose‘s and Biesta‘s writings respectively. We find that 

Skovsmose, Biesta, and Biesta and Tedder have established cores grounded on basic 

democratic concerns, citizenship and empowerment. Though Skovsmose‘s writings 

are explicitly addressing mathematics education Biesta and Tedder‘s are not. In line 

with Skovsmose we believe that certain forms of communication in the mathematics 

classroom may support the development of citizenship. We think the ―certain form of 

communication‖ may enhance students‘ space for agency, and vice versa, students‘ 

agency may support the ―certain form of communication‖.   

Biesta and Tedder are implicitly concerned with agency when discussing subjectivity 

and the individual becoming agentic. We find Skovsmose‘s and Biesta´s frameworks 

compatible to some extend (Wedege, 2010) but we need to explore this further. One 

reason for that is that the framework of Skovsmose is grounded in his many writings 

since a long time back, Biesta and Tedder‘s work is not.  

In mathematics education research, agency can be used both as a tool for locating 

certain forms of communication in the mathematics classroom and for locating 

students‘ activity and intentions in the communication. An example is when 

students‘ agency change directions of teachers‘ already planned lessons. Also the 

empowerment of learners as individuals and as citizens in today‘s society can be 

discussed when relating to agency. The notion of agency can add to our 

understanding of mathematics education practices. 

As learners‘ intentions and their role as acting and reflecting subjects in mathematics 

classrooms can be discussed when relating to agency some questions arise. The 

questions are concerned with whether agency is something a learner can attain or 

achieve? Is agency already there? Can mathematics education enhance agency? 
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INTERPLAYS BETWEEN CONTEXT AND STUDENTS‘ 

ACHIEVEMENT OF AGENCY.   

Annica Andersson 

Aalborg University, Denmark, and Malmô University, Sweden 

The purpose with this paper is to explore, within a socio-cultural theoretical 

landscape, an analytical framework for understanding interplays between contexts 

and students‘ achievement of agency in mathematics education. However, it became 

apparent that account also had to be taken for relationships between students‘ 

identities and their achievement of agency as they impact, together on the students‘ 

decisions to participate in mathematics education and hence in their learning of 

mathematics. A case study from an upper secondary critical mathematics innovation 

setting provides an empirical example of how the analytical framework was used.  

Keywords: critical mathematics education, agency, identity, context, student. 

INTRODUCTION 

The students in focus of this research are a group of the increasing number of upper-

secondary students who either just dislike mathematics, or who objectify (Sfard, 

2008) themselves as e.g. ―math-haters‖, or remedial students who are present in 

classrooms but not obviously participating in the learning activities. The students 

referred to are not students with specific learning difficulties in mathematics, the 

concerns are for students who in a mainstream way take compulsory mathematics 

classes but whose well-being ―diminishes when they are asked to engage with 

mathematics learning‖ (Clarkson, Seah & Bishop, 2010, p.1), whose attitudes to 

mathematics has fallen as they progressed through school (Beswick, Watson & 

Brown, 2006) and who have not experienced feelings of inclusiveness in 

mathematics education (Solomon, 2009). My concern is for these students who have 

not had the opportunity to experience a prior mathematics education that made sense 

to them.  

For the empirical part of my Ph.D.-study a critical mathematics innovation was 

arranged for Swedish upper secondary social science students‘ first compulsory 

mathematics course. The pedagogy was deeply inspired by concerns raised in critical 

mathematics education (Skovsmose, 2005) and connected mathematics to society as 

intended within the domain of sociomathematics (Wedege, 2010). The innovation 

was a serious attempt to consider possibilities for a pedagogy acknowledging 

concerns in critical mathematics education although within the frames of national 

curriculum and assessment qualities. A focus on individual‘s voices in this study 

provided a way to understand students‘ shifts in participation and changes in 

identities during this particular mathematics course. The purpose of this paper is to 

present the analytical framework which assisted explaining the interplays between 

contexts and students‘ achievement of agency. Under consideration are different 
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levels of context that impacted on the classroom work; the socio-political school 

context (Valero, 2002), the situation contexts within the classrooms and the task 

contexts expressed in e.g. textbooks exercises and through the developed 

pedagogical projects (Wedege, 1999). My underlying expectation in this paper is to 

open up for critique and scrutiny of the analytical framework.  

This paper is built on two assumptions. First, mathematics learning can be a good 

thing and may contribute to empowerment and emancipation, even if that not always 

seems to be the case today (D‘Ambrosio, 2007; Skovsmose, 2005). Second, there is a 

strong belief that students‘ expect and enjoy to be able to make decisions on their 

personal learning, that they want to have their ideas valued, and that they enjoy being 

treated as responsible young adults.  

THE THEORETICAL FRAMEWORK 

The theoretical framework that guided the Ph.D.-study was grounded within a 

contemporary social-cultural perspective. Learning was thus viewed as a social 

activity, implying that learning processes ―are constituted in the encounter between 

contextualised, historically grounded human beings and their activity in particular 

settings and spaces that are socially structured‖ (Valero, 2004, p.10). Learning in a 

social-cultural perspective is not just about getting to know, learning is also about 

becoming someone (Radford, 2008), thus a movement between present and 

designated identities (Sfard & Prusak, 2005; Solomon, 2009). This view of learning 

provided a lens for understanding relationships between contexts, identities and 

students‘ achievement of agency in mathematics education at particular historical 

times during the course. The coming section is divided into three parts. First, 

theoretical concerns raised in critical mathematics education are presented. Second, 

an analytical framework for understanding agency is put forward and third, 

relationships between achievement of agency, context, identity change and learning 

are discussed. 

Theoretical concerns raised in critical mathematics education  

The developed pedagogy was deep inspired by critical mathematics education theory. 

Critical mathematics education is not to be understood as a special way of teaching 

or branch of mathematics education, on the contrary it is raised by concerns that need 

to be accounted for with reference to the particular context where the education takes 

place  (Skovsmose, 2005). Concerns raised by Skovsmose addresses issues as how 

mathematics education can be stratifying and legitimising inclusion and exclusion. 

While Skovsmose writes about students‘ inclusion and exclusion in a wider socio-

political context, Solomon (2009) engages in questions about inclusion and 

exclusion within mathematics classrooms. She points to reasons for students‘ 

identities of exclusion to be ―a product of their particular educational histories and 

the ways in which they have responded to the ascribed or designated identities 

carried in repeated discursive positioning.‖ (Solomon, 2009, p. 137) 
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Critical mathematics education is also concerned with the nature of the competencies 

supported in mathematics education, as e.g. if learning mathematics can support 

empowerment. Students‘ development of competencies as mathemacy (Skovsmose, 

2005), or mathematical literacy (Solomon, 2009) in a way that supports critical 

citizenship can be seen as empowering as expressed by Ernest (2002, p. 1-2): 

Social empowerment through mathematics concerns the ability to use mathematics to 

better one's life chances in study and work and to participate more fully in society 

through critical mathematical citizenship. Thus it involves the gaining of power over 

a broader social domain, including the worlds of work, life and social affairs.  

Critical mathematics education also raises concerns and awareness of the students‘ 

whole situation. They have different foregrounds, understood as those opportunities 

that the social, political and cultural situation provides for the individual and 

backgrounds in relation to mathematics (Skovsmose, 2005). Regarding the students‘ 

intentions to participate in mathematics education, understanding participating and 

learning as action, Skovsmose (ibid, p. 20) continues:  

Intentions of a person refer not only to his or her background, but also to the way he 

or she experience possibilities. Intentions express expectations, aspirations and 

hopes. 

Indeed, critical mathematics education raises concerns about inclusion and 

exclusion, considers the competences that are learnt and take students intentionality 

seriously in mathematics education. That is why a critical mathematics innovation 

became the context, the background setting, for the empirical part of my Ph.D. thesis 

and thus the mathematics education context for the students referred to in this study. 

Agency 

Learning is a social constructed activity and requires an agent, a committed human 

being who makes the decision to engage herself in the activity of learning (Valero & 

Stentoft, 2010). Human agency denotes the faculty to act deliberately according to 

one‘s personal will and by that make free choices (Johnson, 2000). A person's 

agency can be understood as initiating ideas, agreeing with others, to elaborate and 

critique, and questioning or disagreeing with others (Gresalfi et al, 2009, p. 53). 

There is an obvious dialectic relationship between agency and structures (e.g. 

Holland et al. 1998). Concerns about agency in education research relates, from the 

socio-cultural theoretical perspective, to the empirical conditions of agency as when 

and in what way agency is possible (Biesta & Tedder, 2006). Building mainly on 

Emirbayer and Mische‘s work (1998), Biesta and Tedder put forward two key ideas 

for understanding agency. They first suggest that agency should be understood in an 

ecological way, i.e. strongly connected to context and second, they implicate that 

agency should be seen as achieved and not as an individual‘s capacity: 

… agency should not be understood as a possession of the individual, but rather as 

something that is achieved in and through the engagement with a particular temporal-
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relational situation. The idea of achieving agency makes it possible to understand why 

individuals can be agentic in one situation but not in another. It moves the explanation 

away, in other words, from the individual and locates it firmly in the transaction (which 

also implies that the achievement in one situation does not mean that it will necessarily be 

achieved in other situations as well). (Biesta & Tedder, 2006, p.18-19) 

Agency is thus not about how we act in particular situations; the agentic dimension 

―lies in the ways in which we have control over the ways in which we respond to the 

situation‖ (p. 20-21). Within a socio-cultural theoretical framework, regarding 

learning as a social activity, a definition of agency in line with Biesta and Tedder‘s 

ecological understanding of agency fits particular well.  

Biesta and Tedder (ibid) argue that a dimension of agency can be understood as ways 

in which actors bring their past experiences and future orientations to bear on the 

present situation, resonating with Skovsmose‘s (2005) understanding of students‘ 

backgrounds and foregrounds as reasons for students‘ intentions for engaging in 

mathematics learning. Another aspect Biesta and Tedder (2006) address relates to 

―the extent to which people are able to distance themselves from their agentic 

orientations, i.e. make such orientations the object of reflection and imagination‖ (p. 

21). This way of reasoning resonates with the definition of identity as the reified, 

endorsed and significant narratives told about a person as suggested by Sfard and 

Prusak (2005) and thus firmly connects the concept of achieving agency with 

changes of identity. This connection will be elaborated further in the next section. 

Identity-agency dialectic relationship 

The relationship between achieving agency and changes of identity needs to be 

elaborated further as there are other aspects of importance to emphasise. One aspect 

relates to objectification processes (Sfard, 2008). As a student, being objectified, 

labelled from experiences in the past, possibly has an impact on how the student act 

and behave in the future. The labels originate in what Sfard recognise as 

objectification processes, initiated by our way of transplanting words from one 

discourse to another. Sfard identifies metaphors of object as a special figurative 

expression with ―roots in our tendency for picturing the perceptually inaccessible 

world of human thinking in the image of material reality‘ (p. 42). These metaphors 

can obviously be useful or potentially harmful depending on whose actions is 

objectified and in what way they are objectified in the mathematics education 

language discourse.  

By comparison, another way of understanding the identity-agency relationship is 

through Boaler and Greeno‘s (2000) discussions of students‘ experiences of agency 

with reference to the notion of figured worlds (Holland et al, 1998), that is ―places 

where agents come together to construct joint meanings and activities‖ (p. 173). 

Agency is here conceived in terms of authorship and as a prime aspect of identity. A 

mathematics classroom may be thought of as a socially and culturally constructed 
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figured world. Boaler and Greeno‘s (2000) research showed that the figured worlds 

of many mathematics classrooms are unusually narrow and ritualistic, leading able 

students to reject the discipline at a sensitive stage of their identity development: 

―traditional pedagogies and procedural views of mathematics combine to produce 

environments in which most students must surrender agency and thought in order to 

follow predetermined routines‖ (ibid, p. 171) and thus lead to exclusion in the way 

Solomon (2009) addresses the problem. Boaler and Greeno argue that capable 

students discard mathematics as the views of mathematic education run counter to 

the students developing identification as responsible, thinking agents. They argue 

that students do not just learn mathematics in school classrooms, they also learn to be 

and thus they move between the present and designated identities as described by 

Sfard and Prusak (2005). Boaler and Greeno‘s results suggest that many students 

find the narrowly defined roles they are required to play within mathematics 

education incompatible with their developing identities.  

A CASE STUDY 

In this section four ‗critical moments‘ from Sandra‘s
44

 course trajectory will 

exemplify how the analytical framework was used. The information was collected 

with ethnographic methods throughout my participation in two social science 

students‘ mathematics classes. In Sandra‘s case, the data consisted of several 

spontaneous conversations (Kvale & Brinkman, 2009) and written documents as 

classroom blog comments, evaluation sheets, logbooks and my field notes. The data 

was primarily coded in line with Sfard and Prusak‘s (2005) suggested analytical 

framework defining identities as reified, endorsed and significant narratives. In this 

way, the analysed stories where the stories that were significant for the students 

themselves at those times they were told. To clarify why these particular narratives 

were told/written at specific historical times, all narratives were arranged in 

chronological order on a timeline that became a ‗storyline‘, one ‗storyline‘ for each 

student. Events and incidents at the school and the teacher‘s assessments comments 

and test results were added on the ‗storylines‘. At last, students‘ comments referring 

to individual or group action as e.g. ―I decided to…‖ or ―we went to the bank‖, or 

―fucked algebra today‖ finalised the ‗storylines‘. In these ‗storylines‘, clusters, which 

were labelled ‗critical moments‘, emerged in different ways and numbers for 

different students however with family resemblances. The ‗critical moments‘ 

illumined changes in the students‘ narrations of themselves and how the transactions 

with contexts impacted on the students‘ identities through changes in their expressed 

narratives at particular historical times.  

In this paper four ‗critical moments‘ from Sandra‘s mathematics course trajectory 

provided a frame within which to consider interplays between agency and context. 

                                           

44
 All names are pseudonyms. The data was analysed in Swedish and here translated by the author. 
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They were, in chronological order: 1) Sandra‘s narratives told in the transition phase 

between lower secondary and upper secondary schools 2) Sandra‘s narratives during 

the project ‗Making your dreams come true‘ 3) Sandra‘s narratives during a teaching 

sequence organised with textbook work and 4) Sandra‘s narratives after the larger 

cross-subject project ‗Ecological footprints‘. I refer to Andersson (2010) for an in-

depth description of the development of the teaching sequences and the projects 

within their societal-, and school contextual background. 

First ‗critical moment‘. Sandra initially shared with me that she had always disliked 

mathematics because she had ―mathematics anxiety‖. This label was Sandra‘s way of 

objectifying herself (Sfard, 2008) and causing her ―not wanting to spend more time 

with mathematics than was absolutely needed‖. That is the reason for why she did 

not want me to interview her, which would, as she said, ―result in more mathematics 

related time‖. However, I was very welcome to read her blog comments, evaluation 

sheets and logbook and to talk with her in the classroom.  

Sandra told me she desperately wanted to pass the mathematics course, as it was 

required for her future university studies.  Foregrounding herself as a university 

student became her intentionality for attending and passing the mathematics courses 

that where required by society. The socio-political context constrained Sandra‘s 

achievement of agency; she could not decide to not participate, as her designated 

identity was to become an university student. Within the situation context, 

objectifying herself with the label ‘having math-anxiety‘ seemed to impact on her 

decisions on how to act within the classroom (e.g. spending a minimum of time with 

mathematics). Sandra‘s agentic orientation might be characterised as iterative at this 

time; she effected action consistent with schemas derived from prior personal 

experiences.  

Second ‗critical moment‘. This moment occurred during a two-week project where 

the students got high possibilities for deciding on task contexts, personal time and 

work distribution. Sandra evaluated her project work in the following way: 

We distributed the time well, I think. […] The group worked well. We were good at 

different things, and helped each other. I am proud of the work I have done as I felt I 

could contribute a lot in the beginning when we talked about borrowing money and 

interest rates. To plan time and content self got me to feel it was related to me. I 

think mathematics has been a little more fun than usual. […] I feel the project has 

been meaningful and to look at mathematics from different angles (vända och vrida 

på matematiken) was positive. But I would have liked more time for explanations 

from the teacher, as mathematics is difficult for me. (Sandra, evaluation sheet, 10-

2009) 

During this project Sandra achieved agency in relation to task context and situation 

context.  Her personal influence on content, time and work distribution impacted on 

her decisions to engage in the classroom activities in a different way than she 
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intended at the course start. In addition she experienced feelings as ‗a little fun‘ and 

mathematics as ‗meaningful‘. At this time Sandra took a projective action for 

learning differently to the initially intended and got rewarded with feelings as ―being 

proud‖ of her work. However, even if she was proud of her work and actually passed 

this sequence with distinction (teacher, results sheet), the last sentence indicated that 

being objectified with ‗mathematics anxiety‘ still implied her wishing for extra help 

and support from her teacher. 

Third ‗critical moment‘. In the middle of the semester the students were expected 

to work with textbook algebra exercises during two separate weeks. In contrast to the 

second critical moment, during these weeks Sandra only made two blog comments. 

Sandra‘s first entry emphasised Sandra‘s worries and feelings of stress for not 

passing a coming test: I am currently worried about the test. I have received help with 

things I need help with. Stress. Stress. (Sandra, blog, 10-2009).  

In class she repeatedly asked the teacher about what would happen if she did not pass 

the test, and she asked for advice on exercises that was ‗extra smart to calculate‘ 

when preparing for the test (Annica, field notes). She worried, and her achievement 

of agency was restricted to do what was required for just passing the test she was so 

anxious about. Not passing the test would impact on her designated identity. At this 

time her label ‗mathematics anxiety‘ could be interpret as ‗test anxiety‘, however she 

never used this word herself.  

Her second blog comment during this period was: Quiet, concentrated and do my best 

(Sandra, blog, 11-2009)  

Sandra‘s positive experience of the prior project appeared to have vanished. The 

tensions between task contexts, restricted to advised exercises in algebra, ―something 

I don‘t understand why I have to learn‖ (Sandra, classroom conversation), the 

situation context with expected quiet individual textbook work and her foreground to 

become a university student were obvious in her actions. Her ―math anxiety‖, 

resulting in her imagining herself not passing and thus not becoming what she 

wanted, became problematic and restricted her achievement of agency at this 

particular time.  

Fourth ‗critical moment‘. At this time a larger cross-subject project commenced 

themed ―Students‘ Ecological footprints on earth‖. At that time Sandra‘s logbook 

was rich with comments regarding hers and her work-friend‘s collaborative work. 

This excerpt exemplifies her reflections on her mathematics learning during the 

project:  

During the project I have learnt about different diagrams. E.g. I did not know about 

histograms before the project. I think it has been really interesting with manipulated 

diagrams and results – now I will be more observant when reading newspapers etc!  

What surprised me most though was how important role mathematics plays when talking 

about environmental issues. With support of mathematics we can get people to react and 
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stop. […] I am so interested in environmental questions and did actually not believe that 

maths could be important when presenting different standpoints.  

I have probably learnt more now than if I had only calculated tasks in the book. Now I 

could get use of the knowledge in the project and that made me motivated and happy! I 

show my knowledge best through oral presentations because there you can show all the 

facts and talk instead of just writing a test. To have a purpose with the calculations 

motivated me a lot. (Sandra, logbook, conclusions).  

The teacher assessed her with the highest grade, implicating she presented her 

statistical investigation with correct mathematical language using appropriate 

concepts and terminology, that she had chosen appropriate diagrams and arithmetic 

mean values and could argue for her choices, and that she reflected on possible 

sources of error and how these could have been prevented. Sandra was convinced 

that she had not been able to account for these criteria on a written mathematics test. 

However orally she clearly in a correct and convincing way presented her results and 

answered questions in front of an audience of 50 students, two teachers and one 

researcher (Annica, fieldnotes). 

Sandra‘s actions voiced as e.g. ―I will be more observant…‖, ―I have learnt more 

than…‖ and ―I could get use for…‖ evidently  expressed her achieved agency and 

the relationship between her present identity as a responsible and thinking agent, 

achieved agency and her learning of mathematics at this particular time. Her 

expressed narratives, oriented both to the past, future and present is an important 

factor for actual agency according to Biesta and Tedder (2006). Her learning is 

expressed both in relation to the subject mathematics and the power of mathematics 

in society. There seems to be an indication of a changing agentic orientation in this 

particular situation context; e.g. her ‗mathematics anxiety‘ identity is not expressed 

at all at this point.  

Concluding remarks regarding Sandra‘s achievement of agency 

Sandra‘s change of identities expressed different qualities of her achieved agency 

that impacted on her classroom engagement and her learning of and accountancies 

for mathematics. The implications of this case suggest that Sandra‘s possibilities for 

achieving agency is an important component for her learning of mathematics, her 

accountancy of mathematics and in the end – even for her marks. Maybe Sandra‘s 

stories indicate that possibilities for achieving agency are an important feature when 

constructing mathematics learning environments.   

CONCLUDING REMARKS 

The purpose of this theoretical paper was to present the analytical framework which 

explained the interplays between different contexts and students‘ achievement of 

agency in this particular setting. The analytical framework put forward by Biesta and 

Tedder (2006) understanding agency as achieved in-transaction-with-context at 
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particular historical times opened up possibilities to consider Sandra‘s different 

narratives and actions in the figured world of a particular mathematics classroom. I 

want to stress that it was Sandra‘s personally told or written stories that counted as 

her identities within this analytical framework. Hence, what she considered 

significant for her to tell at different times became the data in this research. To 

clarify why these particular narratives were told/written at specific historical times 

the framework suggested by Biesta and Tedder (2006) was combined with Sfard and 

Prusak's (2005) operational definition of identities and Skovsmose‘s (2005) concept 

of intentionality understanding learning as action. This was done in parallel with 

considering the relationships between achieved agency and different contexts. 

Analysing Sandra‘s achievement of agency in relation to the obvious task-context 

could have given information on how this student achieved agency when conducting 

project work, compared with mathematics textbook work. However, by also taking 

the wider socio-political context and class-room situation context into consideration 

gave a deeper understanding of Sandra‘s achievement and indicated why she acted, 

or achieved agency in some situations but not in others. Further elaboration of this 

framework might open up possibilities to recognise students as agents of their 

learning of mathematics in mathematics education research. 
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Mathematics is crucial for describing, predicting and communicating climate 

change. In this paper, we use the perspective of critical mathematics education to 

examine how mathematics is constructed in reporting climate change. We focus 

particularly on accounts of mathematical modelling. Our discussion is illustrated by 

reference to two texts: a newspaper report and a policy document. We argue that 

mathematics, human mathematical activity and the role of human activity in causing 

climate change are all largely invisible in such texts. Mathematics education has an 

important role to play in making the invisible visible.  

Keywords: climate change, critical mathematics education, mathematical modelling 

Climate change is perhaps the most urgent challenge facing human society. There is 

little doubt that climate change is a human-induced phenomenon with potentially 

disastrous consequences over the next century and beyond (IPCC, 2008). Human 

understanding of climate change, both collective and individual, is almost entirely 

mediated by mathematics: without mathematics we would have little sense of how 

the climate is changing and no idea how it might change in the future. Given the 

urgency, the scale of the challenge and the importance of mathematics it is surprising 

to observe that mathematics educators appear to have paid little attention to climate 

change in their work. One purpose of this paper is to argue that this situation needs 

to change. Mathematics educators have an important role to play. 

Climate change is now reported, discussed and debated in a wide variety of genres, 

including scientific papers, newspaper reports, television reports and documentaries, 

policy documents, treaties, websites and blogs. We are interested in how the 

mathematics of climate change is represented within these different genres. An 

understanding of the representation of mathematics in these various kinds of text will 

enable us to identify what mathematics is relevant, how it is relevant and to consider 

ways of enhancing public understanding of climate change, whether through 

schooling or other means. Our discussion is informed by critical mathematics 

education, as we set out below. To focus this paper, moreover, we restrict our 

attention to the role of mathematical modelling in reporting and understanding 

climate change. To illustrate our discussion, we examine two examples of publicly 

available texts concerning climate change: a newspaper report and a policy 

document. We argue that, despite its centrality, the role of mathematics is largely 

invisible in public discussion of climate change, such as in these two texts.  
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MATHEMATICS, MODELLING AND CLIMATE CHANGE 

Mathematics is implicated in three aspects of climate science: description, prediction 

and communication (Barwell, 2010). The description of climate change largely 

involves measurement (of temperature, rainfall, sea level etc.) and the statistical 

analysis of these data. The prediction of climate change involves more advanced 

mathematics, such as mathematical modelling, non-linear systems and stochastic 

processes (McKenzie, 2007, pp. 22-23). The communication of climate change 

involves the production and consumption of information about climate change in the 

form of written texts, graphs, charts, diagrams etc. Clearly these three dimensions of 

the mathematics of climate change are inter-related. The interpretations made by 

consumers of the communication of climate change are influenced by these 

consumers‘ understanding of the mathematics of description and prediction. [1]  

In this paper, we focus in particular on the role of mathematical modelling in 

predicting climate change. Earth climate models have been developed over many 

years, are highly complex and draw on expertise in many different domains of 

research. Weaver (2008) summarises how they work as follows: 

A climate model starts with a set of equations governing the dynamics of the climate 

system and translates those equations into a model grid that represents the Earth. 

Each of the subcomponents (ocean, atmosphere, land surface, cryosphere) interacts 

and exchanges heat, moisture, and momentum. The resulting system is then driven 

by specified radiative forcings, including energy from the sun and emissions of 

human produced greenhouse gases (p. 183). 

To evaluate the model, certain starting conditions are specified and it is then run 

until an equilibrium is reached. The equilibrium state is then compared with recorded 

data of the Earth‘s climate with the aim that the model corresponds reasonably well 

with observed conditions. This process takes several weeks of 24-hr computer 

processing (Weaver, 2008, p. 189). An example of the atmosphere component of a 

climate model is shown in Figure 1: 

∂u + u→ • ∇ u + 2Ω × u = −1∇ p + gk + F + ℑ(u) 

∂ρ + ∇  • (ρu) = 0 

p = ρRT; ρ = ƒ (T,q) 

∂T + u • ∇T = SW 

↔ 

+ LW 

↔ +SH + LH + ℑ(T) 

SW = f (clouds, aerosols . . .) 

LW = f (T,q,CO2, GHG . . . ) 

∂q + u • ∇  q = Evap − Condensation + ℑ(q) 

Figure 1: Atmosphere - Equations of a typical climate model (McKenzie, 2007, p. 13) 
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The models are refined until a satisfactory fit is obtained. Predictions can be 

generated by modifying the conditions to represent, for example, an increasing 

concentration of greenhouse gases in the atmosphere (Weaver, 2008).  

Interest in mathematical modelling in mathematics education has been growing over 

the past two decades in different parts of the world (e.g. Niss, Blum, & Galbraith, 

2007; Suurtamm & Roulet, 2007). One reason for this greater interest is the advances 

in technology that help to facilitate the creation of models by students. Mathematical 

modelling helps students to see the relevance of mathematics in investigating and 

making sense of the world, so that mathematics is not experienced as a static domain 

with little connection to students‘ lives. In particular, mathematical modelling uses 

real data to investigate a wide variety of issues. The discussion document for the 

ICMI – Study 14 on applications and modelling, describes the modelling process: 

The starting point is normally a certain situation in the real world. Simplifying it, 

structuring it and making it more precise - according to the problem solver‘s 

knowledge and interests - leads to the formulation of a problem and to a real model 

of the situation. […] If appropriate, real data are collected in order to provide more 

information about the situation at one‘s disposal. If possible and adequate, this real 

model - still a part of the real world in our sense - is mathematised, that is the 

objects, data, relations and conditions involved in it are translated into mathematics, 

resulting in a mathematical model of the original situation. Now mathematical 

methods come into play, and are used to derive mathematical results. These have to 

be re-translated into the real world, that is interpreted in relation to the original 

situation. At the same time the problem solver validates the model by checking 

whether the problem solution obtained by interpreting the mathematical results is 

appropriate and reasonable for his or her purposes. […] At the end, the obtained 

solution of the original real world problem is stated and communicated (Blum, 2002, 

p. 152-153). 

In mathematical modelling, then, students are able to reach outside the realm of 

mathematics and to engage in something ―real in the world‖ and to move back and 

forth between mathematics and the world as a way to understand both the world and 

mathematics (Pollack, 2007). The iterative comparison between the model and the 

phenomenon requires the creator of the model to reflect on how well their model 

represents the actual situation, to make clear the assumptions in creating the model 

and to evaluate its reliability as a predictive model. Jablonka (2010) reiterates that 

―explicating the underlying assumptions and exploring alternative forms‖ (p. 95) of 

models is an important part of the modelling process. Mathematical modelling goes 

beyond simply fitting a curve to a set of data points drawn from an experiment 

(Galbraith, 2007). 

This general account of the modelling process fits well with Weaver‘s summary of 

climate change modelling. Both accounts use the term ‗translating,‘ for example, to 

describe the relationship between observed data and model outcomes. Similarly, 
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climate models undergo an iterative process of evaluation and refinement in relation 

to observed data about the climate (Weaver, 2008, pp. 188-198).  

CRITICAL MATHEMATICS EDUCATION   

Skovsmose (1994) makes the important point that our technological society relies 

heavily on mathematics. Computers in particular rely on algorithms and models that 

are fundamentally mathematical in nature. While the role of mathematics is often 

rather invisible, it plays a key role in shaping society and leads to tangible social 

effects. Key aspects of our everyday lives, such as banking, insurance, medicine, 

transportation or shopping are shaped by often hidden mathematical models and 

procedures. As an example, he discusses how a mathematical model of airline ticket 

sales includes a degree of overbooking, as a result of which, on some occasions some 

passengers are unable to fly since there are insufficient seats on their flight 

(Skovsmose, 2001). He uses this example to illustrate the way that mathematics is a 

powerful predictive tool, but also to show that this tool has limitations and real social 

effects, such as some people not being able to fly. These limitations are unavoidable, 

since mathematics formalises a situation, effectively creating a particular 

mathematical interpretation, which in turn develops a social reality of its own: 

―mathematical models become guidelines for our design of our world and, therefore, 

they become not only descriptive but also prescriptive,‖ (Skovsmose, 1994, p. 55). 

These mathematical models are not necessarily good or bad; airline ticket sales 

models contribute to convenience and in some cases to cheaper fares. But the model 

does change the nature of pricing and of air travel itself. In other words the 

traditional principle of: ‗Do not sell any more tickets than there are seats‘ becomes 

substituted with the much more complex principle that includes maximizing 

revenues and quantifying customer dissatisfaction (Skovsmose, 2006, p. 39). Hence 

the decisions based on complex mathematical models developed by experts are 

inaccessible or invisible to citizens (Skovsmose, 2006; Jablonka, 2010). This 

invisibility results in a society that often accepts the output of experts and feels 

disempowered to examine or question the conclusions of these experts or to enter 

into any kind of discussion or debate.  

Recognizing that mathematics is powerful yet invisible suggests that mathematics 

education needs to equip the citizens of our society with a critical awareness of the 

role of mathematics and its effects. In developing a critical approach to mathematics 

education, Skovsmose (1994) identifies three forms of knowing: mathematical 

knowing, technological knowing and reflective knowing. He emphasises that the 

distinctions are analytical, rather than empirically distinguishable (Skovsmose, 1994, 

p. 115). Mathematical knowing is concerned with formal mathematics: the kind of 

‗within‘ mathematics procedures and thinking with which mathematicians work. 

Technological knowing is about the application of mathematics – knowing both how 

to construct a tool and how to use it. Mathematical modelling is one such tool. 

Knowing how to construct a model requires more than a familiarity with, for 
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example, different types of equations. It requires an understanding of how to 

construct particular equations to model a situation as well as an understanding of 

how to use the model (Skovsmose, 1994, pp. 98-99). Clearly there are overlaps 

between mathematical and technological knowing. They each give meaning to the 

other.  

Reflective knowing builds on mathematical and technological knowing and 

augments that knowledge with critical awareness of the broader effects of 

mathematics and of its social or ethical consequences. The value of reflective 

knowing in mathematics is the awareness it provides of the way mathematics works 

to shape our lives in different ways (its ‗formatting power‘, Skovsmose, 1994). 

Reflective knowing is one of the bases for critical mathematics education, the project 

of which is the empowerment of critical citizens (Skovsmose, 2006). Students can 

use mathematics as a tool for critical investigation as they draw on all three forms. 

Thus, students make mathematical sense of the world, while maintaining a critical, 

reflective orientation towards these mathematisations and the insights they bring.  

The connections between mathematical modelling in mathematics education and 

critical mathematics education are clear. In a critical mathematics education 

situation, Skovsmose (1994) highlights the following ‗tasks‘ of reflective knowing: 

to make explicit the preconditions of a modelling process which become hidden when 

mathematical language gives it a neutral cover. (p. 106) 

to address problems and uncertainties connected with transitions between the different types 

of language game involved in the mathematical modelling process. (p. 111) 

to identify the formatting power of mathematics. (p. 114) 

This reflective knowing is very similar to the processes suggested by Blum in his 

description of mathematical modelling: both suggest making explicit and visible the 

assumptions and limitations that are inherent in the creation of the model. Jablonka 

(2010) suggests that genuine examples of mathematical models can provide a source 

for understanding and assessing the use of mathematics within different areas of 

society. Several researchers provide examples of engaging students in mathematical 

modelling of social justice issues such as racial profiling (Gutstein, 2006) or issues 

of equity (Makar & Confrey, 2007). Such work shows how students‘ interest in 

mathematics can be enhanced through engaging in mathematical modelling of issues 

that concern them. At the same, students become more aware of the issues they are 

exploring. Such work helps students to develop a critical stance that helps them to 

understand, evaluate, and respond to technological and social issues (Jablonka, 

2010). We believe that this approach is applicable to the issue of climate change. 

CRITICAL MATHEMATICS EDUCATION AND CLIMATE CHANGE 

Climate change models open a space for technological imagination and hypothetical 

reasoning which allows society to make predictions about events in the future. The 
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mathematical modelling of climate change is used to justify certain actions, for 

example concerning the development of renewable energy sources or the 

construction of sea defences, despite the invisibility of the mathematics (see 

Skovsmose, 2006). This situation is apparent in the communication of climate 

change. In our initial survey of articles on climate change we have observed that 

while scientific principles are often referred to and explained, explicit reference to 

the role of mathematics is much less common. To illustrate and discuss this 

invisibility, we refer to two examples of texts about climate change: the first is a 

newspaper report; the second is a government policy document. 

Climate predictions in the news 

In August 2010, a report headlined ‗Climate scientists forecast more heat, fires and 

floods‘ appeared in Canada‘s Globe and Mail newspaper. [2] The article is typical of 

the proliferation of news reports about climate change, often prompted by extreme 

weather events. Here are three extracts: 

Floods, fires, melting ice and feverish heat: From smoke-choked Moscow to water-soaked 

Pakistan and the High Arctic, the planet seems to be having a midsummer breakdown. It‘s 

not just a portent of things to come, scientists say, but a sign of troubling climate change 

already under way.  […] 

The UN‘s network of climate scientists – the Intergovernmental Panel on Climate Change – 

has long predicted that rising global temperatures would produce more frequent and intense 

heat waves, and more intense rainfalls. In its latest assessment, in 2007, the Nobel Prize-

winning panel went beyond that. It said these trends ―have already been observed,‖ in an 

increase in heat waves since 1950, for example. […] 

The WMO [World Meteorological Organization] did point out, however, that this summer‘s 

events fit the international scientists‘ projections of ―more frequent and more intense 

extreme weather events due to global warming.‖ 

The report refers to several events from the preceding weeks: the heatwave and fires 

affecting Moscow, floods in North West China and a huge ice island that had 

recently calved from a Greenland glacier. The main thrust of the report is that these 

events ‗fit patterns predicted by climate scientists‘. In the latter part of the report, 

these three events are linked to specific predictions from the IPCC‘s latest synthesis 

report.  

Despite the relatively detailed nature of the report, none of the three dimensions of 

knowing proposed by Skovsmose (1994) are particularly apparent. The report 

involves only a minimal level of mathematical knowing, mostly through the statistics 

that are quoted (e.g. ―Moscow temperatures topping 37.8 degrees for the first time‖) 

and the use of rather vague comparisons like ‗more‘ or ‗increase‘. Only very general 

references are made to the process of modelling (i.e. technological knowing), such 

as, for example: modellers of climate systems are ―very keen‖ to develop 
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supercomputer modelling that would enable more detailed linking of cause and 

effect as a warming world shifts jet streams and other atmospheric currents.    

Models are constructed as simply being ‗developed‘ by ‗modellers‘. In terms of 

reflective knowing, the report does not explain how the IPCC‘s predictions were 

made, how trends are established or how projections are arrived at. The construction 

of climate models involves human actors making assumptions (Jablonka, 2010) but 

this aspect of the process is not apparent. Predictions and trends are attributed to 

‗scientists,‘ ‗climate scientists‘ or ‗climatologists‘ but their role is rather unclear. 

Similarly, the role of technology is apparent but only in general terms, through 

references to ‗supercomputers‘. Such references tend to give a gloss of reliability and 

obscure the role of the modeller in constructing the model: both mathematics and the 

human nature of mathematics are largely invisible. Interestingly, the human role in 

climate change is also not apparent. The article makes no explicit reference to 

specific human actions that have been identified as contributing to climate change. 

There is a discussion of cause and effect, but it concerns the question of whether 

climate change ‗causes‘ extreme events like heat waves.  

Climate change in public policy 

In June 2009, the UK Government published ‗Adapting to climate change: UK 

Climate Projections,‘ a document setting out likely effects of climate change on the 

UK, discussing various options for ‗mitigation and adaptation‘ and summarising 

policy and action at various levels of regional and national government. In the 

opening part of the chapter that presents the UK Climate Projections, there is a 

paragraph of explanation of climate models: 

Climate models are computer simulations of the way the Earth‘s climate works. 

Beginning with the laws of physics, they represent the characteristics of air, ocean 

water, ice, and crucially, heat around the Earth. They model chemical, biological and 

physical processes in the atmosphere, oceans and on land. Ever more sophisticated 

models and increasing computer power enable climate scientists to understand our 

climate better and study a range of possible future climates. Model results are 

checked in part by simulating past and present climate observations and seeing how 

well they perform. All of the models used in UKCP09 are internationally recognised 

and peer reviewed. These climate model results, together with observations of 

climate change, form the basis of the overwhelming consensus there now is in the 

scientific community and international bodies (including the Intergovernmental 

Panel on Climate Change – IPCC) that the world‘s climate is changing quickly and 

that this is mainly as a result of our actions.  

The challenge now, and one which the UK Climate Projections will help us meet, is 

to use this enhanced sophistication and the variety of models to provide us with a 

more detailed picture of the nature and probability of various possible outcomes. 
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This will inform practical decisions, helping our society to deal with the risks from 

climate change. (DEFRA, 2009, p. 3) 

As with the newspaper report (and somewhat ironically), this explicit discussion of 

mathematical modelling does not involve much mathematics. The quote makes only 

passing reference to any kind of mathematics (e.g. probability). The ‗technological 

knowing‘ dimension is confined to a rather general account of the modelling process. 

While this account conforms to a certain extent with the process as understood in 

mathematics education (Blum, 2002), it emphasises the ‗laws of physics‘ and 

‗chemical, biological and physical processes‘ rather than mathematical processes. In 

terms of reflective knowing, the human role in constructing the models, making 

assumptions and evaluating and applying the models is largely absent. They are 

computer simulations rather than human mathematical creations. Indeed in some 

parts of the texts, the models themselves have agency: they ‗provide us with a more 

detailed picture.‘ Humans act only secondarily through ‗peer review‘, for example. 

Unlike the newspaper report, there is some reference to human activity as a cause of 

climate change, but only in very general terms. Indeed, throughout the document, 

human or organisational activity is discussed mostly in terms of mitigation of climate 

change (e.g. constructing flood defences) rather than as contributors to the problem. 

The description of modelling, moreover, does not explicitly include human activity 

in its summary of what is modelled. 

CONCLUSION 

Our discussion of these two texts illustrates the idea that mathematics and human 

mathematical activity are largely invisible in the reporting of climate change. 

Furthermore, the role of human activity in causing climate change also seems to be 

heavily obscured. These observations are consistent with claims in the critical 

mathematics education literature that mathematisation results in dehumanisation (e.g. 

Jablonka, 2010; Ernest, 2010). Clearly there is a role for mathematics education to 

make the invisible visible. Making mathematics visible, however, risks contributing 

to this dehumanization particularly in relation to the human role in climate change. 

This is not to say that mathematics should be left invisible, but that a mathematics 

that includes reflective knowing is necessary. Consumers of reports about climate 

change need to be aware of the assumptions and the iterative process of working 

with models and their various variables. As Jablonka (2010) suggests: 

‗model-oriented reflection‘ helps at evaluating whether a mathematical model is 

likely to fulfil the specific purpose for which it is constructed. Explicating the 

underlying assumptions and exploring alternatives forms an important part of this 

activity. (p. 95) 

The emergence of human agency as a key issue in our examination of these texts is 

related to critiques of discourses of ‗the environment‘ in contemporary society. In 

particular, such discourses construct humans as distinct from the environment, over 
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which they exercise control and can exploit and manipulate to better their own (i.e. 

human) welfare, rather than as just one part of an ecosystem (see, for example, 

Bowers, 2001). The mathematical treatment of climate change risks perpetuating this 

discourse through its quantification of human activity: once the situation is 

mathematised, human actions are replaced by variables in an equation. Mathematics, 

in its quantifying mathematical ‗mesh‘ (Ernest, 2010), seems to filter out human 

activity. Mathematics helps us to become invisible. 

Our discussion of these texts is not intended to shed doubt on the claims that are 

made about climate change. Rather, we argue that the full modelling process needs to 

be more visible, since particularly the assumptions that are made mathematise 

climate processes and human behaviour. Such a task is not straightforward: one 

might not expect a newspaper report to explain in any detail the nature of the 

mathematical models involved. The question arises, therefore, of where the 

consumers of such texts may learn about such things. Moreover, not everyone can be 

expected to work with the mathematical model equations shown in figure 1. 

Nevertheless, a more widespread public understanding of the role of mathematics in 

our understanding of climate change would allow for a more informed discussion of 

the issues and a stronger and more effective societal response. Mathematics 

educators have an important role to play in responding to these issues, whether 

through schooling or broader forms of public education. Climate change is a serious 

threat to our ways of life. Mathematics education can play its part in addressing this 

threat. We would like to see more research, more teaching and more action on 

climate change and mathematics education. 

NOTES 

1. The nature and effect of this influence is an empirical question that remains to be investigated. 

2. ‗Climate scientists forecast more heat, fires and floods‘ by Charles J. Hanley of the Associated Press, published in the 

Globe and Mail on 12 August, 2010. The report can be viewed at http://www.theglobeandmail.com/news/world/climate-

scientists-forecast-more-heat-fires-and-floods/article1671364/actions.jsp. 
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Embedding everyday mathematics in home learning is considered by educationalists 

as one of the best mediators for learning. There is also evidence that everyday 

mathematics, such as cooking or the use of board games, is not used as a resource 

for learning by all parents. This paper examines how teachers make sense of 

embedded everyday mathematics at home in relation to parents‘ practices. The 

theoretical concepts of Boundary Crossing and Implicit/Explicit practice will form 

the basis for this paper. Data comes from interviews with eight teachers who work in 

culturally diverse school settings. The analysis focuses on teachers‘ narratives about 

the complexities of shared boundary crossing and home constraints which make 

everyday mathematics learning problematic
46

.  

Key words: everyday mathematics, teachers, boundary crossing, implicit/explicit  

EVERYDAY MATHEMATICS 

Embedding everyday mathematics into learning in the home has been considered 

beneficial in both academic circles (see Young-Loveridge, 1989) and educational 

policy within the UK (The Williams Report, 2008). We argue, like Street, Baker, and 

Tomlin (2008) that embedding everyday mathematics at home is a complex business 

as it involves more than the inclusion of mathematics activities and procedures. 

Numeracy practices are enabled or constrained by sociocultural contexts, values and 

representations (Gorgoriñ & Abreu, 2009), social and institutional relations  (Street, 

Baker, & Tomlin, 2008) and personal histories  (O'Toole & Abreu, 2005). In 

culturally diverse home and school settings the use of mathematical practices and the 

resources parents draw on to make sense of their children‘s learning can be 

contradictory and complex  (Crafter, 2009). This paper asks, what are teachers 

understandings of parents home mathematics practices? This paper uses two 

theoretical constructs to attempt to understand how teachers makes sense of 

embedded home mathematics learning – 1. Boundary Crossing and 2. 

Implicit/explicit numeracy practices.  
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BOUNDARY CROSSING AND IMPLICIT/EXPLICIT LEARNING 

Until recently, both traditional and sociocultural traditions in cognition have focused 

on learning progression within particular communities. The situated cognition 

tradition for example, centred on movement from periphery to full legitimate 

participation in a particular community (Lave & Wenger, 1999). Developmental 

psychological research investigating the interplay between culture and cognition has 

looked at the change of mathematical practices over time (Saxe & Esmonde, 2005). 

Movement of knowledge between or across communities has been of interest for 

some time, first in the form of transfer which suggested that knowledge used in one 

context is utilised in another  (Thorndike & Woodworth, 1901). While this idea has 

been taken up in areas like mainstream cognitive psychology, it has been widely 

recognised that knowledge, including mathematical knowledge, is culturally situated 

to particular contexts  (Abreu, 1995; Nasir, 2008).  

The change of focus from the concept of transfer to transition proved much more 

helpful for those of us interested in studying the cultural nature of mathematical 

knowledge. Transitions could come in different forms – some transitions are 

consequential, because not only can they be a struggle, but also they have the 

potential to alter ‗one‘s sense of self‘ (Beach, 1999, pp. 114). In other words, they 

usually have an impact on the individual and the social context that they inhabit. The 

type of transition that a child makes between home and school is called a ‗collateral 

transition‘ where, historically speaking, activities are taking place simultaneously. 

The child is in a continuous process of moving between these two major 

communities of practice and therefore the construction of meaning is ongoing for all 

the key players of those communities.  

More recently, attention has (re)focused on the notion of boundary crossing. It is still 

not clear to us what distinguishes the forms of transition mentioned by Beach (1999) 

from boundary crossing. Perhaps it is that boundary crossing encompasses more than 

strategic knowledge to include symbolic resources and representations (Zittoun, 

2010). For Wenger (1998) boundary crossing, seems to emphasise the practices 

themselves as units of analysis whilst for the purpose of this paper, the representation 

of the practice takes centre stage. However, Wenger‘s (1998) conceptualisation of 

boundary crossing is useful in that it addresses the continuities and discontinuities to 

the forms of practice which are enacted when moving between one community and 

another.  

Some forms of mathematics knowledge have greater power and status than others 

(Nasir, 2008). Some practices are deemed more worthy than others (e.g. boards 

games are valued mathematics practices by the school while dress making and 

carpentry largely go unnoticed – see  González, Andrade, & Civil, 2001). The 

mathematical value of dress-making might not be recognised by school (the more 

powerful community). When certain practices are reified they are imbued with 

greater status than others. Boundary crossing from a cognitive perspective connotes a 



Working Group 10 

CERME 7 (2011) 1421 

 

shared knowledge  (Akkerman, et al., 2007) but we question where this shared 

knowledge begins and ends.  

Using the notion of implicit/explicit practices may provide a useful mechanism for 

looking at the boundaries of mathematical practice across the communities of home 

and school. Tomlin, Baker and Street (2002) explore in their research those practices 

which are more visible or explicit, and are recognised by all concerned as improving 

mathematical skills. However, some mathematical practices are viewed as less 

salient, or are more implicit, because they often go unrecognised as contributing to 

the mastery of mathematical skills. There are a number of crossovers between 

schooled mathematics and out-of-school mathematics practices such as working on 

number bonds, times tables, dates, measuring, money and playground games. Other 

practices such as homework and shop bought textbooks also transcend both contexts. 

Out-of-school mathematical practices like laying the table, counting stairs, setting 

the video and producing calculations from looking at car number plates reveal how 

varied numeracy learning can be. These examples further highlight how much the 

uses of home mathematical practices are reliant on the social characteristics of 

engaging in numeracy. 

This has led to some questions - what is constrained or facilitated in the boundary 

crossing? What forms of mathematical knowledge (implicit/explicit) make it possible 

to address the continuities or discontinuities across communities? This paper 

explores how teachers talk about tensions and expectations on home mathematics 

learning across the boundaries of home and school when thinking about parents‘ 

practices.  

THE EMPIRICAL STUDY 

To examine teachers‘ representations of parents uses of everyday numeracy practices 

we draw selectively on findings from interviews with eight teachers who participated 

in a wider ethnographic study exploring home and school mathematics learning. The 

teachers taught children from two different primary schools situated in the same 

town, known as school A and school B (all catering for pupils aged between 5-11 

years). In school A the proportion of ethnic minority pupils could be described as 

‗culturally mixed‘ and school B was mainly white school.  At the point of data 

collection pupils, parents and teachers were sampled from the highest and lowest 

achievement groups in the year. The exception being Richard‘s class in school B (see 

table) which had a policy of mixing different achieving children. 

School Teacher Year Group  Achievement Group 

School A Catherine Ages 6/7 years High 

School A Jane Ages 6/7 years Low 

School A Anna Ages 10/11 years High 



Working Group 10 

CERME 7 (2011) 1422 

 

School A Mary Ages 10/11 years Low 

School B Richard Ages 6/7 years Mixed 

School B Chris Ages 10/11 years Low 

School B Susan Ages 10/11 years High 

 

The empirical data we use in this paper to illustrate our thinking was collected using 

the episodic interview and analysed using an episodic analytic technique (Flick, 

2000). Selections of questions which are pertinent to the data explored in this paper 

are: 

 

 

 

 

 

SHARED BOUNDARY CROSSING 

Everyday mathematics which forms that grey area between implicit and explicit 

mathematical practices was a central feature of the teacher narratives in this study. In 

a previous paper we argued that there are some home mathematical activities which 

are obviously explicit – homework, mimicked school-like activities like shop-bought 

books (O‘Toole & Abreu, 2003), etc... This first quote from Jane highlights what she 

perceives as some of the discontinuities between her own perspective/practices and 

those of some parents. She has been shown a vignette from another teacher who 

argues strongly in favour of everyday embedded mathematical activity as a learning 

tool. There is not space to put the whole vignette but it provides a general idea: 

 

 

 

 

 

 

 

She responds: 

Jane:    I agree with her that maths should relate to the everyday life, I don‘t dispute 

that. And again, there‘s a big difference, and it‘s been studied with my own 

In your view, how important is it that parents are involved in their children‘s school 

learning? Could you tell me about a situation around that? 

Do you think that practical [mathematics] work is more beneficial at home than the 

more traditional academic work, can you describe how you feel about it? 

 

I have a real antipathy towards homework for children on this age. I would much 

rather that the parents were helping the children in general ways, to learn. For 

example, if they wanted their maths to improve, I‘d much rather see them taking their 

children shopping and talking to the children about, ‗oh, you know, these apples are 

£1.50 and kilo, you know, how many do you think we‘re going to get‘, and just 

bringing mathematics into their everyday life. I tend, I do find in this school, and I 

don‘t know whether it‘s a generalisation, you know, or whether its true everywhere, 

but the parents tend to want a sheet of sums,  
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son – stairs, count them as you go up and as you come down, pre-school 

thing. There are parents who don‘t believe unless you have a sheet, because 

they remember their own homework but what they‘re remembering is high 

school homework. Unless you‘ve got a sheet folded in half, sums down 

there and sums down there.  

This was not necessarily an opinion shared by her colleagues. Just to give you a 

flavour of variation around the boundaries of implicit/explicit mathematics practices 

another teacher says:  

Susan: ...  I think a lot of parents just do what she‘s saying automatically, and kids 

these days will, you know ‗just whip round the corner shop and get me a 

loaf of bread and a pint of milk and make sure you get the right change‘ and 

they can, I think they‘re far more streetwise these days than they‘ve ever 

been, so they‘re getting that kind of experience. We laugh about the 

traveller kids who are not necessarily that good at maths but if you give 

them a money problem and they‘ve got it like that, because they‘ve got the 

experience of actually going out and spending money and dealing tangibly 

with coins. 

Her mention of the traveller community and ―kids these days‖ is interesting in that it 

shows recognition for both the cultural situatedness of everyday mathematics but 

also alludes to the historical aspect of boundary crossing which will be addressed 

more deeply in a moment. Jane raises an aspect of the implicit/explicit dilemma of 

mathematical practice which was a feature of most teacher narratives – laying the 

foundation of number in pre-school. 

Foundation laying 

From the interviews with these teachers it would seem that implicit mathematical 

practices are most valued when children are young, prior to coming to school. As 

such, parents are ideally expected to lay the foundations of their child‘s learning in 

the first five years of life. The expectation though, is that this is a ‗natural‘ activity 

that is implicitly embedded in everyday practice. This foundation then sets the child 

up for the boundary crossing into school. Catherine is responding to the quote from 

the teacher about everyday mathematics mentioned already: 

Catherine:  I mean the idea is that parents give them support. I find that most of 

the parents do give them support but I think this what she‘s talking 

about here, about real life maths, like going shopping, then I think 

hopefully the parents are doing that anyway as well. And have been 

doing that ever since they were, I mean that‘s what makes these 

children better mathematicians, better at anything. That from day one 

when they were tiny babies you start counting their fingers and 

counting their toes, and doing things like that. The parents either do 

that naturally or they don‘t. They don‘t teach them to do it. And the 
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ones that started with the baby counting its toes will be at the shop 

saying ‗well, you tell me what the change might be‘ ...It has an impact 

on how they come into school, and what they can do when come into 

school. I mean, some come into school really quite numerate and literate 

really. Knowing lots of nursery rhymes and all these sort of things. And 

other children come to school knowing absolutely nothing. And they‘re not 

necessarily less intelligent at the end of the day, but just have not had five 

years of education, or whatever, that their parents would have given them.  

Work from the ‗funds of knowledge‘ research suggests that parents do not always 

―naturally‖ undertake mathematical practices valued by the school (see Gonzalez, 

Moll, & Amanti, 2005 in the US or Andrews & Yew, 2006 in the UK). Wenger 

(1998) talks about boundary peripheries – the trajectory where a newcomer to a 

community becomes a full member of that community with time and experience with 

the practice. In a school setting it is almost impossible for a parent to become a full 

member of the community because their connection through a third person (the 

child) keeps them on the periphery. The direction of knowledge is assumed to go 

from school to home, not the other way  (Gonzalez, Moll, & Amanti, 2005). Yet in 

the case of foundation laying, parents are expected to develop the right kind of 

knowledge prior to their child arriving in the school community: 

Mary:  Children really from year dot should be learning how to speak, and if it isn‘t 

-you know, your phone number, your door number, numbers all 

around you, I think that helps a lot. And then they‘re not frightened of 

it and don‘t look at it and think ‗ah, it‘s totally scary‘. 

Foundation laying was in some cases recognised as a historical activity within the 

home community: 

Catherine:  I think its one of these things, you know, if your dad is really good at maths 

or your mums really good at maths it will show through in the child.  

Sociocultural theories and Communities of Practice recognise the importance of 

mutually engaging histories by members of communities or societies. Parents own 

mathematical past experiences are recognised as having an influence on their current 

mathematical endeavours (O'Toole & Abreu, 2005). 

Resisted boundaries 

Some parents whose knowledge in one community is enough that it can carry to 

another community may resist institutional boundaries placed on them. Parents who 

are themselves teachers have full participatory knowledge in one context which 

crosses the boundary to another. Anna discusses her resistance to some mathematical 

practices sent home from school, which she subsequently reconstructs: 

Anna:  though my son is only five, during the Easter holidays and half 

holiday, this list came; he has this maths booklet at home, which I 
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must admit we very rarely look at. And there was this list saying do 

page fourteen, fifteen, sixteen, you know, about ten different pages. 

And I looked at that and I thought, and I did look them up and see 

what areas it was and then I thought no, he‘s not doing that we‘re not 

going to sit and he doesn‘t have to write it or anything or take it back 

to school. But I just thought I‘m not going to slog through this during 

his holidays, but I thought we could spend our time much more 

valuably. And so we did, he had 50p during the holiday and we took 

him to the shop ‗right ok, you can buy yourself a treat‘, ‗how much 

have I got mum?‘ ‗well you‘ve got 50p there‘ and it was about his 

change or whatever. And then another time we were cleaning out the 

car and it was all the money that we found underneath the seat. 

As a teacher Anna‘s insider knowledge allows her greater freedom in terms of the 

boundary crossing between home and school with her own children. Her expert 

knowledge means she can be resistant to formal mathematical practices sent from 

school to home. With explicit knowledge this is less complex than implicit 

knowledge which is largely culturally and experientially driven. 

HOME CREATES CONSTRAINTS 

Teachers were very conscious of the constraints to mathematical practice in the 

home. Some of those constraints came about because of boundary crossing with 

other extracurricular activities such as swimming clubs, sport activities, Mosque or 

dance. Some of the teachers spoke of the other difficulties in explicitly embedding 

everyday mathematical activities in the home. Catherine narrates the difficulties in 

sending practical work home for children to do: 

Catherine:  Do you think that practical work is more beneficial at home than 

the more traditional academic work? 

Catherine:  So what would you put in that, as practical work? 

Interviewer:  Um, what‘s been mentioned to me before are things like 

measuring, going in and weighing tins, rather than your sheet of 

sums 

Catherine:  Which you can end up with a lot of problems giving homework 

like that, because they can come back and say ‗well, I haven‘t got 

a tape measure at home or I haven‘t got a ruler or I have no scales 

in the kitchen 

Interviewer:  So it excludes some of the children 

Catherine:  It does, definitely. I mean you‘d be surprised what they say. I 

gave them some colouring, well it was a homework which said 

‗colour all these squares blue‘ or whatever, and I had a child who 
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said ‗but I‘ve got no colours at home‘, so I had to give her some. 

But you can‘t give them scales, and you can‘t give them tape 

measure, rulers. I mean, even, um, when we did some measuring a 

couple of weeks ago and one girl in my group came back and said ‗well 

I couldn‘t do my measuring because my sister took her ruler to school‘ 

so we did it in school with her instead. But the point is, they can‘t 

all...we even get the trouble with clocks, some children don‘t even have 

clocks at home. They‘ll have plenty of videos and microwaves and 

things, with digital time on them, but they will not have an analogue 

clock in the house.  

We have argued elsewhere that the resources parents use to understand their child‘s 

mathematics learning can be in symbolic form, such as the representations of child 

development (Crafter, 2009). Resources in the form of artifacts also have the 

potential to reify participation between two Communities of Practice (Wenger, 

1998). In relation to boundary crossing, Wenger (1998) discusses how artifacts (such 

as colouring pencils or clocks) help organise the interconnections between 

communities. As Catherine points out, culturally diverse settings can create 

disconnections which arguably can increase the gap between children who do, and 

do not engage in implicit mathematical practices at home. 

Anna spoke of another form of constraint on children‘s home and school 

mathematics learning    

 

Interviewer:  Why do you think some children do better in their mathematics 

than other children? Can you tell me about it? 

Anna:  Quite possibly the attitude of their household to mathematics. If 

you have parents who always say ‗oh, I was no good at maths at 

school, oh I found it difficult, oh not maths, don‘t ask me‘ I think 

it tends to show the children that there is something hard about it. 

Whereas, I actually think that with a positive attitude most 

children actually enjoy maths. But I suppose it‘s with any subject 

you know, some children will find learning numeracy more 

difficult, but then you‘ll find other children who find reading 

more difficult but they‘re very good at numerical problems.  

Chris alludes to a similar issue to that raised by Anna.  

Interviewer:  Do you think there are any aspects of the home background, 

which may affect their mathematics? Can you describe anything? 

Christ:  Again, I think attitudes towards numeracy in general. Again, there 

doesn‘t seem to be any shame about not being able to do maths 

and it‘s either joked about, whereas you‘d never joke about not 
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being able to read, or write. I think that‘s probably the biggest 

issue to get over, that it‘s not ok, not to be able to do maths. 

SOME CONCLUDING THOUGHTS 

This paper has attempted to make sense of teachers‘ understandings of parents‘ 

everyday mathematics in the home through the theoretical lens of boundary crossing 

and implicit/explicit mathematical practices. Understanding episodes where 

implicit/explicit use of mathematics has crossed boundaries seems to be important. 

Grossen (2010) talks about the ways in which a piece of text in one ‗sphere of 

experience‘ is incorporated in the social and cultural experience in another ‗sphere of 

experience‘. Can we focus on mathematical practice in a similar way?  If so, we 

could perhaps help avoid the tendency that teachers and schools have to ‗impose 

upon‘ the home the ‗right kind‘ of mathematical practice. Teachers‘ lack of 

knowledge about the diversity of home mathematics encourages notions like 

‗foundation laying‘ which are imbued with notions of ‗naturalness.‘ Foundation 

laying obviously works well but it is also narrow is its scope in that only certain 

practices are included in that. While teachers know that parents‘ mathematical 

insecurities can pass on to their children there appears to be very little ‗mathematical 

identity‘ work which goes on in practice. One might imagine that this is largely 

because a) they are not trained to address the psychology of identity and b) there is 

little time and space in the delivery of the curriculum to do so.  
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This paper presents results from a pilot study into students‘ perceptions of the 

relevance of mathematics. Cultural historical activity theory is used as an analytical 

perspective. Data are collected through interviews supported by classroom 

observation. Convenience and purposive sampling were used to select the school 

and students. Findings indicate that students perceive that only basic mathematics is 

used in their everyday activities whereas the mathematics they are learning at the 

moment: has an indirect relevance through other subjects or used by professionals; 

has use in their future studies; has an exchange value in the market place of joining 

the university and getting job; and in mathematics they experience a sense of 

identity, empowerment, spirituality, and trust in the curriculum and their teacher. 

Key words: context, preparatory school, perception, relevance 

INTRODUCTION  

The students in this study are preparing for higher learning institutions (hence the 

school designation ‗preparatory‘). The first author‘s experience as a mathematics 

teacher has revealed that there are many who consider mathematics as an academic 

exercise rather than a social activity; he has observed that even some teachers are 

challenged when they encounter real-life problems that could be solved using 

mathematics. He has observed that students pay attention to what they perceive as 

relevant to them. The textbook rarely includes practical problems; for example, the 

topic limit, which is said by teachers to be difficult for students to understand, 

consists of 177 exercises and 62 examples, of which there is only one practical 

exercise. Literature indicates that mathematics with real world connections makes 

learning mathematics more effective (e.g. Mason & Spence cited in Even & Tirosh, 

2008, Goldin, 2008) and that the perception of students about mathematics is 

important for success (e.g. Even & Tirosh, 2008, Mulat and Arcavi, 2009). 

Motivation – ―the inclination to do certain things and avoid doing some others‖ – is 

an important construct that affects performance in mathematics (Hannula 2006, p. 

165). According to Roth and Lee (2007) identity, motivation and emotion are 

integral to the activity of learning. They contend that emotion as well as identity – 

the sense that the individual has about who she/he is with respect to others and with 

respect to the activity of learning – are central in the student‘s motivation to engage.  

A key term in this study is perception, which means, ―a result of perceiving‖ where 

to perceive means ―to attain awareness or understanding of … to regard as being 

such‖ (‗Dictionary and Thesaurus – Merriam Webster‘, n.d.). Our study seeks to 

expose the students‘ understanding of the relevance of mathematics she/he is 
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learning. Thus, the term that fits the purpose here is perception. Mulat and Arcavi 

(2009) also studied the perception of high achieving students about what fosters 

―their mathematics and academic trajectory‖ (p. 77). In their study ‗perception‘ 

referred to the students‘ understanding of the factors that enable or constrain learning 

and achievement of mathematics. The purpose of this paper is to report a 

characterization of Ethiopian students‘ perception of the relevance of mathematics 

with respect to their learning goals as well as about the relevance of mathematics to 

their society and real life situation, which we believe exposes the perception in a 

peculiar context and contribute to the improvement of learning mathematics in 

Ethiopia. The principal research question addressed in this paper is ‗what are 

Ethiopian students‘ perceptions of the relevance of mathematics and how are they 

characterized‘. The paper is structured in such a way that the theoretical perspective 

and methodology are discussed first, followed by the analysis, presented in eight 

themes that emerged through the analytic process.  

THEORETICAL PERSPECTIVE   

The theoretical perspective that guides this study is cultural historical activity theory 

(CHAT), which is one strand of sociocultural theory that has evolved from the work 

of Vygotsky (Roth & Lee, 2007). Sociocultural theory is about people‘s active 

involvement in cultural practices and the inherently social nature of mental processes 

(Cobb, 2007; Lerman, 1996). Proponents of sociocultural theory contend that there 

are many things that will remain obscure if the focus is only on the individual 

(Lerman, 1996; Wundt, in Cole & Engstrom, 1993). A basic tenet of cultural 

historical activity theory is that knowledge appropriation is a social process and 

learning doesn‘t take place in the mind only but distributed in the activity system, 

which is mediated by cultural tools such as language, with human activity as the unit 

of analysis (Lerman, 1996). Central to CHAT is the notion of agency, that people can 

choose their goals for action and this object oriented action is mediated by cultural 

tools, community, rules and division of labour (Roth & Lee, 2007). Engstrôm‘s 

expanded mediational triangle (Cole & Engstrôm, 1993) can describe the situation, 

which models the individual‘s activity within which perception is mediated by the 

tools, rules, division of labour, and the community, as well as contradictions that 

might exist among and/or within them (Roth & Lee 2007).   

The students have been involved in the activity of learning mathematics long before 

they were enrolled in preparatory schools. In this activity which has a historical 

dimension independent of the individual student, i.e. it has no definite beginning nor 

an end, with the ultimate motivation of survival of the society and the individual in 

the society (Roth & Lee, 2007), students are involved in a variety of activity systems, 

for instance, the school and the local community. The school rules enforce the 

curriculum and exams, and the textbooks are mediating artefacts. The teachers are 

supposed to follow the textbook strictly, and they take it to the classroom with them 

and give class work and home work from it. The medium of instruction is English 
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language which the student uses at school only. The experience of the first author 

indicates that whereas the students were all learning in English and interacting with 

each other in Amharic, they had different mother tongues. These students are living 

in an impoverished economic circumstances. Teachers are less paid than other 

professions as a result of which teaching is considered to be of less social value. On 

the contrary, the teacher is generally perceived as the authority when it comes to 

knowledge, and in Ethiopia it is popularly said, ―The teacher is the father of 

knowledge‖. The students‘ perceptions are mediated by these elements. It is in such a 

framework that such behaviours could be interpreted (Roth & Lee, 2007).  

METHOD AND METHODOLOGICAL REFLECTIONS   

The study is situated in the interpretivist paradigm. The intention is to understand 

students‘ perceptions. The research question and the theoretical framework lead to 

the development of a qualitative research methodology because perceptions are 

behaviours that ―can only be understood within [their] environment, which needs to 

be explored and explained‖ (Burton, 2002, p. 8), and it allows the investigation of 

the situation from the perspective of the participants. It is a case study design 

recognising that the knowledge gained is influenced by the peculiar culture of the 

context. The data are collected through interview of students from one chosen school 

which has its own peculiar features although ‗typical‘ of Ethiopian preparatory 

schools. Since the purpose is to see the relevance of mathematics through students‘ 

eyes the appropriate way to do it was holding an interview because it enables one to 

hear their own account. Particularly focus group discussion was used where students 

were provided discussion points to expose their opinions, and probe with further 

questions to enrich the responses. This was intended to create a situation where the 

students feel secure among their own classmates, and probe each other as well as to 

engage with more informants in the time available. Classroom observation supported 

probing during the interviews and exposing features of the mathematics classroom. 

The first author had taught for more than three years in the selected school and there 

are former colleagues who helped the selection of students. The topics and students‘ 

experiences might vary across gender, streams, grade levels, and achievement level. 

The department head selected 4 classes – 2 from social science and 2 from natural 

science (i.e. one from each of 11
th

 and 12
th

 grades) – where the mathematics teachers 

were homeroom teachers (the teachers having first line of responsibility for the 

students in a class) because they have better experience of the students and their 

academic standing. Then each teacher selected 3 female and 3 male students who 

were identified as low, medium, and high achievers. A total of 24 students were 

selected. Students of same sex from the same class were interviewed in the same 

group which was intended to create a situation where the students felt more 

comfortable and the relative freedom to express their ideas and probe each other. 

Themes emerged from the analytic process, and each theme is analysed using CHAT 

as a framework for identifying key features.  
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DATA ANALYSIS  

In this section the data analysis is presented as a descriptive account of students‘ 

perceptions of relevance, under eight themes which are ‗grounded‘ in the analysis.  

Mathematics is relevant because it is used in every day activity   

The students are engaged in the activity of learning mathematics and they are also 

participating in the day to day activities of the society. Some students perceive that 

mathematics is relevant to every day activity Azenegash says, ―how far I am coming 

from home. ... Those who work in the Edir [1] should know mathematics‖. Her 

perception is mediated by the artefact (the road) and the community in the local 

activity.  Their mathematical knowledge is valued by their community. Ruth says, 

―When my mother wants to calculate something she calls me to do it for her; if she 

was educated she could have done it herself [2]‖. Her perception is mediated by her 

role in the local activity – she is involved in the budgeting of the family‘s 

expenditure. However, Ibrahim perceives that the knowledge being used in every day 

activity is that which they learnt at primary school because the society is ―not a 

developed society‖ but he mentions that, ―the ball should be spherical so that it can 

roll‖. His perception is mediated by the local community and the cultural artefacts. 

On the other hand, Beza mentions an example where an outcome of the school 

activity was used as a tool at the workplace, ―population size, proportion, death rate, 

average, etc. are useful in society. … My father works for the statistics authority‖. 

Her perception is mediated by the local community, through her father. Fisiha works 

in a wood work shop with his brother. He says, ―For example, in my job, I measure, I 

should read the number; in order to cut accurately you should learn number‖. His 

role in the activity of the local community mediates his perception. 

Mathematics is relevant because it is used in other subjects    

Some students perceive that mathematics is relevant to other subjects they are 

learning, Mekia says, ―mathematics is useful for physics. … In chemistry we have 

mathematics‖. Beza gives a specific example. She says, ―Log, we learnt, is applied in 

bacterial growth; so it is used in biology‖. Habtu provides another example, ―physics 

involves number e.g. vector‖, but he comments that ―those [they] are learning now 

are rarely used‖. Their perceptions are mediated by the school curriculum. Debesh 

sees two distinct mathematics. He says:     

There is calculation in Geography, Business; not the [subject] mathematics but the 

calculation in these subjects is useful. … I think there are subjects which are related to 

mathematics. Those subjects have societal values.  Thus, your knowledge of mathematics 

will help you for dealing with those subjects.   

His perception is mediated by the local community and the school rules. Fikru says, 

―In 7
th

 or 8
th

 our teacher said ‗mathematics is the king of all subjects‘. … it has use in 

chemistry; rector scale in geography; it is related with all other subjects‖. His 
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perception of relevance is mediated by the school community and rules. On the other 

hand, Meseret‘s perception of relevance is associated with her stream. She says, ―We 

are social, we don‘t use much calculation… Other subjects are to be learnt by heart; I 

take break with mathematics‖. Her perception is mediated by the other subjects, the 

school rules and the school community.   

Mathematics is relevant because it is useful in an unknown future   

The students are preparing for university studies. Hence their perception of the 

relevance of mathematics is mediated by their future goal. Habtu says, ―I want to 

study astronomy and my brother told me that in addition to mathematics, physics is 

the base‖. The local community mediates his perception of relevance. Yirdaw says:     

What we are learning now, I don‘t see its application. … But in offices I think they use it. 

… We are in the process of development. It is useful for what will learn in the future, I 

think. So, we must learn it.     

His perception is mediated by the local community as he perceives that it is being 

used in the work place. On the other hand, some students explain the future based on 

their experience of the interdependence of the current activities of learning, Abebe 

says:       

I don‘t know the detail about astronomy and how much mathematical capacity it requires. 

Since mathematic is important in our every day activities, it would be the same at that 

level. I think it would be important.     

Whereas Meseret considers a specific case and projects it to the future. She says, 

―[mathematics] is a mother tongue. … In economics there is slope. We learnt it in 7
th

 

or 8
th

 . We didn‘t know then that it has this use‖. Hayal who wants to study Medicine 

or Chemistry remarks its relation with science ―Science without mathematics? I don‘t 

believe that‖. Whereas, Makida says, ―In books we don‘t see where to apply [it]. [It] 

has relation with other subjects and we apply it on them… at tertiary level‖. Thus, 

the other subjects, the school rules and the tools at school mediate their perceptions.  

Mathematics is relevant because it gives an identity 

Students form their identity in relation to mathematics. Debesh wants to ―study 

Banking and Insurance because it has mathematics‖ and he ―like[s] mathematics … it 

is not difficult for [him]‖. He perceives himself as someone who can do mathematics 

well, and this sense of identity is a motivational factor towards making a decision 

about what he has to study in the future. Essayas, on the other hand, perceives 

himself as someone who does not want to deal with mathematics; he says, ―I want to 

study law because my brother told me that it doesn‘t involve mathematics … 

economics, but [it] has mathematics; so I don‘t like‖. His perception of relevance is 

mediated by the local community, and the emotion towards mathematics. His 

decisions about the future are mediated by his identity and emotion. These students 

are learning in English which they only use at school. The students‘ perceptions 
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might be related to this nature of mathematics. Debesh says, ―I like all but word 

problems are tricky. Use difficult words … or they are difficult to understand‖. In 

addition to the mathematical concepts, he is facing difficulty in understanding the 

English words embedded in the mathematics problems.  Abebe says,  

I like word problems, because it involves critical thinking and analysing … it has to be 

related to our society, things that we know and experience in our lives. Not in some other 

society; the names when related to our situation then we do it with interest. When it talks 

about some world we don‘t know – names and places we don‘t feel that we have any 

concern about it – then it is done while we didn‘t understand the use    

His identity is a motivation to his being engaged in learning mathematics. The 

students‘ perceptions of relevance to their identity might also be understood in a 

dialectical relationship between the individual and the collective. Ruth says, ―Most 

social science students don‘t like mathematics. Only few students work hard. Thus 

our teacher always advises us‖. She is high achieving and in other discussions as 

well she refers to the whole of students and the social science when locating herself 

in the mathematics classroom. There could also be a shift in students‘ perceptions. 

Beza says, ―When I saw that I scored B in mathematics in 10
th

 I didn‘t expect and I 

believed that I can perform well‖. Her perception changed because of her score. The 

school rules which insist on examination success in learning and the examination 

score used as a tool to evaluate learning mediated her perception. It is noted here that 

Beza‘s perception is related to her motivation to study mathematics. The student‘s 

role as a mathematics learner also mediates perception of relevance, Azenegash says:     

… But now I departed from my friends. … They are in another school [3] now. …there 

were clever students [who] explain to us. We used to discuss while walking home. …I 

don‘t score in it and when I miss something I don‘t get back to see it again.  

The change in Azenegash‘s activity system had an impact in her learning of 

mathematics. She used to pay attention to her surroundings with respect to 

mathematical meaning, and relevance of mathematics she mentioned before was 

about distance from home to school. She had formed an identity as a member of that 

group which shifted when she departed. Her identity with respect to that group was a 

motivational factor for her engaging in mathematics, which later changed as a result 

of the change in her identity. 

Mathematics is relevant because it empowers one to make informal decisions    

Some perceive that mathematics and the other subjects are there for them to expose 

their talents.  Erikihun says:  

I want to study language or philosophy. … I am doing well in language. … Mathematics 

and most of the subjects we are learning now might not be related to what we learn in the 

future. But, they help us to identify/know our interest and direct us to the future. We used 

to learn music; it is not important but if you have the interest then you will know. Some of 

us may end up in a field that doesn‘t involve mathematics at all but others may need it.     
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He perceives that the other subjects are competing with mathematics for students‘ 

choice or attention. Since he made other choices of social science, he perceives that 

he doesn‘t need mathematics, but learns it because others in his group need it. His 

perception is mediated by the other subjects, the school rules and community. we 

also see that his perception of relevance is a motivational factor, and negative one in 

relation to mathematics. Other students perceive that mathematics is there to broaden 

their mental capacity, Netsanet says,  

In sequence, we use formulas. But before we use formulas, there are items which we do 

simply by observation, by looking at it attentively. That helps you to think and analyse; it 

broadens your mental capacity.    

Her perception is mediated by the school rules. Her perception of relevance about the 

mathematics she is learning seems to motivate her to work on mathematics.   

Mathematics is relevant because the student trusts the curriculum 

There is a sense of trust in the curriculum. Asad perceives that they learn 

mathematics because ―[they] should learn it‖. Ruth trusts the curriculum because ―the 

teacher tells [them]‖ and her perception is mediated by the school community. 

Azenegash says:  

[The teacher] is our eye. … If it were not relevant we wouldn‘t have been taught … my 

teacher was telling me, now I realized that it was right: ‗when you are walking, it is the 

shortest distance to travel on the straight path‘. He did it for himself.  

The teacher is the origin of perception for trusting the curriculum, and the division of 

labour in the school activity also mediates her perception. She didn‘t see how the 

teacher did it and her role was to listen. She puts trust in the teacher that what is 

taught would have meaning in her life to come. On the other hand, Debesh says, ―We 

don‘t see. But, the teacher tells us; for example, log in earthquake measuring, in 

chemistry, though the concepts are difficult for us‖. In one of my classroom 

observations in Debesh‘s class (a social science 11
th

 grade classroom) the teacher 

was providing an example about earthquake and pH value in a lesson about 

logarithmic function. The mathematics teachers have natural science background, 

which might influence their practices in implementing the school curriculum and 

they use the same textbook for both streams, which mediates students‘ perceptions of 

relevance.  

Mathematics is relevant because it has exchange value 

These students are supposed to score a qualifying grade to be admitted to the 

university, and Ethiopia is a poor country in which success in education and securing 

a job relates to sustaining the life of the individual as well as parents. Beza says, ―We 

used to hear that 10
th

 is the turning point for life. … [Studying] any social science 

would be ok [to be a hostess]. … Mathematics is compulsory‖.  She is sure that 

success in mathematics is the gate keeper to joining the university and to achieving 
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the goal of securing a job – becoming a hostess. This perception of relevance she 

attaches to mathematics motivates her engaging in mathematics. The division of 

labour in the local community also mediates students‘ perceptions. For example Ruth 

says, ―Earlier I wanted to study law but it is 5 years. [I] study economics … then I 

can help my parents. … If I don‘t have the basis in mathematics I can‘t do 

[economics]‖. Thus, she learns mathematics to sell it at the marketplace of learning 

economics so as to get job at the end which enables her to sustain her family and 

study law which she really likes to study. The division of labour – her responsibility 

to help her parents – mediates her perception of relevance. Her perception of 

relevance is a motivational factor for being engaged in mathematics. The tools in the 

school activity mediate Yirdaw‘s perception in his endeavour to become ―a private 

accountant‖. He says, ―Mathematics books from abroad are better at applications 

than domestic ones. … I prefer the [latter] for success in exams. But, for my interest I 

prefer the [former]‖. Here we see that this perception is a development which 

resulted from the contradictions between the mediating artefacts and the school rules. 

Ahadu wants to ―become a [medical] doctor‖, and he thinks that ―whether one 

becomes a medical doctor or something else learning mathematics is part of the 

process‖. His perception is mediated by his future goal. Emotion also mediates 

students‘ perceptions. Alewi says, ―I am not interested in it but it is required … I 

liked polynomial at the beginning. … when I scored poor at the first test, I turned my 

back to it again‖.  The contradiction between her emotion – that she liked it at the 

beginning – and the school rule – that she should succeed in exam – led her to 

change her perception of relevance, and consequently, dropping it as irrelevant.   

Mathematics is relevant because it gives a fresh perspective of life  

Some students give spiritual meaning to the mathematical concepts they are learning. 

Hayal says:      

I brought the idea of limit to my life and interpreted it as, there is time when life ends; all 

the things that bother me together with my life in this world, come to an end, and begin 

the new life in heaven.     

She is looking at her life as function of time whose limit at a certain time gives the 

static life – life after death which her society believes in. Her perception is mediated 

by the rule in the local activity – the religious teachings. In the same interview group, 

another student, Makida says:  

Similar to what is mentioned by Hayal, when I learnt sequence, I learnt that things are in 

order they don‘t occur/happen randomly. It is as the saying goes ‗there is time set for 

something‘ [Solomon‘s saying from the Bible]. For example, we can‘t say 1 then 5; in life 

also we can‘t walk immediately after we were born; it goes in steps.  Things in life are 

ordered or they happen sequentially. This is what we learn indirectly.       

Since the school curriculum did not provide direct applications the school rule 

mediated these perceptions of relevance. 
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CONCLUSION  

The participant students perceive that mathematics in general is relevant to their real 

life situation. But, they perceive that the mathematics dominantly in use is that which 

they learnt at primary school and some concepts they are learning at the current stage 

have got some uses in other subjects or workplaces. This relates to their access to 

material and technology which might involve application of higher mathematical 

concepts. They perceive that the mathematics they are learning has use in some 

unknown future which is mediated by their future goals; and others do not see any 

relevance to their future studies. They see it as a means of access to the university 

and getting a job, which relates to the economic context of Ethiopia as well as the 

responsibility of the students to support their family/parents. Some put trust on the 

curriculum and the teacher, who is thought to be a big authority. They exhibit 

identity related to mathematics which sometimes changes, resulting in change in 

motivation. At times we see the students struggling with the contradictions between 

the languages at home and in school (textbooks and lessons are in English which 

students begin to experience as of lower secondary). The students face difficulty in 

understanding word problems, which are the only ways practical problems are meant 

to be experienced by this students. In some cases the students make informal 

decisions about the use of mathematics. Others attach a spiritual meaning which 

relates to the peculiar features of Ethiopian society: the belief in life after death 

which is static, and use of sayings from the Holy Book. This indicates that being 

situated in a mathematics classroom where the textbook, and hence the lessons, 

rarely present practical problems (and not in their mother tongue), the students need 

to produce their own contexts in order to understand the mathematical concepts they 

are learning. It is the gate keeper to their access to the university, hence to the better 

life they aspire for themselves and their parents. It becomes apparent that students 

are under enormous pressure to succeed in mathematics. The students exhibited 

motivation to engage in mathematics when they perceived that it is relevant to them 

in some way. Addressing the question, whether there is any relationship between the 

different categories of students included in the sample and different characterizations 

of perceptions discussed above is left to the next stage of the project.   

NOTES 

1. EDIR is social institution in the Ethiopian culture where members gather to discuss about issues related to 

social problems. They contribute money every month, and on the death of a member or siblings, they 

arrange a mourning ceremony including the funeral which lasts for three days. Members earn money as 

compensation on the death of a member or siblings. It is led by an elected board members consisting of 

chairman and a secretary. In some cases there are EDIRs for women only.      

2. It is a common phenomenon in Ethiopia that mothers didn‘t go to school. Some might have gone to the 

traditional school (called Kes Timihit literary means Priest School) where they learn the Geez alphabet (an 

old language now used in the Ethiopian Orthodox Church only and Amharic uses the same alphabet) and 

Ethiopian numerals which range from 1 to 1000 only, after 1000 it is elph (which means infinity).     

3. In the Ethiopian education system students are enrolled to preparatory schools if they qualify in a national 

exam at the completion of 10
th
 grade. Then, they will be assigned to the preparatory schools where they 
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learn for two years and take another national exam which screens those who will be eligible for university 

studies.    
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Crucial to the reading of our paper is the assumption that students enter school with 

diverse experiences with language and diverse experiences with construing 

meanings through language. We will argue that teacher-student interaction in 

secondary mathematics classrooms often is realised to the effect that only for those 

students, who have already been introduced to the linguistic qualities of academic or 

institutionalised discourse, further access to it is provided in schooling. Central to 

our argument are the notions of vertical/horizontal discourse, of 

contextualised/decontextualised language and of grammatical metaphor. We discuss 

these concepts before illustrating their power by an analysis of a transcript on the 

introduction to algebra in a sixth grade mathematics classroom. The focus of the 

analysis is on the strategies by which the teacher manages to cope with the diversity 

of students‘ sociolinguistic orientations to meaning. 

Key words: teacher-student interaction, language, vertical discourse, access, algebra 

CHARACTERIZING VERTICAL DISCOURSE 

As has often been said, schooling acts as a mediator of two major societal functions. 

Schooling provides access to particular discourses and hence to particular forms of 

knowledge while, at the same time, regulating this access and hence socialising its 

students into differing positions of power. In this context, some groups of students 

have been described as privileged and others as marginalised – although in many 

cases the marginalised build the majority. In research in mathematics education, the 

issue of privilege and marginalisation has been discussed in terms of social class 

(e.g., Cooper & Dunne, 2000), race (e.g., D. Martin, 2010), and migration (e.g., 

Gorgorio, Planas & Vilella, 2002). For many students, these conditions coincide and 

their marginalisation is exacerbated by an interaction of migration, race and social 

class issues. In many situations it is difficult to adequately express the complexity 

and diversity of marginalisation. Thus our focus is on the commonalities and, as we 

will argue, on the theoretical core of privilege and marginalisation: the differential 

access to a particularly powerful discourse – vertical discourse. 

The particularities of the discourses of power to which students are differentially 

introduced in school have been described differently, though mostly in form of 

dichotomies. We will briefly reconsider the most relevant concepts for our analysis 

that have been constructed in Sociolinguistics and Systemic Functional Linguistics 
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(SFL). For further concepts of other academic disciplines, that we consider relevant, 

but that we are not actively applying in this paper, see Cummins (1996) and Koch 

and Oesterreicher (1985). All concepts taken together, serve as the theoretical 

grounds for the subsequent analysis of an interactional mechanism that regulates the 

differential access to powerful mathematics provided by instructional practice: 

As a sociologist of education, Bernstein (1999) is concerned with the differences 

between horizontal and vertical discourse, where the concepts of discourse and 

knowledge are closely interrelated. Horizontal discourse ―is likely to be oral, local, 

context dependent and specific, tacit, multi-layered, and contradictory across but not 

within contexts. However […] the crucial feature is that is it [sic] segmentally 

organized‖ (p. 159). Knowledge and strategies of the horizontal discourse have the 

aim to maximise encounters with persons and with habitats. Vertical discourse, in 

contrast, ―takes the form of a coherent, explicit, and systematically principled 

structure, hierarchically organized as in the sciences, or it takes the form of a series 

of specialised languages with specialised modes of interrogation and specialised 

criteria for the production and circulation of texts, as in the social sciences and 

humanities‖ (p. 159). The contemporary dominant ideology of the life-long learner, 

making use of knowledge in differing contexts, is privileging vertical forms of 

knowledge and hence privileging those with access to vertical discourses. But how 

can access to vertical discourse be provided? On what kind of students‘ resources 

can access to vertical discourse be based? It is a core problématique of pedagogy to 

recontextualise horizontal discourse in school as a means to make institutional, 

vertical discourse more accessible for all. 

Hasan (2001) draws on Bernstein‘s distinction of horizontal and vertical discourse. 

For Hasan, horizontal and vertical discourses differ mainly in their relation to 

contexts. She sees the natural condition of human discourse as being contextualised 

language, concise a language with a close connection to the material situational 

setting of the interactants. Decontextualised language in contrast has a loosened or 

even detached connection to the material setting. However, it is decontextualised 

language, which is connected to positions of power: ―what is remarkably pervasive 

today is the kind of language use that is known as context independent, disembedded 

or decontextualised, especially in the sorts of societies spawned by the so-called 

progressive Western world. […] After all, among other things, decontexualised 

language is the voice par excellence of official ideology‖ (Hasan, 2001, pp. 48-49). 

The distinction between contextualised and decontextualised language is organised 

along the terms of actual and virtual reference. Actual references have the potential 

of being physically sensed by the interactants. These references may be immediate as 

well as displaced in time or space, however they need to be potentially sens-ible. 

Virtual references lack this potential. They are ―non-material and removed from 

situational realities, they simply cannot be directly and physically experienced: they 

are intellig-ible, not sens-ible‖ (p. 54). For participation in horizontal discourses, 
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contextualised language may well be a totally sufficient base. However, in the 

vertical discourse knowledge is not structured through the sens-ible context, but 

through the internal logic of a specialised practice. It is obvious that this internal 

logic is only intelleg-ible and far beyond material situational realities. In the case of 

academic mathematics, it is evident, that we deal with a highly intelleg-ible 

discourse, far from being sens-ible. No matter how much contemporary school-

mathematics is organised around sens-ible actual experiences, its end is the vertical 

discourse of virtual ideas: ―the mastery of disembedded language will consist in 

feeling at home with reality that is not sensuously mediated‖ (p. 57). Hence, the 

orientation towards decontextualised language is a crucial condition for participation 

in the mathematics classroom. 

 

As Bernstein and Hasan, J.R. Martin (2007) sees horizontal discourse as the original 

and intuitive mode of discourse. However through the perspective of SFL his 

concerns include the lexico-grammatical qualities of discourse, that is the make-up 

of utterances. He describes horizontal discourse as characterised by a harmony of the 

semantic and the lexico-grammatical stratum (see Fig. 1): Taking the sentence ―I 

love my mummy and my mummy loves me.‖, semantics and grammar are in 

complete harmony: participants (mummy, I, me) are described by (pro)nouns, 

processes by verbs (love(s)), and logical relations by conjunctions (and). 

Presumably, someone with a more elaborated use of language would rather express 

the same feelings in a sentence like: ―My mother and I have a good relationship.‖ 

Now semantics and grammar have created a tension: the noun ―relationship‖ is not 

expressing a participant, but a process (loving each other). Moreover, it gains further 

meaning, as through social everyday discourse different kinds of qualities implicitly 

got attached to it. Martin calls this tension of the semantic and lexico-grammatical 

stratum grammatical metaphor. However, although being more elaborated, the 

sentence quoted above remains part of horizontal discourse. Applying Hasan‘s 

perspective, the orientation to meaning is still contextualised. As we will argue, the 

key to vertical discourse lies in grammatical metaphor acting on decontextualised 

language, or as Martin puts it, in ―abstractions acting on abstracts‖ (p.54).  

As can be seen in Figure 2, the major characteristic of grammatical metaphor is a 

tendency to express all kinds of semantic categories in nouns, a process Martin calls 

thingification. From a multisemiotic perspective, O‘Halloran (1999, p. 382) 

concludes: ―The analysis of mathematical pedagogical discourse indicates that 

nominalization and extended nominal group structures are a feature of mathematical 

discourse.‖ Martin (2007), summarising extensive research on both scientific and 

human-scientific texts, claims: ―if no grammatical metaphor, then no verticality‖ (p. 

54). Concerning the social ramifications of grammatical metaphor, Martin holds, 

―from a functional linguistic perspective, access to vertical discourse is bound up 

with control of grammatical metaphor, which in western societies students are 

expected to master in secondary school. Failure to access this recourse entails 
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exclusion from [academic] knowledge structures. Here lies the social semiotic nub of 

institutionalized learning, educational failure and the distribution of knowledge in 

our expiring world‖ (p. 55).  

  
Fig. 1 Stratal harmony – grammar matching 

semantics 

Fig. 2 Grammatical metaphor as stratal tension 

 

NEGOTIATING MEANING: A MECHANISM OF APPEASEMENT 

Our issue is interaction in the mathematics classroom. We focus on the interactive 

mechanism by which one teacher deals with the diversity of his students in terms of 

their access to mathematics related vertical knowledge. As we will see, the concepts 

of (de)contexualised language and grammatical metaphor provide powerful tools for 

analysing the amplification of differential access to the vertical discourse. For a 

detailed description of the empirical research, see Knipping et al. (2008). 

The setting is a 6
th

 grade mathematics class in Nova Scotia, Canada. It is the very 

first lesson after the summer holidays, in which the teacher and the students engage 

in teacher-student interaction. The 6
th

 grade is the beginning of secondary schooling 

in that region, thus no hierarchy of achievement has yet been established among 

students. It is a rural area and the social background of students is quite diverse. 

 
 

Fig. 3 Mathematics task Fig. 4 T-table at the whiteboard 
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The students are sitting at group tables. At home they have solved the task displayed 

in Fig. 3. Our analysis starts in the moment when a student is filling her solution into 

a T-table provided by the teacher at the whiteboard (see Fig. 4). We split the 

following ten minutes of classroom interaction into six episodes, which we consider 

as functionally distinct for the interactional mechanism. We shall demonstrate each 

episode and its relevance for the negotiating of meaning in that classroom. 

Episode 1: Introducing the context (10:32-12:38) 

In the first episode Alicia is filling the missing numbers in the T-table at the 

whiteboard. Her classmates are encouraged by the teacher to help her out. Regarding 

the use of language, the whole episode is characterised by harmony of semantic and 

lexical strata, hence no grammatical metaphor is employed. Further, there is an 

extensive presence of physical resources (e.g. the teacher invites his students to refer 

to the T-tables they have in their textbooks). The language is contextualised and the 

discourse tends to be horizontal. The function of this episode may be best described 

as a smooth introduction into the emerging discourse, emphasizing the affective 

security necessary for the students to actively participate. 

Episode 2: Common negotiation of orientation (12:38 – 13:45) 

10 12:38 T Is there anybody from her group, as well as Alicia, who can tell us 

how those numbers fit in the way they do? What did you do?  

In  (10) the teacher, for the first time, goes beyond discussing particular numbers and 

by his elicitation indicates that there is a pattern, a principle structuring the T-table. 

He does that by using the conjunction ―how‖. The semantic and grammatical strata 

are still in harmony, though at the same time a first insertion of decontextualised 

language can be observed: ―How‖ is accompanied by a (semantic) metaphor ―fit in 

the way they do‖. Here, ―Fit in‖ does not mean a potentially sens-ible way of fitting. 

It refers metaphorically to the above-mentioned structuring principle. However, this 

question is followed by an alternative one: ―What did you do?‖ This refers back to 

previous actions and illustrates the ambivalence of the word ―how‖, as the students 

may either describe their experience or their reasoning. Hence, the teacher provides 

two different discourses within one utterance: a vertical discourse of reasoning and a 

horizontal discourse of experience. At this time, no preference can be observed: both 

discourses appear legitimate. 

In the following, a dialogue evolves between the teacher and Mike. Mike seems to 

have identified the discourse as a discourse of reasoning and explains his 

considerations, using the conjunctions ―because‖ and ―so‖. The teacher in reaction 

always links Mike‘s answers back to the particular numbers on the board and hence 

seems anxious about keeping the discourse overt for horizontal discourse and 

contextualised language. In summary, this episode is characterised by its tendency to 

verticality through a smooth and partial introduction to decontextualised language 

remaining, at the same time, open for contextualised meanings. It is remarkable that 
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Mike is the propulsive force in the negotiation and, further, that he is the only 

student taking part in it. 

Episode 3: Practice of a vertical discourse (13:45-14:30) 

After having – under apparent leadership of Mike – negotiated the orientation 

towards a more decontextualised language and a more vertical discourse of 

reasoning, the teacher now comes to the core of vertical discourse: He introduces the 

term of ―relationship‖. 

27 13:45 T I have a question. This can come, the answer may come from any 

group. You may look at the T-table here or you may look at the 

one you‘ve created in your notebook. Can anybody figure out or 

tell me the relationship between the left side of this T-table and the 

right side of the T-table. 

28   (Mike is the only student who raises his hand.) 

29 14:14 T OK. 

30  M The difference between the numbers, there‘s a difference of two on 

each number. 

31  T A difference of two. How do you mean difference? 

32  M There is, one is two higher. 

33 14:28 T So in other words, this one is two higher. 

By this he is making use of a grammatical metaphor. Semantically, ―relationship‖ is 

not a participant. In contrast, it rather expresses qualities, a process and logical 

relation. Hence, there is a tension of the semantic and the grammatical stratum; 

qualities, process and logic relation are thingified. Accordingly, to successfully 

understand the teacher‘s elicitation one has to decode both grammar and context. The 

discourse has reached verticality in its linguistic orientation and the term 

―relationship‖ entails the mathematical core of the talk. What students can learn here 

is the fact that T-tables materialise relationships, as the teacher quotes later on (48, 

episode 6). As expressed by Martin (2007), the core of vertical discourse goes along 

with the use of grammatical metaphor. But again – as in episode 2 – it is only Mike 

who is able to recognise and realise this orientation. As by ―difference‖ he 

autonomously employs a grammatical metaphor, he seems comfortable with its use. 

All other students remain silent, hence are not yet actively participating in the 

vertical discourse.  

Episode 4: Re-linking to the horizontal discourse 

In line 31 the teacher starts coming back to a more harmonic use of semantics and 

grammar. There, he is demanding to express logic relations by the use of the 

conjunction ―how‖. In line 32 and 33 Mike and the teacher are stepwise coming back 

to the visible and particular T-table, thus orienting towards contextualised language 
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and horizontal discourse. The function of this short episode may well be assumed as 

making the discourse more accessible to all. 

Episode 5: A second try of common negotiation of orientation 

35  T I have a question. How do you go from this number to this one?  

Remember you said that we added down or you folks added down. 

How do we get from this side if you were looking at these numbers 

and if you say they sort of, they sort of seem to match up in a way?  

How do we get from this side to this side? Karsten, can you figure 

it out? 

In some way, this elicitation resembles utterance 10 in episode 2. The teacher is 

reconstituting the harmony of semantics and grammar. His tool for asking for logical 

relation again is the conjunction ―how‖. This is accompanied through processes (go, 

added, get, etc. ) which are expressed through verbs. But as the ―how‖ is clearly 

related to processes, it - this time - is not ambivalent (compare to episode 2). He is 

really asking for ―How do you go from this number to this one?‖ instead of ―why‖. 

Hence the use of language is more contextualised, more bound to the experiences, 

the students have made in their work. However, he is not entirely coming back to a 

contextualised discourse, but still offering a decontextualised alternative, asking for 

how ―they sort of seem to match up in a way‖, which is equivalent to ―how those 

numbers fit in the way they do?‖ (10). While marking horizontal discourse as 

legitimate, there remains an implicit tendency towards the vertical decontextualised 

discourse. But again, he is offering alternatives and accordingly giving apparent 

control to the students over which discourse they like to refer to. The function of this 

episode can be regarded as another strive for a common negotiation of orientation. 

However, this strive remains unsuccessful and the teacher goes on to revise his 

strategy. 

Episode 6: Apparent unification of horizontal and vertical discourse 

37  T Is there anybody else or is there anybody else who can see 

anything else here that goes from here to here as far as 

relationship? How do we compare this number with this number? 

(T waits two seconds.) 

Similar to Episodes 2 and 5 the teacher is offering two alternative questions differing 

in their degree of verticality. Apparently, the teacher still follows his strategy of 

negotiation. However, a more detailed look at the first and more vertical of the two 

questions indicates a modification of the strategy. He is firstly asking for a process 

expressed in a verb (goes) and then links it in some unhandy way to the grammatical 

metaphor of relationship. The use of ―as far as‖ implies that there is something 

beyond the demanded process which is not expressible in a way that students can 

access. The difference to line (10) and (35) is in the direction towards which the 

discourse is oriented. While in line (10) and (35) the aim could be expressed as 
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drilling the seeds for the orientation towards the decontextualised vertical discourse, 

the aim now is to re-establish the students‘ feeling of comfort, neglecting the 

relevance of participating in vertical discourse. The following four and a half 

minutes of the discussion confirm this view. The teacher is limiting teacher-student-

interaction on arithmetical questions as: 

53  T Wayne, are you with us son? What‘s ten minus two buddy? 

54  W Eight. 

The focus is on the affective outputs of the discussion rather than on the content. 

There are several examples of the teacher‘s strategy of re-establishing the students‘ 

comfort in the discussion. An analysis of one of these examples may provide a good 

insight in the function of this strategy. 

48  T Because guess what, a lot of T-tables work in a pattern something 

like this where you can fill in a little tiny equation. If you 

understand that with this one you‘ll understand most of what 

happens in most of the rest of the T-tables. See this little equation 

here? It gets a little bit harder but they work basically the same 

way. 

The teacher highlights the exemplarity of the T-table and outlines the relevance of 

the discussion in the vertical discourse. In addition with his behaviour of eliciting 

simple arithmetic results and positively evaluating the answers, he is establishing a 

straight logical chain from filling out spaces in this particular T-table to 

understanding algebraic structures in T-tables in general, that is, a (false) progression 

in verticality: If you are able to answer ―ten minus two buddy?‖, then you 

―understand that with this one‖ and ―you‘ll understand most of what happens in most 

of the rest of the T-tables.‖ His use of the notion ―little tiny equation‖ is illustrative 

for this strategy of appeasement: Through the qualities of ―little‖ and ―tiny‖ the term 

―equation‖ shall lose the scare of an academic grammatical metaphor.  

50  T Now all of a sudden you are into real simple arithmetic. You did 

this ages ago so guess what? We made the math look a little bit 

hard, now we‘re trying to make it look easy. 

Of course, the teacher does not have the power to tear down the boundaries between 

horizontal and vertical discourse. Arithmetic serves as a tool in algebra, but factually 

it will remain a different discourse. Hence, the teacher is only able to mask the 

boundaries and consequently to render them invisible for the students.  

DISCUSSION 

The analysis illustrates how our chosen theoretical framework allowed us to identify 

an interactional mechanism, which bares the potential of amplifying the students 

diversity resulting from their differntial linguistic socialistion in early childhood and 
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primary school. Bernstein, Hasan and Martin all make us aware that this differential 

socialisation is closely connected to the issue of privilege and marginalisation. The 

ongoing research indicates that the mechanism observed is not a singular 

phenomenon. 

The interactive mechanism the teacher is using to negotiate mathematical meaning 

on two different discursive levels effects a differential provision of access to valued 

forms of mathematical knowledge. As Martin (2007) and O‘Halloran (1999) have 

argued, without grammatical metaphor and decontextualised language there is no 

vertical school mathematics discourse. Those students who are already prepared for 

decoding and using grammatical metaphor experience opportunities to further access 

the legitimate discourse of secondary school mathematics. Those who are only used 

to horizontal discourse are not challenged by new forms of knowledge. There is no 

attempt to make the different orientations to meaning visible. Instead of generating 

linguistic conflicts, the teacher establishes horizontal discourse as legitimate and 

blurs the boundaries between horizontal and vertical discourse. Hence, the teacher 

appeases rather than challenges those students who most need an explicit 

introduction into vertical discourse. 

Atweh, Bleicher and Cooper (1998) report on the differences of register of two 

mathematics teachers working in schools with disparate student population. Where 

students are expected to aspire future university studies the teacher challenges them 

constantly with decontextualised language. In contrast, in a working class suburb the 

focus of the mathematics teaching was to develop skills useful in a consumer society, 

resulting in a more intuitive and less systematic use of language. Here again, we see 

how the teacher‘s peception of low educational ambitions and aspirations limits the 

students‘ access to valued forms of mathematical knowledge. 

However, these teachers work with either positively pre-selected or socially 

marginalised groups of students. Their discursive practices are characterised by a 

high degree of internal consistency: either aiming at vertical or at horizontal 

discourse. The interactive mechanism of negotiating meaning on two different 

discursive levels within one classroom seems to be particularly important in 

unstreamed and inclusive school systems as student heterogeneity with respect to 

orientation to meaning is greater. In inclusive school systems, all students potentially 

access vertical discourse. In our illustrative case, however, interactional mechanisms 

translate student diversity into disparaties of achievement. Actually, through 

appeasement, the characteristics of vertical discourse remain masked for the non-

priviledged. 

NOTES 
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Immigrant students in mainstream schools join in social practices that are already 

structured by social representations. Representations have a crucial impact on how 

immigrant schoolchildren construct their learning experiences and the ways in 

which they make sense of themselves as learners. Immigrant students‘ transition 

processes are co-constructed with other social actors. In the school context, the 

teacher is a key person in helping them on creating new meanings, constructing new 

knowledge and establishing new relationships. Mathematics teachers‘ social 

representations, however consciously or not, mediate not only the actual content 

immigrant students may learn but also the identities they develop.  

Keywords: immigrant students, transitions, mathematical identities, social 

representations 

IMMIGRANT STUDENTS CONSTRUCTING MATHEMATICAL 

IDENTITIES 

Immigrant students‘ learning mathematics as a transition process 

Immigrant students‘ processes of learning mathematics in mainstream schools may 

be understood as transition processes. Being an immigrant student in a ―foreign‖ 

mathematics classroom implies a new context of mathematical practice, different 

relationships with people and knowledge, and different understandings of the actions 

and interactions that take place.  

According to Zittoun (2007), transitions involve changes in the social, material or 

symbolic spheres of experience of the person and imply processes of relocation in all 

of them. These changes in position convey new expectations and new possibilities 

but also constraints on action and losses. Transitions also imply reconstruction of 

identities and require new forms of knowledge and skills and bring the need to 

engage in meaning-making to confer sense to what happens to the person. Zittoun 

establishes that ‗in youth, learning difficulties are often linked to the fact that the 

person feels his/her identity put at stake or cannot find a personal sense in the 

learning situation‘ (op. cit., p. 196).  
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We argue that transition processes require transactions of meaning between people 

and across contexts and are therefore limited and shaped by social representations 

about the role and achievements of the person as part of a group to which s/he 

belongs or identifies with. Transition processes are co-constructed with other social 

actors. In the classroom the teacher is a key person in establishing new meanings and 

constructing new knowledge, but also in making available to his or her students 

certain mathematical identities.   

Transitions originate in changing contexts of social practice, changes in persons, or 

changes in the relations between persons and objects (Zittoun, 2007). Transitions 

require processes of adjustment to new life circumstances and involve multiple 

changes in frames of reference and meanings, and in relations with people. These 

changes require people to modify routines and interpretations, explore new 

possibilities, and develop new ways of acting and interacting. Social representations, 

as a means of constructing reality, have a special impact on the transition processes 

of immigrant students, in particular on their processes of learning mathematics and 

the construction of mathematical identities. 

Mathematical identity 

The limited extension of this paper does not even allow for a short account of the 

work done in mathematics education in relationship to mathematical identity. For an 

initial definition, we want to note that Martin (2007) establishes that mathematics 

identity (as he calls it) encompasses the dispositions and deeply held beliefs that 

individuals develop about their ability to participate and perform effectively in 

mathematical contexts and to use mathematics to change the conditions of their lives. 

A mathematics identity involves a person‘s self understandings as well as how s/he is 

constructed by others in the context of doing mathematics. Therefore, a mathematics 

identity is expressed in narrative form as a negotiated self, a negotiation between our 

own assertions and the external ascriptions of others. Mathematical identities are 

always under construction. 

For the purposes of this paper, by the students‘ ―mathematical identity‖ we mean the 

academic identity that they develop as mathematics learners and users. Mathematical 

identities include how students view their own aptitude for mathematics and how 

they see themselves as users of mathematical knowledge both in school and beyond. 

Students develop their mathematical identity through their participation in 

mathematical activities, their interpretation of their own classroom experience, their 

expectations about future (mathematics) education and about their uses of 

mathematics both in school and outside. Students‘ mathematical identities are 

dynamic rather than static, and are bound up in other social or cultural identities they 

may develop.  

Mathematics lessons are patterned activities organized with reference both to social 

norms and values and to mathematical concepts and rules. Therefore, students‘ 
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mathematical identities also include their sense of affiliation with the mathematical 

practices in their particular classroom and their identification with the norms and 

values regulating it. The development of mathematical identities is shaped by 

students‘ social positions in the mathematics classroom, their construction of 

mathematical knowledge, and how students understand their experiences as 

mathematics learners.  

Students‘ mathematical identities are constantly being reconstructed in relation to 

students‘ perceptions of themselves as mathematics learners and how they are seen 

by significant others involved in mathematical activities. How students see 

themselves as mathematics learners, however, is as important as how they are 

defined by others, especially their mathematics teachers.  

Cobb and Hodge (2002) established that the gatekeeping role that mathematics plays 

in students‘ access to educational opportunities includes the difficulties that students 

experience in reconciling their views of themselves and who they want to become 

with the identities that they are invited to construct in the mathematics classroom. 

Identities in transitions 

Immigrant students‘ transitions have the potential to change the ways in which they 

interpret themselves and their roles both in school and outside. The ways in which 

they experience and have experienced their learning of mathematics in the different 

contexts and how they interpret these experiences impact on their practices and in the 

identities they develop. The identities they develop as mathematics learners have also 

to do with their sense of affiliation with the mathematical practices in the classroom 

they attend, their identification with the norms and values regulating it and their 

possibilites to participate in the mathematical practices. 

According to Abreu and Cline (2003) there are three complementary processes of 

identity development: a) identifying the other – how the individual understands the 

social identities of ―others‖ that are dominant in the context of specific practices; b) 

being identified – how the individual understands the identity extended to them by 

―others‖; and c) self-identification – how the individual internalizes and takes 

positionings in relation to identities that had previously existed in the social sphere. 

These three complementary processes are not fixed but evolve through the 

interaction between the person and the sociocultural world. Identities are constantly 

reconstructed by engaging in a practice and belonging to a group, but also by 

wanting to engage in real or imagined practices and belong to real or imagined 

worlds.  

Crafter and Abreu (2010) reveal how processes of self-identification, identification 

of others, and identification by other significant people play a crucial role in 

transitions and that such processes are linked with social representations. Self-

identication coexists with identification extended by others and one process is a 

reaction to the other. ―Being identified‖ is a process whereby individuals understand 
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the identity extended to them by others. According to these authors, it is not 

uncommon that ―others‘‖ identification of oneself is based on dominant 

representations, which can be seen as part of the social context of practices.  

Our focus is on immigrant students‘ identity development in relationship with school 

mathematics. We are interested in identities associated with learning mathematics as 

part of a transition process and on how this development is influenced by social 

representations of immigrant children as mathematics learners held by their 

mathematics teachers.  

IDENTITIES MADE AVAILABLE TO IMMIGRANT STUDENTS 

Social representations and identity construction 

The purpose of Moscovici‘s theory of social representation is to explain a process 

whereby individuals and groups can manage to construct a stable and predictable 

world out of the diversity of persons, attitudes and social phenomena (Moscovici, 

1984). This diversity is organized through social representations that carry 

previously constructed meanings concerning the past, and make these meanings 

available for new applications. 

Social representation theory offers a way of understanding the social construction of 

reality that takes into account both the cognitive and the social dimensions of this 

construction (Ibáðez Gracia, 1988). Identifying the representations surrounding 

social phenomena is an approach that allows us to understand how persons both 

construct and are constructed by social reality through processes of communication 

and interaction. Social representation theory is particularly useful for understanding 

phenomena related to the teaching and learning of mathematics in classrooms in 

which immigrant pupils are present (Abreu & Elbers, 2005; Gorgoriñ & Abreu, 

2009).  

Among the functions of social representations Abric (1994) includes the following: 

a) knowledge of reality through an integration of information into a common frame 

of reference that is consistant in the values, social norms and practices of the group; 

b) definition of identity and group belonging, and identification and positioning in 

relation to other groups; c) guidance for forms of action and social practices through 

definition of the purpose of a given situation, production of expectations and 

anticipations, and definition of what is normative and counter-normative; and d) 

justification of opinions and actions in regard to people and objects and, on a more 

general level, the maintenance of social differentiation. 

The learner in transition belongs at the same time to different groups and participates 

in different practices. As in Duveen (2001), in the account of identity development 

we consider a fundamental idea that the individual in transition enters a social 

practice that is already structured by social representations of the specific 

community. In particular, teachers‘ representations about immigrant children as 



Working Group 10 

CERME 7 (2011) 1454 

 

mathematics learners will result in actions, discourses, and relationships that make 

available certain identities to immigrant students. This occurs in a context, the 

school, where power is not homogeneously distributed. 

However, identities are not only constituted by labels that people place on 

themselves and others. Identity is about how people become who they are and how 

they come to understand themselves (Urrieta, 2007). It is about how they come to 

figure who they are, through the worlds they participate in and through how they 

relate to others within and outside these worlds. 

In the following two sections, we illustrate how mathematics teachers, however 

consciously or not, make available certain mathematical identities to their immigrant 

students through the actual practices they promote in their classrooms. Through the 

opportunities they offer to their students, teachers contribute to shaping how 

immigrant students become who they are as mathematics learners, and how they 

come to make sense of themselves. For that purpose, we will draw selectively from 

two different ongoing studies.  

Marta and Ronnie 

Marta and Ronnie provide us with our first example. Ronnie is one of the 

participants in an ongoing study aimed at understanding the transition processes of 

immigrant students learning mathematics in Catalan schools (see Costanzi, Gorgoriñ, 

& Prat, in press, for more details). To date we have interviewed 33 Ecuadorian 

students in compulsory secondary school. In one of these schools, we have worked 

with 15 boys and girls, Ronnie among them. We have also worked with their 

mathematics teachers, and we have recorded several interviews with Marta, Ronnie‘s 

teacher.   

Marta‘s representations about mathematics being a universal school subject and 

learning depending solely on cognitive abilities, led her to attribute to her students 

low achiever identities. During the different interviews, she told us repeatedly that 

she did not consider her students‘ place of origin to be relevant information for her 

teaching of mathematics. In fact, one third of the students in her class were 

immigrant, and she could not tell us how many of them were from Ecuador. She 

insisted that to her all students are equal. However, when asked, it was clear that she 

had a prevailing view of students from Ecuador as ―working below grade level‖, a 

fact that had important consequences for her immigrant students‘ chances to 

participate in mathematics tasks with a high level of requirement.  

Marta:  There‘s no room for activities that are challenging, mathematically 

speaking. They‘re too weak; we can only do exercises if our goal is to get 

the students to pass. We can‘t do problems.  

In fact, during classroom observations, we never saw any problem solving situation, 

and during the interviews, her students confirmed this absence.  
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However, Marta‘s students told us that she was a good and caring teacher. Ronnie is 

one of them. At age 16, Ronnie was in the third year of the four years of compulsory 

secondary education, one year behind where he should be. He told us that ―when I 

got here I couldn‘t talk‖, by which we understand that he means he could not speak 

Catalan, the language of instruction in Catalonia. He also told us that ―since I was 

not up to grade level in mathematics because I came from Ecuador I was placed in a 

class a year behind‖ where he should have been according to his age. 

Now, he speaks Catalan well and says that he wants to go to university, although he 

understands that it will require hard work. Despite this, although he still has one 

more year of compulsory education and two of baccalaureate to complete, he also 

believes that he will not have access to the university system because of his being 

week at mathematics. 

Ronnie:  since I‘m not good enough at math, I won‘t be able to pass the entrance 

exam to go to university. 

Ronnie is one of the cases that show how a student has limited possibilities as a 

mathematics learner because of what is offered to him as school mathematics. It also 

illustrates that he has accepted the identities made available to him, to the point that 

his narrative could be that of his mathematics teacher instead of that of a student who 

wants to succeed.  

Carles‘ and his students 

The other example, that of Carles‘ lessons, comes from Prat (2009). Carles is the 

mathematics teacher of a group in the second year of compulsory education, with 

students aged around 13. We have observed the development of the mathematics 

lessons during several weeks and interviewed the teacher, and the students have 

answered an open questionnaire about the social organization of the mathematics 

lessons. 

During our first meeting, when Carles was asked about his students in class in order 

to organize the viedorecording of the lessons, he referred to those having learning 

difficulties or attitudinal problems. He only talked about the good ones if they had a 

behaviour that made them ―too obvious‖. When asked about the three immigrant 

students in his class, he told us:  

Carles:  (...) the three of them follow the lessons with no problem, they are good 

students. Other years, I‘ve had some immigrant students that were not so …  

From all the conversations we have had with him, it seems clear to us that he is ready 

to give opportunities to all his students, regardless of their place of birth. He commits 

to complete the prescribed curriculum each year and scaffolding learning is to him 

the basic strategy of mathematics teaching. From the very first interview he 

expresses that to him the person is more important than the mathematics content he is 

teaching. 
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Carles:  When we teach, we are facing people that have to learn something, each one 

with their own ways of being and doing, (...) the basic issue is that they are 

human beings. (... ) the most important thing is to educate them, even before 

teaching them mathematics. 

Next, we want to share with the reader some moments in Carles‘ lessons. We want to 

insist that, once again, our interpretation is based not only on the short vignettes that 

we are presenting now, but on a whole process of analysis of an ample set of data. 

In one of the sessions we observed, Carles‘ students were solving problems. The 

students were facing the blackboard and the teacher was the one leading the task. 

They were solving the following problem: 

In a rectangle, the length is 3cm longer than the height. The area is 80cm². Determine its 

dimensions.  

Carles:  (to all the students) What‘s the area in a rectangle?  

10 (JR):  (not asked individually) Length times height 

Carles:   (to 10(JR)) Before answering, you have to be asked. 

We want to note that Carles had described 10(JR) as ―a bright student that likes to 

be paid attention too much‖.  

Later on, when using the formulae to solve the problem, 10(JR) prompts, without 

being asked:  

10(JR):  when one of the solutions is negative, we cannot use it as a solution, since 

lengths cannot be negative.  

Nobody is paying attention to 10(JR) except the teacher that tells him that his 

thinking is correct. Then, the teacher explains it to the rest of the group. As 

observers, we noticed that the time for the lesson was running short, and Carles 

wanted a right answer to finish the problem before all left.  

In fact, we observed a repeated pattern in the interaction between Carles and 10(JR). 

When the teacher wanted an efficient answer, he would ask him or allow him to 

prompt his answer. However, he would not accept his non-invited contributions, 

even when they were right and useful, unless he was short of time. It was like on the 

one hand, he wanted to teach him that there were norms on how to contribute. 

However, on the other hand, by asking him when efficiency was needed, he was 

pointing him out as an able student.  

From the interaction with another student we recorded the following:   

Carles:  (to all the students) It‘s always important to clearly establish the ―x‖. If you 

know what ―x‖ means here, raise your hands.  
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Carles:  (several hands are raised) 16(DM), tell us.  

16(DM):  the length. 

Carles had described 16(DM) as a student whose ―attitude… well, it has to improve, 

right? But, well, he is starting.‖ From classroom observation and our conversations 

with the teacher, we understand that the teacher‘s intention was to have the student 

involved in the lessons‘ development. However, the pattern we observed was that he 

only asked him simple questions, like the one above. This was pointing the student 

out as one that was less able than average and that could only be asked about simple 

facts. This is especially obvious in the vignette, when he pretends the question to be 

an important one.  

Later on, during the same lesson, he gave them a list of equations to be solved. He 

told them that if anyone has a doubt s/he had ―to stand up and come to ask me‖. 

Once they were finished, and before correcting them, he gave them the solutions of 

the equations and asked ―who got all the answers rigth? Raise your hands!‖ In other 

occasions he asked them to raise their hands when they had the exercise or the 

problem wrong. This was a pattern that repeated itself throughout the time, to the 

point that the students described it as a natural part of the lesson.  

According to his explanations about how he organized the lessons, the teacher‘s 

intention was to follow both each student individually and the whole group. 

However, requiring them to go and ask him when they had any dobut or raise their 

hands whether they have the answers right or wrong, was also a way to distinguish 

those who do well from those that do not.  

DISCUSSION 

Immigrant students‘ transitions imply processes of identity reconstruction that could 

afford as well as constrain. How students see themselves as mathematics learners is 

as important as how they are defined by others, especially their mathematics 

teachers. Grades are an obvious mechanism through which students come to figure 

out how good they are thought to be at mathematics. Explicit praise or criticism is 

also a way to let students know whether they are doing what they are expected and 

how much they are expected to do. However, there are more subtle ways through 

which teachers extend identities to their students.  

In Ronnie‘ and Marta‘s case, we have seen how identities were made available to 

students, as a group, through everyday classroom practices, by leading them to 

construct a very restricted kind of mathematical knowledge, a fact that suggested 

constraints in their possibilities for their academic future. How could they become 

good at mathematics, or how could they think they were, or would be good, at school 

mathematics if they were offered no mathematical challenge? Marta, with an honest 

intention to make them feel that they succeeded at the tasks she offered them, she 
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only proposed routine exercices, reinforcing her a priori image of them as low 

achievers.  

Through Carles‘ case, we have seen how identities were extended to individual 

students, individually, through an honest effort to follow each student‘s progress. We 

have seen how, in everyday classroom practices, the way the teacher orchestrated 

participation in the classroom, and his pursuit of scaffolding learning provided 

evidence to all of who needed help and who succeeded without it. This way, in the 

actual developing of classroom practice, students could make sense of themselves as 

good or bad in mathematics. 

Our work is still a work in progress. In this paper, we have neither discussed how 

acceptance or rejection of the attributed identities take place, nor how students 

position themselves in relationship to normative identities in class. There are many 

other questions still open, such as what is the role played by agency and power in the 

realisation or contestation of social representations, or how students negotiate with 

themselves and others the different identities they construct through their 

participation in different practices.  

We have illustrated how social representations play a role in the attribution of 

identities through the mathematical tasks that the students are offered to participate 

in, and through the interactions that take place between teacher and students. It could 

be asked whether there is a way for teachers not to attribute identities to their 

students. We are convinced that the answer to this question is no. In the same way 

that we all have representations of the world around us, when relating to others we 

all identify them, while being identified by them and take positions in relationship to 

them.  

At the beginning of the paper, we said that we would present our argument to show 

how mathematics teachers‘ social representations, however consciously or not, 

mediate what the students learn and the identities they develop. The crucial issue 

here is the awareness of this mediation. As mathematics teachers it is our 

responsibility to engage in reflexive practices to critically examine our social 

representations and how they impact on the identities we make available to our 

students.  
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In this essay, I explore the question which social functions school mathematics might 

hold. After presenting a criticism of prescriptive functions, the function of imparting 

mathematical knowledge and its boundaries are presented. A discussion of logic 

thinking, of alienation in modern societies, and of the functions of school 

mathematics in technocratic societies in general is presented that broadens the 

understanding of which social functions school mathematics might hold, leaving 

many open questions to explore. 

RAISING THE QUESTION 

Mathematics education is compulsory for all children in modern societies. What 

should be learnt and why it should be learnt are central questions of mathematics 

education research worldwide. Answers to these questions may vary in many aspects, 

but most mathematics education researchers agree on one point: routine calculations 

are over-represented and mathematics lessons should be more mind-challenging. 

Depending on perspective, »mind-challenging« may include focusing on creativity, 

problem solving, proofs and argumentations, applications and modelling, historical 

and social issues of mathematics, and so on; but, no matter the perspective, most 

suggest alternatives to routine calculations.
49

 

The questions why to teach and what to teach are explicitly addressed throughout the 

mathematics education literature and in national standards documents. Heinrich 

Winter‘s (1995) essay ―Mathematikunterricht und Allgemeinbildung‖
50

 and Hans-

Werner Heymann‘s thesis (1996) Allgemeinbildung und Mathematik
51

 are the most 

popular German examples of the first; the Principles and Standards for School 

Mathematics (2000) – published by the National Council of Teachers of 

Mathematics in the USA – and the Bildungsstandards im Fach Mathematik (2004) – 

                                           

49
 This paper will not discuss the corresponding concepts and show in what way they criticise too 

much routine calculations. For the purpose of this paper, it suffices to see that mathematics lessons 

comprehend routine calculations and that alternative concepts, in advocating different activities, are 

therefore directed against routine calculations. However, this is not to mean that mathematic 

educators or even mathematic teachers condemn routine calculations altogether. 

50
 Allgemeinbildung, literally translated meaning general education, is a highly influential concept 

in German pedagogy without any conceptual equivalent in the English speaking world. 
51

 Available to English readers as Heymann (2003) Why Teach Mathematics? A Focus on General 

Education. 
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published by the German Standing Conference of the Ministers of Education and 

Cultural Affairs and influenced by Heymann‘s work – are exemplars of the later. 

Addressing what should be done implies that what is being done is not satisfactory. 

Winter and Heymann certainly belong to those who criticise too much calculating. 

But while the prescriptive concepts of Winter and Heymann suggest what should be 

done, they are unable to explain what is being done. Therefore, I ask: Is there any 

sense in having children master the masses of routine calculations, which we – the 

community of mathematics education researchers – might regard as being over-

represented? Are there any reasons for the contemporary state of school 

mathematics? Can these explain why the abovementioned »mind-challenging« 

alternatives are not implemented on a large scale? And would not the answers to 

these questions strongly influence our ideas of what school mathematics should be 

like? 

Pointing to tradition does not help here. Tradition may show us how the situation 

came to be, but it does not explain why some things changed while others have not. 

Therefore, I propose to address the issue in a broader context. Identifying school 

mathematics as an organ in our interacting, organic society, I raise the question: 

What are the social functions of school mathematics? 

DISCUSSING NAÏVE ANSWERS 

Curricular research offers a division between material education, i. e. mainly 

imparting knowledge, on the one hand and formal education on the other hand. My 

thesis is that the role of imparting mathematical knowledge is over-estimated and 

that further functions must be analysed to develop a comprehensive understanding of 

school mathematics. 

A first approach to these functions might be a sceptical discussion of the concept of 

competences which curricular standards often use. These competences may already 

point to social functions of school mathematics, but starting with them creates 

problems. First, it is yet unclear how (or if) the demanded competences are indeed 

learned by children – especially when curricular concepts are used as tools for 

curricular reforms as is the case in the Bildungsstandards im Fach Mathematik –, 

and how (or if) these competences are indeed used outside school. Second, the focus 

on these competences might mask other functions of school mathematics that could 

be more central. Therefore, I suggest a different approach: After a discussion of the 

boundaries of imparting mathematical knowledge, I will elaborate on insightful 

connections between mathematical education on the one hand and Aristotelian logic, 

alienation and technocracy on the other hand. These are the points my studies 

concentrated on so far. In each case we can ask: What is the social impact of these 

and how does mathematical education contribute to them? 
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MATHEMATICAL KNOWLEDGE AND ITS BOUNDARIES 

A function of school mathematics could be to have children impart certain 

mathematical knowledge in order to master certain situations that arise in society. 

Central questions are: What are these situations? What knowledge suits them? Is this 

knowledge indeed acquired in school? 

A first set of situations that can be mastered mathematically is located in private life. 

Popular examples are cooking, shopping and trading, investments, or painting walls. 

A second set could consist of situations from work life that are not mathematics-

intensive. Assuming that the mathematical knowledge required to master these 

situations is acquired in school mathematics, we nevertheless have to admit that the 

better part of school mathematics used in these situations has been taught after 7 or 8 

years of school. For most people, quadratic, exponential, and trigonometric functions 

are not tools needed in mastering everyday situations in private or work life; neither 

are linear equation systems, calculus, conditional probability, and so forth. Heymann 

(2003, p. 104) argues: 

In their private and professional everyday lives, adults who are not involved in 

mathematics-intensive careers make use of relatively little mathematics. Everything 

beyond the content of what is normally taught up to 7
th

 grade (computing percentages, 

computing interest rates, rule of three) is practically insignificant in later life.
52

 

After comparing several studies exploring the uses of mathematics in private and 

work life, Heymann outlines the mathematical concepts that are frequently used 

(2003, pp. 88-89): 

Arithmetic: counting; mastery of basic arithmetical operations (‗in one‘s head‘ or with 

paper and pencil, depending on the complexity); calculating with quantities, knowledge 

of the most important units of measurement, making simple measurements (primarily of 

time and distance); calculating fractions with simple denominators in unambiguous 

contexts; calculating decimal fractions; computing averages (arithmetic mean); 

computing percentages; computing interest rates; using the rule of three; completing 

arithmetical operations with a pocket calculator; basic skills in estimating and making 

rough calculations. 

Geometry: familiarity with elementary regular figures (circle, rectangle, square, etc.) and 

objects, as well as with elementary geometrical relationships and properties 

(perpendicularity, parallelism); ability to interpret and draw simple graphic 

representations of quantities and their relationships (charts, diagrams, maps) and the 

relationships between given points using Cartesian coordinate systems. 

                                           

52 Heymann‘s thesis was followed by a vivid public discussion when the German red-top newspaper 

Bild (1995), disregarding the context of Heymann‘s work, printing the title »Professor: Too Much 

Maths is Nonsense« and stated, that »The mathematics adults need has been learned after 7 years of 

school.« 
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Mathematics certainly is used to master situations in private and work life, and this 

mathematics is being taught in school. Here, I must make two points, however. First, 

only until the seventh year of school, imparting mathematical knowledge can be 

regarded as a social function for people in non-mathematical jobs. Second, it is yet 

unclear whether the mathematical knowledge used in private and work life is indeed 

learned in school. 

It is at least doubtful whether the mathematical knowledge used in private and work 

life is indeed learned in school. In her influential publication Cognition in practice, 

Jean Lave (1988) presents studies of the everyday use of mathematics in private and 

work life conducted in Liberia and the USA. She doubts whether »schooling is a font 

of transferable abilities« (p. xiii) and develops her thesis that mathematical 

knowledge needed to master situations in private and work life is learned »in 

practice« rather than in school. More recent studies, for example studies on the 

numeracy of nurses in the UK (see Coben, 2010, p. 14), support Lave‘s thesis. 

Heymann shares this view (2003, p. 98): 

A number of factors indicate that specific vocational mathematical qualifications tend to 

be learned more implicitly on the job and that thus the persons involved often remain 

unaware of them. 

The thoughts presented above leave only a relatively small group of people engaged 

in mathematics-intensive professions, for whom higher mathematical qualification in 

school might be useful. Interpreted from a social perspective, it is possible that a 

function of school mathematics is to prepare as many children as possible for 

mathematics-intensive professions. It then would be reasonable to teach all children 

mathematics beyond their seventh year of school, attempting to maximise the number 

of children entering mathematics-intensive professions. 

ENCULTURATION BEYOND KNOWLEDGE 

Imparting mathematical knowledge is not as dominant a social function of school 

mathematics as might be expected. A critical examination of  the sets of competences 

that curricular standards want children to learn in school mathematics suggests that 

competences such as »solving problems«, »modelling«, »using formal aspects of 

mathematics« or even »thinking logically« point at the nature of our engagement 

with the world, of our thinking. Our worldviews and the nature of our thinking 

depend on the society (or culture) in which we learned thinking and perceiving the 

world. This learning process can be called enculturation
53

. 

                                           

53 »Enculturation« as a terminology, derives from cultural studies. Sociologists prefer to speak about 

»socialisation« while educators often prefer »education«, although the latter has a strong intentional 

meaning. 
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Imparting mathematical knowledge is a part of enculturation, as it enables and 

encourages people to perceive and approach the world in a certain way, namely 

mathematically. Unfortunately, there is little literature on enculturation in school 

mathematics, though the work of, e.g., Roland Fischer, Alan Bishop and Ole 

Skovsmose is well acknowledged. However, Fischer‘s work (e. g. 2006) is very 

fragmentary and does not draw a comprehensive picture. Bishop‘s (1988) chapters 

on the »Values of Mathematical Culture« and on »Mathematical Culture and the 

Child« are highly important for my issue, but I do not want to discuss them in this 

paper. Skovsmose‘s work (2005) raises inspiring questions about the social functions 

of school mathematics, but he does not come to convincing answers. 

Further related work are the analyses (and criticism) of »rationalism« and the role of 

mathematics in modern society in the work of Max Weber (1921/2008), as well as 

Max Horkheimer and Theodor W. Adorno (1944/1997), the sociologic analysis of 

mathematicians in practice by Bettina Heintz (2000) and the critical study 

concerning the legitimacy of modern mathematics by Philipp Ullmann (2008). 

Horkheimer and Adorno analyse and criticise how the ideas of Enlightenment shape 

our thinking and organise our society. Ullmann‘s work is strongly based on that of 

Horkheimer and Adorno but lays more emphasis on mathematics and its applications 

in society. Heintz‘ studies come to the conclusion that the modern mathematician is 

characterised by his will to avoid contradictions and that he therefore chooses a 

method that is intended to avoid contradictions, namely the logical proof. However, 

her work hardly draws attention to the social and educational implications of her 

results. 

I do not want to discuss or present this literature in any more detail. Instead, I present 

my current, ever-evolving thinking of further social functions of school mathematics. 

HIERARCHY AND LOGIC 

The first thought I offer reaches back into the depths of history on human culture, 

specifically, to the development of hierarchical thinking. Roland Fischer (2006, 

pp. 133–141), building on the work of the Austrian philosopher Gerhard Schwarz 

(2007), describes hierarchy as a certain system of relationships between people of a 

certain community. In the history of human culture, the genesis of hierarchies can be 

observed wherever a community transitioned from a nomadic ―tribe‖ to a fixed 

―state‖. The organising principle for tribes was based on kinship, setting a limit to 

the growth of a community. So, on the one hand, social growth and the development 

of states were only possible where hierarchies were established. On the other hand, 

the idea of organising communities hierarchically could only spread because the 

developing state communities were successful. 
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Living in a society that is ordered hierarchically is a powerful everyday experience: 

People learn that for every (but some) person(s) there is a person who decides what 

to do and what not to do; that actions are either allowed or forbidden; and that 

everyone is held responsible for his obedience or disobedience, neglecting the 

situation that led to her or his actions. 

Living in such a society leaves its marks not only on the principles of our everyday 

actions but also on the principles of our everyday thinking. The idea of hierarchy 

became an element of thinking, of perceiving the world. For example, today we 

consider it normal to think of a husky as a dog, of a dog as a mammal, and so on. In 

fact, the biological classification is totally hierarchical. 

In ancient Greece, scholars became aware of the principles of the thinking invoked 

by hierarchies. The logic of Aristotle is a description and analysis of this logical 

thinking. He postulates, for example, that every statement is either true or false. This 

may mean: allowed or forbidden in thinking. Furthermore, for every (but some) 

statement(s) we have statements on the basis of which we can decide whether the 

first statement is true or false. Eventually, the truth or falsity of a statement depends 

on the system of logic only, neglecting any (e. g. everyday life) connotations the 

statement may have. 

While logic thinking was already a topic of ancient Greece philosophy, it was not 

until the beginning of modernity that logical thinking became conventionalised as 

the only ―right‖ thinking with mathematics as its purest manifestation. René 

Descartes, the French mathematician and philosopher, may be considered the 

founder of this modern rationalism. In his Rules for the direction of the mind, he 

states, that »arithmetic and geometry alone are free of any error of falsity or 

uncertainty«
54

 (1629/1959, pp. 8–9) and 

that those who seek the right way to truth must not engage with any matter that does not 

allow them to obtain a certainty comparable to that of arithmetic and geometric proofs. 

This kind of thinking features a worldview that relies on antagonisms, causalities, 

and pre-determined, static concepts. It has certainly helped mankind to increase its 

understanding and possibilities of handling the world, but at the same time, it has 

shaped our thinking and perceiving the world in a certain way, leaving black spots 

and possibly discrediting those who think differently. 

Logical thinking is not without alternative; it is not the only way of making sense. 

This alternative becomes clear when we look at non-Western societies (see Bishop 

1988 for examples) or acknowledge that people had indeed thought in tribal 

communities before hierarchies and logic thinking evolved. The relentless division 

                                           

54
 Translated into English from the German translation of the Latin original Regulae ad directionem 

ingenii from 1629 by D. K. 
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into true or false has even been criticised from within mathematics. For instance, at 

the beginning of the twentieth century, the Dutch mathematician L. E. J. Brouwer 

(1918) began to create mathematics without the assumption that every statement 

must be either true or false.
55

  

Connecting my aforementioned (somewhat oversimplified) analysis of logic to 

school mathematics, we might ask: Is logical thinking represented here, more than in 

any other school subjects, maybe even only here? Does school mathematics prepare 

children to think and act in a logically thinking and acting society? Extending the 

connection more critically, we might ask: What worldview do we create by teaching 

the dominance of logical thinking? And eventually, what does it mean for children 

who develop alternatives to ―our‖ logic? 

MODERNITY AND ALIENATION 

At the verge to modernity, industrialisation made everyday life change dramatically. 

The medieval man (or woman) was a peasant or a craftsman, subsisting on what he 

produced. Although committed to kin, church, and state, he was the sovereign of his 

everyday life, making nearly every decision, especially the economic ones, on his 

own. This personal freedom was lost when more and more people began working in 

factories, where they had to perform prescribed repetitious work at a prescribed time 

of the day without causing any problems that might interfere with the production of 

the factory. 

But it would be short sighted to assign the qualities of obedience, punctuality, and 

reliability in doing repetitious work to the factory worker of early industrialism 

alone. Contemporary work life requires the same qualities, and the modern employee 

must be enculturated to think, feel and act accordingly. The essence of this 

performance, which can be named alienation
56

, is that a person must not act 

according to his actual feelings and wishes. Alienation is necessary for cooperative 

work where the work of many depends on the cooperation and reliability of the 

individual. 

Primary and middle schools that emerged at the time of industrialisation took over a 

function of enculturation, preparing children to endure the alienation necessary for 

factory work. School mathematics was included from the very beginning and might 

have a particular role in the process of alienation so typical for the modern man and 

woman: Do the command-like masses of mathematics exercises drill obedience (cf. 

Skovsmose 2005)? Does the lack of individualisation in the mathematics classroom – 

in the process of teaching as well as in the nature of the answers expected from 

                                           

55
 In Brouwer‘s logic, statements can be neither true nor false. But still, they cannot be both true and 

false. 
56

 Alienation here is understood in a slightly broader sense than in Marxian terms. 
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children – represent the factory‘s disregard for individual concerns? And to return to 

the beginning of this essay: Do routine mathematics calculations serve a social 

function, e. g., developing the ability and willingness to perform repetitious routine 

tasks whose broader sense might not be understood and/or favoured? 

MODERN GOVERNMENT AND TECHNOCRACY 

Modern government
57

 has often been interpreted under the term technocracy. 

Technocrats (i.e., scientific specialists of a certain domain) name and determine the 

urgent questions of our time, planning work, health systems, education, economy, 

and so forth. Considering the aforementioned discussion, we may register that 

technocracy features a certain way of thinking; that is, logical thinking, and requires 

that people perform in a predictable, alienated fashion. Specifically, a technocracy 

requires people who follow rules which are not set up by themselves but by experts. 

(i. e., the technocrats). 

Technocratic decision-making depends a lot on mathematics. Mathematical models 

are used to describe, prescribe, and predict technical, economical, and social matters. 

For example, medical studies claim that the effect of a new medication is twice as 

high as the old, the 2% increase of the GDP shows that the economy is doing well, or 

income taxes must be raised because the costs of the health system exceed the budget 

by 2 billion Euros. We accept these decisions, although we do not fully understand 

the justifications used. 

But technocracy is nothing imposed on people; it is lived by people. Technocracy 

requires people to trust in it and it requires technocrats. Concerning the issue of trust, 

we might ask: How do people come to trust in mathematical justifications? Do 

people consider mathematics especially trustworthy?
58

 And if so, do they develop 

this trustworthy attitude in school mathematics? 

Concerning the issue of technocrats, another function of school mathematics can be 

identified. School mathematics might not only practice logical thinking, it might also 

select those children able to thinking logically, allocating the special few to 

technocrat positions in society. Ole Skovsmose (2005), in his book Travelling 

Trough Education: Uncertainty, Mathematics, Responsibility, raises the 

corresponding questions (p. 11): 

Could it be that mathematics education in fact acts as one of the pillars of the 

technological society by preparing well that minority of students who are to become 

‗technicians‘, quite independent of the fact that a majority of students are left behind? 

                                           

57
 »Government« here means any form of decision-making that other people depend on, not only in 

the executive of a state. 
58

 Here, I omit an excessive, yet illuminating, discussion about the certainty and legitimacy of 

mathematics (cf. Skovsmose, 2005; Ullmann, 2008). 
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Could it be that mathematics education operates as an efficient social apparatus for 

selection, precisely by leaving behind a large group of students as not being ‗suitable‘ for 

any further and expensive technological education? 

FINAL THOUGHTS 

In this essay, I have argued that school mathematics might have the social function 

of identifying, selecting, and allocating children, as well as preparing children for the 

contemporary predominant society in terms of 

 developing children‘s mathematical knowledge, 

 shaping children‘s thinking towards a form we may call logical, and 

 shaping children‘s feeling towards a form that supports technocracy and living in a 

society that requires alienation. 

As the works cited suggest (e. g., Skovsmose, 2005), many of these points have been 

discussed in the literature. These discussions are limited and often isolated, and fail 

to draw a cohesive picture of the social functions of school mathematics. Moreover, 

the discussions are highly evaluative, especially when it comes to people who suffer 

from mathematics education and are interpreted as being suppressed by a reign of 

technocrats. Although our own feelings and ideals are important, I am afraid that a 

perspective that places emphasis on the ethics of mathematics education might 

silence possible explanations that are necessary for a comprehensive understanding 

of the social functions of school mathematics. 

Moreover, in this essay, I raise more questions rather than provide answers. The 

purpose of the essay, however, was to only mark the trajectory of my research 

project. My project aims not only to determine probable answers to the questions 

raised but also to develop a cohesive understanding of the social functions of school 

mathematics. This project requires not only further research on the functions 

discussed but also the development of deeper understandings of the intellectual 

concepts on the basis of which functions of school mathematics might be discussed. 
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BECOMING DISADVANTAGED: PUBLIC DISCOURSE AROUND 

NATIONAL TESTING 

Troels Lange and Tamsin Meaney 

Charles Sturt University 

The importance of mathematics or its alter ego ‗numeracy‘ has been cemented in the 

mind of the public with the instigation of national, high-stakes testing in Australia. 

The discourse around these tests illustrates how the process of social valorisation 

operates. Using press releases, online news articles and online public comments, we 

show how politicians, parents, teachers and the general public discuss ideas about 

disadvantage in relation to national testing of numeracy. In these discussions, deficit 

language labelled some children as being less likely to perform well because of their 

backgrounds. In contrast, poor results for individual schools were seen as 

contributing to the wider community labelling their students as disadvantaged. 

Keywords: public discourse, disadvantage, social valorisation, national high-stakes 

testing 

NATIONAL TESTING, MATHEMATICS AND DISADVANTAGE 

In a broader research program, in which we investigated the public discourse around 

the National Assessment Program – Literacy and Numeracy [NAPLAN], the theme 

of disadvantage was prominent. In this paper, we concentrate on Australians‘ 

conceptions of disadvantage as being complex and sometimes contradictory. 

For some time, mathematics has been considered a gate-keeping subject in relation to 

people‘s opportunities to take up further study and work opportunities (Davis, 1996; 

Quintos & Civil, 2008). In Australia, national testing has solidified this role for 

numeracy; with literacy the only other subjects being tested and therefore considered 

valuable in judging the ability of a school to deliver education to students (Donnelly, 

2009). The NAPLAN website describes the background of the tests in this way: 

The content of each test is informed by the National Statements of Learning in English 

and Mathematics which underpin state and territory learning frameworks. Test questions 

cover aspects of literacy (Reading, Writing, Spelling, Grammar and Punctuation) and 

numeracy. Questions are either multiple-choice or require a short written response 

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2010b). 

The tests determine whether Australian students reached minimal standards at Years 

3, 5, 7 and 9 (ACARA, 2010a). Four months after the children sit the tests, parents 

and caregivers are sent a report about their child‘s performance against the standards 

and in relationship to other children. In early 2010, the Federal Labor Government 

opened a website, called My School, which compared different schools‘ results on 

the NAPLAN tests, thus very quickly making them high stakes (Lingard, 2010). 
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The reasons given for requiring students to complete these tests are similar to those 

in other English-speaking countries and are linked to ‗raising standards‘, particularly 

for students from disadvantaged backgrounds (Donnelly, 2009). As Lingard (2010) 

stated, this reasoning ―has become a globalized educational policy discourse‖ (p. 

131). Researchers, such as Hursh (2008), have linked this discourse of raising 

standards for students under-achieving at school to neoliberal beliefs about the need 

to hold schools accountable and privatise them, along with other institutions. The 

results of tests purportedly allow individuals to make choices so they can maximise 

the benefit of schooling in an education market. Thus, a discourse of accountability 

of teachers, schools and education systems runs in tandem with one about raising 

standard for at risk students (Lingard, 2010). As suggested by Gutiérrez and Dixon-

Román (2011) little has been done to reconcile the two discourses: 

[A]lthough many use ―the achievement gap" as an important call for school accountability 

around needed resources and additional support for marginalized students, (e.g., 

Education Trust, 2005), such discourse has done little more than replace "the culture of 

poverty" in the latest of deficit frameworks.  That is, while equity issues are becoming 

more mainstream in the mathematics education community, theoretical framings continue 

to reflect equality rather than justice, static identities of teachers and students rather than 

multiple, fluid, or contradictory ones (Gutiérrez, 2007; 2002; Martin, 2009) and schooling 

rather than education (p. 21).  

The consequence of these types of discourses saturating educational debates is that 

the discursive field pervading mathematics teaching and learning becomes highly 

charged. Inherently, a discursive field attributes value to some phenomena whilst 

depriving others of value or visibility. The result is that the discursive field facilitates 

only some views becoming acceptable. Summarising their findings from several 

studies, Abreu and Cline (2005) described this process as social valorisation: 

We have evidence from previous studies that the social valorisation of practices is a key 

element in a person‘s representation of these practices. Studies with Brazilian 

schoolchildren (Abreu, 1995) and with British schoolchildren (Abreu & Cline, 1998) 

showed that they had developed an understanding of how specific forms of mathematical 

knowledge were socially marked and that this enabled them to construct categories, to 

compare them and to relate these to given social identities (Abreu & Cline, 2003). (p. 

699). 

As gravitational and magnetic fields define directions in the physical world, a 

discursive field assigns what is  ‗up‘ and ‗down‘, ‗south‘ and ‗north‘, ‗along‘ and 

‗against‘ thus constituting what could be termed a force field of social valorisation. 

The force field affects the saying, doings and relatings (Kemmis & Grootenboer, 

2008) of students, teachers and the general public, and it shapes backgrounds and 

foregrounds of students and their dispositions to engage in learning mathematics 

(Alrø, Skovsmose, & Valero, 2009; Skovsmose, 2005). The force field of this 

discursive world is inescapable to its ‗inhabitants‘ in the same sense that we cannot 
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escape the gravitational field. It does not mean that people cannot talk or think in 

ways not aligned with the valorisations of the discursive field; rather, it is more 

appropriate to consider them as always being affected by it. The discursive field, in 

which ‗raising standards for those at risk‘ and ‗accountability‘ are included, pervades 

public discussions about NAPLAN and My School. Whilst participants are 

constrained by this force field, they also contribute to its perpetuation by their 

acceptance that children can be judged as potential workers and contributors to 

society as a result of their mathematical achievement on NAPLAN.  

In this paper, we explore how ‗disadvantaged‘ is used within public discourse and 

how it is compared and contrasted with discourses around accountability and raising 

standards\. The use of ‗disadvantaged‘, with its meaning of something or someone 

being less privileged, presents an opportunity to examine how status is added to 

certain types of mathematical achievement. Being disadvantaged or attending a 

disadvantaged school impacts on the social identity of students, their teachers and 

their parents. Measuring and broadcasting the mathematical achievement of students 

provides a focus in discussing what it means to be disadvantaged. Through an 

examination of data from publicly available news items about NAPLAN and My 

School, we show there are differences in how being disadvantaged is conceived. In 

some situations, it appears that children‘s backgrounds contribute to them being 

considered disadvantaged. At other times, it is the process of valorisation through the 

labelling of some schools as failures which results in their students being considered 

disadvantaged. 

METHODOLOGY 

The data set consisted of five interview transcripts and four media releases from the 

Department of Education, Employment and Workplace Relations (DEEWR), and 19 

online news articles, five of which included public comments. This data set captures 

the views of the Minister for Education at the time, Julia Gillard, and also how this 

information was received by journalists, academics, the teacher union, the 

association of school principals and members of the general public who contributed 

publicly to the discussions. Wherever possible we took news articles from national 

sources such as the Australian Broadcasting Corporation (ABC), the online journal 

Inside Story or the newspaper The Australian. However, at times articles from the 

Brisbane-based The Courier Mail and the Adelaide-based The Advertiser were used 

because they included online comments from the public. There was over 230 pages 

worth of data.  

The data were collected between September 2008 and March 2010. Although the 

first NAPLAN tests were conducted in May 2008, we chose to start from September 

2008, when parents were about to receive information about their children‘s 

achievements for the first time. Our cut-off date in March 2010 meant that most of 

the discussion was captured about the release of the school results for NAPLAN on 
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the My School website, but avoided discussion of the controversial 2010 NAPLAN 

tests. Although not all the public discourse was documented, the data set has 

sufficient breadth to reflect the variety of views of people involved in these 

discussions at this time. 

Initially, both authors and a research assistant combed through the data, developing 

classifications and categories with an open mind, and finally identifying eight 

themes. In this paper, we report on the theme concerned with disadvantage. To this 

end, the data were re-examined for discussion dealing with or referring to 

disadvantage. We choose to focus on this theme because we felt that the complexity 

of the ideas about disadvantage that were discussed illustrated how a discursive field 

operated. In discussing disadvantage, people appeared to be aware of the process of 

social valorisation and as a consequence often tried to divert responsibility from 

themselves for disadvantaging others in the system. At times, the government‘s 

system of high stakes testing was blamed for contributing to the disadvantaging 

process. 

As all documentation was publicly available, the names used by contributors, 

including those used to comment on online news articles, are provided in the quotes 

below. We have also left the spelling and grammar as they were in the contributions. 

WHO IS DISADVANTAGED AND IN WHAT WAYS? 

In the data set, being disadvantaged was presented in several ways. Sometimes the 

term ‗disadvantage‘ was used, whilst at other times, it was implied by suggesting that 

some children had less opportunity for learning or fewer life chances. The 

backgrounds of some groups of children meant that they were expected to do poorly 

in the NAPLAN tests. As a result, they or the schools that they attended were likely 

to be described as disadvantaged. Some children were positioned in the discourse as 

disadvantaging other students‘ learning because of their disruptive behaviour. 

Finally and in contrast, being disadvantaged was discussed in relationship to how the 

results of the tests meant that certain schools were labelled as failures, with the 

children who attended them gaining the same label. Thus, there was no consistency 

in descriptions of the cause of the disadvantage and the effect of the disadvantaging 

process. 

The Minister of Education consistently identified students who were most likely to 

do poorly on the NAPLAN tests as those who came from disadvantaged 

backgrounds. Their enrolment at a school contributed to the school being known as 

disadvantaged. The label of disadvantaged schools has a long history in Australia. In 

the 1980s, schools became disadvantaged when they fulfilled a number of criteria 

such as enrolling students from low socio-economic areas. These schools received 

extra funding. Testing students did not contribute to this identification of 

disadvantaged schools and so funding was not tied to improving test results. The first 

quote seems to hark back to these earlier beliefs about disadvantaged schools. 
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Julia Gillard: The National Assessment Program will help us identify schools that aren‘t 

reaching the kind of standards that we want kids to get to. And there are 

other things that can tell us about disadvantage in schools—number of 

Indigenous children enrolled, for example; number of children with 

disabilities (DEEWR 10/9/08). 

Julia Gillard: But it remains of great concern that the data shows that Indigenous student 

achievement is significantly lower than non-Indigenous students in all areas 

tested and all jurisdictions (DEEWR 19/12/08). 

Julia Gillard: It's about lifting standards for every child in every school and making a 

huge difference for those kids most at risk of being left behind, who are our 

kids from our poorer households in this country (DEEWR 10/11/09). 

For Julia Gillard the two discourses of ‗raising standards‘ and ‗accountability‘ 

seemed to be complementary. ‗Raising standards‘ presupposed identification of 

schools with sub-standard results, in order to hold them accountable for those results, 

and also initially to provide money so they could improve those results. However, in 

presenting a case that NAPLAN would support all children to gain appropriate 

outcomes in literacy and numeracy, the Minister contributed to a deficit discourse. 

Indigenous students, students with disabilities and those from poor homes 

contributed to schools being disadvantaged. Simultaneously, it was predicted these 

students‘ backgrounds would lead to them performing poorly on NAPLAN. By 

having inappropriate backgrounds, students were to blame for their poor 

performance whilst at the same time it was up to schools to overcome these 

backgrounds. If they did not do so then they also were to blame. The inconsistencies 

and circularity in these arguments are not acknowledged, nor problematised. 

There were few comments by the general public in the data set, which identified 

specific groups or schools as disadvantaged. One of these is the following comment 

on the ABC website to a story on teachers voting to boycott the NAPLAN tests. 

Joker: And what do you purpose teachers do in indigenous communities in which 

you are lucky if the kids show up to school for 2 days a week??? 

Stop thinking about your own immediate area and start thinking about the 

whole of Australia. 

I don't agree with this site [My School] at all. It gives an inaccurate 

reflection. How can you possibly compare the education standards of a 

remote community to say a private school in inner Melbourne where each 

student has a laptop and a remote community is lucky to have a reliable 

computer????? (Rodgers 28/1/10) 

In this comment, the disadvantages faced by Indigenous students were not discussed. 

Instead, the writer seemed to suggest that it was the schools in Indigenous 

communities, which were disadvantaged because irregularly-attending students were 

unlikely to perform well on tests. At the same time, there was an awareness of how 
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My School contributed to value being awarded to some schools which may already 

have been privileged. The responsibility for this disadvantaging of the school seemed 

to be shared between the children and the system which made such rankings. 

On the other hand, teachers and their spouses were much more likely to see 

disadvantaged students as those who were disrupted by their badly behaving peers. 

The parents of misbehaving children were often positioned as being responsible for 

the poor behaviour and thus for other students becoming disadvantaged. 

Johnny Unimpressed of Adelaide: My wife gets constant abuse from parents for handing 

out detentions to kids who misbehave, abuse, distract and bully other 

students, or they simply write notes to the school making up stories about 

why their precious angel can't do the detention (Kenny 11/11/09).  

Skip of Brissy: Parents need to be more accountable and make thier little darlings work. I 

came from a tough up bringing and the wrong side of the rails. My parents 

valued education and I have done reasonably well. Comparing schools 

makes no sense when it is the same trashy kids at each. My wife is a 

teacher, you wont turn Chaff into Bread, no hope. If parents had to do more, 

then educational standards would improve over night. The fault may well be 

two way, but with out proper and useful parental support then I am afraid 

we will continue to dumb down (Kenny 11/11/09). 

For some time, it has been known that teachers commonly blamed factors within the 

child or the family if the child failed to learn at school (Hempenstall, 2009) and the 

comments by teachers in the public discussions, like those of their spouses above, 

were often of this ilk. 

Parents often felt that some students were disadvantaged at school. However, they 

were most likely to mention children with disabilities or who were labelled gifted 

and talented. As exemplified below, they felt that these children were disadvantaged 

because their legitimate needs were not met within the schooling system. Although 

there was some teacher blame in these comments, parents were more likely to blame 

the system because of under-resourcing. As described by Gutiérez and Dixon-Román 

(2011), these types of comments are connected to an accountability discourse around 

making schools or education system provide for marginalised students. 

Bullfrog:  Whilst there are some sociological advantages in classes of mixed ability, 

unless the resourcing model is vastly changed, the current set up 

disadvantages non-normal learning kids, both the less capable, and more 

capable (Woodley 17/11/09). 

Bernard Wood of Modbury: Many kids I've met with ASD [autism spectrum disorders] 

don't meet the requirement for a special class but they can not handle 

mainstream and unfortunately mainstream teachers are not experts in 

teaching these children and they get suspended [temporarily barred from 

school] etc. therefore the kids suffer (Kenny 11/11/09). 
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Adelaide: The Victorian Affiliated Network of Gifted Support Groups estimates that 

75 per cent of gifted students are underachievers and as many as 40 per cent 

leave school before the end of year 12. Dr McGuigan reported research 

showing that some 15 per cent of children of high intellectual potential drop 

out of school before completing year 12 (Kenny 11/11/09). 

If NAPLAN or My School were mentioned in parents‘ comments about their 

disadvantaged children, then it was generally to dismiss them. Some commentators 

connected the government‘s discourse to one about accountability and unlikely to 

contribute to a more just society. In the few comments of this kind, the two kinds of 

discourse tended to be juxtaposed as contrasting, rather than complementary as had 

been the case in Julia Gillard‘s comments. 

Sjames: Another example of a government harrassing poorly funded and 

undersupported schools, teachers, children and their communities. The 

Labour Govt has inherited its 'wisdoms' from the hyper-rationalism of the 

Liberals - its all about accounting (Woodley, 17/11/2009) 

Nevertheless, NAPLAN and My School could not be ignored. Perceptions of a 

school as being disadvantaged were recognised as having a long-term impact on 

children‘s life chances. 

Dan: I have pretty much no choice where my kids go to school given the zoning 

rules, so to me all this does is perpetuate and exacerbate the discrimination 

my very young children are already subject to. That is, because of where 

they live, they have to go to a fairly low performing school. Because of that, 

they will be considered to be low performing students whether or not they 

are. Because of that they may have more difficulty finding a job and 

because of that, they may not be able to afford to live in a wealthier suburb 

and send their kids to a private school either.....and so on (Woodley 

17/11/09). 

Matt: And what does the parents 'higher' education have to do with children 

learning to count and read. Whilst there may be statistical relationships 

there. Simply learning the times tables and reading are something that needs 

to be put into perspective. What you are saying is that children from lower 

socio economic backgrounds are almost destined to be failed by the 

education system. Instead of bleating about the additional information 

needed in these reports to make you feel comfortable, how about offering 

constructive view on how we fix the system so those children are not failed 

by the education system (Rodgers 19/1/10). 

It would seem that not everyone accepted the complementary story that the 

politicians told about how increasing accountability would support the aims of social 

justice, through ‗raising standards‘. Instead the two discourses were seen as being in 

conflict, with contributors calling for a resolution of the differences. Parents‘ 

concern for their own children influenced their understanding of how NAPLAN 
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affected children being or becoming disadvantaged, especially when they felt that the 

schooling system was not supporting their children. They drew on this understanding 

when they evaluated the stories told by Julia Gillard and other politicians. 

CONCLUSION 

The concept of disadvantage and how children became disadvantaged was a much 

more complicated issue for the general public than it was for the Minister. Although 

she did not explicitly label groups of students as being disadvantaged, by linking 

them to disadvantaged schools, she suggested that they were disadvantaged by 

association. Teachers, or their spouses, were more likely to consider parents to be the 

cause of disadvantage. By not teaching their children appropriate behaviours, these 

parents were directly responsible for other children becoming disadvantaged because 

they were unable to take up learning opportunities. This could be rectified by parents 

taking more responsibility in bringing up their children. On the other hand, parents 

saw schools and the education system as being responsible for the disadvantages that 

their children suffered in schools. This was either because the schools were unable to 

provide adequate support for their learning and so their children‘s life chances were 

restricted or because the publication of NAPLAN results resulted in the labelling of a 

whole cohort of students as being poor achievers whether this was the reality or not. 

Discourses around ‗raising standards‘ and ‗accountability‘ brought out many 

different conceptions of who was disadvantaged and in what ways. These had an 

impact on the lives of those who were considered disadvantaged and those who 

worked with them. 

Children‘s possibilities for their future lives can be severely limited by the general 

public‘s acceptance that a school‘s NAPLAN results indicate the worth of its 

students as potential workers and citizens. In the same way, teachers‘ professional 

careers are discussed and dissected within the public discourse making them more or 

less likely to teach in particular ways, depending upon how much their social 

identities are marked by this discourse. The public discourse analysed here illustrated 

how the discursive field added value to some phenomena whilst making other 

phenomena invisible. In discussions about NAPLAN and My School, mathematical 

achievement in the tests added value to children, their schools and by implication 

their teachers. At the same time, ability to work as part of a team, for example, which 

may also be considered to be a worthy attribute for good workers and citizens, is not 

seen as valuable in these discussions. A discussion around raising standards in 

relation to team work is hard to imagine in this discourse. 

Mathematical achievement and how it is measured is not a neutral activity. It is part 

of, contributes to, reinforces and is thinkable within the force field of social 

valorisation. The way that mathematics achievement is valorised provides an 

indication of what is ‗up‘ and what is ‗down‘. Having good NAPLAN results was 

connected to having opportunities for a good future life. On the other hand, the 
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linking of some students to disadvantaged schools who had poor NAPLAN results 

was likely to affect how teachers, students and their parents viewed the teaching and 

learning of mathematics. If NAPLAN is considered to be the determiner of improved 

life chances then, the type of mathematics assessed in these tests will be the kind 

valued by teachers, children and their parents in schools which are most likely to 

achieve poorly on these tests. They will be fobbed off with this low quality schooling 

whilst other schools with ‗good‘ NAPLAN results have more opportunities to widen 

their focus and so provide a richer mathematics education for their students. 

On the other hand, our examination of the public discourse around NAPLAN and My 

School suggests that within the cacophony of the discussion, there were dissenting 

voices. Some contributors saw as contestable the suggestion that the two discourses 

around ‗raising standards‘ and ‗accountability‘ were complementary. Their 

comments showed an awareness of how the process of social valorisation following 

from the accountability discourse contributed to some children being labelled as 

failures. The determination of what is ‗up‘ and what is ‗down‘ were not fixed for 

these people. They were affected by the discourses, but were not determined by 

them. For the parents whose children‘s social identities were likely to be marked 

because of the publication of NAPLAN results on the My School website, the 

process of social valorisation became obvious. Often references to being 

disadvantaged were located within discussions about who was responsible. Although 

this often referred to children, their families and their teachers, it also enabled an 

identification of government ministers and their policies as those who were enforcing 

this social valorisation of a particularly limited kind of mathematical knowledge. 

Thus, while the discursive field can be considered as constructing what is ‗up‘ and 

what is ‗down‘, at the same time people‘s awareness of it enables dissent and an 

unpacking of how it developed. This can open up possibilities for changes. 
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PARENT-CHILD INTERACTIONS ON PRIMARY SCHOOL-

RELATED MATHEMATICS 
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Oxford Brookes University, UK 

This paper reports some initial results and findings of a research project 

investigating parent and child interaction when completing primary school-style 

mathematics. It suggests that through using a sociocultural lens and a theoretical 

and analytical structure based on activity goals we can study how parents and 

children interact and co-construct learning and conceptual development in primary 

school-related mathematics. The paper also sketches out how a wider study into the 

milieu of parent-child interaction on primary school-related mathematics could reap 

interesting and insightful findings in the UK context.  

Key Words: parent-child interaction, school-mathematics, co-construction, goals 

INTRODUCTION 

How a parent supports their child‘s learning impacts upon that child‘s attainment in 

primary school (Morrison, Rimm-Kauffman, & Pianta, 2003). A comprehensive 

review of contemporary literature on parental involvement, carried out for the UK 

government by Desforges (2003), showed that the quality and character of parent-

child interaction plays a significant role in attainment in primary school. This is 

supported by large-scale statistical studies (Duckworth, 2008; Peters, Seeds, 

Goldstein & Coleman, 2007) and UK government policy (DfES, 2007). These 

suggest that in the UK, attainment at the end of primary school is more closely 

correlated to types and qualities of parental involvement than social class, income, 

maternal educational level, or the school attended. Whilst some research in the UK 

has focused on school- and home–mathematics practices (Abreu & Cline, 2005; 

Street, Baker & Tomlin, 2006), a limited amount has addressed the dynamics of 

primary school-related mathematics in the home contexts. In order to address this 

gap a research project was formed to specifically investigate parent-child interactions 

on primary school-related mathematics in the UK.  

This paper presents a theoretical framework emerging from the study and an initial 

analysis of a single event of parent-child interaction on primary school-related 

mathematics. It sets out to begin to answer two research questions: (1) How do 

parents and children interact and co-construct learning on primary school-related 

mathematics? (2) How do parents support children‘s development of conceptual 

understanding of primary school mathematics? The paper tackles this by analysing 

an event of parent-child interaction. It concludes by proposing a wider study into 

some of the factors influencing parent-child interaction.  
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THEORETICAL FRAMEWORK 

In this project the parent-child interaction is located in sociocultural theories of 

learning and development, primarily within the work of Vygotsky (1978), Leont‘ev 

(1981), Wertsch (1985) and Saxe (1991). Such a position assumes that learning takes 

place on the social plane before it is reproduced within the individual. This 

viewpoint has been used successfully to study the social interaction between parents 

and children and the resultant co-construction of mathematical knowledge (Anderson 

& Gold, 2006; Hyde, Else-Quest, Alibali, Knuth, & Romberg, 2006; Saxe, 

Guberman, & Gearhart, 1987).  

Vygotsky‘s (1978) ideas on mediation, internalization and a zone of proximal 

development are relevant to developing a theoretical framework to study parent-child 

interaction. Vygotsky rejected the idea that development was driven by any single 

factor, and so can not be explained by any single corresponding principle (Wertsch, 

1985). The idea that psychological processes develop through ‗culturally mediated‘ 

activity is at the heart of Vygotskian theory (Cole, 1996).  Vygotsky (1978) was 

primarily preoccupied by the role of language in mediation. He saw language as 

facilitating social connections and cultural behaviour (Vygotsky, 1997). It is social 

connection, interaction and transmission of culture that allows the internalization of 

higher psychological functions. Internalization is not just a mental function it is the 

formation of a mental plane (Leont‘ev, 1981). This formation occurs through 

cooperation and social interaction (Tharp & Gallimore, 1988). The process of 

internalization is critical in Vygotsky‘s (1978) ‗general law of cultural development‘, 

which states that learning takes place on the social plane before it is reproduced 

within the individual. In order to ascertain learning and development Vygotsky 

(1978) developed the concept of the ‗zone of proximal development‘ (ZPD).  This 

allows us to study the difference between assisted and unassisted performance, in 

other words processes which are advancing or maturing but have not yet been 

finalised or completed. Because the ZPD is a social and contextual concept it 

involves some form of negotiation (McLane, 1987). This negotiation takes place 

between the more capable ‗expert‘, and a less capable ‗novice‘. Using and 

interpreting theories of mediation, internalization and the ZPD to study development 

in cultural contexts is not new, however it is a difficult proposition.  

A solution to this problem can be found by utilising elements of Activity Theory 

(AT) which has been used to operationalise both Vygotsky (Wertsch, 1985) and 

sociocultural studies in mathematical understanding (Beach, 1995). AT can be traced 

to the work of Leont‘ev (1981). It is a complex entity and difficult to apply in its 

entirety. Of the many elements within AT, Leont‘ev argued for a focus on goal-

directed activity as a mechanism for understanding culture and cognition (Nasir, 

2002). The centrality of goals to AT is expounded by Nasir and Hand (2006, p.460) 

―Activity theory presupposes that all activity is goal directed. These goals, or objectives, 

manifest differently depending on the level of analysis; taking the activity as the 
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fundamental unit of analysis, these objectives appear as motives. Moving to an individual 

or group level, motives become directly aligned with conscious goals. Although often 

explicit, these goals generally emerge over the course of activity‖  

Saxe et al. (1987) studied the relationship between numerical goals and social and 

cultural processes.  Their basic assumption, which is adopted by this paper, is that   

―…children‘s numerical understandings are their goal-directed adaptations to their 

numerical environments, therefore, the study of number development should entail 

coordinated investigations of children‘s emerging abilities to generate numerical goals 

and the shifting sociocultural organization of their numerical environments‖ (Saxe et al., 

1987, p. 4) 

This supports the idea that negotiation, interaction and goal-construction plays an 

important role in emergent and situated cognition. Saxe (1991) shows cognitive 

developments are enacted through efforts to accomplish numerical goals. He 

developed a framework for studying the components of these emergent goals at the 

microgenetic scale. Goals are emergent in the sense that they alter and shift in 

response to: (1) activity structures, the goals that are formed in the practice; (2) 

social interactions, where goals are modified and though negotiation take form; (3) 

artefacts/conventions; and (4) prior understandings. This is termed the four 

parameter model. This approach has been used in a number of research studies 

(Guberman & Saxe, 2000; Nasir, 2000, 2002; Saxe, 2002; Saxe and Guberman, 

1998). If we accept, as Saxe does, that goals are a reflection of situated cognition, 

then by studying the goals of parents and children we can study co-construction of 

knowledge and conceptual understanding in mathematics. 

METHODOLOGY 

In this paper an instance of parent-child interaction is analysed using the earlier 

theoretical framework. The participants were a 40 year-old British female and her 10 

year-old son. The dyad completed a 30-minute mathematics task which involved a 

number of subtractive calculations and word problems. This topic was chosen as a 

particular focus since professional experience, and academic research (Barmby, 

Bilsborough, Harries, & Higgins, 2009), suggests that children can struggle with 

different elements of subtractive understandings. Teaching of subtraction has 

evolved greatly over the past 10-15 years, which means parents may well have 

different experiences and mathematical representations to their children. The word 

problems tackled different elements in subtraction and presented different 

subtractive structures in order to elicit a range of conceptualisations. The task was 

similarly designed to allow elements of ‗expert-novice‘ communication and co-

construction of mathematical knowledge. Research on word problems informed the 

production of the task (Fuson, 1992) as did research on calculation (Anghileri, 

2006). The task was designed to replicate the schoolwork parents and children 

regularly complete together. Whilst this is not a study of actual homework practices, 
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it does look at how parents and children negotiate and co-construct mathematical 

understanding, and begins to highlight how this interaction is shaped by social and 

cultural forces. The dyad was video recorded as they completed the task. This video 

was then transcribed and analysed qualitatively using NVivo 8.  

ANALYSIS    

The video recording presented a highly complex and rich corpus of data that could 

have been investigated from a range of directions. This analysis concentrates on the 

co-construction of mathematical learning evidenced by language use and behaviour. 

It approaches this from three tiers of complexity. These progressively narrow the 

focus on the analysis, but in doing so lose elements of their wider 

interconnectedness. This approach was both emergent, in the sense that it was 

informed by the data, and theoretical, in the sense that it was informed by relevant 

research literature. 

First tier: Descriptive analysis of mathematical operations and thinking 

This first tier of analysis looks at the interaction globally to begin to address the 

research questions of this project on parent-children co-construction of learning and 

understanding. In this case it interprets the utterances of the dyad in accordance with 

theories of goal-directed activity and mathematical principles and understandings. 

For example, in the following passage the dyad is trying to find the difference 

between 86 and 64, M refers to the mother and C to the child.  

C: Okay, so, count on from 64 to 86 because you add 6 it gets to 70 another 10 

so that‘s 16. 

M: Sorry? 

C: 16 I think. 

M: You think 16. 

C: What do you think? 

M: 64, she's got 64 but she had 86… 

C: Yeah, Yeah.  

M: …so I would kind of...I'd look at my 64 and I probably turn it...I...I'd add it 

up rather than try to take that figure away. 

C: I know that's what I just did. 

M: So that's what you've done. So if you have your 64 how many do you need 

on...4 to make 6? 

C: 2 [M writes down on sheet] 

M: How many from 6 to make 8? 

C: 2 [M writes down 22 on sheet] 
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The child has a number of different strategies available given the operation and the 

numbers involved. He decides to use a complementary addition and add, in steps, 

from 64 to 70 and 70 to 80. However he does not use a third step and add from 80 to 

86. This means he reaches an answer of 16 rather than 22. He then follows a 

procedural objective of seeking M‘s confirmation of his correctness. His mother 

confirms the appropriateness of his strategy and that she would similarly use 

complementary addition. However, whilst he appears to use a mental number line to 

count in steps between 64 and 86, she seems to use a mental imaging of a column 

subtraction. This entails counting the difference between 4 and 6 (64 and 86) then 

writing 2, and 6 and 8 (64 and 86) writing another 2 to make the number 22. This 

shows that the two have a different understanding of what it means to ‗add up‘ to 

‗find‘ a difference. This could be linked to contrasting school experiences.   

Second tier: Evidence of practice-linked goals through the analysis of emergent 

goal construction 

This second tier looks deeper to try to highlight the parameters linked to the 

‗emergent‘ goals (Saxe, 1991) formed in this cultural practice. It uses Saxe‘s four 

parameter model to study and explain the practice-linked goals constructed by the 

dyad. In this case instances of each parameter in the transcript were coded using a 

simple framework and linked to potential explanations.  

The prior understandings that are brought to a cultural practice both enable and 

constrict emergent goals (Saxe, 1991). So children and parents could be expected to 

construct different goals since they are utilising different mathematical experiences 

and representations. This assertion is supported by data from the parent-child task. M 

had a very different primary mathematics experience to her son. This is displayed in 

the strategies she uses in the task and the barriers she appears to face regarding a 

familiarity and understanding of the mathematical methods that her son uses. Of the 

four parameters prior understanding is perhaps the most difficult to determine 

through the study of interaction alone, initiatives to address this shortcoming are 

discussed later.  

Cultural practices, in this case the activity structure of the task, are defined by the 

motives required to complete them. The goals of one practice may be different from 

the goals of another. Within the interaction it is possible to see a great deal of 

evidence of the role that the activity setting has on practice-linked goal formation 

and the objectives the mother and child pursue. This is shown below in the following 

subtraction calculation activity. Here the dyad answered a question by following the 

practices ingrained within the school mathematics-related activity: reading the 

question, answering the question, and explaining reasoning. 

M: Alright… right, let‘s have a look. Have we read the question? 

C: Yeah. Can you solve these subtraction calculations, show your workings. 40 

minus 21 equals… 20 away from 40 is 20, and take away 1 is 19. 
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M: Well ok. Start by writing that out then, so how did you get to that? So how 

did you first do it? [C writes an explanation, M checks] 

C: That‘s super… right… just pop your answer there, so you got 19. 

The task gave a great deal of information about the way in which social interaction 

impacts upon goal construction. There were several cases when one participant 

suggested a procedure which altered the goal of the other. This usually led to a phase 

of negotiation around the appropriateness of the procedure. These examples showed 

mother and child playing out of Vygotskian roles of ‗expert‘ and ‗novice‘ in setting 

and amending practice-linked goals. The task also provided numerous examples of 

M explaining or modelling strategies and concepts to scaffold onto C‘s mathematical 

understandings.  

The dyads‘ practice-linked goals constructed within the activity are also influenced 

by the artefacts and conventions enmeshed within this cultural practice. 

Calculations and word problems, similar to those used in the classroom, triggered a 

certain style of response and practice-linked goal structure (as evidenced in the 

above example). There was evidence that mathematical artefacts, such as algorithms 

for subtraction, influenced goal construction in the dyad.  

Third Tier: Evidence of the negotiation of mathematical goals 

This final tier delves deeper into the interaction to observe how mathematical goals 

are negotiated, formed and operated. Within the task the dyad appeared to operate 

through negotiation. There was little conflict or disagreement. There was however 

several instances of M prompting different mathematical goals and of C needing to 

reason and justify his choices. A coding framework, informed by the background 

literature and instances within the transcript, was used to study these negotiation 

processes within the social interaction.  

Table 1 Codes used to study the negotiation of mathematical-linked goals 

Code 

C1 

C2 

C3 

C4 

C5 

C6             

 

C7       

 

C8 

C9 

C10 

Description 

Agreement with a statement  

Disagreement with a statement  

Probing understand/action 

Prompting understanding/action 

Confusion 

Checking the reasoning of the other 

party 

Suggesting an answer to a 

mathematical operation 

Providing an explanation or model  

Responding to a question or prompt 

Asking the other party whether an 

argument is right or wrong  

Code 

C11       

 

C12         

        

C13 

C14      

 

C15     

 

C16     

 

C17 

Description 

Abandoning a previous answer or 

approach 

Appearing to mathematically 

reason 

Setting a new mathematical goal  

Accepting the mathematical goal of 

the other party 

Rejecting the mathematical goal of 

the other party 

Abandoning their mathematical 

goal 

Suggesting a different 

mathematical goal 
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These codes break down the interaction into smaller components in order to view the 

building blocks of the co-construction of mathematical goals. From this we saw that 

the parent M tended to allow her child to formulate and operate his own 

mathematical goals, but she would intervene if she thought his reasoning was flawed 

or a more efficient method existed. In the following episode, which includes my 

reflections, we see M and C negotiating how to solve a two-step word problem: Josh 

had 307 stamps. He gave 118 stamps to Katie. He lost another 43 stamps. How many 

stamps does Josh have now? The problem can be solved in two different forms: 307 

– 118 = 189, 189 – 43 = 146; or 118 + 43 = 161, 307 – 161 = 146. M favoured 

following a goal leading to the first, whilst C preferred the latter goal. Through 

probing and prompting, giving and answering questions and apparent reasoning we 

can see how one goal was accepted and another rejected.   

Dialogue Interpretation Codes 

C:    How many stamps does Josh have 

now. So it's 307 take away 118. 
C recognises that the answer can be found by 

307-118=x then x-43=y. 

C12 

 

M: Yeah  

C: So basic...so then he lost 43 so... 

118 add 43. 

C sees that he could add the two subtractive 

elements (118 and 43) then subtract the 

answer from 307. 

C1 

C11  

C12 

M: I'll tell you what...what we'll 

do...yeah, you can add your...you could 

start with the sum and take the 118 from 

the 307 couldn't you 

M agrees with C but proposes 307-118=x 

then x-43=y suggesting that C could break it 

down or (partition) prior to subtraction. 

C15 

C4 

C: Yeah.  

M: And you could say...could say right 

well we'll break that down we'll take the 

hundred off the 300 first and then we'll 

take the 18 off...  

C: That'd be 161 mum wouldn't it? [C 

points to sum on the paper?] 

C suggests the answer to 118+43 and seeks 

confirmation. 

 

C1 

C12 

C15 

C7 

C10 

 

M: ...and then we could add the 7 

back, yeah. Or you can do it...yeah...you 

can do it this way, do you find it... 

 

M recognises that compensation and 

partitioning does not work well with these 

numbers. This leads her to think through C‘s 

method. 

C12 

 

C: That's 161 [C points to calculation 

on paper] 

M: If he's lost 43 and he's given this 

amount away as well, add those together, 

and then take that figure off the 307. 

M discusses C‘s method and recognises that 

it would work. 

 

C7 

C12 

C16 

C14 

C11 

C: So add those two its 161... C seeks confirmation of his answer.  C7 

M: Well we'll add it, we'll work it out 

here, write it down...write it down. Put 

your 118 and put your 43 underneath, do it 

as a sum write it as a sum like you would 

do at school. Yeah. 

M accepts C‘s goal and rejects her own. C1  

C4  

C13 
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Conclusion and ideas further research  

In this paper we can see different mechanisms inherent within parent-child 

interaction, even though these can be difficult to untangle and classify. By operating 

from a sociocultural viewpoint in terms of study design and analysis we can attempt 

to answer our two research questions regarding interaction, co-construction and the 

development of conceptual understanding. This paper, nonetheless, only presents a 

single story limited to two characters. A much wider study of more parent-child 

dyads is needed to see if the ideas and findings from this one case are comparable to 

others and whether any similarities or differences exist. In addition, a focus on the 

interaction alone is not enough to explain the interaction. Whilst we understand a 

great deal about how children are taught mathematics we have little indication of 

parental experiences or mathematical identities. Nasir (2002) has shown how prior 

experience, motive and identity are important in goal construction. Her model allows 

the paralleling of the microgenetic study of goal-directed activity with an ontogenetic 

study of identity and motive. This can be incorporated by episodic interviewing 

(Flick, 2000) of parents, allowing a greater awareness of the milieu of the parent-

child interaction and richer answers to our main research questions. Since research 

shows that parent-child co-construction of school-related mathematical knowledge is 

also influenced by factors such as the level and quality of communication between 

home and school (Hughes & Pollard, 2006) this should also be taken into account. 

This too can be accomplished through interviewing parents.  

These points present a model for the next stages of this inquiry and a way forward to 

further study some of the elements of parental involvement which have been shown 

to play such a key role in attainment. 

NOTES 
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Catalan autonomous government) (Grant: 2009SGR-00590) whose aim is to develop and 

explore the explanatory potential of theories that enable a better understanding of the 
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This paper explores the process of attribution drawing on a socio-cultural approach. 

Scientific literature has widely demonstrated that attribution may have a crucial 

impact on individuals‘ beliefs to learn mathematics. The process of attribution is 

always present within individuals‘ interactions. In addition, previous researches 

also suggest that many attributes assumed by learners may be grounded on social 

representations. We build on a European research study about family mathematics 

education. In this paper we want to give some examples to describe the kind of 

beliefs family members have that may impact on their own attitudes towards 

mathematics, as well as their children‘s ones. We explore how these beliefs may have 

a social origin.  

Key words: beliefs, attitudes, social representations, mathematics, family 

involvement. 

Mathematics is a place either for enthusiastic attitudes or negative feelings. 

Individuals may look at mathematics very differently according to their experience 

with this subject. When children ask to their parents (or other relatives) for help to do 

their homework of mathematics, this ―previous experience‖ emerges and mediates 

parents‘ disposition to help them. According to previous researches, the type of 

memories underpinning family members‘ background may explain their attitudes 

towards mathematics. Positive reactions to this subject (the ―aha!‖ experience of 

successful problem solvers) clearly have a different impact than negative experiences 

drawn on frustration of getting stuck on mathematical activities. However, we think 

that sometimes these reactions towards mathematics are not just individual responses 

to people‘ ability to solve problems and other types of activities; there is also a social 

(and cultural) component embedded. Individuals develop their particular identity as 

mathematics doers because their own ability to use them. But they also develop this 

identity as a consequence of the role acquired within the group. Interactions with 

other persons should promote either positive or negative attitudes towards 

mathematics depending on whether they are supportive or discouraging peers. The 

final result of these interactions (in terms of identity) may have a crucial influence on 

individuals‘ achievement. In fact, there is a prominent body of research suggesting 

that self-confidence as mathematics doers have a heavy impact on students‘ 

performances in mathematics. With this paper we aim to introduce a discussion with 

the scientific community about the usefulness of the attribution theory to provide 

some light to understand how attitudes and emotions that impact on individuals‘ 

feelings towards mathematics may be socially rooted.  
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THEORETICAL FRAMEWORK 

Since 1970s many researchers in mathematics education had studied the impact of 

beliefs, attitudes and emotions on learners‘ performance (Bachman, 1970; Evans, 

2000; Fennema & Sherman, 1976; Gñmez Chacñn, 2000; Hannula, 2002; House, 

1975; Lester, Garofalo, & Kroll, 1989; McLeod, 1994; Zan, Brown, Evans, & 

Hannula, 2006). There are many researches on this field that place assumptions such 

as ―in order to learn mathematics you need to do a number of routine mathematical 

tasks‖, ―mathematics is memorization‖, or ―mathematics is difficult‖ under the label 

―beliefs‖. Researchers have developed many scales to study how these assumptions 

impact on students‘ mathematics learning
1
. When authors talk about the idea of 

―confidence about learning mathematics‖, there is a disagreement on whether using 

the term ―beliefs‖ or ―attitudes‖ to refer to this idea.
2
 Although this divergence on the 

use of the terms, all studies proved a relation between the affective and the cognitive 

domains. According to Hart (1989), interactions of students and teachers in 

mathematics classrooms are strongly influenced by confidence and other beliefs. 

Bachman (1970) noticed that self-concept is a salient aspect emerging from the study 

of attitudes and beliefs that influences on students‘ performance in mathematics. This 

notion (self-concept) was used later on to explain adult learners‘ anxiety towards 

mathematics (Evans, 2000). This is also one of the more salient reasons underpinning 

the difficulties that family members should face when helping their kids with 

mathematics (Díez-Palomar, J., Menéndez, J.M., Civil, M., forthcoming). Anxiety 

explains some parents‘ (and other family members) reluctance to do mathematics 

themselves, hence they use to prefer other strategies to get involved in their 

children‘s learning, such as send them to after-school programs, to academies, or 

hiring personal teachers to support their children at home (Hoover-Dempsey & 

Sander, 1995).  

According to prior researches, there is a relation between mathematics anxiety and 

learning. Clute (1984) found that anxious students do less well in discovery lessons 

than with expository teaching. Zan and his colleagues (2006) stated that anxiety 

inhibits cognitive processes. They affirmed that learners experiencing stressful 

situations within the classroom of mathematics perform worse than other students. 

Adult learners use to experience this feeling (Evans, 2000). According to previous 

researches (Díez-Palomar, 2004), anxiety and other negative attitudes may be rooted 

on personal past experiences. Here there is place for socio-cultural explanations. In 

fact, drawing on the literature review, we can find (at least) two main bodies of 

research: (a) the one based on individual experiences, and (b) the one grounded on 

social (and cultural) characteristics.  

Op‘t Eynde and his colleagues (2006) affirm that the affect domain is primarily 

rooted in the social context. This is not new for the sociologists. Mead (1934), for 

example, developed a theory on how persons build their (individual and social) 

identity. Mead (1934) distinguished between I, self, and me, and progressive forms 
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of the individuals‘ identity. He found that self and me are built versus the ―others‖. A 

particular individual defines his/her identity according others‘ image of him/her. This 

person may be the ―coolest pal‖, ―the best student‖, ―the faster problem solver‖, as 

far as his/her peers (family, relatives, siblings, friends, teachers, and other persons 

from his/her environment) use these terms to refer him/her.
3
 Op‘t Eynde et al. (2006) 

claim that individuals‘ understanding of mathematics is ―a function‖ of the interplay 

between the person they are (their identity) and the specific classroom context. By 

―specific classroom context‖ they mean the type of interactions that individuals 

establish with the teacher and their mates. Previous researchers have already 

demonstrated that interactions grounded on high expectations and trust towards 

learners prompt them to high-scores more likely than low-expectations approaches / 

attitudes (Flecha, Garcia, Gomez, & Latorre, 2009).  

That means emotions are social in nature. Op‘t Eynde et al. (2006) also argue that 

emotions are socio-historical context rooted. They mean that children‘ emotions 

towards mathematics nowadays are slightly (or even heavily) different from the ones 

experienced by their parents years ago.  

Drawing on these arguments presented up to this point, we may think that family 

members‘ attitudes and beliefs towards mathematics somehow are rooted on social 

(and cultural) features. Similarly, those attitudes and beliefs mediate or intervene on 

individuals‘ behavior towards mathematics. When a parent escapes his/her kid‘s 

request for support, it may happen because the parent does not feel comfortable with 

the kind of mathematics embedded in his/her children‘s notebook. This happens for a 

number of reasons (lack of confidence, forgetfulness due to the time going by, fair, 

hard past experiences regarding mathematics, etc.).  

In this paper we focus our discussion around the connection of attitudes and beliefs, 

with attributions and social representations to deeply study the reasons parents (and 

other family members) may have to support their children (or to avoid them). We use 

the socio-cultural approach to frame our discussion.  

 

 

 

 

 

 

 

 

Figure 1. General model of the attribution field (Kelley & Michela, 1980, p. 459) 
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We also take a few elements from the attribution theory to provide some light to our 

analysis. According to Kelley and Michela (1980), attribution explains individuals‘ 

behavior in terms of its causes. They use a schema to explain how attribution works 

(see figure 1). 

Drawing on Kelley and Michela‘s (1980) schema, we suggest that a plausible 

explanation to understand why some family members feel confident dealing with 

mathematics whereas others see themselves as not good at math at all may have (at 

least) two different elements: (a) the content (the intrinsic difficulty of mathematics), 

and (b) individuals‘ attitudes/beliefs towards mathematics.  

Regarding the second element, we already know that other‘s opinions have a strong 

impact of how a particular individual perceive him/herself, which also affects his/her 

attitude and behavior (Kelley & Michela, 1980; Asch, 1946). This is not new. We 

also know that beliefs have a crucial impact on individuals‘ self-concept. What we 

suggest is that those beliefs (or attitudes according to some authors) are socially (and 

culturally) rooted.  

De Abreu & Gorgoriñ (2006) suggest that behavior and actions may be explained 

due to social representations. They claim that social representations are interpretative 

frameworks to explain social and cultural phenomena. These representations 

somehow are embedded on individuals‘ beliefs, which mediate their behavior and 

actions (see figure 2). Drawing on these arguments, we suggest that family members‘ 

beliefs towards mathematics are constructed based on social representations. In 

addition, we also suggest that the personal experiences of individuals are both rooted 

socio-culturally and socio-historically.  

 

 

 

 

Figure 2. Relationship between beliefs & attitudes and social representations towards 

mathematics. 
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students, teachers and families. In this paper, we build on Spanish‘ data collection. 

We collected 355 questionnaires (n=253 students, n=96 families and n=6 teachers); 

and conducted 27 interviews (n=10 students, n=13 families and n=5 teachers); and 4 

focus groups (n=1 students, 2=families and n=1 teachers). To analyze the data we 

used discourse analysis techniques (Gee, 1999) and critical communicative 

methodology (Gñmez González & Díez Palomar, 2009; Gñmez, 2006).  

DISCUSSION 

We organize our discussion along three cases illustrated by three different persons 

involved in our study. Drawing on their interviews, we discussed some salient topics 

to provide some light to the relationship between attitudes, beliefs, social 

representations and mathematics.  

Case 1. Yazmín 

Yazmín is a nurse assistant.
5
 She does administrative work in the hospital. She is 

married and she has two daughters, 12 and 7 years old. She is very demanding of her 

children education. She does not participate in the school family association, 

although she usually chats with other parents at the school front door almost every 

afternoon. When we asked her about her daughters, she explained that the older one 

is ―useless for mathematics‖. She described her as: ―useless, useless. This 

[Mathematics] is the most important difficulty that she has faced ever‖. Yazmín 

explained how her 12-years-old daughter struggles with problem solving. ―When you 

explain to her an equation and... Of course, is the issue of reasoning, to say... well, 

I‘m going to solve this problem... And you see her like... [making a gesture and a 

sound indicating embarrassment]. That‘s it! She had no idea what to do, she had 

not.‖Her daughter‘s attitude towards mathematics was really negative. According to 

Yazmín, her daughter has a low self-esteem that discourages her to afford any kind 

of mathematical activity: ―She has a very low self-esteem in the sense that she says 

why I am going to do that if I‘m going to fail it? Then she refused to do it: she said 

that she was not aimed to do it [the exercise] because it will not be worth it at all.‖ 

Even teachers had a negative concept of Yazmín older daughter. When the girl was 

in fourth grade (elementary education), the teacher meet Yazmín to tell her that her 

daughter somehow had phobia against Mathematics. She always was reluctant to 

solve the mathematical activities.  

We notice that there is a strong belief that Yazmín‘s daughter lacks the ability to 

solve mathematical problems underpinning in these comments. Drawing on our data 

we know that Yazmín‘s daughter is not confident with mathematics at all. This 

attitude is related to the content, but some details also suggest that there is a negative 

process of attribution that could be also part of the girl feelings towards 

Mathematics. Yazmín declares that she feels bad regarding how she has managed her 

older daughter education. She affirms that maybe there still are some room for doing 

things better: ―Because you think, OK, maybe because I was working [and I had no 
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time] I felt stressed, so I did not do my best with her‖. But, although this feeling of 

fault, she has strong beliefs regarding learning. She declares, ―A wrong 

understanding of a problem always produces more troubles, of course‖. She affirms 

that this [belief] was her biggest problem when helping her daughter with 

Mathematics. We may conclude that achievement somehow is related to the children 

context. It seems reasonable to suggest that beliefs may impact on attitudes towards 

mathematics, which also have some kind of influence on students‘ performance.  

Case 2. Carlos.  

Carlos is a risk analyst graduate. He became unemployed and started to work at her 

wife‘s business, a printing office. Now he works as a sales representative while 

helping her wife with the printing office. He (with his wife) has two children, a 14 

years old daughter, and a 12 years old son. He is really involved in the school family 

association: he is the person in charge to organize the after school program. He is 

also an active member in his neighborhood. He participates in a range of different 

associations and people define him as a pro-active person who always is engaged in 

social life activities.  

When he talks about his children‘s education [in Mathematics] he is very critic. He 

does his best helping them with their homework. However, he has strong social 

representations about Mathematics. ―I‘m telling my children, one plus one equals 

two; this is Mathematics‖. He has his own way to solve the mathematical activities 

(drawing on his memories and experience), thus he use to feel upset with teachers‘ 

methods or strategies to solve them. ―You see it either easy or difficult, because they 

use more steps than needed... [to solve the exercise]. He also has his own beliefs 

about what does it mean to learn mathematics: ―you get them [Mathematics], or you 

don‘t‖; ―if you get them, then you need to fully understand it‖.  

Carlos attitudes towards his children when helping them with Mathematics are 

strongly mediated by his own beliefs on the subject. He also explains how he argues 

with his children‘s teacher about how to teach [Mathematics]. They are old mates, 

thus Carlos feels confidence enough to talk openly with her (the teacher) about 

didactics. He is very reluctant against ―new‖ ways to teach Mathematics (more 

comprehensive, less mechanical), since according to him, mathematics involves ―lots 

of practice [routine work]‖. He is also very critic with his children (with adolescents 

in general). He claims that, ―children now are in that moment like they are in a 

―colorful World‖, they do not read well... they have their mind focused in other 

things, so it is difficult to focus them‖.  

Drawing on this data, we may suggest that parents‘ involvement is really mediated 

by parents‘ attitudes and beliefs. Carlos is a pro-active man. He is really devoted to 

support his children. However, his radical beliefs about Mathematics lead him to 

confront teachers‘ methods, which may be a starting point for a conflict with his 

children (or his children with the teacher).  
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Case 3. Jordi.  

Jordi is a Pharmacy graduate. He works in a Pharmaceutics multinational company. 

He is married and he has two children: a 19 years old daughter and a 14 years old 

boy. His wife is a Nursing graduate. Both of them are members of the school family 

association. Both belong to a ―middle class‖ group, and they come from well-off 

families. They bring their children to a religious school (catholic). They are also 

involved in activities for families (family involvement, teaching for families, etc.). 

Jordi is a person with great amounts of curiosity and he is very supportive.  

He has strong beliefs around Mathematics and its teaching and learning. According 

to him, ―I think of Mathematics that if you already have understood it when you are 

solving the problems, there is no need to go back... you are already in a good 

position. Then, you need to practice a lot with the activities, etc.‖. Jordi really 

believe that in order to be proficient in Mathematics, there is a need of intense 

practice. He assumes that children need to solve series of routine activities to 

perform well in Mathematics assessments. This assumption suggests that somehow 

Jordi shares the social representation of Mathematics as a set of routine practices / 

methods. His belief (based in that social representation) mediates his relation with 

their children at home, since he asks them to practice seriously Mathematics by 

doing and doing exercises and using algorithms methodically.  

According to him, helping children at home in some way is natural for parents, 

―Then, the fact that parents want to spend their time helping their children is 

something innate, isn‘t it?‖ However, he believes that ―not everybody can do it [help 

children with Mathematics] equally‖. Jordi has a strong feeling on discrepancies 

(even inequalities) between individuals, thus some are better than others to teach 

Mathematics.  

―...We also have extra abilities that are based on genetic issues, what ―nature‖ has given 

to us, so look, you may take advantage of it or you may not, according to your [level] of 

understanding; but you already have it. With parents is the same... to have in mind this 

extra support, as a regular part of their [children] learning, maybe is discriminatory for 

children, because not all of them [the parents] have the same level. I‘m very close to some 

parents of my son‘s peers and, I don‘t know, I‘m able to imagine that for some things that 

I explained to my son some of them may be better than I [in explaining these concepts], 

but others, poor people, they will find lots of troubles to explain it or even they will not be 

able to do it because of their own lack of understanding themselves, or because they never 

studied that‖.  

Jordi believes profoundly that there are differences between individuals‘ capacities 

to deal with Mathematics. According to him, parent involvement is an action that 

may produce streaming consequences between children. Base on that, Jordi claims 

that he prefers teachers to be the ones responsible for children‘s learning. He thinks 

that teachers may have a deep understanding of the subject (Mathematics), but they 

also need to be able to teach it in an interesting way for children. This is another 
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―social representation‖ shared by parents and other community members, which 

emerges from Jordi‘s arguments.  

FINAL REMARKS AND FURTHER RESEARCH 

Drawing on our data, we may suggest that some of the family members‘ beliefs 

towards Mathematics are grounded on social representations (specially the ones 

shared with other parents). These beliefs crucially impact children‘s achievements in 

Mathematics. Family members may project over their children their own attitudes 

(phobia, frustration, anxiety, lack of self-confidence) towards Mathematics (based on 

their past experiences). These practices could label children (as in the case of 

Yazmín‘s daughter) and may be an exclusory fact that makes it harder for children to 

perform well in Mathematics. Base on our data, social context emerges as a crucial 

element explaining children‘s achievements in Mathematics. The kind of interactions 

that children maintain within their everyday life could help to understand why some 

children always perform well in Mathematics, whereas others use to fail again and 

again. As previous research suggested, attitudes towards Mathematics may not be 

just individually based: there is room for the impact of social context. Attitudes also 

play a crucial role in self-concept and self-esteem, which are central aspects of the 

self-confidence in getting good scores in mathematical assessments. In this paper we 

slightly have started to analyze this kind of relationship. More research is need in 

order to provide more evidences and a full understanding of how these variables are 

related within the learning processes.  

We also need more research to analyze how are ―attitudes‖, ―beliefs‖, ―attribution‖, 

and ―social representations‖ connected to each other in the frame of family 

involvement practices. What type of interactions we may observe if we had the 

opportunity to share time with parents and children at home? An ethnographical line 

of research may provide more light to this question.  

Finally, drawing on our data we see how some parents have beliefs about education 

and learning processes, which are not coherent with the findings demonstrated by the 

scientific community. This is the example of Jordi, who thinks that parent 

involvement may produce streaming, when we already know from a large body of 

research that it is the opposite. This is also the example of Carlos and Jordi, when 

they affirm that Mathematics education should be based on routine rather than other 

type of methods. Why do these attitudes take place, and how? What kinds of 

consequences have for children, and how can we manage to transfer the research 

findings to society? These questions also open another line for further research.  

NOTES 

1. The Fennema-Sherman scale (1976), the Mathematics Anxiety Rating Scale (Richardson & Suinn, 1972), the 

Enjoyment of Mathematics and the Value of Mathematics scale (Aiken, 1974), the Mathematics Attitude Inventory 

(Sandman, 1980), etc. 
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2. While authors such as Fennema and Sherman used the term ―attitude‖ to refer a set of feelings that individuals may 

have towards mathematics, such as ―I like mathematics‖, or ―mathematics is a boring issue‖, other researchers prefer the 

use of the term ―beliefs‖, such McLeod (1994). Fennema and Sherman (1976) developed the Mathematics Attitudes 

Scale including different sub-scales (values, beliefs, confidence in learning mathematics, math anxiety and disposition 

towards active problems solving). McLeod (1994) proposed a range between beliefs and emotions, with attitudes in 

between, assuming that ―emotions‖ are more intensive and less stable than ―beliefs‖. ―Attitudes‖ are in between these 

two extremes. 

3. In 1946 Asch published a study about how individuals create an ―image‖ of somebody (Asch, 1946). He chose two 

sets of university students. He gave them a list of personal features from an unknown person. Both list included the same 

adjectives (smart, handy, decisive, practical, and prudent), but one. Asch added ―warm‖ to the first list, and ―cold‖ to the 

second one. Students that received the first list described the unknown person as somebody ―generous‖, ―kind‖ and 

―happy‖. The second set of students came with adjectives such as ―miserly‖, ―unhappy‖ and ―unpopular‖. This study 

suggested that identity is a result of a social construction. 

4. FAMA: Family Math for Adult Learners. Number of reference: 504135-LLP-1-2009-1-ES-GRUNDTIG-GMP. This 

project has been funded with support from the European Commission. This publication paper reflects the views only of 

the author, and the Commission cannot be held responsible for any use which may be made of the information contained 

therein. 

5. In Spain to become a nurse assistant is not required to go to the University to get the certificate. There is a vocational 

training course to obtain this professional accreditation. 
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BETWEEN SCHOOL AND COMPANY: A FIELD OF TENSION?  

Toril Eskeland Rangnes 

Bergen University College 

This paper is based on a school/company collaboration that involves mathematics 

learning conversations among 8
th

 grade pupils. It illustrates how the different goals 

for the use of mathematics in these fora, create a field of tension in which the pupils 

encounter different languages and modes of thought. Taking mathematics 

conversations in and out of school as a starting point, the polyphony of this field of 

tension is analysed and discussed on the basis of Bakhtin‘s ideas of dialogism. In 

addition I will consider how the encounter with different voices influences the 

pupils‘ positioning and strengthens their participation in making decisions.  

Key words: Conversations, realistic mathematical education, pupils‘ positioning, 

polyphony. 

INTRODUCTION 

In the context of a more general debate in Norway on the theorisation of schools, 

mathematics as a subject has been criticised for its distance from mathematics in 

everyday life. The politicians have encouraged practical mathematics, with a focus 

on literacy (reading, writing and numeracy) which includes ―to identify, to 

understand, to interpret, to create and to communicate‖ (Utdannings- og 

forskningsdepartementet, 2004, p. 33) in the Norwegian National Curriculum. Oral 

skills are emphasized, as well as the ability to apply problem solving and 

investigation on the basis of practical, everyday situations (LK06, Norwegian 

National Curriculum for Knowledge Promotion in Primary and Secondary Education 

and Training). LK06 mirrors OECD´s (2006) perception of mathematical literacy as 

a positive and necessary skill if one is to succeed in society and participate as a 

democratic citizen. Cooperation outside of school (e.g. with local companies) is 

encouraged, in order to learn and be motivated (LK06). Although more practical 

approaches and outside contact are encouraged, there has been little research into the 

learning that takes place when pupils in lower secondary school cooperate with 

institutions outside school to learn mathematics.  

The purpose of this paper is to examine conversations in which 8
th

 grade pupils 

(ages13–14) encounter different mathematical practices and how this influences their 

positioning and language usage. This is also an exploration of how conversations can 

close or open up possibilities for further discussion and consideration of options, as 

well as for critical reflection about school mathematics vs. company mathematics. 

Research in this field is limited, although there are studies of conversations in which 

everyday discourse and school mathematics discourse meet (e.g. Rønning, 2009). 

There have also been studies of adults attending courses to develop numeracy 

associated with work and everyday life (e.g. Wedege, 2010). Essential to this paper 
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is that the sequences have been taken from a project with the aim of allowing 

secondary school pupils to learn mathematics in the context of a company they 

initially know little about. It was not part of the pupils‘ everyday life, and it is 

different from the school mathematics practice they knew. The teacher and the pupils 

engaged in developing a new practice together. 

In this case study the pupils meet two kinds of practices; those of the school, 

governed by learning goals in mathematics as defined in the curriculum and 

effectuated by the teacher; and those of the building company, guided by production 

goals, efficiency and profitability. This creates a field of tension where participants 

are confronted with different goals, practices and language and where they have to 

cope with the challenges this entails. Johnsen-Høines (2010) describes the pupils´ 

movement between school and company as a learning loop. This movement is not 

confined to location – rather, it is about how the moving between is present in 

conversations both in school and in the building company.  

The pupils were told beforehand what the mathematical and social goals were. The 

assignment given to them by the teacher and the building company was to construct 

3D models of a rorbu, a combined boathouse and seaside cottage, which is popular 

in this coastal region. Initially, the building company sent the pupils several 

construction drawings of different size rorbu. These were to provide a basis for the 

pupils‘ own construction drawings and suggestions for possible room plans. The 

group were to take their construction drawing to the company, and discuss their 

drawing with a carpenter. Back in the classroom, the pupils produced 3D models at a 

scale of 1:25 based on their construction drawings.  

THEORETICAL FRAMEWORK 

Wedege (2006) describes the differences between working with mathematics at work 

and mathematics in school on the basis of the experience of her adult students. For 

instance, she notes that in professional life, one has to find the relevant information 

oneself, whereas in school, one is given problems cleansed of unnecessary 

information. According to Wedege even ―reality‖ has a different function. In 

professional life, reality provides opportunities to use mathematical ideas and 

techniques, and solutions have practical consequences; whereas in school, it serves 

as pretence for using mathematics, and the results usually have no practical 

consequences. Furthermore, the tasks in professional life are governed and structured 

by technology, whereas in school, the mathematical problems structure the teaching 

(Wedege, 2006, p. 217).  

The benefits achieved from boundary crossings between school and company 

settings with different cultures, is a moot point. To understand and to question one‘s 

own culture, outsideness can be a most powerful factor, according to Bakhtin (1986, 

p. 7). The dialogue between cultures, does not result in merging and mixing, he says, 
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since ―each retains to its own unity and open totality, but they are mutually enriched‖ 

(Ibid, p.7).  

In Bakhtinian dialogism, the utterance is the unit of analysis. An utterance, which 

can be a word, a sentence, a drama or a dissertation, can never be studied in isolation, 

but must be seen in relation to the preceding utterance and its continuation in the 

utterance that follows. Utterances must, according to Bakhtin, be seen in light of 

time; present, past and future. They must be seen in relation to context: Social, 

cultural and historical (Bakhtin, 1986).  

Bakhtin never explicitly defines polyphony (Morson & Emerson, 1990) but rather 

describes it as a space in which different opinions, understandings and linguistic 

settings are expressed (Bakhtin, 1981; 1986). The voices in a polyphony can be 

identified through choice of theme, expressivity and purpose. An utterance may 

contain several voices. In order to create understanding, however, an utterance has to 

be more than different voices; there is also a need of tension and struggle between 

them (Dysthe, 1999, p. 76).  

A dialogue which opens up for polyphony can be contrasted with monologic talk, in 

which one person or group has the power to decide the topic and the mode. 

Polyphony opens up for different possible positions including critique and 

negotiation of power. This is in accordance with the perception of ―power as a 

relational capacity of social actors to position themselves in different situations and 

through the use of various resources of power‖ (Valero, 2004, p. 15). In this case 

study the Bakhtinian theory of dialogue, polyphony and positioning is a tool for 

describing pupils‘ movement between different forms of argumentation which can be 

positioned in a school mathematics discourse or in a company discourse.  

The form of the conversation is related to how power is divided between the 

participants. An inquiry dialogue is considered a conversation in which there are 

symmetrical relationships between the participants and the participants investigate 

each other‘s perceptions (Alrø & Skovsmose, 2002).   Lindfors (1999) stresses that 

the object of an inquiring utterance must be an authentic wish to seek others' help to 

investigate what lies beyond that which one understands. Through an inquiring 

attitude one also shows what one knows. To ask in order to invite others involves 

risk taking since one demonstrates one‘s need for the other‘s good will, as they must 

listen and interact (Ibid). However dialogue is not only about question/answer; it is 

about the construction of meaning and is included in a social practice (Bakhtin, 

1981, p. 121).  

With Lindfors‘ (1999) inquiry dialogue and Alrø & Skovsmose‘s (2002) inquiry co-

operation model (IC-model) as a background, I will in this paper describe dialogues 

in which the participants demonstrate an intention to listen and contribute, as in an 

―inquiry dialogue‖. In such a dialogue, in which awarenesses meet, there lies an 

opportunity for change in the participants‘ awareness. (Lindfors, 1999, p. 150). In 
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this respect, dialogical conversations stand in contrast to monologic ones where an 

authority holds the truth and tries to persuade or guide other people‘s choices. 

These perspectives give me a basis for answering the questions: What are the 

characteristics of the pupils‘ conversations when they encounter in school and 

workplace? What different positions do the pupils take in the conversations as they 

move between different and to some degree contradictory voices? Implicitly, this 

will highlight how relational power moves between the participants in conversations.   

METHOD 

The research project ―Learning Conversation in Mathematics Practice‖ (LCMP) [1] 

of which this study is a part, cooperated with teachers in a municipality which 

intended to focus on the aim of carrying out practical learning in mathematics in 

cooperation with local enterprises. In this project student teachers were active in 

developing the teaching in this program. After graduating, one of these students 

wanted to try cooperating with an enterprise in her first year as a teacher. Her 

argument for doing this was that some of her pupils prefer practical work, and most 

of her teaching was theoretical. At the teacher‘s request, I was her conversation 

partner in the project. The teacher had the main responsibility for the design of the 

teaching plan and the implementation of the teaching. My role as a researcher was 

explained to the pupils; they were told that it was OK to communicate with me, but 

the teacher was in charge of the project. 

The teacher and the researcher met the company carpenter for an initial clarifying 

conversation, in which it was made clear that it was their practical application of 

mathematics in the company that was of interest. The carpenter‘s role in the company 

is, among other things, to advise customers and to plan annexes and minor new 

buildings.  

Gert Hana (researcher in LCMP) and I followed two groups with video cameras and 

sound recorders for seven sessions, one of which was at the company. The members 

of groups we followed were selected by the teacher. The groups were not based on 

mathematics ability; the only criteria were that the participants‘ were able to 

participate in conversations and that they had consented to take part.  

In order to study both the form and the content of the conversations, the analysis has 

been inspired by both conversation analysis (Nielsen & Nielsen, 2005) and 

pragmatics (Svennevig, Sandvik & Vagle, 1995).  In this paper I present three 

conversation sequences from one group of five pupils. In the conversations presented 

the active participants are two girls (Anne and Hilde), two boys (Daniel and Jonas), 

the teacher and the carpenter. The sequences have been selected because, according 

to Bakhtin‘s description of polyphony, they illustrate meetings between different 

voices based on the contextual dissimilarities represented by school and company. 

There is, of course, always a risk when interpreting conversations that one finds what 

one is looking for. To minimize this danger, possible interpretations have been 
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discussed in the research group that I am a member of and with the teacher. Alternate 

interpretations have been continually tested against each other; due to limitations of 

space, this material cannot be included in this paper.  

CONVERSATIONS RELATED TO CHOICES OF RORBU MODEL 

Sequence 1: Establishing the parameters  

Anne was not present when the group made their sketch and needs information about 

the construction drawing of the rorbu. She asks Hilde about the plan floor and is told 

that there will not be two floors [2]; they will just plan the upper floor.   

Anne:  Won‘t it look like this, then, with only one floor? (Forms a one-floor 

structure with her hands) and not like this? (Then forms a two-floor 

structure with a slanting roof.) 

Hilde:  The teacher said not to make a roof. She said we could just… imagine a 

shoebox, she said (Forms an imaginary shoebox with her hands.) 

Anne:  OK. I´ll imagine a shoebox. (Forms a shoebox with her hands.) 

This conversation between Hilde and Anne must be seen in light of the conversation 

with the carpenter which they are preparing for. Anne‘s question reflects her 

experience with her family´s rorbu. Her question, ―won‘t it look like this with only 

one floor?‖ as she demonstrates the shape, can be seen as an argument in a 

discussion. Her realistic rorbu model with two floors and a roof   becomes a 

counterargument to the group‘s artificial model with only one floor and without 

consideration of the slanting roof. Hilde responds by repeating the teacher‘s 

simplification: No roof, imagine a shoebox. I interpret this as a counterargument 

based in a school context. The choice between the two models has implications 

related to floor space and determines how they will proceed. Hilde refers to the 

teacher‘s utterance by saying ―teacher said‖ or ―she said‖, thereby implicitly giving 

her argument authority. The tension is articulated in Anne‘s utterance, which is 

positioned in a realistic out of school context and Hilde‘s utterance positioned in a 

school context. The utterance with reference to the teacher, the external authoritative 

voice, halts further discussion. Anne chooses to accept the school context.  

Sequence 2: Exploring alternative solutions  

Shortly after, the whole group talks with the carpenter about their construction 

drawing: 

Cptr: What have you got? 

The carpenter reads out loud the different rooms the pupils have drawn in, among 

them a room for computer games. The pupils have had heated arguments about 

whether there should be such a room in a rorbu. Floor use, space limitations, and 

special interests like computer games have been elements in the discussion. As the 

carpenter listens the pupils take up this discussion, speaking loudly and showing 
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deep disagreement. The carpenter does not enter this conflict but directs his attention 

to the kitchen:  

Cptr:  You have placed the kitchen cabinets mainly on the knee wall. You can 

have base cabinets there, but not top cabinets.   

 

     
 

Fig 1: Carpenter points to the base cabinet on the knee wall 

Daniel: [It] was a bit like that. (Points to construction drawing from company) 

Anne: Yes, we looked at that. (Refers to a building plan from the company)  

Cptr:  The base cabinets will protrude 60 cm. (Takes his folding rule and measures 

60 cm from the knee wall under the slanting roof in the room they are in.) 

So you can stand there doing the dishes for a while (addressed to Anne, who 

is standing closest to the knee wall). But not for very long. So the kitchen 

counter should probably be placed a bit more, so if you turned it.  

Jonas:  Couldn‘t we do it more like this, then... (He points along an inner wall.) 

Cptr.:  Yes, there (takes his pencil). I think I would take, put the kitchen cabinets 

along here (Same place as Jonas suggested where the counter is turned 90
o
)  

The carpenter opens by asking what the pupils have to show him. This question is 

open and focuses on the pupils‘ contribution. He then looks over the plan quickly 

before focusing on the kitchen. This communication is both oral and written, one 

might say that the carpenter paraphrases the pupils‘ written contribution and in this 

way shows interest in and reinforces the pupils‘ contribution to the dialogue. Rather 

than following the pupils as they argue about who is responsible for a controversial 

room they have included, the carpenter zooms in on a problem he notices: The pupils 

have not considered the slanting roof and knee walls. This reveals his realistic 

approach to the model; it should be functional as if it were to be built in reality, in 

full scale. This supports Anne‘s realistic thinking.  In a response to the carpenter‘s 

utterance, Daniel and Anne refer to a building plan they had been given by the 

company. I assume they are trying to give the company some of the responsibility for 

what they have done, through this reference. They defend what they have drawn and 

are retrospective in their positioning. The carpenter does not pick up what they say; 

he just goes on, communicating through a combination of words and actions.  The 

proposed kitchen cabinet will protrude 60 cm from a knee wall. Using a folding rule, 

he demonstrates physically how low the ceiling will be there; a grown up will not be 

KKnee wall 
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able to stand upright. His expression and use of tools to demonstrate the 

consequences of the pupils‘ drawing, is polyphonic; on one hand, he instructs with 

the authority of a professional, concretizing to someone who is learning as in a 

master–apprentice relationship; on the other hand, he points out the consequences of 

choices in planning layout, as in a consultant–customer relationship. He indicates a 

possible solution: The kitchen counter could be turned. The carpenter‘s statements 

continue to be solution-oriented; he demonstrates what he would do. He uses many 

words to soften his statements. The kitchen counter ―should probably‖ be placed ―a 

little more‖. When he then says they could turn it a little, Jonas is quick to suggest a 

concrete placement that involves turning the kitchen counter 90 degrees. The 

carpenter agrees with this proposal with a simple ―yes‖ and adds ―I think I would...‖ 

which suggests that others may have a different opinion. The pupils in this sequence 

choose to position the utterance in different ways; most of them are defensive and 

preoccupied with the distribution of responsibility and with explaining their choices; 

only Jonas chooses, like the carpenter, to look ahead towards possible solutions.  

Sequence 3: Considering other perspectives  

This last conversation sequence was recorded about a month after the visit to the 

company. In the meantime, the pupils had, among other things, practiced 

constructing a 90þ angle using a compass and ruler, and measuring and drawing 

angles using a protractor.    

In this sequence, Jonas and Daniel are discussing whether to cut the inner walls 

according to a shoebox model (wall height in real life: 1.4 m) or whether to allow for 

knee walls and full ceiling height, as in a realistic model.   

        

Fig. 2: ‖If you have a cabinet there, right?‖  Fig. 3: ‖It slants‖ 

Daniel has arguments for both the models, and uses a practical form of 

argumentation. In fig. 2, he points out that a cabinet will look rather odd against the 

inner wall in a shoebox model. He then balances this by adding that this kind of a 

shoebox model is easier to make. They then refer to what the teacher has told them to 

do, which is the shoebox model. Nevertheless, Daniel returns to the cabinet argument 

(fig. 3). 

Daniel: But then they (inner walls) must slant, then we have to make the correct 

angle on all of them. That's a drag. 

Jonas asks me what they should do. I tell them I don‘t know what teacher has said. 

Daniel comments: ―No, well she says different things‖. Teacher comes in:  

Jonas: What should the inner walls be like?  
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Daniel: Should we make them with a slanting ceiling? 

Jonas: Should there be a slanting ceiling here or should it just go straight along? 

Daniel: That‘d be a bit silly ‘cause if you have a cabinet, right, it should fit with the 

slanting ceiling.  

Teacher:  What do you want to do? 

Daniel:  It will be easier if … but a slanting ceiling is better. 

Jonas:  No, it‘s difficult (Daniel signals his agreement through sounds and gestures) 

Teacher:  Is it difficult? 

Daniel:  Yeah, you have to know the angle of…  

Teacher:  Yes, or the height here and here, and then it will slant automatically.  

    

 

Fig. 4. Teacher points out the heights the pupils need  

The boys get going at once. Their concern has been addressed.   

In their conversation with the teacher, Daniel and Jonas first clarify the question they 

are asking, they refer to the possible choices they are facing. In so doing, they also 

demonstrate their insight into the problem area. They take the pupil role, asking the 

teacher as an authority. At the same time, Daniel is arguing against the teacher‘s 

shoebox model. In his arguments, he draws freely on the carpenter‘s realistic model, 

which problematized the location of the kitchen counter and lack of room for 

cabinets – the cabinet will be too tall in relation to the walls. A field of tension 

develops between Daniel‘s argumentation and the teacher‘s open follow-up 

questions, making room for polyphony. The teacher empowers the pupils when she 

asks them what they prefer. In her response to the pupils‘ problem with the angles, 

she gives them an alternative way to find out the slant of the walls. The teacher's 

statement is also polyphonous. It can be interpreted from the perspective of a 

practical context, in which she gives the pupils a practical solution to the immediate 

problem, and can also be interpreted from the perspective of a school mathematics, in 

which she opens for a new field of learning, with regard to the characteristics of 

similar triangles and the connection with trigonometry. The result of teacher‘s 

statement is that Daniel and Jonas are given a real choice as to how advanced they 

are going to make their model. Their voices and choices have been clarified in the 

field of tension between school and company. 

CLOSING REMARKS 

Returning to the first sequence, the conversation between Anne and Hilde appears to 

start as a balanced conversation between two pupils who position themselves 
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differently. Anne has ―real-world‖ knowledge about rorbu since her family owns 

one, and Hilde has the knowledge gained in the discussion with the group and with 

the teacher. The balance was altered when Hilde positioned herself in a school 

context and referred to an external authority, which left little room for negotiation. In 

the second sequence, between the pupils and the carpenter, the conversation is 

dominated by the carpenter, who shows genuine interest in the drawing the pupils 

have made. The pupils are on the carpenter‘s home ground, discussing their drawing 

with an expert. In many ways the carpenter speaks to the pupils as he would to 

customers, pointing out possible solutions. However, the pupils do not have the real 

power a customer/buyer would have, so there is little symmetry in the conversation. I 

have chosen to call this interaction pattern a master/apprentice conversation. In the 

third sequence, the conversation between Jonas, Daniel and the teacher, I would 

characterize the interaction as an inquiry dialogue, in which the participants are 

exploring each other‘s perspectives. Here, the pupils‘ argumentation is given room; 

they are allowed the opportunity to explain their arguments and what they consider 

difficult. 

These three sequences have different purposes and qualities. I have identified how 

the participants, both the pupils and the teacher, make use of voices from both school 

practice and ―real world‖ in their argumentations. In this case, placement in a field of 

tension where the participants are confronted with different goals for the use of 

mathematics (Wedege, 2006), seems to open up for polyphony (Bakhtin, 1981) and 

make the polyphony more visible. The differences between school and company give 

the participants experience related to argumentation, language usage and choices. In 

this way, polyphony opens up for the pupils‘ voices to be used and strengthened. The 

pupils´ participation in polyphone dialogues gives reason to believe there is potential 

for developing critical reflectiveness about the practice of mathematics in and 

outside school. 

NOTES 

1. This is part of my ongoing ph.d.-study in the research project Learning Conversation in Mathematics Practice 

(LCMP, leader: Marit Johnsen-Høines). The study is financed by the Research Council of Norway (NFR) and Bergen 

University College.  

2. In this area a new rorbu always have two floors. 

REFERENCES 

Alrø, H., & Skovsmose, O. (2002). Dialogue and learning in mathematics 

education: Intention, reflection, critique. Dordrecht: Kluwer Academic Publishers. 

Bakhtin, M. (1986). Speech genres and other late essays. Austin: University of 

Minnesota press. 

Bakhtin, M. (Ed.). (1981). The dialogic imagination. Austin: University of Texas 

Press. 



Working Group 10 

CERME 7 (2011) 1510 

 

Dysthe, O. (1999). Dialogical Perspective and Bakhtin. In O. Dysthe (Ed.), The 

dialogical Perspective and Bakhtin. PLF Report 2-99. (pp. 73-88). Bergen: 

Program for læringsforskning, Universitetet i Bergen. 

Johnsen-Høines, M. (2010). Interpretative Research as Collaborative Inquiry. In B. 

Sriraman, C. Bergsten, S. Goodchild, G. Palsdottir, B. D. Søndergaard, & L. 

Haapasalo (Eds.), The First Sourcebook on Nordic Research in Mathematics 

Education. Charlotte NC: Information Age Publishing.  

Lindfors, J. W. (1999). Children´s inquiry. Using language to make sense of the 

world. New York: Teachers college press. 

LK06. (2006). Læreplan for grunnskole og videregående opplæring. Retrieved from: 

http://www.udir.no/grep.  

Morson, G. S., & Emerson, C. (1990). Mikhail Bakhtin: creation of a prosaics. 

Stanford, Calif.: Stanford University Press. 

Nielsen, M.F., & Nielsen, S. B. (2005). Samtaleanalyse. Roskilde. 

Samfundslitteratur. 

OECD (2006).  Assessing scientific, reading and mathemathical literacy: A 

framework for PISA 2006. Organisation for Economic Co-Operation and 

Development. 

Rønning, F. (2009). Tension between an everyday solution and a school solution to a 

measuring problem. Paper presented at the CERME 6. Lyon.  

Svennevig, J., Sandvik, M., & Vagle, V. (1995): Tilnærminger til tekst – Modeller 

for språklig tekstanalyse. Oslo. Cappelen. 

Utdannings- og forskningsdepartementet (UFD). (2004). Kultur for læring. St. Meld. 

Nr 30. (2003–2004). 

Valero, P. (2009). Socio-political perspectives on mathematical education. In P. 

Valero, & R. Zevenbergen. (Eds.), Researching the socio-political dimensions of 

mathematicseducation: issues of power in theory and methodology. Boston: 

Kluwer Academic Publishers. 

Wedege, T. (2010). Researching workers' mathematics at work. In A. Araöjo et al. 

(Eds.), EIMI 2010 Conference: Educational interfaces between mathematic s and 

industry. Proceedings, Lisbon - April, 19-23, Portugal (pp. 565-574). Lisbon: 

Centro Internacional de Matemática. http://eimi.glocos.org/ 

Wedege, T. (2006). Menneskers matematikholdige kompetencer. In O. Skovsmose & 

M. Blomhøj (Eds.), Kunne det tænkes? - om matematiklæring (pp. 208-227). 

Copenhagen: Malling Beck.   

http://www.udir.no/grep
http://eimi.glocos.org/


 

CERME 7 (2011)  

ETHNOMATHEMATICS IN EUROPEAN CONTEXT 

Charoula Stathopoulou*, Karen François** and Darlinda Moreira*** 

*Univ. of Thessaly, **Free Univ. Brussels, ***Univ. Aberta UIDEF- U. Lisbon 

Through a literature review we document the fact that ethnomathematics in Europe 

—in comparison with other places like America or Africa— are of less application. 

In this paper we are discussing the reasons for this late development of 

ethnomathematics in Europe. We explore the importance of an ethnomathematical 

approach to contribute and inform mathematics education of every minority and 

culturally different group. We intent through an ethnomathematical perspective to a 

mathematical education without any distinguish and which will be addressed to all 

students independently cultural or any other kind of differences. 

Keywords: Cultural diversity, Ethnomathematics, Eurocentrism, Mathematics 

education. 

INTRODUCTION 

The research question we are focussing on is if the situation concerning 

ethnomathematics in a European context differs from other parts of the world, and if 

so why and how we can identify and explain this differences. We plead for the 

importance of an ethnomathematical perspective as a critical way of doing 

mathematics education and as an opportunity to improve mathematical education for 

ALL. Our analysis of the ethnomathematical perspective is mainly based on the 

theoretical framework of D‘Ambrosio (1985, 1992) the intellectual father of 

ethnomathematics and Vithal &Skovsmose (1997) who analyzed the concept of 

ethnomathematics in a critical sense, considering that these perspectives are 

complementary. The research program of Ethnomathematics has been changed over 

the last decades. Firstly, ethnomathematics research has been associated with the 

mathematical practices of particular tribes or indigenous, `primitive' peoples, as well 

as those of a nation and/or human race. In recent times, under the impulse of an 

encompassing research programme, the meaning of the concept of ethnomathematics 

changed and has received a much broader interpretation (François & Van Kerkhove, 

2010). Looking at the description of D‘Ambrosio, one can observe a rather broad 

meaning of the concept. D‘Ambrosio speaks about Ethnomathematics as ―[t]he 

mathematics which is practiced among identifiable cultural groups, such as national-

tribal societies, labor groups, children of certain age brackets, and professional 

classes.‖ (1985, p. 45) and as "[t]he arts or techniques developed by different 

cultures to explain, to understand, to cope with their environment" (1992, p. 1184). 

In his ICEM3 presentation D‘Ambrosio (2006) defines ethnomathematics as ―[...] a 

research programme in the history and philosophy of mathematics, with pedagogical 

implications, focusing the arts and techniques (tics [from technē]) of explaining, 

understanding and coping with (mathema) different socio-cultural environments 
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(ethno)‖. Although D‘Ambrosio does not restrict the application of 

ethnomathematics to indigenous cultures, ethnomathematics (as explicit labeled) 

found much more fertile ground in non-western societies. We will argue this claim 

by, firstly presenting the results of our literature review of both the 

Ethnomathematics Digital Library and the International Study Group on 

Ethnomathematics. From this first results on the very narrow interpretation of 

ethnomathematics (as explicit labelled) we will also argue that research in the field 

of ethnomathematics developed later in Europe and that there seems to be less 

research (or less interest) in this field. These phenomena could be explained by the 

concept of Eurocentrism on which we will elaborate at the end of the first part of this 

paper. In the second part of the paper we will investigate the notion of 

ethnomathematical research in a European context based on a broader perspective of 

the concept of ethnomathematics as related to the notion of cultural diversity. This 

includes the ongoing research on the relation between mathematics education and the 

diverse backgrounds of the students (e.g. Moreira, 2002, 2007, 2009; Stathopoulou, 2005, 

2006a) and adults education which involves ethnomathematical practices (e.g. Evans, 

2000; Wedege, 2010). 

LITERATURE REVIEW 

The method used in this explorative study is a screening of the research output of 

three sources: the Ethnomathematics digital library, the International Study Group on 

Ethnomathematics (ISGEm), and the conferences on ethnomathematics organized by 

ISGEm. Sources have been selected on the basis of research communities who are 

labelling themselves as doing research as explicit referred to as ethnomathematics 

research. The explorative screening of the output is based on articles and papers 

presented at the respective conferences. In this investigation we use the concept 

ethnomathematics as explicit labelling itself as ethnomathematical research. From 

this investigation we will argue that research in the field of ethnomathematics 

developed later in Europe and that there seems to be less research (or less interest) in 

this field. At the end of this section we will explain our findings from a sociological 

perspective that is dealt with in terms of Eurocentrism. 

The Ethnomathematics Digital Library (EDL) 

The majority of the researchers listed at the EDL at http://www.ethnomath.org 

belong to places outside Europe and very often European researchers conducted their 

research in places outside Europe. Our observations are highlighted in table 1. 

Within the European countries, the ethnomathematical research is limited and a great 

part of it deviates from what is considered ―genuine ethnomathematical research‖. 

Looking at the examples of Greece, Italy and Portugal almost all papers concern 

historical issues and thus could hardly be categorized as ethnomathematics according 

to the four strands of ethnomathematics proposed by Vithal & Skovsmose (1997, p. 

134-135). The first strand deals with historical aspects in non-western mathematics; 
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the second analyses the original mathematical practices of traditional cultures 

(mostly of indigenous peoples); the third explores the mathematics of different 

groups in everyday settings showing that mathematical knowledge is generated in a 

wide variety of contexts by both adults and children. The fourth strand focuses on the 

relationship between ethnomathematics and mathematics education. 

Place Number of references Content  

USA 83 Majority indigenous, part multicultural 

Australia 31 Majority indigenous (Aboriginals) 

New Zealand 33 Majority indigenous (Maori) 

Spain  7 2 crafts,1 Bask, 1 immigrants 

Italy 7 6 historical 

Greece 10 9 historical 

Portugal  2 1 historical  

Table 1: Overview of Ethnomathematics Digital Library 

International Study Group on Ethnomathematics (ISGEem) 

On the main page of the ISGEm website hyperlinks/sites are sorted according to 

ethnicity/geography: African mathematics, Native American mathematics, Math in 

Euro-American culture, Pacific Islander mathematics, African American 

mathematics, Latino mathematics, Middle Eastern mathematics, Asian mathematics. 

The research belonging to the category of Math in Euro-American culture, also 

hardly could be considered as ethnomathematics according the four strands 

mentioned above. In regard to the late development of Ethnomathematics in Europe, 

the situation has been changing slowly. In Portugal and Greece, e.g. several 

researchers have been dedicated to integrating the perspectives of Ethnomathematics 

in their research, e.g. Moreira, (2002); Pires (2005); Candeia (2006); (Moreira & 

Pires, 2006), Stathopoulou (2005; 2006a). These investigations are not included in 

the ISGEm website. Considering that most of it is not published in English leads us 

to the question of the language of publication. 

Conferences of Ethnomathematics 

At the 1
st
 conference of ethnomathematics (Granada/Spain) the emphasis was on 

theory of ethnomathematics (e.g. Philosophy of ethnomathematics, 

ethnomethodology), on issues of mathematics teaching/ learning and on the 

connection of ethnomathematics to critical mathematics education. The main part of 

the research was on indigenous population while even European researchers had 

conducted their research out of Europe (e.g. F. Favilli‘s research was on Somalia). At 

the 2
nd

 conference (Ouro Preto/Brazil) there was a specificity regarding the structure. 

The majority of the researches were presented in poster‘s form. Apart from it there 

were round tables and a few lectures. The opening lecture was Freire‘s contribution 

on Ethnomathematics, the closing concerned an overview of ethnomathematics. The 

other two focused on philosophy of ethnomathematics and the Eurocentrism of 

http://isgem.rpi.edu/index.php?siteid=36&pageid=579
http://isgem.rpi.edu/index.php?siteid=36&pageid=605
http://isgem.rpi.edu/index.php?siteid=36&pageid=606
http://isgem.rpi.edu/index.php?siteid=36&pageid=606
http://isgem.rpi.edu/index.php?siteid=36&pageid=607
http://isgem.rpi.edu/index.php?siteid=36&pageid=608
http://isgem.rpi.edu/index.php?siteid=36&pageid=608
http://isgem.rpi.edu/index.php?siteid=36&pageid=609
http://isgem.rpi.edu/index.php?siteid=36&pageid=611
http://isgem.rpi.edu/index.php?siteid=36&pageid=610
http://isgem.rpi.edu/index.php?siteid=36&pageid=606


Working Group 10 

CERME 7 (2011) 1514 

 

mathematics. Ethnomathematics and indigenous people, ethnomathematics and rural 

education, ethnomathematics and its theory, ethnomathematics and teacher‘s 

qualification, ethnomathematics and its history were the focus of the round tables. At 

the 3rd conference (Auckland/New Zealand) the main part of the papers concerned 

indigenous cultures. Another part concerned theoretical issues of ethnomathematics 

as well as issues of more general interest. There were four papers that came from 

European countries; two from Greece (Stathopoulou, 2006b; Stathopoulou & 

Chaviaris, 2006), one from Norway (Onstad, 2006) and one from Sweden (Norén et. 

al, 2006). At the last conference (July 2010 at Towson-Baltimore/USA), more 

percentage than in previous conference concerned indigenous cultures. Also issues 

of indigenous teachers and teachers in general were discussed. Political and 

methodological aspects of ethnomathematics occupied a considerable part of the 

presentations. There was one panel on Ethnomathematics in a European context in 

which the authors participated. 

Eurocentrism 

By ethnomathematical research and approach we referred to that literature which is 

deliberately labelled as ethnomathematics. Based on this narrow interpretation of 

ethnomathematics research we used in our literature review we can observe that 

studies in ethnomathematics in Europe are scarce. The outcomes of our non-

exhaustive review are indicative of the progress of the ethnomathematics research in 

Europe. We dare an interpretation for this late development of ethnomathematics to 

Europe. The fact that ethnomathematics to a large extent, emerged as a contradiction 

to the domination of western mathematics seems to be one of the main reasons that 

ethnomathematics were developed later in Europe. Powell & Frankenstein (1997) 

suggest that ethnomathematics could contribute to the elimination of many false 

dichotomies such as ‗practical, everyday knowledge‘ versus ‗abstract, theoretical 

knowledge‘. What is mostly discussed here is the fact of the domination of western 

mathematics and in general, the western culture that, using an evolutionist schema 

evaluates any other culture in comparison to itself. Greenhalgh & Megaw (1978) 

commenting the European interest about anything non-European, reveal that 

European people always tend to assimilate the various and independent art traditions 

of the other cultures through a diffusionist schema in the center of which there are 

their own experiences. Correspondingly, mathematics of other cultures are 

approached and evaluated in comparison to western mathematics. For a long time, 

western mathematics are appeared as an authoritative knowledge, as a corpus of 

cognition and perceptions that is preferential to others, since it is considered that are 

more close to the ‗absolute truth‘; the non-western mathematics are ―measured‖ by 

the meter of western mathematics. There is no scientific perspective or any other that 

has not its roots to particular stories and prejudices; something that is imminent in 

human beings (Erickson & Murphy, 2002: 203). Concerning mathematics, 

Ghevarughese (1987) suggests that "there exists a widespread Eurocentric bias in the 
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production, dissemination and evaluation of scientific knowledge." He diagrams the 

"classical" Eurocentric approach as follows: 

 

Figure 1: Eurocentric Approach on the Development of Mathematics 

Ernest (2008), in this spirit, notes that many histories of mathematics, such as Eves 

(1953), promote a simplified Eurocentric view of its development: 

Typically such accounts identify Mesopotamia and Egypt as the sites of preliminary work 

that provided the raw materials for mathematics. Based on this, the flame of ‗real‘ 

mathematics was lit by the Ancient Greeks, kept alight by the Arabs during the Dark 

Ages, until when passed on like an Olympic torch, it blazed anew in modern Europe and 

her cultural dependencies (Ernest, 2008, p. 93). 

A perception like this ignores the connection of mathematics with the corresponding 

culture, as well as the fact of major contributions to the corpus of academic 

mathematics of non-western cultures as the invention of the decimal place value 

system with zero in India is (Ernest, 2008). Ghevarughese (1987) claims that this 

Eurocentric approach served as a "comforting rationale for an imperialist/racist 

ideology of dominance" and has remained strong despite evidence that there was 

significant mathematical development in other places. This imperialistic/racist 

perspective of western mathematics has not only its consequences for non-western 

contexts. A lot of European cultures –we dare to use the plural since there is no 

single and unique culture in Europe- face these consequences. Although the 

differences in European classrooms are not so obvious, comparing with indigenous 

people in e.g. USA. European classrooms have to deal with a lot of students coming 

from minority and marginalized groups. These challenges have their impact in math 

classes since mathematics education is an acculturation procedure (Stathopoulou, 

2006a). All groups that are marginalized and oppressed by the dominant culture and 

the educational system are facing more problems since their culture is contemned. 

Thus, teachers—teachers of mathematics— face the challenges of teaching in 

multiethnic and multilingual classrooms that includes students belonging to the 

above groups. Apart from the minority students coming from immigrants and 

refugees, traditional cultural groups, such as Romany students do also contribute to 

the formation of current classrooms. In the following part of the paper we will 

investigate the notion of ethnomathematical research in a European context bases on 

the broader perspective of the concept of ethnomathematics. 

TOWARDS AN ETHNOMATHEMATICAL PERSPECTIVE 

The increasing cultural diversity in Europe has been changing the landscape in the 

European classrooms. The debate on the concept of cultural diversity leads to the 
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question of equity and social justice that has been pointed out as one of the main 

challenges in the (research) field of mathematics education. In Europe equity in 

mathematics education has become an important issue since basic education is 

mandatory and mathematical literacy has been seeing as a human right. However 

institutional education (e.g. schools, curricula, …) results in exclusion of a large 

number of students that do not succeed in schools, being most of them from cultural 

minority groups. Moreover student population in Europe is not only a much more 

cultural diverse group; their diversity has also a strong correlation with the 

achievements in education. The same observation has been done in the USA by 

Suárez-Orozco & Suárez-Orozco (2002). They observe that ―today‘s immigrants are 

a much more diverse group than ever before in terms of educational background and 

skills‖ (2002, p. 56). 

Due to the shifted multicultural settings in schools and the increased variety of 

cultural diversity, questions and challenges in the (research) community of 

mathematics educations has been changed. One important challenge is the 

background of the students; the valorization of students‘ socio-cultural roots and 

their previous knowledge. It is important to deal with this starting position because it 

contributes to the future learning of the students and it contextualizes the act of 

learning. Indeed, the heterogeneity of the school population is expressed in various 

ways: language, behavior, habits, ways of enhancing the own knowledge, ways of 

giving meaning to school contents. In addition, when we talk about education we 

consider that educational processes happen within particular socio-cultural contexts, 

being school one of them. Indeed education is a vast process with the presence of 

several protagonists who use different strategies and learning technologies which are 

located mainly in the family, school and community (Pinxten, 1997; Moreira, 2007).  

Hence, an important issue for current thinking about educational inclusion is located at 

the epistemology of social groups. Since learning and its specific processes are 

socially and culturally situated, social group theory of learning and knowing emerges 

as essential to frame the educational content and to give meaning to social practices 

–being it school or communities based practices. To the extent that education 

conducted by the school is based on assumptions and educational processes different 

from those usually carried out in domestic groups –which are reflected particularly in 

the substantial differences between rationalities, discourses and practices– children 

from social groups that are more familiar with the school‘s body of knowledge and 

artifacts have a higher probability of school success. Both the ethnographic research 

and theoretical/critical reflection have being show how school achievement is related 

in many different ways to the cultural background of students, which withdraws or is 

legitimated in schooling. Furthermore, the different life histories of the students are 

immersed in memories, affections and knowledge that demonstrate the existence of 

different relationship to knowledge and how learning are processed in different 

ways, based as they are in their own cultural epistemologies. In this sense, one of the 

educational function of schooling is seen as a way to connect and transfer discourses 
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and practices among different social groups, being necessary to bear in mind that 

different types of knowledge are embedded in their own contexts, which imply the 

presence of cognitive processes, forms of thinking, teaching and transmitting  

knowledge to new generations, leading even applications, objects, problems, 

technologies, and particular professions (Moreira, 2009; Stathopoulou, 2002). 

Research in the field of ethnomathematics –even in Europe– is clearly showing that 

communities are locus of mathematical knowledge much of which is yet to be 

considered and legitimized in schools. Acting as a strong source of criticism of how 

the mathematical activity of different groups has been erased or ignored by schools, 

ethnomathematics has been questioning the disjunctions between home based and 

school-based mathematical practices. Ultimately the findings from ethnomathematics 

show how we need to go beyond universalist and essentialist notions of mathematics 

and the need to build a mathematics that is based on everyday experience of 

mathematics, opening the door to the wealth of knowledge of various social groups. 

It is however necessary to think about how to interpret such perspective in the 

context of each particular educational setting because each one possess its own 

diversity and gives a meaning to it according to one experiences of the complex 

social fabric of present societies. Each classroom and each school imprints a 

particular dynamics that requires a different knowledge about the setting, the people 

and the culture. As Chuche points out, ―in cultural construction, what comes first is 

the culture of the group, the local culture, the culture that joins individuals with 

immediate interaction with each other, and not the global culture of the larger 

collectivity.‖ (1999, p. 87). Also Pinxten (1997) reminds us that: 

[A]n educational program will most probably be more efficient if it draws on the native 

strategies for thinking and learning than when simply implementing the western (or for 

that matter any other) way. (…) [T]he particular classifications and notions of a culture 

will in all probability constitute the best material to work within an educational setting 

(Pinxten, 1997, p. 135-136). 

From an ethnomathematical perspective, the local references and practices have to be 

taken into account as a starting point of the educational process. This is, an 

ethnomathematical perspective that leads to an innovative reflection in educational 

settings and thus can change the traditional educative paradigm with its depreciation 

of the experiences and knowledge that students bring from their culture and daily 

life. 

We are indeed aware of the pits and falls and the pedagogical implications of the 

ethnomathematical perspective. In recent years strong criticisms are made to such 

implications (Skovsmose & Vithal, 1997; Rowland & Carson, 2002; Adam, Barton 

& Allangui, 2003; Knijnik, 2006; Duarte, 2006; Domite and Pais, 2009). These 

studies make aware of a counter effect by implementing ethnomathematical ideas 

into school curricula (e.g. social exclusion, de-substantialization of Other‘s culture, 

essentialist approaches to culture). This observation gives rise to a central question if 
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the import of the concept ‗ethnomathematics‘ benefits a European critical math 

education that is looking for social justice and math education for all. In the frame of 

this paper we can only mention this topic, knowing that deepening this issue will be 

the focus of further research. 

CONCLUSION 

In this paper we focused on the late development of ethnomathematics in Europe and 

the reason thereof. Based on a literature review of three sources from the 

ethnomathematical research community (as officially labeled) we can observe indeed 

a different ethnomathematical investigation in a European context. Part of the reason 

we explained by the concept of Eurocentrism, which includes a perspective on 

ethnomathematics as the study of mathematical practices of non-western cultures 

based on the cognitive categories of European research. This narrow interpretation of 

ethnomathematics  gave rise to an imperialistic view on western mathematics which 

is not restricted to a non-western context. The European landscape changed into a 

multicultural society with a rich variety of diversity and even in this European 

context of diversity, the imperialistic perspective comes into play where school 

curricula do not deal with the diverse background of students. In this paper we 

referred to undertaken and ongoing ‗ethnomathematical‘ research in a European 

context that focuses on this topic. More research has to be done in this area and there 

is a need to bring more results of this research to a broader public by translating it 

into the lingua franca. 
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The purpose of this paper is to review the current state of doctoral programs in 

mathematics education in three Turkish universities. In this context, we first provide 

brief background information about Turkish higher education system and teacher 

education policies in Turkey. Then the major national initiatives towards future 

faculty development efforts are explained. Finally, the nature and components of 

mathematics education doctoral programs in Turkey is provided. In doing so, we 

provide information about admission procedures, requirements for coursework and 

dissertation, and employment opportunities for those with a doctoral degree in 

mathematics education.  
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INTRODUCTION 

Mathematics education in Turkey is relatively young compared to other educational 

areas such as educational administration and educational measurement. 

Undergraduate programs focusing specifically on mathematics teacher education in 

Turkish universities began to appear after the establishment of Yüksek Öğretim 

Kurulu (YÖK) [The Turkish Council of Higher Education] in 1981. While 

establishing these programs, the staff requirements were filled mostly by 

mathematicians, not by mathematics educators. Moreover, faculty in educational 

sciences has supported these programs in the pedagogical sense, without focusing 

much on mathematics. As Shulman (1986, 1987) and many others (e.g., Ball, 

Thames, & Phelps, 2008; Hill et al., 2008) have either suggested or provided 

evidence that simple combination of expertise in mathematics and educational 

sciences do not guarantee a sound base for quality instruction in mathematics. 

Instead, a pedagogical basis specific to mathematics needs to be established. Such a 

perspective calls for an audit of mathematics education programs and draw attention 

to the need for doctoral degrees in mathematics education for supplying quality staff 

for these programs. 

Our goal in this paper is to describe the current state of the mathematics education 

doctoral programs in Turkish universities as every country is diverse and unique in 

its own way. For such a young field in Turkey, doctoral programs play a crucial role 

in the future of mathematics education. In fact, doctoral programs create contexts in 

which traditions of research, approaches to issues about school mathematics, and 

philosophical stands are produced and re-produced. In this sense, the nature of these 
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programs and the discourse growing in these environments will have direct and 

indirect impact on cultural and political issues about mathematics education in 

Turkey through the graduates of these programs and work produced by the people 

involved. On the other hand, this paper contributes to our understanding of diversity 

in mathematics education doctoral programs on a global level in terms of 

components of these programs (e.g., program activities, students, faculty and/or staff, 

outcomes) and the contexts they function in various countries.    

In Turkey, mathematics education research on graduate level has been conducted in 

various programs, such as early childhood education, primary education, and the 

educational sciences. However, our discussion in this paper is limited to the 

programs offering degrees in elementary and secondary mathematics education. A 

better understanding of the mathematics education doctoral programs is possible 

when they are situated within the larger context of higher education and teacher 

education policies in Turkey. Thus, we will begin with a brief background of Turkish 

higher education system and teacher education policies. Then we describe faculty 

development attempts before discussing specifically the nature doctoral programs in 

mathematics education.  

HIGHER EDUCATION SYSTEM AND MATHEMATICS TEACHER 

EDUCATION IN TURKEY 

In Turkey, there is a unified system of higher education under the surveillance of the 

Council of Higher Education. Currently, in this system, there are 93 state and 38 

private universities throughout Turkey (YÖK, n.d. -a). Each university consists of 

faculties offering undergraduate programs. Admissions to these programs are 

centralized and based on a nation-wide examination conducted by Öğrenci Seçme ve 

Yerleştirme Merkezi [the Student Selection and Placement Center]. Graduate 

programs for master‘s and doctoral degrees, on the other hand, are offered under the 

graduate schools in universities. According to the Council of Higher Education, in 

the 2004-2005 academic year, the total number of graduate students in Turkish 

universities was about 120 000 (YÖK, 2007). Of this number, 92 600 students were 

in master‘s and 27 400 in doctoral programs. No data were available for the graduate 

programs offering degrees specific to mathematics education. 

Four year undergraduate mathematics teacher education programs were established 

within the faculties of education for initial training of teachers, since the 

establishment of the Council of Higher Education. Until 1998, mathematics teacher 

education programs trained teachers for both middle and high schools (grades 6 

through 11). After that time, the programs were re-established so that the training of 

teachers for middle (grades 6 through 8) and high schools (grades 9 through 12) were 

separated. In fact the changes in 1998 were beyond this separation, as teacher 

education programs in Turkey had undergone a major reform movement.  The 

changes include, (i) shifting the focus in teacher education to the quality of teacher, 

(ii) focusing more on the middle and elementary grade levels, (iii) developing 
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master‘s level programs for teacher education, (iv) focusing more on the methods of 

teaching relevant to specific subject matter, and (v) meeting the shortage of faculty in 

these programs (Simsek & Yildirim, 2001).  

Although this reform movement aimed to improve teacher education programs 

throughout Turkey, the faculty development aspect of it had significant impact on 

research and graduate programs in the coming years. Increased number of faculty 

members in mathematics education resulted in developments in graduate programs. 

FACULTY DEVELOPMENT 

Although there have been some efforts to increase number of graduates having 

doctoral degrees, universities in Turkey still experience the problem of faculty 

shortage for teaching and research. There is an acute shortage of faculty members in 

terms of both quality and quantity in higher education institutions and the doctoral 

programs currently exist in the system is insufficient to supply that demand (YÖK, 

2007, p. 132). In response to such shortage, bodies organizing and coordinating 

higher education such as the Council of Higher Education and the Ministry of 

National Education (MoNE) have taken certain actions to support students in 

graduate level studies according to Law numbers 2547 and 1416 respectively 

(Government of Turkey, 1981, 1929). Within this context, supporting students to 

study their graduate education abroad is the most important initiative for faculty 

development. Following this attempt, another initiative for addressing shortage of 

faculty members in higher education is a doctoral scholarship program for studying 

in Turkish universities.  

Both the Council of Higher Education and the Ministry of National Education have 

been sending selected students abroad mostly to get their doctoral degrees in various 

disciplines. Every year these institutions determine the number of doctoral degrees to 

be pursued abroad. Candidates are selected based on their academic records, 

language proficiencies, and the priority of the field in that year. Candidates are also 

required to have an acceptance from the host university. Those students must 

successfully finish their studies and come back to Turkey to claim a position for 

which they have been sent for—a compulsory academic service. The amount of 

compulsory services is about two years‘ service for every year s/he received the 

scholarship. In the case of no-returns or failure to finish studies successfully, the 

recipients must pay back the amount received with interest (Tansel & Güngôr, 2003).  

Between 2003 and 2008, 300 students who were sent abroad with the MoNE 

scholarship returned to Turkey after completing their studies successfully. Half of 

these students were education majors (e.g., elementary education, social sciences 

education, mathematics education, and science education—including physics, 

chemistry, biology education) and received their degrees from the universities in the 

United States (n = 106), France (n = 21), and the United Kingdom (n = 23). Twenty- 

one of the education majors received their graduate degrees in mathematics 
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education (7 from France, 6 from the United Kingdom, and 8 from the United 

States). The people who completed their doctoral studies abroad are currently 

working in Turkish universities. On the other hand, as of December 2008, 940 

graduate students are studying abroad (mostly in the United States, 74.7%) with a 

scholarship provided by the MoNe. Hundred-and-twenty of those are in education 

related fields. Among them, about 23 to 27 of the graduate students are studying in 

the area of mathematics education.  

Like the MoNe, between 1987 and 2008, a total of 3899 graduate students were sent 

to abroad to thirty different countries by the Council of Higher Education. In 1996, 

the Council of Higher Education has established a board, the Board for the Training 

of Academic Staff and Researchers, to coordinate this program. A great portion of 

the scholarship students has been sent to the United States (n = 1941) and the United 

Kingdom (n = 1454). A great majority of these students (n = 2485) finished their 

graduate education and started to serve as faculty in various Turkish universities. 

Among them 16 has received their doctorates in mathematics education, 7 from the 

United States and 9 from the United Kingdom. While 297 of the scholarship students 

are still in progress, the remaining students either did not finish their studies (n = 

386) due to reasons such as failure and health; or did not return to Turkey (i.e., brain 

drain) and/or resigned from the scholarship (n = 731). The statistics about the 

scholarships provided by the Council of Higher Education and the Ministry of 

National Education were obtained from these institutions through official 

communication, and based on unpublished data. Some published statistics covering 

the years up to 2005 was provided in a report by Türkiye Bilimler Akademisi (TÜBA) 

[Turkish Academy of Sciences] (TÜBA, 2006). 

The second leg of the faculty development efforts is the scholarship opportunities for 

seeking doctoral degrees in in Turkish universities. These efforts have two 

legislative bases: first one is the Article 35 of the Turkish Higher Education Law No 

2547 and the second one is the ―Faculty Development Project.‖ The Article 35 of the 

Turkish Higher Education Law No 2547 (Government of Turkey, 1981) concerns the 

needs of teaching staff of the higher education institutions. According to that law, all 

higher education institutions, whether established or yet to be established, are 

responsible for educating future faculty members. Within this context, the Council of 

Higher Education designated more research assistantship positions to universities. In 

case of lack of faculty members and doctoral programs in a particular university, the 

assistantships in that particular university are allowed to be transferred to another 

university offering a doctoral program. Students who complete their doctoral studies 

return to their own universities to carry out compulsory service for a certain period of 

time.  

Öğretim Üyesi Yetiştirme Programı (ÖYP) [Faculty Development Project] was 

initiated in 2001 with the financial support of Devlet Planlama Teşkilatı [State 

Planning Agency] in order to meet the growing need for quality faculty members in 
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Turkish universities. The difference of ÖYP from the above article 35 of the Higher 

Education Law numbered 2547 is that besides getting their salaries for the 

assistantship positions, graduate students are supported financially to conduct their 

research and to study abroad for about two semesters. Middle East Technical 

University (METU) was the first to offer doctoral education for ÖYP program to 

meet the faculty needs in other four partner universities. Until 2006, 19 other partner 

universities have joined the program and 562 ÖYP students were accepted for Ph.D. 

programs in 43 different disciplines. Currently there are eight ÖYP doctoral students 

studying in mathematics education at METU for different partner universities.  

DOCTORAL PROGRAMS IN MATHEMATICS EDUCATION 

In this part, we will explain the nature of the mathematics education doctoral 

programs in Turkey. In doing so, we will explain general characteristics of the 

program of studies - including admission procedures and various requirements-, and 

employment opportunities for those with a doctoral degree in mathematics education. 

Describing doctoral programs throughout Turkey is a challenging task for several 

reasons. First of all, doctoral programs in different universities have different 

characteristics and expectations from students. Second, the characteristics of doctoral 

programs are rapidly changing and new programs are being established. Finally the 

information about doctoral programs is available in different levels – departments, 

graduate schools, the Council of Higher Education– which sometimes may not be 

aligned with others.  Despite these difficulties, we attempt to summarize general 

characteristics of doctoral programs by providing examples from some selected 

doctoral programs. More specifically, although our search in dissertation database of 

the Council of Higher Education has revealed that 10 universities have mathematics 

education doctoral programs throughout Turkey, we will only focus on the programs 

in three universities: Middle East Technical University (METU) in Ankara, 

Karadeniz Technical University (KTU) in Trabzon, and Atatürk University (AU) in 

Erzurum, Turkey. Considering the number of dissertations completed and their 

geographical regions, we consider these programs represent the diversity in 

mathematics education doctoral programs in Turkish universities. 

The information provided in this section was obtained through the Web pages of 

universities and a survey sent to program chairs by e-mail to respond, which 

consisted of a questionnaire that included open-ended questions regarding the 

number of dissertations completed so far, the type of courses offered during the 

program, etc.  

Admissions to Doctoral Programs  

In Turkey, all doctoral programs are considered under Ph.D. Students can apply to a 

Ph.D. program after having either a bachelor‘s or a master‘s degree.  Doctoral 

programs do not require teaching experience prior to admission.   Admission to 

doctoral program is based on applicants' cumulative grade point average  (GPA) in 
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undergraduate and/or the masters program (if attended), their Akademik Lisansüstü 

Eğitim Sınavı (ALES) [Academic Graduate Education Exam] scores or equivalent 

international examination scores, such as the USA-based Graduate Record 

Examination, level of English language proficiency and the evaluation of other 

criteria required and announced by the relevant department administration, such as 

recommendation letters or letter of intentions. ALES is given twice a year by the 

Öğrenci Seçme ve Yerleştirme Merkezi (ÖSYM) [Student Selection and Placement 

Center]. This exam measures verbal reasoning and quantitative reasoning. The skills 

measured in verbal reasoning include the test taker's ability to analyze and evaluate 

written material and synthesize information obtained from it, to analyze relationships 

among component parts of sentences, and to recognize relationships between words 

and concepts. The skills measured in quantitative reasoning include the test taker's 

ability to understand basic concepts of arithmetic, algebra, geometry, and data 

analysis, to reason quantitatively, and to solve problems in a quantitative setting. 

Applicants' level of English proficiency is evaluated based on the result of either the 

university‘s English proficiency examination or the equivalent exams such as 

Üniversitelerarası Kurul Yabancı Dil Sınavı (ÜDS) [Interuniversity Foreign 

Language Examination] or Test of English as a Foreign Language (TOEFL). ÜDS is 

given twice a year by ÖSYM. For admission into a graduate study program, the 

acceptable score on these exams is determined by the recommendation of the 

department administration and the acceptance of the Administrative Board of the 

Graduate School.  

Number of Faculty Members and Graduate Students 

Institutions vary greatly in the number of faculty members as well as the number of 

graduate students. While AU has 14 faculty members in mathematics education 

program, METU and KTU have 7 and 4 faculty member respectively. The main 

reason for AÜ having more faculty members is that they offer both mathematics and 

mathematics education courses, which is not the case in both METU and KTU.  

Therefore, the program at AU employs faculty members with PhD‘s either in 

mathematics education or mathematics. While approximately half of the faculty in 

AU hold doctoral degrees in mathematics education, the rest have degrees in 

mathematics. This combination of mathematicians and mathematics educators in AU 

results in some doctoral students doing research in pure mathematics. For instance, 

only 9 out of 19 doctoral graduates in AU did their dissertation research on 

mathematics education (see Table 2).  

Currently mathematics education doctoral programs in these three universities have 

110 students in total (see Table 1). The distribution of genders of the current students 

and doctorates granted vary across universities. In total about half of the current 

doctorate and doctorate granted students were females (see Table 2).  Thirty-seven of 

the current doctorate students have positions in the universities as research and 

teaching assistant. Of these 37 students, 9 are in ÖYP program and 17 are benefitting 
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from article 35. Taking together ÖYP and Article 35, twenty-six doctoral students 

will return to different universities that have been assigned previously. Considering 

the number of dissertations completed until 2008, and the number of doctoral 

students currently progressing, the mathematics education will develop in the next 

decade in terms of the number graduates and the research. However, the rapid 

increase in the demand of doctoral degrees in mathematics education will eventually 

reach to saturation in terms of the need of faculty in the coming decades. Therefore, 

we believe that, it is just the time for policy makers to think about planning the 

supply and demand for mathematics education doctoral degrees, by considering all 

employing alternatives.  

 

Faculty Members  

Assistantships Status of 

Current Students  

Universities 

Ph.D. 

earned in 

Turkey 

Ph.D. 

earned 

abroad 

Students 

progressing 

in Ph.D. 

Offered 

by 

Program ÖYP 

Article 

35 

Dissertations 

Completed 

as of 2008 

METU 2 5 52 4 9 6 15 

KTU 2 2 25 - - 10 12 

AU 13 1 33 7  1 19 

 Note. The numbers are as reported by the universities.  

Table 1: Number of faculty members and graduate students as of early 2009 

 Doctorates Granted Doctorates in Progress 

 Female Male Female Male 

METU 11 4 37 15 

KTU 6 6 6 19 

AU 3 16 13 20 

Total 20 26 56 54 

Table 2: Number of doctorates (by gender) in mathematics education 

The Content and the Demand for Coursework 

The course of studies in doctoral programs has two tracks; one for students with 

bachelor‘s degree and the other for students with a master‘s degree. Students who 

hold a masters degree must complete at least 7 courses – not being less than 21 

credits in total – a doctoral qualifying examination, a dissertation proposal, and a 

dissertation. For those who have been accepted with a bachelor's degree, this 

program is comprised of a minimum of 42 credits or 14 courses, a doctoral 

qualifying exam, a dissertation proposal, and a dissertation. The maximum period to 

complete the course work is 4 semesters for students holding a master‘s degree, and 

6 semesters for students accepted with a bachelor's degree. One credit hour for 

graduate courses represents an hour of lecture or two hours of laboratory work per 

week. Each academic year has two semesters. At the end of four or six semesters, 
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CGPA must be at least 3 out of 4. In addition, dissertations need to be completed in 

four semesters. If necessary, students may use extra four semesters to complete their 

dissertations.  

Consistent with the faculty in the program, the courses offered vary greatly in the 

range of mathematics, mathematics education and other topics (research courses 

and/or general education courses). While in KTU there are no compulsory courses, at 

METU some research courses such as statistics and research methods and at AU 

courses in science ethics and computer are compulsory. The rest of the courses are 

electives that are selected either by the students or by the recommendation of the 

supervisor. Mathematics education faculty at KTU and METU do not offer any 

mathematics courses, as the mathematics departments offer these courses. The 

official language in the universities apart from METU is Turkish. However, doctoral 

students at KTU are required to complete at least two courses conducted in English. 

All courses and dissertations at METU are conducted in English.  

The Process and Nature of Doctoral Qualification Examination and Hereafter 

Upon the completion of the coursework, students in each university need to take the 

doctoral qualifying examination. Doctoral students holding a master‘s degree must 

take this exam within their fifth semesters, and students enrolled with a bachelor's 

degree within the seventh semester at the latest. The doctoral qualifying 

examinations committee established with five members, one being the student's 

dissertation supervisor, are responsible to prepare and administer the qualification 

examinations. Committee members are required to have a doctoral degree. The 

doctoral qualifying examination consists of a written and oral examination to 

evaluate students' skills in conducting independent research and their understanding 

of major concepts and issues in the field.   

Doctoral students conduct their dissertation research under the supervision of a 

faculty member whom has the position as assistant professor or above. If needed a 

co-supervisor may be appointed. A dissertation supervising committee consisting of 

three faculty members is also appointed upon successful completion of the doctoral 

qualifying examinations. Within six months after the qualification exam, each 

doctoral candidate needs to prepare and defend a dissertation proposal to a 

committee consisting of three members including the dissertation advisor 

himself/herself. Candidates are expected to prepare a doctoral dissertation 

demonstrating somehow an original contribution to the field of mathematics 

education by using appropriate methodologies.  

Graduates with Mathematics Education Doctoral Degrees 

The majority of doctoral graduates in mathematics education seek positions in the 

higher education. For example, based on our survey, we have found out that among 

46 doctoral graduates of KTU, METU, and AU in mathematics education programs 

(see Table 1), 42 work in higher education and others are employed in test 
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development companies and in schools. Those employed in higher education assume 

a range of teaching responsibilities including teaching mathematics and/or 

mathematics education courses offered in the program and conduct research in the 

field. Considering the number of students progressing in doctoral studies (see Table 

1), we assume that the graduates of doctoral programs will contribute not only to 

higher education, but also to other institutions, such as the Ministry of National 

Education, schools, or private companies in the future.  

CONCLUSION 

In Turkey, about 35 million people (about half of the population) is under the age of 

28 (Türkiye İstatistik Kurumu [Turkish Statistics Institute], 2009). Considering that 

the population growth rate is about 1.013% per year, the need for education is a 

growing demand in Turkey. In recent years the government and the Council of 

Higher Education have a determined policy to increase the number of higher 

education institutions in Turkey. For instance, in 2006, fifteen new public 

universities were established throughout Turkey. Currently, 62 public universities 

and 5 private universities have faculties of education.  With the trend of establishing 

new universities, there is an increasing need for faculty development. In this sense, 

the demand for staff is still evident for the coming few decades. Since some 

universities are still in the process of gathering together their staff, most of which 

have the potential to employ the graduates of mathematics education doctoral 

programs. The statistics we provided in this paper demonstrates that, in recent years, 

there is an increasing number of students pursuing a doctoral degree in mathematics 

education. However, considering the rapid increase in the number of higher 

education institutions, we argue that more efforts are needed to meet the need of 

growing faculty need. One pathway may be to find ways to enhance the possibilities 

for pursuing a doctoral degree in mathematics education. Another one is to explore 

the benefits of doing national or international collaborations in developing new 

programs or improving the existing ones.  

While dealing with the quantity issue, another challenge for the doctoral programs in 

Turkey is to maintain and improve the quality. Considering the varieties in 

workplace of graduates, universities should try to increase the diversity in the 

coursework and graduate research within the mathematics education doctoral 

programs. In addition, doctoral programs should also try to put more efforts in 

offering a program of study that reflect the nature of mathematics education in 

variety of ways. Finally, creating a productive research community of mathematics 

educators that is well integrated with their international counterparts should be a 

major goal for the doctoral programs.  

Even the Council of Higher Education has general criteria to open graduate programs 

in universities (YÖK, n.d. -b), the principles to guide the design and implementation 

of doctoral programs in mathematics education could be established to provide a 

number of ideas and suggestions regarding doctoral programs in mathematics 



Working Group 10 

CERME 7 (2011) 1530 

 

education. Besides, national conference on doctoral programs in mathematics 

education could be set to develop the ideas and suggestions regarding doctoral 

programs in mathematics education. 
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MATHEMATICS EDUCATION WITH THE THEORY OF HABITUS  
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The dialectics between individual and structure is an important issue in any 

sociomathematical study of students‘ learning conditions in mathematics education. 

On the basis of a conception of learning as action and intentionality as a basic 

element in any action, Skovsmose introduced the notion of the student‘s foreground 

as an element in critical mathematics education. The intention is to make visible 

learning obstacles as a political instead of an individual phenomenon based only on 

the student‘s social and cultural background. In this paper, a discussion is initiated 

to re-establish the significance of students‘ background by integrating the notion of 

foreground with Bourdieu‘s theory of habitus as systems of dispositions as principles 

of generating and structuring practices and representations. 

Keywords: connecting theories, critical mathematics education, foreground, habitus, 

INTRODUCTION 

In mathematics education research, the grounding questions concern people‘s 

cognitive, affective and social relationships with mathematics. Conditions for 

students to learn mathematics is one of the key issues to be studied whether the focus 

is learning environments established in the mathematics classroom; e.g. didactical 

situations (Broussseau, 1986) or landscapes of learning (Alrø, Skovsmose & Valero, 

2007); or the focus is students‘ motives for learning mathematics; e.g. motivation 

(Wæge, 2010) or instrumental and social rationale (Mellin-Olsen, 1987). In sociol-

ogy, the grounding questions concern the connection between people and society or, 

from a philosophical point of view, the dialectics between individual and structure.  

In a sociomathematical study of learning conditions, this dialectics is an overarching 

theme because the societal context for teaching, learning and knowing mathematics 

is taken seriously into account (Wedege, 2010). 

In a recent overview of the sociomathematical research field it is stated that students‘ 

positioning may cause structural disadvantage for learning mathematics: 

It has long been recognised that neither education systems in general nor mathematics 

education in particular is neutral in terms of learners‘ positionings with respect to class, 

gender, ―race‖, ethnicity and global position. With respect to each of these (and other) 

positionings, some learners are systemically, structurally disadvantaged. (Povey & 

Zevenbergen, 2008, p. 4) 

Skovsmose (2005) has pointed out that learning obstacles are often identified in 

students‘ social and cultural background and thus, in his understanding, ―indivi-

dualised‖. Skovsmose‘s countermove is to introduce the notion of students‘ 
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foreground but I find it important analytically to connect people‘s motives for 

learning – or not learning – mathematics to their lived lives in order to investigate 

the dialectics between individual and structure. During my first reading of 

Skovsmose‘s (1994) ―Towards a philosophy of critical mathematics education‖, I 

wondered why he did not have any reference to the Bourdieuan concept of habitus 

when the term ―dispositions‖ and the meaning attached to this term through his 

definition of foreground point in the same direction: ―Dispositions are grounded in 

the social objectivity of the individual, and simultaneously produced by the 

individual, partly as a consequence of the actions performed by the individual‖ 

(p.180), and the future of different social groups of students ―is present in the 

dispositions of the students‖ (p. 191). 

The purpose of this paper is to initiate a discussion about the possibility of 

integrating locally a concept of foreground in the theory of habitus. I will do this by 

presenting and discussing the compatibility of the notion of foreground in critical 

mathematics education respectively the concept of habitus in Bourdieu‘s sociology. 

As a part of this, I will try, in an analysis of a narrative interview, to link habitus and 

foreground of a Swedish student in vocational education. 

THE NOTION OF FOREGROUND 

Intentionality was the pivotal point when Skovsmose (1994) introduced the notion of 

foreground in his book ―Towards a philosophy of mathematics education‖ where 

three notions are interconnected: learning as action, dispositions and intentions. His 

point of departure is that knowledge development or learning is an act and, as such, 

it requires indeterminism: the acting person must be in a situation where choice is 

possible. To be an action, an activity must be related to an intention. A person acting 

must have some idea about goals and reasons for obtaining them. Skovsmose sees 

learning as caused by the intentions of the learner, thus, he does not see enculturation 

and socialisation as learning. Dispositions are seen as resources for intentions: 

―Intentions are grounded in a landscape of pre-intentions or dispositions‖ (p. 179). 

As Skovsmose does not see the background (the socially constructed network of 

relationships and meanings which belong to the history of the person) as the only 

source of intentions he divides the dispositions into a ―background‖ and a ―fore-

ground‖. He finds the foreground equally important and, in 1994, defined it as  

the possibilities which the social situation makes available for the individual to perceive 

as his or her possibilities. (…) The foreground is that set of possibilities which the social 

situation reveals to the individual. (Skovsmose, 1994, p. 179) 

Skovsmose stresses that the background as well as the foreground are interpreted and 

organised by the individual. However, at first, the foreground of a person was 
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defined as the opportunities in future life made available to her/him by society. In 

2002
59

, Skovsmose clarifies the functioning of the individual: 

By ―foreground‖ of a person I understand the opportunities, which the social, political 

and cultural situation provides for this person. However, not the opportunities as they 

might exist in any ―objective‖ form, but the opportunities as perceived by a person. 

(Skovsmose, 2005, p. 6) 

In this article, the notion of foreground is presented as the pivotal point in the 

introduction of learning obstacles as a political phenomenon. And foreground be-

comes the key word in one of the principles for the pedagogy of critical mathematics 

education. ―Third, critical mathematics education must be aware of the situation of 

the students. (…) A way of establishing this awareness is to consider not only the 

background of the students but also their foreground‖ (Skovsmose, 2006, p. 47). 

Foreground is introduced – and used – by Skovsmose (1994, 2005, 2006) as a notion 

not as a concept, i.e. an element of a theory. But students‘ foregrounds have been 

investigated empirically in two doctoral thesis whish have fleshed out the notion 

(Baber, 2007, Lange, 2009). In the publication ―Inter-viewing foregrounds‖, Alrø, 

Skovsmose and Valero (2007) have continued the work by giving a ―conceptual 

definition‖ of students‘ foregrounds. They stress that the concept allows linking two 

of the key conceptual elements of educational theory, learning and meaning, and that 

foreground is a concept emphasizing the socio-political nature of education and 

learning. It is actually the notion of dispositions – defined by Skovsmose (1994) as 

pre-intentions –, which disappeared from his writing (2005, 2006), that links 

foreground with learning. Alrø, Skovsmose and Valero (2007) point to the basic 

principle in the theory of learning-as-action, which presupposes the person‘s 

readiness to find motives for engaging in action; i.e. the person‘s dispositions:  

Dispositions can be seen as the constant interplay between a person‘s background and 

foreground. The background of a person is the person‘s previous experiences given his or 

her involvement with the cultural and socio-political context. In contrast to some 

definitions of context which see background almost as an objective set of personal 

dispositions given by one‘s positioning in different social structures, we consider 

background to be a dynamic construction in which the person is constantly giving 

meaning to previous experiences, some of which may have a structural character given by 

the person‘s positioning in social structures. The foreground, as previously defined, is 

also an element in the formation of dispositions. The person is all the time finding reasons 

to get engaged in learning activities not only because of the permanent reinterpretation of 

his or her background, but also because of the constant consideration of his or her 

foreground. That is, the person connects previous experiences with future possible 
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scenarios for action (pp. 7-8). 

The authors see a person‘s dispositions as readiness to engage in intentional practice 

or action and they associate them selves from understanding the background as 

decisive. However, the awareness is present of students‘ positioning resulting in 

structural and systematic disadvantages, as well as advantages, in mathematics 

education. ―Dispositions‖, which are objectively rooted but mediated by the individ-

ual, thus expressing subjectivity (Skovsmose, 1994, p. 179), is the term making it 

relevant to think about connecting foreground and habitus. However, the very idea of 

integrating foreground and habitus is based on the central place of action in both 

frameworks and the related critique of structural determinism. 

THE THEORY OF HABITUS 

―Socialization‖ is a key term – and concept – in sociology meaning the process of 

internalizing or of incorporating norms, traditions and ideologies which provides 

people with habits and dispositions necessary for participating within their culture 

and society. Like this, socialization is one of the mechanisms ensuring the re-

production of the society. In Danish and Swedish, a distinction is made between 

socialization as a process (socialisering) and socialization as a result (socialisation). 

Using the term ―habitus‖, Bourdieu has conceptualised the result of socialization.   

Many theories of socialization are based on a fundamental dichotomy: out there in 

society there are norms which are internalized in the individual. In Bourdieu‘s 

sociology people are most often agents in the etymological meaning of the word 

(Lat.: agens, agere = act). His project has consisted in combining studies of human 

experience with studies of the objective condition under which the same people live 

(Broady, 1991). Thus instead of ―internalization‖, Bourdieu (1980) employs the term 

―incorporation‖, and the theory of habitus is incompatible with the idea of people as 

―bearers‖ of social structures and norms. In his work, according to Broady (1991) 

there is no direct, unmediated influence from social structures and norms to 

individuals. At this point, it is notable that Bourdieu‘s notion of socialization is 

consistent with the idea of social background in Critical Mathematics Education as 

presented above.  

Habitus is the concept developed and employed by Bourdieu for a system of 

dispositions which allow the individual to act, think and orient her or himself in the 

social world. People‘s habitus is incorporated through the life they have lived up to 

the present and consists of systems of durable, transposable dispositions as principles 

of generating and structuring practices and representations: 

The conditionings associated with a particular class of conditions of existence produce 

habitus, systems of durable and transposable dispositions, structured structures 

predisposed to function as structuring structures, that is, as principles generating and 

organising practices and representations which can be objectively adapted at their aim 

without presupposing the conscious aiming at goals and without the express mastery of 
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the operations necessary to attain them. Objectively ―regulated‖ and ―regular‖ without 

being, by no means, the product of obeying rules they are collectively orchestrated 

without being the product of the organising action of a concert leader. (Bourdieu, 1980, 

pp. 88-89, my translation) 

The term ―dispositions‖ is only defined implicitly by Bourdieu. According to the 

dictionary it means ‖ability to‖, ‖instinct‖, ‖taste‖, ‖orientation‖ etc., but, as it 

appears from the definition of habitus, it is not a case of innate, inherited or natural 

abilities. To make this visible, I have chosen to translate ―disposition‖ into the 

Danish word ―tilbøjelighed‖ (En.: inclination). The term ―system‖ stands for a 

structured amount which constitutes a whole. Habitus (as a system of dispositions) 

contributes to the social world being recreated or changed from time to time when 

there is disagreement between the people‘s habitus and the social world. The 

dispositions which constitute habitus are ―durable‖ (Fr.: durables). This means that 

although they are tenacious, they are not permanent. Bourdieu (1994) has discussed 

precisely these two matters in an answer to attacks on him by critics for determinism 

in his theories. 

There are several reasons for importing habitus as an analytical concept in 

mathematics education and trying to connect foreground with the habitus theory: 

 The theory of habitus has to do with other than rational, conscious considerations 

as a basis of actions and perceptions, and it provides a theoretical starting point for 

criticism of the ideology of inherited abilities.  

 Habitus is durable but it undergoes transformations. Dispositions point both 

backwards and forwards in the current situation of the individual.  

 The concept of habitus aims at an action-orientation anchored in the individual 

and can simultaneously explain non-actions. Furthermore, habitus ―allows for 

economy of intention‖ (Bourdieu, 1980, p. 97) (see Wedege, 1999).  

I would claim that the notion of foreground, developed and belonging in critical 

mathematics education can be integrated as a theoretical element with habitus in a 

problematique of mathematics education. Bourdieu (1994) emphasises that the 

theory of habitus is not ―a grand theory‖, but merely a theory of action or practice. 

The theory has to do with why we act and think as we do. It does not answer the 

question of how the system of dispositions is created, and how habitus could be 

changed in a (pedagogical) practice
60

.  There is no sense in seeing habitus as the 
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result of an isolated pedagogical activity (a product of learning). But it is fruitful to 

employ the concept of habitus in the work of descriptive analysis about the 

conditions for people learning mathematics, precisely because habitus is formed 

through impressions and acquisition, either directly where the objective structures 

are experienced and leave traces, or indirectly when we are exposed to and engaged 

in activities that make impressions (see Wedege, 1999).  

Bourdieu has not studied people‘s sense of doing mathematics (Fr: le sens de 

pratique mathematique) and, thus, he has not developed a concept of ―mathematical 

habitus‖ a notion introduced by Zevenbergen in a study of implications of ability 

grouping in school (the middle years). Zevenbergen (2005, p. 608) proposes that 

when the practice of ability grouping ―is enacted in mathematics classrooms it can 

create a learning environment that becomes internalized as a mathematical habitus.‖ 

However, this structuralistic interpretation of habitus is neither compatible with the 

understanding of the dialectics between individual and structure in Critical 

Mathematics Education nor in the work of Bourdieu. Furthermore, Zevenbergen 

presents the mathematical habitus as a product of school mathematical practices 

alone. The data from interviews with 96 students from six schools serving upper-, 

middle- to working-class families were explored in terms of gender, school and year-

level, not in terms of social class. Thus, I do not find that this notion of mathematical 

habitus resonates with the sociological theory of habitus. 

LINKING BEN‘S FOREGROUND FOR LEARNING MATHEMATICS WITH 

HIS HABITUS 

As a part of an essay, one of my students, Jonas Lovén (2010) did a narrative 

interview with a male student at the vocational programme at higher secondary 

school in Sweden. The purpose of doing a mathematical life history interview was to 

test the analytical power of combining the concept of habitus with the notion of 

foreground. Carrying out the interview, Lovén followed the methodology of the 

narrative biographic interview as developed by the German sociologist Fritz Schütze 

(Andersen & Larsen, 2001). The interview with Ben, as Lovén has named the student 

in his essay, was taped and transcript and they have both approved my use of the 

transcript for further analysis. The disadvantage of this procedure is, among other 

things that I did not have the opportunity to follow up the interviewee‘s narrative. 

But the advantage of a young Swedish teacher student as interviewer is a reduction 

of the built-in asymmetry in any inquiry and hence a diminution of what Bourdieu 

(1993) has called symbolic violence. However, the mere fact that Lovén has a 

position as a future mathematics teacher and as such has been a trainee in the 

mathematics classroom of Ben seems to have an impact on his discourse when he – 

as an interviewee – answered the question about mathematics in his life, in a very 

favourable way. 
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The initial question put by the interviewer is ―Could you please tell about 

mathematics in your life? Quite simply – you may begin precisely where you want to 

and try to recount what comes into your mind‖ (l. 6-7). Ben seems to join the 

mathematics teacher discourse of ―mathematics is everywhere‖: 

One uses math, yeah, every day – in principle. (I: Mmm) Yeah, where is it (Pause) Yeah, 

it does not work without math – nothing works. It is something you have to know and just 

carry on. Start in an early age. (Pause) Yeah … (Pause). (I: Yes, precisely.) Yeah, later on 

it is often in the shops; these unreliable shop assistants and so on. It is fantastic being able 

to think and to do the sums rapidly. If they take one or two Krona from you. Not much – 

maybe, but  (….) Quite often I am surfing on my mobile. Then it is good to calculate how 

much the cost is a minute if you do not have free surf. Which I do not have. Then I have 

to calculate a little, and eh.. you are on Facebook every day so.. So it is good to know it 

… that the money does not flow away just like that. What more can one tell? Yeah a great 

hobby, I am playing golf (…) (l.  41-63) 

And Ben continues by telling about the scoring in golf and again about not being 

cheated, this time by his father. Ben‘s narrative takes off when he was ―a little boy‖ 

just at the school start with supportive parents at home: ―At that time, it was very 

cool. Everything was pretty simple, at the beginning. But after some years. Every-

thing new is difficult. (Pause)‖ (l. 12-13). A central figure in Ben‘s narrative is his 

grandfather, who also supported him in mathematics. He is introduced like this: 

―Even my grandfather [helped me]; he is a genius in mathematics. So already as a 

small kid I started to calculate‖ (l. 17-18, [my insertion]).  

―Yes, OK, I … Yeah, one has been doing mathematics for 11 or 12 years now‖, Ben 

states (l. 32). School mathematics has been a part of his lived life over a long period 

and, together with the social interaction in out-of-school situations, influenced the 

socialization process resulting in his dispositions for doing mathematics today and 

tomorrow. In Ben‘s biographic narrative about mathematics, two persons are 

important: First his grandfather, who supported him also by serving as a great 

example, and second Magnus, who owned a store where he had a job as a 15-years 

old kid. Together they did a piece of joinery: 

I think that it was much fun. Then I decided to aim for joiner and to apply for this 

vocational school to be a joiner, but later on you circle around – you have to try 

everything from construction work to house painting. And I fell for the sheet metal work 

(…) New exciting stuff, and more great challenges and I have nothing against solving 

difficult problems (l. 134-139) 

Ben tells that he had some difficulties with mathematics in grade 9 but the 

grandfather helped him and later on his uncle, who is graduate engineer and has a 

―sharp brain‖. ―Unfortunately‖, Ben just passed in mathematics at the end of lower 

secondary: 

… but I knew that I could do better and then I came here in August 2009 and started with 
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the mathematics here. And I do not find it difficult at all because it is mostly repetition 

from lower secondary. (…) But when you are in the workshop it is not only 1 +1 = 2. As I 

told you before it is diameter multiplied by pi. And how many degrees you have to twist a 

disc wind (…) It is cool, really cool. (l. 145-150) 

In Ben‘s narrative, the link between his habitus and his foreground for learning 

mathematics is visible. His lived life resulting in habitus acts as the background for 

the interpretation of his future life (foreground). Likewise, his experiences in the 

vocational school opens up for a foreground with sheet metal work When Ben at the 

end of the interview is asked if he has any plans for a higher education, he refers to 

the fact that many of his friends have already left school: 

… and mathematics above all because they think that it is damned boring. But I have 

nothing against it. I am doing fine. It is showing up at the test, you have to learn, it‘s just 

like that. Yes … no, I do not care what others are thinking. It is my life. (…) I do not 

think that university is something for me. In fact, I have never been considering it, I think 

… No …‖ (l. 263-270).   

In the Swedish society, the possibility of a higher education is available for Ben but 

this is not a part of his foreground. 

INTEGRATING FOREGROUND AS A CONCEPT IN THE THEORY OF 

HABITUS 

With this paper, I hope to initiate a discussion of possibility and potential of 

connecting the notion of foreground as a theoretical element in Critical Mathematics 

Education with the theory of habitus. I have argued for the compatibility and the 

connecting strategy suggested is integrating locally, i.e. some elements from one 

theoretical structure are integrated in a more elaborated theory, and the aim is theory 

development (see Wedege, 2010). 

At first, the notion of students‘ foregrounds was based on anecdotic evidence 

(Skovsmose, 1994). Later it is given a conceptual definition based on qualitative 

empirical studies (Alrø, Skovsmose, Valero, 2007). Broady (1991) has argued that 

the key concepts in Bourdieu‘s sociology should be regarded as research tools or 

condensed research programmes. They get their full meaning when they are set in 

motion as tools in investigations. The notion of foreground has inspired research 

within Critical Mathematics Education. I claim that the concept of students‘ 

foregrounds locally integrated in the theory of habitus should be regarded as a 

research tool and I see the possibility of further theoretical development based on a 

combination of future large scale quantitative studies and qualitative studies in 

mathematics education.  

When theories are imported from sociology, psychology, anthropology etc. into 

mathematics education they are adapted and reconstructed, in time. The notion of 

habitus has guided some studies in mathematics education (e.g. Gates, 2003; 
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Wedege, 1999; Zevenbergen, 2005). I hope that local integration of foreground, 

which originates from the ―homebrewed‖ theory of Critical Mathematics Education, 

into the theory of habitus can strengthen both concepts as research tools in 

mathematics education. 
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COMPARATIVE STUDIES 

As we interpret ―comparative‖ in a broad sense, including studies that document, 

analyse, contrast or juxtapose similarities and differences across all aspects and 

levels of mathematics education, some time has been devoted to discussions 

focussing on the identity of the group ―comparative studies in mathematics 

education‖. As comparative studies are dependant on the changing theoretical and 

methodological standards established in research in mathematics education in 

general, delineation will always be in flux. However, the view was shared that there 

are two ―branches‖, one deriving from documentation, description and analysis of 

classroom and school practices, and another stemming from large-scale international 

achievement surveys. Classifying a study as ―comparative‖ means that the 

comparative method is emphasised, but comparison cannot be a goal in itself. 

The papers and posters contributed to the group revealed a wide range in the aspects 

of mathematics education they addressed. These included teaching practices related 

to a particular mathematical topic, metaphors used by pre-service mathematics 

teachers, groups of low-achieving and high-achieving students, a teacher training 

course implemented in different countries, test items used in different countries, task 

representations in calculus textbooks, conceptions of problem-solving, theories 

originating from different cultural traditions, teacher education and student teaching 

in different countries, and the relationship between students‘ self-regulation, self-

efficacy and mathematical competence. 

CULTURALLY SENSITIVE RESEARCH 

One issue discussed throughout the sessions was how ―culturally sensitive research‖ 

can be achieved in comparative studies. The notion is taken from Linda Tillman 

(2006), a US-based sociologist who in the context of her work describes how she 

sets out to understand the lives of African-American women. According to her, 

culturally sensitive research possesses five key characteristics. Firstly, it employs 

culturally congruent research methods. That is, a range of qualitative methods to 

―investigate and capture a holistic contextualized picture of the social, political, 

economic and educational factors‖ (p. 269) influencing participants‘ experiences. 

Secondly, it is sensitive to the culturally specific knowledge of the researched. That 

is, the ―researcher is committed to and accepts the responsibility for maintaining the 

cultural integrity of the participants and other members of the community‖ (p. 269). 

Thirdly, it seeks cultural resistance to theoretical dominance in its attempts to 
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counter unequal power-relationships. It privileges the voice of the cultural group 

over more general and frequently dominant theories and, in so doing, ―claims of 

neutrality and objectivity are questioned‖ (p. 270). Fourthly, it attempts culturally 

sensitive data interpretations in its positioning of the experiential knowledge of 

participants at the heart of the research. Fifthly, culturally sensitive research aims to 

produce culturally informed theory and practice. That is, ―Researchers rely on 

participants‘ perspectives and cultural understandings of the phenomena under study 

to establish connections between espoused theory and reality and then generate 

theory based on these... perspectives‖ (p. 271). In our discussions we found that not 

all our work would be amenable to Tillman's framework, but it helped to raise 

questions concerning how we undertake comparative research, whether it be a 

comparison of two classrooms in the same school or two different educational 

systems. In particular, we asked how we would be able to suspend our own culturally 

constructed values and expectations when we examine the classrooms of ―others‖. 

We distinguished between form and function and noted that while insiders can 

recognise the function of events in a practice (culture), outsiders first of all attend to 

the form. One group member came up with the example of school uniforms as a form 

with different functions, such as covering poverty in the Philippines, and conveying 

an aura of discipline and learning in England. We acknowledged the value of both, 

the insiders‘ and outsiders‘ perspectives, and noted that as insiders we share blind 

spots due to cultural blindness. 

We discussed, also, notions of ―culture‖ and ―multicultural society‖. We concluded 

that cultural homogeneity cannot be assumed in national societies, even if there are 

shared political institutions. We employed the term identity rather than the term 

cultural affiliation, and acknowledged that individuals have multiple identities. 

SPECIFIC TOPICS 

The sessions were structured around possible common points of discussion thought 

likely to arise from the points made in the papers and poster presentations grouped 

together for a particular session.  

The first topic concerned the development of ―culturally sensitive research 

instruments‖, as one of the contributions dealt with item performance in different 

cultural contexts. We acknowledged the necessity of exploring the validity of the test 

items imported from another culture. Also, we discussed the conditions under which 

such an import would make sense at all. We also discussed the labels used in 

research reports for outcomes related to a group. For example, the data produced in a 

study may be from Hungary, but if all the schools are in Budapest this label would 

seem too general. 

More generally, the cultural bias of concepts in a research study was discussed. As 

an example, we used the cultural bias in answers to question about ―self-concept‖ 

and ―self-efficacy‖ and the relation between attitudes and performance that is often 
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investigated in large-scale studies. As reported in such surveys, some Asian 

countries‘ students‘ show a low mathematical self-concept but high performance. 

This apparently inverse relation between the two constructs can be an outcome of a 

value attributed to unassumingness in some cultures. Consequently, such measures 

cannot be taken as culturally neutral. 

In another session, we discussed the role of cultural traditions in theories and 

didactical principles. We asserted a central role to metaphors in a culture and 

suggested to ask whether there are structural differences in the metaphors used in 

different cultures. Further, the role of metaphor as fundamental to learning as well as 

more local metaphors in mathematics classrooms were explored, such as the use of 

the balance scale. 

A more general issue in this context is whether we can successfully use a local home-

grown theory from one culture to interpret data or ask questions in another culture. 

The French anthropological theory of didactics served as an example. We considered 

examples in which the use of theoretical frameworks linked to researchers‘ cultural 

heritage is a strength and examples where it is a limitation. Limitations could be 

overcome by cultural exchange between researchers, such as through the group 

meetings at the CERME. We found it valuable to treat theories comparatively as 

culturally situated.  

ISSUES TO BE PURSUED FURTHER 

In the course of the meetings, we identified some issues that are worth pursuing in 

the working group on comparative studies in mathematics education. Having noticed 

an extraordinary range of comparative studies, from very small to the very large, the 

potential of comparison should be further explored. We noticed that the purpose of 

comparison might not always be immediate, but it should be clearly identified in the 

beginning of a study in order to ensure coherence and permit planning. The issue of 

the overall design of comparative studies needs further attention. 

We agreed that a comparison often opens our eyes to old problems of teaching and 

learning mathematics in classrooms, but that comparison can also assist in basic, 

fundamental research that opens up new issues. Generally, comparison can be seen 

as a tool for remaining a reflective stance in research activities. We agreed that the 

role and potential of comparative approaches in theory building needs to be explored 

further. 

Although matching an appropriate question to an appropriate unit of analysis is a 

major problem in all research studies, we agreed that is comes out more easily in 

comparative studies because the sites are so different. Consequently, methodological 

questions related to the unit of analysis in comparative studies deserve more 

discussion. 
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Further, methodological issues concerning adaptations of research instruments and 

translation of data and outcomes deserve more attention in comparative studies. 

Large-scale comparative surveys were mentioned (such as TIMSS and PISA) in a 

sporadic discussion about making instruments culturally more sensitive. We agreed 

that the goals and political influence as well as issues of validity and reliability of 

these studies should be discussed further. 
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Abstract:  Many mathematics teachers, across the world, rely heavily on textbooks in 

their day-to-day teaching. This study compared the mathematical tasks in the 

chapters on calculus (derivatives) in two mathematics textbooks adopted for the 

International Schools International Baccalaureate (IB) in Finland: a calculus 

textbook adopted for examination at the University of Helsinki and a Ghanaian 

Senior Secondary textbook. Eight classification schemes were used for the study and 

each mathematics task was coded into one of the categories. 
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INTRODUCTION  

Students‘ understanding of calculus concepts lays a foundation for their future study 

of advanced mathematics, science, and engineering. Calculus textbooks show a very 

definite attempt to stress the idea of meanings from the very beginning and reviewers 

of textbooks have made reference to the simplicity and understanding with which the 

subject is presented (Dragoo, 1945).  

Textbooks are an important part of teaching mathematics in classrooms in Finland 

and Ghana as well as many other countries. It seems natural that textbooks are 

designed for the purpose of helping classroom teachers to organize their teaching. In 

this sense, school mathematics textbooks are used in varying ways and to varying 

degrees by teachers and schools. However, a textbook should be a tool, not a plan, 

but in reality many teachers rely heavily on textbooks to provide sample problems, 

diagrams, worked examples, and homework assignments. . The influence of 

mathematics textbooks upon what is taught in school mathematics has been 

highlighted in research into teachers‘ use of curriculum materials.  

THE AIMS OF THE STUDY 

The aim of the study was to compare the tasks in the calculus chapters (derivatives) 

in two Finnish mathematics textbooks for the International Schools (International 

Baccalaureate (IB)), an adopted calculus textbook for examination at University of 

Helsinki and Ghanaian Secondary School calculus textbook chapters. This study is 

not a country comparison but was influenced by the fact that, while existing textbook 

studies have been focused on content analysis (Schmidt, Mcknight, Valverte, Houng, 

& Wiley, 1997; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002), less attention 

has been placed on the analysis of tasks presented in textbooks (Stigler, Fuson, Ham, 

& Myong, 1986; Zhu & Fan, 2006). There have been other studies on use and roles 

of mathematic textbooks (Reys, Reys, & Chávez, 2004) and textbooks and the 
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intended curriculum (Johansson, 2003; Chávez-Lñpez, 2003), but very few studies 

on secondary school advanced mathematics task representations in textbooks. This 

study therefore is important in that it raises the issue of textbook use again, but in 

previously unexamined circumstances. 

During the past few decades, there has been much research on student achievement 

in calculus and students‘ understanding of calculus concepts. These studies have 

focused on students‗ understanding of concepts such as function and limit (Tall & 

Vinner, 1981; Vinner, 1989) , calculus problem solving (Selden, Selden, Hauk, & 

Mason, 2000), student understanding of the derivative and integral concepts 

(Dragoo, 1945; Ferrini-Mundy & Gaudard, 1992; Hähkiôniemi, 2006; Tall, 1996), 

teaching of calculus (Dragoo, 1945), and calculus reform (Ganter, 2001). However, 

little research has been undertaken on the ways in which problems in calculus 

textbooks have been represented. The following research question was thus 

formulated: 

33 How are mathematical tasks represented and distributed in the selected 

textbooks? 

SIGNIFICANCE OF THE STUDY 

This study will offer insights into existing textbooks‘ representation of calculus-

related tasks, particularly from the hitherto unexamined perspective of comparing 

European and African textbooks.. In so doing the  study will highlight the diversity 

of tasks presented to students located in different educational systems. The achieve 

these objectives the study combines Tall‘s (1996) spectrum of representations in 

functions and calculus and the coding system from Zhu and Fan (2006) to provide a 

common coding framework system for analysing tasks in calculus textbooks.   

METHODOLOGY 

Selection of textbooks 

The study draws on two mathematics textbooks used in Finnish IB schools;  Coad, et 

al. (2004), used in the Helsinki IB and abbreviated as HIBTB and Cirrito ( 2000), 

used in the Turku IB and abbreviated as TIBTB. It draws also on one calculus 

textbook adopted for the entrance examination at the University of Helsinki 

(Mendelson, 1997), abbreviated HUTB, and the national mathematics textbook  used 

in Ghana (Eshun, et al.,1992), abbreviated as GTB. The full references to the 

selected textbooks are in Appendix A.  

Schaum's Outline of Beginning Calculus (Mendelson, 1997) was selected for the 

study because it was a calculus reform textbook and was used by the University of 

Helsinki as a reference book for entrance examination. The IB books selected for the 

study were books adopted for use by two leading international schools in Finland, 

Turku International School and Helsinki International School. The Ghanaian 



Working Group 11 

CERME 7 (2011) 1547 

 

Example:  Find  13tM if 23 +t=
dt

dM
   (HIBTB, p.627) 

textbook is the approved ministry of education textbook. All the textbooks are 

intended for mathematics teaching and learning at the same secondary level. Most 

students using the textbooks are between the ages of 15-18 years and, calculus is 

introduced at that level. The decision to focus on the presentation of mathematical 

tasks in textbooks was based on the fact that solving textbook mathematical tasks is a 

typical element of the learning of  the corresponding mathematical content. 

In this study, only those mathematical tasks that did not have add-on solutions or 

answers presented were analysed. The tasks mostly appear within or immediately 

after the topic contents, and they often appear under such headings as: exercise, 

review set, investigation, past examination questions, examination style questions, 

self-assessment test, supplementary problems and discussion. 

Data Collection and coding of problem types 

In this study, we have adopted the definition of a mathematical problem from Zhu 

and Fan (2006) as a situation that requires a decision and /or answer, no matter if the 

solution is readily available or not to the potential problem solver. However, we 

prefer to call these exercises or tasks rather than problems. This definition suits the 

study and operates in textbook problem analysis. To solve the ambiguity in the terms 

mathematical problem, mathematical task and exercise, in this study they have been 

used interchangeably.   

The problem classification is based on the categories described by Zhu & Fan, 

(2006). In addition we used Tall‘s (1996) spectrum of representations in functions 

and calculus. The following eight coding systems were used for the study. 

Routine Task (RT): Is one for which solvers can follow a certain known algorithm, 

formula, or procedure to obtain the solution, and usually, the path to the solution is 

immediately evident. They involve the use of knowledge previously acquired and 

practiced, have a low degree of mathematical complexity and do not ask for 

arguments in the response. Their interpretation is straightforward and they do not 

require the use of different kinds of representations. 

 

 

 

Non-routine Task (NRT): Is a task that cannot be solved by merely applying a 

standard algorithm, formula, or procedure, which is usually readily available to 

problem solvers. They require the establishment of relationships or chains of 

reasoning, procedures, or computations and ask for a certain level of interpretation. 

They may include a request for justification or a simple explanation. They tend to 

have a closed structure and to be presented in a familiar or almost familiar context. 

They are mostly to introduce ideas, to deepen and extend understandings of 

algorithms, skills, and concepts and to motivate and challenge students.  
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Example: find, from first principles, the derivatives of f(x) where f(x) is: 

 a) 2

1

x  b) 3

3

x     (HIBTB, p. 614). 

Example: The radius of a circle is 5cm. Find the change in the area if the change 

in the radius is (a) 0.1cm (b) 0.03cm (c) 0.5cm (GHTB, p. 135). 

 

Example: A farmer wishes to fence off a rectangular paddock using an existing stretch of 

a river as one side. The total length of wiring available is 100m. Let xm and ym denote 

the length and width of this rectangular paddock respectively, and let Am
2
  denote its 

area. Obtain an expression for y in terms of x. 

Find an expression for A in terms of x, stating any restrictions on x. 

Determine the dimensions which will maximize the area enclosed by this rectangle 

(HUTB, p. 112). 

 

Example: The tangent to the curve  y=x
3
+bx  at the point where x =2 passes 

through the point (-1, 11) and (3,-29). Find the values of the constant b.  

(GTB, p.128) 

 

 

   

 

 

Visual/graphic/tabular task (VT): Mostly concerned with the task of pictorialization, 

i.e. visualizing, graphing, and tabulation; (needs graphs or pictures to solve the task).  

 Example: Find the intervals where f(x) is (i) increasing (ii) decreasing. 

 

 

(HIBTB, p. 622) 

 

Numerical Task (NT): Mostly concerns problems of estimating, approximating, most 

but not all questions demand numerical absolute answers.  

 

 

Symbolic Task (ST): Mostly concern with tasks of manipulating, and limiting. These 

types of tasks mostly demand symbolic representative answers. This includes tasks 

that involve the use of manipulation skills in arithmetic and algebraic procedures. 

 

 

  

Non-Traditional Task (NTT): These are problem posing problems, project tasks, 

activity tasks, investigation problems and derived problems. This task normally leads 

students to predict, derive, and comes out with concrete understanding of a concept. 

It also includes activity problems linked to the CD attached to the textbook. 

 

 

 

 

 

 

y 

3 

x 
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Example: For each of the functions, f, given below, find the gradient of the secant 

joining the points P(a, f(a)) and Q(a + h, f(a + h)) and hence deduce the gradient 

of the tangent drawn at the point P. 

f(x)=x,      (b) f(x)=x
2
,   (c) f(x)=x

3 
,  (d) f(x)= x

4 

 Hence deduce the gradient of the tangent drawn at the point P(a, f(a)) for the 

function f(x) =x
n
,   n  N (HUTB, p.125). 

 

 

Example: Use technology to help sketch the graph of 
x

+=y
60024x    (HIBTB, p. 

635). 

 

 

Formal/Purely Mathematical Task (PT): Deduction, defining, deducing; questions 

which need purely calculus concepts to solve the problem. They are more complex 

and require a high level of interpretation and reasoning, ask for a solution that 

involves the coordination of several steps, and often demand a response with some 

written communication and argumentation. Their structure is often open or semi 

open and they are generally presented in less familiar situations. 

 

 

 

 

 

 

 

Calculator/PC Task (CT): It includes questions that students have been specifically 

instructed to use calculators or computers to solve them. These include some 

interactive problems on student CD‘s attached to the textbook. Questions are mostly 

linked to the textbooks own specially designed graphing packages, calculus packages 

and more.  

 

 

 

Procedure 

Utilizing the conceptual framework above, each task in the selected textbooks was 

examined against each of the classifications and coded into one of the categories.  

Inter-rater reliability of the coding was checked between the researcher and an 

external scholar for 126 (10%) randomly selected tasks from each chapter according 

to the conceptual framework described earlier. There was an agreement on 96% of 

all the codings. 

RESULTS AND ANALYSIS 

The chapters that represented calculus and their respective percentage per textbook 

are depicted in table 1 below. 

The total number of tasks across all the four books varied considerably. The 

Ghanaian textbook had the highest number of tasks. This was due to the fact that the 

Ghanaian textbooks give reference to one question under a different content analysis 

and use the same question stem to create new questions without the need to write a 

completely new question. 
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In terms of task location and distribution, there were no considerable differences 

between the books . All tasks were located just after the content analysis with an 

average of three worked examples before the tasks. Table 2 shows the total number 

of tasks across the textbooks and their corresponding percentages. 

Textbook Chapters %  N 

HUTB 11,12,13,14,15,18,19,20 18.40 236 

HIBTB 19 22.30 286 

TIBTB 22,23 21.40 274 

GTB 9 37.90 486 

TOTAL  100 1282 

 Table 1: Problem Distribution Across Adopted Textbooks. N=Total number of 

questions in each textbook. 

 RT % NRT % VT % NT % ST% NTT% PT% CT% 

HUTB 20.9 9.1 15.8 17.2 19.7 0 48.6 57.1 

HIBTB 24.4 24 44.2 14.1 11.8 100 31.4 42.9 

TIBTB 20.5 3.3 33.3 25 23.2 0 17.1 0 

GTB 34.2 63.6 6.67 43.69 45.3 0 2.9 0 

N 307 121 120 412 254 27 35 7 

TABLE 2: Percentage Distribution of Task Across Textbook. RT=Routine task, 

NRT=Non-routine task, VT= Visual/Graphical/Tabular task, NT= Numerical task, 

ST= Symbolic task, NTT=Non-Traditional task, PT=Formal/Purely Mathematical 

task, CT=Calculator/PC task, N= total number of tasks in each book. 

The distribution of the eight question types across the three books is depicted by the 

histogram in figure 1 and the line graphs in figure 2. It is obvious from figure 1 that 

the textbooks are different from each other, numerical tasks being typical for all the 

textbooks and calculator /computer aided tasks being non-existent for others. Also 

non-traditional tasks appear only to exist in the Helsinki IB Textbook. 
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Figure 1: Percentage Distribution of Task Across Textbook 

The Ghanaian Textbook has an interesting pattern in terms of task distribution. It has 

the highest number of a some task types and the lowest number of other task types, 

as shown in the zigzag line graph in figure 2. This suggests that the Ghanaian 

textbook has the most uneven distribution of tasks followed by the Turku IB 

textbook (TIBTB). Both the Turku IB Textbook and Ghanaian Textbook (GTB), 

have peaked and uneven graphs, reflecting a highly uneven distribution of task types.  

The data also revealed that there is a uniform distribution of routine tasks. The 

Helsinki IB textbook has a fairly evenly distributed pattern of tasks with the 

exception of being the only textbook in the study that has any non-traditional tasks. 

Also the line representing University of Helsinki textbook (HUTB) is relatively flat, 

depicting an even distribution of tasks according to the type of task. 

 

Figure 2: Percentage Distribution of Task Types Across Textbooks  
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Numerical problems were the main focus for all the textbooks, and perhaps the 

textbooks give not enough attention to non-traditional, calculator problems.  

Students using HUTB are exposed to a more even distribution of different types of 

problems, than students using the other books. Students using GTB are exposed to 

different exercise types with respect to the other book problems but less exposed to 

VP, PP or non-exposure to NTP and CP. 

In HIBTB all the calculator tasks were designed for students to use two specific 

calculator types. There were illustrations on how to use these calculators throughout 

the chapters. However, the students need to buy their own calculator to be able to use 

the book conveniently. While calculator problems in HIBTB were clearly marked, 

none of the tasks in HUTB was clearly marked. 

Reasons for inclusion of the few calculator tasks in HIBTB and HUTB was that 

Finnish students are allowed to use calculators for their final examinations so the 

textbooks need to design some tasks that will prepare students for that challenge. 

CONCLUSION 

According to the study, the analysed textbooks have few non-traditional and 

calculator tasks although these tasks may suit present day challenges and the new 

reform curriculum. For instance, there is the need for textbooks to include more 

calculator tasks to help students adjust to present day technology use in mathematics 

education. As Tall, (1996, p. 318) puts it, ―Calculus has broadened in its meaning 

from traditional symbolic techniques to a wider science of how things change, the 

rate at which they change, and how their growth accumulates‖. 

Textbooks may help students realize how useful mathematics can be in their lives, 

but if the link between a mathematical concept and the corresponding real life 

situation is not made clear, students may not be able to completely grasp the 

mathematical concept.  

It is not clear if the students using the Ghanaian textbook are exposed to more 

questions than the other students and gain more problem solving skills than their 

Finnish counterpart. However, the researcher thinks the reason for repetitive and 

exploratory activities/tasks in the Ghanaian textbook is to help the lower achieving 

students. At the same time, there are higher-level tasks to challenge and motivate the 

more able ones. 

Furthermore, there is the need for further studies about textbooks among or across 

different educational systems, by comparing the various features of the mathematical 

tasks and the content presentations. Such a study will be useful in furthering our 

knowledge of the effects textbooks have on classroom instruction and student‘s 

mathematics achievement.  

In conclusion, it appears that all the studied textbooks provide a wealthy source of 

problems for students to develop their ability in problem solving. As argued by Zhu 



Working Group 11 

CERME 7 (2011) 1553 

 

and Fan (2006), students‘ exposure to many problems has a substantial influence on 

students‘ learning and their achievement because tasks provide a rich learning 

environment in which students can have plenty of opportunities to experience 

problem solving.  

APPENDIX A: TEXTBOOKS ANALYSED IN THIS STUDY 

Mendelson, E. (1997).Schaum‗s Outline of Beginning Calculus, 2ed. Published by 

Schaum's Outlines. Chapters 11, 12, 13, 14, 15, 18, 19, 20. University of Helsinki 

entrance  textbook. Abbreviated in the study as HUTB.  

Coad, M., Whifren, G., Owen, J., Haese, R., Haese, S., Bruce, M (2004). 

Mathematical Studies – Standard Level: International Baccalaureate Diploma. 

Published by Haese & Harris Publications .Chapter 19; Introductory Differential 

Calculus, pages 601- 638.  Finnish IB mathematics textbook(Helsinki). Abbreviated 

in the study as HIBTB. 

Cirrito, F. (2000). Mathematical Studies: Standard Level. Published by Schoenhofs 

Foreign Books. Chapter 22 & 23; Introductory Differential Calculus, Pages 434- 

495. IB Finnish Mathematics Textbook(Turku).  Abbreviated in the study as TIBTB. 

Eshun, A., B., Amissah S. E., Appiah-Danquah K., Gordor, B. K., Wilson, G.B 

(1992). Mathematics for Senior Secondary School, Ministry of Education. Published 

by H. Gangaram & Sons. Chapter 9; Differentiation, pages 119-135. Ghanaian 

mathematics textbook. Abbreviated in the study as GTB.  
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THE TEACHING OF LINEAR EQUATIONS: COMPARING 

EFFECTIVE TEACHERS FROM THREE HIGH ACHIEVING 

EUROPEAN COUNTRIES 

Paul Andrews 

University of Cambridge 

On various international tests of achievement Finnish, Flemish and Hungarian 

students have been amongst the more successful in Europe. Linear equations, a topic 

students traditionally find difficult, is a key topic in the transition from mathematics 

as inductive and concrete to deductive and abstract. This paper, by means of an 

analysis of video-taped lessons taught by case study teachers, one from each of 

Finland, Flanders and Hungary, examines comparatively how teachers defined 

locally as effective construct opportunities for their students to learn the 

mathematics of linear equations. The findings show that all three teachers acted in 

ways contrary to received research wisdom, exploiting the balance scale as the key 

metaphor for inducting students into the solution processes of algebraic equations. 

INTRODUCTION 

The transition from arithmetic to algebra is problematic due, not least, to ambiguities 

with regard to the role and meaning of symbols of mathematics in general and the 

equals sign in particular. On the one hand it is a command to execute an operation, 

reflecting procedural (Kieran, 1992) or operational (Sfard, 1995) expectations. On 

the other, it is as an object on which other operations may be performed, reflecting 

structural (Sfard, 1995) expectations. Related to such concerns is the distinction 

between arithmetical equations and algebraic equations. The former, with the 

unknown on one side only, are generally assumed to be susceptible to undoing 

(Filloy & Rojano, 1989). However, the latter, with unknowns on both sides, cannot 

be solved by arithmetic-based approaches and require not only that the learners 

―understand that the expressions on both sides of the equals sign are of the same 

nature (or structure)‖ (Filloy & Rojano, 1989, p. 19) but also that they are able to 

operate on the unknown as an entity and not a number. In this manner, arithmetic 

equations are procedural while algebraic equations are structural (Kieran, 1992; 

Boulton-Lewis, Cooper, Atweh, Pillay, Wilson & Mutch, 1997). However, many 

students fail to navigate this transition and are ―reduced to performing meaningless 

operations on symbols they do not understand‖ (Herscovics & Linchevki, 1994, p. 

60. This failure has been described as either a cognitive gap (Herscovics & 

Linchevski 1994) or a didactic cut (Filloy & Rojano, 1989), although Pirie and 

Martin (1997) argue it is more likely to be the responsibility of inappropriate 

didactics than cognitive inadequacies. 

Research shows that the use of different embodiments or representations can create 

the potential for new concepts, entities and operations to become endowed with 
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meaning (Filloy & Rojano, 1989). They can facilitate the link between concrete and 

abstract thinking by acting as analogues for the intended abstractions (English & 

Sharry, 1996; Warren & Cooper, 2005). With regard to equation solving, one of the 

most frequently used, and criticised, embodiments is the balance scale. Its advocates 

argue that it both helps students understand equations as entities rather than 

computational instructions and supports those symbolic representations that underpin 

algebraic formalisms (Filloy & Rojano, 1989; Warren & Cooper, 2005). Its critics 

argue that it cannot represent negatives in anything but a contrived way and is 

unfamiliar to modern students (Pirie & Martin, 1997). 

Despite such criticisms several studies have examined the efficacy of the balance. 

Warren and Cooper (2005) found it helped children not only solve algebraic 

equations but also understand the equals sign as representing equivalence between 

entities. Vlassis (2002) found that although students understood both the conceptual 

and procedural role of the balance many experienced difficulties with negatives, 

irrespective of whether an equation was arithmetical or algebraic. Boulton-Lewis et 

al. (1997) found students preferred to use inverse approaches rather than the concrete 

representations taught them. Such examples highlight the diversity of findings with 

respect to the use of the balance, although their respective research designs may have 

contributed significantly to the findings. Warren and Cooper (2005) and Vlassis 

(2002) invoked the balance as a means of solving algebraic equations, while 

Boulton-Lewis et al. (1997) did so with arithmetic equations only.  

In the following, the teaching of linear equations by three teachers, one from each of 

Finland, Flanders and Hungary is examined. Analyses of such teaching, located in 

countries typically shown to be more successful than England on various TIMSS and 

PISA assessments, present opportunities for an evaluation of the adaptive potential 

of the culturally located practices of one culture for another (Clarke, 2004). That is, 

such analyses have the potential to inform curriculum and teacher education 

development in less successful but culturally similar countries like England. 

METHOD 

This paper draws on data from the EU-funded, Mathematics Education Traditions of 

Europe (METE) project. Based at Cambridge, England, the project, which ran from 

2003-2005, examined aspects of mathematics teaching in Flanders
61

, England, 

Finland, Hungary and Spain. This paper draws on analyses of video recordings of 

sequences of lessons taught by teachers defined locally as competent in the manner 

of the Learner‘s Perspective Study (Clarke, 2006). Thus, while it is not possible to 

                                           
61

 From the perspective of the METE study, Flanders, the autonomous Dutch-speaking community 

of Belgium, is construed as a country. This distinction is well known in the literature with, for 

example, Flanders being reported as a different educational system from Wallonia, the French-

speaking community of Belgium. 
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comment on the attainment of project students, it would be reasonable to assume that 

project teachers would be as successful as any of their national peers. Four sequences 

of five lessons were filmed on the same topic in each country during the academic 

year 2003-2004. One of the topics was linear equations, chosen because of its 

importance in the transition from arithmetic to algebra. Videographers focused on the 

teacher whenever they were speaking. Teachers wore radio-microphones while a 

static microphone was placed strategically to capture as much student talk as 

possible. For each sequence, according to agreed project procedures, the first two 

lessons were transcribed and translated by English speaking colleagues working in 

the project universities. The translations, which were verified by Finnish-, 

Hungarian- and Dutch-speaking graduate students, enabled the creation of subtitles 

to facilitate a foreigner‘s (my) viewing and comprehension of the lessons. 

It is important to acknowledge that although data were collected by local academics 

familiar with the teachers‘ contexts, the analyses presented here represent one 

cultural outsider‘s attempts to understand how participants enact their roles in 

culturally diverse classrooms. In such circumstances, where researchers are cultural 

outsiders, there is a danger of inaccurate reporting due to incomplete understanding 

of the cultural issues underpinning participants‘ beliefs and actions (Liamputtong, 

2010). Such concerns invoke a need for culturally sensitive research (Tillman, 2002, 

p.6), whereby researchers accept and maintain the ―cultural integrity of the 

participants and other members of the community‖ by privileging the voice of the 

cultural group over more general and frequently dominant theories. Moreover, 

culturally sensitive research aims to produce culturally informed theory by drawing 

on participants‘ culturally located perspectives on the phenomena under scrutiny. 

The manner in which data were collected, involving academics based at the partner 

universities and local teachers well known to them, was managed with appropriate 

regard to cultural sensitivity, as were the analyses described below. 

All videos, with and without subtitles, were viewed by me several times and a 

narrative for each lesson constructed in which participants‘ actions and utterances 

were recorded in as much detail, and with as little interpretation, as possible. Where 

they were available, narratives were developed alongside transcripts in such a way 

that sections of dialogue were annotated with additional details relating to 

participants‘ actions. Where transcripts were unavailable, the narrative comprised my 

attempt to describe what was seen. All narratives ran to several pages of prose. These 

narratives were read against repeated viewings and increasingly refined. Eventually, 

having viewed and reviewed every lesson several times, a tentative understanding 

emerged with respect to the key elements of each teacher‘s conceptualisation and 

presentation of linear equations. Throughout this process, and conscious of the need 

to achieve culturally sensitive analyses, one was conscious of the need to avoid 

evaluation of teachers‘ actions alongside the desire, in accordance with conventional 
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case study practice, to provide as thick a description of events as possible. The 

following reflects these ambitions.  

RESULTS 

The teachers were between 29 and 33 years of age with between six and eight years‘ 

teaching experience. Each was a graduate of the project partner university and was 

known locally to have a commitment to both continuing professional development 

and school-based teacher education mentoring. All three teachers, two women, 

Pauline in Flanders and Emese in Hungary and one man, Sami in Finland, worked in 

unremarkable schools in provincial cities that were homes to the partner universities. 

The analyses indicated that all three sequences comprised four phases that I have 

come to call, definition, activation, exposition and consolidation phases. In general, 

the definition phase introduced students to the notion of an equation and, either 

implicitly or explicitly, presented a definition. The activation phase alerted students 

to or revisited intuitive procedures for solving arithmetic equations. The exposition 

phase, through an initial presentation of an algebraic equation, exposed the 

inadequacies of intuitive approaches and warranted the introduction of the balance. 

Lastly, the consolidation phase enabled students to exploit their newly acquired 

skills. In the following each phases is discussed against, due to space limitations, a 

selection of the available evidence. 

The definition phase 

Lasting up to one lesson, this phase saw Sami in Finland, Emese in Hungary and 

Pauline in Flanders introducing and defining the topic. 

Finland 

The first Finnish lesson found Sami writing on the board that an equation was ―two 

expressions denoted as being of equal magnitude‖. He then wrote six ―sentences‖, as 

he called them, on the board: 5, x - 1, x = 3, 5 + 3 = 7, 3x – 1 = 4, x
2
 = 8, before 

asking students to decide which were equations and which were not. Through 

constant reference to the definition, the ―sentences‖ were categorised. Those 

accepted as equations were then discussed from the perspective of truth and a 

classification emerged that equations could be conditionally true, always true or 

always false. 

Hungary 

Emese exploited several open sentences to revisit the role of the basic set in 

determining a statement‘s validity. This was followed by a discussion through which 

an equation was defined as comprising two expressions connected by an equals sign. 

She asserted, through her questioning, that equations may or may not contain 

variables or unknowns depending on circumstances and that they were always true, 

sometimes true or never true. Finally she operationalised her definition through an 
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exercise in which three open sentences, 5 - - were solved 

in relation to the basic set -3≤  ≤ 3. 

Flanders 

Pauline posed a problem involving characters from the cartoon series, the Simpsons: 

if Bart, Lisa and Maggie, are 7, 5 and 0 years old respectively and their mother, Marj, 

is 34, in how many years would the sum of the children's ages equal their mother's? 

She drew a two-rowed table before completing, collaboratively, the first three 

columns. Individual completion of the remaining columns was followed by a 

discussion leading to the solution of 11 years. Pauline then discursively introduced 

the unknown and the equation, 34 + x = 12 + 3x, appeared, after which she sketched 

the straight line graph for each row in the table to highlight the intersection. 

Summarising, Sami and Emese presented explicit definitions, although Sami‘s, 

which was presented both orally and in writing, involved no student input. His 

definition and the tripartite classification were operationalised collectively by means 

of his six sentences, while Emese‘s definition was discursively derived and 

operationalised. Her use of inequalities provided a more general entry to equation 

solving and facilitated an awareness of the three categorisations. Pauline exploited a 

realistically-derived equation to define, implicitly, both equation and equation 

solving. The latter was achieved with reference to both the table and graphs. She 

made no allusion to equation types. 

The activation phase 

This second, activational, phase saw all three teachers, as preparation for their main 

presentations, activate material covered earlier in their students‘ careers to both 

contextualise and facilitate the material that followed. 

Finland 

Sami began his second lesson by asking for a conditional equation. One student 

suggested x + 5 = 2, with a second offering -3 as a solution. Sami then introduced 

x/8 + 1 = 4 and invited mental solutions. After a minute, despite a student offering a 

correct solution, he demonstrated a covering up method and, through closed 

questions and his board sponge, confirmed 24 as the solution. 

Hungary 

Emese began by posing oral problems like, ―Kala is twice as old as her sister; the 

sum of their ages is 24, how old are they?‖ Each was solved individually before 

solutions were shared. Next, the class was split into four groups with each given a 

superficially different word problem for translating into an equation. One group's 

problem was: ―Some friends went on a trip. The first day they covered just 2km. The 

second day they covered 2/10 of the remaining journey. If they covered 6km on the 

second day, how long was their journey?‖ After several minutes the group 

representative explained how its equation had been derived and wrote 0,2.(x - 2) = 6 
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on the board. Lastly, a volunteer, exploiting a thinking backwards strategy, obtained 

a solution of 32, which Emese checked against the text of each problem. 

Flanders 

Pauline modelled, through discussion, several sketches and an introduction to the 

balance, an analytical solution to x + 7 = 9, which was then summarised symbolically 

before x - 2 = 10, 3x = 8 and x/3=7 were managed in the same way. This was 

followed by her summarising the relationship between each of her four exemplars 

and their respective formalisations. For example, in relation to x+7=9 she wrote a = b 

 a + c = b + c. The lesson ended with her setting a homework whereby solutions to 

equations like x - 3 = 10, 200 - x = 20 were placed in a crossword grid. The 

following lesson answers were shared with particular attention being paid to 3/2x = 

30 and how division by 3/2 was equivalent to multiplying by its inverse. 

Summarising, Sami invited his students to solve intuitively two equations with the 

unknown on one side and used the latter to introduce the cover up method that he 

never again mentioned. Emese exploited various word problems; initially to revisit 

the processes of undoing and latterly to derive arithmetic equations from realistic 

contexts and solve them with a thinking backwards strategy. Pauline privileged an 

explicit revision of arithmetical structures and their role in the solution of less 

straightforward equations. In so doing, she made an explicit reference to the balance. 

The exposition phase 

All three teachers began their formal exposition by presenting their students with an 

algebraic equation, seemingly in the knowledge that intuitive methods would fail. 

Finland 

Sami wrote 5x + 3 = 2x - 8 and invited solutions. Once it became clear that this was 

too difficult, spoke of balance scales and how the same operation applied to both 

sides would retain the balance. Throughout he used outstretched arms to demonstrate 

the effect of different actions on the scales while commenting that ―an equation is 

like scales... in principle, if you have it in balance, the equation is true‖. Returning to 

the equation, he asked what could be subtracted from both sides of the equation. 

Someone suggested x and Sami, without comment, wrote 4x + 3 = x – 8. Another 

volunteer suggested subtracting 2x, at which point Sami wrote, with little student 

input:  

5x + 3 = 2x - 8 │ -2x 

     3x + 3 = -8  │ -3 

     3x = -11  │  

After some student uncertainty with regard to the next step, Sami, having asserted 

that they should divide by three as division is the opposite of multiplication, led the 

class to the solution x = -11/3. Lastly, individual seatwork was set from a text book. 
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Hungary 

Emese began her second lesson with a word problem, ―On two consecutive days the 

same weight of potatoes was delivered to the school's kitchen. On the first day 3 

large bags and 2 bags of 10kg were delivered. On the second day 2 large bags and 7 

bags of 10kg were delivered. If the weight of each large bag was the same, what 

weight of potatoes was in the large bag?‖ Soon a volunteer wrote 3x + 20 = 2x + 70. 

Then, having established that intuitive strategies were now insufficient, Emese drew 

a picture of a scale balance with the various bags represented on both sides. Drawing 

on a student‘s suggestion Emese erased two small bags from each side, leaving a 

representation of 3x = 2x + 50. Next she erased two large bags from each side to 

show one large bag balancing 5 small. Then, in response to her request, students 

volunteered sufficient for her to write alongside her drawings: 

    3x + 20 = 2x + 70   │ -20 

    3x = 2x + 50   │ -2x 

    x = 50 kg 

Finally, Emese reminded her class of the importance of checking and did so. 

Flanders 

Midway through her second lesson, Pauline wrote 6(x - 5) - 8 = x – 3 on the board 

and began a formal treatment in which the algebra, including actions, was written on 

the left side of the board and justificatory annotations on the right. Throughout the 

process, which lasted more than twenty minutes, Pauline questioned continuously. 

Space prevents a detailed account, although what follows represents a fragment of 

what was written. 

6(x - 5) - 8 = x – 3  (1) Eliminate brackets 

At this point, Pauline drew from her students notions of associativity and 

commutativity before settling on distributivity as the warrant for what she was about 

to do. 

6x - 30 - 8 = x – 3  (2) Calculate if possible 

6x - 38 = x - 3 

Eventually, after obtaining a solution and discussing its uniqueness, Pauline 

undertook a check. 

Summarising, all three teachers presented equations with the unknown on both sides 

with, it seemed, the intention of creating contexts in which intuitive approaches 

could not be exploited. All three teachers invoked the balance as an underlying 

principle although the extent to which it was sustained varied. Sami, having 

introduced the balance, made little use of it during his rather directed exposition. 

Moreover, despite an implicit acceptance of his first student‘s subtraction of x, his 
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subsequent actions indicated that he had a clear view as to what was acceptable. His 

solution was annotated conventionally although he invited no student input into its 

introduction. Emese exploited a realistic word problem to warrant the construction of 

her equation. She sustained the balance throughout her presentation, made explicit 

the relationship between her sketches and the symbolic representation and 

questioned her students constantly. Pauline offered the most complex of equations, 

deliberately provoking a frisson of excitement in her students. Her solution process, 

which was driven by many questions, was very formal and invoked a number of 

concepts studied earlier to highlight inter-topic and structural links. Both Sami and 

Pauline operated in exclusively mathematical worlds although it was Pauline and 

Emese who included checks at the conclusions of their expositions. 

The consolidation phase 

The fourth phase, lasting two or three lessons, provided various opportunities for 

students to consolidate earlier learning and further develop both conceptual and 

procedural equations-related understanding. All three teachers set increasingly 

complex exercises, all involving algebraic equations incorporating brackets and both 

negative and fractional coefficients. Sami and Pauline located all their exercises 

within mathematics-only worlds while Emese integrated realistic word problems. 

Sami and Emese derived additional insights from the tasks set, while Sami 

introduced the change the side change the sign rule and, essentially, prescribed a 

preferred approach. Emese invited multiple solution strategies, discussed notions of 

efficiency and elegance, and constantly solutions. Pauline included a test. The 

manner in which tasks were completed and solution shared varied with Sami and 

Pauline sharing solutions after several problems had been completed while Emese 

always shared solutions after each problem had been solved individually. 

DISCUSSION 

All three sequences shared common structural - definition, activation, expositions 

and consolidation - characteristics. Such similarity is unsurprising as comparative 

studies that adopt broad and inclusive variables tend to find similarity rather than 

difference; as in LeTendre,  Baker, Akiba, Goesling & Wiseman‘s (2001) analysis of 

teachers‘ self reported use of core instructional practices that included, for example, 

seatwork and whole class instruction. In other words, such broad categories tend to 

be inclusive and reflect patterns of instruction commonly found across cultures. 

However, within these macro-level similarities were important similarities and 

differences. With respect to similarities, all three teachers offered definitions, either 

explicitly or implicitly, which were operationalised through problems and exercises. 

All three, having activated students‘ knowledge and skills, provoked analytical 

solution methods by posing an algebraic equation that could not be solved by 

intuitive methods. All, as is discussed below, based their expositions on the balance, 

and all three offered extensive opportunities for consolidation that incorporated 
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expectations of students‘ managing brackets and different forms of coefficient 

alongside particular privileged additional insights. 

In respect of differences, several issues of interest emerged. Despite similarities with 

respect to the balance, the manner of its introduction and maintenance varied greatly. 

Pauline offered only a scant allusion; Sami enacted bodily its characteristics but 

made no further reference once the first expository example had been solved. Emese, 

through bodily enactment and sketches, made explicit the link between the embodied 

and symbolic forms of equation, a link sustained through several examples. 

Interestingly, and confounding Pirie and Martin‘s (1997) scepticism, not only did all 

students appear familiar with the balance but also, once introduced, negatives. The 

examples and exercises exploited by Sami were located entirely within a world of 

mathematics. Pauline, having kick-started the topic with a single word problem, 

behaved similarly. Interestingly, while the tasks set by Sami and Pauline were 

generally complex, task difficulty was so teacher-managed that students experienced 

few teacher-independent opportunities to engage with non-routine problems. In this 

respect, the data suggest that both teachers had been slower than systemically desired 

to incorporate problem solving into their repertoires, whether in Flanders 

(Verschaffel, De Corte & Borghart, 1997) or Finland (Pehkonen, 2009). Emese, on 

the other hand, exploited both mathematical and word problems throughout and, in 

accordance with earlier studies, provided her students with constant opportunities to 

mathematise and solve text problems (Andrews, 2003). With regard to classroom 

norms, Emese engaged her students in collective activity focused on students‘ 

awareness and acquisition of diversity of mathematical thinking. Pauline had clear 

objectives that were explicitly addressed by means of extensive but tightly focused 

bouts of public questioning. Sami, having operationalised his definition, exploited 

extensive bouts of teacher telling, interspersed with exercises, from which students 

were expected to infer meaning. In conclusion, although space prevents a detailed 

summary, such teacher behaviours, whether similar to or different from those found 

elsewhere, are likely to reflect characteristic patterns indicative of a national 

mathematics teaching script. 
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The European project LEMA experimented a teacher training course on modelling 

in four different countries. We present here an exploratory analysis to evaluate the 

effect of the training course. From the teachers' answers to a questionnaire on 

beliefs before the beginning of the training course, the teachers are split in different 

clusters. With the answers to the questionnaire after the training course, we observe 

how in every cluster the answers change. We will show how the national groups can 

be taken into account. Then we will point to questions and challenges related to 

comparative studies. 

THE EVALUATION OF A TEACHER TRAINING COURSE 

The LEMA project context and the focus of the paper 

The project LEMA [1] has from 2006 to 2009 developed a teacher training course on 

mathematical modelling. This project was not a research project trying to answer a 

research question but has tried to evaluate the training course. The course was 

implemented in some partnership countries. Before attending the course the teachers 

have answered a questionnaire. This questionnaire deals with their biography, with 

their interest in modelling, with their beliefs about mathematics, and with their 

beliefs about their ability to teach modelling. The same questionnaire had to be 

answered at the end of the attended training course. The aim of this paper is not to 

present the teacher training course, which does not mean that this presentation would 

not be interesting. A description of the LEMA project is made in (Cabassut & 

Mousoulides, 2009) and a description of the questionnaire is made in (Maaß & 

Gurlitt, 2009). The aim of this paper is not to discuss the relevancy of this 

questionnaire, which does not mean that this discussion is not of interest. A 

discussion on qualitative and quantitative methods in comparative research is made 

in (Cabassut, 2007). An example of qualitative evaluation of the teacher training 

course is offered in (Cabassut & Mousoulides, 2009) and in (Schmidt, 2009). The 

main aim of this paper is to present an exploratory analysis of the data, produced by 

the answers to the questionnaires, in order to help to answer the questions: How to 

evaluate the LEMA teacher training course? How to integrate in this evaluation the 

comparative approach between countries? A secondary aim is to present a 

comparative method of analysis of data from different countries in order to 

contribute to the debate on comparative methods. Let us consider the theoretical 

framework related to this exploratory analysis. 
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The theoretical frameworks 

Different theoretical frameworks are used in this paper. For the study of modelling 

we use the theoretical framework of PISA, based on the mathematisation cycle 

inspired by the works of (Blum, 1996) and described in (Cabassut & Mousoulides, 

2009). The questionnaire takes into consideration works of Grigutsch, Raatz and 

Tôrner (1998) on teachers' beliefs in school mathematics, of Bandura (1997) on 

teachers' self efficacy and of Kaiser (2006) on knowledge and beliefs on modelling: 

the theoretical framework of the questionnaire is well described in (Maaß & Gurlitt, 

2009). We describe with more detail the theoretical framework related to the main 

object of this paper: the exploratory data analysis. We propose to present this method 

of analysis because first we did not find so many studies in mathematical education 

using exploratory data analysis and secondly this data analysis looks as fitting with a 

comparative approach as illustrated later. 

The exploratory data analysis was developed in (Tukey, 1977) in order to analyse 

data, and to formulate hypotheses based on this analysis. These hypotheses could be 

confirmed with a confirmatory analysis. In the case of exploratory analysis, 

descriptive statistics is used to observe the data without preconceptions and without 

formulating hypotheses in advance. In our example, the data are composed of a 

whole population of 83 teachers and their answers to a questionnaire. The descriptive 

statistics on the whole population will allow an inductive approach to describe the 

population and to formulate hypotheses on the structure of the population depending 

on the results of the exploratory data analysis. It is possible to try to evaluate 

assumptions made on the population.  

On the contrary, confirmatory analysis uses inferential statistics to test, in a 

deductive approach, the hypotheses formulated in advance. Confirmatory analysis 

works on a sample of a population, using hypothesis tests and confidence interval 

estimation. The assumptions have to be accepted and are not testable: only the 

hypotheses are tested. Confirmatory data analysis is used in the LEMA project as 

reported in (Maaß & Gurlitt, 2009). In this confirmatory analysis two teachers‘ 

groups are compared: the intervention group did attend the teacher training course 

and the control group did not. The data analysis tests the research question: Has the 

intervention group outperformed the control group over time (by comparing the 

responses to the questionnaire before the training course and after the training 

course)? Means and standard deviations are used to summarize the answers to the 

different parts of the questionnaire (questions on beliefs, self-efficacy and 

pedagogical content knowledge) for the intervention group and for the control group. 

A two-factorial analysis of variance is used (factor intervention/control group and 

factor pre/post test). An F-test is used to test the hypotheses. Let us present now the 

methodology used in our exploratory data analysis. 
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Methodology  

The population studied is composed of 83 teachers. The questionnaire is composed 

of questions (variables) with multiple-choice qualitative answers and questions with 

quantitative answers. All quantitative variables are reconditioned in two intervals by 

using the median to separate the classes. We split now the variables in three parts: 

the biographical variables are the questions related to the teachers‘ biography 

(country, age, gender, type of school ... ) that do not change between the pre and the 

post questionnaires; the active variables are the questions of the pre-questionnaire, 

except the biographical variables; the variables of the post-questionnaire are 

considered as illustrative variables. 

We begin with a multiple correspondence analysis (MCA) on the active variables (36 

variables with a two choices answer, which means 2
36

 possibilities).  Then we apply 

a hierarchical ascendant classification (HAC or cluster analysis) by using the 

distances measured on the first coordinates between teachers on the teachers‘ first 

coordinates on the factorial axes determined by the MCA. SPAD software is used. 

There is a cluster of three teachers who have too many no answers. We decide not to 

take these three teachers into consideration for the cluster analysis. After the cluster 

analysis each of these three teachers joins his nearest cluster. In this new cluster 

analysis there is a one teacher cluster. We repeat the precedent procedure and we get 

eventually 79 teachers offering with the active variables a cluster analysis with four 

clusters [2]. 

For every cluster we consider the splitting active variables. A splitting active 

variable is an answer for which the percentage of the answer in the cluster is very 

different than in the whole population. In the next paragraph, every cluster will be 

described through these splitting variables. In the post-test, the answers to the same 

questions are considered as illustrative-supplementary variables. Those for which the 

percentages are very different in the cluster than in the population are split by 

clusters. The biographical variables (gender, type of school, nationality, level of 

studies ...) are also split by clusters. Let us describe the clusters.  

TEACHERS ' BELIEFS BEFORE THE TRAINING COURSE 

To describe the whole population, we observe a variety of positions about beliefs and 

self confidence: a majority can agree for some items, or disagree for other ones or 

being divided between agreement, disagreement or neutrality. To describe every 

cluster we look at the difference in the percentage of an answer between the studied 

cluster and the whole population.  

First cluster 

The first cluster contains 13 teachers with the following splitting answers, much 

more answered than in the whole population. They agree strongly that every student 

can create or recreate parts of mathematics; that there is usually more than one way 
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to solve mathematical tasks and problems at school; that students with the right age 

are able to solve the proposed modelling task and that this task does not take too 

much lesson time; and that if students get to grips with mathematical problems they 

can often discover something new (connections, rules and terms). They disagree 

strongly that to solve a mathematical task at school, one has to know the one and 

only correct procedure or you are lost; that school mathematics is the memorizing 

and application of definitions, formulas, mathematical facts and procedures; and that 

school mathematics is a collection of procedures and rules which determine precisely 

how a task is solved. The teachers looks less confident than the whole population for 

all the items, and specially to give effective verbal feedback to groups and individual 

students to assist them with modelling, or to support students in developing 

competencies in arguing related to modelling tasks.  

The teachers of this cluster look positive at the teaching of modelling, expressing a 

need to support students in modelling and having and open-minded view on school 

mathematics beliefs, with mostly strong positions on these points (strongly agree or 

disagree). 

Second cluster 

The second cluster contains 31 teachers with the following splitting answers, much 

more answered than in the whole population. Most of the teachers feel less confident 

than the whole population for all the items to teach modelling, and specially they feel 

less confident to be able to design modelling lessons that help students overcome 

difficulties in all modelling steps (e.g. problems in validating); to use students‘ 

mistakes to facilitate their learning in modelling; to effectively assess students‘ 

progress as they work on modelling tasks; to adapt tasks and situations in text books 

to provide realistic open problems; and to design their own modelling tasks. In this 

cluster the teachers look less confident to teach modelling. 

Third cluster 

The third cluster contains 14 teachers with the following splitting answers, much 

more answered than in the whole population. They agree strongly that school 

mathematics is the memorizing and application of definitions, formulas, 

mathematical facts and procedures. They strongly disagree that school mathematics 

is useful in helping individuals to become critically aware citizens; that it is possible 

for students to discover and try out many things in school mathematics; and that 

school mathematics helps to understand phenomena from various areas of our 

society. Much more than in the whole population, they are neutral to agree that 

mathematics is of general and fundamental use to society, and that there is usually 

more than one way to solve mathematical tasks and problems at school or that school 

mathematics helps to solve daily tasks and problems. About self confidence, there is 

a variation depending on the items, sometimes they are less confident than the whole 

population, sometimes more confident, without strong difference. The teachers of 
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this cluster look conservative on school mathematics and are less open to application 

of school mathematics in life. 

Fourth cluster 

The fourth cluster contains 21 teachers. For all the items of self confidence, these 

teachers are much more confident than the whole population, and specially to design 

modelling lessons that help students overcome difficulties in all modelling steps (e.g. 

problems in validating); to design their own modelling tasks; to effectively assess 

students‘ progress as they work on modelling tasks: to develop detailed criteria 

(related to the modelling process) for assessing and grading students‘ solutions to 

modelling tasks; to use students‘ mistakes to facilitate their learning in modelling; to 

support students in developing competencies in arguing related to modelling tasks; 

and to give effective verbal feedback to groups and individual students to assist them 

with modelling. They strongly agree to use the modelling approach in their future 

teaching. The teachers of this cluster look very self-confident to teach modelling. 

TEACHERS‘ BELIEFS AFTER THE TRAINING COURSE 

We observe that for the answers to self-confidence variables the average and median 

are increasing after the training course, which looks quite normal.  

For the variables on beliefs about mathematics there are small variations with some 

exceptions. Teachers agree much more that school mathematics is useful in helping 

individuals to become critically aware citizens. Maybe the training has offered 

examples or situations to illustrate this possibility. There is also a big increase in the 

probability to use a type of modelling task in teaching, or to disagree that the 

students will not be able to solve a given modelling task.  

To analyse the change in every cluster, we look after the training course what are 

now the answers with the biggest differences between the percentage of the answer 

in the cluster and the percentage of the answer in the whole population.  

First cluster 

More than in the whole population the teachers strongly disagree that school 

mathematics is the memorizing and application of definitions, formulas, 

mathematical facts and procedures. They strongly agree that every student can create 

or recreate parts of mathematics and that there is usually more than one way to solve 

mathematical tasks and problems at school. They disagree that central aspects of 

school mathematics are flawless formalism and formal logic. For these split variables 

the difference with the whole population is smaller than it was before the training 

with the splitting variables. All these changes are positive to teach modelling.  

Similarly, before the training course, for all items of the self-confidence variables, 

the teachers were less confident than in the whole population. After the training we 

observe that the level of confidence has increased in the population and in the cluster 
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and there are no more strong differences with the whole population for the self-

confidence variables. More precisely, for the two items where the self-confidence 

was splitting before the training course, after the training course we have a change of 

the confidence. Before the training course a majority of the cluster had a degree of 

confidence under the median of the whole population for both items. It is the 

contrary after the training course, even if the median of the whole population has 

increased after the training course.  

More generally after the training course, the difference between this cluster and the 

whole population is weaker. 

Second cluster 

Much more than in the whole population, the teachers are neutral to think central 

aspects of school mathematics are flawless formalism and formal logic, disagree that 

doing mathematics at school involves innovative thinking and new ideas, and agree 

that there is usually more than one way to solve mathematical tasks and problems at 

school. These split differences are difficult to interpret because the differences 

observed are reduced. The case is particularly true for the confidence items. The 

teachers of the cluster keep less confident than in the whole population, even if the 

level of confidence has increased in the population and in the cluster. But there is no 

more big difference.  

After the training course, in this cluster, there are not so much split answers and the 

differences are considerably reduced.  

Third cluster 

More than in the whole population the teachers disagree that every student can create 

or recreate parts of mathematic; that school mathematics helps to understand 

phenomena from various areas of our society; and that it is possible for students to 

discover and try out many things in school mathematics. For these three variables we 

observe after the training course a decrease of strongly disagreement and an increase 

of disagreement. The differences with the whole population are reduced in 

comparison with the splitting differences before the training course. The splitting 

variables of strong disagreement and agreement, present before the training course, 

are no more present as split variables after the training course. Even if the teachers of 

the cluster keep some conservative beliefs as illustrated above, their position is more 

moderated and less splitting than before the training course. 

Fourth cluster 

For all items of self-confidence the average has increased in the cluster and in the 

whole population. The median for all items has increased in the whole population. In 

the cluster for all items the majority of the answers keep in the interval over the 

median. Even if this percentage has decreased, for every item teachers are more 

confident in the cluster than in the whole population, and specially to develop 
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detailed criteria (related to the modelling process) for assessing and grading 

students‘ solutions to modelling tasks; to adapt tasks and situations in text books to 

provide realistic open problems; to support students in developing competencies in 

arguing related to modelling tasks; and to effectively assess students‘ progress as 

they work on modelling tasks and to select appropriate tasks suitable for a modelling 

approach to teaching. The teachers of this cluster keep more confident than the 

whole population even if the difference is reduced. 

BIOGRAPHICAL VARIABLES AND CLUSTERS 

We can observe now how the biographical answers (gender, age, country...) are split 

in the clusters. We use the same method as for the answers after the training. We 

look what are the biggest differences between the percentage of the answer in the 

cluster and the percentage of the biographical answer in the whole population. 

 We will try to interpret the relation between biography and clusters. But it is clear 

that you can find the same age or the same country or the same type of school split in 

different clusters. It means that we want to break the idea to define a cluster with the 

biography answer. A biography answer, for example a given country like France, can 

be an explanation factor but neither a necessary factor, neither a sufficient factor to 

belong to a cluster, it means to fill the profile of a cluster. 

First cluster 

Younger teachers and French teachers are more numerous in this cluster than in the 

whole population. On the contrary Hungarian teachers, secondary school teachers, 

older teachers, teachers with a high number of years as teacher are less numerous.  

The teachers of this cluster look positive to teach modelling, expressing a need to 

support students in modelling and having and open-minded view on school 

mathematics beliefs, with mostly strong positions on these points (strongly agree or 

disagree). Young teachers could be more sensible to open-minded beliefs because 

their teacher education was more focused on didactics and pedagogy than older 

teacher education In France problem-solving plays a main role in mathematics 

teaching focused on mathematical content. The French teachers of the training course 

were from primary school where every day life problems are very important in the 

official syllabus (Cabassut & Wagner, 2009). Hungarian teachers are less present 

maybe because their school system is more traditional (Vancso & Ambrus, 2009). 

Secondary school teachers are also less present maybe because they are more focused 

on mathematical content than on modelling activities.  

Second cluster 

Secondary school teachers, German teachers, and older teachers are more numerous 

in this cluster than in the whole population. On the contrary primary school teachers, 

and younger teachers are less numerous.  
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The teachers of this cluster look less confident to teach modelling, and moderately 

open-minded to modelling. The secondary school teachers are maybe more focused 

on mathematical content than primary school teachers and have a pressure to achieve 

their syllabus. German teachers have seen a big change in their curriculum in 2009 

where modelling becomes a leading idea (Garcia, Wake, & Maaß, 2007). This 

official change could make them open to modelling but less confident because it is a 

new idea in the curriculum. Older teachers could also feel uncomfortable to change 

their teaching if modelling corresponds to a new teaching.  

Third cluster 

Older teachers, teachers with a high number of years as teacher, Hungarian teachers, 

teachers who have studied mathematics at university level, and secondary school 

teachers are more numerous in this cluster than in the whole population. On the 

contrary German and Spanish teachers, teachers with a low number of years as 

teacher, and younger teachers are less numerous. 

The teachers of this cluster look very conservative on school mathematics and are 

less open to application of school mathematics in life. Older teachers with long 

experience could have a more conservative behaviour than young and less 

experienced teachers. Hungary has a traditional and theoretical mathematics teaching 

that can explain this position (Vancso & Ambrus, 2009). 

Fourth cluster 

Younger teachers, Spanish teachers, and primary school teachers are more numerous 

in this cluster than in the whole population. On the contrary older teachers, teachers 

with a high number of years as teacher, German teachers, and secondary school 

teachers are less numerous.  

The teachers of this cluster look very self-confident to teach modelling. Younger 

teachers or teachers from Spain are maybe more confident (Garcia et al., 2007). 

Primary school teachers, being used to multi-subject activities, are more confident to 

teach modelling. We have explained in the second cluster why German teachers, 

older teachers or secondary school teachers could be less confident to teach 

modelling. With the fourth cluster we observe that young teachers or primary school 

teachers seem to be more open to modelling. 

DISCUSSION 

Teachers can be split in different groups depending on their mathematical beliefs 

(conservative or open minded) and on the degree of confidence to teach modelling. 

The main difference after the training course is the increase of the level of 

confidence. The consequence is that the level of confidence is no more a split 

variable for the two first clusters. It keeps to be a split variable for the fourth cluster 

gathering teachers much more confident than the whole population. 
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After the training course, the variables on the beliefs about mathematics are no more 

strongly split variables: the training course seems to homogenize and to moderate the 

beliefs. The training course has effectively taken into consideration advantages and 

disadvantages, difficulties and interests, needs and potentialities of the teaching of 

modelling. The third cluster keeps on characterising the teachers by conservative 

points of view on mathematics teaching, even if they look more moderate after the 

training course. It means that a big change in the beliefs seems difficult to be 

achieved as expressed in (Maaß & Gurlitt, 2009). If one of the aims of a future 

course is to change the teachers' beliefs, the course will have to focus on this aim. 

We have offered this example of comparative study to contribute to the discussion on 

comparative studies in mathematics education. We do not know why the exploratory 

data analysis is not so popular in mathematical education in comparison with other 

fields. A reason could be related to the fact that mathematical education is more 

controlled by mathematicians than other fields of knowledge. For a mathematician 

confirmatory data analysis uses a deductive approach and inferential statistics while 

exploratory analysis uses an inductive approach and descriptive statistics. In the 

exploratory analysis, clusters enable to zoom in the whole population by aggregating 

individuals through their answers and not through their biographical values. They 

enable to build types of teachers to whom targeted training can be addressed.  

In some international comparative studies, a descriptor aggregates the answers of a 

country in order to compare it with other countries, ranking the countries with the 

value of the descriptor. For example, the performance of Germany at PISA 2000 

shows that Bavaria is significantly above the OECD average and Brandenburg is 

significantly below. Considering the German performance is a zoom-out where the 

difference between Bavaria and Brandenburg is not taken in consideration, this 

zoom-out leads to identify for every country a coherent body of practices. The hit is 

to define the best country - Finland for example in PISA 2000 - and to propose this 

country as a model for the others.  

The aim of the example developed in this study is to show that other ways are 

possible. The diversity of the practices in a country shows that the country 

contributes to different clusters and that teachers from different countries can be 

gathered in the same cluster. The information got from a zoom-in can be as much 

interesting as that from a zoom-out. The challenge is to develop the comparisons 

among different countries taking into account the diversity of the practices and of the 

beliefs inside every country. 

NOTES 

1. LEMA means ―Learning and Education in and through Modelling and Applications‖. This project 

is funded by the European Union and is described on the project site: www.lema-project.org 

2. The data analysis (MCA and HCA) is made for the statistical part under the control of J.-P. 

Villette, and for the didactical interpretation of the clusters under the control of R. Cabassut. 
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In the Learning Mathematics for Teaching (LMT) project, measures were developed 

in order to gauge growth in teachers‘ mathematical knowledge for teaching (MKT) 

and to learn if and how such knowledge contributes to students‘ achievement. This 

paper documents the results from using adapted U.S. developed measures in a pilot 

study involving 142 Norwegian teachers. Psychometric analyses were performed on 

the Norwegian measures, and for some item parameters, we find strong correlation 

to the item performance characteristics found in the U.S. 

INTRODUCTION 

The study of mathematics teachers‘ knowledge and practice has been an active field 

of research for several decades (Ponte & Chapman, 2006). Inspired by Shulman‘s 

(1986) work, a group of researchers at the University of Michigan have developed a 

theory of ―mathematical knowledge for teaching‖ (MKT). Part of this research 

included development of items used to measure teachers‘ MKT and to understand the 

effect such knowledge has on student achievement. It is also used to study and to 

compare outcomes of professional development of teachers and to improve teacher 

education. Research shows that teachers with high MKT score can be positively 

associated with increased learning by their pupils (Hill, Rowan, & Ball, 2005) and 

with the mathematical quality of instruction (Hill, Blunk, Charalambous, Lewis, 

Phelps, Sleep, et al., 2008). While some researchers claim that teaching is a cultural 

activity (Stigler & Hiebert, 1999), little is known to what extent this also applies to 

the MKT construct.  

The measures under investigation were created on the basis of qualitative studies of 

mathematics teaching in U.S. classrooms and designed to reflect U.S. teachers‘ 

knowledge about the content taught as well as pedagogical content knowledge (Ball, 

Thames, & Phelps, 2008). Although the items were never made for use outside of the 

U.S., there have been several attempts to adapt and apply the MKT measures in other 

countries (e.g. Delaney, Ball, Hill, Schilling, & Zopf, 2008; Mosvold, Fauskanger, 

Jakobsen, & Melhus, 2009; Ng, 2009). The challenges of adapting and validating 

these items for use in Norway relate to issues of translation (Mosvold et al., 2009) as 

well as issues concerning teachers‘ experiences and reflections after having worked 

individually on the measures (in Norway, see Fauskanger & Mosvold, 2010; 

Bjuland, Mosvold, & Fauskanger, in progress). As part of this ongoing research, we 

want to see how the U.S. developed MKT measures perform in Norway and compare 

with performance in the U.S. This is important if one wants to rely on research and 
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development of MKT theory done in other countries. In this paper, we discuss how 

the items performed in a pilot study involving 142 primary and lower secondary 

school teachers in Norway. Our results are compared to results obtained in the U.S. 

(Hill, 2007). We focus on psychometric properties of the items by addressing the 

following research question: 

Do the U.S. developed mathematical knowledge for teaching items perform in the same 

manner in Norway?  

THEORETICAL BACKGROUND 

In recent years, effective professional teacher development has been studied 

extensively (e.g. Garet, Porter, Desimone, Birman, & Yoon, 2001). According to 

these authors, however, literature in this field provides little direct evidence of 

positive outcomes for the participating teachers and their students. Some promising 

work has been carried out by researchers at the University of Michigan. Their 

analyses of teachers‘ MKT demonstrate that teachers‘ MKT made a difference in 

teachers‘ mathematical quality of instruction (Hill et al., 2008) and in pupil‘s 

achievement in mathematics (Hill et al. , 2005).  

Theoretically, the MKT construct follows Shulman‘s (1986) work and the 

categorization of the various components of teacher knowledge that has evolved 

from Shulman‘s original proposal. The work done at the University of Michigan 

resulted in the model of MKT presented in Figure 1, a model still under 

development. 

The MKT items were developed based on studies of videos from classroom practice, 

and the domains have been identified both in the U.S. (Ball et al., 2008) and in 

Norway, where Drageset (2009) has verified the existence of the constructs 

specialized content knowledge (SCK) and common content knowledge (CCK). 

Although the items focus on important tasks of teaching (e.g. presenting 

mathematical ideas), which are supposed to be of a universal nature (Ball et al., 

2008) they may not perform as intended in other countries (e.g. Delaney et al., 2008). 

This indicates that the translation and adaptation of the MKT measures into a 

different language (and culture) is not straightforward and requires careful scrutiny 

and different methodological approaches in order to be successful (e.g. Mosvold et 

al., 2009).  

Investigating what in-service mathematics teachers know is uncommon in Norway, 

and according to Lysne (2006), assessment in education is a controversial issue in 

many western countries. In addition, the multiple-choice format is seldom used in 

Norway, but this seems to be changing (Sirnes, 2005). Reutzel and his colleagues (in 

press) claim that the measurement of practicing teachers‘ knowledge is not widely 

accepted, and other assessments than written are highlighted (Baxter & Lederman, 

1999). 
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Figure 1: Domains of Mathematical Knowledge for Teaching (Ball et al., 2008, p. 403. 

The domains are defined and discussed in the same reference).  

We recognize that no assessment is perfect, and all measurement instruments have 

their advantages as well as disadvantages. The MKT is no exception (e.g. Kane, 

2007; Schoenfeld, 2007). It is clear from the writings of Hill and her colleagues 

(Hill, Sleep, Lewis, & Ball, 2007) that the goal is to move the debate on assessment 

of teachers from a debate of argument and opinion to one of professional 

responsibility and evidence. These authors claim that there is a need for assessment 

instruments that are designed to ―investigate what teachers know, and to associate 

that knowledge with their professional training and their instructional effectiveness‖ 

(ibid. p. 112). From this perspective, it is important to develop different approaches 

to measure teachers‘ MKT. The measures in focus in this paper represent one such 

attempt. 

Schilling and Hill (2007) describe their work on validating the MKT measures, and 

even when building on their work, we need to be aware of the fact that researchers 

believe that more efforts need to be made concerning the work of validation 

(Schoenfeld, 2007) in general and more specific the use of psychometric models as 

the IRT (e.g. Kane, 2007).  

METHODS 

Efforts have been made to translate and adapt the 2004 elementary form A 

(MSP_A04, see LMT 2010) of the MKT items into Norwegian (Mosvold et al., 

2009). After the translation phase, a pilot study was organized in order to add to the 
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process of validating the translation and adaptation of the MKT items. The overall 

aim of the study was to investigate whether and how the MKT measures could be 

used in a Norwegian context (Fauskanger & Mosvold, 2010). The study includes a 

quantitative part where 142 teachers‘ MKT were measured and a qualitative part 

where a selection of teachers were interviewed in five focus groups. In this paper, we 

analyze data from the quantitative data only, using item response theory (IRT) 

models as an approach.  

The form that was used consisted of two parts. Part 1 included a total of 61 items (30 

item stems). Part 2 consisted of some questions related to the teachers‘ gender, 

teaching experience and background education in mathematics. Part 1 is the focus of 

attention here. Figure 2 illustrates the nature of the items. This example asks teachers 

to respond to a mathematical task situated in a teaching context. 

 

Figure 2: Example from the set of released items (Ball & Hill, 2008). 

Item Response Theory (IRT) models 

Since MKT is not directly observable, the MKT items are meant to relate to the 

construct and can be viewed as one possible operationalization of the construct. 

Many measurement models could serve as a link to the observed latent world, and 

item response theory (IRT) is one such model (Edwards, 2009). The LMT project 

used IRT models to learn more about item performance characteristics, and in order 

to compare item performance in Norway and the U.S., we have followed the same 

approach.  

A basic idea in IRT is that an observed item response is a function of person 

properties and item properties (Edwards, 2009). We have used two IRT models in the 

analysis of our data. A two-parameter model was used first, making it possible to 

identify items with high slope and item difficulty. The higher the slope is, the more 

variability in items responses is attributable to differences in the underlying 

construct. Item difficulty indicates the point on the ability axis where an individual 

would have a 50% chance of endorsing a particular item. Item difficulty is reported 
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in standard deviation units, and 0 is the average teacher ability. Items with negative 

difficulty indicate easier items, whereas items with positive difficulty indicate more 

difficult items.  

Edwards (2009) found that adequate IRT parameter recovery is possible from as few 

as 200 respondents. However, a general rule is that the bigger the sample size is, the 

better the estimates get. The quality of the data also determines the number needed 

for adequate parameter recovery. Since the number of respondents in our sample is 

lower than 200 (n=142), we also compared the results coming from a one-parameter 

model. Missing data is not used in parameter estimation in both models. 

In addition to the psychometric analysis, we also present the test information curve 

and the reliability of the assessment. The test information curve shows how much 

information items provide for the individual teacher along the ability axis.  

RESULTS 

In this section, the psychometric analyses are presented and discussed in order to 

determine if the U.S. developed measures perform well in Norway. We have used the 

program BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) for the estimation 

and testing of item response theory (IRT) models.  

 

Difficult

y 

< -2 [-2,-1> [-1, 0> [0, 1> [1, 2> > 2 

Norway 9 14 22 9 5 2 

U.S 5 19 20 12 2 3 

Table 1: Numbers of items within different ability intervals in Norway and U.S. 

In order to study item performance characteristics in Norway, we first looked at the 

output from BILOG-MG using a two parameter IRT model. We used the same item 

names as in the original U.S. form. Data coming from the Norwegian sample show 

that one item has a negative point-biserial correlation of -0.116 (Item 17c). This 

indicates that respondents who answered other items correctly would most likely 

give the wrong answer to this item, which again indicates that the item is not 

working well in Norway and should be removed. The average difficulty for the 

Norwegian items was -0.649, and standard deviation 1.267 (average standard error 

0.152), where as in the U.S. the average item difficulty was -0.573, i.e. slightly 

higher. In both countries the scale used consists of a distribution of items of 

difficulty across the ability spectrum (see Table 1). 

Figure 3 displays a scatter plot of the Norwegian item difficulties relative to item 

difficulties found in the U.S. study (LMT 2004). The correlation between the relative 

item difficulties is relatively strong (0.804 and p-value < 0.0005). Similar strong 
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correlation is also reported in an Indonesian study where two MKT geometry 

measures were adapted and used (Ng, 2009). 

 

Figure 3: Scatter plot of the relative difficulties of items in the Norwegian adapted 

form and the U.S. version of the same form, using a two-parameter model.  

The average Norwegian item slope was 0.688 with standard deviation 0.287 (average 

standard error 0.152), while the average item slope found in the U.S. was 0.533. We 

found the correlation between U.S. slopes and the Norwegian slopes to be rather low 

(0.375). This can be explained by the low sample size. 

Items with slopes lower than 0.5 are normally considered as problematic because 

they do not discriminate between teachers with high mathematical knowledge for 

teaching and those with lower mathematical knowledge for teaching. We find that 

the majority of the items have slopes higher than 0.5, both for items in the adapted 

form used in Norway (51 out of 61 items) and for the original U.S. form (41 out of 

61 items). In both countries, only two items had slopes below 0.3. 

Each item also has its own information function that is calculated from the item‘s 

parameters, and the peak of the function is a value of the item difficulty. The item 

slope determines how peaked the test information curve is, and the higher the slope 

value is, that item will provide more information around this difficulty level. To 

understand how our test is functioning as a whole, the items information‘s function 

can be combined into a test information function. The test information curve shows 

how the test measures teachers across the ability levels. 
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Figure 4: Test information function (solid line) and standard error (dotted line) curves 

for the Elementary 2004 A form. 

In Figure 4 we have plotted the test information function for the adapted Norwegian 

form. 0 is the mean teacher‘s ability score. The peak of the test information function 

is at -0.75, and this test measures best individuals between -2.5 and 2 standard 

deviations from the mean ability level. The corresponding standard error for this 

range is below 0.3, which is under a third of a standard deviation. Reliability for the 

two-parameter IRT model was 0.9145, higher than what was found in the U.S. study. 

Due to the relatively small number of respondents in Norway, a one-parameter IRT 

analysis was also performed. However, since the U.S. item characteristics are coming 

from a two-parameter model, we will not compare item characteristics coming from 

two different models (and for slopes it is meaningless). We observed that the 

correlation between the U.S. difficulty and the Norwegian difficulty was less strong 

using a one-parameter model (0.775 compared to 0.804). For the one-parameter 

model the reliability index of the test was 0.899, and maximum information for -

0.8750.     

CONCLUSIONS 

During the translation of the items and in focus group interviews with teachers, we 

became worried if the measures would function in Norway. Several teachers 

expressed concern about some of the items, finding them difficult and hard to 

answer. Some teachers had expected a test with questions similar to what can be 

found in a textbook for their own students, and being challenged with the 
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understanding of e.g. nonstandard student solutions in a test situation was frustrating 

(Bjuland, Mosvold, & Fauskanger, in progress).  In our analysis of the data, we find 

that the scale was composed with items with difficulties over a broad ability range 

(from -3.683 to 2.443) in the same manner as in the original U.S. scale (from -3.734 

to 3.454). We also find that there is a strong correlation between the item property 

characteristics found in Norway and in the U.S. The reliability index is high 

(0.9145), and from only looking at the item property characteristics, we argue that 

the adapted measures are working well in Norway and that the measure performs as 

intended. The scale is performing well for an individual with the ability between -2.5 

and 2 standard deviations from the mean ability level. However, this study has 

several limitations. First, the sample size is low, making the use of a two-parameter 

model questionable. Second, our study only examines the content knowledge 

domain, and we would therefore like to do further studies involving the knowledge 

of content and students (KCS) and the knowledge of content and teaching (KCT) 

domains. Third, we also believe that observations in classrooms need to be done in 

order to investigate if the mathematical quality of instructions is linked to MKT 

measures in the same way as found in the U.S. For items with difference in item 

performance, we are also looking into the content of the items trying to see if for 

instance cultural differences can explain this difference. 

NOTES 

1. Our research project has been supported by OLF, The Norwegian Oil Industry Association.  
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BELGIAN AND TURKISH PRE-SERVICE PRIMARY SCHOOL 

MATHEMATICS TEACHERS‘ METAPHORICAL THINKING 

ABOUT MATHEMATICS 

Æiğdem Kiliç 

Mersin University, Education Faculty 

The aim of this study was to examine Turkish and Belgian pre-service primary 

school mathematics teachers‘ perceptions of mathematics. 42 Belgian and 41 

Turkish mathematics teacher students participated in the study. They were asked to 

indicate their metaphors about mathematics and explain the reason. The results of 

the study revealed that Belgian pre-service teachers tended to use action metaphors 

while Turkish pre-service teachers tended to use emotion metaphors for explaining 

mathematics. It is concluded that cultural factors and the teacher education system 

are the likely causes of such different metaphors.  

Key words: teacher education, pre-service primary school mathematics teacher, 

metaphor, comparative studies in mathematics education  

INTRODUCTION AND THEORETICAL FRAMEWORK 

Beliefs are an interesting and powerful research object. In order to develop effective 

teacher training, the belief systems of pre-service teachers need investigating and 

metaphor, in this respect, is an important tool (Reeder, Utley and Cassel, 2009; 

Schinck et al., 2008). As indicated by Presmeg (1998), metaphor is derived from the 

Greek, metaphora, meaning to ‗transfer‘ or ‗carry over‘ and is an implicit form of 

analogy. According to  Leavy, McSorley and Bote (2007), 

Metaphors have a coherence and internal consistency, which provide insights into ideas 

that are not explicit or consciously held. They can also be evocative, stimulating both self 

and others to tease out connections which might not be made use of by direct questions 

(p.1220).  

Metaphor, long thought to be just a figure of speech, has recently been shown to be a 

central process in everyday thought. Metaphor is not a mere embellishment it is the 

basic means by which abstract thought is made possible (Lakoff and Nunez, 2000). 

Reasoning with metaphor is considered a fundamental way of human thinking and 

communication, as can be seen in our everyday use of abstract concepts (English, 

1997). Metaphors have many advantages for educators and learners. Metaphors link 

abstract ideas to concrete images, thus evoking an experiential connection. 

Metaphoric thought supports embodied knowing and is not merely a communication 

or visualization device (Sterenberg, 2008). Metaphor is seen as a strategy for 

explicating peoples‘ views about a phenomenon (Sterenberg, 2008). It is a research 

tool (Reeder, Utley and Cassel 2009) showing relationships and focusing on 

similarities. 
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Metaphors are explicit explorations of personal views of mathematics and 

understanding new images of mathematics can contribute to the explication of 

teachers‘ views of mathematics (Sterenberg, 2008). If our conceptual systems and 

thought processes are largely metaphorical (Lakoff & Johnson, 2003) analyzing 

peoples‘ metaphorical thinking is a good way to understand what happens in their 

mind. We understand metaphor as finding a mapping between the target domain, that 

is, the topic of metaphor, and the source domain (English, 1997).  

Metaphor-related educational research has been undertaken on specific content like 

mathematics (Sterenberg, 2008; Schinck et al., 2008), more broadly on teaching and 

learning (Saban, Kocbeker and Saban, 2007; Mahlios and Maxson, 1998; Leavy, 

McSorley and Bote, 2007) and in juxtaposition, the teaching and learning of 

mathematics (Reeder, Utley and Cassel, 2009). Research on use of metaphors to 

describe images of mathematics shows diversity. For example, Lim (1999) 

categorized mathematics as a journey, a skill and a game or a puzzle. Sterenberg 

(2008) categorized the metaphors produced by pre-service teachers into mathematics 

as a battle, a mountain, a bridge and a language. Noyes (2006) explored pre-service 

mathematics teachers‘ beliefs about mathematics and the teaching and learning of 

mathematics. Among participants‘ metaphoric descriptions of mathematics were 

found four metaphors like structure, journey, language and toolkit. In the study of 

Reeder, Utley and Cassel (2009) production, journey and growth were identified as 

pre-service teachers‘ metaphors about mathematics teaching and learning. 

The aim of this study was to examine Belgian and Turkish pre-service primary 

school mathematics teachers‘ beliefs about mathematics. The beliefs of participants 

were revealed using metaphorical expressions. There were two main questions in the 

study; 

1) What kind of metaphors are used by Belgian and Turkish participants? 

2) Are there any differences between two countries‘ participants‘ metaphors for 

mathematics? 

METHOD 

Participants    

The participants of the study were 42 Belgian and 41 Turkish pre-service primary 

school mathematics teachers. All participants were enrolled in mathematics method 

and basic mathematics courses and were able to articulate effectively their 

metaphorical thinking about mathematics. In Belgium a primary school mathematics 

teacher trainee program is three years, in Turkey it is four. Demographically, all 

participants were aged between 20 and 22. 
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Data Collection  

Data were collected during university sessions. Metaphor was explained to 

participants before they were presented with a written form, ―Mathematics is like... 

Because.... was Participants were then invited to write their images of mathematics 

and their justification for them . The data were collected during an Erasmus Staff 

Mobility project in March 2010 in Belgium and at the beginning of April in Turkey. 

Data Analysis  

Students‘ written metaphoric expressions were read, listed, organised, coded and 

labelled according to their common characteristics. One colleague also helped the 

researcher with data analysis. The colleague and researcher coded metaphors 

separately. First, all metaphors were listed and similar metaphors were combined. 

Listed metaphors were reorganized. All metaphors were coded and similar coded 

were combined. Coded metaphors were labelled (if, for example, a metaphor had 

been coded as human or plant it would have been characterised more generally as 

animate and so forth). In this manner, metaphors were categorized in four different 

clusters based on the patterns that emerged as animate, inanimate, emotion and 

action (see in Figure 1). Inter-rater reliability was calculated and found to be 98%. 

When a repeated metaphor was found, a (+) sign was written beside it to show its 

frequency.  

 

 

 

 

 

 

 

Figure 1: Metaphors that emerged in the study 

RESULTS 

In the study animate, inanimate, action and emotion are the main metaphorical 

themes, although in all categories there were sub-categories. In Table 1 can be seen 

the metaphors produced by participants for mathematics, while in Table 2 sub-

categories and frequency of metaphors are given.   

Metaphors 

Action 

Inanimate Animate 

Emotion  
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Table 1: Metaphors for mathematics produced by participants 

Turkish Belgian 

A star in sky that you know the name A toy 

Reality itself Building a house 

Depression A ghost 

A woman The roots of a planet 

A ladder that you never reach summit A tree +++ 

A puzzle +++ A puzzle ++++++++ 

A life ++++ Learning how to drive 

An ocean+++++ A volleyball 

A cyclic chain A computer 

A buckle A chain 

Dividing Turkish bagel equally A circle 

A infinite road A spoon 

Returning earth A summer 

A game A pyramid ++ 

A matryoshka baby A maze 

Universe +++ A game 

Knowing everything An infinity 

A pencil A fairy tale 

A maze Climbing a mountain ++ 

A wardrobe A flower ++ 

A jinn Ali figure An air 

A chocolate Gardening 

Erupted corn Playing the piano 

Lifeblood Riding a bicycle 

Growing a human Running a marathon 

A kite A magic box ++ 

An eye The world 

A ball of yarn Playing an instrument 

An artist painting A house 

Table 2: Frequency of metaphors for mathematics produced by participants 

Country Animate Inanimate Emotion  Action 

Human Plant Thing Place Abstract Concrete Action Game  

Belgium  - 5 5 2 5 3 8 11 

Turkey  2 - 8 - 5 14 6 5 
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As seen from the figures of Table 2 sub-categories of emotion- and action-related 

metaphors were used by both two groups. Some differences can be seen among the 

animate and inanimate categories. 

Animate 

In the animate category human and plant sub-categories were used. Human 

metaphors were used by Turkish and plant metaphors by Belgian participants. Some 

examples and participants‘ reasons are given in Table 3.  

Table 3: Participants‘ animate metaphors for mathematics  

Animate  Country  Mathematics 

is like.... 

Because... 

 

Human 

 

Turkey 

an eye. when you look you see the original. 

a woman. to understand mathematics look like to 

understand a woman, in fact you can‘t 

understand both of them easily. 

 

 

 

Plant 

 

 

 

Belgium 

a flower. mathematics needs to grow. A flower needs 

water to grow. We need mathematics 

(questions, exercises) to grow. Also the children 

need to grow, so we give them water (theory, 

exercise). 

a tree. you start with a base. No knowledge, when you 

start, but the longer you study math, the more 

you discover. 

Inanimate  

In this category place and object sub-categories were used by Belgian and Turkish 

participants. Although Belgian participants used object and place metaphors, Turkish 

participants used only object metaphors for expressing mathematics. Some examples 

can be seen in Table 4. 

Table 4: Participants‘ inanimate metaphors for mathematics  

Inanimate  Country  Mathematics 

is like.... 

Because... 

 

 

 

 

 

 

 

Belgium 

a computer.  you really have to learn to use it and when you 

understand how it works, you can use it to do a 

huge amount of things. 

a pyramid.  in primary school you learn the principles of 

maths those are the fundaments of math. When 

one brick placed wrong, the pyramid will fall 
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Object  

down. After a time you will have build a 

pyramid. 

 

 

Turkey  

a wardrobe. every topic of mathematics is clothes and 

mathematics looks like a wardrobe which 

contains all of them.  

a chocolate. what you feel while occupying mathematics 

looks like the taste of chocolate while you are 

eating it. 

 

Place 

 

Belgium 

a house.  first of all you learn the fundaments and later you 

learn difficult things. 

the world.  you have all kinds of people. In mathematics 

there are so many parts, you can‘t learn them all. 

Emotion 

In the emotion category abstract and concrete sub-categories were found. Both 

groups used this metaphor for explaining mathematics. In Table 5 some examples 

from participants are given. 

Table 5: Participants‘ emotion metaphors for mathematics  

Emotion Country Mathematics is 

like.... 

Because... 

 

 

 

Abstract 

 

 

Belgium  

air.  mathematics is everywhere, you can find 

it in the nature, in stars...  

a circle.  everything is constructing. 

 

 

Turkey  

a ladder that 

you never reach 

its summit. 

the more you climb up stairs, the more 

you meet new stairs. You never reach its 

summit. 

a depression. when you think you solve the problem, 

you meet new problem. After a while you 

confront a more difficult problem.  

 

 

 

 

Concrete  

 

Belgium  

a magic box.  you always get surprised when you work 

with it. 

the roots of a 

plant.  

there are many ways to reach solution a 

problem. 

 

 

Turkey  

a star in the sky 

that you know 

the name. 

you know only the things that you probe, 

identify. You don‘t know the things that 

you never gain, set forth. 

an ocean. there is no border of mathematics. The 

more you put out to sea, the more you 

can lose your way. In it, there are a lots 

of wind and wave. 
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Action  

In this category action and game sub-categories were found. Some examples from 

participants‘ produced metaphors are given in Table 6. 

Table 6: Participants‘ action metaphors for mathematics  

Action  Country  Mathematics 

is like.... 

Because... 

 

 

 

 

 

Action  

 

 

Belgium  

playing an 

instrument. 

there is a lot to learn about and one small 

mistake can get the entire exercise wrong. 

building a 

house. 

first you need to have a good fundaments, 

bricks to build, a roof and so on, later on 

you can give the house your own style. 

 

Turkey  

painting an 

artist. 

a painter paint freely, mathematics also is 

the same. It is a kind of information 

network. 

dividing a 

Turkish bagel 

equally. 

in mathematics there is an equity, an order 

and an aesthetic. 

 

 

 

Game  

 

Belgium  

a game. you play with numbers. There are certain 

rules you have to follow. 

a puzzle. you have to put together all the pieces 

before you really understand the whole 

picture. 

 

Turkey  

a game. there are definite rules of game and so is 

mathematics.  

a puzzle. in mathematics you feel you are in 

dilemma and try to find the exit. 

 

DISCUSSION AND CONCLUSION 

Participants produced animate, inanimate, emotion and action metaphors for 

mathematics with, in every category, sub-categories. Analyses of participants‘ 

metaphors for mathematics indicated that Turkish and Belgian participants had 

different images of mathematics; a finding likely to have several causes. A number of 

writers argue that different views of mathematics, as reflected in the metaphors 

presented, are linked to interpretations of how mathematics is played out in their own 

lives, both within and outside of school (Schinck et al., 2008; Noyes, 2004; Soto-

Andrade, 2007). Indeed, as indicated by Stigler and Hiebert (1999), in Noyes (2004), 
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the way mathematics duplicates the text through which is taught varies according to 

location, both geographical and cultural, at international and national levels. When 

the reasons indicated by participants were scrutinized it can be concluded that 

differences in Belgian and Turkish pre-service primary school mathematics teachers‘ 

metaphoric expressions may stem from participants‘ cultural background, individual 

experiences about mathematics within and outside of their school and also 

educational system. 

Saban, Kocbeker and Saban (2007) emphasized that metaphors are selective. When 

asked to complete the statement Mathematics is like... Because... their participants‘ 

metaphoric expressions about mathematics were different from each other. In this 

study, however, some similar metaphors were used by Belgian and Turkish pre-

service primary school mathematics teachers. This was seen in the game sub-

category with words like puzzle, maze and game. Both Turkish and Belgian students 

exploited puzzle metaphors to reflect their thoughts about mathematics. In similar 

vein, the metaphorical categories of emotion and action were used predominantly by 

participants from both countries. That can be explained by the characteristics of 

mathematics itself. Participants explained the abstract nature of mathematics by 

using both abstract and concrete phenomena. As indicated in the study of Lakoff and 

Nunez (2000) one of the principal results in cognitive science is that abstract 

concepts are typically understood, via metaphor, in terms of more concrete concepts.  

Comparing different countries‘ pre-service mathematics teachers‘ metaphorical 

mathematics-related expressions may help us to understand the extent to which such 

devices  are culturally located. The evidence above suggests that the more we use 

metaphor analysis as a research and evaluation tool, the more we will understand the 

belief and thought systems of people.  

REFERENCES 

Soto-Andrade, J. (2007, February). Metaphors and cognitive modes in the teaching-

learning of mathematics. Paper presented at the Fifth Congress of the European 

Society for Research in Mathematics Education (CERME5), Larnaca, Cyprus.  

English, L. (1997). Mathematical reasoning: Analogies, metaphors and images. In 

English, L, & D. Mahwah (Eds.), Analogies, Metaphors, and images: Vehicles for 

mathematical reasoning. New Jersey: Lawrence Erlbaum Associates Publisher. 

Lakoff, G., & Nunez, R.E. (2000). Where mathematics comes from: How the 

embodied mind brings mathematics into being. New York: Basic books.  

Lakoff, G., &Johnson, M. (2003). Metaphors we live by. Chicago: University of 

Chicago Press. 

Leavy, A.M., Mc Sorley, F.A., & Bote, L.A. (2007). An examination of what 

metaphor construction reveals about the evolution of preservice teachers‘ beliefs 

about teaching and learning. Teaching and Teacher Education, 23, 1217-1233. 



Working Group 11 

CERME 7 (2011) 1593 

 

Lim, C.S. (1999). Using metaphor analysis to explore adults‘ images of mathematics. 

Philosophy of Mathematics Education Journal, 12. 

Mahlios, M., & Maxson, M. (1998). Metaphors as structures for elementary and 

secondary preservice teachers‘ thinking. International Journal of Educational 

Research, 29, 227-240.  

Noyes, A. (2004, July). The poetry of the universe: New mathematics teachers‘ 

metaphoric meaning-making. Paper presented at the 28th conference of the 

International Group for the Psychology of Mathematics Education, Bergen, 

Norway. 

Noyes, A. (2006). Using metaphor in mathematics teacher preparation. Teaching and 

Teacher Education, 22, 898-909. 

Presmeg, N.C. (1998). Metaphoric and metonymic signification in mathematics. 

Journal of Mathematical Behavior, 17(1), 25-32. 

Reeder, S., Utley, J., & Cassel, D. (2009). Using metaphors as a tool for examining 

preservice elementary teachers‘ beliefs about mathematics teaching and learning. 

School Science and Mathematics, 109, 290-297.  

Saban, A., Kocbeker, B.N., & Saban, A. (2007). Prospective teachers‘ conceptions of 

teaching and learning revealed through metaphor analysis. Learning and 

Instruction, 17, 123-139. 

Schinck, A.G., Neale, H.W., Pugalee, D.K., & Cifarelli, V.V. (2008). Structures, 

journeys, and tools: Using metaphors to unpack student beliefs about mathematics. 

School Science and Mathematics, 108, 594-599. 

Sterenberg, G. (2008). Investigating teachers‘ images of mathematics. Journal of 

Mathematics Teacher Education, 11, 89-105. 



 

CERME 7 (2011)  

PROBLEM SOLVING AND OPEN PROBLEMS IN TEACHERS‘ 

TRAINING IN THE FRENCH AND MEXICAN MODES  

Alain Kuzniak*, Bernard Parzysz*, Manuel Santos-Trigo**, Laurent Vivier* 

* Laboratoire de Didactique André Revuz, Paris-Diderot University, France 

** Center for Research and Advanced Studies, Cinvestav-Mexico 

Mathematics education may differ in traditions and theoretical approaches 

throughout countries, but it is generally acknowledged that problems and tasks play 

an important role in learning. Two research teams, one in Mexico and the other in 

France, decided to work together in giving mathematics teachers in both countries 

the same task to solve during a training session. This paper summarizes the results 

of this study. It shows that in the two countries the reference to different theoretical 

frameworks results in putting emphasis on different but complementary aspects of 

teaching. 

INTRODUCTION 

In different countries, mathematics teachers‘ education and research programs in 

mathematics education exhibit differences both in principles and ways to implement 

them. There are also different research traditions or paradigms to frame mathematics 

education projects, but all of them recognize that mathematical problems or tasks 

play an important role in fostering the development of teachers‘ and students‘ 

mathematical knowledge. Contrasting different systems and approaches, in this study 

French and Mexican, may be of interest to identify features, common goals, and 

differences associated with their traditions in education. Our research interest is to 

analyze and document both the processes put into play by pre-service teachers while 

working directly with problems and later the way they use these problems in their 

teaching practices. 

Specifically, the purpose of our common project is to investigate ways in which pre-

service and in-service teachers work on a series of problems in order to prepare, 

organize, schedule and implement their lesson plans. Moreover, the development of 

technologies in class is quickly changing teaching practices and it appears necessary 

to take it into account. During their interaction with the tasks, pre-service teachers 

were encouraged to use computational tools. 

In the present contribution, we will focus on the initial step of the project in which a 

common problem was used as a teachers‘ training tool in both systems of education. 

Our main interest was to see the implementation in contexts in which ―solving a 

problem‖ has not necessarily the same meaning. Introduced by Polya (1945), 

problem solving constitutes the traditional framework for teachers‘ training in 

Mexico. In France, the traditional framework for teachers‘ training relies much more 

on Brousseau‘s Theory of Didactical Situations (Brousseau, 1998).  
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Taking into account the differences in the referent frameworks in France and in 

Mexico, we chose the following mathematical problem in both countries for 

teachers‘ training to compare how it was used. Other problems were discussed, but 

not chosen by the French team because of the difficulty to use them in secondary 

teaching. 

The task: A square piece of paper ABCD with side l, has a 

white front side and a blue back side. Corner A is folded 

over point A' on diagonal AC. Where should point A' be 

located on this diagonal (or: how far is A' from the folding 

line) in order to have the total visible area half blue and 

half white? (Based on Carlson & Bloom, 2005, p.71). 

 

 A’  A 

B 

C 

D 

 

For each country, we expose briefly the main features of the theoretical framework 

used and describe and analyze teachers‘ training scenarios based on this problem. 

We start with teachers‘ training in Mexico City, then with teachers‘ training in Blois 

(France). Furthermore we analyze the main elements of the comparison. 

TEACHERS‘ TRAINING SESSIONS IN MEXICO 

Problem solving 

Mathematical problem solving perspectives have framed and oriented the 

development of multiple research programs and supported curriculum proposals in 

mathematics education in the last four decades (Schoenfeld, 1985, NCTM, 2000). In 

general, a problem-solving route to learn mathematics relies on an inquiry or 

inquisitive approach to deal with mathematical ideas or problems (Santos-Trigo, 

2007); however, there are multiple factors around its identity and practical 

applications. ―The patterns that form a problem-solving identity are complex, 

involving varied motivational patterns, affective reactions and cognitive and social 

engagement in different circumstances both within a given task and across tasks‖ 

(Lesh & Zawojewski, 2007, p. 776).  

In teachers‘ education, it is important to address issues regarding the nature of 

problems, the rationale for using them, and the goals that are intended to be achieved 

during the problem solving sessions. Similarly, it is also important to elaborate on 

ways to organize and develop the problem solving sessions to be held with pre-

service teachers. For that, it is important to discuss the dynamic of the problem 

solving scenarios in which teachers and students will work on the problems. 

The context 

The problem was given on a sheet of paper to a group of 14 pre-service teachers. 

Afterwards, they were asked to read and make sense of the problem individually, and 

later they worked on the problem in pairs. Then, each pair had the opportunity to 

present their approaches to the problems to the others. At this stage, all the 
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participants and the instructor could ask for concept explanation or clarification. At 

the end of the session, the instructor encouraged the participants to contrast the 

different models used to solve the problems. In general terms, the sessions‘ dynamics 

fostered the participants‘ inquiring approach to the problems. For example, when the 

participants introduced an idea or a problem representation, the instructor questioned 

them and encouraged them to reflect on their ideas and other related concepts. 

Similarly, when the participants ran out of ideas the instructor either oriented the 

discussion (through questions) or asked other participants for suggestions to be 

considered. The aim was to encourage all the participants to formulate and then go 

deeper into the questions. In this perspective, the organization of the sessions is 

consistent with the activities recommended by Mason and Johnston-Wilder (2006) to 

have students participate during problem-solving discussions. In particular, the 

authors identify four ways to organize students‘ participation in developing and 

discussing their mathematical knowledge: 

Individual work allows learners to review, consolidate, and develop their facility, as well 

as to reconstruct for themselves. 

Work in pairs allows learners to try out ideas on each other before offering them to a 

wider group; it also provides an opportunity for learners to consider something that has 

happened or been said, and to generate more ideas about this [the problem] than an 

individual is likely to produce when working alone. 

Work in small groups allows a multitude of ideas to be generated, and also allows a large 

task to be split up amongst several people; with discipline, small groups can provide a 

forum for discussing ideas, modifying conjectures, and coming to a consensus with 

supporting reasons and justifications. 

Collective and plenary work allows everyone to hear about novel ideas and approaches, 

and to see teachers or peers displaying their mathematical thinking (p. 52, italics in the 

original).  

It is important to mention that the pre-service teachers were taking a problem-solving 

course when they worked on the task. The aim of this course was to use different 

computational tools in problem solving activities. The participants worked on the 

task during two sessions (2 hours each) held at the end of the semester. The goal of 

this report is not to analyze individual approaches to the task but to focus on 

characterizing mathematical behaviors exhibited by the group of participants as a 

whole. The solution process is structured into episodes which distinguish key 

principles associated with the finding of solutions (Santos-Trigo & Camacho; 2009). 

First Episode: An overarching inquisitive principle 

The core aspect in this approach is to conceptualize and examine the contents of the 

problem (definition, theorem, etc.) in terms of questions or dilemmas that need to be 

explored. An overarching principle that permeates the entire problem solving process 

is that teachers and students should transform the problem statement into a set of 
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meaningful questions to be examined. Thus, the questions addressed by the group 

included: What are the relevant properties of a square? What does it mean to fold a 

vertex over to a point on the diagonal? And also questions to examine properties of 

the involved figures: What properties does the folding line hold? What figures are 

formed in blue and white colors? What happens to both areas when point A‘ is close 

to point A or close to point C? What type of triangle is formed (blue region) when 

point A is reflected with respect to the folding line to determine A‘? How can we 

calculate the areas of the blue and white regions? In general, the participants 

observed that for different positions of point A‘ (i.e. when A‘ is moved along the 

diagonal) the area of one region increases while the other decreases. Then, they 

agreed that there would be a position for point A‘ where both areas were equal. At 

this stage, two main approaches to solve the task appeared: one focusing on 

representing the task algebraically and the other relying on constructing a dynamic 

model of the problem.  

Second Episode: An exploration principle 

The figure provided in the problem statement (some labels were added) was used by 

some participants to represent the triangle area as x
2
/2 and the other as l

2
x

2
, which 

led them to solve the equation l
2

x
2
 = x

2
/2 in order to find the position of point A‘. 

The dynamic approach carried out by some participants required thinking of the 

problem in terms of mathematical properties and software commands. This approach 

allowed them to visualize and quantify the area variation of both regions as a result 

of moving a point on the diagonal. 

During the plenary discussion, the participants acknowledged that the two 

approaches complement each other because they gave them an opportunity for 

examining the task from various perspectives. While the algebraic method gives a 

general solution to the problem, the dynamic approach offers not only the possibility 

of exploring visually the area variation of both regions; but also to graphically 

interpret the solution achieved algebraically (intersection point of curves). 

Third Episode: The principle of extension and generalization 

The participants asked whether the methods used to compare the area variations of 

the square could be extended to the case of a rectangle. They recognized that in the 

process of solving a problem or understanding a mathematical concept or idea it is 

always important to reflect on the scope of the solution or applications of that 

concept. In this context, the method used to explore the square case dynamically was 

adjusted to deal with the rectangle case.  

Fourth Episode: Reflection Principle 

Participants generally recognized that a problem solving approach for learning 

mathematics involves the construction of mathematical representations of concepts, 

situations or problems, in order to find and explore mathematical relations. In this 
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process, any mathematical statement (problem, definition, statement, content) is 

conceptualized as a starting point for teachers, students, or problem solvers in 

general to search for different ways of solving and extending a problem. In this 

perspective, the use of technological tools offered the participants the opportunity to 

explore some parameters of the task from varied angles and as a consequence, they 

could relate different ways of reasoning about the problem. For example, the 

construction of a dynamic model requires from the problem solver a functional 

approach without defining explicitly a function which is necessary with an algebraic 

approach. However, both models complement each other in terms of making sense, 

visualizing, and generalizing a set of relations emerging during the solution process. 

Conclusion 

In this approach, teachers tend to guide their practices through problem solving 

principles that lead them to search and explore diverse ways to solve the task. This 

particular process takes a long time for the participants to get appropriated and 

exhibited in their regular practices. However, they clearly recognized it as powerful 

approach to develop a deep comprehension of mathematical concepts and solving 

problems. Thus, the emphasis in teachers‘ education is to conceptualize the problem 

solving process as an opportunity for them to look for various ways to approach the 

tasks and to search for relations that emerge as a result of using different tools. 

TWO TEACHERS‘ TRAINING SESSIONS IN FRANCE 

Problem situation, open problem and research narrative 

The notion of ―problem situation‖ appeared in France in the 1980s in Brousseau‘s 

TDS, which is based on a socio-constructivist conception of learning. A problem 

situation is a learning situation aiming at fostering the acquisition of a new 

knowledge by the students. Its setting up implies identifying previously erroneous or 

weak conceptions among the students by analysing their errors. On this basis the 

teacher conceives of and sets up a situation presenting some specific features, 

namely: 1) be relevant for the cognitive objective aimed at; 2) have a meaning for the 

student; 3) allow him/her to begin the search for a solution; 4) be rich (in terms of 

mathematical and heuristic contents); 5) be possibly formulated within several 

conceptual ―frames‖ (Douady, 1986). 

The notion of ―open problem‖ was introduced at about the same time (Arsac et al., 

1988, Arsac & Mante, 2007). In comparison with the problem situation, the aim of 

an open problem is methodological rather than cognitive. The students are induced to 

implement processes of a scientific type, i.e. experimenting, formulate conjectures, 

test them and validate them. The problem must belong to a conceptual domain in 

which students are somewhat familiar with, the wording (statement) has to be short 

and induce neither a solution nor a solving method. 
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The French official curricula for junior high school (BOEN 2008) integrated recently 

− though without naming them − open problem and problem situation, which refer to 

two complementary sides of mathematical work: 

– in the case of an open problem the question is to find a genuine, personal solution, 

with one‘s own means, the general solution being out of reach; 

– in the case of a problem situation the question is, starting from a specific problem, 

to elaborate a more general knowledge (concept, process…) which is intended to 

be institutionalised, socially acknowledged and mastered by all. 

The notion of ―research narrative‖, which is explicitly linked with those of open 

problem and problem situation, appeared in France some twenty years ago (Bonafé et 

al., 2002). It involves asking the student to write an account of the thought processes 

he/she has undertaken in order to solve a given problem, pointing out his/her ideas, 

successes, failures, etc. The features of the problem are the same as for an open 

problem, but it has often several questions and the student must be able to start a 

research, test his/her results and validate them. And, if possible, different solutions 

need to be considered.  

Implementation in high school teachers‘ training in Blois 

Sessions on the folded square problem were organized with two groups of pre-

service teachers: a ―standard group‖ included 18 trainees in their first year of 

professional training and a ―special group‖ included 6 trainees who had not been 

appointed to a permanent post at the end of the normal training year. 

Besides this different context, the tasks given to the standard and special groups are 

quite the same. A material bi-colored square folded along its diagonal is used to 

explain the problem. The trainees have to compare both areas using different tools: 

software, spreadsheet, calculator, paper and pencil. They were asked to write a 

research narrative of their exploration and solution of the problem with the specific 

tool used and then to prepare a classroom session for their own students, to make 

explicit their mathematical aims and the material they would use with their students. 

The standard group 

The described session is a 3 hour lecture, part of a course focused on theoretical 

issues aiming at initiating the trainees to Brousseau‘s theory and the pedagogical use 

of open problems. They were also initiated to pedagogical uses of Dynamic 

Geometry Software (DGS) and spreadsheet. They generally mastered very well DGS 

but not spreadsheet, which is not a common tool for mathematics students at 

university. No particular mathematical framework was privileged and students had to 

use some specific artefacts to solve the problem. The 18 trainees were split into 5 

teams: 2 teams worked with Geogebra, 1 team with a spreadsheet, 1 team with a 

hand-held calculator and 1 team with paper and pencil. When they had completed 
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work, all the teams presented it to the others. After the presentations, they were 

asked to prepare a classroom session for their secondary students. 

Team with DGS. The task is very open and dependent on knowledge about the 

software. Normally, the problem must be handled a bit more in the geometric frame 

than with other tools. Students had indeed a very good knowledge of the software 

and they immediately solved the problem by linking it to the curriculum for grade 9. 

We can follow the methods from the narratives: 

- Drawing the folded square, linked with the area of both parts. The dragging point 

is point A' on the diagonal. 

- Drawing two curves in a Cartesian system (one representing the area of the blue 

triangle and the other the area of the white hexagon). The link between the point 

and the area is made by using the track mode (not locus). The intersection point is 

reached by approximation. 

Both teams indicated the objective of exploring the problem as an example of 

modelling. They retained that modelling and experimental approach in official 

documents must rely on the computer. These teams wanted to support students by 

giving them a rich environment favouring an exploration of the problem. They gave 

the same problem with the same instruction as that received during the course (for 

them the use of digital tools is not a problem for the high school students). In a 

second stage, they intended to work on the difference between exact and 

approximate values: the exact value controls the different results depending on the 

square size.  

Team with calculator. The team focused on an approximate resolution of the 

equation of two curves and followed this method: free hand drawing modelling the 

situation, where x is a side of the right angle in the folded triangle; observation that it 

is impossible to find an exact geometrical construction of the point equalling the two 

areas (hence they decided to approximate the result with a calculator); plotting 

curves representing the areas in a particular case; approximating the result with a 

table of values and using the calculator zoom; solving algebraically a quadratic 

equation to get the exact value. 

This team‘s objectives were using the calculator and writing out equations. They 

therefore used the activity to improve their students‘ knowledge of calculator. They 

retained the instrument for the course, using it to work graphically on the variation of 

two functions and the intersection points of curves.  

Team with spreadsheet. This team started the research with a bi-colour paper and 

modelling. Students chose the height of the blue triangle (AA‘/2) as a variable. After 

discussion, they agreed to make the values vary on a range equivalent to the 

diagonal. Then they used a spreadsheet to increment the variable with a given step 
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and calculated the areas of the blue triangle and white hexagon, and their ratio. An 

approximate value was reached when this ratio was 1. 

To determine objectives for the class, members of the team discussed sharply and did 

not agree, some wishing to continue with the spreadsheet, others finding no interest 

in this activity with the spreadsheet. 

Team paper-and-pencil. This team changed its name into Paper-and-Brain Team. 

They immediately solved the problem by using two general equations.  

Only junior high school teachers participated in this team (grades 7 and 8) and they 

concluded that the activity was too difficult for their students. They made a proposal 

for grade 10 students based on the resolution of a quadratic equation. They remained 

in a paper-and-pencil environment and did not plan to use software (the institutional 

pressure for using technologies is weaker on junior than on senior high school 

teachers). They spent time writing instructions for the students with no reference to 

an actual folding. 

The special group 

Each trainee received by mail an envelope containing a square sheet of paper and the 

task they had to perform. The trainees were isolated from each other and the 

exchanges took place only during the two sessions. They had to undertake a research 

of the different possible solving strategies, choosing two environments (paper and 

pencil; calculator; DGS; spreadsheet) and to write a research narrative. They also had 

to write a complete course for one of their secondary classes and really teach this 

course. They had to write down their work and present it to the group (the first 

session was mainly devoted to mathematical research and the second to the lesson). 

All trainees used a paper-and-pencil environment, which is not surprising. Calculator 

was only used by one trainee (approximate values were obtained with GeoGebra by 

visual adjustment of the areas, sometimes with the slider tool, in order to get better 

values); spreadsheets were not used at all. All trainees used the GeoGebra software 

for modelling the folding; no other dynamic geometry software was used. 

Only the two trainees who taught in senior high school used the software for solving 

the problem by considering intersections of function graphs. It seems that the 

syllabus plays a great role for these two trainees, since the senior high school 

curriculum emphasises functions and graphs. This link between teacher‘s research 

and topics he teaches at school also appeared with a grade 8 teacher who focused his 

research on geometrical proofs, which are of great importance at grade 8. 

Unsurprisingly, the tasks given to their students confirm this last point, since 

teachers care a lot about the subjects they have to teach. In spite of this obvious fact, 

a detail has to be mentioned: only the two senior high school teachers proposed a 

comparison of the areas to their students; all of the others changed the question into 
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―when are the areas equal?‖. It is a fact that the comparison of functions by means of 

graphic strategies is an important subject at grade 10. 

Conclusion 

In both French groups, the grade, or the teaching institution, in which a teacher 

teaches seems to influence not only the transposition of the problem for the students, 

but also his/her research when he/she solves a problem for himself. And this could be 

observed whether trainees knew that they had to set up a course for their students 

(special group) or not (standard group). 

The software chosen in the special group was still GeoGebra, one could think that 

there was in fact no choice of the software. This is linked with software currently 

used: the standard group is richer for DGS and especially GeoGebra. We explain this 

in this way: GeoGebra is a free software, both a dynamic and analytic geometry 

software which can even replace a calculator, and for that reason the training and 

school institutions possibly put the stress on it. But this does not explain why 

spreadsheet was left aside (maybe because of a lack of teachers‘ competences?). 

We also noted the importance of the artefact used during the session on the trainees‘ 

school planning: they stayed very close to the experience they lived during the 

training. This argues for repeating this kind of training sessions but changing the 

tools used by the teams. 

COMPARISON OF FRENCH AND MEXICAN SESSIONS 

There are a lot of similarities between teachers‘ training in France and Mexico. 

Obviously, we can first mention structural organization similarities: number of 

trainees in a course, duration of sessions, trainees teaching in a real class. There are 

also some pedagogical organization similarities, such as sharing courses into 

individual work, work by groups (even by pairs) and plenary sessions. These 

similarities show that the way to plan teachers‘ training is quite equivalent from a 

pedagogical point of view.  

The emphasis on the use of new technologies is another similarity. Obviously it 

relies on didactics and the interest for teaching mathematics, but we could also see an 

external pressure of society and more specifically curriculum demands. Nevertheless, 

spreadsheet seems to be left out in France which is not possible in Mexico because of 

the problem solving framework which demands to explore all solving possibilities. 

The main difference is clearly the role of real secondary classes. In France it appears 

that the level at which the trainees teach has a great influence on their behaviours 

and, in teachers‘ training, teaching at secondary level is one of the main aims 

(virtually for the standard group and really for the special group). In Mexico, real 

classes seem to be out of the training since there is no reference to them in problem 

solving sessions. Obviously this is not the case because one of the aims of the 

Mexican problem solving sessions is that teachers would be able to do the same 
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activities with their students. But this is not explicitly worked, contrary to French 

teachers‘ training. 

Another difference could be related to the difference in didactic frameworks 

reference. In France the trainees‘ work began with a material square whereas in 

Mexico the situation was modelled under the form of a geometrical diagram.  

CONCLUSION 

These examples from two different countries with different cultures and traditions 

about mathematics education show that in each of them the stress is put on different 

points: In Mexico solving strategies and associated scenarios or episodes, in France 

the influence of tools and implementation of the problem situation in a classroom. 

Both aspects are important for the training of mathematics teachers: On the one hand 

they must be prepared to understand, assess and support any solution proposed by 

their students, and on the other side they need to identify the contribution of the 

situation to the students‘ knowledge and consider how to bring it into play in a real 

class. We believe that the development of such cross studies can have an influence 

on the training of pre- and in-service teachers and finally help them to develop a 

more holistic view of teaching. 
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In our research we examine the forms of teaching found in three structurally 

different primary classrooms in Geneva (―ordinary‖ classes, specialized classes, 

and schools with classes dealing with children with personality and learning 

difficulties). The aim is to determine whether the ecology of the didactics in those 

three types of classes obstructs, even prevents, the achievement of certain didactical 

goals, in our case, the introduction of addition. 

Key-words: teaching practices, mathematic organizations (MO) and didactic 

organizations (DO), conditions and constraints 

INTRODUCTION 

In this paper, the comparative aspect on which we focus deals with groups of 

students, which share specific characteristics in primary school. We distinguish 

―ordinary‖ classes, specialized classes, and schools with classes dealing with 

children with personality and learning difficulties. One of the main aspects of the 

study is to determine if the teaching is dependent on the type of class structure. 

Indeed, we hypothesise that the institutional conditions and constraints particular to 

each of those three types of classes will have an impact in terms of didactical and 

mathematical organizations. ―It is in the classroom that we can best discover those 

conditions and constraints that make up the specific ecosystem in which the teacher 

has to handle knowledge‖ (Chevallard, 1989, p.62). In this research we are interested 

in the case of the introduction of addition in first year of primary school in Geneva. 

BACKGROUND 

Our investigation takes place in a primary school in Geneva where there is a policy 

of structural differentiation, which is defined by Doudin and Lafortune (2006) as the 

creation of various types of classes within the same school system. Each type is 

supposed to accommodate a certain profile of pupil defined principally by his school 

qualification, level and/or problem behaviour in class. In this research, we observed 

three ―ordinary‖ classes (OC), three specialized classes (SC) and three classes with 

children with difficulties with personality and learning (TC). 

One particularity of the French-speaking Swiss context is that there is a single 

common official set of pedagogical material for mathematics teaching, including 

text-books and files for students and a book for teachers with didactical 

commentaries. However, teachers in special education do not have to use those 

official documents, while it is more or less compulsory in ―ordinary‖ ones. We also 

know that teachers in special education usually have more liberties than in 
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―ordinary‖ education, which will necessary influence their practice. For example, 

they are neither obliged to follow the official curriculum nor to evaluate their pupils, 

through the official tests designed for ―ordinary‖ classes. 

METHODOLOGY AND CONSTRUCTION OF A TYPOLOGY OF TASKS 

For our research, we have collected scenarios from our 9 classes during a school 

year. We compared the time of effective teaching of addition during one year, the 

frequency of use of official documents and we analyzed the types of tasks and 

register of ostensive involved. These various elements allowed us to bring out the 

mathematic organizations and didactic organizations in each type of institutions (at 

the regional
[1]

 level). From those, we were able to define the MO and DO typical for 

each type of institution. 

To analyze each activity about addition proposed by teachers to their pupils during 

one year, we needed to construct a typology of tasks. This allowed us to categorized 

all the activities according to the types of tasks implied.  

Our research focuses on teaching practices. This is why we use the ATD – the 

anthropological theory of the didactic (Chevallard, 1992) – to analyze praxeologies, 

which are available in one particular type of classes. Therefore, we consider those 

three types of classes as three different institutions that offer us the possibility of 

systemic analyses. A ―praxeology‖ is the basic unit into which one can analyze 

human action at large. In our research we started by a categorization of mathematical 

praxeologies. This offers tools to analyze institutional practices instead of one single 

person practice. Any praxeology defines itself by the following quadruplet: 

[T/τ/θ/Θ]. This grouping defines a system of types of task (T) to carry out with a 

technique (τ) that must be validated by a technology (θ), which requires a theoretical 

justification (Θ). The first block [T/τ] defines a know-how which is a matter for the 

practice (praxis) while the second block [θ/Θ] is from a reasoned speech (logos). To 

study teacher‘s work, the ATD proposes two interdependent components which are 

mathematical organizations (MO) and didactic organizations (DO). It allows us to 

examine teachers‘ work by means of two questions ―what does he teach?‖ and ―how 

does he teach it?‖ As mentioned by Chevallard, the analysis of these two components 

cannot be independently undertaken because of their co-determination. 

The tools offered by this theory allow us to bring out the mathematical and didactical 

organizations set up by the teachers. We thus are interested in the block "praxis", 

defined by Chevallard, that focuses on the types of tasks and associated techniques . 

For this purpose we introduce a typology of tasks with two levels of specification 

that we explain below. 

The numerical calculus 

At first, we look at the numerical calculus involved in each activity proposed to 

pupils. In an on-line addition of type a + b = c, we distinguish three differents 
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possibilities to code the activity: 1) a and b are given and c is to be found; 2) a (resp. 

b) and c are given and b (resp. a) are to be found; 3) Only c is given and some or all 

possibilities for a and b are to be found (additive decomposition). We also 

differentiate with the symbol (+) and (–) whether the activity involves an addition or 

a subtraction
[2]

. 

Below we present the coding of the various possibilities we distinguished for the 

analysis of the activities proposed in the classes: 

 

Figure 6 : First level of specification: numerical calculus 

The registers of ostensive 

Then, we added a second level of specification. Indeed, our first categories did not 

allow us to differentiate the coding of certain activities collected, which were 

however very different. We used the registers of ostensive introduced by Bosch and 

Chevallard (1999). Ostensive objects are defined as handleable objects which have a 

handleable reality by the subject. Non ostensive objects, on the contrary, are neither 

"seen", nor "perceived", nor "heard". They need ostensive objects to appear. For 

example, the notion of addition (non ostensive), needs ostensive objects (such as the 

manipulation of tokens or codes of type a + b = c) to emerge. 

We distinguished six different registers of ostensive, that we present in figure 2 

below: 

 

Figure 2: Third level of specification: registers of ostensive 
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The first register of ostensive corresponds to a task which involves an effective 

situation involving pupils. This task allows a material validation by manipulation 

(counting collections of concrete objects representing quantities). In the second 

register of ostensive, the task represents a fictitious situation where the manipulation 

is no longer possible, but the result can be reached by counting collections of 

figurative objects. The register of ostensive 3a represents, through a pictorial 

representation, a fictitious situation, yet the manipulation is not possible any more. 

The pupils have to reconstruct mentally the operations to be made, but the image 

facilitates this organization. The registers of ostensive 3b and 3c correspond to 

written and oral problems where a fictitious situation is described through writing or 

oral speech. The pupils have to reconstruct mentally the operations to be made, but 

there is no image anymore to facilitate the understanding of the described situation. 

Finally, in the registers of ostensive 4a and 4b, there is no longer any reference 

situation, this is purely formal, only written or oral numerical operations are 

conveyed. 

This second level of categorization informs us about a hierarchy in possible 

techniques to solve the types of tasks proposed previously in figure 1. We present, 

below, the analyses we developed on the basis of this typology of tasks. 

INVESTIGATION 

For the nine scenarios of teaching, we established a set of data corresponding to the 

time of effective teaching about addition during one year (DO), the frequency of use 

of official documents proposed in Geneva (DO) and an analysis of the types of tasks 

(MO) and register of ostensive involved during one year of teaching (DO). Those 

different data bring to light the mathematical and didactic organizations set up about 

the teaching of addition by the nine teachers.  

Time of effective teaching addition 

We begin with the graph below which indicates for every class the time (in minutes) 

that was assigned to the teaching of addition during the year. 

 

 

 

Graph 1: Time (in minutes) which was assigned to the teaching of addition during one 

year in the 9 classes 

OC 
SC 

TC 
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First of all, we notice a clear disparity within the nine classes. However, the values 

are more homogeneous in the OCs. This fact can be related to the strong constraint of 

the program, which constrains teachers in the ordinary classes. In the case of the 

SCs, one of the teachers dedicated a particularly low time to the teaching of addition. 

In fact, this teacher has chosen to interrupt her teaching concerning addition in the 

course of the year. Indeed, she considered this notion too complex for the only pupil 

of the class for whom the introduction of addition was appropriate. Even if this case 

is extreme, it shows that the teachers of the SCs are not forced, unlike the teachers in 

the ―ordinary‖ classes, to follow the official program. Concerning the two other 

classes, the values indicate a slight overinvestment with respect to ―addition‖ 

compared to the OCs‘ average. This seems to be due to the importance of the 

numerical domain in the specialized context, as several research works have already 

indicated (Conne, 2003, Cherel & Giroux, 2002). For the three classes of the TC‘s 

institution, we notice two very low values and a very high value (in fact the highest 

of all 9), in a class, where the teacher has chosen to teach almost only addition in 

mathematics over the whole year. In the two other classes, the teachers teach all 

mathematical modules during the year and consequently devote a more restricted 

time to work on addition.  

Frequency of use of official set of pedagogical material 

The following graphs represent the use of the official pedagogical material by the 

teachers of the three types of institutions OC, SC and TC: 

 

 

 

 
 ….. official set of pedagogical material 

 ….. other resources 

 ….. Common session (device of research)
[3] 

Graph 2: Use of the official pedagogical material by the teachers of the three types of 

institutions OC, SC and TC 

In the three OCs, we notice homogeneous scenarios with a net tendency for teachers 

to use extensively the official pedagogical materials. This fact is not surprising 

considering the strong constraint that represent those documents. On the contrary, 

OC 

SC 

TC 
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teachers of the three SCs use little, if at all, the official material. In fact, these 

teachers do not even employ replacement textbooks , but dig into a reserve of 

activities that they accumulated over the years. Therefore they  are more involved in 

the process of didactical transposition (Chevallard, 1991) through a necessary 

adptation of the knowledge to the specificities of their pupils. This work is normally 

executed by the noosphere and thus demands a reflection on the contents of an upper 

level. 

Analysis of types of tasks  

Let us look in what follows the distribution of the types of tasks T1, T2 and T3 

during the year of our observations in each of the nine classes: 

 

 

 

Graph 2 : Distribution (in percentages) of the types of tasks T1+, T2+ and T3+ during 

one year
[4]

 

This graph shows homogeneity within ordinary classes. We note a distribution more 

or less balanced by the three types of tasks, with however a majority of activities of 

type T1, then T3 and T2. In the specialized classes, homogeneity is also noticed. 

However, there is, in the three classes, a substantial overinvestment in type T1 tasks 

to the detriment of the two other. This result is certainly due, among other factors, to 

the fact that teachers do not use the official material or any other textbook, and 

implies a "thoughtful" progression of the content of teaching. On the other hand, for 

the TCs‘ institution, no homogeneity is noticed between the three classes. The first 

one gets closer to the functioning of the "ordinary" classes, the second to the 

specialized classes and the last one has a functioning rather original. It is the only 

class, where type T3 tasks are the most represented. 

Analysis of registers of ostensive 

Finally, let us look at the distribution of the registers of ostensive during the year of 

our observations of the nine classes (graph 3): 

TC OC SC 
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Graph 3 : Distribution (in percentages) of the registers of ostensive during one year 

Again this graph indicates homogeneity within the OCs that we can attribute to the 

use of the official pedagogical material by the teachers and to the strong constraint of 

the program. A certain variety of registers of ostensive is represented in these three 

classes with, however, a majority of activities involving the register of ostensive 4a. 

The techniques of calculation, even counting, are thus facilitated, even if this is 

contrary to the fact that at the end of the primary school such strategies of 

―enumeration‖ should be overcome. In the specialized classes a "certain" 

homogeneity is noticed, because the three teachers chose to introduce a large number 

of "formalized" activities and the register of ostensive 1 (allowing the counting of 

collections of concrete objects) is absent. In the TCs, we notice again three different 

scenarios, representative of a large heterogeneity in these places. The first class has 

results close to the OCs‘ and the second close to the SCs‘ . 

CONCLUSION 

Our various analyses quickly presented above show that the different constraints, 

which weigh on the three types of institutions are not the same and engender the 

activation of different praxeologies. The teachers of the "ordinary" classes are 

confronted with strong constraints such as the use of the official pedagogical 

material and the "strict" follow-up of the proposed program. This results in relatively 

homogeneous MO and DO in this institution, with a large variety of different types 

of tasks relative to addition and also a variety of registers of ostensive.  

In specialized classes, the constraints are numerous
[5]

 and come along, according to 

the classes, with more "local" constraints such as the behavior disorders of pupils or 

school heterogeneousness of the classes. The activated praxeologies are thus more or 

less homogeneous with, in particular, a massive accent on activities "formalizing" 

and implying essentially the type of tasks T1. This practice seems to be the result of 

the fact that teachers do not use reference textbooks. So teachers propose activities 

"valued" by numerous actors of the school, even the more general society, and 

OC SC TC 
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overinvest the numerical domain (of which ―addition‖ is part) at the expense of the 

geometrical domain or of measure. Furthermore, the fact that specialized classes are 

located in the same building as "ordinary" classes occasion a certain connection to 

the "ordinary norm" and ―pressure of reinstatement‖ of pupils in the "ordinary" 

network, which influences the choices of MO and DO. In this case, we can notice a 

preference for the type of tasks T1 and registers of ostensive 4a, with a lot of 

―formalized‖ activities. In the interview we had with the teachers, one of the three 

specialized teachers discussed proposing a large number of "formal" activities to his 

pupils to prepare them for a possible reinstatement in the ―ordinary‖ circuit. 

The fact that the TC obtained heterogeneous results can be explained by the large 

autonomy of the teachers in this institution. They can focus on more ―local‖ 

constraints to activate their praxeologies, which results in more varied cases. 

Our study showed that the differences in teaching in ―ordinaries‖ classes, specialized 

classes, and schools with classes dealing with children with troubles in personality 

and learning can be to a certain point explained by the differences in the constraints 

that weigh on these 3 types of institutions. Our work helped at explaining this fact 

and sorted out the different effects. 

The activated praxeologies thus depend on the conditions and on the institutional 

constraints, which weigh on the teachers of every type of institutions. It stands out 

from this research work that the didactic ecology in the SCs‘ institution may not be 

optimal and may give rise to scenarios of repetitive and impoverished teaching, 

which do not coincide with the initial intention to introduce addition. So, the teachers 

who are due to have a more active role in the process of didactic transposition are not 

equipped didactically to adapt their practice. On theother hand, the teachers of the 

TC‘s institution have a larger space of freedom that explains why they can focus on 

the more particular context of their class (local constraints).  

NOTES 

1. Concerning more particularly the study of the OM, several levels are distinguished in the TAD 

(punctual, local, regional and global). The regional organization corresponds to a whole sector of 

the mathematics, as for example the notion of arithmetic operation represented by the sign + or - 

(Chevallard, 2002). 

2. In our whole research, we also took into account if the unknown was a (initial value) or b 

(Vergnaud, 1981). However, we do not present these results in this article, because they bring few 

significant elements. 

3. Session which we do not discuss in this article. 

4. We do not consider the subtractive types of tasks. Indeed, during the first introductory year of 

addition, no subtractive activity is proposed in the official pedagogical material. However, we 

noticed that only the classes of the special education (SC and TC) proposed subtractions during the 

year of our collection of data. 
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5. For a more detailed analysis of the constraints appropriate for every studied type of institutions, 

refer to Maréchal (2010). 
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The case study reported in this paper investigates whether there is a difference in the 

way high-achieving and low-achieving students construct mathematical knowledge 

and, if there is, how it might look. Furthermore, it investigates possible differences in 

metacognitive actions between these groups. For this, we study how pairs of high-

achieving and pairs of low-achieving students deal with a problem-solving task 

about the divisibility of sums, using the theory of abstraction in context and a 

category scheme for metacognitive activities. This paper is part of a larger ongoing 

project that compares knowledge construction of high-achieving and low-achieving 

students using different tasks. 

INTRODUCTION 

When it comes to understanding why some students are low-achieving in 

mathematics there are many different approaches to the problem, including a focus 

on basic arithmetical difficulties often discussed in the context of dyscalculia (cf. 

Moser Opitz, 2007, for an overview), emotional aspects like, in the extreme case, 

math anxiety (Ashcraft & Moore, 2009) or motivational aspects like self-esteem 

(Pendlington, 2006). Research also indicates metacognitive actions to be very 

influential in mathematics achievement (Cohors-Fresenborg at al., 2010; Wang, 

Haertel & Walberg, 1993). Other factors like social class or cultural background play 

an important role, too (Cooper & Dunne, 2000). 

We restrict ourselves to looking at the process of knowledge construction while 

separately taking metacognitive actions into account as a complementary view. This 

approach is done because it is an open question whether there are structural 

differences in the way low-achievers and high-achievers construct mathematical 

knowledge and if there are whether this is mainly due to differences in metacognition 

as indicated in (Cohors-Fresenborg et al., 2010). 

THEORETICAL BACKGROUND 

Abstraction in Context 

The theory of abstraction in context (Hershkowitz, Schwarz, & Dreyfus, 2001; 

Dreyfus, Hershkowitz, & Schwarz, 2001), rooted within activity theory, is a model 

for the process of knowledge construction that has been applied to low-achieving 

students (Schäfer, 2009) and processes of knowledge construction that were only 

partially correct (Ron, Dreyfus, & Hershowitz, 2006). In these studies the main 
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benefit over other theories concerning epistemic processes is that the epistemic 

actions defined below are observable actions – usually verbal – that allow insight 

into the internal process of abstraction. 

Defining abstraction as ―an activity of vertically reorganising previously constructed 

mathematical knowledge into a new structure‖, Dreyfus et al. (2001) propose that the 

process of abstraction consists of three phases. In the first phase a need for a new 

construct arises, followed by a sequence of epistemic actions in an actual 

construction phase. Finally there can be a phase of consolidation of the construct. 

In the construction phase three epistemic actions can be found. Recognising existing 

mathematical structures, building-with those structures, e.g., combining recognised 

artefacts to justify a particular claim, and constructing a new structure. These 

epistemic actions are nested, i.e., constructing incorporates building-with and 

recognising actions, and building-with incorporates recognising actions. 

Layers of relation to objects 

One of the directions in which activity theory has been developed is given by 

Oerter‘s (1982) theory of action, which we will use to refine the three epistemic 

actions. Oerter uses the notion of action as the foundation of this theory and 

postulates that any interplay between individual and environment is only possible 

through actions. These actions, whether they are mental actions or physical actions, 

are always done with respect to some object, which may be physical or mental. An 

individual‘s relationship to objects may only be changed by performing actions. 

Oerter describes three different layers of relation to an object, which we summarise 

briefly in the following table. 

Layer Description 

Singular Object is only existent in the course of the action 

Contextual Object is discernible, but only inside a specific 

context of use 

Formal The formal structure of the object without its use 

Table 1: Oerter‘s Layers of Relations to Objects (Oerter, 1982, p. 114) 

The singular layer is defined as the layer where subject and object cannot be 

distinguished by actions. Oerter gives the example of a child that uses a stick as a 

―sword‖ in playing knights. If the object ―sword‖ is not existent anymore when the 

child has finished playing, then the object is only existent in the course of the action. 

If this playing knights is repeated more often and done with other children, the 

―sword‖ will exist beyond the actual situation, but still inside the contextual layer of 

play. The reader should be warned that the notion of contextual layer refers to similar 

situations and is different from the context in the sense of abstraction in a context 

which includes personal history or the classroom setting for example. Thus, we 
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always state explicitly which notion of context is meant in the following. The 

abstract layer is the equivalence class of all object uses which means that only the 

abstract formal structure of the object is left, e.g. the mathematical definition of a 

triangle is located here. For further details on Oerter‘s framework and the interplay 

with the theory of abstraction in context we refer to the considerations in (Schäfer, 

2009). 

Metacognition 

The concept of metacognition, introduced by Flavell (1976), refers to the knowledge, 

active monitoring and controlling by the individual of her or his cognitive activities. 

As is shown by Schneider and Artelt‘s (2010) recent overview of research in 

mathematics education and psychology on metacognition, the concept has developed 

much since then. We follow the approach of the Osnabrück school (Cohors-

Fresenborg et al., 2010; Cohors-Fresenborg & Kaune, 2007) and study the concrete 

metacognitive actions of participants in mathematics learning processes. They see 

metacognitive actions as a triple with the components planning, monitoring and 

reflecting. Planning refers to actions like organising or anticipating, monitoring 

includes regulating, verifying and checking, and reflecting comprises evaluating, 

assessing and judging. Cohors-Fresenborg and Kaune (2007) suggest the additional 

component of discursive actions for the analysis, but we restrict ourselves to the 

three principal components. Based on these components Cohors-Freseborg and 

Kaune (2007) empirically developed a categorisation scheme for metacognitive and 

discourse actions. Although this scheme was developed for classroom situations in 

which algebraic questions are discussed on the basis of a discursive classroom 

culture, it is applicable to our situation as well, since the metacognitive actions 

themselves should not differ as long as the setting gives room for discourse.  

We choose this framework for our metacognitive analysis, because it relies on an 

action perspective that is very fitting with Oerter‘s approach to express everything in 

terms of actions.  

On the interplay of metacognition and abstraction in context 

It is not our aim to have a unified theory of abstraction in context with epistemic and 

metacognitive actions, because some metacognitive actions can be part of the 

epistemic actions and the need. We would rather see our approach as looking at the 

same problem with different lenses in order to contrast and compare the findings 

with different theoretical perspectives (Prediger, Bikner-Ahsbahs & Arzarello, 

2008). 

Working environment: Divisibility of sums 

The main task described below is concerned with the question whether, in a set of k 

natural numbers, there can always be found n numbers, such that their sum is 

divisible by n. This kind of question has been used in problem solving tasks for some 
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time now, e.g. it was the problem of the week no. 80 from Harvard Physics 

Department (2004), which also contains a general solution with proof. 

Depending on the numbers n and k the solutions of the problem can be very different. 

We restrict to the two cases which we used. Case 1 is k=13 and n=4, which was 

given to the low-achievers, case 2 for the high-achievers was k=17 and n=5. Bardy 

(2007, p. 72-91) used the same problem for a case study [1] on gifted students in 

primary school. 

In both cases the fundamental insight required is that is does not matter which 

concrete number is given in the set of k numbers, but only the remainders matter. 

After restricting to the remainders each case is solved by arguing how many numbers 

there have to be in each remainder class. A priori we expect to find the constructs 

―residue class‖ and ―Dirichlet‘s box principle‖. 

It may seem that case 1 is more complicated because recognising the different 

remainder classes seems more obvious with respect to five, but that does not take 

into account the effort of handling an additional number in the subset. On the other 

hand in case 2 the combinatorics for the residue classes are more complicated and 

involve a case-by-case analysis. 

The notions ―low-achieving‖ and ―high-achieving‖ 

The school system in Bremen comprises the Gymnasium and two forms of secondary 

school (Realschule and Hauptschule). Each type has its own curricula, final exams, 

lessons per week and years to exam. While 15-year old students in the Gymnasium 

perform above the international average in tests like PISA 2003, the students in the 

Hauptschule perform below average (with over 50% at risk). The difference in 

performance between Hauptschule and Gymnasium students is equivalent to a 

difference in 3-4 grades on the average (PISA Konsortium Deutschland, 2005).  

For our purpose we state that those children in Hauptschule are low-achieving whose 

achievement in school is significantly below their peers and who have been 

identified by school tests as in need of additional support in mathematics. On the 

other hand, we state that students in Gymnasium who achieve significantly better in 

mathematics than their peers and who successfully take part in mathematics problem 

solving competitions are high-achieving. 

RESEARCH QUESTIONS 

We are interested in answering the following questions: 

1. Are there different patterns in the use of epistemic actions between high-achievers 

and low-achievers? 

2. Are there different patterns in the use of metacognitive actions between high-

achievers and low-achievers? 
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METHODOLOGY AND DESIGN 

The students are presented the task on paper in form of a dialog between two 

children. One fictional child named Kathy says she had found out about an 

interesting problem in a riddle magazine and goes on (translation of German original 

for the low-achievers; the high-achievers had the same text with the parameters 5 and 

17 and the different example sequence (22, 7, 2, 4, 6, 6, 9, 18, 6, 12, 17, 6, 11, 6, 20, 

5, 16). 

Kathy: You take 13 natural numbers, e.g., 7, 2, 4, 5, 5, 9, 14, 5, 10, 1, 5, 11, 3. 

Lars:   Ok, I understood. And what is so interesting about them? 

Kathy: Within those 13 numbers you can always find 4 numbers, whose sum is 

divisible by 4! 

Task: 

1. Verify Kathy‘s claim in her example. Find as many subsequences as possible of 4 

numbers whose sum is divisible by 4. 

2. Is it really always true what Kathy claims? 

The students are asked to discuss these problems with each other and write down a 

solution. They are given no additional information or help, with the exception of 

certain prompts from a field manual that should be given to the low-achieving 

students at certain times to ensure that they recognise certain phenomena, e.g., one of 

the authors might ask the students to explicitly compare two subsequences they 

found in order to help them recognise the fact that it is possible to replace a number 

with another representative of the same equivalence class without contravening 

divisibility. The task was mainly chosen because it does not depend on special 

knowledge other than basic arithmetic skills (other tasks are planned in future). No 

such prompts are provided for the high-achievers. The whole process is then 

videotaped and transcribed. The data is analysed in two separate turns: Each 

utterance in the transcript is coded according to the coding guidelines for the 

metacognitive actions as described in Cohors-Fresenborg & Kaune (2007). 

Separately, the analysis according to the RBC-model was done in a sequence 

analysis using an interpretative approach to the text utilising the theory of speech 

acts (cf. Bikner-Ahsbahs, 2008).  

FINDINGS 

Our case study was conducted with 2 pairs of high-achieving grade 6 students in 

Gymnasium and 2 pairs of low-achieving grade 9 students in Hauptschule meeting 

the definition. The difference in grades is supposed to roughly compensate for the 

difference between the school types as explained above. Due to space limitations we 

can only give a short summary here. 
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The case of Alice and Betty 

Alice and Betty [2] are in the low-achievers group. They look for subsequences for 

question 1 more or less by trial and error and do not make much use of additional 

structure besides using the sum of the subsequences for ordering and comparing, 

which they talk about explicitly but use rarely. After a prompt by the interviewer 

they realize that certain numbers belong to the same remainder class, but it seems 

that they do not come to a more concrete understanding of the concept. Other than 

stating that they would need to find other examples, since one example is no proof 

and guessing that the product of the numbers in the subsequence might be involved, 

they do not come to arguments for question 2.  

The case of Carl and Dan 

Carl and Dan are also in the low-achievers group. For question 1 they struggle with 

the formulation of the task where Carl initially understands ―subsequences of four 

numbers‖ as ―four subsequences of four numbers‖, which is clarified by Dan and the 

interviewer, but 30 minutes later Dan shows the same misunderstanding. Due to a 

prompt by the interviewer (―in a subsequence a 5 can be replaced by 1 without 

changing the divisibility of the sum‖) they are able to use the concept of remainder 

class and Dan even finds the general definition of equivalence. Although they make 

some considerations on the divisibility of even and odd numbers, they do not achieve 

a proof by themselves. 

The case of Eric and Fred 

Eric and Fred are high-achievers. They work separately for most of the time while 

still informing each other about their respective findings and apply some strategies in 

finding examples including Eric doing a systematic case-by-case testing for 

subsequences of length 4, which he stops at some point. Fred tries to assemble a 

counter example and realises that it is possible to restrict the numbers from 1 till 9 

for the sequence. Eric builds on this and introduces remainder classes. This 

restriction, in combination with Fred‘s combinatorial considerations on the way to 

construct a counter example, leads to the proof given above in the mathematical 

considerations. 

The case of Greg and Hank 

Greg and Hank are high-achieving students. In answering question one they use 

many different strategies to find subsequences, most prominently a replacement 

strategy where they start with a given subsequence and replace numbers in it such 

that the sum remains a multiple of 5. They explicitly call these ―rules‖ and give 

example subsequences with rules to modify them. Working with those rules they find 

the concept of remainder classes, writing down the first ten elements of each class. 

Restricting to the representatives 1 to 5 they give the proof outlined in the 

mathematical considerations. 
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Similarities and differences in the RBC-model 

For all groups we notice many instances of recognising and building-with actions, 

but constructing mainly occurs among the high-achievers. Regarding the quantity of 

epistemic actions we note that the high-achievers perform a greater number of such 

actions in a fixed time span than the low-achievers. But one should keep in mind that 

although we tried to compensate by using smaller numbers in the task for the low-

achievers, they spend much time on arithmetical actions, mainly adding the numbers, 

leaving less time for epistemic actions. Most of the epistemic actions happen at the 

situational or contextual layer in all groups and we could reconstruct three common 

contexts in the sense of Oerter‘s theory of action among the groups: 

1. Arithmetics, in which the sums of the subsequences are calculated and some 

important properties can be recognised, for instance the invariance of the 

divisibility under replacement of a number by another representative of the same 

remainder class. 

2. Combinatorics, in which possible subsequences are explored, e.g., how many 

pairs of numbers sum up to 12, or how many numbers have to be at least in each 

remainder class. 

3. Understanding of the task. Some recognition actions are about what the task is 

and what it is not, i.e., how many subsequences must be found, how to deal with 

duplicate numbers etc. Since these actions are on-going for a longer period of 

time (a couple of minutes) and in all the groups, we consider them contextual 

rather than situational. 

The low-achievers spend most of their time on situational epistemic actions or 

epistemic actions on the contextual layer regarding arithmetics or understanding the 

task and show very little formal actions, the high-achievers show more formal 

actions and also are less occupied with the arithmetical contextual layer. 

We want to focus on a specific example of epistemic action which illustrates the 

difference between low-achievers and high-achievers. At some point the students in 

every group have found a subsequence of n identical numbers, but this does not lead 

to the same kind of epistemic actions. When confronted with the specific case of the 

number six while dealing with question 1, Greg and Hank immediately contextually 

recognise that this is n times six, i.e., multiplication and thus, divisible by n. Later 

when they deal with question 2 they recognise this case on the formal layer. 

Hank: So, if you got five of one [number], you can divide it by five in any case. 

Eric and Fred deal with the example of 6, 6, 6, 6, 6 in no special way in question 1. 

They just treat it as an example like the others, but in dealing with question two, they 

recognize on the formal layer that five times an identical number is divisible by five. 

For the low-achievers this piece of knowledge has probably not previously been 

constructed in a way that they could recognise it. In the case of Carl and Dan, they 
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construct multiple examples of sequences of identical numbers and Dan calculates 

the sum of four of them to check, whether they are divisible by four. This means that 

they are building-with the idea that the sum of four identical numbers is divisible by 

four contextually and seem to be unable to recognise the structure. Alice and Betty 

do not find the example of 5, 5, 5, 5 in working on the first question. When they 

work on the second question they follow a prompt by the interviewer to look at 

sequences containing only the numbers 1 to 4 first. Betty suggests to look at 

sequences containing only one number, for example the number 1. 

Alice: Yes, then I can take – then – I can take four times one. Yes, four. 

Then they try four times two and four times three by calculating the sum and 

checking whether it is a multiple of four. In the case of four times four she says 

Alice: … and four times four is – works anyway. 

which may indicate that she has recognised some structure here. But as the episode 

shows, they do not recognise on the formal layer, but rather recognise divisibility of 

each result in the first three examples in the contextual layer. 

There is also a difference between high-achievers and low-achievers regarding 

falsely recognising a mathematical property. This happens for all groups, but the 

difference is in the way it evolves: In the case of the high-achievers they drop those 

ideas when they find a counterexample, the low-achievers are usually willing to keep 

them for at least another counterexample. 

In summary, we uncover several differences regarding Oerter‘s layers between the 

groups, e.g., the high-achievers may ―easily‖ recognise a formal property, while low-

achievers have to built-with it contextually. We do not find a more systematic pattern 

in our cases. 

Similarities and differences in the metacognitive actions 

All four groups use many different metacognitive actions in all of the three 

components, but there are differences in the use of certain subcategories. No actions 

occur in the subcategories related to different representations, which is due to the 

fact that all groups solely used the representation by numbers. Note, that the letter 

and the number in curly brackets refer to the metacognitive actions in the scheme of 

Cohors-Fresenborg and Kaune  (2007). 

Regarding the planning component there are few differences between the two 

groups, but in the monitoring and reflecting component, we see differences. The 

high-achievers reflect on the notions used {R1} and change their point of view 

numerous times {R4}, the low achievers do not reflect on the notions and change the 

point of view only in one case. But even for those metacognitive actions that are 

common to both groups there are differences in quality and use. Those differences 

can be described by three themes, which we illustrate by means of specific examples.  
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One of the themes is the broadness of the content to which the metacognitive 

strategies are applied.  For example in the monitoring of deficits in understanding or 

planning {M5, M6}, the low-achievers only apply this to each other‘s direct actions 

and utterances or in understanding the questions. 

Dan: What does she claim then? [regarding Kathy in question 1] 

In contrast, the high-achievers also monitor with regard to the purpose of certain 

steps or intermediate results. 

Eric: What do we get out of it, when we know how many groups there are? 

The second theme concerns the interplay of metacognitive actions. All groups 

actively search for divisible subsequences and monitor their actions with respect to 

the goals {M7}, but the low-achievers mainly utilise calculating monitoring 

strategies for this {M1}, while the high-achievers plan in advance {P2, P3}, e.g., 

Eric fixes three numbers, states possible numbers to be added in general and controls 

which of these numbers are occurring in the example and thus allowed.  

The last theme relates to differences in the perseverance of metacognitive actions. 

While high-achievers and low-achievers alike monitor their actions with respect to 

content and goals {M7}, the low-achievers seem unable to maintain the level of 

monitoring all the time, e.g., both groups of low-achievers at first calculate the total 

sum of a sequence of 13 identical numbers, when working on question 2, instead of 

calculating the sum of only 4 numbers. The high-achievers also study the example of 

sequences where each number is identical, but correctly use only partial sums.  

In summary, our cases indicate a difference between the groups with regard to 

metacognition, but more about the quality than about simple occurrences.  

SUMMARY AND OUTLOOK 

The above analysis indicates that it is worthwhile comparing the processes of 

knowledge construction between low-achievers and high-achievers. In the cases 

studied there seem to be great differences already in the recognising actions, which 

then in turn affect the possibility of building-with and constructing due to the nested 

nature of the epistemic actions. The role of contextual actions and the different 

themes in using metacognitive actions also seem to be influential. But, as was 

mentioned above, the arithmetical side of the problem was considerably more time-

consuming and therefore probably harder for the low-achievers. Since this may 

account for some of the differences between the groups regarding the process of 

knowledge construction, we are in the middle of performing two additional tasks – 

one related to graph theory and another to geometry – with the students to see how 

much is related to these arithmetical problems. 
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NOTES 

1. The question and the transcript itself is not part in the book. We thank Peter Bardy for sharing 

them with us. 

2. The names of the participating children have been replaced by arbitrary chosen names. 
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CONCEPTUAL METAPHORS AND 

―GRUNDVORSTELLUNGEN‖: A CASE OF CONVERGENCE?   
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We compare the Metaphor Approach to mathematics teaching and learning and the 

Basic Ideas (―Grundvorstellungen‖) approach of the German school of didactics of 

mathematics. We find close connections as well as some differences: ―Grundvor-

stellungen‖ tend to be more ―top-down‖ from the student‘s viewpoint than 

metaphors, which operate in a more ―bottom-up‖ and ―poietic‖ (concept 

generating) ways. 

Keywords: Metaphor, Basic Ideas, Grundvorstellungen, fractions, stochastic 

thinking.  

INTRODUCTION  

In this paper we compare two theoretical approaches to the didactics of mathematics, 

which have evolved independently, in different periods of time, although they 

address the same didactical problems in closely related ways. They could be 

described as the ―Basic Ideas Approach‖ and the ―Metaphor Approach‖. Here ―Basic 

Ideas‖ (even better, ―Basic Notions‖) is an approximate English rendering of the 

German ―Grundvorstellungen‖ (vom Hofe, 1998), which alludes to the basic ways 

we imagine or represent something rather abstract to ourselves. ―Metaphor‖ means in 

fact ―Conceptual Metaphor‖ in the sense of Lakoff and Nöðez (2000).  

Although metaphors can be traced back to Aristotle‘s Poietic, the cognitive and 

didactical role of (conceptual) metaphors in mathematics has been only recently and 

progressively recognized (English, 1997; Lakoff & Núñez, 2000; Presmeg, 1997;  

Sfard, 1997; Soto-Andrade, 2006, 2007). On the other hand, the origin of the 

―Grundvorstellungen‖ approach, developed by the German school of didactics of 

mathematics over more than two centuries  - see vom Hofe (1995, 1998) for a 

detailed account - as a means of grasping and making sense of abstract mathematical 

concepts, may be traced back to Euler, who already in 1766 interpreted negative 

numbers as debts, pointing out that ―to take away a debt amounts to make a gift‖ (v. 

Hofe, 1995, p. 19). German didacticians, however, do not mention metaphors and 

researchers working on the metaphor approach have completely ignored the 

―Grundvorstellungen approach‖, perhaps because ―Metapher‖ in everyday German is 

typically understood as a rhetorical device and contributions of the German school, 

mostly written in German, were scarcely known outside Germany, until vom Hofe‘s 

paper on the generation of basic ideas and individual images (vom Hofe, 1998).  
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In what follows, after reviewing the main ingredients of the metaphor and   

‗Grundvorstellungen‖ approaches, we argue that conceptual metaphors, in the sense 

of Lakoff and Nöðez (2000), play essentially the same cognitive role as 

―Grundvorstellungen‖ in vom Hofe (1995, 1998), although their didactic 

implementation may differ.  We support our claim by comparing concrete examples 

of both approaches, taken from the literature and from our own teaching experience. 

We further discuss the ‗poietic role‘ of both Metaphors and ―Grundvorstellungen‖.   

THEORETICAL FRAMEWORK 

In what follows, we adhere mainly to the theoretical framework laid by Presmeg 

(1997), Sfard (1997) and Lakoff & Nöðez (2000) for metaphors, Breidenbach 

(1967),      Oehl (1967),   Griesel (1971),  vom Hofe (1995, 1998, 2003) and  

Prediger (2008) for Grundvorstellungen. 

Nature and Role of Metaphor 

Metaphors are not just rhetorical devices, but powerful cognitive tools that help us to 

build or grasp new concepts, as well as solving problems in efficient and friendly 

ways (Lakoff & Nöðez, 2000; Soto-Andrade, 2006, 2007). In the literature, often 

―metaphor‖ means   ―representation‖, ―analogy‖, ―model‖, ―image‖, etc., but we 

intend here to be more precise, as in the diagram in Fig. 1, where metaphors ―go up‖, 

representations  ―go down‖ and analogies, ―go horizontally‖ both ways.  

  

 

 

 

 

 

 

 

Figure 1. A spatial metaphor for metaphors, representations and analogies. 

Here analogy means ―simile‖ (an explicit comparison between two different things), 

symmetric in nature, and it is not an umbrella concept embracing metaphors, 

representations, similes, etc. So our viewpoint is closer to Sfard‘s (1997) than to 

Presmeg‘s (1997).  

Target domain:  

higher, more abstract 

Source domain: 

down-to-earth 
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Example: Metaphors for multiplication 

Most primary teachers are well acquainted with the ―area metaphor‖ for the product, 

but somewhat less with the ―grafting metaphor‖ (Soto-Andrade, 2006), illustrated 

below in Fig. 2, where both metaphors help us to visualize that   2  x  3 =  3  x  2. 

 

 

Fig. 2.  Two metaphors for the commutativity of multiplication. 

In the first, commutativity is perceived simply as invariance of area under rotation in 

one fourth of a turn. So you ―see‖ that 2 x 3 = 3 x 2, without counting and knowing 

that it is 6. In the second, commutativity is less obvious: you need to be familiar with 

trees for this metaphor to become a ―met-before‖ in the sense of Tall (2005).  Notice 

that these tree diagrams, drawn upside down, also suggest an ‗hydraulic metaphor‘, 

which helps us to understand multiplication of fractions:  A litre of water will drain 

evenly, by gravity, from the tree root, through the pipes, splitting into two and then 

into three in the left tree. So 1/6 appears not only as 1/3 of 1/ 2 but also as 1/2 of 1/3.  

This illustrates the importance of having metaphors of various scopes for the same 

mathematical object and of being able to transit between them. Indeed, from the 

grafting metaphor for multiplication we may transit to a deeper metaphor for 

multiplication: ―multiplying is concatenating‖. Fig. 3 below suggests commutativity 

if you look at the resulting diagonal arrow, but not so if you consider the 

concatenated pathways, which are different (The mathematical notion of category 

emerges here!). If we concatenate now triple arrows (which could be realized as 

triple threads or braids) we end up with ―products‖ which depend on the order of 

concatenation (see Fig. 4).   

  

          

 

 

 

 

Finally, note the connection with 2x3 and 3x2: if we concatenate an enlargement of 

ratio 2 with one of ratio 3, we get one of ratio 6, and the other way around. 

Metaphors in mathematics education 

Mathematicians have been aware for a long time of the key role of analogies and 

metaphors to achieve understanding and insight (Sfard, 1994). Indeed, Euler himself 

Fig. 3. Concatenation metaphor 

for multiplication (1 arrow) 

Fig. 4.  Concatenation metaphor for   

multiplication (3 braided arrows). 
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may be seen as a forerunner of this approach, when he suggests considering negative 

numbers as debts (Euler, 1802, p. 12). Thom, the creator of Catastrophe Theory, 

besides complaining that since the advent of positivism analogy is considered as a 

remnant of magical thinking to be condemned absolutely and at present is thought to 

be just a figure of rhetoric (Thom, 1994), uses even animistic metaphors: ―On tue la 

topologie de la variété en l‘appliquant sur l‘axe réel, mais la topologie résiste, elle 

‗crie‘, et ses cris se manifestent par l‘existence de points critiques‖ (Thom, 2002).  

After Euler, the use of metaphors in mathematics education proper began rather late 

and heterogeneously. They were employed first mainly by mathematicians turning to 

didactics, like Dienes (1960) or Tall (2005), among others. It may be argued that 

when Dienes and Bruner (Dienes, 1960; Bruner & Kenney, 1964) posited that 

abstract concepts and processes may be apprehended by manipulating various 

embodiments, they were in fact using various metaphors for the same concept, as in 

―factorizing is assembling a puzzle‖ and ―factorizing is balancing a family of weights 

against a single weight in a balance beam with hooks‖ (Bruner & Kenney, 1964). 

In general, educational promotion of metaphors has been intermittent, with mixed 

results. In the U.K. the systematic use of the number line metaphor as a ―key 

classroom resource‖ promoted by the National Numeracy Strategy since 1999 for 

primary school, was clearly not a success (Doritou & Gray, 2007). Apparently not 

enough attention was paid to preparing the soil first, where metaphors may grow.  In 

Chile, the explicit use of metaphors, like the hydraulic one, was exemplified in 

textbooks distributed by the Ministry of Education to public primary and secondary 

schools during 2000-2008. However, their exploitation in the classroom remained 

limited, because most teachers had the feeling that to rely on metaphors is not 

serious, while mathematics is indeed serious stuff (Soto-Andrade, 2006, 2007, 2010). 

However, recent hard evidence of the positive didactical impact of the prescriptive 

use of metaphors in Chile is reported in Araya et al. (2010). An example of a non 

prescriptive use of metaphors, being tested at present in Chile, Germany and France: 

―the emergent metaphor approach‖, is commented below (Brownie‘s random walk). 

Basic Ideas or ―Grundvorstellungen‖ (vom Hofe, 1995, 1998) 

Since the beginning of the 19
th

 century, German didacticians, influenced by 

Pestalozzi (vom Hofe, 1998), were acutely sensitive to the importance that students 

imagine, visualize and represent to themselves abstract mathematical concepts and 

processes in some concrete way, to be able to make sense of them and so gain real 

understanding. This approach involved the generation of ―Anschauungen‖, i. e. 

visual mental models for mathematical objects, albeit in a rather passive and merely 

associative way, until Kühnel (1916) emphasized the role of individual activity and 

insight in the learning of mathematics. He developed a course of mathematical 

instruction for primary schools where the generation of ―Stellvertretervorstellungen‖ 

(representative notions), mediating between the world of abstract mathematical 

thinking and the world of ―real life‖ played a key role. Later, Breidenbach (1957) 
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initiated didactical analyses of mathematical subject matter, creating the influential 

German school of ―Stoffdidaktik‖ (―Stoff‘ = mathematical ―stuff‖ or content), that 

produced teaching units for introducing different mathematical content and 

supporting the generation of suitable ―Grundvorstellungen‖. Oehl (1962), 

introducing the term ―Grundvorstellungen‖ systematically, integrated the previous 

approaches into a coherent theory, that was later extended to the secondary school 

level by Griesel (1971) and others. ―Grundvorstellungen‖ remained however used in 

a prescriptive way, as normative categories to train students to learn with 

understanding, until vom Hofe (1995, 1998) investigated their descriptive aspect, as 

idiosyncratic notions students actually develop, eventually inadequate from the 

teacher‘s viewpoint. They involve  (vom Hofe, 1998):  

Gv1. The constitution of meaning of mathematical concepts based on familiar context and experiences 
(as in metaphor = metbefore); 

Gv2. Generation of visual representations making operative thinking possible; 
Gv3. Ability to apply mathematical concepts to real life contexts. 

Vom Hofe (1992) distinguishes moreover between primary and secondary 

―Grundvorstellungen‖.  The former are mainly psycho-motoric in nature, involving 

manipulation of concrete objects or acting in the world and entailing activation of the 

concrete or enactive representation mode in the sense of Bruner (Bruner, 1996; 

Bruner & Kenney, 1965). The latter take foothold on iconic or pictorial objects 

instead, like the number line, the Cartesian plane, graphs, and so on. They all 

correspond to metaphors, but with different kinds of source domains: concrete, 

iconic, abstract... 

Example 1: ―Grundvorstellungen‖ and metaphors for multiplication of natural 

numbers (Prediger, 2008; vom Hofe, 2003) 

Prediger (2008) lists the following ―Grundvorstellungen‖: 

GM1. Iterated addition (3 x 5 as 5 + 5 + 5) 

GM2. Area of a rectangle (3 x 5 as the area of a 3 times 5 rectangle). 

GM3. Multiplicative comparison (3 x 5 as 3 times as much as 5) 

GM4. Enlargement (3 x 5 as a 3-fold enlargement of 5) 

GM5. Combinatorial  (3 x 5 as number of ways to combine 3 shorts and 5 shirts) 

and points out that only GM2, GM3 and GM4 carry over  to fractions and that on the 

other hand, the ―portion of - Grundvorstellung‖ (1/3 x 1/2 means 1/3 of 1/2) for 

fractions does not come from the natural number case.  These ―discontinuities‖ and 

the required conceptual change highlight epistemological obstacles (Prediger, 2008).  

In the metaphor approach however, instead of considering the combinatorial and the  

―portion of – Grundvorstellungen‖ as totally unrelated, recalling that ―to multiply is 

to concatenate‖ students might look upon the trees in Fig. 2 (drawn upside down) as 

trees of ducts and visualize simultaneously multiplication of natural numbers 

(product = the number of ducts in the last generation) and multiplication of fractions 
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(product = portion of 1 litre poured at the root that will drain down to each end of the 

tree). In this way the ―concatenation metaphor‖ in some sense bridges the gap 

between GM4 and GM5 for natural numbers and the ―portion of - Grundvorstellung‖ 

for fractions, suggesting that the relation between the former and the latter is in fact 

one of duality… 

Example 2: Grundvorstellungen and metaphors for stochastic thinking 

In a prescriptive way, Malle & Malle (2003), consider the following 

―Grundvorstellungen‖ for the probability of an event: 

GP1. A measure of the likelihood that the event occurs.  

GP2. The relative portion of favourable outcomes to the event, within the set of all 

possible outcomes of the corresponding experiment. 

GP3. The relative frequency of the event in a series of repetitions of the experiment. 

GP4. The subjective confidence in the occurrence of the event. 

In a descriptive way, Wollring (1994) has investigated the emergence of animistic 

―Vorstellungen‖ in elementary school students, finding that they strongly determine 

their stochastic thinking. Most animistic notions, with no experimental support, 

concern the ―will‖ and ―consciousness‖ of coins or dice, the possibility of mentally 

influencing   them and the fact that ―the world is fair‖.   

Borovcnik (1984), who adheres, like vom Hofe (1998), to the ―didactical triangle‖ 

(theory, reality, subject) where ―Grundvorstellungen‖ live as a didactical construct, 

besides rehabilitating descriptive statistics as a didactically and mathematically 

interesting domain, points out that following the ―spiral principle‖ one may develop 

at each successive level of teaching of descriptive statistics, adequate 

―Grundvorstellungen‖ for stochastic concepts. So this provides contexts where 

students can ―mathematize‖ and ―translate‖ problematic situations into mathematical 

models, besides developing their critical thinking in real applications, recognizing 

subjectivity and arbitrariness in model construction.  

On the other hand, it has been shown that Bayesian ―false-positive problems‖ in bio-

medical test interpretation (―How likely is it that I am infected, if my viral test was 

positive?) may be solved  by 6th graders, with the help of pedestrian metaphors, 

which allow then to calculate with  natural (absolute) frequencies as in Zhu & 

Gigerenzer (2006) instead of fractions or percentages that confuse even experienced 

physicians.  

RESEARCH QUESTIONS AND HYPOTHESES   

We have reviewed two independently developed theoretical perspectives concerning 

mathematics teaching and learning, the ‗Grundvorstellungen‘ approach and the 

metaphor approach, both aiming at achieving a meaningful teaching-learning 

process, as an antidote to rote, mechanical learning, without understanding.   
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Given the high degree of influence that the former has had in German didactics and 

the increasing didactical attention the latter is now receiving, we would like to 

compare them, in terms of their theoretical cognitive and didactical background, as 

well as their classroom implementation with students and in-service teachers.  In 

particular we would like to find out how they address the problematic of facilitating 

meaningful learning and construction (―poiesis‖) of concepts by the students 

themselves. 

Our first research hypothesis is that metaphors as well as ―Grundvorstellungen‖ are 

key and necessary ingredients in a meaningful teaching-learning process that usually 

entails a switch between cognitive modes.   

Our second hypothesis is that in almost every didactic case we could look upon 

―Grundvorstellungen‖ as metaphors and vice versa, without modifying the 

operational sense of the didactics, although in some cases metaphors may have a 

clearer poietic ―bottom-up‖ role than ―Grundvorstellungen‖, which tend to be more 

prescriptive and ―top-down‖ in their classroom implementation.   

We intend to gather evidence in favour of these hypotheses from didactical 

experiments reported in the literature or coming from our own teaching experience or 

research. To this end, we comment below some compared examples from the 

viewpoint of ―Grundvorstellungen‖ and metaphors. 

COMPARED DIDACTICAL EXAMPLES    

Example 1: Which fraction is bigger? 

Using the ―Grundvorstellungen approach‖, Padberg (2009) points out that 6
th

 graders 

have trouble in comparing fractions because of a lack of instruction in suitable 

―Grundvorstellungen‖. They apply mechanically the standard method of calculating 

a common denominator, instead of flexibly using different strategies adapted to the 

fractions involved. He gives paradigmatic examples in context, of fractions to 

compare, and suggests to take advantage of the ―sharing Vorstellung‖, prompting the 

students to draw ―ratio tables‖ to arrive at equating either the numerators or the 

denominators of the involved fractions. A typical example is the exercise where 5 

children share evenly 3 pizzas and 8 children share other 5 identical pizzas, and it is asked in 

which group does each child get more pizza. 

Metaphorically, one can proceed in an analogous way with the help of the metaphor 

―fractions are portions‖, but also tackle some more unfriendly comparisons like that 

of 15/25 and 16/26 (loc. cit., exercise 2.b, p. 61) or say, 17/153 and 18/154, with the 

help of a different metaphor. To this end, the students could be challenged to recall 

other metaphors for fractions, adequate to look at the unfriendly 17/153 and 18/154, 

that allow for an easier denominator manipulation.  They might recall the ―ratio (or 

proportion) metaphor‖. In our case, this could mean a big bag with 153 apples, 17 of 

which turn out to be rotten. How do we ―move‖ to a bag with 154 apples, 18 of 
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which are rotten? Just adding one rotten apple to the previous bag! The ―proportion‖ 

of rotten apples clearly increases! So, a shift to a more suitable metaphor enables the 

students to compare some unfriendly fractions in a transparent way, without even 

calculating.     

Example 2: Brownie‘s walk (Soto-Andrade, 2006, 2007, 2010) 

We claim that random walks provide a meaningful and friendly way to introduce 

students to stochastic thinking. We comment here on a baby avatar of Brownian 

motion (a natural example of randomness). 

Brownie is a puppy that escapes randomly from home, when she smells the shampoo 

her master intends to give her. At each street corner she chooses equally likely any 

of the 4 cardinal direction and runs nonstop a whole block until the next corner.  

Exhausted, after 4 blocks, say, she lies at some corner.  Her master would like to 

know where to look for Brownie and also to estimate how far she will end up from 

home…   

This problem may be tackled in several ways:    

1.  Using descriptive statistics in a meaningful way 

(cf. Borovcnik, 1984 and ―Grundvorstellung‖ 3 

after Wollring), i.e. simulating, to begin with.  

2.  Applying Malle & Malle‘s GP2 prescriptive 

―Grundvorstellung‖ above. 

3.  With an ―ideal simulation‖ metaphor or 

―Vorstellung‖: if we unleash a pack of 4
4
   

Brownies from home, say, they will split evenly 

among the 4 cardinal directions, and so on… 

The pedestrian metaphor (Soto-Andrade, 2006) 

may so be rediscovered!   

4.  In the metaphor approach, students would be also prompted to see Brownie‘s 

random walk in a more concrete way. The splitting metaphor may then emerge, 

which sees Brownie, at each corner, splitting into 4 pieces, and so on… Or the 

gentler and less scary hydraulic metaphor, where the streets of the city become 

pipes and Brownie becomes a litre of fruit juice that flows equitably at each 

junction of pipes. This metaphor may be easily visualized or even performed with 

students sharing a litre of fruit juice (see figure 4).  

Note that in the metaphor approach the students are not given a ―Grundvorstellung‖ 

for probability before they address the problem. On the contrary, they are prompted 

to tackle the problem ―bare handed‖ first and eventually look for a friendly metaphor 

for the concrete random walk they want to study (e.g. ―Brownie splits‖). When 

trying to give pertinent answers to the questions asked, ―poietic metaphors‖ may 

emerge that enable them to construct the abstract probability concept, like 

―probabilities of finding Brownie at a given corner are pieces of Brownie‖.   

Fig. 4.  Brownie‘s splitting (2 blocks).   
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DISCUSSION    

Although Metaphors and ―Grundvorstellungen‖ play essentially the same didactical 

role, aiming at giving concrete and familiar meaning to abstract concepts, we have 

seen that their typical ways of implementation may differ to some extent. Metaphors 

appear more radical and blunt, playing a poietic, bottom-up, role. ―Grundvorstellung-

en‖ on the other hand, are more often used to represent in the ―real world‖ pre-

existing mathematical concepts, than to construct them; they tend to be used in a 

more prescriptive and top-down way, although we also have examples of descriptive 

research on idiosyncratic animistic metaphors in probability (Wollring, 1996). A 

systematic classification of  ―Grundvorstellungen‖ has been undertaken (vom Hofe, 

2003; Blum & vom Hofe, 2003) and exercises for their visualization for a vast array 

of mathematical concepts have been proposed (Weber, 2007), but no examples of a 

poietic role of  ―Grundvorstellungen‖ seem to have been reported.   

On the other hand, the typical contemporary metaphor approach is somewhat more 

optimistic, à la Dienes (1960), regarding as possible and trainable the spontaneous 

and autonomous emergence of suitable metaphors when students have the 

opportunity of tackling a problem, or a didactical situation à la Brousseau (1960), 

with their own means. Moreover, further research in this direction is suggested by 

the fact that this approach may be more naturally integrated with Brousseau‘s theory 

of didactical situations (loc. cit.) than the more top-down ―Grundvorstellungen‖ 

approach.    
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INTRODUCTION TO THE PAPERS OF WG12:  

HISTORY IN MATHEMATICS EDUCATION 

Uffe Thomas Jankvist, Snezana Lawrence, Constantinos Tzanakis, Jan van Maanen 

THE BRIEF HISTORY OF THE HISTORY GROUP 

The idea to have a group focussing on the empirical side of history in mathematics 

education was coined by Abraham Arcavi and Uffe Thomas Jankvist at CERME-5 in 

Cyprus, 2007. The proposal was made to ERME and a first call for papers was 

written in 2008 by A. Arcavi, U. T. Jankvist, C. Tzanakis and J. van Maanen (the 

latter two former chairs of HPM, the ICMI affiliated study group on the relations 

between History and Pedagogy of Mathematics). Fulvia Furinghetti (also former 

chair of HPM) chaired the group at CERME-6 in Lyon, 2009; she did so with the 

help of co-chairs Tzanakis, van Maanen, Jankvist, and Jean-Luc Dorier. In Lyon, 13 

papers and 1 poster were presented. For CERME-8 in Rzeszñw, the group had 13 

papers and 5 posters. During its brief time of existence the history group has come to 

embrace not only the research on history in mathematics education, but also research 

on history of mathematics education in relation to (present) educational practices. 

This, together with the always relevant issue of quality versus inclusiveness at 

CERMEs, led to many thoughts on the actual structuring of the working group 

sessions. We discuss this below after presenting themes and papers. 

WG12‘S MAIN THEMES AS GIVEN IN THE CALL FOR PAPERS 

1. Theoretical, conceptual and/or methodological frameworks for including history in 

mathematics education; 

2. Relationships between (frameworks for and empirical studies on) history in mathe-

matics education and theories and frameworks in other parts of mathematics education 

3. The role of history of mathematics at primary, secondary, and tertiary level, both 

from the cognitive and affective points of view 

4. The role of history of mathematics in pre- and in-service teacher education, from 

cognitive, pedagogical, and/or affective points of view 

5. Possible parallelism between the historical development and the cognitive 

development of mathematical ideas 

6. Ways of integrating original sources in classrooms, and their educational effects, 

preferably with conclusions based on classroom experiments 

7. Surveys on the existing uses of history in curricula, textbooks, and/or classrooms in 

primary, secondary, and tertiary levels 

8. Design and/or assessment of teaching/learning materials on the history of mathematics 

9. Relevance of the history of mathematical practices in the research of mathematics 

education 
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PAPERS AND POSTERS PRESENTED IN WG12 

Authors Contribution Main Themes 

Mustafa Alpaslan, Mine Isiksal, Cigdem Haser Paper 4 

Kristín Bjarnadñttir Paper 9 

Kathleen M. Clark Paper 3, 4, (1, 2)  

Uffe Thomas Jankvist Paper 1, 2, 6, 8 

Tinne Hoff Kjeldsen Paper 1, 3, (2, 4) 

Panayota Kotarinou, Charoula Stathopoulou, Anna 

Chronaki 

Paper 3, (6, 8) 

Jenneke Krüger Paper 9 

Snezana Lawrence, Peter Ransom Paper 3, 4 

José Manuel Matos Paper 9 

Catarina Mota, Maria Elfrida Ralha, Maria 

Fernanda Estrada 

Paper 9 

Maurice OReilly Paper 1, 2, 3 

Peter Ransom Paper 3, 6, 8 

Constantinos Tzanakis, Yannis Thomaidis Paper 1, (2) 

Mária Correia de Almeida, José Manuel Matos Poster 9 

Ana Amaral, Alexandra Gomes, Elfrida Ralha Poster 3, 9 

Rui Candeias Poster 9 

Ersin İlhan Poster 3, 8, (6) 

Teresa Maria Monteiro, José Manuel Matos Poster 9 

STRUCTURE AND OUTCOMES OF THE WORKING GROUP SESSIONS 

The sessions of WG12 were organized so that every session began with two short 

presentations of papers. These presentations were followed by group work or reports 

from group work. The group work was structured according to four general topics 

(A, B, C, and D – listed below) and the participants discussed these topics in two 

smaller subgroups, the compositions of which varied according to the topics. 

Topic A: Research questions and relevance of research 

For the first sessions the two subgroups, say α and β, were made so that subgroup α 

consisted of the less experienced researchers in the field of history in mathematics 

education, who, based on the papers and posters of the WG, would discuss topic A 

under the guidance of a more experienced researcher and ‗subgroup manager‘ (van 
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Maanen). Examples of questions that subgroup α discussed are: Why is your 

research relevant (and do you have literature references to underpin the relevance)? 

Do you have clearly stated research questions? How will your research questions 

guide you in your research – and in the choices you have to make? Is your research 

theory-driven or problem-driven – and how is this reflected in your research 

questions? In the initial group work phase, the participants of subgroup α were asked 

to briefly present their work and research questions if they had these formulated. 

This turned out to be a good, fast and efficient way of getting the ‗younger 

researchers‘, and in particular the poster presenters, engaged in the WG discussions 

from the very beginning. Several participants decided to reconsider their research 

aim(s), formulate questions, refine formulations of existing questions, or expand 

their research perspectives. Also, the discussion of theory-driven versus problem-

driven research led to discussions of the role of theory in (empirical) research, etc. 

O‘Reilly presented the report from subgroup α. 

Topic B: Use of HPM theory and mathematics education theory 

Subgroup β, consisting of the more experienced researchers in the field, discussed 

topic B – use of HPM theory and mathematics education theory – based on questions 

such as: What should the use of theory be in our subfield? What may we make use of 

from both mathematics education theory and history of mathematics theory? To what 

extent do we need HPM theories – and how may theses be shaped? For a selection of 

the WG-papers, subgroup β discussed the influence of various other fields, e.g. 

history, history of mathematics, history of science, education and pedagogy, 

mathematics education, science education as well as philosophy and epistemology of 

mathematics and science. The following key-issues were identified as important, or 

crucial for the domain of history in mathematics education: the need for developing 

theoretical constructs that provide some order in the wide spectrum of research and 

implementations done so far; to somehow check the efficiency of introducing a 

historical dimension, not least to convince the target population (teachers, math 

educators, curriculum designers, etc.); and to develop appropriate conditions for 

designing, realizing, and evaluating our research, including for instance the 

availability of useful resources, ‗worked-out‘ material ready for ‗direct‘ use, ‗history 

friendly‘ teachers to cooperate in research as well as ‗history friendly‘ 

authorities/curricula/ official regulations. C. Tzanakis ‗managed‘ and reported.  

Topic C: Methods, data, and analysis 

For topics C and D two subgroups were again made: subgroup γ consisting of 

researchers in the area of history of mathematics education and subgroup δ of 

researchers in history in mathematics education. The subgroups discussed topics C 

and D in turn. Examples of questions to be considered for theme C are: What 

methods do you use to answer your research questions and how are these connected 

to your theoretical framework? What kinds of data do you gather (or have access to) 

and why these? How do you analyze your data and how is your analysis connected to 
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method and theory? Could you come to the same or similar conclusions using 

different methods, collecting different data, or analyzing those using different 

theoretical constructs? Regarding data subgroup γ discussed, for example, the 

occasional scarceness of historical sources, which can make methods of 

‗triangulation‘ more or less impossible. Among many other things, subgroup δ 

discussed the different methods related to quantitative and qualitative research, and 

the possibilities of combing such methods in the same study. K. Bjarnadñttir was the 

‗subgroup manager‘ for subgroup γ, and J. Krüger gave the report. T. Kjeldsen was 

‗manager‘ for subgroup δ and the report was delivered by M. Alpaslan and P. 

Ransom.  

Topic D: Validity, reliability, and generality of research results 

Examples of questions for topic D are: How valid are your results? On what grounds 

must the validity be ‗measured‘? How reliable are your results? How is this 

connected to method and theory (e.g. quantitative/qualitative; explain/predict)? Are 

your results generalizable and if so, then in what way? For topic D, subgroup γ in 

particular, had to consider implications for mathematical practices of today. Also, 

subgroup γ spent a long time discussing the problems related to defining reliability 

and validity for qualitative research. Following similar discussions, embracing also 

reproducibility and driving forces for empirical research, subgroup δ ended up 

discussing a variety of research questions that was deemed essential for the present 

status of the field of using history in mathematics education. And a plan was made 

for constructing a list of such ‗burning‘ questions and publishing it once done. 

EVALUATION AND ASPECTS TO CONSIDER FOR THE NEXT WG 

It was decided that for the next CERME the poster proposals will be send to 

everyone in the group before the meeting and that the posters will be displayed 

during the sessions. Also, the chairs consider it important to maintain and even 

strengthen the connections between the CERME history group and the HPM group. 

One of the main things that were brought forth when evaluating WG12 was the 

friendly, inclusive and productive atmosphere, where everybody talked to and 

interacted with everybody. One participant expressed it like this:  

A week ago I was completely scared, because I didn't know how the CERME work was 

done, and I didn't know how everyone in the WG would react to my work and my 

opinions (if I had enough courage to express them). Today I have in my memory the best 

conference I ever attended: a fantastic working group that made me desire for more 

opportunities to work with everyone. 
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USES OF HISTORY IN MATHEMATICS EDUCATION: 

DEVELOPMENT OF LEARNING STRATEGIES AND 

HISTORICAL AWARENESS  

Tinne Hoff Kjeldsen 

IMFUFA, Department of Science, Systems and Models, Roskilde University  

The purpose of the paper is to present a theoretical framework for a systematic 

analysis and discussion of uses of history for teaching and learning mathematics, 

hereby proposing a didactical transposition of history from the academic research 

subject to history in mathematics education. The use of the theoretical framework is 

exemplified by an analysis of a project work on the history of Ancient Egyptian 

mathematics taught in a class of Danish upper secondary school students (10
th

 

grade), illustrating how uses of past mathematics can aid development of students‘ 

learning strategies and historical awareness. 

INTRODUCTION 

The purpose of the present paper is to develop a theoretical framework for a 

systematic analysis and discussion of uses of history for teaching and learning of 

mathematics with respect to how history benefits students‘ learning of mathematics, 

and develops students‘ historical awareness. Several recent papers have discussed 

whether these two aims pose a dilemma between genuine history and relevant 

mathematics for teachers who want to use or integrate history in their classrooms 

(Freid, 2001; Jankvist and Kjeldsen, forthcoming; Kjeldsen, forthcoming; Kjeldsen 

and Blomhøj, forthcoming). While these discussions have focused on transforming 

views of mathematics and mathematics education, their conception of history has 

been taken to be more or less synonymous with a traditional professional historians‘ 

approach to history – at least in the methodological approaches and the criteria for a 

genuine approach to history. However, perhaps we also need to broaden our view of 

history as well if we want history to play a more significant role for teaching and 

learning mathematics. In the present paper such a broadened view of history is 

outlined, and its implications for history in mathematics education are discussed. The 

aim is to develop an adequate theoretical framework for integrating history of 

mathematics in mathematics education that can be used to analyze specific 

implementations and to provide a tool for orienting the design of future 

implementations of the history of mathematics in mathematics education. The main 

focus of the paper is theoretical, but it also contains an empirical section that 

illustrates the theory in a carefully designed and implemented case study.
1 

First of all, some historiographical reflections and a position are presented. Secondly, 

uses of history are discussed to present a framework in which their uses for the 

teaching and learning of mathematics can be systematically analyzed with respect to 

purposes and didactical values. This discussion is based on the Danish historian 
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Bernard Eric Jensen‘s (2010) approach to history. Thirdly, the framework is adapted 

to mathematics education. Lastly, to connect the discussion with the practice of 

teaching, a project work on mathematics in Ancient Egypt is analyzed. The project 

work was designed by a mathematics teacher working at a Danish Gymnasium 

(upper secondary level) during a professional development course in ―problem based 

project work in, with and about mathematics‖. The teacher implemented the project 

work in his own teaching practice in a class of first year Danish high school students 

(age 16-17) and documented his experimental teaching in a written report. His report 

will be analyzed to illustrate how uses of past mathematics can aid development of 

students‘ learning strategies and historical awareness, thereby substantiating some of 

the points raised in the present paper. The paper ends with some concluding remarks. 

HISTORIOGRAPHICAL REFLECTIONS 

Mathematical knowledge is produced and used by humans; hence we can think of 

such activities as integrated elements of historical-social reality and of human life. 

We can perceive mathematical activities as creations of history as well as acts that 

create a history of mathematics. The development of mathematics and changes 

within our perceptions, views, and treatments of mathematics can to a certain extent 

be understood as realisations (intended as well as unintended) of goals set by people. 

If we want to understand historical-social processes in the development of 

mathematics as products of human activities, we must pay attention to intentions and 

thoughts of the actors, as well as their understanding of the subject matter and the 

context in which they performed and made their choices. 

At a first sight it might seem that while such an approach can be used to study the 

history of sociological aspects of mathematics, such as the development of its 

profession in different countries and/or places or the history of mathematical 

journals, it cannot be used to study the history of the subject-matter of mathematics 

due to the universal character of mathematics. But if the development of mathematics 

is studied from its practice, where the historian focuses on concrete practices of 

mathematics, acknowledging that, despite its universal character, mathematical 

knowledge is produced by mathematicians, who live, interact and communicate in 

concrete social settings, the history of mathematical ideas, concepts and theories can 

also be pursued within such a framework.  

Such a position is in accordance with recent trends in the history of mathematics that 

have emerged as reactions towards the well-known critic of the widely used 

anachronistic (whiggish) approach to history of mathematics and the methodological 

debate of internalism versus externalism (Epple, 2000), (Kjeldsen et al. 2004), and 

Science in Context, 2004, 17(1/2). Within the last decades many studies in the 

history of mathematics focus on the practice of mathematics within social, 

intellectual, and cultural contexts of mathematical activities. Here professional 
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historians of mathematics have a critical approach to source material they analyze in 

order to understand its significance in its proper historical context. 

USES OF PAST EPISODES 

It is not the main purpose of general mathematics education to educate and train 

professional historians of mathematics, and in most cases mathematics teachers will 

not be professional historians. In some countries development of students‘ historical 

awareness is part of the curriculum, but that is not always the case, and if it is it only 

plays a minor part. With this in mind it seems too restrictive to require that the 

history of mathematics taught within mathematics education should be presented as 

traditional academic history.  A didactical transposition is needed, just as is the case 

with school mathematics, which is also not identical with the discipline of 

(academic) mathematics. In the following, Jensen‘s (2010) broader view of history 

will be introduced along with several pairs of concepts that can be useful for a 

nuanced analysis and discussion of the role of past mathematical episodes for the 

learning and teaching of mathematics.  

Jensen (2010) sees the academic research subject history, as professional historians 

think and work with it, as just one of many approaches to history. According to him, 

history is employed every time a person or a group of people is interested in 

something from the past, and uses their knowledge about it for some purpose. People 

use history for many different purposes and in many different connections, and 

consequently there are major differences between a lay person‘s and a professional 

historian‘s use of history. Recent investigations (Rosenzweig and Thelen, 1998) have 

shown that lay persons‘ and professional historians‘ conceptions of history differ in 

various respects and on several levels. Lay-history has a reputation of being naïve 

viewed from the academic discipline of history, while on the other hand lay 

historians view academic history as lifeless and remote from the real world. For 

professional historians it is important to place past episodes and artefacts in their 

historical contexts. Their historical awareness is conceived of as an interpretation of 

the past whereas lay persons view history more as a source of memoirs.  

Jensen distinguishes between pragmatic and scholarly approaches to history. In a 

pragmatic approach the study of the past is guided by the idea that we can learn from 

history. The ―usefulness‖ of history is an underlying perspective or principle in a 

pragmatic approach to history. The idea is that through history we can gain 

knowledge about our world of today, that history can teach us better ways to live our 

lives. In a pragmatic approach to history, past events are studied from a utility 

perspective. Jensen (2010, p. 51) contrasts a pragmatic approach to history with a 

scholarly approach, where historians retain a critical distance to past events and 

emphasize differences between past and present. In the professional, academic 

discipline of history both traditions can be found, but since the mid 19
th

 century the 

scholarly approach to history has been more and more dominant. 
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Observer history and actor history are another pair of concepts through which we can 

discuss and understand uses of past events and sources. Jensen (2010, p. 41) talks 

about uses of the past from an actor perspective, if we use history to orient ourselves 

and act in a present context. He calls this an intervening use of history. If the past is 

viewed retrospectively with a purpose to enlighten instead of a purpose to act or 

intervene he talks about uses of past from an observer perspective.
2 

Finally, the so-called ‖living history‖ use of history is a way of using the past to help 

participants develop historical awareness and learning strategies. In Denmark living 

history takes place at some museum centres and at some yearly events. One such 

centre is The Medieval Centre. On their homepage 

(http://www.middelaldercentret.dk/Engelsk/welcome.html) they state that the centre: 

―is an experimental museum where you can experience life in a reconstructed late 

14th century market town: Daily life, knights tournaments, trebuchets, canons, ships, 

markets, … and a lot more...‖. According to Jensen (2010, p. 145) living history 

appeals to so many not only because the participants actively take part in the events, 

but also because they use other types of learning strategies where the focus can be, 

for example, to develop the skills of past craftsmen. 

WHAT IS THE CONNECTION TO MATHEMATICS EDUCATION?  

These concepts of, approaches to, and thinking about history and uses of past 

episodes and artefacts present a framework for a refined discussion and systematic 

analysis of how past episodes and sources can be/are used in the integration of 

history for the teaching and learning of mathematics. They open up a variety of 

approaches to history and uses of the past for teachers who want history to play a 

role for teaching and learning mathematics. Which approach to choose depends on 

the intended learning. For example, Kjeldsen and Blomhøj (forthcoming) argue, 

based on Sfard‘s (2008) theory of thinking as communicating, that history presents 

itself as the obvious tool for developing students‘ proper meta-discursive rules, 

because meta-discursive rules are contingent and as such can be studied at the object 

level of history discourse. This presupposes a scholarly approach to history. The idea 

is to use past mathematical activities and sources with the intention of creating 

learning and teaching situations where students can experience what Sfard calls 

commognitive conflicts. Hence, the past is used with the purpose of intervening, and 

therefore the scholarly approach to history is from an actor perspective.  

Kjeldsen (forthcoming) discusses the role of history for the teaching and learning of 

mathematics with reference to a competence based understanding of mathematics 

education (Niss, 2004). Here the development of students‘ mathematical competence 

is the main purpose of mathematics education along with the development of some 

second order competencies, including historical overview and awareness. For the 

development of historical overview and awareness, a scholarly approach from an 

http://www.middelaldercentret.dk/Engelsk/welcome.html
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observer perspective can be chosen. For development of specific mathematical 

competencies, a pragmatic approach from an actor perspective might be considered.   

AN IN-SERVICE COURSE ON PROJECT WORK 

The focus of the paper is on theoretical issues, but to illustrate the theory, a project 

work that was developed and implemented during an in-service course for upper 

secondary teachers in Denmark will be analysed. In this discussion the ―living 

history‖ approach will be examined to see how it might be adapted as a way for 

mathematics teachers to use past episodes and sources to develop students‘ learning 

strategies and historical awareness. 

The theme for the project work was Egyptian mathematics. It was developed and 

tested in a classroom of students (10
th

 graders) in the Danish upper secondary school 

in 2004 as part of an in-service course for mathematics. The in-service course was 

developed in response to a reform that was to be implemented in 2005. 

Compared with more traditional ways of teaching mathematics the reform challenged 

the teachers in several ways: (1) Many were not used to teach either the history of 

mathematics or mathematical modelling, both of which having more prominent 

positions in the new curriculum than they had in the former curriculum; (2) they 

were required to bring mathematics into play in interdisciplinary projects in 

cooperation with other subjects, from science, from the humanities, and from the 

social sciences; and (3) they had to design, organise and carry out project work in 

their mathematics teaching. The goal was to create an in-service course where 

theories in didactics and pedagogy interacted with development of the participants‘ 

own teaching practice in ways that also related to inquiry-based teaching and 

learning.   On this basis the objective of the in-service course was to support teachers 

in their development as teachers, implementation in their own classes, evaluation of 

the project work, and documentation through a written report of a project-based and 

problem-oriented course in the history of mathematics or in mathematical modelling. 

The core element of the in-service course was the development of the teachers‘ 

experimental practice with history of mathematics or mathematical modelling and 

problem-oriented project work. 

The in-service course began with a three day seminar where the teachers were 

introduced to the history of mathematics, mathematical modelling, didactical 

theories, and problem oriented project work. The teachers worked in small groups 

developing a project-organised course in either history of mathematics or 

mathematical modelling of their own choice consisting of approximately 10 lessons 

of 45 minutes each. They decided on (1) the objectives for their own professional 

development, (2) their objectives for students‘ learning, (3) how to ―set the scene‖ 

for their own students‘ project work, and (4) how to evaluate the students‘ learning. 

A few weeks after the seminar a first draft of the design for the project work and the 

materials that should be given to the students were distributed to all participants in 
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the in-service course. All teachers tried out their project work in their classroom. 

During that period there was a one day seminar to support the teachers in the 

documentation of their results and reflections on their experimental teaching. It all 

ended with a 2-day seminar, where the teachers‘ written reports were discussed 

extensively. The final reports are published on the internet together with the handout 

materials for the students for other teachers to use (http://magenta.ruc.dk/nsm/ 

uddannelser/gymnasielaerer/). 

I will not go into further detail on how we define problem-oriented project work  

(interested readers are referred to Blomhøj and Kjeldsen, 2006), but only emphasize 

that the problem that students are going to work on should function as the ―guiding 

star‖ for their work. In the ideal case every decision made in the project work should 

be justified by its contribution to the solution of the problem. This is crucial, since 

engaging in decisions provides opportunities for students to work independently, to 

gain control, and to direct the project. In order for this to happen, though, the teacher 

needs to set a scene for the project work, that is to formulate the task for the work, 

the conditions for the working process, the time constraints, and the requirements for 

the end product, for example a written report or a power point presentation fulfilling 

some specific requirements. In this way it is possible for the teacher to have some 

control while at the same time to leave room for the students to take responsibility 

and make decisions. 

The in-service course is still offered with the modification that we focus only on 

mathematical modelling. Therefore we only have one history project to present, but 

since its function here is to serve as a concrete illustration of the theoretical 

framework developed above, and not as documentation from an empirical 

experiment it can be used to characterize the suggested methodology. 

 EGYPTIAN MATHEMATICS: A PROJECT WORK IN A 10
TH

 GRADE 

The project on Egyptian mathematics was developed and implemented in a 

classroom of 1. year students (10
th

 grade, age 16) in a Danish upper secondary school  

in the fall term. The project work was meant to be interdisciplinary, with history 

about Ancient Egypt in combination with their mathematics. The mathematics 

teacher had no experience with project-organised teaching in mathematics, which 

was his focus for his own professional development. His objectives for the students‘ 

learning were to: 

a) enhance the students‘ competence to work in teams 

b) enhance the students‘ independent learning 

c) enhance the students‘ oral presentation skills 

d) have the students gain experiences with power point 
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e) have the students appreciate that mathematics has been different from what it 

is today 

f) develop the students‘ awareness that mathematical results have evolved, that 

mathematics is not static, which is contrary to the way it is often presented 

g) develop the students‘ awareness that mathematics develops in an interplay 

with culture and society. (Wulff, 2004, p. 2-3; my translation) 

The objectives fall into two parts that cover all three of the above listed challenges of 

the reform: the first four address competence in independent study, the development 

for which problem-oriented project work is an excellent pedagogical tool, whereas 

the last three concern the history of mathematics requirements of the new 

mathematics curriculum. Note that a)-c) and e)-g) are elaborated versions of some of 

the ICMI Study whys, see Fauvel and van Maanen (2000, pp. 205, 207, 211-212). 

The teacher orchestrated the students‘ project work in three stages:  

(1) The first stage was an introduction to Egyptian mathematics using a text from 

the students‘ textbook (Carstensen and Frandsen, 2002), where the teacher 

introduced the Egyptians‘ method of multiplication by repeated doubling, their 

number symbols, and their way of formulating problems (two lessons). 

(2) The introduction was followed by eight lessons during which the students 

worked in teams of four, guided by a description of  

i) the problem formulation, which was given by the teacher (see below);   

ii) the learning objectives; iii) the product; iv) the topics for the teams.  

The teams worked independently. The teacher took the role of a consultant who 

could be called in for advice. When that happened he focused on posing 

questions and challenging the teams instead of providing answers. The problem 

formulation for all teams was: How and why did the Egyptians calculate? Each 

team worked with a chapter from a textbook on Egyptian mathematics 

(Frandsen, 1996), seven chapters all together treating their numerals, their 

methods for arithmetical operations, the 2/n-table, bread and beer (Pesu) 

exercises, equations and geometry. To have a whole textbook on an episode 

from the history of mathematics in Danish is a rare circumstance, and one of the 

reasons why Egypt was chosen for this project work.  

(3)  Each team had to present its results for the rest of the class in an oral 

presentation supported by a power point presentation. This took up four lessons. 

The first set of learning objectives deal with issues of enhancing students‘ 

independent study skills. In his evaluation the teacher emphasized in particular that 

the students acquired the mathematical knowledge of the Egyptians by themselves 

(in contrast to ordinary teaching where he explained everything), that they ―cracked 

the code‖ themselves, and that they were conscious about it. Regarding item e) and f) 
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of the second set of learning objectives, the teacher wrote: ―they were all about 

gaining insights into current mathematics precisely by studying the mathematics of 

another time‖ (Wulff, 2004, p. 3), from which we can infer that the teacher used a 

pragmatic approach to history. He used past episodes of mathematics from a utility 

perspective. This also becomes clear from his description of a discussion that took 

place between him and the students during the introduction: ―Already during the first 

module [the first two lessons] came the classical question, why are we going to learn 

this? And we had a good talk about the intended learning issues e), f), and g), during 

which the class apparently accepted that historical mathematics, besides being 

interesting as such, could contribute to a more nuanced view on current 

mathematics.‖ (Wulff, 2004, p. 5). Regarding the learning objective of realizing that 

mathematics has evolved over time, the teacher was rather critical, explaining that 

this aspect was not really complied with, since a comparison of Egyptian and modern 

mathematics only shows that mathematics has changed; it does not give insights into 

the actual process of change. Regarding the last item g) of the second part of the 

learning objectives, the teacher wrote in his evaluation: ―here is where the subject of 

history can be involved. From a general knowledge about Ancient Egypt and its 

society, students can discuss how society and culture have been driving forces for the 

mathematics of that time. At the same time the historians‘ method of source criticism 

is an essential tool for interpreting ambiguous and defective papyri‖ (Wulff, 2004, p. 

4). In contrast to items e) and f) the teacher here takes a scholarly approach to 

history. The teacher used the past from an observer perspective in both approaches. 

The students‘ work with the sources and exercises in the textbook on Egyptian 

mathematics to answer the ―How‖ part of the problem formulation can be considered 

a ―living history‖ approach. They put themselves in the place of Ancient Egyptians, 

trying to understand and learn how they calculated, how they dealt with geometry, 

how they proposed mathematical problems, and so forth. The teacher reported the 

following situation he observed in the classroom: ―Many students wondered about 

how ―stupid‖ the Egyptians were. Why did they only use unit fractions? Why should 

a number be expressed as a sum of different unit fractions? On the other hand their 

methods were very difficult to understand; that is rather advanced, so in that respect 

they weren‘t stupid at all. I think that many of the students realized that current 

mathematics is not ―just‖ like today, but is a result of a long development, during 

which many things have been simplified.‖ (Wulff, 2004, p. 7). This shows a 

development of historical awareness among the students. That the students‘ learning 

strategies were developed through this kind of ―living history‖ approach can be 

inferred from the following observation made by the teacher: ―This [that 

mathematics had made progress] became especially obvious when the students 

constantly rewrote the Egyptian notation to current notation with x‘s, formulas, etc. 

After they had finished an Egyptian calculation they would say: ‗but that just 

corresponds to …‘ followed by a solution of an equation in our way. It was very 

inspiring to see how students, who normally were a bit alienated towards x‘s and 
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equations now had taken those to themselves as their own, and all of a sudden 

perceived equations as an easy way to solve problems. The students became aware 

that modern notation makes the calculations much easier than they would have been 

otherwise‖ (Wulff, 2004, p. 7). 

As mentioned above the teacher found that item g) in the list of learning objectives, 

which was supposed to link the development of mathematics with a scholarly 

approach to history, was not realized. The ―why‖ part of the problem formulation 

was designed especially towards this goal. The mathematics teacher had hoped that 

the students would have been able to experience concrete examples of how needs of 

society sometimes act as driving forces for the development of mathematical ideas. 

This is a very ambitious goal, and since the history teacher focused more on religion 

and dynasties, the mathematics teacher felt that the students did not get opportunities 

to gain real insights into why mathematics was developed in interaction with the 

needs of society and culture. A less ambitious teacher would probably evaluate this 

part differently, pointing towards the fact that was explained above, that the students 

gained genuine historical knowledge about Egyptian mathematics situated in the 

proper historical context. Finally, the teacher concluded that the students afterwards 

showed signs of possessing a more mature and reflective approach to mathematics 

than they had before. Unfortunately, the teacher did not document this with 

observations from the classroom.  

CONCLUDING REMARKS 

The purpose of the paper was to present a theoretical framework for a systematic 

analysis of the uses of history for teaching and learning mathematics in order to 

propose a didactical transposition of history from the academic research subject to 

history in mathematics education. The analysis of the teacher‘s report on the project 

work on Ancient Egyptian mathematics with respect to the described framework of 

different uses of past episodes shows that in this project, history was used in 

different ways to provide a very rich teaching and learning environment. The teacher 

used different approaches to history and used past episodes from various 

perspectives for different purposes, thereby creating learning situations that 

developed students‘ historical awareness and mathematical learning strategies at the 

same time. History was used in ways in which students gained genuine historical 

insights, developed learning strategies, and enhanced their mathematical problem 

solving skills even though they worked on mathematics that might not be part of the 

core curriculum. 

NOTES 

1
 I would like to thank Costantinos Tzanakis for helpful comments on an earlier version of this paper. 

2
 A fourth pair of concepts is identity neutral vs. identity concrete history writing, which will not be used in 

this paper. 
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The ICMI Study volume ―History in Mathematics Education‖, published in 2000, 

includes a comprehensive list of arguments for integrating history in Mathematics 

Education (ME) and methodological schemes of how this can be accomplished. 

Recently Jankvist distinguished between using ―history-as-a-goal‖ and using 

―history-as-a-tool‖ to classify the above arguments. Independently, Grattan-

Guinness distinguished between ―history‖ and ―heritage‖ in the hope that –among 

other things- this will help to understand better which history is expected to be 

helpful and meaningful in ME. We attempt to connect these two conceptual 

―dipoles‖, aiming to provide in this way a finer and deeper classification of the 

arguments and methodological schemes for integrating history in ME that will serve 

as an appropriate theoretical framework.    

Keywords: History, Heritage, History–as–a-tool, History–as-a-goal, complementary 

RATIONALE AND BASIC IDEAS 

In the last decades, there is a worldwide growing interest in integrating the history of 

mathematics (HM) in mathematics education (ME). Several attempts have been 

made, education material has been produced, empirical research has been conducted, 

methodological schemes have been invented & implemented and arguments for this 

integration have been put forward to refute possible objections and/or to enhance the 

interest of the ME community in this direction. For a long time, there were no 

coherent theoretical ideas and framework to place, see and compare all these 

activities. A serious attempt in this direction is the comprehensive ICMI Study 

volume (Fauvel & van Maanen 2000). In particular, it presents a comprehensive list 

of the arguments for integrating the HM in ME (the whys)1 and the general ways of 

how to accomplish this task (the hows)1, in the sense that the whys correspond to 

tasks that one attempts to accomplish and the hows correspond to methodological 

approaches one could follow. 

Since then, further important work followed, however:  
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Jankvist (2009a, b, c, d) has reconsidered the whys and the hows. He made the 

distinction between two broad ways to introduce the HM in ME, namely in his 

terminology,  

- History as a tool emphasising inner issues in Mathematics (in-issues), and 

- History as a goal emphasising meta-perspective issues in Mathematics (meta-issues) 

and attempted to classify the whys using this distinction (Jankvist 2009a §§2.3, 8.1, 8.5; 

2009b §1.1; 2009c §§2, 3), which constitutes the first conceptual dipole, in the context of 

the present paper
2
.  

Moreover, he attempted to classify the hows according to his 3-fold distinction of 

possible implementations: illumination approaches, modules approaches and 

history-based approaches and to connect them to the above conceptual dipole 

(Jankvist 2009a §§2.4, 2.6, 2009c §§6, 9). 

Independently, Grattan-Guinness (2004a, b) introduced in a more general context the 

distinction between ―history‖ and ―heritage‖, to interpret mathematical activities and 

their products, in an effort to clarify existing conflicts and tensions between a 

mathematician‘s and a historian‘s approach to mathematical knowledge. Grattan-

Guiness (2004b) gives several examples by contrasting the general characteristics of 

the two concepts. This is our second conceptual dipole. It could be an important 

tool to revisit the issue of ―which history is appropriate to ME?‖ (see e.g. Barbin 

1997).  

As we will argue, within each dipole, the two ―poles‖ are complementary
3
 to each other, in 

the sense that they are mutually exclusive for a simultaneous use, but none of them, taken 

alone, can lead to a sufficiently wide and deep enough understanding of what (a specific 

piece of) mathematics is; instead both are necessary to understand mathematics as a 

cultural endeavour & human intellectual activity, either didactically or/and 

epistemologically. We stress at this point that ―mutually exclusive‖ should not be understood 

in its strictly logical sense, but rather in Bohr‘s broader sense
4
. Here, ―complementarity‖ has 

to do with the fact that within each dipole, each pole focus on a particular aspect of what 

mathematics and its development are, but none of these emphases is sufficient for that if 

taken alone and an extreme version of each one of them leaves no space for the others. 

The key idea and aim of this paper is to classify the ICMI Study whys and hows in a finer 

way, by projecting them onto the 2X2 grid formed by the two dipoles, thus getting ―… a 

clear[er] idea about why history should be used in a given situation; i.e. what whys the use of 

history should fulfill…‖ and which are suitable options of hows (Jankvist 2009c p.256). 

Connecting the two dipoles in this way may contribute to clarify their relevance to ME and 

provide a finer conceptual framework to integrate HM into ME. However, this 2-

dimensional classification is tentative, possibly subject to modifications, as specific 

realizations & examples of the whys and the hows are examined how they fit into it. 
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The paper is structured as follows: A concise description of each dipole is given in the next 

section, with reference to distinctions similar to the History-Heritage dipole found in Fauvel 

& van Maanen 2000. The next two sections give a concise list of the ICMI Study whys and 

hows (together with Jankvist‘s 3-fold implementations), followed by the classification 

tables with brief reference to indicative examples that support this classifications, or reveal 

some possibly controversial aspects of them. Some final remarks are given in the last 

section. Due to space limitations, only the general ideas are presented, with specific 

applications to illustrate their use given in another paper (Thomaidis & Tzanakis, to appear). 

THE TWO CONCEPTUAL DIPOLES 

Jankvist introduced two broad ways (or purposes, as he calls them) in which HM could be 

helpful and relevant to ME: History-as-a-tool and History-as-a-goal, which are intimately 

connected with issues within mathematics (what he calls inner issues) and with issues that 

concern mathematics itself (what he calls meta issues). In his own words,  

―History-as-a-tool concerns the use of history as an assisting means, or an aid, in the learning 

[or teaching] of mathematics…. in this sense, history may be an aid both…‖
5
 ―as a 

motivational or affective tool, and… as a cognitive tool…‖
6
 ―[It] concerns… inner issues, or 

in-issues, of mathematics [that is] issues related to mathematical concepts, theories, disciplines, 

methods, etc.— the internal mathematics‖
7
.  

On the other hand,  

―History-as-a-goal does not serve the primary purpose of being an aid, but rather that of being 

an aim in itself… posing and suggesting answers to questions about the evolution and 

development of mathematics,… about the inner and outer driving forces of this evolution, or 

the cultural and societal aspects of mathematics and its history‖  (Jankvist 2009b §1.1). In other 

words, ―[It] concerns  … learning something about the meta-aspects or meta-issues of 

mathematics … [that is] issues involving looking at the entire discipline of mathematics from a 

meta perspective level‖ (Jankvist 2009c, pp239-240)
8
.  

This description makes clear that these two ways in which HM becomes relevant to ME 

are mutually exclusive, in the sense that the emphasis put on each are clearly different 

and to a large extent mutually incompatible. Nevertheless, it should be remarked that 

although ―history-as-a-goal ‗in itself‘ does not refer to teaching history of mathematics 

per se, but using history to surface meta-aspects of the discipline … in specific teaching 

situations, [it] may have the positive side effect of offering to students insight into 

mathematical in-issues of a specific history‖ (Jankvist 2009d, p.8). Conversely, using 

―history-as-a-tool‖ to teach and learn a specific mathematical subject may stimulate 

reflections of a meta-perspective nature extrapolated from the particular subject 

considered; that is, we may have a kind of anchoring of meta-issues into the in-issues 

that constitute the study of the subject (see Jankvist 2009b, §§5.3, 5.4, 6.1, 6.3 for more 

details and examples of this idea). These are important interrelations, stressing the 

indispensability of both the ―history-as-a-tool‖ and the ―history-as-a-goal‖ ways, which 
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thus constitute what we called earlier a coherent conceptual dipole.  

Quite independently, having in mind both historians and educators of mathematics, Grattan-

Guinness introduced the distinction between History and Heritage. More specifically:  

The History (Hi) of a particular mathematical subject N refers to ―… the development of N 

during a particular period: its launch and early forms, its impact [in the immediately following 

years and decades], and applications in and/or outside mathematics. It addresses the question 

‗What happened in the past?‘ by offering descriptions. Maybe some kinds of explanation will 

also be attempted to answer the companion question ‗Why did it happen?‘‖
9
. ―[It] should also 

address the dual questions ‗what did not happen in the past?‘ and ‗why not?‘; false starts, 

missed opportunities …, sleepers, and repeats are noted and maybe explained. The (near-

)absence of later notions from N is registered, as well as their eventual arrival; differences 

between N and seemingly similar more modern notions are likely to be emphasized‖
10

.   

On the other hand,  

The Heritage (He) of a particular mathematical subject N refers ―….to the impact of N upon 

later work, both at the time and afterward, especially the forms which it may take, or be 

embodied, in later contexts. Some modern form of N is usually the main focus, with 

attention paid to the course of its development. Here the mathematical relationships will be 

noted, but historical ones… will hold much less interest. [It] addresses the question ‗how did 

we get here?‘ and often the answer reads like ‗the royal road to me.‘ The modern notions are 

inserted into N when appropriate, and thereby N is unveiled... similarities between N and its 

more modern notions are likely to be emphasized; the present is photocopied onto the past‖ 

(Grattan-Guiness, 2004a, p.165). Although, Grattan-Guinness is mainly concerned with 

the implications of this distinction on the way past mathematics should be 

approached, he clearly indicates its relevance to ME (Grattan-Guinness 2004b, §1.6). 

He argues that ME can profit equally well from both Hi and He, urging for further 

exploration in this context, a fact that has not passed unnoticed (Siu 2006, p.273, 

Rogers 2009 pp.120-121, Schubring 2008, p.5). He also gives a detailed list of the 

differences between these two conceptions (Grattan-Guinness 2004b, §1.3), showing 

their incompatibility, summarized as follows: 

 ―The distinction between history and heritage is often sensed by people who study some 

mathematics of the past, and feel that there are fundamentally different ways of doing 

so. Hence the disagreements can arise; one man's reading is another man's anachronism, 

and his reading is the first one's irrelevance. The discords often exhibit the differences 

between the approaches to history usually adopted by historians and those often taken by 

mathematicians.‖ (Grattan-Guinness 2004b, p.8). 

 On the other hand, however, their indispensability in understanding the 

development of mathematics is clearly emphasized:  

―The claim put forward here is that both history and heritage are legitimate ways 

of handling the mathematics of the past; but muddling the two together, or 
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asserting that one is subordinate to the other, is not.‖ (I. Grattan-Guinness 2004b, 

p.8) 

Thus, the above quotations show that the two concepts are complementary in the 

sense of the first section, constituting the two poles of a coherent conceptual dipole. 

As far as HM in ME is concerned, the distinction between History and Heritage is 

related to the rationale underlying the distinction between pairs of methodological 

approaches put forward in the past, like explicit & implicit use of history, direct & 

indirect genetic approach, forward & backward heuristics (Fauvel & van Maanen 

2000, §7.3.2 and references therein), e.g.:  

When ―… HM is explicitly integrated, mathematical discoveries are presented in all 

their aspects. Different teaching sequences can be arranged according to the main 

historical events, in an effort to show the evolution and the stages in the progress of 

mathematics by describing a certain historical period … [When] ... HM enters implicitly, 

history suggests a teaching [approach], in which use may be made of concepts, methods 

and notations, that appeared later than the subject under consideration, keeping always 

in mind the general didactic aim, namely to understand mathematics in its modern form. 

… [It] does not necessarily respect the order by which the historical events appeared; 

rather, one looks at the historical development from the current stage of concept 

formation and logical structuring of the subject … they have a dual character…and both 

may be used…. in complementary ways … in an explicit integration of the HM, the 

emphasis is on a rough, but … more or less accurate mapping of the path network that 

appeared historically and led to the modern form of the subject; in an implicit 

integration [of the HM], the emphasis is on the redesigning, shortcutting and signalling 

this path network‖
11

 (Fauvel & van Maanen 2000, p.210; our emphasis).   

Hence, Grattan-Guiness distinction is potentially of great relevance to ME (as he 

himself points out; see also Rogers 2009), serving - among other things - to 

contribute towards answering the recurrent question ―Why history and which history 

is appropriate to be used for educational purposes?‖ (Barbin 1997).  

A CONCISE LIST OF THE WHYS & HOWS  

In this section we present concisely the list of the whys & hows according to the 

ICMI Study volume (Fauvel & van Maanen 2000, §§7.2, 7.3) and Jankvist (2009c, 

§6) that will be used in the next section.  

The ―ICMI Study whys‖   

The following are the areas in which the teaching and learning of mathematics 
can profit from integrating the HM in the educational process. 

A. The learning of Mathematics 

1. Historical development vs. polished mathematics: To uncover/unveil concepts, 

methods, theories etc. 
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2. History as a re-source: To motivate, to raise the interest, to engage the learner by 

linking present knowledge and learning process to knowledge and problems in the 

past.  

3. History as a bridge between mathematics and other disciplines/domains: From 

where and how did a great part of mathematics emerged? To bring in new aspects, 

subjects and methods.  

4. The more general educational value of history: To develop personal growth and 

skills, not necessarily connected to mathematics. 

B. The nature of mathematics and mathematical activity 

1. Content: To get insights into concepts, conjectures & proofs, by looking from a 

different viewpoint; to appreciate ―failure‖ as part of mathematics in the making; to 

make visible the evolutionary nature of meta-concepts. 

2. Form: To compare old and modern; to motivate learning by stressing clarity, 

conciseness and logical completeness. 

C. The didactical background of teachers 

1. Identifying motivations: To see the rationale behind the introduction of new 

knowledge and progress. 

2. Awareness of difficulties & obstacles: To become aware of possible didactical 

difficulties and analogies between the classroom & the historical evolution. 

3. Getting involved and/or becoming aware of the creative process of ―doing 

mathematics‖: To tackle problems in historical context; to enrich mathematical 

literacy; to appreciate the nature of mathematics. 

4. Enriching the didactical repertoire: To increase the ability to explain, approach, 

understand specific pieces of mathematics and on mathematics. 

5. Deciphering and understanding idiosyncratic and/or non-conventional 

approaches to mathematics: To learn how to work on known mathematics in a 

different (old) context; hence to increase sensitivity and tolerance towards non-

conventional, or ―wrong‖ mathematics. 

D. The affective predisposition towards mathematics 

1. Understanding mathematics as a human endeavour: To show and/or understand 

explicitly evolutionary steps. 

2. Persisting with ideas, attempting lines of inquiry, posing questions: To look in 

detail at similar examples in the past. 

3. Not getting discouraged by failures, mistakes, uncertainties, misunderstandings: 

To look in detail at similar examples in the past. 

E. The appreciation of mathematics as a cultural endeavour 
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1. To appreciate that mathematics evolves under the influence of factors intrinsic to 

it: To identify and appreciate the role of internal factors. 

2. To appreciate that mathematics evolves under the influence of factors extrinsic to 

it: To identify and appreciate the role of external factors. 

3. To appreciate that mathematics form part of local cultures: To understand a specific 

piece of mathematics through approaches belonging to different cultures. 

The ―ICMI Study hows‖ 

Below is a similar account of the hows for integrating HM in ME according to the 

ICMI Study volume, followed by that of Jankvist.  

1. Learning history by providing direct historical information 

Isolated factual information; historical snippets; separate historical sections; whole 

books and courses on history etc. 

2. Learning mathematical topics by following a teaching approach inspired by history 

Teaching modules inspired by history; worksheets based on original sources; historical-

genetic approach; modernised reconstructions of a piece of mathematics etc. 

3. Developing 

Awareness of the intrinsic nature of mathematical activity (intrinsic awareness) and 

(i) The role of general conceptual frameworks 

(ii) The evolutionary nature of all aspects of mathematics 

(iii) The importance of the mathematical activity itself (doubts, paradoxes, 

contradictions, heuristics, intuitions, dead ends etc); 

Awareness of the extrinsic nature of mathematical activity (extrinsic awareness) 

(i) Relations to philosophy, arts and social sciences 

(ii) The influence of the social and cultural contexts  

(iii) Mathematics as part of (local) culture and product of different civilizations and 

traditions 

(iv) Influence on ME through ME history.  

―Jankvist‘s hows‖ 

1. Illumination approaches:  Teaching and learning of mathematics, in the 

classroom or the textbooks used, is supplemented by historical information of 

varying size and emphasis. 

2. Modules approaches: Instructional units devoted to history, and often based on the 

detailed study of specific cases. History appears more or less directly. 
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3. History-based approaches: Directly inspired by, or based on the HM. Not dealing 

with studying the HM directly, but rather indirectly; the historical development not 

necessarily discussed in the open, but, often sets the agenda for the order and way in 

which mathematical topics are presented. 

Both types of hows correspond to possible implementations of the HM into ME, of a 

different character, however; the ICMI Study hows focus on different emphases, whereas, 

Jankvist‘s focus strictly on the adopted methodologies. Both are useful in the present 

context and will be further considered later. Their possible interrelations is an interesting 

issue needing further study, not to be done here.  

THE 2-D CLASSIFICATION OF THE WHYS & HOWS 

By taking into account the presentation of the conceptual dipoles above (in connection 

with the details provided in the corresponding references therein), a 2X2 table results, 

composed by the distinct elements of each dipole. Then, according to the description 

provided in the preceding section, each of the whys and hows can be placed in at least 

one cell, depending on how sharply and clearly it has been described in the 

corresponding references (Fauvel & van Maanen 2000, §§7.2, 7.3; Jankvist 2009c, §6).  

 History Heritage 

History as a goal (emphasis on meta-

issues)
12

 

C.2, C.3(?);  

E.1, E.2, E.3 

A.3;  

B.1, B.2; D.1 

History as a tool (emphasis on inner-

issues)[12]
 

A.3;  

C.1, C.3, C.4, C.5;  

D.2, D.3 

A.1, A.2;  

B.1, B.2(?); C.2, C.3;  

E.3 

Table 1: The classification of the ICMI whys 

In this way, classification scheme results, in which the two conceptual dipoles act as a 

―magnifying lens‖, either requesting a more complete description of each why and how, 

or/and providing a clearer orientation of the way each why and how could be 

implemented. This is explained below by means of some examples. 

Items appearing more than once are marked in green and those placed with reserve appear in 

red and an interrogation mark
13

. This suggests that the whys are not irreducible with respect to 

the two classification dipoles, but consist of simpler elements; hence, they should be further 

analysed and more sharply described. For instance, C.3 is a good example in this respect: It 

appears in three cells. According to the preceding section, it concerns the involvement and/or 

acquisition of awareness of the creative process of ―doing mathematics‖, by (i) tackling 

problems in historical context; (ii) enriching mathematical literacy; (iii) appreciating the nature 

of mathematics. Clearly, (i) is related to the History – History as a tool cell and (ii) to the 

Heritage – History as a tool cell (one is being involved into doing mathematics in historical 

context and in so doing improves his mathematical literacy, thus becoming more aware of 

what this intellectual activity has been through the ages). However, (iii) cannot be classified 

without ambiguity. Although it should be placed in the History as a goal row, this can be 
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accomplished by looking either at a subject‘s History, or Heritage. This argument needs 

further clarification. Moreover, A.4 is not easy to be placed in the table; it is necessary to be 

analysed further.  In view of such examples
14

, we think that most of the ICMI whys could 

be further sharpened, so that they are decomposed into ―irreducible‖ arguments, in the 

sense that they fall into only one cell of Table 1. But this remains to be shown and further 

work is needed (hence the tentative character of this and the other tables, mentioned in 

before). Similar comments hold for the other items as well. In this way, a finer 

classification of the whys becomes possible, to the extent that the classification dipoles 

have been determined as sharply as possible, of course. Clearly, this presupposes the 

detailed study of the whys and each conceptual dipole in the context of specific examples 

(cf. Tzanakis & Thomaidis, to appear). In addition, this and the following tables can be 

considered in relation to the target population to whom they are addressed; mathematics 

teachers; curriculum designers, producers of didactical material; mathematics teachers‘ 

trainers and advisors. That is, they can be useful to specify which entries are better suited 

to whom. 

 History Heritage 

History as a goal 

(emphasis on meta-

issues)[12]
 

Direct historical information 

Intrinsic awareness (ii) 

Extrinsic awareness (ii) 

Direct historical information 

Extrinsic awareness (i) (iii) (iv) 

History as a tool 

(emphasis on inner-

issues)[12]
 

Intrinsic awareness (i) (iii) 

Learning mathematical topics 

(explicit use of history) 

Learning mathematical topics 

(implicit use of history) 

 

Table 2: The classification of the ICMI hows 

The labels (i) to (iv) in this table refer to the corresponding items in §3.2.3 and provide 

another example of the ―irreducibility‖ idea mentioned above; the development of 

mathematical awareness has been described rather clearly in the ICMI Study volume, 

which allows for an unambiguous classification of its various aspects. The same holds for 

learning mathematical topics by following an approach inspired by history, either 

explicitly, or implicitly (cf. the last paragraph of the second section on the distinction 

between ―explicit‖ and ―implicit‖ use of history). However, this is not so for learning 

history by providing direct historical information, which is only briefly described. 

 History Heritage 

History as a goal (emphasis on 

meta-issues)[12]
 

Modules approaches Illumination approaches 

History-based approaches(?) 

History as a tool (emphasis on 

inner-issues)[12]
 

Illumination approaches 

Modules approaches 

History-based approaches 

Table 3: The classification of Jankvist’s hows 
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The table above suggests that Jankvist‘s hows constitute an interesting and 

promising identification of broad categories of approaches, which can be analysed 

into more sharply described approaches. We think that this is already apparent in the 

description given in Jankvist 2009c, §6.  

CONCLUDING REMARKS 

Due to space limitations, the paper is theoretical, with no illustrations of the 

classification schemes by means of specific examples. This is absolutely necessary, in 

order to check the validity of these classifications more thoroughly and to show how 

they can be useful in actual implementations (an example is given in Tzanakis & 

Thomaidis, to appear). This is a promising line of inquiry and expect that analysing 

specific examples in this context, the arguments for and approaches of integrating HM 

into ME will be sharpened and the importance and possible interrelation of the 

conceptual dipoles described here will be better revealed and understood. Finally, 

proceeding along the same lines, the objections against using HM in ME (e.g. as they 

appear in Fauvel & van Maanen 2000, §7.2, Siu 2006, §2) can be classified, as well.   

NOTES 

1. In Jankvist‘s (2009a) terminology. 

2. We use the term ―dipole‖, instead of a more directly interpretable one, like ―pair‖, to emphasize the deep interconnections 

between the two concepts, which reflects better their complementary character described below.  

3. The term ―complementary‖ is used in a way close to that introduced by N. Bohr to describe the microphysical reality 

and subsequently was raised to a general conceptual tool to understand reality (see Bohr 1934, 1958).  

4. E.g. Understanding biological systems requires a holistic view, whereas, understanding their biochemical processes needs a 

reductionist approach: Both are indispensable for a sufficiently wide and deep understanding of life phenomena, but it is impossible 

to put absolute emphasis on the one, without ―destroying the other (Bohr 1958, chs.2 &3).    

5. Jankvist 2009b §1.1.   

6. Jankvist 2009d, p8. 

7. Jankvist 2009c, p240. 

8. E.g. ―How does mathematics evolve in time and space? What forces and mechanisms cause the evolution of 

mathematics? How does the evolution of mathematics interact with society and culture? Can mathematics become 

obsolete?‖ (Jankvist 2009d, p.8). 

9. Grattan-Guiness, 2004b, p.7. 

10. Grattan-Guiness, 2004a, p.164. 

11. Careful reading of these quotations, reveals the co-existence of the two poles of each of the dipoles  (History, 

Heritage) & (History-as-a-tool, History-as-a-goal) 

12. Relating History-as-a-goal and History-as-a-tool with Inner-issues and Meta-issues, respectively is done keeping in mind the 

possibility of cross-interrelations mentioned in the third section! 

13. This convention is applied to all tables in this paper. 

14. Others could be similarly analyzed, but lack of space does not allow for that. 
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This study intends developing a valid and reliable instrument in order to determine 

pre-service mathematics teachers‘ attitudes and beliefs towards using history of 

mathematics in school mathematics courses. The data were collected at the 

beginning of the fall semester of 2010-2011 academic year from 237 teacher 

candidates in Turkey via Attitudes and Beliefs towards the Use of History of 

Mathematics in Mathematics Education (ABHME) Questionnaire developed by the 

researchers. The reliability coefficient of the ABHME was calculated as .91 and 

explanatory factor analysis revealed three factors: positive attitudes and beliefs 

towards the use of history in mathematics education, negative attitudes and beliefs 

towards the use of history in mathematics education, and self-efficacy beliefs 

towards the use of history in mathematics education. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

The origins of the attitudes and beliefs of teachers about teaching probably endure 

their school years as a student (Kagan, 1992). This idea stands on the ‗apprenticeship 

of observation‘ which basically means that teachers develop ideas about their 

profession when they were students (Lortie,1975). In addition to these opinions, it 

may be claimed that pre-service training programs have a leading role in the shaping 

of the attitudes and beliefs at issue. Among several elements constituting the 

education given in undergraduate programs, history of mathematics should take 

place for better professionally developed future mathematics teachers. In the 

literature, quantitative measurement instruments for accessing beliefs and attitudes 

toward using history in mathematics education are somewhat limited. Some of the 

existing relevant instruments are on some specific issues about the use under 

consideration. There are also instruments comprising few items which do not seem to 

be comprehensive enough to see the whole picture. Developing a versatile 

instrument measuring attitudes and beliefs of pre-service mathematics teachers 

towards the historical approach is crucial, because they are going to undertake 

today‘s teachers‘ educational missions in the future. Thus, this study aims to develop 

a valid and reliable instrument for investigating elementary mathematics teacher 

candidates‘ attitudes and beliefs towards the use of history of mathematics in 

mathematics education. With this purpose, the research question for this study could 

be stated as follows:  

 What could be the underlying constructs of Attitudes and Beliefs towards the 

Use of History of Mathematics in Mathematics Education Questionnaire? 
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The idea of using history in the learning and teaching of mathematics is not new; as 

it has been discussed since the beginning of the 20
th

 century (Fried, 2001). An 

historical approach enriches mathematics teachers‘ repertoire with its different 

usages (e.g., Mitchell, 1997; Tzanakis & Arcavi, 2000). It supplies meaningful 

examples of mathematical algorithms and methods, and offers semantic 

representations which enable students to see mathematical concepts from unusual 

perspectives (Furinghetti, 2007). It also supports the preparation of a classroom 

environment where students discuss the past of mathematics and mathematics as a 

discipline (Jankvist, 2010). Jankvist (2009) separated the reasons proposed in the 

literature in favour of using the historical approach into two main categories: seeing 

history of mathematics as a teaching tool, and seeing it as a goal in itself.  

Leder and Forgasz (2002) introduced that the concepts of attitude and belief were 

defined by different researchers in many times, and there are not common definitions 

of these. To achieve this study‘s goal, the concept of belief was considered in respect 

of Tôrner‘s study (as cited in Goldin, Rôsken, & Tôrner, 2009). From his 

perspective, beliefs are strongly related to affective aspects which include attitudes 

as an element. According to Philipp (2007), individuals‘ true-false dichotomies 

constitute their beliefs. It can be inferred that mathematics teachers‘ beliefs about a 

teaching method amount to their thinking about different components, applications 

and some other aspects of that method as true or false. In this study, historical 

approach in mathematics education corresponds to this teaching method. Philipp 

(2007) also stated that these ideas and dispositions of individuals are clarified by 

their behaviours. In other words, behaviours are reflections of individuals‘ emotions, 

actions and thoughts called as attitudes. It is possible that mathematics teachers‘ 

attitudes towards an instructional method reveal themselves as emotions, feelings, 

actions, and thoughts about that method. Thompson (1992) expressed that beliefs are 

sensed less densely, but more cognitively than attitudes. In her opinion, beliefs are 

structured more strongly than attitudes, so they are less changeable. It can be 

expected that individuals‘ expressions of their beliefs are more direct and certain 

than their expressions about the attitudes they have. With reference to Leder and 

Forgasz (2002), these kind of affective matters comprise the learning of mathematics 

as well as cognitive ones. In this sense, the teaching of mathematics could be 

influenced by affective domain because of that instructors also keep some thoughts, 

feelings, and emotions to the education which they give. Their beliefs and attitudes 

towards a teaching method are believed to determine the degree of benefiting from 

that method, and this will naturally have effects on the quality of instruction that they 

give. 

The inclusion of the history of mathematics in pre-service mathematics teacher 

training programs has been supported by mathematicians, mathematics educators and 

mathematics historians (Schubring, 2000). There are many studies on this matter in 

which pre-service teachers participated. Sullivan (2000) found that a positive change 
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is possible in prospective secondary mathematics teachers‘ attitudes towards the 

integration of history in mathematics education. In the context of Turkey, it was 

shown that prospective mathematics teachers‘ had high positive attitudes towards the 

historical approach (Oprukçu-Gônülateş, 2004). There are also studies regarding 

historical materials‘ usage. Fraser and Koop (1978) determined that in-service 

teachers liked historical materials, a play and an article, and find them appropriate 

for mathematics teaching. However, they brought up some concerns about 

considerable time required, and stated that they would not use such materials in their 

teaching. 

The elementary mathematics curriculum in Turkey draws attention to the importance 

of using history of mathematics (Ministry of National Education [MNE], 2009). It 

emphasizes that students must have an idea about the historical evolution of 

mathematics; its role on many scientific fields, its status and value in the 

development of human thoughts. It suggests carrying out mathematics projects on 

several domains of mathematics in which history of mathematics plays a part. In 

spite of the fact that history of mathematics has such a crucial place in the 

mathematics education, there are few studies conducted about it. Among these, it is 

necessary to consider the work of Oprukçu-Gônülateş (2004) as background to this 

study. She examined pre-service mathematics teachers‘ views about the integration 

of history of mathematics in mathematics courses and determined that they agreed on 

the benefits of the integration for getting high motivation in mathematics classes. 

They thought that it was more appropriate for motivational purposes than for 

conceptual development.  

METHOD 

Participants   

The data of the study were collected from 237 pre-service elementary mathematics 

teacher candidates (including 45 freshmen, 52 sophomores, 96 juniors, and 44 

seniors) purposefully sampled at the beginning of the fall semester of the academic 

year 2010-2011. The participants, who were 53 males and 184 females, have been 

attending elementary mathematics teacher education program in one of the large state 

universities in Ankara, Turkey.  

Measuring Instrument 

The measuring instrument developed for this study is a questionnaire entitled 

―Attitudes and Beliefs towards the Use of History of Mathematics in Mathematics 

Education (ABHME) Questionnaire‖. The ABHME consisted of two parts: the first 

is related to the demographic information such as gender, and grade level; and the 

second part consisted of 35 Likert type (where 5 corresponds to ―strongly agree‖ and 

1 to ―strongly disagree‖) items (including 13 negative and 22 positive expressions). 
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Those items were developed in order to measure pre-service teachers‘ attitudes and 

beliefs towards the use of history in the teaching of mathematics. 

In the very beginning of the instrument‘s development process, an item pool of 220 

items for the actual questionnaire was formed following a comprehensive review of 

the literature on the related field, and examining the existing instruments relevant to 

attitudes and beliefs towards the historical approach in mathematics education (e.g. 

Clark, 2006; Fraser & Koop, 1978; Oprukçu-Gônülateş, 2004; Percival 1999, 2004; 

Sullivan, 2000).  During this process necessary permissions were taken from the 

authors mentioned above. For ensuring the content validity of the instrument, three 

experts from elementary mathematics education field, and one expert in elementary 

science education field were consulted. Necessary corrections (like combining and 

deleting items) were made on the items and number of the items was reduced to 40 

after this process. The pilot study was performed with these 40 items which were 

related to teacher candidates‘ attitudes and beliefs towards the usability of the 

historical approach, its effects on the comprehension of the disciplinary structure of 

mathematics and the understanding of mathematical concepts, its contributions to 

their professional development, and their efficacy about using the history of 

mathematics in their own teaching. The questionnaire items were written by using 

statements in which the teacher candidates can choose the most appropriate response 

to their feelings, thoughts, and also possible actions which they would do towards 

the mentioned sub dimensions (such as the usability of the history in mathematics 

teaching, and the historical approach‘s contributions to their professional 

development) about the history use in mathematics education. The developed 

instrument‘s items which shelter strong expressions are closer to beliefs, and the 

items that contain less strong expressions are closer to attitudes. These were 

determined in accordance with Thompson‘s (1992) detachment approach among the 

two concepts as mentioned before. During this test item writing process, the 

difference between the concepts of attitudes and beliefs were not considered, rather 

these two very close concepts were dealt in the frame of the affective factors 

influencing the teaching and learning of mathematics as Leder and Forgasz 

suggested (2002). Thus, any item discrimination according to the concepts of attitude 

and belief was not expected to appear at the beginning of the instrument‘s 

development process as it was not the intention of this study. 

For investigating the instrument‘s validity and reliability, a software program named 

PASW Statistics 18 was used. Before the validity and reliability analyses, hot deck 

imputation was used to fill the missing values in the raw scores. The construct 

validity of the instrument was gained by factor analysis which intends to reduce great 

variable (item) sets to smaller component groups (Pallant, 2007). Exploratory factor 

analysis technique with the principal components factor extraction approach was 

utilized to clarify the dimensions of the instrument. Varimax rotation was selected to 

analyse each of the factors appeared, and minimum factor loading for an item to be 
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placed in a component was selected as .3. Before the factor analysis was performed, 

negative items were recoded.  

In Pallant‘s (2007) opinion, the number of factors can be limited if researchers think 

that a particular number is best describing the variables‘ interrelationships. Thus, the 

number of factors was limited to three for this study. After the factor analysis was 

conducted, the suitability of the data for this factor analysis was controlled by 

checking the assumptions, which are sample size, factorability of the correlation 

matrix, linearity, and outliers among cases, as Pallant (2007) offers. The underlying 

reason for designating the sample size is that it should be at least five times of the 

number of the items in the instrument. In other words, five cases are enough for each 

item in the questionnaire (Tabachnick & Fidell, 2007). In this study, the instrument 

formed of 40 items was applied to 237 participants, so this sampling is adequate in 

number. The factorability of the correlation matrix (strength of the relationship 

among items) was assessed by examining the correlation matrix, Kaiser-Meyer-Olkin 

(KMO) measure of sampling adequacy, and Bartlett‘s test of Sphericity. The 

correlation matrix clarified some correlations of r=.3 or greater among many item 

(variable) pairs, Bartlett‘s test of Sphericity was found significant (Chi-Square 

χ
2
=3447.582; p=.000), and the KMO value was calculated as .871. These are 

indicators of that the data were appropriate for factor analysis (Tabachnick & Fidell, 

2007). It would not be a problem that the linearity assumption was not checked 

because the sample size was high enough (Pallant, 2007). The data were screened for 

outliers, but none could be found. After the assumptions were checked and it was 

understood that there was no problem with conducting the factor analysis, the values 

concerning the factors were analysed. Moreover, factor loadings of the items were 

examined with the help of the rotated component matrix in order to make a decision 

about each component‘s items and determine whether any item should be taken out 

of the instrument or not. The values regarding the factors can be seen in Table 1 

below:  

Factor 
Initial Eigenvalues 

Total % of Variance Cumulative % 

1 9.893 24.733 24.733 

2 2.893 7.234 31.967 

3 2.466 6.166 38.133 

Table 1: The values related to the factors (components) 

It can be inferred from the table that the three factors explain a total of 38.133 per 

cent of variance. Moreover, the three envisaged components before the factor 

analysis have appeared with 4 items (Factor 3) or more. With respect to Pallant‘s 

view (2007), at least three items loading on each component are sufficient. 

Furthermore, an item‘s maximum factor loading to a component should be at least .1 

greater than its factor loading to the other components (Büyükôztürk, 2002). When 
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the maximum factor loadings for each item were examined, it was seen that the 

maximum factor loading of the item ‗38‘ was .155 to the second factor. Because of 

that an item‘s factor loading to a component was selected as at least .3 previously, 

the item 38 was extricated from the instrument. There are also 5 items whose largest 

factor loading to a component was not .1 greater than its factor loading to other 

components. Therefore, they were removed from the instrument, as well. The 

reliability was ensured by calculating Cronbach Alpha coefficient as .905. This value 

indicates very good internal consistency reliability for the instrument (George & 

Mallery, 2001). 

After the problematic items were removed from the questionnaire, the same 

statistical process was conducted for analysing validity and reliability again. It was 

seen that the three factors of the finalized questionnaire (35 items composing of 3 

factors) explained a total of 39.711 per cent of the variance, Bartlett‘s test of 

Sphericity was found significant again (Chi-Square χ
2
=2870.341; p=.000), and the 

KMO value was calculated as .875 this time. The Cronbach Alpha coefficient was 

.902, which addressed a high reliability. When the contents of the items placed in 

each component were examined by considering the field of history in mathematics 

education and some instrument development studies about social sciences (e.g., 

Cantürk-Günhan & Başer, 2007; Turan & Demirel, 2009), a meaningful pattern was 

established among the components. In respect of this pattern, the factors were 

defined. The first component is ―Positive Attitudes and Beliefs towards the Use of 

History in Mathematics Education‖ including positive items of the instrument. The 

second factor is ―Negative Attitudes and Beliefs towards the Use of History in 

Mathematics Education‖ corresponding to the negative items. The third and last 

factor is ―Self-efficacy Beliefs towards the Use of History in Mathematics 

Education‖ corresponding to items about an individual‘s self-efficacy, which is 

criticism on his/her own proficiency about overcoming tasks specified beforehand 

(Bandura, 1997). The items related to attitudes and beliefs were not separated by 

these underlying factors of the instrument as the researchers expected before. Three 

sample items from each of these factors can be seen in Table 2 below: 

Item  Name of the Factor 

Learning the history of mathematics enriches teacher candidates‘ 

professional repertoire.  

Positive ABHME 
Pre-service teachers must be given courses about how to use the 

history of mathematics in mathematics education. 

The history of mathematics makes students to notice that 

mathematics is a universal product. 

It is difficult to integrate history in mathematics education. 
Negative ABHME 

 
Using the history in mathematics education causes students to lose 

their enthusiasm for mathematics. 
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Including history in mathematics education hinders mathematics 

teaching. 

I do not have an idea about how to use historical materials. Self-efficacy Beliefs 

towards the Use of History 

of Mathematics in 

Mathematics Education 

(SBHME) 

 

I do not know how to integrate history in mathematics teaching 

process. 

I do not have enough information about the historical evolutions of 

the concepts which I will teach in the future. 

Table 2: Sample items from each of the factors 

RESULTS AND DISCUSSION 

The aim of this study was to construct a valid and reliable instrument measuring pre-

service elementary mathematics teachers‘ attitudes and beliefs towards the use of 

history of mathematics in mathematics education. The conducted factor analysis 

eliminated some of the items (1, 2, 29, 37, and 38) and terminated the number of the 

items as 35. It also showed that 22 items were gathered under the component 

‗Positive ABHME‘, 9 items were collected under the component ‗Negative 

ABHME‘, and 4 items formed ‗SBHME‘ component. When the possible underlying 

reasons of the separation of these components are thought, it can be said that a 

difference existed between in favour of and opposed to the attitudes and beliefs of 

the teacher candidates towards the expressed mathematics teaching approach, and the 

pre-service teachers have a perception about to what degree they are able to use 

and/or integrate history in mathematics education. Moreover, the instrument was 

found to have very good reliability (α=.9), which is an indication of high internal 

consistency among the items. The validity and reliability of it is open to being 

ensured by other researchers via following the similar procedure mentioned in the 

method section of this paper.  

To bring in such an instrument to the literature is believed to inspire the researchers 

interested in this field for producing studies regarding the attitudes and beliefs 

towards the use of the history of mathematics for the teaching of mathematics either 

with pre-service elementary or secondary mathematics teachers. If it is adopted (e.g. 

by deleting and adding some items, changing some of the items‘ words written 

particularly for teacher candidates) properly, it can also be used with in-service 

mathematics teachers since the contents of the items are focused on teaching 

mathematics with its history. In order to advance the investigations of this field, the 

researchers may benefit from the instrument as an attachment of an experimental 

study concerned with the use of history in mathematics education in order to reveal 

potential effects of interventions on the attitudes and beliefs towards the teaching 

approach in question. Survey research also can be conducted with the scale in order 

to form an opinion about the attitudes and beliefs towards the historical approach 

usage of both pre-service and in-service teachers. Moreover, future studies will make 
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some important contributions to the research conducted in the field of using history 

of mathematics in the teaching and learning of mathematics, and take attention of 

those concerned with mathematics education to this approach some more. 

Additionally, the results gained via using the instrument by future research projects 

would have valuable implications for teacher educators, education policy makers and 

curriculum developers in designing curricula for mathematics education at different 

levels.  
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IMPLEMENTING ‗MODERN MATH‘ IN ICELAND – 

INFORMING PARENTS AND THE PUBLIC 

Kristín Bjarnadñttir 

University of Iceland – School of Education 

‗Modern math‘ was implemented in Icelandic schools at all levels in the 1960s. It 

was introduced to parents at meetings and by media articles, interviews and a 

television programme in 17 episodes. It is argued that the information was presented 

by unrealistic convictions of the value of the ‗modern math‘ programme, that the 

timing of the presentations was sub-optimal, and that more information was needed 

when the programme had reached the majority of primary-level.  

INTRODUCTION 

In the 1950s questions arose in many countries about mathematics teaching. In 

November 1959, the OEEC (later OECD) arranged a meeting on reform of school 

mathematics in Royaumont, France (OEEC, 1961), whereby reform ideas turned into 

an international movement. The dominant idea was that the theory of sets, uniting the 

various branches of mathematics, be the basis for school mathematics. This reform 

movement is commonly referred to as ‗modern mathematics‘.  

The ‗modern math‘ movement hit Iceland at a standstill state (Bjarnadñttir, 2006). 

The Education Act of 1946 ensured compulsory schooling of all children aged 7–15 

and equal access to higher education, while the legislator failed to ensure university 

access for primary teachers. There was a serious shortage of secondary school 

mathematics teachers (OECD, 161, p. 158; Bjarnadñttir, 2007, 184–192, 238–239). 

Research revealed that mathematics and science syllabi for 13–15 year old pupils, 

who had only eight month schooling a year, were behind those in the other Nordic 

countries (Bjôrnsson, 1966). Primary level mathematics textbooks created in the 

1920s were still in use. Textbooks were then, as now, produced by a state enterprise, 

which was in a serious financial crisis at that time.  

A reason often mentioned for implementing the ‗modern math‘ was the fear to lag 

behind other countries in a progress towards modern society, e.g. in England:  

... topics as the algebra of sets or relations might be taught with a profit ... lower down the 

school ... In other countries they are learning how to do this, and unless we learn too we 

shall be left behind (Mathematics Teaching, 1958; Cooper, 1985, p. 76)  

This view was reflected in Iceland: ‗... we have to protect our honour and interests in 

the cultural competition of today‘ (Sigtryggsson, 1964, p. 146), and in Brazil: ‗The 

teaching of mathematics had to be modern, such as Brazil wanted and expected to 

be‘ (Börigo, 2008).  

The implementation of ‗modern math‘ in other countries has been examined, e.g. in 

Denmark, Norway and England (Høyrup, 1979; Gjone, 1983; Cooper, 1985). This 
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study is an extension of a larger study on the implementation of modern math in 

Iceland (Bjarnadñttir, 2007), focussing on its publicity, such as information offered 

to Teachers, parents and the public.  

Questions to be explored are: What went wrong in the implementation of the 

‗modern math‘? Was the timing of the publicity process wrong, or was the ‗modern 

math‘ a cause too weak to defend? 

The questions are of interest, not only to understand the past, but also for the present. 

Much time, effort and resources are devoted to centrally organized curriculum 

development for the relatively small market in Iceland, with about 4000 children in a 

year cohort. How should the limited means be allocated? There are issues regarding 

the quality of content and material, and the publicity to teachers, parents and 

providers of funds. The study might offer some hints of relevance. 

THE RESEARCH METHOD 

The research method is historical; searching information in newspapers, journals, 

leaflets, archive documents, and by personal communication in emails and telephone 

interviews. The interviewees are a sample of convenience. In a small society as in 

Iceland, it is relatively easy to contact persons, who are likely to provide relevant 

information, through family, colleagues and acquaintances. Widespread newspapers 

have been digitalized so access to printed discussion is relatively easy. The sources 

found may therefore reflect enthusiasm and subsequent regrets rather convincingly.   

 ‗MODERN MATH‘ IN ICELAND 

After the Royaumont meeting, the Nordic countries – Denmark, Finland, Norway 

and Sweden – established cooperation on school mathematics reform, each 

appointing four persons to a Nordic committee for modernizing mathematics 

teaching, Nordiska kommittén for modernisering af matematikundervisningen 

(NKMM) (Gjone, 1983, II, p. 78). Information from the NKMM was transmitted to 

Iceland through personal contacts. Mathematics professor Svend Bundgaard, the 

main advocate for ‗modern math‘ in Denmark, was a friend of Guðmundur 

Arnlaugsson, associate professor and high school mathematics teacher, educated in 

Copenhagen; and Agnete Bundgaard, primary teacher and the author of a ‗modern 

math‘ textbook series for primary level on behalf of the NKMM, was Svend‘s sister.  

Arnlaugsson became a leader of those concerned about mathematics education. His 

activities were in several steps: In 1964 he asked to be appointed as consultant in 

mathematics teaching at the Ministry of Education in a half-time position, to 

continue until 1966 (Minister Gylfi Þ. Gíslason, personal communication, Jan. 10, 

2002). He organized week-long in-service courses for teachers on the ‗modern math‘ 

from 1965. In 1966 he published a textbook, Numbers and Sets, (Arnlaugsson, 1966) 

on introduction to numbers and set theory. The book was intended for college bound 

students preparing for a national entrance examination into high schools and was 
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tested in 1966–1968. Finally, Arnlaugsson suggested the textbooks by Agnete 

Bundgaard to be translated and tested in seven groups in two primary schools in 

Reykjavík during 1966–1967.  

The primary school project was planned with regular meetings of the two project 

leaders and the teachers, and with meetings to inform parents. In spring 1967 the 

project was presented to headmasters of primary schools in Reykjavík, who became 

enthusiastic with the majority wishing to adopt it in their schools. By the time the 

series was chosen, only the first year-course had been finalized in Danish, the second 

year-course been tested for two years and the third was being tested for the first time 

(K. Gíslason, 1978) so it was not known how the project would proceed.  

The latter part of the series turned out to be highly theoretical (Høyrup, p. 59). The 

commutative and associative laws, Roman numerals and place-value notation to the 

base five, prime numbers, permutation of three digits and the transverse sum together 

with its relation to the nine times table were introduced in the third grade. Set theory 

with pairing, subsets, intersection and union, more place-value systems and geometry 

in a set-theoretical framework were added in fourth grade. Last but not least, there 

were algorithms that were different from those Icelanders were accustomed to, 

especially the multiplication algorithm (Bundgaard, 1967–1972).  

PUBLIC INTRODUCTION TO THE ‗MODERN MATH‘ 

The first presentation of the ‗modern math‘ to the public was characterized by 

optimism. Articles were written and a television programme was made to introduce 

the modern ideas, to parents in particular. Later sources indicate concerns.   

An interview with one of the project leaders, K. Sigtryggsson, was published in 

Foreldrablaðið / Parents‘ Journal in 1967. Only the teaching methods were being 

changed, not the content, he said, while some topics were introduced earlier than 

before. Mechanical working methods had been overly emphasized at the expense of 

discussions of basic mathematical concepts, training of logical thinking and accuracy 

in presentation. Finally, children were to have no homework (Stefánsson, 1967). 

Later that same year, 86 teachers attended a course to prepare for teaching the new 

syllabus to the majority of first grade pupils in Reykjavík (NN1, 1968, p. 95). The 

leaders did not have capacity to keep in contact with all the teachers and arrange 

information to parents. The television programme that autumn must have been 

expected to reach a greater number of parents than possible otherwise.  

By April 1968, around 200 secondary school pupils gathered outside the parliament 

building with protest banners, claiming ‗Down with obsolete textbooks‘, ‗Better 

teaching methods‘, ‗We are not parrots‘, ‗No dry-book learning‘ and ‗Youth today is 

the public tomorrow‘. The protest was peaceful and Minister of Education, Gylfi Þ. 

Gíslason, invited members of the group to his office and discussed with them for 

most of the day. Benedikt Grôndal, Member of Parliament, spokesman of the 
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minister, recited this event in a semi-yearly general political radio discussion, 

admitting that much was needed in the school system, while listing what had been 

achieved in modernizing it. ‗Modern math‘ was taught widely, and the public 

television had brought information to parents. Televised teaching was a topic of the 

near future (Grôndal, 1968). The government thus used the televised teaching to 

indicate its constructive reactions to criticism of a longstanding standstill state.  

In 1970 a newspaper, Morgunblaðið, published an interview with the textbook 

author Agnete Bundgaard and her colleague, Karen Plum, who had visited Iceland to 

give a course to 65 teachers (NN2, 1970). By then the ‗modern math‘ material was 

used in 141 classes in the first four grades in primary schools. Bundgaard stated that 

the main emphasis was on promoting the pupils‘ understanding of the nature of their 

tasks and on training them in using their own logical faculties. The ‗modern math‘ 

had been introduced in many countries and had influenced the way of teaching 

mathematics. The experience of other nations suggested that its concepts and 

symbols would be of great use in training pupils in clear thinking and 

communication. The ‗modern math‘, Agnete Bundgaard said,  

is as a new language, totally different from the mathematics the parents of modern 

school-children learnt themselves. Many parents have a hard time in accepting being 

unable to know exactly what their children are working on at school and assist them. But 

it can have very bad consequences for the child if its parents are trying to help, more 

willing than able to guide the child. This can lead only to confusion. Therefore it has been 

decided to not to assign homework to the children and even not allow them to bring their 

books home. However, in order to increase parents‘ understanding of what their children 

are working on, special books have been published, admittedly not available in Icelandic, 

where the new mathematics is explained. It should pacify the parents until the moment, 

when the children have reached enough understanding of the project to be able to explain 

to their parents what is happening there (NN2, 1970, pp. 23–24). 

Plum added that the ‗modern math‘ had caused dispute in many places, and that  

many years will pass until its advantages can be proven statistically, since all comparison 

is difficult. But surely the ‗modern math‘ teaches children to think logically and ... logical 

thinking will always be necessary ... children ... like the ‗modern math‘ and they show 

more interest than do children at the same age, who learn by the old methods ... (Ibid.) 

This period was characterized by great confidence in experts and the mistrust to 

parents in the case of school mathematics was not unique. Parents were asked to 

refrain from teaching their children to read as this would be taken care of by experts 

in schools, and parents were e.g. not allowed to visit their hospitalized children. The 

request that parents did not interfere with school assignments was thus not unique. 
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THE TELEVISION PROGRAMME 

To promote the compulsory school ‗modern math‘ project, Arnlaugsson gave a series 

of seventeen episodes in a television programme on school mathematics during 

October 1967–January 1968. Each episode lasted about 15–18 minutes. It was sent 

out during prime time at 20:50 after the foreign news report each Tuesday.   

Copies of the programme do not exist anymore. All remarks on it are therefore from 

memory. There was a tradition of adult education in foreign languages on the public 

radio so mathematics on television was a natural analogue. In this second year of 

domestic television broadcasting, over 92% of 10–14 year old children in Reykjavík 

and Vestmannaeyjar reported in a sociological survey that their homes had a 

television set, while the broadcasting had not reached further than the south and 

south-west area of Iceland (Broddason, personal communication, Aug. 23, 2010). 

The author of this paper had no TV-set and could only watch a few episodes of the 

series, but with great interest, as a student mathematics teacher. Most owners of TV-

sets at that time and parents or teachers of school children are now past seventy and 

they and their then adolescent children are the few likely to remember the content. 

Among them are Vilhjálmur Bjarnason (personal communication, Aug. 28, 2010), 

Jñn I. Magnösson (Sept. 2, 2010), Guðný H. Gunnarsdñttir (Sept. 3, 2010) and 

Jñnína V. Kristinsdñttir (March 4, 2011) who agree, as this author does, that the 

content was closely connected to Arnlaugsson‘s textbook, Numbers and Sets; that is 

introduction to numbers, their divisibility, prime numbers 

and prime factoring, and number notation in place-value 

systems to various bases, such as 6, 8 or 2. The binary 

system received special attention with respect to the new 

computer technology. Definitions of set operations, open 

sentences, implications, negations, introduction to 

Boolean algebra, etc., followed (Arnlaugsson, 1966).  

Figure 1. G. Arnlaugsson on the TV-programme. 

The programme was well reviewed in the newspapers. The picture in Fig. 1 was 

attached to the television programme schedule in one of the newspapers along with 

the remark that Arnlaugsson‘s programme had been very well received and many had 

expressed that they had learnt quite a lot from it. A special TV-leaflet introducing the 

programme remarked twice (NN3, 1967) that the episodes were excellent, 

Arnlaugsson was a born TV-celebrity and the explanations were clear.  

Magnösson, then 14 years old, now mathematics professor, and Bjarnason, 15 years, 

now lecturer in economics, remember that they watched the programme closely, as 

did their fathers, both teachers, but their mothers did not. The programme had 

without doubt a good influence on a group preparing for an entrance examination 

into high school, using Arnlaugsson‘s text on experimental basis. The group 

included Bjarnason, who remarked that he liked the base-two algorithms and the 
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Boolean algebra, and the implications were a revelation to him. His classmate, J. V. 

Kristinsdñttir, now lecturer in mathematics education, noted that their teacher had 

discussed topics from the programme, and she, J. I. Magnösson and G. H. 

Gunnarsdñttir, also lecturer in mathematics education, remember also that their elder 

siblings, then in high school, watched the programme attentively. In general, the 

programme had a good reputation in their homes, theoretical as it was.  

Much later Professor Magnösson (1996) wrote in memory of Arnlaugsson on behalf 

of the Icelandic Mathematical Society: ―His programs on the television about ... 

‗modern math‘ are ... unforgettable, and many people were as glued to the TV-set 

when they were programmed‖. 

Different opinions were also voiced. The reporter of the foreign news report (A., 

personal communication, September 19, 2010), remembers a feeling of inferiority 

being unable to assist his children with this new math, and the managing director of 

the broadcasting service (G., personal communication Sept. 23, 2010), said that the 

series did not appeal to him, and he preferred the old math.  

REACTIONS TO THE ‗MODERN MATH‘ 

By the time of Bundgaard and Plum‘s visit, authorities had realized that things were 

going wrong; the mathematics teaching experiments in the primary schools had 

become far too extensive, too difficult to run with respect to guidance to teachers, 

and even in a few cases close to being disastrous (R. Bjarnadñttir, personal 

communication, Sept. 16, 2003). A School Research Department, SRD, of the 

Ministry of Education had been established. It laid down a certain procedure for 

adopting school reforms; i.e., to set goals, write national curricula, and from there 

compose learning material on an experimental basis. In the crisis that had emerged, 

the department decided in 1971 to skip the goal-setting and curricular-writing steps, 

and go directly ahead to create a new set of home-made mathematics textbooks 

(Ísaksson, personal communication, March 10, 2003). In their final editions, sets 

were hardly mentioned. Enthusiasm for the ‗modern math‘ at primary level had 

passed its peak in Iceland before 1972. 

The cohort born in 1965, entering first primary 

grade in 1972, was the last large cohort to use 

the Bundgaard material. After that authorities 

began gradually to withdraw it, while the new 

state-made material was introduced after careful 

testing, keeping in mind the difficulties of the 

rapid implementation of the ‗modern math‘.  

Figure 2: Percentage of year cohort studying Bundgaard material up through grade 6. 
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H. Lárusson, a mathematics consultant at the Ministry of Education knew of the 

problems but attempted to defend the ‗modern math‘, while he himself was writing a 

series as a continuation of the Bundgaard material. He wrote in the teacher journal:  

Among parents, teachers and others ... there have been many discussions on a new 

syllabus in mathematics ... People have had very different views on this new syllabus ... 

There has been no general publicity of the syllabus as a whole, nor of its goals, and this 

may partly cause the criticism which has emerged. This innovation became far more 

widespread far quicker than was planned ... (Lárusson, 1972, p. 9). 

In 1973, Lárusson was on record stating that set-theoretical concepts were overly 

emphasized instead of being used to complement traditional methods. This had 

reduced pupils‘ number skills, which was detrimental to their later studies in 

secondary schools and at work. Alterations made were expected to contribute to 

pupils‘ broader perspectives and deeper understanding of mathematics at all levels 

and spheres of mathematics. Abroad, people were making extensive experiments on 

the content and presentation of textbooks with special consideration to those who 

have difficulty studying mathematics (Bjarnadñttir, 2007, p. 299). 

An evening school for adults, Námsflokkar Reykjavíkur, reacted to parents‘ need for 

support and offered them a course in the ‗new math‘ (Árnadñttir, 1975).  

AFTERMATH 

The adventure of the ‗new math‘ lingered in people‘s memory for a long time. 

Educational matters were brought up in parliament in December 1988. Eiður 

Guðnason, M.P., recalled that many reforms had gone wrong. The ‗modern math‘ 

had been a serious mistake; whole cohorts knew little mathematics and could not do 

mental arithmetic (Guðnason, 1988). A governmental report on the development of 

education policy in European environment, dated in 2010, claimed that the ‗modern 

math‘ of the 1960s and 1970s failed (Menntamálaráðuneytið,  2010, p. 46). 

Minister of Education, Gylfi Þ. Gíslason, stayed in office during 1956–1971. He had 

to cope with the great increase in student population of the post-war baby boom and 

the rebellious currents in the late 1960s. In a personal communication (G. Gíslason, 

Jan. 10, 2002) he expressed a great confidence in Arnlaugsson as a school leader, but 

also doubts about his role in introducing the ‗modern math‘. A confidential source 

told a story of another minister of the same government, E. Jñnsson, an engineer and 

a renowned mathematics student during World War I, who had expressed a doubt 

that he would be able to solve an O-level examination equivalent of the 1970s, when 

the ‗modern math‘ had been implemented. 

Only recently a retired primary teacher in his eighties remarked: ―It is always the 

same problem in this country. We took up this material when the Danes themselves 

had discarded it.‖ (S. Jñelsson, personal communication, Nov. 27, 2010).  

DISCUSSION 
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What went wrong in the implementation of the ‗modern math? The problem was not 

in adapting something discarded by other nations, as Icelanders often fear in their 

linguistic and geographical isolation. On the contrary, the Bundgaard material had 

only been finalized for the first grade and its continuation for grades 4–6 had not 

even been created. The books for the first two grades were not too complicated, 

while the hardcore mathematics emerged in the third grade. One may clearly 

conclude that the consequential decision was not well grounded.  

Was any serious harm done? The ‗modern math‘ with its unfamiliar algorithms was 

an intellectual surprise to a nation that was homogeneous, educationally as well as 

ethnically. Everyone knew the same algorithms. If anyone had seen any different 

approach abroad it was much scarcer than at present times. Some pupils may not 

have learnt any algorithms, but pocket calculators were coming soon.  

Clearly, an effort was made to publicise the ‗modern math‘ in the media as a part of a 

modernizing process, in a ‗cultural competition‘. The publicity, such as the television 

programme in 1967–1968, may therefore have created too great expectations. It may 

not have been well timed either. Arnlaugsson‘s TV programme fascinated some of 

the 15-year old students, chosen to study his textbook on an experimental basis, 

while preparing for entrance examination into the upper secondary level. For parents 

of primary school children it might have been more appropriate in 1969–1970, when 

place-value notation to different bases, prime numbers etc. were introduced to the 

first large cohort, or the year after, when the concepts of set theory were 

implemented. And finally, Arnlaugsson was an academic, a professional 

mathematician, famous for his radio talk shows on the widely practiced game of 

chess, but his mathematics may have failed to reach common people. 

The interview with Bundgaard and Plum had doubtlessly the aim to inform parents 

and the public, in 1970 when the majority of primary school children were studying 

their material. However, remarks that information in a foreign language was ‗to 

pacify the parents‘ witness a lack of sense of the situation and respect for the parents, 

as well as the decision not to let the pupils bring their textbooks home as it ‗can have 

very bad consequences for the child if its parents are trying to help, more by being 

willing than able to guide the child‘. That, and remarks that ‗the ‗modern math‘ 

teaches children to think logically‘ to a higher degree than earlier, and that parents 

should wait ‗until the moment, when the children have reached enough 

understanding of the project to be able to explain to their parents‘ witness unrealistic 

convictions of the value of the programme. The ‗modern math‘ was indeed a difficult 

cause to defend. 

However, the ‗modern math‘ programme at least inspired Prof. Magnösson and 

eventually led him to undertake the serious studies of mathematics. This was also the 

case with V. Bjarnason, G. H. Gunnarsdñttir and J. V. Kristinsdñttir who were in 

their teens in 1967. All of them have had a role in the field of mathematics, 
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mathematically related subjects or mathematics education in Iceland. In a small 

country, each individual weighs in this respect. 

The leaders of the project experienced that they were not able to guide all the 

teachers involved in the curriculum reform. Many teachers gave up, reverted to the 

old syllabus and there is no doubt that a bad reputation has followed the ‗new math‘ 

reform ever since. However, isolating one factor of a large study, the publicity 

process, as is done in this paper, can lead to oversimplification.  The project may be 

credited for that many teachers experienced that there was more school mathematics, 

useful to children, than the four operations in whole numbers and fractions, as 

presented in the traditional national syllabus. The reform offered those teachers the 

training they missed by the 1946 legislation when the legislator failed to open a route 

for them to higher education.  

A group of teachers began to create new material in the favourable climate of SDR, 

supported by all governments for over a decade. This environment made it possible 

to replace the difficult syllabus in minimal time, in contrast to decades of previous 

stagnated syllabus. This second reform was initiated only five year after the 

implementation of the Bundgaard material. The lesson was learnt to avoid too great 

enthusiasm for hastily chosen novelties. Resources were made available to recruit 

teachers to test it and implement it slowly and properly.  

Now, forty years after the eventful period of the late 1960s, a new state-made 

syllabus has replaced the one of the 1970s. It has not been universally well received. 

Resources have not been allocated to test the material before distributing it to whole 

cohorts. Many teachers have protested indirectly by photocopying old material. In 

the 1960s, centralized week-long courses for teachers were organized, while 

presently they are offered half-day meetings, if their schools choose to allocate funds 

for specific subjects rather than general topics, such as class discipline. The lessons 

learnt from the ‗modern math‘ of the 1970s have gradually faded away, while its 

deficiencies contribute more to its reputation than its merits.    
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VOICES FROM THE FIELD: INCORPORATING HISTORY OF 
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Using the voices of teachers in the field, this paper describes how and what 

historical content secondary and post-secondary teachers decided to use in their 

teaching. For the small exploratory study, I analyzed survey results in which 

teachers reported their use of history as anecdote, biography, or interesting 

problems during the 2008 – 2009 academic year. Of the 32 episodes reported, 20 

involved ―history as anecdote‖; nine episodes were characterized as a use of 

―history as biography‖; and 15 included the use of ―history as interesting 

problems‖ (with each episode having the possibility of being coded as a use of each 

or some subset of the three). The ―history as interesting problems‖ episodes are 

provided in some detail and I end with a discussion on directions for future 

research. 

SITUATING THE STUDY 

In the field of mathematics education we know little about how teachers obtain 

historical knowledge and subsequently implement that knowledge in teaching.  

Experts agree with the claim, ―teachers can profit from studying the history of 

mathematics‖ (Bruckheimer & Arcavi, 2000, p. 135) yet corresponding research is 

difficult to find, especially in the United States. More recently, Jankvist (2009; 2010) 

provided two purposes for using history of mathematics in teaching: (1) history as a 

tool, in which history of mathematics is an assisting means for teaching and learning 

mathematics, and (2) history as a goal, where students are taught about the historical 

development of mathematics, its interplay with other practice areas, and societal and 

cultural influences on mathematics and the other way around.  

Jankvist (2009; 2010) observed that too much rhetorical and theoretical literature 

exists that describes the affordances that history of mathematics can lend to both 

classroom teachers and their pupils. Furthermore, he stated that, ―despite history in 

math education being an old topic only relatively few empirical studies have been 

made‖ (Jankvist, 2010). While Jankvist makes the point regarding the lack of 

empirical studies that examine history as a tool or history as a goal in mathematics 

teaching and learning from a global perspective, the lack of empirical research on 

these same notions is even more extreme when examined within the context of the 

United States.   

A CURRENT PERSPECTIVE 

My view regarding the direction of studying the incorporation of history of 

mathematics in teaching is that we must begin with teachers ―friendly‖ to the idea.  
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To that end, the exploratory study discussed in this paper begins with teachers who 

possess some general knowledge of how the history of mathematics may be used in 

teaching, including the knowledge of appropriate resources. Furthermore, they 

expressed positive results (either for themselves or with students) from initial efforts 

to use history of mathematics in teaching. 

The primary goal of the study was to survey a purposeful sample of secondary and 

post-secondary teachers and collect their reported planned and actual use of history 

of mathematics in teaching.  The research questions were: 

 What historical content (e.g., anecdotal, biographical, mathematical) do 

 teachers incorporate in their teaching? 

 What obstacles do teachers report, from either their own or from the student 

 perspective, as a result of incorporating history of mathematics in teaching? 

 What benefits do teachers observe, from either their own or from the student 

 perspective, as a result of incorporating history of mathematics in teaching? 

RATIONALE 

Incorporating history of mathematics in teaching is problematic for several reasons.  

For example, obtaining knowledge of the historical development of school 

mathematics topics requires guidance (e.g., selecting appropriate and reliable 

resources) and time to read, study, and adapt historical content for use with students.  

These reasons are accompanied by the typical obstacles that teachers report; the 

primary of these is having instructional time to use history in teaching mathematics. 

Although beyond the scope of this paper, considerations of time obstacles often 

accompany teachers‘ views that drawing upon history of mathematics when teaching 

is something extra and any inclusion of history of mathematics is often viewed as 

supplemental to the mathematics curriculum. Consequently, this primary obstacle 

discourages teachers to use history as an instructional tool or history as a viable goal 

for instruction. 

We know little about how teachers obtain historical knowledge and consequently 

implement such knowledge in teaching. Fauvel (1991) observed that:  

making use of history…is hard for teachers – who have usually learned little or no 

mathematical history during their training, let alone received training on how to use 

history with their pupils. (p. 4) 

Other experts agree with Bruckheimer & Arcavi‘s (2000) claim that there is 

something to be gained by teachers who use history of mathematics in teaching and 

that if we seek to humanize mathematics instruction for students ―we must do it 

through the teachers‖ (Avital, 1995, p. 3). 
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PARTICIPANTS 

I considered the dearth of empirical studies on incorporating history of mathematics 

in teaching within the United States as a justification for conducting an exploratory 

study of teachers who indicated their interest to incorporate history of mathematics in 

their instructional practice. To identify my purposeful sample, I sent a survey to 26 

teachers at the end of an online course, Using History in the Teaching of 

Mathematics [1]. Fourteen of the 26 teachers responded to the survey, of which 12 

responded favorably to the final question, ―Would you be interested in participating 

in a research effort designed by Dr. Clark, regarding the use of historical content in 

teaching mathematics?‖ Finally, six of the 12 teachers agreed to participate in the 

study beginning in August 2008. These teachers received a two-page summary of the 

study, including goals of the study and the approximate time commitment for 

completing monthly surveys. Additionally, each teacher received a copy of the 

survey questions so that they could use the document format to compile their 

responses for the Survey Monkey
™

 monthly survey. The monthly survey included 

prompts such as: 

- Describe your plans for incorporating history of mathematics in teaching, 

including dates of instruction, the course title, the mathematical topic, and 

what you included in your instruction. 

- Describe any obstacles that you experienced when implementing your 

instructional plans for including history in teaching mathematics. 

- Describe any obstacles that you feel your students experienced as a result 

of incorporating the history of mathematics in teaching.  

- Identify the benefits (to you, the teacher) that you experienced as a result of 

studying, planning for, and incorporating the history of mathematics in 

your teaching. 

- Identify the benefits that you feel your students experienced as a result of 

your inclusion of the history of mathematics. 

- Classify the overarching historical perspective from which you approached 

each inclusion of the history of mathematics as: history as anecdote; history 

as biography; history as interesting problems; or, a combination of two or 

more of these. 

- Provide the bibliographic information for the resources that you accessed 

for planning and implementing the history of mathematics in teaching. 

- Indicate whether you created handouts to be used with students (or that 

were actually used with students) or used handouts from other sources. 

The six teachers (only pseudonyms are used here) were teaching in three different 

states. Evan, Judy, Jeannette, and Suzanne were teaching in the same state in the 
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southeastern United States; Maxine was teaching in a state in the Midwestern US; 

and Libby was teaching in the southeastern US. As an unfunded, exploratory study, 

the online survey was the most viable data collection method. Although I am fully 

aware of the problematic nature of self-report data, my original plan was to use the 

―Voices from the Field‖ monthly survey responses to describe what teachers in a 

variety of teaching contexts were able to accomplish, given their self-professed goals 

of wanting to infuse their teaching with history of mathematics.  Table 1 presents the 

six teacher participants, their teaching assignment in 2008 – 2009, and an excerpt 

from their response to the question, ―Do you plan on using history of mathematics in 

teaching in future? If so, please describe an example or two.‖, from a final summary 

assignment during the Using History in the Teaching of Mathematics course. 

Participant  Teaching assignment Do you plan to use history of mathematics in the 

future? 

Maxine Developmental 

mathematics courses 

(community college 

level) 

―I would like to refine the ―restoration and 

opposition‖ approach so that students in the 

skilled trades have more facility in solving 

equations for a certain variable.‖ 

Evan Middle grades 

mathematics 

(advanced/honors 

level) 

―Over time, I will work to integrate more history 

of mathematics in my teaching. More than 

anything, learning about mathematics history has 

shown me how important it is for my students to 

know why mathematical concepts exist.‖ 

Judy High school 

mathematics 

(advanced level) 

―Definitely. I know I will use lessons from [the 

Historical Modules] in every class that I teach 

next year.‖ 

Suzanne Middle grades 

mathematics (all 

levels) 

―I will use the history of mathematics in my 

future lessons. I will use the modifications I made 

to the ‗determining the angle of the sun with 

shadows‘ activity this school year. Next year, I‘d 

like to use my module add-on lesson ‗From the 

Earth to the Sun‘.‖ 

Libby High school 

mathematics 

(geometry) 

―I absolutely will incorporate many historical 

aspects into the subjects that I teach in the future.  

For example, if I am teaching Algebra 1, I would 

certainly include the activities from the negative 

numbers module that we studied.‖ 

Jeannette High school 

mathematics 

(geometry) 

―Yes, I am planning on using some of the 

logarithms activities with my students when I get 

to that section. I will be looking through the 

modules again over the summer to decide which 

ones I would like to include next year.‖ 

Table 1: Teacher participant data 
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DATA COLLECTION 

Participants were asked to complete the ―Voices from the Field‖ survey 

approximately every six weeks, or six times during the 2008 – 2009 school year. 

Table 2 documents each participant‘s survey completion, as well as comments on 

issues that a participant may have experienced during data collection. Comments are 

provided when participants were unable to complete each of the six surveys. 

Participant Surveys completed Comments 

Maxine Surveys 1 – 6   

Evan Survey 2; Survey 6 Did not complete surveys when no use of history to 

report 

Judy Survey 1; Survey 2; 

Survey 6 

Unable to continue with plans to incorporate history 

of mathematics during high-stakes test ―season‖ 

Suzanne Survey 1; Survey 2; 

Survey 4 

Obstacles resulting from administration 

intervention 

Libby Survey 1; Survey 3 Unable to continue due to graduate school and new 

course planning 

Jeannette Survey 1; Survey 2; 

Survey 3; Survey 4 

Discontinued plans to incorporate history of 

mathematics due to high-stakes test ―season‖ 

Table 2: Documentation of participant survey completion 

RESULTS 

For the purposes of this paper, I only address the first research question (What 

historical content (e.g., anecdotal, biographical, mathematical) do teachers 

incorporate in their teaching?). As indicated in their response to a final summary 

assignment during the Using History in the Teaching of Mathematics course, each 

teacher did indeed incorporate history of mathematics in their teaching. This was not 

completely unexpected given the positive-toward-the-power-of-using-history 

disposition each participant shared while taking the Using History course and their 

subsequent expression of interest to participate in the study. 

Examination of the survey responses revealed that the teachers, some of whom in 

spite of experiencing significant obstacles, developed particular preferences for 

incorporating history of mathematics when teaching. As one way to describe such 

preferences I used the terms, ―history as anecdote‖, ―history as biography‖, and 

―history as interesting problems‖, which were adapted from the reasons for using 

history in the teaching of undergraduate mathematics suggested by Siu (1997). Siu 

identified four such strategies (―ABCDs‖):  

• A is for Anecdotes;  

• B is for Broad Outline;  

• C is for Content; and  
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• D is for Development of Mathematical Ideas. (p. 144) 

The modifications I developed, based upon my experience with teachers seeking to 

incorporate history of mathematics at the secondary level, are: 

Siu‘s strategy   Modification for the ―Voices from the Field‖ study 

A is for Anecdote   history as anecdote 

B is for Broad Outline  (none represented) 

{mostly aligned with ―A‖} history as biography 

C is for Content   history as interesting problems 

D is for Development  (none represented) 

Question 10 of the survey requested that teachers classify the overarching historical 

perspective from which they approached each inclusion of the history of mathematics 

in their teaching. The question, which asked teachers to identify their ―goals of using 

history in teaching‖, was developed prior to publication of Jankvist‘s (2009) 

identification of purposes, ―history as a tool‖ and ―history as a goal‖. With the view 

of these purposes, I could argue that each episode reported by the teachers in this 

study represents an example of ―history as a tool‖. I would further argue, however, 

that elements of ―history as a goal‖ are reflected in both teachers‘ descriptions of 

what they included in their teaching, as well as in the comments that they offered 

about their work in this regard. My purpose in this paper is to not so much delineate 

types of use of history of mathematics in teaching; instead I aim to highlight ways in 

which teachers are able to, and to suggest directions for future empirical work. 

History as… 

Teachers reported that they included history of mathematics in their teaching in 32 

teaching episodes, with content ranging from Grade 7 mathematics (pupils aged 12 

to 13) to community college developmental mathematics (mathematics course work 

at the secondary level, taken after secondary school in colleges preparing students for 

college-level work). ―History as anecdote‖ was identified as the overarching 

perspective for their use of history in 20 of the 32 episodes. ―History as interesting 

problems‖ was identified in 15 episodes and ―history as biography‖ was reported in 

only nine of the 32 episodes (note that any episode had the possibility of being coded 

as a use of each or some subset of the three types of use of history). The prevalence 

of use of historical anecdotes in teaching mathematics is not surprising. Sharing 

anecdotes can situate a new topic – both for students and teachers, can aid in 

humanizing mathematics, and often require the least amount of preparation and time 

commitment during teaching [2]. 

The result with significant promise, however, is that teachers chose to plan an 

instructional episode in which students would work with historical problems in 15 of 

the 32 episodes. This is significant for two reasons: a ―history as interesting 
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problems‖ perspective engages students in mathematical content and this 

engagement allows students to investigate alternative solution methods. The 15 

―history as interesting problems‖ episodes are described in Table 3. 

Participant Course/topic Historical content Participant comments 

Maxine Basic Math Numerals in ancient 

number systems 

Students were apprehensive about 

doing something new; student 

confusion and discomfort 

Maxine Intro to 

Algebra 

Al-Khwarizmi‘s 

method of completing 

the square  

Students needed more time to 

understand these sorts of problems 

Maxine Intro to 

Algebra 

Solving right triangle 

problems from 

historical documents 

Students demonstrated interest and 

engagement, in particular because 

of relevance of material to 

students‘ lives 

Maxine Intro to 

Algebra 

Solving linear 

equations using 

Euler‘s method for 

transforming 

equations 

A student question prompted the 

teacher to introduce operations 

with integers using ancient Chinese 

methods; student exclaimed, 

―Wow! You should tell the whole 

class!‖ 

Maxine Intro to 

Algebra 

Solving quadratic 

equations using the 

methods of al-

Khwarizmi 

Students were able to see that such 

problems are ―mathematical ideas 

that people have struggled with 

over centuries‖. 

Maxine Intro to 

Algebra 

Theorem of 

Pythagoras; solving 

right triangles 

Integration of history feels 

―natural‖ after doing so for several 

semesters 

Maxine Intro to 

Algebra 

Chinese method for 

integer addition 

Using the Chinese method reduced 

misunderstanding and subsequent 

re-teaching 

Maxine Intro to 

Algebra 

Solving equations 

(Maclaurin‘s 

transformations) 

Students indicated that they really 

―get it‖ 

Judy Honors 

Geometry 

Proofs of the Theorem 

of Pythagoras  

Students enjoyed working on the 

problems, though they question 

themselves when working on 

atypical problems  

Judy Honors 

Geometry 

Solving right triangle 

(historical) problems 

Working with history is rewarding 

if students ―get it‖ 

Libby Geometry Research on 

tangrams; 

construction of 

Learning about the background 

contributes to the experience; 

includes logic skills and spatial 
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Participant Course/topic Historical content Participant comments 

examples awareness 

Jeannette Geometry Goldbach‘s conjecture  Historical information helps her to 

understand the material better 

Jeannette Geometry Gauss‘ number theory Students benefit from ―knowing 

the people behind the math‖; 

makes it more real for students 

Jeannette Geometry Discussion of the 

Declaration of 

Independence 

Reading is a big obstacle for the 

students 

Jeannette Algebra 2 Babylonian guess-

and-check method for 

solving equations 

Students get to see another side of 

mathematics; historical problems 

promote critical thinking skills 

Table 3: History as interesting problems (by teacher participant) 

Maxine‘s and Jeannette‘s ―history as interesting problems‖ use was the most 

prevalent of the six teacher participants. Maxine identified actual problems she used 

with her students in eight of the nine teaching episodes she reported in the survey 

responses. In many ways, Maxine may have experienced the time obstacle more 

extensively than other teacher participants. Although she did not have to deal with 

the pressure of a high-stakes assessment of her students at the end of the year, she 

did have to adhere to a very full curriculum, for courses that met only two or three 

days per week for one semester. She mentioned that her students did not always have 

sufficient time to work on the mathematical ideas within the historical problems, yet 

she consistently incorporated them in her teaching. 

Jeannette did have concerns about the high-stakes assessment and because of it she 

abandoned her plans to incorporate history of mathematics at the end of the school 

year. Judy experienced the same issue, however she did resume her plans for using 

history after the conclusion of the assessments. The remaining three teachers did not 

incorporate historical problems as frequently (Libby) or at all (Evan and Suzanne).  

This may be due to the level of courses they taught (Evan and Suzanne taught middle 

grades mathematics; Libby taught regular geometry). Follow-on interviews – along 

with classroom observations – may provide information to better understand this 

phenomenon. 

DISCUSSION 

The episodic account presented here is encouraging, but many questions arise. 

Certainly it is encouraging that after participating in a one-semester history course 

(e.g., Using History in the Teaching of Mathematics), teachers felt empowered and 

able to incorporate history of mathematics into their instructional plans. This may be 

attributed to a variety of reasons, including the participants‘ predisposition to use 

history of mathematics or the availability of classroom activities with which they had 
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prior experience (e.g., access to collections of classroom materials, including 

Historical Modules for the Teaching and Learning of Mathematics (Katz & 

Michalowicz, 2005)). Yet the ways in which a teacher develops his or her 

mathematical knowledge for teaching still requires high-quality, empirical study. In 

particular, it is necessary to examine ways in which history of mathematics 

contributes to mathematical knowledge for teaching, aids in improving ―students‘ 

problem-solving skills, lays a foundation for better understanding, helps students 

make mathematical connections, and highlights the interaction between mathematics 

and society‖ (Karaduman, 2010).   

The current study contributes in two ways. First, analyzing the use of history of 

mathematics employed by teachers, along with the obstacles and benefits that they 

observe provides a foundation from which to plan future research. For example, 

when and for what topics is it more beneficial to incorporate ―history as interesting 

problems‖?  And, what is the value-added effect of ―history as anecdote‖?  Second, 

this study contributes to the current conversation and framework-building 

surrounding ―history as…‖, as suggested by the tool I used to analyze teachers‘ use 

of history and the approaches of Jankvist‘s (2009; 2010) two purposes of using 

history of mathematics in teaching. Developing a framework can only result from 

research that proceeds with a purpose. In this case, our purpose should be focused on 

moving away from the rhetoric that has survived for several decades, and on moving 

towards implementing a research agenda that seeks to address the questions 

regarding the use of history of mathematics in teaching. 

 

NOTES 

. The course was required in an online Masters of Science in Mathematics Education program at a 

large university in the southeastern US. Admission to the program required students to be classroom 

teachers (mathematics, grades 5 – 12). 

2
. This is not to say that anecdotes are always used for an instructive purpose and without 

appropriate resources can be wildly inaccurate.  See for example, Montelle and Clark (2009). 
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Firstly the paper raises the question of designing teaching modules focusing on 

elements of the history, application, and philosophy of mathematics for use within 

the Danish upper secondary mathematics program. The design relates to the Danish 

KOM-project‘s competence-based framework and may be seen as a way to put its 

three types of overview and judgment into practice. The design question is answered 

by a description of a specific module. Secondly the paper poses a research question 

of the ways in which the design of such modules may create a basis for students‘ 

development of overview and judgment. Finally the paper discusses theoretical 

constructs from general mathematics education research that may assist in 

answering this second question based on in-progress classroom implementations. 

THE DANISH KOM-PROJECT 

The Danish KOM-project [2] defines mathematical competence as ―a well-informed 

readiness to act appropriately in situations involving a certain type of mathematical 

challenge‖ (Niss & Jensen, 2002, p. 43). Depending on the mathematical challenge 

in question, different types of mathematical competencies are called for. The KOM-

project identifies eight more or less self-explanatory mathematical competencies 

(each referred to as a competency) that students are to come to possess during their 

mathematical training and which together span the above mentioned overall and 

general mathematical competence. These competencies are divided into two groups:  

I. the ability to ask and answer questions in and with mathematics, and 

II. the ability to deal with mathematical language and tools. 

From an overall point of view, the ability to cope with and in mathematics can be 

said to consist of exactly these two capacities, each of which contains a set of four 

specific competencies. The four specific competencies which make up the first 

capacity (I) are: (1) mathematical thinking competency, (2) problem solving 

competency, (3) modeling competency, and (4) reasoning competency. The four 

competencies regarding mathematical language and tools (II) are: (5) representation 

competency, (6) symbols and formalisms competency, (7) communication 

competency, and (8) aids and tools competency.  

Besides these eight ‗first order‘ competencies, the KOM-project also mentions three 

‗second order‘ competencies, referred to as the three types of overview and 

judgment: 

 OJ1: the actual application of mathematics in other subject and practice areas; 
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 OJ2: the historical evolvement of mathematics, internally as well as in a 

societal context; 

 OJ3: the nature of mathematics as a subject. 

 

Where mathematical (first order) competencies ―consist in having knowledge about, 

understanding, being able to practice, apply, and commit oneself to mathematics and 

mathematical activities in a profusion of connections in which mathematics plays a 

part or can play a part‖, or in other words a kind of ―insightful readiness to act 

expedient in situations which hold a certain kind of mathematical challenges‖, the 

three types of overview and judgment are ―‗active insights‘ concerning the character 

of mathematics and its role in society‖. Niss & Jensen state that ―these insights equip 

those who posses them with a set of viewpoints, which provide overview and 

judgment about the connection of mathematics to circumstances and allotting in 

nature, society, and culture‖ (Niss & Jensen, 2002, pp. 43, 66). 

OJ1 concerns actual application of mathematics to extra-mathematical purposes 

within areas of everyday life, society, or other scientific disciplines. The application 

is brought about through the creation and utilization of mathematical models. As 

opposed to the so-called modeling competency, which deals with active modeling 

skills, this type of overview and judgment is of a more broad and generalized form, 

almost of a sociological or science-philosophical nature. OJ2 should not be confused 

with knowledge of the history of mathematics viewed as an independent topic. The 

focus is on the actual fact that mathematics has developed in culturally and socially 

determined environments, and is subject to the motivations and mechanisms which 

are responsible for this development. On the other hand, the KOM-project says, it is 

obvious that if overview and judgment regarding this development is to have any 

weight or solidness, it must rest on concrete examples from the history of 

mathematics. The third type of overview and judgment (OJ3) concerns the fact that 

mathematics as a subject area and academic discipline has its own characteristics, as 

well as the characteristics themselves. Some of these, mathematics has in common 

with other subject areas, while others of them are unique. This type of overview and 

judgment includes several elements of more modern philosophy of mathematics 

(OJ3), and for that reason I shall also refer to it as such. For similar reasons the other 

two types shall also be referred to as history of mathematics (OJ2) and applications 

of mathematics (OJ1). 

INTERRELATIONS BETWEEN OJS AND COMPETENCIES 

Although being of different ‗order‘ the eight mathematical competencies and the 

three types of overview and judgment are related. Niss & Jensen (2002) list the 

interrelations which are illustrated on figure 1. 
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Figure 1: Interrelations between the OJs and the mathematical competencies. 

Niss & Jensen state that a well-developed modeling competency on the one hand will 

contribute to a concrete entrenchment and consolidation in terms of OJ1, but on the 

other hand that such not automatically is a result of having a well-developed 

modeling competency. For OJ3 Niss & Jensen (2002, p. 69) state that if one were to 

point to competencies which in particular contribute to ―the creation of a basis for 

overview and judgment when it comes to the particular traits of mathematics, then it 

must be the mathematical thinking, reasoning, and symbol and formalism 

competencies.‖ As evident from figure 1, OJ2 cannot in the same way as the two 

other OJs be said to have a set of corresponding competencies (although one may 

speak of a ‗mathematical historical competency‘ as part of the overall mathematical 

competence). However, the KOM-report also makes clear that to be properly 

entrenched, the three types of overview and judgment need to rest on a foundation of 

the eight competencies. Or in other words: ―to have overview and judgment 

regarding mathematics, it is insufficient merely to have heard (stories) of 

mathematical application, historical development, and its particular nature‖ (Niss & 

Jensen, 2002, p. 70). 

MOTIVATION AND A QUESTION OF DESIGN 

The three types of overview and judgment play a role in the new Danish mathematics 

program for upper secondary school, i.e. the students have to develop these ‗second 

order‘ competencies to some extent. Besides the fact that this can happen as part of 

1/3 of the curriculum, which is free for the teachers and schools to choose 

themselves, neither the KOM-project nor the regulations for mathematics at upper 

secondary level say much about how it is to take place in practice. In a previous 

study [3] I considered this for the case of history (OJ2), although choosing historical 

cases related to actual applications of mathematics as well (OJ1) (Jankvist, 2009c). 

Thus, one question for this study is:  
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 How to design teaching modules that take into account all three types of overview 

and judgment – in unison – with upper secondary level as the target group? 

A ‗GUIDED READING‘ OF ORIGINAL SOURCES 

The main idea of the design is to have the students read and work with one original 

source for each of the three types of overview and judgment, all of them adhering to 

a common mathematical theme and/or topic. I shall illustrate this by describing a 

concrete module. The three texts (in Danish translation) included in the teaching 

material for this module are: 

 Leonhard Euler, 1736: Solutio problematis ad geometriam situs pertinentis 

 Edsger W. Dijkstra, 1959: A Note on Two Problems in Connexion with Graphs 

 David Hilbert, 1900: Mathematische Probleme – Vortrag, gehalten auf dem 

internationalen Mathematiker-Kongreß zu Paris 1900 (the introduction only). 

 

The overall theme for these are ‗mathematical problems‘, which was what Hilbert 

addressed in general terms in the introduction of his lecture from 1900. To make 

Hilbert‘s general observations a bit more concrete, the students are first to read the 

two other texts, each of which addresses a mathematical problem. Euler‘s paper from 

1736 is on the Kônigsberg bridge problem: how to take a stroll through Kônigsberg 

crossing each of its seven bridges once and only once – and today the paper is 

considered the beginning of mathematical graph theory. Two centuries later, with the 

dawn of the computer era, graph theory (and discrete mathematics in general) found 

new applications. Dijkstra‘s algorithm from 1959 solves the problem of finding 

shortest path in a connected and weighted graph, and today it finds its use in almost 

every Internet application that has to do with shortest distance, fastest distance or 

lowest cost. Furthermore Dijkstra also discusses a method for finding minimum 

spanning trees, a problem relevant for minimizing the amount of expensive copper 

wire to be used in the building of computers at the time, but also highly relevant 

today.  

Because original sources often are difficult to access, the presentation of these are 

supplied with explanatory comments and tasks along the way, one purpose of these 

also being to bring the students up to date with modern notation, definitions, and 

terminology. Thus, the presentation may be considered a so-called ‗guided reading‘ 

of the sources, very much inspired by the format developed by David Pengelley, 

Jerry Lodder, Janet Barnett and others related to the group at NMSU who consider 

the use of original sources in the classroom [4]. 

Practically no mathematical requirements are needed beforehand on the students‘ 

behalf to study the text of Euler, and many of those needed for the Dijkstra text are 

introduced along with the Euler text. This was a major reason for choosing exactly 

these two texts, taking into account that the 1/3 free curriculum allowed such topics.  
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MATHEMATICAL COMPETENCIES LAYING THE GROUND FOR OJS  

The way of trying to create a basis for the students‘ development of overview and 

judgment is by focusing on and having the students work with the mathematical 

content of the original sources by Euler and Dijkstra in such a way that their work 

will require a development of the mathematical competencies related to the different 

types of overview and judgment (see figure 1). To illustrate this I shall show three 

exercises from the teaching material, which each focus on the development of one of 

the three mathematical competencies related to the type of overview and judgment on 

the philosophy of mathematics (OJ1), i.e. the mathematical thinking competency, the 

symbols and formalism competency, and the reasoning competency. 

The students‘ way into the first original text is by looking at Euler‘s diagram of 

landmasses and rivers in Kônigsberg (figure 2, middle) and then verify that this is in 

fact an accurate representation of (or model for) the Kônigsberg bridge problem by 

comparing with a picture of the town (figure 2, left). Afterwards the students are told 

that in modern graph theory, landmasses are represented by vertices (or nodes) and 

links between them by edges. Students are asked to transform Euler‘s diagram into 

such a modern graph individually and then compare their own representation to the 

students next to them, this illustrating that graph representations are not unique. The 

idea is to have the students adapt more and more schematic representations of the 

Kônigsberg bridge problem until arriving at something looking like figure 2 (right), 

gradually increasing the level of abstractness. 

  

Figure 2: Left: A picture of Königsberg with its 7 bridges from 1652. Middle: Euler‘s 

1736 simplification of Königsberg‘s bridges. Right: A modern graph representation. 

Once being familiar with the modern representation of a graph, the students are 

introduced to the problem of representing multiple edges, such as for example the 

two edges between vertices A and B in the Kônigsberg graph. These cannot be 

represented by only their pair, (A,B), since this causes ambiguity (which also is why 

Euler named them a and b, respectively). To illustrate a formal and general way of 

dealing with this to the students, they were provided with the following modern 

definition: A graph G is a set of vertices V(G) and a set of edges E(G) together with 

a function ψ, which for every edge e ϵ E(G) assigns a pair, called ψ(e), of vertices 

from V(G). As a way of having the students develop their symbols and formalism 

competency, which also includes being able to go back and forth between ordinary 
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language and a language of symbols, they are asked to write up the sets V(G) and 

E(G) for the Kônigsberg graph and the seven function values of ψ(e). On the one 

hand, the idea of this is to enable them to perceive the definition of a graph as a 

triplet G={V(G), E(G), ψG}, and on the other hand to have them realize how the 

above definition in a general fashion resolves the problem of ambiguity when two 

vertices in a graph have multiple edges.  

As Euler himself in his text introduces various constructs, the students are introduced 

to the somewhat equivalent modern terminology in the intermediate commentaries, 

e.g. route, path, Euler path (open and closed), subgraph, degree of a vertex as well 

as a few small theorems which Euler explicitly or implicitly uses, such as for 

example the handshake theorem [5]. At the end of his paper, Euler states his three 

main results (Euler, 1741, pp. 138-139; Fleischner, 1990, p. II.19, numbering is 

mine):  

[i.] If there are more than two regions with an odd number of bridges leading to 

them, it can be declared with certainty that such a walk is impossible. 

[ii.] If, however, there are only two regions with an odd number of bridges leading to 

them, a walk is possible provided the walk starts in one of these two regions. 

[iii.] If, finally, there is no region at all with an odd number of bridges leading to it, a 

walk in the desired manner is possible and can begin in any region. 

The students are first asked to formulate these three results using the modern 

terminology and notation they have been introduced to. Next they are provided with 

a modern definition of a connected graph, i.e. that there exists a route between every 

pair of vertices, a property Euler does not state explicitly. Using this property, the 

three results may be reformulated as (e.g. Jankvist, 2010b, pp 17-21): 

i. If a connected graph G has more than two vertices of uneven degree, then it does not 

contain an Euler path. 

ii. Let G be a connected graph, then G contains an (open) Euler path if and only if G 

contains exactly two vertices of uneven degree. 

iii. Let G be a connected graph, then G contains a (closed) Euler path if and only if all 

vertices of G have even degree. 

Most of Euler‘s efforts goes into proving his first result (i), and regarding the third 

(iii), which today is considered the main theorem of the paper, he only proves it in 

one direction. To develop the students‘ reasoning competency as well as to introduce 

them to the notion of if-and-only-if theorems, they are to consider result i as being of 

the form P : A ⇒ B, and then identify P, A, and B. After having the students prove 

that A ⇒ B ≡ ¬A ⇐ ¬B (by means of a truth table), they are asked to write up ¬B ⇒ 

¬A for result i, i.e. formulating the contrapositive of this theorem, which states that if 

G is connected and has an Euler path (open or closed), then G has two or less 

vertices of uneven degree. Since Euler has shown, in his own context of course, that 

a graph will always contain an even number of vertices with uneven degree, we may 
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distinguish between two different cases: when G has exactly two vertices of uneven 

degree and when it has none, i.e. when all vertices have even degree. These cases 

correspond to the ⇒–direction in results ii and iii, respectively. Thus, by looking at 

Euler‘s original text again, the students would be able to deduce that the missing 

parts of the proofs are the ⇐–directions for results ii and iii. For result iii this is 

ascribed to Carl Hierholzer (published posthumous in 1873), and the students are 

shown this proof. The students are then asked to prove the ⇒–direction for iii and 

both ways for result ii using modern terminology. 

To illustrate a task that is thought to develop the students‘ mathematical thinking 

competency, we move into the context of finding minimum spanning trees and 

shortest paths in connected, weighted graphs as discussed in the paper by Dijkstra. 

As an introduction to this paper, the students are provided with definitions of a 

weighted graph, a tree, and a spanning tree: A connected graph T without any 

subgraphs that are circuits is called a tree, and a tree that for some graph G 

contains all vertices of V(G) is called a spanning tree. In one task the students are 

asked to look at the Kônigsberg graph (figure 2, right) and find the number of 

different spanning trees that can be constructed from this and then explain their 

method for finding the answer. (Try it yourself to see the systematic approach 

required, when not using a formula [6].)    

After the students having worked through the Dijkstra text, the commentaries to this, 

accompanying examples, and a modern proof of the shortest path algorithm‘s 

correctness (Dijkstra gives none), the students get to the third text by Hilbert and 

following this the three so-called essay assignments.  

THREE ESSAY ASSIGNMENTS INVOLVING THE THREE OJS 

In my previous study [3] I found that having groups of students prepare small essays 

was a good way of bringing them to work with the history of mathematics. So the 

same approach is taken to bring in the two other types of overview and judgment. 

The module includes three essay assignments and I shall address elements of them in 

turn. 

The first essay is on mathematical problems, linking the three texts by Euler, 

Dijkstra, and Hilbert together. Paraphrasing Hilbert roughly, he talks about that often 

some mathematical development is spurred on by a problem in the extra-

mathematical world. Then it is drawn into mathematics and rephrased so that it is 

hardly recognizable anymore and embedded in a much more general context. Years 

later, when this has grown into a mathematical discipline, what often happens is that 

it may then again be used to solve some new extra-mathematical problem. This is of 

course the case for graph theory, spurred on by the Kônigsberg bridge problem, 

which Euler generalized so that the answer to the original problem falls out as a 

small corollary to his more general results. Two centuries later when we have a much 

clearer idea about the discipline of graph theory, Dijkstra solves the extra-
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mathematical problem of shortest path (and also considers minimum spanning trees) 

in this graph theoretical context. For the students to realize this, they are asked to 

identify the criteria that Hilbert proposes for a good mathematical problem and see to 

what degree the problems treated by Euler and Dijkstra fulfills these, and then relate 

these cases to Hilbert‘s comments on the development of mathematics in general.  

The second essay is on mathematical proofs and first deals with different kinds of 

proofs and proof techniques as well as the use and need for new signs and symbols 

(both arithmetical and graphical) in the development of new mathematics (concepts, 

definitions, etc.), something that Hilbert also addresses. The students are asked to 

discuss this with relation to Hilbert‘s text and try to draw connections to the two 

cases, in particular the advantages Dijkstra had in 1959 with a fully developed graph 

theoretical and conceptual apparatus at his disposal as compared to Euler who had to 

start from scratch in 1736. In the end, this essay moves into Hilbert‘s actual 

discussion of proofs and their role in solving mathematical problems as well as the 

role of rigor in mathematical proofs. On the overall, the idea of this is to spur some 

reflections on the students‘ behalf regarding the epistemological development of the 

notion of proof. 

The third essay is about mathematics‘ status as a (scientific) discipline, in its own 

right and in comparison to other disciplines, e.g. physics. Based on their readings of 

Hilbert, and the two texts by Euler and Dijkstra, the students are asked to try to point 

out some characteristics of mathematical problems, methods, and ways of thinking as 

well as to say something about the types of results mathematics delivers and what 

they may possibly be used for. They are invited to discuss this by comparing 

mathematics to other academic disciplines. Then they are asked to identify what 

Hilbert says about the differences and connections between mathematics and other 

disciplines, and then discuss to what extent they agree or disagree. 

RESEARCH QUESTION AND EXPERIMENTAL SETUP 

This brings us to the actual research question of this study in progress:  

 In what ways may the design of the modules create a basis for students‘ development 

of overview and judgment – and perhaps even help in ensuring such development?  

The approach to trying to provide an answer to this question is an empirical one. The 

described module together with a second one, which is in preparation, will be 

implemented in an upper secondary class in their first (age 16-17) and second year of 

high school [7]. The set up of the implementation is that student groups to the largest 

degree possible read and work with the material themselves, i.e. they read at home 

and in class they work on the related tasks, proofs, etc. in their respective groups. 

The teacher circles the class and provides help in the form of regulatory input and 

feedback when needed. In this way an attempt is made to keep the voice and 

discourse of the teacher to a minimum, in order to be able to assess the design 

discourse of the module and its material. The students also do their essay 
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assignments in groups and they do group hand-ins of these as well. Two sets of 

selected mathematical tasks from the material are however to be handed in to the 

teacher individually.  

The experimental setup includes before, in between, and after individual 

questionnaires and interviews with the students and teacher following a model 

developed in Jankvist (2009b). One of the student groups, referred to as the focus 

group, is video filmed by myself during the implementations of both modules. 

Together with questionnaires, interviews, the hand-in essays and mathematical tasks, 

the video recordings provide the opportunity to do methodological triangulation 

between data sources in order to address the research question. 

THOUGHTS ON THEORETICAL CONSTRUCTS FOR ANALYSIS 

The theoretical constructs to be used in the analysis of the data in particular include 

the discursive and commognitive approach of Sfard (2008) and the adaption and/or 

application of this to research on use of history in mathematics education (Jankvist, 

2009b; Kjeldsen & Blomhøj, in press). More precisely, it may be argued that the 

students‘ discussions (and reflections) follow various different discourses: historical, 

cultural, sociological, philosophical, epistemological, psychological, etc. and of 

course mathematical. By comparing the discourses present in the students‘ 

discussions – and essays and interviews – it should be possible to say something 

about the connections and dependencies of these with the discourses present in the 

teaching material, which mainly center around an historical/cultural for OJ1, an 

applicational/sociological for OJ2, and a philosophical/epistemological one for OJ3.  

Following the recommendations of the KOM-report, one important feature of the 

materials for these modules is that the treatment of overview and judgment related 

aspects build on and are rooted in the actual mathematics related to these. Another 

way of saying this is that the treatment of the meta-issues is anchored in the related 

mathematical in-issues (Jankvist, 2009a, 2009b). Therefore an important aspect of 

the assessment and evaluation of the modules – as well as the answering of the 

research question – is to see if this built-in anchoring somehow transfers to the 

student discussions. This may be done by searching for instances in the data where 

meta-issue discourses related to the OJs build upon in-issue discourses or episodes 

where the (historical and/or modern) mathematical in-issues are used by the students 

to substantiate or deepen the meta-issue reflections (Jankvist, 2009b, In Press). 

NOTES 

1. This study is financed by a postdoctoral grant from the Danish Agency for Science, Technology and Innovation. 

2. KOM is a Danish abbreviation for ‗competencies and mathematics learning‘. The report from the KOM-project has 

not yet appeared in English, so all quotes are my own translations from Danish. 

3. The study of my PhD (Jankvist, 2009b) has, among other places, been reported in Jankvist (2009a, 2009b, 2010a). 
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4. Links are: http://www.math.nmsu.edu/hist_projects/ and  http://www.cs.nmsu.edu/historical-projects/ (Retrieved on 

November 29, 2010). 

5. These terms and theorems are explained in most textbooks dealing with graph theory.. 

6. The number can be calculated using the so-called (Kirchhoff-Trent) Matrix-Gerüst-Satz. Deleting the i‘th row and 

column of this matrix and taking the determinant of the one dimension smaller matrix reveals it – in our case it is 21.  

7. The first module was implemented in Spring of 2010, but data have not yet been analyzed. The next module, which 

will be on Boolean algebra and Shannon‘s use of it in circuit design, will be implemented in the Spring of 2011.  
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The purpose of the paper is to present a theoretical framework for a systematic 

analysis and discussion of uses of history for teaching and learning mathematics, 

hereby proposing a didactical transposition of history from the academic research 

subject to history in mathematics education. The use of the theoretical framework is 

exemplified by an analysis of a project work on the history of Ancient Egyptian 

mathematics taught in a class of Danish upper secondary school students (10
th

 

grade), illustrating how uses of past mathematics can aid development of students‘ 

learning strategies and historical awareness. 

1. INTRODUCTION 

The purpose of the present paper is to develop a theoretical framework for a 

systematic analysis and discussion of uses of history for teaching and learning of 

mathematics with respect to how history benefits students‘ learning of mathematics, 

and develops students‘ historical awareness. Several recent papers have discussed 

whether these two aims pose a dilemma between genuine history and relevant 

mathematics for teachers who want to use or integrate history in their classrooms 

(Freid, 2001; Jankvist and Kjeldsen, forthcoming; Kjeldsen, forthcoming; Kjeldsen 

and Blomhøj, forthcoming). While these discussions have focused on transforming 

views of mathematics and mathematics education, their conception of history has 

been taken to be more or less synonymous with a traditional professional historians‘ 

approach to history – at least in the methodological approaches and the criteria for a 

genuine approach to history. However, perhaps we also need to broaden our view of 

history as well if we want history to play a more significant role for teaching and 

learning mathematics. In the present paper such a broadened view of history is 

outlined, and its implications for history in mathematics education are discussed. The 

aim is to develop an adequate theoretical framework for integrating history of 

mathematics in mathematics education that can be used to analyze specific 

implementations and to provide a tool for orienting the design of future 

implementations of the history of mathematics in mathematics education. The main 

focus of the paper is theoretical, but it also contains an empirical section that 

illustrates the theory in a carefully designed and implemented case study.
1 

First of all, some historiographical reflections and a position are presented. Secondly, 

uses of history are discussed to present a framework in which their uses for the 

teaching and learning of mathematics can be systematically analyzed with respect to 

purposes and didactical values. This discussion is based on the Danish historian 
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Bernard Eric Jensen‘s (2010) approach to history. Thirdly, the framework is adapted 

to mathematics education. Lastly, to connect the discussion with the practice of 

teaching, a project work on mathematics in Ancient Egypt is analyzed. The project 

work was designed by a mathematics teacher working at a Danish Gymnasium 

(upper secondary level) during a professional development course in ―problem based 

project work in, with and about mathematics‖. The teacher implemented the project 

work in his own teaching practice in a class of first year Danish high school students 

(age 16-17) and documented his experimental teaching in a written report. His report 

will be analyzed to illustrate how uses of past mathematics can aid development of 

students‘ learning strategies and historical awareness, thereby substantiating some of 

the points raised in the present paper. The paper ends with some concluding remarks. 

2. HISTORIOGRAPHICAL REFLECTIONS 

Mathematical knowledge is produced and used by humans; hence we can think of 

such activities as integrated elements of historical-social reality and of human life. 

We can perceive mathematical activities as creations of history as well as acts that 

create a history of mathematics. The development of mathematics and changes 

within our perceptions, views, and treatments of mathematics can to a certain extent 

be understood as realisations (intended as well as unintended) of goals set by people. 

If we want to understand historical-social processes in the development of 

mathematics as products of human activities, we must pay attention to intentions and 

thoughts of the actors, as well as their understanding of the subject matter and the 

context in which they performed and made their choices. 

At a first sight it might seem that while such an approach can be used to study the 

history of sociological aspects of mathematics, such as the development of its 

profession in different countries and/or places or the history of mathematical 

journals, it cannot be used to study the history of the subject-matter of mathematics 

due to the universal character of mathematics. But if the development of mathematics 

is studied from its practice, where the historian focuses on concrete practices of 

mathematics, acknowledging that, despite its universal character, mathematical 

knowledge is produced by mathematicians, who live, interact and communicate in 

concrete social settings, the history of mathematical ideas, concepts and theories can 

also be pursued within such a framework.  

Such a position is in accordance with recent trends in the history of mathematics that 

have emerged as reactions towards the well-known critic of the widely used 

anachronistic (whiggish) approach to history of mathematics and the methodological 

debate of internalism versus externalism (Epple, 2000), (Kjeldsen et al. 2004), and 

Science in Context, 2004, 17(1/2). Within the last decades many studies in the 

history of mathematics focus on the practice of mathematics within social, 

intellectual, and cultural contexts of mathematical activities. Here professional 
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historians of mathematics have a critical approach to source material they analyze in 

order to understand its significance in its proper historical context. 

3. USES OF PAST EPISODES 

It is not the main purpose of general mathematics education to educate and train 

professional historians of mathematics, and in most cases mathematics teachers will 

not be professional historians. In some countries development of students‘ historical 

awareness is part of the curriculum, but that is not always the case, and if it is it only 

plays a minor part. With this in mind it seems too restrictive to require that the 

history of mathematics taught within mathematics education should be presented as 

traditional academic history.  A didactical transposition is needed, just as is the case 

with school mathematics, which is also not identical with the discipline of 

(academic) mathematics. In the following, Jensen‘s (2010) broader view of history 

will be introduced along with several pairs of concepts that can be useful for a 

nuanced analysis and discussion of the role of past mathematical episodes for the 

learning and teaching of mathematics.  

Jensen (2010) sees the academic research subject history, as professional historians 

think and work with it, as just one of many approaches to history. According to him, 

history is employed every time a person or a group of people is interested in 

something from the past, and uses their knowledge about it for some purpose. People 

use history for many different purposes and in many different connections, and 

consequently there are major differences between a lay person‘s and a professional 

historian‘s use of history. Recent investigations (Rosenzweig and Thelen, 1998) have 

shown that lay persons‘ and professional historians‘ conceptions of history differ in 

various respects and on several levels. Lay-history has a reputation of being naïve 

viewed from the academic discipline of history, while on the other hand lay 

historians view academic history as lifeless and remote from the real world. For 

professional historians it is important to place past episodes and artefacts in their 

historical contexts. Their historical awareness is conceived of as an interpretation of 

the past whereas lay persons view history more as a source of memoirs.  

Jensen distinguishes between pragmatic and scholarly approaches to history. In a 

pragmatic approach the study of the past is guided by the idea that we can learn from 

history. The ―usefulness‖ of history is an underlying perspective or principle in a 

pragmatic approach to history. The idea is that through history we can gain 

knowledge about our world of today, that history can teach us better ways to live our 

lives. In a pragmatic approach to history, past events are studied from a utility 

perspective. Jensen (2010, p. 51) contrasts a pragmatic approach to history with a 

scholarly approach, where historians retain a critical distance to past events and 

emphasize differences between past and present. In the professional, academic 

discipline of history both traditions can be found, but since the mid 19
th

 century the 

scholarly approach to history has been more and more dominant. 
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Observer history and actor history are another pair of concepts through which we can 

discuss and understand uses of past events and sources. Jensen (2010, p. 41) talks 

about uses of the past from an actor perspective, if we use history to orient ourselves 

and act in a present context. He calls this an intervening use of history. If the past is 

viewed retrospectively with a purpose to enlighten instead of a purpose to act or 

intervene he talks about uses of past from an observer perspective.
2 

Finally, the so-called ‖living history‖ use of history is a way of using the past to help 

participants develop historical awareness and learning strategies. In Denmark living 

history takes place at some museum centres and at some yearly events. One such 

centre is The Medieval Centre. On their homepage 

(http://www.middelaldercentret.dk/Engelsk/welcome.html) they state that the centre: 

―is an experimental museum where you can experience life in a reconstructed late 

14th century market town: Daily life, knights tournaments, trebuchets, canons, ships, 

markets, … and a lot more...‖. According to Jensen (2010, p. 145) living history 

appeals to so many not only because the participants actively take part in the events, 

but also because they use other types of learning strategies where the focus can be, 

for example, to develop the skills of past craftsmen. 

4. WHAT IS THE CONNECTION TO MATHEMATICS EDUCATION?  

These concepts of, approaches to, and thinking about history and uses of past 

episodes and artefacts present a framework for a refined discussion and systematic 

analysis of how past episodes and sources can be/are used in the integration of 

history for the teaching and learning of mathematics. They open up a variety of 

approaches to history and uses of the past for teachers who want history to play a 

role for teaching and learning mathematics. Which approach to choose depends on 

the intended learning. For example, Kjeldsen and Blomhøj (forthcoming) argue, 

based on Sfard‘s (2008) theory of thinking as communicating, that history presents 

itself as the obvious tool for developing students‘ proper meta-discursive rules, 

because meta-discursive rules are contingent and as such can be studied at the object 

level of history discourse. This presupposes a scholarly approach to history. The idea 

is to use past mathematical activities and sources with the intention of creating 

learning and teaching situations where students can experience what Sfard calls 

commognitive conflicts. Hence, the past is used with the purpose of intervening, and 

therefore the scholarly approach to history is from an actor perspective.  

Kjeldsen (forthcoming) discusses the role of history for the teaching and learning of 

mathematics with reference to a competence based understanding of mathematics 

education (Niss, 2004). Here the development of students‘ mathematical competence 

is the main purpose of mathematics education along with the development of some 

second order competencies, including historical overview and awareness. For the 

development of historical overview and awareness, a scholarly approach from an 

http://www.middelaldercentret.dk/Engelsk/welcome.html
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observer perspective can be chosen. For development of specific mathematical 

competencies, a pragmatic approach from an actor perspective might be considered.   

5. AN IN-SERVICE COURSE ON PROJECT WORK 

The focus of the paper is on theoretical issues, but to illustrate the theory, a project 

work that was developed and implemented during an in-service course for upper 

secondary teachers in Denmark will be analysed. In this discussion the ―living 

history‖ approach will be examined to see how it might be adapted as a way for 

mathematics teachers to use past episodes and sources to develop students‘ learning 

strategies and historical awareness. 

The theme for the project work was Egyptian mathematics. It was developed and 

tested in a classroom of students (10
th

 graders) in the Danish upper secondary school 

in 2004 as part of an in-service course for mathematics. The in-service course was 

developed in response to a reform that was to be implemented in 2005. 

Compared with more traditional ways of teaching mathematics the reform challenged 

the teachers in several ways: (1) Many were not used to teach either the history of 

mathematics or mathematical modelling, both of which having more prominent 

positions in the new curriculum than they had in the former curriculum; (2) they 

were required to bring mathematics into play in interdisciplinary projects in 

cooperation with other subjects, from science, from the humanities, and from the 

social sciences; and (3) they had to design, organise and carry out project work in 

their mathematics teaching. The goal was to create an in-service course where 

theories in didactics and pedagogy interacted with development of the participants‘ 

own teaching practice in ways that also related to inquiry-based teaching and 

learning.   On this basis the objective of the in-service course was to support teachers 

in their development as teachers, implementation in their own classes, evaluation of 

the project work, and documentation through a written report of a project-based and 

problem-oriented course in the history of mathematics or in mathematical modelling. 

The core element of the in-service course was the development of the teachers‘ 

experimental practice with history of mathematics or mathematical modelling and 

problem-oriented project work. 

The in-service course began with a three day seminar where the teachers were 

introduced to the history of mathematics, mathematical modelling, didactical 

theories, and problem oriented project work. The teachers worked in small groups 

developing a project-organised course in either history of mathematics or 

mathematical modelling of their own choice consisting of approximately 10 lessons 

of 45 minutes each. They decided on (1) the objectives for their own professional 

development, (2) their objectives for students‘ learning, (3) how to ―set the scene‖ 

for their own students‘ project work, and (4) how to evaluate the students‘ learning. 

A few weeks after the seminar a first draft of the design for the project work and the 

materials that should be given to the students were distributed to all participants in 
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the in-service course. All teachers tried out their project work in their classroom. 

During that period there was a one day seminar to support the teachers in the 

documentation of their results and reflections on their experimental teaching. It all 

ended with a 2-day seminar, where the teachers‘ written reports were discussed 

extensively. The final reports are published on the internet together with the handout 

materials for the students for other teachers to use (http://magenta.ruc.dk/nsm/ 

uddannelser/gymnasielaerer/). 

I will not go into further detail on how we define problem-oriented project work  

(interested readers are referred to Blomhøj and Kjeldsen, 2006), but only emphasize 

that the problem that students are going to work on should function as the ―guiding 

star‖ for their work. In the ideal case every decision made in the project work should 

be justified by its contribution to the solution of the problem. This is crucial, since 

engaging in decisions provides opportunities for students to work independently, to 

gain control, and to direct the project. In order for this to happen, though, the teacher 

needs to set a scene for the project work, that is to formulate the task for the work, 

the conditions for the working process, the time constraints, and the requirements for 

the end product, for example a written report or a power point presentation fulfilling 

some specific requirements. In this way it is possible for the teacher to have some 

control while at the same time to leave room for the students to take responsibility 

and make decisions. 

The in-service course is still offered with the modification that we focus only on 

mathematical modelling. Therefore we only have one history project to present, but 

since its function here is to serve as a concrete illustration of the theoretical 

framework developed above, and not as documentation from an empirical 

experiment it can be used to characterize the suggested methodology. 

6. EGYPTIAN MATHEMATICS: A PROJECT WORK IN A 10
TH

 GRADE 

The project on Egyptian mathematics was developed and implemented in a 

classroom of 1. year students (10
th

 grade, age 16) in a Danish upper secondary school  

in the fall term. The project work was meant to be interdisciplinary, with history 

about Ancient Egypt in combination with their mathematics. The mathematics 

teacher had no experience with project-organised teaching in mathematics, which 

was his focus for his own professional development. His objectives for the students‘ 

learning were to: 

h) enhance the students‘ competence to work in teams 

i) enhance the students‘ independent learning 

j) enhance the students‘ oral presentation skills 

k) have the students gain experiences with power point 
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l) have the students appreciate that mathematics has been different from what it 

is today 

m) develop the students‘ awareness that mathematical results have evolved, that 

mathematics is not static, which is contrary to the way it is often presented 

n) develop the students‘ awareness that mathematics develops in an interplay 

with culture and society. (Wulff, 2004, p. 2-3; my translation) 

The objectives fall into two parts that cover all three of the above listed challenges of 

the reform: the first four address competence in independent study, the development 

for which problem-oriented project work is an excellent pedagogical tool, whereas 

the last three concern the history of mathematics requirements of the new 

mathematics curriculum. Note that a)-c) and e)-g) are elaborated versions of some of 

the ICMI Study whys, see Fauvel and van Maanen (2000, pp. 205, 207, 211-212). 

The teacher orchestrated the students‘ project work in three stages:  

(3) The first stage was an introduction to Egyptian mathematics using a text from 

the students‘ textbook (Carstensen and Frandsen, 2002), where the teacher 

introduced the Egyptians‘ method of multiplication by repeated doubling, their 

number symbols, and their way of formulating problems (two lessons). 

(4) The introduction was followed by eight lessons during which the students 

worked in teams of four, guided by a description of  

i) the problem formulation, which was given by the teacher (see below);   

ii) the learning objectives; iii) the product; iv) the topics for the teams.  

The teams worked independently. The teacher took the role of a consultant who 

could be called in for advice. When that happened he focused on posing 

questions and challenging the teams instead of providing answers. The problem 

formulation for all teams was: How and why did the Egyptians calculate? Each 

team worked with a chapter from a textbook on Egyptian mathematics 

(Frandsen, 1996), seven chapters all together treating their numerals, their 

methods for arithmetical operations, the 2/n-table, bread and beer (Pesu) 

exercises, equations and geometry. To have a whole textbook on an episode 

from the history of mathematics in Danish is a rare circumstance, and one of the 

reasons why Egypt was chosen for this project work.  

(3)  Each team had to present its results for the rest of the class in an oral 

presentation supported by a power point presentation. This took up four lessons. 

The first set of learning objectives deal with issues of enhancing students‘ 

independent study skills. In his evaluation the teacher emphasized in particular that 

the students acquired the mathematical knowledge of the Egyptians by themselves 

(in contrast to ordinary teaching where he explained everything), that they ―cracked 

the code‖ themselves, and that they were conscious about it. Regarding item e) and f) 
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of the second set of learning objectives, the teacher wrote: ―they were all about 

gaining insights into current mathematics precisely by studying the mathematics of 

another time‖ (Wulff, 2004, p. 3), from which we can infer that the teacher used a 

pragmatic approach to history. He used past episodes of mathematics from a utility 

perspective. This also becomes clear from his description of a discussion that took 

place between him and the students during the introduction: ―Already during the first 

module [the first two lessons] came the classical question, why are we going to learn 

this? And we had a good talk about the intended learning issues e), f), and g), during 

which the class apparently accepted that historical mathematics, besides being 

interesting as such, could contribute to a more nuanced view on current 

mathematics.‖ (Wulff, 2004, p. 5). Regarding the learning objective of realizing that 

mathematics has evolved over time, the teacher was rather critical, explaining that 

this aspect was not really complied with, since a comparison of Egyptian and modern 

mathematics only shows that mathematics has changed; it does not give insights into 

the actual process of change. Regarding the last item g) of the second part of the 

learning objectives, the teacher wrote in his evaluation: ―here is where the subject of 

history can be involved. From a general knowledge about Ancient Egypt and its 

society, students can discuss how society and culture have been driving forces for the 

mathematics of that time. At the same time the historians‘ method of source criticism 

is an essential tool for interpreting ambiguous and defective papyri‖ (Wulff, 2004, p. 

4). In contrast to items e) and f) the teacher here takes a scholarly approach to 

history. The teacher used the past from an observer perspective in both approaches. 

The students‘ work with the sources and exercises in the textbook on Egyptian 

mathematics to answer the ―How‖ part of the problem formulation can be considered 

a ―living history‖ approach. They put themselves in the place of Ancient Egyptians, 

trying to understand and learn how they calculated, how they dealt with geometry, 

how they proposed mathematical problems, and so forth. The teacher reported the 

following situation he observed in the classroom: ―Many students wondered about 

how ―stupid‖ the Egyptians were. Why did they only use unit fractions? Why should 

a number be expressed as a sum of different unit fractions? On the other hand their 

methods were very difficult to understand; that is rather advanced, so in that respect 

they weren‘t stupid at all. I think that many of the students realized that current 

mathematics is not ―just‖ like today, but is a result of a long development, during 

which many things have been simplified.‖ (Wulff, 2004, p. 7). This shows a 

development of historical awareness among the students. That the students‘ learning 

strategies were developed through this kind of ―living history‖ approach can be 

inferred from the following observation made by the teacher: ―This [that 

mathematics had made progress] became especially obvious when the students 

constantly rewrote the Egyptian notation to current notation with x‘s, formulas, etc. 

After they had finished an Egyptian calculation they would say: ‗but that just 

corresponds to …‘ followed by a solution of an equation in our way. It was very 

inspiring to see how students, who normally were a bit alienated towards x‘s and 
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equations now had taken those to themselves as their own, and all of a sudden 

perceived equations as an easy way to solve problems. The students became aware 

that modern notation makes the calculations much easier than they would have been 

otherwise‖ (Wulff, 2004, p. 7). 

As mentioned above the teacher found that item g) in the list of learning objectives, 

which was supposed to link the development of mathematics with a scholarly 

approach to history, was not realized. The ―why‖ part of the problem formulation 

was designed especially towards this goal. The mathematics teacher had hoped that 

the students would have been able to experience concrete examples of how needs of 

society sometimes act as driving forces for the development of mathematical ideas. 

This is a very ambitious goal, and since the history teacher focused more on religion 

and dynasties, the mathematics teacher felt that the students did not get opportunities 

to gain real insights into why mathematics was developed in interaction with the 

needs of society and culture. A less ambitious teacher would probably evaluate this 

part differently, pointing towards the fact that was explained above, that the students 

gained genuine historical knowledge about Egyptian mathematics situated in the 

proper historical context. Finally, the teacher concluded that the students afterwards 

showed signs of possessing a more mature and reflective approach to mathematics 

than they had before. Unfortunately, the teacher did not document this with 

observations from the classroom.  

7. CONCLUDING REMARKS 

The purpose of the paper was to present a theoretical framework for a systematic 

analysis of the uses of history for teaching and learning mathematics in order to 

propose a didactical transposition of history from the academic research subject to 

history in mathematics education. The analysis of the teacher‘s report on the project 

work on Ancient Egyptian mathematics with respect to the described framework of 

different uses of past episodes shows that in this project, history was used in 

different ways to provide a very rich teaching and learning environment. The teacher 

used different approaches to history and used past episodes from various 

perspectives for different purposes, thereby creating learning situations that 

developed students‘ historical awareness and mathematical learning strategies at the 

same time. History was used in ways in which students gained genuine historical 

insights, developed learning strategies, and enhanced their mathematical problem 

solving skills even though they worked on mathematics that might not be part of the 

core curriculum. 

NOTES 

1
 I would like to thank Costantinos Tzanakis for helpful comments on an earlier version of this paper. 

2
 A fourth pair of concepts is identity neutral vs. identity concrete history writing, which will not be used in 

this paper. 
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ESTABLISHING THE ‗METER‘ AS CITIZENS OF FRENCH 

NATIONAL ASSEMBLY DURING THE FRENCH REVOLUTION  

Panayota Kotarinou, Charoula Stathopoulou, Anna Chronaki 

University of Thessaly 

This paper discusses how a group of adolescent students has been engaged in a 

cross-curriculum project focusing on making explicit the historical background of 

establishing the ‗meter‘ as a commonly used unit. The project was organised around 

a role-playing debate imagined to have taken place at the time of French Revolution. 

The potential of this particular project can be recognized at varied interrelated 

levels; a) in its effectiveness in students‘ knowledge in Mathematics and Physics and 

in changing stereotypic images of Mathematic, and b) in supporting student‘s 

creative and critical thinking in the realm of their involvement in social problems 

within a specific economic and historical context. Moreover we consider that 

students, in their involvement in this project, have the potential for cultivating 

communicative abilities and a stronger sense of citizenship. 

INTRODUCTION: HISTORY OF MATHEMATICS AND EXPERIENTIAL 

LEARNING  

The integration of the history of mathematics in teaching can support, enrich and 

ameliorate mathematics education processes as far as mathematical learning is 

concerned. Besides to mathematical learning, the development of beliefs (and 

positive attitudes) concerning the nature of mathematics and mathematical activity, 

as well as the recognition of Mathematics as a human cultural product can be 

encouraged through the history of the subject. 

Tzanaki and Arcavi (2000, pp.203) refer to five main areas in which mathematics 

teaching may be supported, enriched and improved through integrating the history of 

mathematics into the educational process: a) the learning of mathematics b) the 

development of views on the nature of mathematics and mathematical activity c) the 

didactical background of teachers and their pedagogical repertoire d) the affective 

predisposition towards mathematics and e) the appreciation of mathematics as a 

cultural-human endeavour. According to Jankvist (2009), the arguments for using 

history are of two different kinds: those that refer to history-as-a-tool for assisting 

the actual learning and teaching mathematics and those that refer to history as-as-a-

goal in itself which focus on the developmental and evolutionary aspects of 

mathematics as a discipline. Based on a review of the literature, one could point out 

that the historical approach in mathematics teaching, amongst other things, focused 

towards: 

1. Disputing the mathematics myth as a sterile, static and insular science, projecting 

mathematics as humanitarian science whose development depends on social, 

historical and philosophical factors (Ernest, 1998).  
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2. Highlighting the interaction between Mathematics and society, revealing the 

ways, the norms and practices of various cultures, which influence Mathematics 

and vice versa how Mathematics influences the ways in which people operate, 

and think about, the world (Wilson, 2000). 

3. Exemplifying and making explicit the genesis and origins of some ideas and 

procedures (Furinghetti, 98) 

4. Supporting the learner to appreciate that heuristic processes, conjectures, doubts, 

mistakes insufficient claims and proofs, and impasses, all make constitutive 

pieces of Mathematics creation, and hence an inextricable piece of what 

Mathematics is (Tzanakis, 2009: pp. 20). 

5. Stressing the close and two-way interrelation of mathematics and physics, 

through their historical evolution ( Tzanakis & Thomaidis, 2000; Tzanakis, 2000) 

6. Showing the interdisciplinary nature of mathematics – its relevance to every 

aspect of human life— (Ernest 1998). 

7. Integrating elements of different curricular subjects, through the interdisciplinary 

projects in which History of Mathematics plays an important role (Furinghetti, 97; 

Furinghetti, 98; Kotarinou & Stathopoulou, 2009)  

8. Providing us with ways to introduce students to the beauty, utility and abstraction 

of Mathematics (Wilson, 2000) 

9. Supporting the introduction of notions and methods, the necessity of which we 

find difficult to explain to the students. 

10. Providing students with the opportunity to ascertain that famous mathematicians 

not only followed the similar way of thinking, but had done the same mistakes as 

students (Furinghetti, 2003). [1] 

History of mathematics can also contribute towards experiential learning. 

Experiential learning theory defines learning as "the process whereby knowledge is 

created through the transformation of experience. Knowledge results from the 

combination of grasping and transforming experience"(Kolb 1984, p. 41, in Kolb et 

al, 2000). Experiential learning permits student learning in an effortless, constant and 

permanent way through the ‗real‘ experience and in participating in activities that 

concerns him and that he finds interesting.  Some ways of experiential learning 

through the history of mathematics, are: enactment of theatrical plays (Fraser & 

Koop, 1981) dramatization of different themes from History of Mathematics 

(Hitchcock, 1998; 1999; 2000; Lawrence 2000; Prosperini, 1999) story-telling from 

History of Mathematics (Selby, 2009; Schiro, 2004), educational programmes 

inspired from history of Mathematics in Museums, archaeological or historical 

places, role-playing (Perl and Christner, 1982; Hallenberg, 1995), debates 

(Furinghetti, 97), historical debates based in a mathematical issue (Bartolini, Bassi & 

Mariotti, 1999a,1999b; Katz, 1997) 
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In this paper we shall provide a review of our research which aimed to explore the 

use of Drama in Education and specifically the role-playing debate with a theme 

from the history of mathematics: 1) in helping students realize the relationship of 

mathematics and science in a socio-cultural-historical context; and 2) in assisting 

students to understand the mathematical and/or scientific notions of a selected 

historical case. For this reason an interdisciplinary project has been conducted about 

the processes of establishing the ‗meter‘ as a commonly used unit during the French 

Revolution. Among other activities a role-playing debate was carried out, which was 

a simulation of the confrontation in the French National Assembly during the French 

Revolution and was concerned with the choice of a unified unit of length 

measurement. 

DEBATE AND ROLE-PLAYING: THEIR CONNECTION WITH HISTORY 

OF MATHEMATICS  

Drama in Education is a highly structured pedagogical activity that utilises exercises 

and techniques of dramatic art, in which the emphasis is on the procedure and not on 

the final product (Alkistis, 2000). It constitutes an experiential approach to teaching 

and aims at collaborative, active learning through experience while giving the child 

the opportunity to develop acceptance, understanding, creativity, curiosity, the ability 

to express themselves, self-consciousness, and skills in team work (Wagner, 1999). 

Among other techniques of Drama in Education is Role playing. Role playing is a 

technique in which students adopt a particular character putting themselves in the 

same position as him, trying to think what would that imaginary character have said, 

thought or felt (Neelands 1998).  

As has been noted through bibliography, this technique is often supplemented with 

the use of debate. The use of debate in teaching can facilitate knowledge acquisition 

as well as the development of critical thinking (Huber, 2005; Snider 2006). 

Furthermore, participation in activities of this type familiarizes children with the 

holistic handling of issues, makes them able to justify their point of view, practices 

their mental flexibility and alertness, and enhances their ability of self-criticism and 

their conciliatoriness. At the same time they are given the opportunity to exercise 

their mind by producing and communicating ideas. Debates about mathematical 

discoveries can help students understand that old paradigms of thought were 

successful because the theories worked in the context of the old world, not because 

people of that day were ignorant (Snider, 2006 pp.230). Debates can also enable 

teachers to bring the historical contexts of mathematical theory to real life. 

More specific, the role playing debate that simulates historical events, can revive the 

historical context within which a science theory (or technique) was developed 

(Snider 2006). Role-playing emphasizes the dimension of Science as ―process‖ and 

as ―social institution‖ makes Science education more effective (Alkistis, 2005). In 

addition, through the research required for the debate, students have the opportunity 
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to get to know the historical and social context within which a certain scientific 

theory emerged and generally comprehend that science, society and culture are 

interrelated. 

METHODOLOGY  

The project was carried out in the 2
nd

 State Lyceum of Ilion in Greece, in a low social 

and economical area of Athens, during school year 2007-8, with two classes of 11
th

 

grade [2] students (with 22 and 23 students) in order for them to approach through 

experiential learning an historical event concerning the establishing of the meter
 
[3] 

as a unified unit of measurement. This project aimed to discuss notions in 

Mathematics and Physics and the connection of the two disciplines, the change of 

stereotypic images of Mathematics by the students, the students training in 

argumentation skills, the students development in creative and critical though and the 

students cultivation of communicative abilities and of a stronger sense of citizenship. 

We chose the model of collaborative teaching practice which was based on the 

reiterative cycle of planning - researching - sharing resources - teaching 

collaboratively - and finally assessing the outcomes of a lesson (Lawrence, 2008). 

THE INTERDISCIPLINARY PROJECT  

Historical events: By the end of the 18
th

 century the diversity of weights and 

measures in France was held responsible for great problems in economical dealings 

as well as the exploitation of people by feudal lords. Embezzlement, fraud, injustice, 

arbitrariness were ascribed to the diversity of about 2.000 different units of 

measurement in all France. Things were made worse because majority of the 

population was illiterate and thus incapable of making conversions amongst different 

measuring units. Due to the aforementioned reasons standardization of measuring 

units was one of people‘s basic demands. The establishment of new units consisted a 

political decision. From the first year, the French National Assembly voted the 

uniformity measurement units and sought new ones. In 1790, the French National 

Assembly accepted the definition of the meter as the length of pendulum that has a 

period of 2 sec at latitude of 45
o
, and asked the Academy of Science to propose the 

base of the metric system. The Academy responded to this request and recommended 
a decimal system of measurement. In 1791 a committee of the French Academy of 

Science—Lagrange, Laplace, Condorcet, Borda and Monge—suggested that the new 

definition for a meter be equal to 1/ 10 millionth part of the quadrant of the terrestrial 

meridian between Dunkirk and Barcelona and this was accepted by the National 

Assembly. The unit was given the name ―meter‖ in 1793. 

Placing the drama project in practice: ‗sensitive pendulum or heavy earth?‘ 

During this project, a role-playing debate was organized, which was a simulation of 

the confrontation in the French National Assembly. This particular debate entitled 

―The sensitive pendulum or the heavy earth?‖ was carried out twice with 11
th

 grade 
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students of two different classes. One class had previous experience with activities in 

the use of Drama techniques, in contrast with the other class in which the students 

had had no similar experience. A class that wasn‘t involved in the project attended 

each debate. This confrontation concerned the choice of a length measurement unit, 

through the two aforementioned different approaches. The topic of the debate was 

selected to show students the confrontation, the protagonists and the historical 

context within which the unit ‗meter‘ was introduced to help them comprehend that 

scientific theories are result of both intellectual and social interaction. 

Preparing the ‗debate‘ seven teaching hours was required over a period of three 

weeks. In history-class, a PowerPoint presentation concerning the establishment of 

the meter, helped students to realize the problems stemming from the use of many 

different units of measurement. Extracts from a documentary film about the French 

Revolution introduced them in the ambience existing before and during the first two 

years of the French Revolution. During the subsequent discussion, pupils started 

pondering why the choice of weighs and measures by feudal lords was a privilege for 

them. They finally found out that the change of size of the unit of volume resulted 

into an increase of taxes. The role of scientific unions concerning their decisions not 

only in scientific subjects but in social and political ones has been discussed.  

During the language-class, the teacher helped students translate and understand texts 

concerning the origin and life, as well as the ethical and political role of scientists 

and other historical issues emerging in this revolutionary period.  

The students were divided into 6 groups and had to locate their arguments for 

preparing a ‗debate‘, reading extracts from Denis Guedj‘s book ―Le metre du 

monde‖. Each group chose a representative to take part in the debate. The teachers in 

charge were present all the time to support the teams in their work. The students‘ 

ability to argue about the choice of the pendulum is directly correlated with their 

comprehension of its governing laws. Therefore, the students were taught in physics- 

class the pendulum principles and were also familiarized with the notion of 

pendulum isochronisms phenomenon. In the debate, for a suitable atmosphere to be 

created, simple settings and costumes have been used. In order to find out the way 

the members of the Assembly were dressed and how they spoke, the children 

watched David‘s famous painting ‗The Oath of the Tennis Court‘ and dramatized 

scenes from a documentary with Robespierre speaking in French Assembly. 

In the debate all students adopted the role of a responsible citizen, member of the 

French Constituent Assembly, who had to take decisions about crucial matters, in 

this specific historical context. Certain students played the role of historical figures 

as Talleyrand, Bailly, Prieur, Condorcet, Borda. Prieur spoke in favor of establishing 

new units; Borda presented the proposition of the French Scientific Academy, while 

Talleyrand spoke in favor of the pendulum and Condorcet in favor of the meridian. 

Some students, as members of the Assembly spoke either for the pendulum or for the 

meridian. During the debate students participated vividly either acclaiming or 
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disapproving the speakers. Before reading the real decision of the French Assembly, 

all of them- in roles of citizen members of the assembly- voted in favor of the 

meridian as the most appropriate unit of measurement, without knowing the real 

decision of the French Assembly. 

PRELIMINARY DISCUSSION  

The project has been evaluated through the analysis of students‘ answers to a 

questionnaire and of particular episodes of the process as they were captured by 

means of videotaping the debate performance. The reason for distributing a 

questionnaire was primarily to identify whether the project had any impact on 

students‘ knowledge concerning the measuring units. The majority of students, even 

a month after the debate, answered correctly to questions involving the establishment 

of the meter (27 from the 45 students answered correctly about the meridian 

definition of the meter) and the laws of pendulum (28 students answered correctly 

that the period of swing of a simple gravity pendulum depends on its length and the 

local strength of gravity and that it is independent of the mass of the bob, while 17 

gave wrong answers or didn‘t answer at all). The students emphasized that this 

activity engendered the development of critical thought, the familiarization of a more 

rounded approach, active participation and cooperation with each other. More 

importantly that what they learned they emphasized the way in which they learned: 

they pointed out that they all took part, worked together, took the initiative and felt 

enthusiastic. Furthermore they liked the seriousness with which the debate was 

carried out; the good organization and the role-play which made them believe that 

they really took part in the French National Assembly.  

Analysis of the videotaped debate performance 

A preliminary analysis of the videotaped debate performance permitted us to stress a 

number of episodes related to processes of knowledge construction and values 

building such as; discussion of mathematics and physics, training their skills in 

argument, and gaining a sense of becoming responsible citizens. Each of these are 

briefly analysed below. 

Discussion about mathematics and Physics notions: Students have discussed 

about arbitrary and conventional measures, connecting the conventional unit of 

length measurement with justice. From their arguments in the debate we concluded 

that students had understood the laws of simple pendulum as they referred - in their 

argumentation - to the dependence of the period of pendulum on π and on g - the 

acceleration to the gravity [4].  

Training in argumentation skills: Both sides had to prepare strong arguments to 

support the definition of the meter. The team in favor of the pendulum used the 

argument that pendulum was a rational solution, simple, cheap in construction and 

easy and functional in use. The second team claimed that the definition of the meter 
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as a part of a meridian was a global solution, not easy and cheap but yet an accurate 

and reliable one, as not depending on numbers that in real life can‘t be calculated 

with accuracy.  

Quotes from student-in- role of Talleyrand argumentation in favour of the pendulum   

...Laws of pendulum are dictated by Newton laws and because we are now in a 

rationalism era we believe that this is one of the best solutions...Laws of pendulum are 

very simple. Its movement depends only on the length of the rope and the geographical 

area. The weigh that you see in the end of the rope doesn‘t play any role (He explains the 

pendulum laws pointing out on a pendulum in movement). We can then define as unit of 

measurement the meter, equal with the length of pendulum which does this movement 

forward and backward in 2 seconds. It‘s something very simple, it can be realised in front 

of people, it‘s very economical and easy...  

Quotes from student-in- role of Condorcet argumentation in favour of the meridian 

...You have mentioned that we live know in an era that we must be rationalists. Can the 

measurement that you have proposed, be a product of rational and realistic thought? You 

have mentioned some other factors to which I will now refer. More precisely you have 

referred to the acceleration of gravity and to the number π, the well-known 3,14…. I want 

to remind you that all these numbers have infinite digits … Is it possible that the meter 

that we will use in all our life, for all the time from now and then, for all next generations, 

will not be an exact number? Is it allowed such a thing? How is it possible for the meter 

to be approximated in such a way? As citizen Talleyrand correctly mentioned before, the 

acceleration of gravity changes from place to place. Is this not enough for us to reject it? 

Will France have a different acceleration of gravity, Spain another one, and Russia too? 

Will we have then a different meter for every different place in the earth? How is it 

possible for us to accept it? 

Fostering the sense of citizenship: Through the whole procedure, the value of 

public (and responsive) dialogue has been brought out. During the introduction of 

the debate, the necessity of innovation ‗in order for the people stop being victims‘ 

has been underlined. Also, the exploitation of people by feudal lords though the use 

of arbitrary units of measurement has also been emphasized by the students. The 

need to release from king‘s units has been emphasized, as they were local and also 

being defined in an arbitrary way. Students correlated the common meter with human 

rights while both teams have argued that the ‗meter‘ had to be defined in a way that 

can de understood by every citizen.  

…I would like to agree with Condorcet aspect, as pendulum is a phenomenon, which is 

encountered with a lot of formulas and notions that any person in France isn‘t obliged to 

know. So, how is it possible for any simple tradesman or farmer to measure the period as 

it was mentioned before? How are they obliged to know the oscillation? 
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…Pendulum is based in a physical phenomenon. Everyone of us can use it simply, as 

many times he wants, quickly and with precision, something that is quite impossible with 

the method of meridian. 

SOME CONCLUDING REMARKS  

The experiential dimension of learning, considered as a fundamental component in 

alternative approaches of teaching, is absent or has a decreasing role in traditional 

teaching. In the aforementioned project we have seen students involving in an 

experiential way –with role playing- in a more complicated process than a traditional 

lesson and we have seen them cultivate multiple aspects of their selves and their 

creativity. Apart from the students their facing different subjects in the same activity, 

they saw another image of Mathematics. Contrary to a conventional lesson which 

emphasises solving of formal problems, -often de-contextualised - students faced a 

non direct mathematical problem but a problem with mathematical notions. The 

social conditions determining the context have appeared to also determine decisions, 

while the scientists‘ social responsibility, as people who play active roles in society, 

came into the fore. According to Ernest (2008) the adoption of mathematics as a 

cultural construction, as much from a historical perspective as from the perspective 

that examines knowledge in relationship to the context, can endow a human element 

to school mathematics once more. We believe that with all the aforementioned 

activities this aspect of mathematics came to the forefront. With the role-playing the 

central role of historical and social context and ways mathematics could be utilized 

in was brought to light and students were able to experience this dimension of 

mathematics, not only mentally but emotionally and physically. We think that there 

is a need to reconsider research related to ways in which Drama in Education 

techniques can contribute to an experiential learning of history of mathematics and 

mathematics in general. 

NOTES 

1. We consider that the first seven from the aforementioned benefits -for integrating the history of mathematics into the 

educational process - are the most relevant for the study presented in the present paper. 

2. The necessary knowledge for the project -the ‗simple pendulum‘ and ‗the French Revolution‘- is included in the 11th 

grade Physics and History curriculum. 

3. The 11
th

 grade Euclidean geometry curriculum includes the notion of a straight line segment measurement. In the 

school book there is a reference of the arbitrariness of the measurement unit. This reference gave us the opportunity for 

the project concerning the establishment of the meter.  

4. T=2π(l/g)1/2 ,T=The period of a simple pendulum,  l = length of the pendulum 
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LESSONS FROM EARLY 17TH CENTURY FOR CURRENT 

MATHEMATICS CURRICULUM DESIGN 
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The Dutch Engineering School at Leiden University (Duytsche Mathematique) is the 

first example in the Netherlands of a professional training for engineers and 

surveyors, connected to a university. The Instruction (the formal curriculum) was 

provided by Simon Stevin in 1600. A manuscript from 1622, ‗Mathematische 

Wercken‘, presumably lecture notes by Frans van Schooten the Elder, is clearly 

based on the Instruction. Stevin and Van Schooten designed an up-to-date 

curriculum, which seems to have been successful for about 65 years. Some reasons 

for its success and decline are still meaningful for curriculum design in mathematics 

education today.   

RESEARCH 

The motivation for this research originates in the heated discussions before and 

during recent revision of the Dutch national study programmes for mathematics at 

secondary level. The upheaval was at least partly caused by differences of opinion on 

which topics to include and to which depth. Attempts to influence the content based 

on personal points of view were noticeable. An obvious question, also prompted by 

the recent interest in links between history and mathematics education, is whether 

and how history can provide inspiration and reference material for those involved in 

the design and evaluation of mathematics curricula. The case presented in this paper 

forms part of a  research for a PhD thesis on the history of mathematics education.  

The main research question is  

Which are the factors and actors that influence to a high degree the content of 

mathematics curricula? 

The following questions structure the research more specifically. 

 Which motivations and whose ideals are influential on the content of the formal 

curriculum? 

 Which factors and which people determine the interpretation of the formal 

curriculum and its implementation? 

 Which factors and which people are important for successful implementation of a 

curriculum? 

Method 

Analysis and comparison of three cases, considering influences on the formal 

curriculum and the relative success of each of them, will result in a preliminary list 
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of conditions, which are important for successful curriculum design and 

development. Comparison of these conditions with recent curriculum design and 

development in mathematics education should result in a list of criteria which are 

decisive for successful mathematics curricula today.  

The three cases in Dutch history of mathematics education, in the seventeenth, 

eighteenth and nineteenth century are described as follows.  

1.The Duytsche Mathematique, established as a school for Engineers at Leiden 

University in 1600 shows the first known example in the Netherlands of a formal 

curriculum.  It was especially successful from 1600 - ca 1665. 

2.In the second part of the eighteenth century, the three Foundations of Renswoude 

offered professional education to talented poor orphans. Mathematics was the main 

subject for all pupils at least during the first two years of their education. The focus 

of my research in this second case is the Foundation in Utrecht, operational from 

1761. and still existing today. 

3.In the second part of the nineteenth century, in 1863, the Dutch national 

government established the Hogere Burgerschool (HBS), a secondary school for 

children of citizens who would not enter university, but who were to take up higher 

positions in society or enter the Polytechnic Institute in Delft, the present Technical 

University of Delft.  

In this paper some aspects of the first case, the Duytsche Mathematique are 

presented. 

THE DUTCH REPUBLIC  

On 23 January 1579, four provinces in the Low Countries signed the Union of 

Utrecht, a treaty to establish a military league to fight the Spanish armies. During 

1579 and 1580, more provinces and towns signed the treaty, which is considered the 

foundation of the Dutch Republic (the Seven United Provinces). The States General, 

established in The Hague, formed the government of the Republic, and the 

‗stadtholders‘, elected by their provinces, became powerful political leaders. In 1584, 

the leader of the rebellion, Prince William I of Orange, was assassinated in Delft, and 

the following year his son Prince Maurits of Orange, aged 18, became stadtholder of 

Holland and Zeeland. From 1590, Maurits was commander of the army of the States 

and successful in (re)capturing a number of fortified towns. He was interested in 

mathematics and its applications and was well aware of the importance of the 

application of mathematics to modern warfare.  

From about 1590, the economic situation improved considerably: trade and 

navigation increased, and some towns grew to four or five times their earlier size 

during the early years of the seventeenth century. The political and economic 

situation led to a high demand for qualified surveyors and engineers, who were able 

to design and build modern fortifications, but who also could map the country or had 
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other surveying skills. Town expansions were necessary to house the fast growing 

population, though during the first part of the seventeenth century this was secondary 

to fortification (Maanen, 1987; Struik, 1981). Surveyors and engineers, both military 

and civil, needed mathematical knowledge and skills.  

Italian architects and engineers became very influential in the Netherlands: in the 

first half of the sixteenth century, Italian advisors were responsible for improving the 

defensive walls of towns. Their ideas also became widely known through 

publications of Italian mathematicians such as Tartaglia, Marcaurelio de Pasino, 

Castriotto, Serlio, and others like Daniel Speckle and Simon Stevin (Maanen, 1987; 

Metin, 2007). In the Stercktebouwing (1594) Stevin described a system of 

fortification based on the Italian system with polygons as plan, and pentagonal 

bastions. Any engineer who applied this system had to have knowledge of geometry 

and trigonometry. Surveyors and engineers should also be able to measure land and 

determine area, subdivide land into proportional parts, produce maps, determine the 

height of towers, the width of water, or the volume of dykes, both on accessible and 

inaccessible land (Gulik-Gulikers 2005). The use of a reliable trigonometric table 

could improve the results of surveying techniques considerably. The extensive 

calculations that were necessary could be simplified using decimal fractions, which 

were not yet commonly used by mathematical practitioners (Struik, 1995). This is 

also apparent in publications and manuscripts from that time, see Sems and Dou 

1600; Ceulen 1615; Marolois 1628 and manuscripts BPL 1351; BPL 1970; BPL 

2084. Stevin did much to promote the use of decimal fractions in De Thiende (1585). 

Thus in order to meet the demands of the developing nation there was a great need 

for good mathematical education. In the Dutch Republic there was no centralized 

educational system. Schools were the responsibility of town councils, and in addition 

there were private schools or private teachers. There was no standard curriculum, nor 

any form of quality control (Krüger, 2010). 

THE DUTCH ENGINEERING SCHOOL AT LEIDEN UNIVERSITY (1600–

1679) 

In 1600 a school for military engineers was attached to the University of Leiden at 

the request of Prince Maurits, with a separate programme, devised by Simon Stevin 

and taught in Dutch instead of Latin: Duytsche Mathematique‘ (Dutch Mathematics) 

or Engineering School. The School taught both surveying and fortification. Thus, 

practical mathematics of high quality became available to those who did not have 

access to university education. Both Maurits and Stevin, but also Rudolf Snel, 

professor of mathematics at Leiden and at least one of the curators, Jan de Groot, 

valued a combination of theory and practice and thought mathematics very relevant 

to engineering. 

The intended programme by Simon Stevin is known as the Instruction
1
. In this early 

example of a formal curriculum, Stevin unambiguously connected content and 
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working methods with the purpose of the School: training of engineers for the Dutch 

army.  

The auditores will be trained to serve the country as engineers as quickly as possible. 

To this end they shall learn arithmetic or counting, and surveying, but of both only so 

much as is necessary for a common engineer. Those who have come this far are 

allowed to study more in depth if they wish to do so. This is the general outline, 

specifications are the following.  

The Instruction of Stevin specified in more detail what the content of the programme 

should be.  

Arithmetic, including the four operations in whole numbers, rational 

numbers, and decimal numbers; also the rule of three in those three types of 

numbers 

Surveying on paper, that is calculating area with the use of decimal numbers  

Measuring a circle, parts of a circle and area, ... subdividing rectilinear 

figures and curvilinear figures into several parts, such as triangles or other 

figures, checking calculations  

Measurements on paper of dykes and learning how many ‗schachten‘ or feet 

the works contain 

Fieldwork, learning how to use proper tools  

Mapping on paper what is measured in the field and the reverse, from a map 

setting out stakes in the field 

Fortification, learning the names of the parts from wooden or earth models, 

making maps of towns, drawing the perimeters of forts or towns with four, 

five, or more bastions and staking them out in the field 

 Table 1: Main items of Instruction by Simon Stevin  

The first known interpretation of the Instruction is a manuscript from 1622, 

Mathematische Wercken (Mathematical Works) by Frans van Schooten (the elder), 

who taught Duytsche Mathematique from 1611 to 1645 (Maanen, 1987). 

Mathematische Wercken is a set of lecture notes that presumably served as 

background for teaching. The manuscript gives insight into the level of mathematics 

taught and an indication of the didactical methods used at the time at Duytsche 

Mathematique.  

Frans Van Schooten (1582 - 1645) assisted Ludolf van Ceulen, professor from 1600 

- 1610  and continued teaching after Van Ceulen had died, though without a regular 

salary. He also worked as a surveyor and engineer for the army. In the archives of the 

University for the Period 1611 to 1614 there are references to payments made to him 

and to the provision of four wooden instruments for the teaching of mathematics 

(LdnUL Arch. Cur. 42). There are also requests from his students for him to be made 
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van Ceulen‘s successor. He finally was appointed professor in 1615 (LdnUL Arch. 

Cur. 42). 

MATHEMATISCHE WERCKEN: AN INTERPRETATION OF THE 

INSTRUCTION  

Fig. 1: Measuring the distance between two mountain tops A and B, from a base CD. 

Mathematische Wercken, f 83
r
 

Figure 1 shows one of the 

exercises from the second half of 

the manuscript (measuring 

heights). Looking at the solution 

presented, there are  quite some 

steps to be thought of and 

performed by the students in 

order to get to the required 

solution. Some virtual points are 

included (F, E and G). The sine 

rule is applied repeatedly, in the 

form of the rule of three. 

Pythagoras' Theorem occurs 

once. Van Schooten used an 

effective notation for decimal 

numbers, which was not at all 

common at that time.  

When comparing the main 

content of Mathematische 

Wercken by Van Schooten (table 

2) with the Instruction by Simon 

Stevin (table 1) it is obvious that 

Van Schooten took the 

Instruction as guidance. Both 

started with arithmetic, 

including the use of decimal notation. Stevin, but clearly also Van Schooten, saw the 

importance of using decimals, e.g. to diminish the length of calculations. Algebraic 

equations, conic sections, and similar subjects which were at the time important in 

mathematical research were considered of less use to surveyors and engineers, thus 

they were not included in the programme. But Van Schooten also omitted subjects 

which were presumably for his students not necessary, such as the four operations in 

whole numbers, which were mentioned in the Instruction. He added subjects which 

were helpful to an engineer or surveyor (extraction of square and cube roots, use of 

trigonometric tables).  
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Arithmetic: extraction of roots, decimal numbers, calculation of area  

Geometry: definitions and axioms, propositions from Euclid, constructions, 

transformations  

The practice of surveying: preparation, measuring distances in accessible 

land, and calculations 

Use of trigonometric tables, measuring in inaccessible lands, making maps, 

measuring heights (or depths), also measurements without use of tables 

Solids: calculations on all kind of shapes and materials, calculating content  

Fortification: definitions, plans of fortifications, bastions, calculations  

Table 2: Main content of Mathematische Wercken by Frans van Schooten 

The students who came to the lectures of the Duytsche Mathematique were of 

different background: they might know only the basics of arithmetic or they might be 

surveyors who wished to improve their knowledge and skills, or craftsmen like 

carpenters and bricklayers, or university students who wished to study engineering. 

Van Schooten started with the explanation of square and cube roots, and the 

explanation of the decimal number system used in surveying, both subjects were 

linked to geometry (see Figure 2). The manuscript as a whole shows some striking 

features from the point of view of teaching methods. Strong coherence, elaborate use 

of visualisation and relevant contexts alternating with rigorous training in 

mathematical skills without contexts suggest an author who had a good knowledge 

of the relevant mathematics, who had thought about teaching methods and enjoyed 

teaching.  

Examples of coherence are: consistent use of decimal notation whenever relevant; 

the use of nearly every element of the part on fundamental geometry (definitions, 

propositions of Euclid, constructions and transformations of figures) in the part on 

surveying techniques, in the calculations in three dimensions and in fortification and 

the repeated use of three main techniques in the notes on surveying (rule of three 

with sine, fig. 3, the tangent and rule of three with similarity, fig. 4).  Throughout the 

manuscript, illustrations are used with every exercise and every definition, axiom 

and proposition. The illustrations are always very neatly executed and if necessary 

labelled with capitals, to facilitate understanding. 
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Fig. 2: decimals in surveying,  f 45
r
 Fig. 3: rule of three with sine, f 57

v
 

Some of the illustrations are of a much higher artistic quality than one usually sees in 

such texts (see Figure 1). Illustrations may represent a context, combined with the 

mathematical translation of the problem, for example in the part on surveying 

(Figures 3 -5). They are also used to facilitate understanding of a new concept (fig. 

2). 

When van Schooten‘s lecture notes are compared with publications on the same 

subjects (Ceulen, 1615; Marolois, 1628; Sems and Dou, 1600; Stevin, 1594; Stevin, 

1605) it is clear that none of these authors treated all these topics in one book. 

Furthermore the books have far more text and less visualisation, for obvious reasons. 

In his treatment of Euclid, van Schooten is more academic than Sems and Dou in 

their Practijck des Lantmetens. Because of his use of decimal fractions, his 

calculations are shorter than those of van Ceulen or Marolois. The latter did not use 

trigonometric tables either. Manuscripts from the seventeenth century on these 

subjects by other authors are less coherent in the treatment of the subject, the 

illustrations are of lesser quality, the use of decimal notation is either absent or 

occasional (Author A?, 1658; Author A? & Cardinael, 17th century; Kechelius, 

1655).  
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Fig. 4: similarity, f 58
v
   Fig. 5: combination of  techniques, f61

v
 

The Duytsche Mathematique at Leiden University was successful until about 1668: 

as is evident from number and background of students (Du Rieu, 1875; Witkam, 

1967), repeated mentioning as an example worthwhile to follow and reputation of 

professors (Krüger, 2010). From about 1668 it went into fairly rapid decline. It was 

closed in 1679 and resurrected a few years later, but never again became as 

successful as during the early seventeenth century. 

DISCUSSION AND (PRELIMINARY) CONCLUSIONS 

Some factors and actors which influenced the success and decline of this programme 

are discussed in the remaining part of this paper. 

The Engineering School was established in 1600 at the request of an at the time very 

influential person, prince Maurits, who himself had studied at Leiden University and 

personally knew the curators. Around 1679 there were no influential people who 

would take an interest in the Duytsche Mathematique. 

The curriculum had a clear aim and was devised by a respected mathematician and 

engineer, Simon Stevin, who worked for and with Maurits. The content of the 

curriculum may be considered optimal as opposed to maximal, both in the formal 

curriculum and in the interpretation of 1622; modern techniques such as up-to-date 

trigonometric tables and decimal notation, were used if relevant for the aim of the 

programme. However the mathematical content and structure of the programme 

hardly changed during sixty years, and so gradually the programme became outdated. 

There was a population of prospective students and there were ample employment 

opportunities for those who had studied Duytsche Mathematique. However during 

the seventeenth century more institutes offered courses in mathematics for engineers 

in Dutch language, also during the seventeenth century engineers only got temporary 
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contracts with the army, which may have diminished the attractiveness of the 

profession.  

Teachers were capable and respected mathematicians and often also professional 

surveyors. However, the successor of Frans van Schooten, his son, Frans the 

Younger, was a respected mathematician, but he was not a professional engineer and 

as far as we know did not show much interest in this profession. 

The teaching methods, level of accuracy and contexts were aimed at the requirements 

of the future professions of students; there was a good combination of theory, 

practice and fieldwork. After 1645 there is no mention of practical work. 

The differences with present-day mathematics education are obvious, but from this 

case it seems likely that al least some aspects still are important today, both for 

curriculum design and for mathematics education. 

 Agreement on and explicit formulation of realistic aims of a new mathematics 

curriculum before deciding on the content might well provide a better framework 

for the whole process of development, provided the formulated aims are kept in 

view during the process of curriculum design, as was the case with the lecture 

notes Frans van Schooten wrote around 1622. 

More opportunity for teachers to design part of their own curriculum, with strong 

emphasis on quality, might well improve the teaching of mathematics. Structural 

links between professionals who use mathematics in their work and schools could 

help to improve both the teaching of mathematics and motivation of students. 

 Even the best curriculum has to change with new developments in society and in 

technology, or risk becoming outdated.  

NOTES 

1. This document and others concerning the Duytsche Mathematique are kept in the archives of the library of the 

University of Leiden (Arch. Cur. 20, 42); most of them are published in Molhuysen 1913 and later volumes. 
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HOW MUCH MEANING CAN WE CONSTRUCT AROUND 

GEOMETRIC CONSTRUCTIONS? 

Snezana Lawrence and Peter Ransom 

Bath Spa University, England 

This paper describes a way in which the mathematical heritage can be used to 

identify potentially ‗rich‘ tasks undertaken by student teachers to deconstruct, and 

subsequently better understand, the meaning of mathematical concepts they already 

know and are expected to teach. It is based on a small-scale project undertaken in 

the South West of England and which is proposed as a pilot for a larger project to 

map the curriculum against such topics. The project has been generously supported 

by the National Centre for Excellence in the Teaching of Mathematics (NCETM)
1
. 

Of course, mathematics involves deductivity. Working with the 

slide rule and the protractor is no mathematics, measuring areas and 

volumes is no mathematics. But accepting a deduction is no 

mathematics either, unless you adhere to the interpretation of 

mathematics as a ready made subject.  

Hans Freudenthal, Geometry between the Devil and the Deep Sea, 

416. 

THE CURRICULUM CHANGES AND THE CULTURAL HERITAGE 

Within the past few years a great number of changes have been initiated in the 

mathematics education in Great Britain
2
. The first of the most dramatic two of those 

changes was certainly the introduction of the new curriculum which was brought in 

as the old government prepared to leave the scene and the new was preparing to step 

in
3
. 

One of the most important things for schools to get right is being identified now to 

be mathematics education
4
. But is it mathematics that we as a society are interested 

in, or the results of the PISA study
5
, the content of the curriculum, the pedagogy, the 

level of difficulty of our qualifications, or the power of teachers in classrooms?
6
 We 

will argue in this paper that none of the above gives satisfactory answers to the better 

teaching and learning of mathematics, and that the disengagement of teachers from 

the actual mathematical content is the most important reason for disengagement of 

our students
7
. We will also argue that this is so because the teachers are not inducted 

in any way in the mathematical culture which they are supposed to transfer and 

transform through their own practice, either by ‗doing maths‘ or by inducting their 

own students into that practice. It is our fear that whatever curriculum we have the 

same will be valid in this regard: when the student teachers engage in doing maths, 

they follow the ‗heritage‘ path and are rarely aware of the origin of concepts and 

therefore their meaning. This paper will argue that the awareness of mathematical 
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cultural heritage, and a set of skills in identifying such heritage, is a necessary 

component in any preparatory teacher education. This process we identify also as a 

possible way into introducing the students to the history of mathematics which 

brings out all the well known benefits to their subsequent practice. (Grattan-Guiness, 

2004). 

THE RESEARCH IMPETUS  

Grattan-Guiness (2004, 174) describes the type of mathematics education ‗very much 

guided by heritage.‘ But this heritage he identifies thus as one which brings out the  

‗…reactions of students – including myself, as I still vividly recall – are often 

distaste and bewilderment; not particularly that mathematics is very hard to 

understand and even to learn but mainly that it turns up in ―perfect‖ dried-out forms, 

so that if there are any mistakes, then necessarily the student made them.‘
 

In this way described, the heritage in secondary school is the tradition of learning 

Euclid by rote, or in more recent times, following algorithmic learning and teaching 

of famous examples such as completing the square or the theorem of Pythagoras 

without the historical accuracy evident in teaching, or the real understanding 

reported by students. Although not entirely the same, this reminds us also of the 

Freudenthal‘s anti-didactical inversion: in fact we are dealing here with taking the 

‗mathematical activities of others… as a starting point for instruction‘ (Gravemeijer 

& Terwel, 2000, 780). 

We argue however, that the heritage, and its dried-out mathematics which does not 

engage students, has a role to play in teacher training if only as a way of exploring a 

culture of mathematics and a possible initiation route into the historical study of 

mathematical concepts. In other words, we should use the ‗heritage‘ approach of the 

ready-made mathematics of the prescribed curriculum(s) to identify the concepts 

which may be rich in their potential to search for ‗meaning‘, so that dealing with 

concepts and doing mathematical problems or exercises which use them, becomes a 

meaningful activity. The use of curriculum in such a way provides a comfort zone for 

teachers to structure their exploration in a sustainable way, through gradual learning 

process rather than sweeping enthusiasm which ends up with not having enough time 

to engage with the ‗new‘ material through research and reading, and subsequently 

can end as a project never to be completed
8
.  

In order to use ‗heritage‘ in this way we propose that answers to the questions: 

 Why do we call this (concept/process/tool) by this name? 

 What does it mean and/or how does it work? 

must be possible to answer. For example, Euclidean tool or construction, and a 

Pythagoras‘ theorem would be starting points for an investigation of such type in 

which heritage would be used to explore the history and gain the meaning about a 
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mathematical concept. 

How else can teachers themselves impart the ‗meaning‘ of concepts they are dealing 

with onto their pupils? This may seem like an obvious fact, but the research 

presented here will show that imparting the all elusive ‗meaning‘ is not a part of 

everyday practice, and that teachers in education are prone to unquestionably take 

concepts in a heritage-like, ready-made mathematics way. Should every teacher be 

aware of why we call certain constructions ‗Euclidean‘ (In fact how many teachers 

actually do so?) and why a certain way of solving equations is done through the 

method of ‗completing the square‘? How can a teacher use these concepts with the 

secondary age pupils in a meaningful way without herself/himself really being sure 

what they mean? Not knowing these simple facts by teachers approaches the near-

total disengagement with a mathematical culture that the teachers are trying to 

somehow in turn engage their students with. It may not then come as a surprise to 

hear that the perception that many young people in Britain have of mathematics is 

that it is ―boring and irrelevant‖ as a consequence (Smith, 2004, 2).  

FROM EXPERIENCE TO EXPERIMENT 

While exploring the possible ways in which mathematics ‗subject knowledge‘ can be 

revitalised through the Initial Teacher Education course for Secondary and Middle 

Years Mathematics Students, we came across the barrier of students wanting to 

engage with simple exercises and working things out for themselves. Doing 

mathematics is different to teaching mathematics, but can mathematical concepts be 

re-examined for the purposes of education without doing the mathematics one 

already ‗knows‘? This was another of the questions that puzzled us as we tried to 

understand both the wide-spread lack of knowledge about the origin of certain 

concepts that we teach at secondary level, and the lack of questioning from 

prospective teachers as they train to use these in their craft, and in their (what it 

seemed) ultimate goal of covering the prescribed curriculum. In fact, should we be 

asking the questions: ‗Do they actually care?‘ and ‗Does it make a difference to their 

teaching and students‘ learning?‘ However those questions are beyond the research 

of this paper. 

Watson (2008, 7) documents the way that we have in fact structured our curriculum 

through examinations in the recent past:  

Questions involving application of theorems can be avoided in UK national tests at 

16+ and students still be awarded the highest grades. Theorems and proof of any 

kind, let alone geometrical contexts, do not play a part in higher school 

examinations. 

The lack of questioning of the premises upon which we should build some 

mathematical understanding by new graduates in this context does not then seem 

puzzling. The difference between doing mathematics (seen in all its diverse cultural 

interactions, a mode of intellectual enquiry but also a mode of intellectual 
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communication), and doing the ‗school‘ mathematics, is described by Watson (2008, 

2) in the same paper: 

Learners… have a different experience to those taught with a more abstract view, but 

solving realistic and everyday problems need not lead them to understand the role of 

mathematics beyond providing ad hoc methods for real problem-solving, or as a 

service subject which holds tools for moving forward in other domains.  

How it is possible that such practice is embedded in the system of education becomes 

apparent when at the start of such practice it is evident, as will be shown, that the 

enquiry stops at the gate of the curriculum temple.   

The project described here was a pilot project to deal only with the single issue of 

Euclidean constructions. The question was ‗How much do teacher students 

understand what a Euclidean construction is and how could they employ such 

understanding to teach the topic from the curriculum?‘ The aim was to: 

 find the level of understanding of Euclidean constructions and their historical 

origins; 

 engage the student teachers in exploring the possibilities to do mathematics 

but also to think about how they would teach it; 

 find the ways in which this process could be modelled for other topics from 

the curriculum. 

The pilot will serve as a basis to plan a larger project to examine the issues of  

 overcoming the disengagement of teacher students from the meaning of 

mathematical concepts through  

o doing mathematics first through a heritage-like way  

o identifying the ‗heritage‘ elements of mathematics thus ‗done‘ 

o going onto the exploration of the history of the concept (with all 

subsequent benefits, but primarily: aiming to understand the way of 

mathematical thinking associated with the concept, and aiming to 

systematize the interconnectedness with other mathematical discoveries 

and concepts) 

 devising a system to identify the topics from the curriculum which can be rich 

to offer such explorations by the teachers in training and 

 attempting to define ‗how‘ and ‗how much‘ history of mathematics should and 

could be incorporated into the teacher education. 

This paper therefore does not give a full and/or comprehensive list of answers to the 

question of how and why to introduce the teachers in education and training to the 

history of mathematics. But it does trace a project which shows the increased 

engagement and motivation giving teachers the confidence to use the syllabus in a 
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creative way and to explore the concepts they are meant to teach, which would 

otherwise be made into an empty list to be ticked off as they go into the lessons. It 

also evidences the students‘ increased capability to search for cultural and historical 

roots and construct the meaning around mathematics they are teaching. 

The results of the experiment 

The study concentrated on analysing a group of students at a university in South 

West England. They were all mathematics specialists: 24 who enrolled on a 

postgraduate course leading to the Postgraduate Certificate in Education (PGCE) 

preparing them to teach at secondary level (11-18 year olds) and 12 students 

preparing to teach in middle-schools (8-14 year olds), but all working on the 

mathematics related pedagogy for 11-14 year olds.  

The students were given a task to complete on geometrical constructions. They 

needed to: 

 research the requirements of the curriculum regarding geometrical 

constructions 

 find as many constructions as possible, appropriate for the curriculum levels 

and execute them themselves 

 devise a learning activity for their prospective pupils. 

The first problem that teacher students encountered was the material from which to 

source their own, and then their students‘, learning. While many school textbooks 

deal with geometrical constructions, they do so in a haphazard way without sufficient 

explanation as regards to the context in which these arise, or were conceived, and 

often do not provide any underlying conceptual understanding. The history of the 

concepts is often entirely disregarded, even though one of the most widely available 

textbooks insists on mentioning ‗Euclidean constructions‘
9
. This has been identified 

by authors in other countries as well, such as in recent study of Nicol and Crespo 

(2006).  

At the end of the task, the students were asked to say what constructions they learnt 

and were able to execute without resource to repeated instruction. The percentages of 

students being able to complete various constructions are given in table below. 

However, of more interest was the 

subsequent students plotting of the 

constructions against the curriculum for 11-

14 olds; the students were asked to say how 

many topics from the curriculum they could 

teach (partially or in full) through 

geometrical constructions. Percentages of 

student teachers who believed they could 

teach topics listed are given below. 
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In this survey, some interesting results came through:  

 70% of students originally said they could construct triangles, but only 10% 

declared they could see how geometric construction of the triangles would be 

relevant to the curriculum topic 

 Furthermore, only 20% of students 

were able to identify or recognise that 

you could teach geometric 

constructions and loci (a topic in the 

curriculum) by actually doing 

geometric constructions.  

When students were asked in a whole-group 

discussion to make sense of these two 

answers, they further clarified: 

 They could not see how contructions of triangles aided the conceptualisation 

of various properties of triangles and/or geometrical reasoning related to this 

topic 

 Whilst they recognised that the geometric constructions and loci were part of 

the curriculum, they believed this to be an ad-hoc and not important part of 

actually ‗doing‘ mathematics on one hand, and on the other, that engaging 

with constructions was not going to cover the curriculum topic in its entirety.  

In our opinion the application of geometrical constructions is important to school 

students. Many texts and exercises consist of the pure geometrical constructions first, 

before looking at applications of these constructions. Even then the applications are 

thinly disguised (e.g. boat sailing between two rocks). Our work with 13/14 year old 

students suggests that by putting constructions into a larger piece of practical work 

(usually a 2´ hour single session, though this can be spread over three single 

lessons) more is appreciated of the use of such constructions and there is then time to 

explain more of the geometrical proof of why the construction works. One example 

used in the classroom (and shown here) is on how to find true north/south using a 

vertical pointer. Other examples can be found at Ransom (2004, 22-26) and the 

student teachers involved in this research project worked through these examples. It 

was interesting watching them work through the materials since their first reactions 

to drawing a perpendicular from a point was to use a protractor, just as school 

students tend to do. This does, however, allow the point to be made that all 

measurement is approximate (to varying degrees of accuracy), yet the construction 

method is theoretically accurate. This concept of accuracy does not appear to be 

important to many. 
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Deconstruction and discussion 

Without doubt the most important part of the experiment was the further 

deconstruction of the students‘ learning process, which they used to improve the 

design of their learning task. Van Maanen (1992, 223) has claimed that the use of 

constructions begins only when these are to be designed:   

Clearly the crucial point is to find out which construction steps are needed to solve 

the problem (the analysis stage). When these steps have been discovered the proof of 

the correctness of the construction (the synthesis stage) is usually easy. 

Through this analysis, and subsequent synthesis of the Euclidean constructions, the 

students first made the discovery that geometry and measurement are not necessarily 

the same; this led some students to delve further into the 

history of measures as well as measuring devices on the one 

hand, and constructions and mathematical instruments on 

the other.  

Whilst the students discussed the two technical meanings of 

the ‗construction‘ – the construction of the theorem and the 

construction in a form of a drawing (Martin, 1998, 3), the 

issues of the ‗Euclidean‘ tools arose (as defined by Martin, 

1998, 6, and Holme, 2002, 48). It was this crucial piece of 

‗meaning‘, of the difference between the measurement and 

the theorising through construction with Euclidean tools 

that led students to a better understanding of the way that 

Greek mathematics dealt with magnitudes as tools for understanding the 

relationships and building upon those which have already been established. At this 

point in the discussion the student teachers began to be truly engaged in an 

intellectually active way and see mathematics as a possible way of sharing that 

intellectual dialogue with their prospective students.   

At the beginning of the experiment exactly 50% of the students had never heard of 

Euclid and 100% didn‘t know what Euclidean constructions were, although they 

were happy to include mentioning of both Euclid and his constructions and tools in 

the learning tasks they devised for their pupils. At the end however, 90% described 

that their main motive for using Euclidean constructions would in future be in 

order to engage the students in geometrical reasoning and proof.  

CONCLUSIONS 

While small in scope, this experiment showed that the practical way of engaging 

student teachers through: 

 the process of doing (albeit some simple) mathematics;  

 discussing the historical context and hence dissecting the meaning attributed 

to some concepts (Euclidean tools); 
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 the learning about a topic they are attempting to teach, and a vision of how to 

transfer that engagement in their classrooms.  

It has been noticed, and Gulikers (2001, 224) gives supporting evidence, that there is 

‗…growing interest among teachers in the history of mathematics. …results of two 

questionnaire surveys… reveal that teachers are interested in the history of 

mathematics, but at the same time, are not well resourced to actually use such 

material in their own teaching‘. While we agree with this, this small study and the 

long term engagement with teacher groups from around England
10

 also gives cause 

to believe that  

 teachers do not have the full motivation and don‘t actually see the history as a 

necessary part of mathematics learning; 

 they have not experienced those crucial insights that would make the history 

of mathematics ‗necessary‘ to the process of understanding and engaging with 

a mathematical concept either for themselves or for their pupils.  

At the end of the experiment, 75% of student teachers declared the desire to engage 

more with the history of mathematics and 83% declared that they could see how to 

do it
11

. So, while it is worthwhile discussing the need to introduce the history of 

mathematics into mathematics instruction, the student teachers need to have the 

experience of how this is useful in their own practice. They are often bogged 

down with many daily pressing issues, such as pupil motivation, behaviour 

management, getting the hang of the mathematics curriculum, understanding the 

levels which are appropriate for the classes they teach both in terms of age and 

ability, and finding enough preparation time whilst learning how to plan effective 

lessons. Only after they have understood a crucial piece of mathematics that they 

have ‗inherited‘ and thus practiced for many years (not very well if we are to judge 

by the results of the first questionnaire) without questioning, do they begin to see the 

potential of the history of mathematics. The learning of mathematics includes various 

other activities that support learning other than doing mathematics. Freudenthal 

identified those as ‗organising a subject matter… from reality which has to be 

organised according to mathematical patterns if problems from reality have to be 

solved. It can also be a mathematical matter, new or old results, of your own or 

others, which have to be organised according to new ideas, to be better understood, 

in a broader context, or by an axiomatic approach‘ (Freudenthal, 1971). Others, like 

Lakatos for example, focused on the problem-solving as a way of reconstruction of a 

pure research mathematical discourse (Lakatos, 1976)
12

. Both of these are valid ways 

of learning mathematics, but for those who already ‗know‘ and whose path to 

teaching is littered with ready-made mathematics modules and heritage-style pictures 

of good mathematics like some dusty and beautiful picture of a remote landscape in 

an old frame, the way of rediscovery can simply be to engage with a question of 

when did we identify a concept as a concept, why do we call it as we do and what 

does that mean. Only then does the mathematics history become part of the 
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mathematics education culture, and the pleasure becomes the cultural one
13

. And that 

is just for teachers, the kids will follow. 

NOTES 

1. For similar projects see Teacher Enquiry: Funded Projects https://www.ncetm.org.uk/enquiry/funded-projects. 

2. These are listed in the pre-university qualifications guide with a timeline of their introductions at 

http://www.heacademy.ac.uk/physsci/news/detail/2010/pre_he_maths_guide. 

3. The new curriculum was made effective from the beginning of academic 2008/9 for secondary subjects. 

4. From the speech of David Cameron, now the British Prime Minster, delivered on 2nd February 2009, accessed 20th 

September 2010 from 

http://www.conservatives.com/News/Speeches/2009/02/David_Cameron_Conservatives_Maths_Taskforce_launch_with

_Carol_Vorderman.aspx: ―When it comes to what those disciplines are, and how they are taught, I believe there few 

things more important than getting maths in our schools right‖. 

5. Programme for International Student Assessment, by the Organisation for Economic Co-operation and Development. 

6. These are some of the most mentioned topics in the current British media; a separate study has currently been 

undertaken by the author to identify these over the period of last three years. 

7. Report by Adrian Smith, entitled ‗Making Mathematics Count‘, was undertaken upon the commission from the 

Advisory Committee on Mathematics Education, an independent body, based at the Royal Society, London. 

8. This has been further expounded upon in Gulikers & Blom, (2001). 

9. For the matter of fairness the publisher and the book have not been mentioned. 

10. See Lawrence, (2009). 

11. As a small aside, around 17% of the students reported that they have acquired the employment while in the course 

due to their meaningful use of historical context in the interview lessons. 

12. Barbin (1996, 1997), who argues ―that history of mathematics changes the epistemological concepts of mathematics 

by emphasising the construction of knowledge out of the activity of problem solving‖, gives us a possible way of 

approaching the solution of how to introduce such activities. 

13. Heilbron (2000, 46) describes pleasures while researching geometry: ―Finally the pleasure, or my pleasure, has been 

cultural. Pursuing geometry opens the mind to relationships among learning, its applications, and the societies that 

support them.‖ 
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IDENTITY OF MATHEMATICS EDUCATORS. THE 
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1
 

New University of Lisbon 

A historical case study centred on the Portuguese community of mathematics 

educators intending to understand how its identity was shaped from 1981 to 1990 is 

presented. Keywords: history of mathematics education; professional identity 

The notion that mathematics education may consist of a world-wide community is 

expressed in the title of the book Mathematics Education as a research domain: a 

search for identity that publishes materials presented at the Study Conference ―What 

is research in mathematics education and what are its results‖ organized by ICMI in 

1994. In the summary, the editors, Anna Sierpinska and Jeremy Kilpatrick, conclude: 

In spite of all the differences that divide mathematics education researchers (in terms 

of theoretical approaches, views on relations between theory and practice, 

philosophies of mathematics, etc.), they still constitute a community, and it is 

necessary to search for what constitutes its identity. (1997, Vol. 1, p. ix) 

Understanding how such community came about and consequently how such identity 

is shaped, is then a necessary endeavour. An early reflection about the nature of such 

identity and its diversity can be found in the discussion about a Theory of 

Mathematics Education (Steiner et al., 1984) that took place in ICME 5. Later, Alan 

Bishop (1992) distinguished three traditions of research according to the goal of 

enquiry, the role of evidence, and the role of theory. The study of specific traditions 

— essentially those nationally bounded — has also been the object of analysis
2
 

centred on paradigms, methods, and results. 

But the study of research alone does not suffice to understand the identity of this 

community. Claude Dubar (1991) defines identity as the ―result simultaneously 

stable and provisional, individual and collective, subjective and objective, biographic 

and structural, of the several processes of socialization that, jointly, construct 

individuals and define institutions‖ (p. 113) and it is formed through the articulation 

of two heterogeneous processes, the identity for others involving social expectations 

and acts of attribution, self-identity based on self-perspective and acts of 

belongingness. 

By using a historical case study approach, this paper aims at understanding how the 

self-identity of the community of mathematics educators was shaped in Portugal. At 

the centre of this analysis is the meaning attributed to the term mathematics 

educator. I chose to designate as mathematics educators those concerned with the 

research of problems relating to teaching and learning mathematics. Today most 

share common practices (teacher education and research, for example), communicate 

through institutionalized forums, and have professional ties to universities or 
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colleges. In the Portuguese context, however (and certainly in other countries), 

boundaries are fuzzy and some primary or secondary teachers engage in research 

activities. That was not the case in the early 1980s where we can hardly speak of 

professionals focusing on research in mathematics education in Portugal. This paper 

will study the actual emergence of the community of mathematics educators out of a 

community of teachers of mathematics. The time frame starts in 1981 — when the 

first discussions in a democratic context about the state of mathematics teaching and 

learning occurred — and ends in 1990 — coinciding with the adoption of new 

curricula. Data collection was centred on articles, books, official documents, and 

gray literature. Content analysis studied this corpus as historical documents (Certeau, 

1975) focusing on evidence for the representations and the practices of the 

participants (Julia, 1995). 

EARLY 1980s, DISCOMFORT WITH MATHEMATICS PROGRAMMES 

The Portuguese educational system experiences tensions and changes during the 

1970s. On the one hand, there is a steady growth in the number of students that is not 

accompanied by a proportional growth of schools or teachers. On the other hand, 

there is a shift on the purposes of the system. The separation between schools for 

students aimed at the universities and professional schools gradually moved from 4
th

 

grade to 6
th

 grade  (in 1968), and after 1976 gradually disappeared. Significant 

changes in some curricula, and especially in school management, occurred as a 

consequence of the democratic revolution of 1974. The seventies were a period 

characterized by overpopulated schools, lack of certified teachers, of textbooks, and 

other materials, and unstable school management and curricula. 

At that time, mathematics curricula embodied the Modern Mathematics approach. 

The ideas of this movement were firstly published in Portugal in 1957, experimented 

through the 1960s, and adopted in the following decade. Teachers with the 

responsibility of training other teachers enthusiastically embraced the reform because 

they saw it as a perspective adequately merging psychological and mathematical 

approaches (Matos, 2009). However, by the 1970s (and well into the 1980s), a 

majority of teachers of mathematics were not certified, nor had enough mathematics 

background. The ways in which the reform changed the daily life of mathematics 

classrooms has not been researched, but there are studies about its effectiveness 

suggesting widespread learning difficulties (Matos, 2010). 

In the late 1970s documents show discomfort among young teachers of mathematics, 

some teaching in teacher education courses, but most of them still following courses 

at universities, about the state of mathematics teaching and learning. Small group 

discussions over curricular and mathematical issues (Pñlya‘s How to solve it, for 

example) were conducted and in 1981 the participants presented papers at the first 

professional meeting about teaching and learning of mathematics organized under 

the new democratic regime, started a newsletter Inflexão [Inflection], and actively 
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engaged in a series of meetings planned by the Portuguese Society of 

Mathematicians to discuss the programmes of upper secondary school. By the end of 

these meetings, a coherent set of perspectives about mathematics teaching and 

learning emerged (―Os programas em debate‖, 1982). Reacting against what was 

perceived as ―a critical situation‖, Modern Mathematics programmes were 

condemned because they rendered mathematics hermetic, formalized, with a great 

emphasis on symbols, and foreign to reality and applications. Programmes should 

change to integrate 

 - a strong component making use of problems, i. e., great relevance to the role 

of problems as a means to develop an investigative and discovery spirit (…); 

 - a strong focus on the practical side [of mathematics], by using calculators 

(…) [and] computers; 

 - a special attention to the applications of mathematics and to its relationships 

to other disciplines, [adopting] a marked interdisciplinary sense; 

in sum, an increased relevance to the formative aspect. (―Os programas em debate‖, 

1982, p. 20) 

These three dimensions (problems, technology, and applications) that departed from 

the official curricular options at the time will integrate the backbone of the idealized 

mathematics curriculum proposed by the document. 

The document approved in 1981, also discusses curriculum development. Criticising 

previous practice of writing programmes in closed commissions appointed by the 

Ministry of Education, new curricula, the document stated, should be developed by a 

Commission composed of elements indicated by the Universities, Secondary 

Schools, Portuguese Society of Mathematicians, and lastly, the Ministry of 

Education. This ―parliamentary‖ approach to curricular development, almost 

marginalizing the governmental body, shows that this emerging community is also 

seeking the ownership of (or reclaiming its expertise over) specific knowledge 

dimensions, thereby exerting pressure on other social bodies as a means to acquire 

power. 

In 1982, several papers centred on curricular perspectives were presented at a 

national meeting. From the distance of time, and by today‘s standards, one cannot 

help to notice their exploratory nature, hardly supported by relevant literature, 

rudimentary methodologies, and with scant conclusions. But it is also clearly 

apparent their voluntarism, their strong ties to the life of schools, and the firm desire 

to change a situation perceived as professionally frustrating. 

In brief, during this period, there is a small loose network of young teachers of 

mathematics and assistant professors, almost all of them still acquiring their 

scientific or professional certification or their doctorates. Exchanges among the 

members occurred at small informal gatherings. At the end of the period a newsletter 
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appeared. Their practice included not only the common practice of mathematics 

teachers in the country, but also interventions outside regular classes (math clubs), 

and interventions at meetings requiring changes in mathematics curricula, implicitly 

seeking public recognition of their expertise on the subject. Many of the members 

had also intervention in other dimensions of social life (teachers‘ unions, for 

example). Their theory was straightforward: school success will come from problem 

solving, technology and applications of mathematics; school failure should be 

attributed to repetition, widespread formalization, and premature abstraction, the last 

two been interpreted as the hallmark of Modern Mathematics. 

THE CONSTITUTION OF A COMMUNITY (1982 – 1986) 

During the year 1981, Joseph Hooten, Jr., from the Department of Mathematics 

Education of the University of Georgia, USA, was a visiting professor at the 

University of Lisbon
3
. Through seminars, visits, small group discussions, and 

informal conversations, for almost a year he disseminated a coherent perspective 

about the problems of teaching and learning mathematics. 

The concept of connected history (Gruzinski, 2003), developed by cultural 

historians, has been used to understand how communities elaborate their 

representations and practices in connection with other communities. Going beyond 

both a mirror perspective — in which one culture tries to emulate another —, and a 

power perspective —interpreting cultural influences as either acts of emulation or 

resistance —, the influence of one culture by another is seen as acts of hybridism 

(métissage) in which external appropriations are not seen as mere imitations (or 

distortions) from the original, but as producers of a new originality. In this model, a 

key role on the circulation of ideas and practices has been attributed to mediators, 

persons that travel among societies and cultures. Posing as mediator, Joe Hooten 

brought firstly a new pedagogical model. Portuguese Modern Mathematics curricula, 

inspired essentially on ideas from France and Belgium, were confronted by a distinct 

perspective centred on problem solving, laboratories, the value of applications of 

mathematics, and of the use of manipulative materials. Joe Hooten also brought an 

appreciation for empirical research as a means to consolidate educational knowledge. 

One tangible product of this influence is the translation of the book Agenda for 

action: recommendations for school mathematics of the 1980s (NCTM, 1980) that 

circulated before 1985. Its first proposal, that problem solving be the focus of school 

mathematics in the 1980s became one of the key elements of a pedagogic alternative 

of the Portuguese group. In the USA, this emphasis can be seen as a response to the 

middle 70s ―back-to-the-basis‖ approach thereby valuing problem solving‘s 

allowance for more significant mathematics involving higher-level reasoning, not 

limited to the memorization of facts and algorithms. In Portugal, however, problem 

solving was also valued because of its non-abstract and non-formal qualities, which 

was seen as permitting an alternative to the Modern Mathematics curricula. 
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By the end of 1986, the small group of young teachers, having completed their 

graduation and post-graduation, incorporated the first Portuguese association of 

teachers of mathematics (in 1986), with annual national meetings (since 1985) with a 

growing participation of teachers, and publishing a journal (since 1987). Three other 

small non-disjoint groups of teachers integrated this movement. The first was an 

active group of teachers responsible for in-service teacher education at grades 5
th

 and 

6
th

. The second were teachers and mathematicians based in Coimbra and promoters 

of the national Olympiads of mathematics. A third was composed of teachers for 

schools aiming at forming primary teachers that, as a group, underwent a graduate 

programme on mathematics education
3
 in the University of Boston, thus reinforcing 

the USA ties and becoming mediators themselves. 

All these groups and mediators enlarged the practices of the community and shaped 

their representations as can be observed in the first national meeting of teachers of 

mathematics (ProfMat) that occurred in 1985 in Lisbon. The proceedings were 

published in a newly founded journal ProfMat, Revista teñrica e de investigação 

sobre o ensino da matemática [ProfMat, Theoretic and research journal about 

mathematics teaching] that, as other scientific journals, had its Editor and Editorial 

Board
5
. The value attributed to research is expressed in its name, its purpose and is 

the focus of the first editorial: 

[The journal‘s] purpose is to provide for a broad exchange of perspectives related to 

the formulation of research problems, methodologies for collecting and analysing 

data, theoretical foundations, evaluation, and syntheses of results. (―Editorial‖, p. 3) 

The journal includes 11 papers, mostly reporting investigations produced for the 

completion of graduate studies at American universities. These works show a very 

distinct style from the ones of the early 80s. Now, there is a clear emphasis on 

structured empirical research on issues concerning mathematics education, including 

the definition of a problem, a review of literature, data analysis, and conclusions. 

The proceedings also include three texts on computers, calculators, problem solving 

(originally in English), manipulative materials, and mathematical clubs. The three 

plenary lectures, given by leading mathematicians, were all devoted to the issue of 

mathematics and computers.  

In 1985, the term ―educação matemática‖ (mathematics education) is used for the 

first time on the cover of a book presenting a chronology of mathematics teaching 

(Matos, 1985), and is also included in the name of one the discussion groups at the 

first ProfMat (on ―Theory of Mathematics Education‖). In 1986 it is used again on 

the cover of the second issue of the journal that published the proceedings of the 

second national meeting. In this issue, the journal itself had a slight change in name 

replacing ―mathematics teaching‖ for ―mathematics education‖ and the term is 

discussed in the plenary of the second congress (Ponte, 1986). The consolidation of 

this denomination in 1985/86, and consequently of the identification of the members 
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of the community as mathematics educators, also suggests the consolidation of the 

community. It also indicates the departure from other denominations, namely 

didactique des mathématiques. 

The foundation of the first Portuguese association of teachers of mathematics (APM) 

at the second national meeting in 1986 marks the appearance of a national 

professional organization, specifically concerned with the problems of teaching and 

leaning mathematics and the publication of a new bi-monthly journal Educação e 

Matemática. It also results, internally in the consolidation of the community‘s 

membership — a mathematics educator must be a member of APM —, and in its 

external legitimation. 

The dominant perspective on the community can be obtained through the first 

editorial of this second journal, written by Paulo Abrantes (1987). There he 

complains about the ―crisis‖ in mathematics teaching in recent years and endorses its 

responsibility to the Modern Mathematics approach, which is ―very removed from 

students‘ concrete reality, with considerable importance been given to mathematical 

structures and their properties.‖ (p. 3) 

He proposes initiatives that may promote change: out-of-class activities centred on 

applications, problem solving (math week, conferences, problem competitions, and 

Olympiads), or the use of computers. He notes the importance of initial teacher 

education and teachers‘ meetings. He finishes by stressing the importance of active 

methodologies, of considering the active and social dimensions into the broad 

objectives of education, the importance of out-of-school contexts, the new 

technologies, problem solving, applications of mathematics, and interdisciplinarity. 

In summary, by the end of 1986 the community is grouped under the national 

association for teachers of mathematics that includes virtually all small groups of 

innovators interested in teaching and learning of mathematics. Almost all of its 

leading members are now certified teachers, many are working at universities in 

teacher education programmes, and have some practice in conducting research in the 

field. There is a functional and complex network and exchanges among their 

members can occur through national (or regional) meetings, or through the 

association‘s journal. For some, a regular presence in international meetings 

diversified sources for the circulation of ideas. The practice of some members 

continues to be similar to the common practice of teachers of mathematics, including 

organizing math clubs. Their theory has become more sophisticated. Research is now 

seen as a fundamental option to legitimize innovation and knowledge building. But 

problem solving, technology, and applications of mathematics, together with the 

importance of the use of manipulative materials continues to be equated with 

success; repetition, widespread formalization, and premature abstraction, still 

prevalent in school curricula, continue to be seen as promoting failure. 
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CONSOLIDATING IDEAS AND REPRESENTATIONS (1986 — 1990) 

The volumes from the first two years of the teachers‘ association‘s journal (1986-7) 

contain many articles presenting problems, or about problem solving, others relating 

to applications of mathematics, some discussing the use of technology, or 

manipulative materials. But, there are almost no accounts of actual interventions in 

classrooms. The same can be observed as we look at the first books published by the 

community. Apparently, most of the applications of the theory (valuing problem 

solving, applications, technology, and manipulative materials) can only be seen 

outside real classes — in math clubs, for example — in environments that do not 

confront the national curricula. 

In May 1987, intending to adapt the educational system to a democratic society, the 

Ministry of Education initiated a public discussion of new curricula. The preliminary 

document raised widespread concerns in the community, as, apparently, it favoured a 

―back-to-bases‖ approach. As a reaction, APM convened a meeting for the 

elaboration of an alternative perspective. 

―For four days, morning to night, 25 teachers and researchers discussed some of the 

essential problems to the renewal of mathematics for basic and secondary grades. 

(…) The following texts are the product of this work and constitute documents that 

support an enlarged debate among all members of the Association and, in general, 

among teachers of mathematics.‖ (APM, 1988, p. 3) 

As a consequence, a collective book was produced (Renovação do currìculo de 

Matemática [Renewal of mathematics curriculum], 1988), known as the Milfontes 

document, containing a coherent perspective on learning and teaching mathematics 

that was also published by the National Commission for the reform. But, perhaps the 

impact of this document outside the community can be ascertained by the interview 

given by the responsible for the coordination of the new programmes to the journal 

of the Association and published shortly after. In this interview, Brigitte Tudichum, 

overseeing curricula from all areas, agrees on the importance of problem solving, 

technology, and communication in mathematics teaching (Tudichum & Nunes, 

1989). ―Mathematics must appear and be explored through problems‖ (p. 24) she 

states. The success obtained by this social intervention was new to the Association 

and reinforced its status. Moreover, the ideas of the Milfontes paper prompted some 

participants in the seminar to test its proposals empirically through a three-year 

curricular development project in grades 7
th

 through 9
th

, Project Mat789 (Abrantes, 

Leal, Teixeira & Veloso, 1997). 

As representations of successful mathematics teaching and learning became more 

reflective, newly masters‘ courses on education promoted the development of applied 

research. In fact, from 1987 teaching experiments centred on the four axes for 

innovation — technology, problem solving, and in a smaller degree, applications and 
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manipulatives — were conducted. Moreover, specific research groups appeared, on 

teacher education, problem solving, and learning. 

In brief, the community is now composed of a very large group of teachers and APM 

is seen nationally as a reference as far as innovation is concerned. There are several 

working groups in the Association, the annual national conferences experience a 

growing participation, and throughout the country there is a multitude of regional 

meetings. At the same time, a differentiation within the community starts to show 

because, so far, researchers identity can hardly be distinguished from the teachers of 

mathematics. The emergence of graduate programmes in mathematics education 

located in Portuguese universities is going to change the representations and the 

practices of a small number of members and, at the same time, endows them with 

power over the others. In this period, especially after the publication of the Milfontes 

paper, practice became the application of theory for some members. Theory itself 

became much more elaborated. 

CONCLUSION 

This case study of the emergence of identity in the community of mathematics 

educators in Portugal has shown how the community itself started from a loose group 

of beginning teachers, essentially located around Lisbon that gradually incorporated 

other teachers. It also showed how this community gradually differentiated into a 

large majority of teachers and a minority of teachers ―that teach teachers‖. 

Identity itself was characterized as an enumeration of practices and theories followed 

by the community. As for the practices, this study has shown that curricular 

innovation was an intention from the early beginnings but either the lack of 

knowledge of adequate comparable practices, or the centralized structure of 

Portuguese curricula, did not allow for much in-class innovation. Early pedagogical 

practice is therefore displaced to the outside of the classroom. Only later, essentially 

after 1987, with new curricula in sight and the generalization of graduate studies, 

some experiments were performed. 

In the beginning, another particular kind of practice emerged, essentially around 

problem solving. Documents from that time include problems, challenges for solving 

problems, and examples of the nesting of problems. In some schools teachers 

prompted students to solve problems in out-of-class activities. Apparently, it was as 

if the community needed to construct a perspective about what constitutes 

mathematics distinct from university teachings, which was dominated by Bourbakian 

approaches. 

We have also seen how theories have evolved. From a naïve perspective on 

mathematics education problems, and with the help of mediators, more elaborate 

representations emerged, with a strong influence from USA‘s perspectives. Later, 

and prompted by external solicitations (a curricular reform), a coherent perspective 

was collectively elaborated (the Milfontes document). The modes and values of 
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educational research became appreciated, as the empirical scientist tradition 

(following Bishop‘s classification) was appropriated. 

As we have seen, in the beginning, mathematics educators (today seen as researchers 

on teaching and learning mathematics) in Portugal were undistinguished from 

innovative teachers of school mathematics. Differently from other countries where 

the community was initially composed of trained mathematicians, for example, 

virtually all the early members began their careers as teachers in secondary schools, 

and only later a differentiation started to emerge. It may be the case that such origin 

explains the existence of a strong national association of teachers of mathematics, the 

numerous presence of school teachers in research meetings (usually from one half to 

two thirds), the late constitution of an association of researchers in mathematics 

education, and the affiliation of the Portuguese research journal, Quadrante, to the 

Association of Teachers of Mathematics. 

NOTES 

1. This paper was supported by the Project ―A Matemática Moderna nas escolas do Brasil e de 

Portugal: Estudos histñricos comparativos‖ financed by FCT (Portugal) and CAPES (Brazil). 

2. For example, Artigue and Douady (1986) discussed the specificity of French research, Arzarello 

and Bartolini Bussi (1997) examined the Italian tradition, and in Portugal an overview of research 

on the field was analysed (Ponte, Matos, & Abrantes, 1998). 

3. He was supported by a Fulbright grant to work with science education professor Odete Valente. 

4. This programme was part of a larger project financed by the World Bank to provide new founded 

schools for forming primary teachers with teaching staff in all areas. It involved Boston University 

and the Université de Bordeaux. 

5. Domingos Fernandes together with João Ponte and José Matos constituted the Editorial Board. 
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In 1772 the teaching of Mathematics in Portugal, at a higher level, was transformed 

with the creation of a Faculty of Mathematics in the University of Coimbra. The 

newly reformed Portuguese University was ruled by Statutes. In the words of 

Francisco Gomes Teixeira, these Statutes are a ―remarkable dissertation about the 

teaching of sciences, exquisite both in deepness and form and a monument to healthy 

pedagogy and high philosophy, written in vernacular and elegant language, where 

all justifications are clearly explained and justified‖
1
. In our article we will analyze 

some parts of these Statutes, aiming to recover a 250 years old mathematical 

curriculum in what represents lessons to be used in present mathematics education. 

Keywords: Portuguese teaching of Mathematics; Eighteenth century; Statutes; 

University of Coimbra. 

INTRODUCTION 

The university teaching of Mathematics in Portugal suffered a deep reformation in 

1772 when the Faculty of Mathematics at University of Coimbra was created. As far 

as we investigated, it was the first time, in the world, that one University recognized 

such a high standard of importance to Mathematics that it created a whole Faculty to 

teach Mathematics (several/different courses for different degrees) to all students of 

the University (‗Do curso Mathematico‘, 1772, p. 141). 

As all the other Faculties reformed or created by this reform, the Faculty of 

Mathematics was ruled by Statutes, written and published under the guidance of king 

D. José. Those Statutes are undoubtedly a pedagogical document that might be used 

as an example for those who are responsible for teaching Mathematics nowadays. 

This work aims to study a 250 years old mathematical curriculum with the objective 

to retrieve the teachings of this document to the current mathematics teaching and 

curriculum development in mathematics.  

THE CREATION OF THE FACULTY OF MATHEMATICS AT 

UNIVERSITY OF COIMBRA 

Mathematics was supposed to be taught in Portugal at least since 1559 at the 

University of Coimbra (Queirñ, 1993, p. 4), even though sometimes there was no 

lecturer available for this course. Mathematics was also taught by the Jesuits who 



Working Group 12 

 CERME 7 (2011)  1751 

were installed in Portugal since their very beginnings. Ruling the University of 

Çvora, as well as many other schools/colleges, Jesuits in Portugal became clearly 

interested in teaching Mathematics and lecturers/teachers were always available. 

In the beginning of the eighteenth century Portuguese mathematicians started to 

publish books on recent mathematics, as Theorica verdadeira das marés by Jacob de 

Castro Sarmento or Logica racional, geometrica e analytica by Manuel de Azevedo 

Fortes (Queirñ, 1993, p. 11).  

By 1750, D. José reached the Portuguese throne and called Sebastião José de 

Carvalho e Melo, later known as Marquês de Pombal, to be his Secretary for Foreign 

Affairs.  Six years later Marquês de Pombal becomes Minister of the Kingdom with 

larger powers to rule. His powers were in particular used to reform the school system 

in Portugal, expelling the Jesuits (by 1759) and implementing reforms from the very 

elementary level to the university level (Teixeira, 1934/2010, p. 223 – 232). 

Marquês de Pombal went to Coimbra to formally open in 1772 the newly reformed 

University. Under this reform the five faculties (Theology, Law, Medicine, 

Philosophy and Mathematics) included two new ones (Philosophy and Mathematics). 

The creation of the Faculty of Mathematics was justified right at the beginning of the 

Statutes: 

Mathematics has such an indisputable perfection among all natural knowledge, as well as 

in the luminous accuracy of its method, and in the sublime and admirable speculation of 

its doctrines; that it deserves the name of sciences not only in rigor but with property; but 

it is also the one which has singularly believed in the Man‘s strength, skills and sagacity. 

For that reason it is extremely necessary, also for security and improvement of other 

Faculties, that this science has at the University an adequate establishment of its place, 

occupied in the General System of Human Knowledge; being clear, that if that same 

University was dismissed of the Mathematics lights, as it unfortunately was in the past 

two centuries, it would not be more than a chaos, similar to the Universe, if deprived from 

the brightness of the Sun. (‗Do Curso Mathematico‘, 1772, p. 141, the translation from 

Portuguese and the underlines is ours but the punctuation is the original) 

THE STATUTES OF THE FACULTY OF MATHEMATICS 

The Author and his Inspiration 

José Monteiro da Rocha (1734 – 1819) was the author of the Statutes for the Faculty 

of Mathematics. He was born on June 25th, 1734, in small town in the north of 

Portugal called Canavezes (Amarante). It is also known that in his youth Monteiro da 

Rocha went to Brazil to study with the Jesuits. By 1752, he was teaching in the 

Jesuit‘s ―Colégio da Baía‖. When Marquês de Pombal expelled the Jesuits from 

Portugal, in 1759, Monteiro da Rocha left the Society of Jesus (Fernandes & 

Figueiredo, 2006). 
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Having been a member of the Society of Jesus, Monteiro da Rocha wrote the Statutes 

naturally influenced by the Jesuit pedagogy. Indeed, at a first glance, the 

organization of the Faculty Statutes seems very much alike the organization of Ratio 

Studiorum, the pedagogical code for the Jesuits published in 1599, but a comparative 

study between these two documents remains to be done. 

The importance of the studies of Mathematics 

We have seen previously the general justification given by Monteiro da Rocha in the 

Statutes for giving to Mathematics a higher place within the University. But he 

continues saying that:  

[Mathematics] not only goes through a road of lights, from the first Axioms, to the most 

sublime and recondite Theorems; but it also illuminates the understanding in the study of 

other Courses: showing them the most perfect example on how to treat a subject 

according to order, precision, strength, closed chains and even joining some truths to 

others: inspiring the pleasure and the necessary discernment to distinguish the solid from 

the frivolous, the real from the apparent; the Demonstration from the Paralogism: and 

giving them an accuracy, according to the Geometric Spirit; rare and precious quality, 

without which they cannot go on neither make any progress in the knowledge of 

Mankind. (‗Do Curso Mathematico‘, 1772, p. 141-142) 

The justifications of every single statement are clear, complete and rigorous in all the 

analyzed documents in the Statutes.  

These Statutes also include applications of Mathematics, showing that this science is 

not only a theoretical one but also a practical: regulation of time; geography; 

cartography; tactics for army; architecture and engineering are some of the subjects 

that may be found in the Satutes. 

Mathematicians: a ―special career‖ 

The goal for teaching Mathematics at the University was to create professional 

Mathematicians. The career of "Mathematician" and the research on Mathematics 

were encouraged, as stated in the Statutes (‗Do Curso Mathematico‘, 1772, p. 148-

150), by counting the years spent in the Faculty of Mathematics as years spent in war 

campaigns for the allocation of social benefits, such as social status. Having a degree 

in Mathematics would, in particular, grant advantages in getting a place in the Army. 

Furthermore, those who were Doctors in Mathematics would officially be in 

advantage when applying for jobs. 

Awards, called ―Partidos‖, were to be given to students with exceptional 

classifications. These awards would stimulate students to study and encourage them 

for following a scientific carrier (‗Do Curso Mathematico‘, 1772, p. 216-218). 

On the other hand, sanctions were imposed on those who did not recognize the 

benefits of studying mathematics, for example to those who, when offering jobs, did 

not give priority to holders of a degree in Mathematics as well as to the students that 
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did not perform well on the tasks of the courses (‗Do Curso Mathematico‘, 1772, p. 

202). 

THE DEGREE OF MATHEMATICS 

The degree of Mathematics was composed by four courses distributed in 4 years: 

Geometry in the 1
st
 year; Algebra in the 2

nd
 year; Phoronomy

2
 in the 3

rd
 year and 

Astronomy in the last. There also existed a course in Design and Architecture (Civil 

and Military), for students who showed interest in these courses.  

The lessons of the four years of the degree took place every day of the week, with the 

duration of one and a half hours, according to the years (the students attending 1
st
 

and 2
nd

 year had classes in the morning while the students in 3
rd

 and 4
th

 years in the 

afternoon). 

The lessons were divided into two different parts. In the first one, the students were 

asked about the previous lesson and were allowed to ask the lecturer to explain their 

doubts. The second part of the lesson was for lecturing without interruption from the 

students and, in this case, the lecturer was advised to follow the ―inventor‘s path‖, 

this is, following the historical development of the subjects. The students should then 

go home to study the lesson and wait for the following day for further clarification of 

the subject (Do Curso Mathematico‘, 1772, p. 200-201). 

The lessons of Geometry 

The first course in the degree was Geometry and it was taken not only by the 

mathematics students but also by every other student from all the other faculties. The 

subject of study was elements of Arithmetic, Geometry and Trigonometry. 

The beginning of the course included, each year, the prolegomena where the lecturer 

would present the subject, its division and generalities such as the method, the utility 

and the excellence of Mathematics. The lecturer would also present an abstract on 

the History of Mathematics, including Greek and Christian ages as well as Descartes. 

This prolegomena aimed to motivate students for Mathematics (‗Do Curso 

Mathematico‘, 1772, p. 169).  

The prolegomena was followed by Arithmetic: the importance of symbols and Arabic 

notation; the notion of number, unity and the fundamental idea of numeration; the 

learning of the four fundamental operations and their justification; the quadratic and 

the cubic numbers; the root extractions; proportions; both arithmetic and geometric 

progressions; rules of three and false position; logarithms. 

Subsequently, Geometry was taught, which was considered vital for the development 

of mathematical reasoning. 

This science [Geometry] requires all possible attentions because it is the basis for the 

lessons of the following years: and because in that science there must be the use of 

judgment to feel the evidence of the mathematical reasoning; to search for accuracy and 
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Geometrical rigor of the Demonstrations; and to think methodically in every subject. (‗Do 

Curso Mathematico‘, 1772, p. 172) 

Here, the lecturer would once again start with history (of Geometry) followed by 

notions, definitions and fundamental principles, the relationship between theory and 

practice and finally the stereometry and its application to measurement of tunnels, 

piles and ships.  

In the last part of the course trigonometry was to be studied: preliminary notions, 

construction of tables for sines and cosines, use of those tables and analysis of 

triangles using trigonometry. 

The lessons on Algebra 

Algebra was the 2
nd

 year course because it was understood as being more abstract 

and containing principles that were more difficult than Arithmetic and Geometry. As 

a result, the lecturer was due to use all his capacity for making his students 

understand such an important science. 

The lecturer should engage himself with care in the complete and profound instruction of 

his students in this sublime and important Science, from which it depends the large 

progress, that can and should be done during the frequency of the degree of Mathematics: 

because it is the place, where all the spirit of invention, so necessary to this science, is 

formed; and it is the instrument to everything that can be discovered about quantity. (‗Do 

Curso Mathematico‘, 1772, p. 175) 

The study of Algebra started with a historical abstract and the presentation of the 

three principal items: to express any and every circumstance, conditions and 

relationships of quantities in algebraic language; to know how to combine the 

conditions with each other and to do all operations on them to reach the intended 

purpose; finally to explain the result of algebraic manipulations. 

Then, students would learn literal calculus (the fundamental operations on 

magnitudes simple, complex, fractional, rational and irrational), equations (general 

and particular properties, method of preparation and transformation), fundamental 

rules of analyses, conic sections, differential calculus (definitions, differentiation 

rules and general theory of curves) and integral calculus (fundamental rules and 

applications). 

One of the most important aspects in Algebra should be its connection with 

Geometry. To relate these two sciences, the lecturer, after presenting the literal 

calculus and equations, should present to his students the use of the rules in solving 

geometrical problems (determined and undetermined) and should practice those 

exercises until students achieve skill and sagacity. The same should be done for 

differential and integral calculus (‗Do Curso Mathematico‘, 1772, p. 177-182). 
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The lessons of Phoronomy 

In the lessons of Phoronomy, in the 3
rd

 year, the physics of bodies, fluids, light and 

sound were studied. 

The aim to study physics in the Faculty of Mathematics was to give a profound 

knowledge of the science of movement. The students were meant to attend lectures 

during the second year, lessons on experimental physics in the Faculty of Philosophy 

where they were to learn about the physical phenomena. Then, in the lessons of 

Phoronomy, the lecturer should provide justifications to those phenomena using 

chains of mathematical reasoning, given by the methods of calculus and geometry. 

The lecturer was preparing the students to go beyond the obvious, analyzing and 

generalizing the studied principles (‗Do Curso Mathematico‘, 1772, p. 182-184). 

The lessons of Phoronomy started with the study of the physics of bodies, the statics, 

mechanics, dynamics and ballistics. Following these, the students were to study the 

physics of fluids: hydraulics, hydrostatics and hydrodynamics. The physics of light 

contained optics, dioptrics, catoptrics and perspective. Finally, in acoustics, students 

were to analyze a small number of phenomena such as the vibrations of chords, using 

the Mathematical calculus. 

Although, Architecture was not clearly seen as part of Mathematics, students could 

also study it in form of mechanical problems. 

The lessons of Astronomy 

The lessons of Astronomy started, as usual, with a historical abstract: beginning with 

the Astronomy to Hipparchus, going through Ptolemy, Albategnius, Kepler and 

Newton. The historical abstract, along with the presentation of the subject and 

method, aimed to introduce students to the course with pleasure and motivation (‗Do 

Curso Mathematico‘, 1772, p. 189-190). 

The lessons would then continue with a preliminary treatise on spherical 

trigonometry followed by three different aspects of Astronomy: the knowledge of 

phenomena deduced by observation; the proof of the physical reasons for the 

observed phenomena; the establishment, in consequence of these reasons, of rules to 

determine the studied phenomena at any given time. 

The fixed stars, the planetary movements and the eclipses of satellites were also 

studied. In the last part of the lessons the Chronology and the Calendar were 

considered without reference to its historical development. 

The study of Astronomy was not only theoretical but also practical. An Astronomical 

Observatory was built and furnished with the best instruments available at the time, 

so that the students could have practical sessions and be instructed in the observation 

of astronomical phenomena. 
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The lessons of Design and Architecture 

In the Design and Architecture course, students were able to learn metaphysics of the 

design (skill, style, accuracy and expression), Civil Architecture, Military 

Architecture and maps. 

As referred previously, these lessons were not compulsory but the students were 

advised to attend to it during their 3
rd

 or 4
th

 years. 

The Exercises 

During the Mathematics degree the students had to make several exercises. Oral, 

practical and written exercises where proposed daily, weekly and monthly. 

The oral exercises aimed to prove the understanding and demonstration of the 

contents. All students were asked to explain some proposition or a theorem, and 

those who demonstrated a difficulty in this, would benefit from the help of others, 

designated as their tutors. This was definitely a proof of real cooperative education 

(‗Do Curso Mathematico‘, 1772, p. 198-202). 

However, the exercises were also practical, since Mathematics was applicable to 

different uses in daily life (‗Do Curso Mathematico‘, 1772, p. 202). 

Written exercises were problems requiring that students meditate about what they 

had learnt, combining subjects and developing new concepts. Students were 

encouraged to deliver their solutions as fast as they could, since the lecturer would 

only receive 5 or 6 good solutions. Those solutions were then published as a method 

to stimulate students‘ further learning. There were also monthly exercises, which 

required some discussion, presented by every student in a brief dissertation. Again, 

those exercises were used to prepare students for research (‗Do Curso Mathematico‘, 

1772, p. 204-205). 

THE TEXTBOOKS 

The textbooks for which the lecturers should follow their lessons were also 

considered in the Statutes. Although there was no fixed textbook, at the end of each 

academic year, the Congregation of Mathematics
3
 should choose proper textbooks 

for the following year, since mathematics was considered to be a science in constant 

development. Nevertheless, the chosen textbooks were deemed to have to 

accomplish some conditions: 

[The Congregation] should always consider that the Treatises, that have to be explained, 

are concise and elementary; and contain the most effective and sublime methods that are 

known; so, those who gain their degree following them, will be entitled to understand 

without obstacles the deeper scripts that exist in these sciences. (‗Do Curso 

Mathematico‘, 1772, p. 164) 

A case was also considered where no adequate textbook existed for a specific course. 

In that instance, the lecturer should write his own treatise in order to facilitate the 
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students‘ study and to contribute to development and research of Mathematics as 

well as those sciences that depend on Mathematics. For those treatises that were 

chosen, no oral commentary was allowed except for the lecturer who, when 

necessary, had to present all the demonstrations to his students. 

The choice of textbooks was therefore a task for the Congregation, but there is one 

textbook mentioned explicitly in the Statutes: Euclid‘s Elements. The geometrical 

books of Euclid‘s Elements (from 1
st
 to 6

th
) had already been translated into 

Portuguese, in 1756 by João Ângelo Brunelli, and so this was used for Geometry 

lessons. The choice of this textbook is also clearly justified in the Statutes: 

In it [the Geometry textbook] it is required that not only each geometrical truth is 

rigorously demonstrated; but also that all together these form a stable, sequenced and 

continuous chain of matters; there should not exist any lonely proposition; but all 

interacting with each other. And with these advantages there is no other author to the 

present date who wrote, with such perfection, as Euclid did in his Elements, for the 

reasons of which the lecturer will follow the lessons. (‗Do Curso Mathematico‘, 1772, p. 

164) 

Together with Euclid‘s Elements the Statutes also mentioned Proclus‘ Commentary 

on Euclid, noting that the lecturer should follow it in order to explain to the students 

the metaphysics of Geometry.  

By the time that the Faculty was created, Elementos de Arithmetica and Elementos de 

trigonometria plana by Bezout were also chosen for Geometry (along with Euclid‘s 

Elements). Elementos de Analisi Mathematica by Bezout were chosen for Algebra. 

Tratado de Mecânica by Marie, Tratado de Hidrodinamica by Bossut and Optica by 

La Caille were the three textbooks for Phoronomy, while Astronomia by Lalande was 

chosen for the 4
th

 year of the degree (Freire, 1872, p. 38).  

The privileged choice of French authors for the Faculty of Mathematics did not seem 

casual since Portugal and France had maintained very good relationship in relation to 

concerns in education and the general development of sciences. Indeed, from the 

very beginnings of Portugal, we can find Portuguese Mathematicians as well as other 

scientists attending the prestigious French Universities as students, such is the case 

of Manuel de Azevedo Fortes or José Soares de Barros e Vasconcelos. Admirably, 

the cited textbooks were immediately translated into Portuguese facilitating this way 

the study of these mathematical subjects. 

FINAL REMARKS 

The creation of the Faculty of Mathematics at University of Coimbra by 1772 and the 

principles defended by the Statutes that ruled it conduct to a change in the study and 

teaching of Mathematics in Portugal. This huge reform of the teaching of 

Mathematics leads to the development of the teaching of mathematics at other levels. 

Furthermore, in the Academies which prepared the Portuguese army (Brazil 
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included) Mathematics was a central subject and many students graduated in the 

Faculty became lecturers at these Academies.  

The foundation of an Academy of Sciences in Lisbon, by 1779/1780, also fomented 

the study of Mathematics, particularly by one of its founding and most influent 

partners: Monteiro da Rocha, himself. 

Nowadays, in Portugal, as well as in many other countries, the mathematics 

curriculum follows closely the Principles and Standards for School Mathematics 

published by the National Council of Teachers of Mathematics (NCTM).  

These ―new‖ standards for teaching mathematics present, in our opinion, the same 

structure and the same ideals already presented in the Statutes for the Faculty of 

Mathematics of University of Coimbra, almost 250 years ago, namely: rigour in 

teaching a science such as Mathematics; the importance of the study of Mathematics 

for everyday life; the importance of the History of Mathematics for the 

contextualization of the content taught and for increasing student motivation; the 

importance of a systematic and continuous study by students to a better 

understanding of the content; the cooperative education that allows students to help 

each other in pursuit of success; the careful choice of textbooks suitable for students 

and enabling them to acquire mathematical knowledge consistently; and, in addition, 

the constant appeal to promote excellence and encourage effort in students‘ work. 

In Portugal, together with this ―perfect‖ historical example, we might/should also 

speak of the possible cultural advantages of referring/following such an important 

curriculum in Mathematics.  

Simultaneously, teachers and others responsible for the development of mathematics 

curriculum worldwide might also use these Portuguese Statutes both as a tool in their 

work, look at the examples of teachings presented in this document in daily classes, 

and as a reference to reflect upon Principles and Standards of nowadays. In fact, we 

are in this matter sharing Herodotus‘ opinion that by knowing the past we can better 

understand the present and steadily prepare the future. 

NOTES 

1. As cited in Estrada & Ralha, 2008, p. 733. 

2. Phoronomy was the name given, in the 18
th

 century, to the physics of the movement. 

3. The Congregation of Mathematics was a governing body, chaired by the University Rector and formed by all lecturers 

of the Faculty of Mathematics, with the aim of making the Statutes to be accomplished. 
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The author taught a module on the History of Mathematics to a class of nine second 

and third year students taking a three-year BA in Humanities. Students were 

required to keep a learning journal for the duration of the module. This paper 

considers extracts from students‘ journals that can reasonably be identified as 

coming from their respective ‗participant‘ persona (Liljedahl, 2007). These extracts 

have been classified in an effort to gain insight into the affective domain of these 

students‘ engagement with the module. Questions of sustainability, contingency and 

authenticity arise. 

Key words: journaling, affective domain, history of mathematics, persona 

INTRODUCTION 

It can take a while for a mathematician to gain confidence to offer a module in the 

history of his subject. In my own case, eleven years! My first serious question arose 

about spring 1997, while teaching algebra to computing students at Dundalk Institute 

of Technology, between Dublin and Belfast. It was this: The civilisation of Baghdad 

had a flourishing mathematical community in the late 8
th

 century (CE). At that time 

there was a vibrant civilisation in Ireland. What, if any, mathematical activity existed 

in the latter? I still have not answered this question, yet I know more about it than I 

did in 1997 (OReilly, 2009). I offered a module on the history of mathematics for the 

first time in the spring semester of 2008. The second time was two years later. In the 

intervening period, I had the good fortune to attend the HPM satellite meeting at 

ICME-11 in Monterrey, Mexico. Fourteen months later, Jan van Maanen presented a 

paper in Dublin (van Maanen, 2009) which stopped me in my tracks. It alerted me to 

the deeply intricate interactions between History of Mathematics, Mathematics and 

Mathematics Education, and, in particular, it propelled me to begin to use original 

sources.  

Glaubitz (2010) suggests that using original sources in teaching is a demanding 

activity, yet the rewards can be very significant. He mentions, inter alia, how such 

sources sharpen students‘ awareness of representation and provide material for 

debate on what matters. Indeed, their very strangeness can give rise to useful ‗anchor 

points‘ for teaching. His appraisal of the use of original sources in the mathematics 

education is positioned in a landscape of hermeneutics. Kiernan (2010) also 

acknowledges the challenge to the instructor in designing a History of Mathematics 

module and, in particular, when the use of original material is considered. These 

authors echo the work of Jahnke (2002) who recognized the study of original sources 
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as the most ambitious, yet most rewarding, way to integrate history into teaching 

mathematics. 

Janqvist (2009, 2010) distinguishes between two models of using History of 

Mathematics in Mathematics Education, one where history is used as a ‗tool‘, the 

other where it is the ‗goal‘ of the endeavour. In the planning and implementation of 

the latter model, ‗meta-issues‘ will arise including: how students‘ ‗virginal beliefs‘ 

are modified during a history course; how to anchor comments, arguments and 

discussion; the need to orientate questions in a variety of registers (e.g. historical, 

sociological or philosophical). He calls for more research in the HPM community to 

relate HPM to Mathematics Education research. One can expect a healthy symbiosis! 

Fried (2010) raises a call to arms (or is it peace?):  

The tension between the aims of history of mathematics and the other aims in 

mathematics education must be confronted if one wishes to embrace the history of 

mathematics not as a tool but as an inquiry important in its own right.  

He makes the case for Mathematics Education to be ‗justified‘ not just on the basis of 

utility, but also of culture. This issue was discussed by OReilly (2000), albeit in 

relation to Mathematics. 

This paper considers issues arising from personal experience of offering a one-

semester undergraduate module on the history of mathematics in a two-subject BA 

programme, with mathematics as one of those subjects. An effort is made to situate 

this experience in a broader setting. Part of this setting is informed by the author‘s 

collaborative work on mathematical identity and narrative (Eaton & OReilly, 2009), 

although an explicit link to this work is not made here. Instead, students‘ learning 

journals are used as primary data; these are set in a framework modifying that of 

Liljedahl (2007). The question addressed is: how can evidence from students‘ 

journals be harnessed to explore their affective engagement with mathematics and its 

history? 

OVERVIEW OF MODULE DELIVERY 

The module under discussion was a required mathematics module taken by second 

and third year BA students in the second semester (late January to mid-May) of the 

2009-2010 academic year. It was spread over a period of fourteen weeks (excluding 

a two-week Easter vacation period) and involved 44 contact hours nearly a quarter of 

which took place in a computer laboratory. Seven second-year and two third-year 

students took the module. Typically few BA students choose mathematics. 

The stated learning outcomes of the module were that students should be able to:  

1. Outline in very general terms the timeline of the development of mathematics  

2. Describe significant historical periods when key changes in mathematical thought 

occurred and new areas emerged  
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3. Summarise some important contributions of prominent mathematicians  

4. Explain how topics arising in school mathematics developed historically  

5. Discuss important examples of cultural factors influencing the development of 

mathematics  

6. Discuss the technical details of specific mathematical problems pertinent to 2-5, 

above  

7. Situate points 2-5, above, in a broader historical context  

In retrospect, examining these through the lens of Jankvist‘s ‗tools‘ and ‗goals‘, it 

seems appropriate to conceive learning outcomes 1, 2 and 5 as focusing on the 

developmental and evolutionary aspects of mathematics as a discipline (Janqvist, 

2009) and hence on ‗history as a goal‘. On the other hand, learning outcomes 3, 4 

and 6 are concerned more with ‗history as a tool‘, that is with how students learn 

mathematics. Outcome 7 serves both of these purposes. 

The module was anchored around reading Derbyshire‘s Unknown Quantity (2006). 

This book was chosen because it is accessible (and affordable!); moreover it covers a 

broad canvass of the history of algebra as well as touching on aspects of geometry. 

Anyone acquainted with the book will know that it is not without shortcomings. 

Some serious reviewers (Grabiner, 2006; Katz, 2006; Segal, 2008) will consider this 

an understatement, yet the defects are, for the most part, in the detail or in 

Derbyshire‘s sometimes arbitrary preferences in his emphasis and his irksomely 

gratuitous remarks. This author has found the book a helpful bridge for 

undergraduate students between mathematics and its history. Its shortcomings were 

compensated for by using additional reliable sources (e.g. Bos 1980; Cardano, 1545; 

Kwārizmī, 1831; Leibniz, 1675/1920) to expose students to original material in some 

detail; moreover the book‘s defects led to interesting discussion on meta-issues 

relating to the module. 

Most of the module dwelt on the history of algebra (from its origins to the solution of 

polynomial equations to the emergence of abstract algebraic structures) with a three-

week insertion of the history of the calculus (with emphasis on Leibniz‘ 

contribution). Both the computer algebra system, Maple, and the dynamic geometry 

system, GeoGebra, were used to support students‘ exploration of the mathematical 

detail of the material under consideration (e.g. Kwārizmī‘s classification and solution 

of quadratic equations and Leibniz‘ transmutation rule, following the actual 

historical conceptions closely). A variety of web (e.g. O‘Connor & Robertson, 2010; 

Lee 2007) and library resources was recommended. Thus there was a significant 

diversity of register amongst the resources presented to students.  

Now let us turn to the focus of this paper, the students‘ learning journals. As part of 

assessment for the module, students were required to keep a learning journal (LJ). 

Students were directed as follows: 
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You should bear three things in mind as you prepare your LJ: 

1. It should indicate your engagement with the [module]. 

2. It should include reflection on this engagement. 

3. You should see it as useful for [module] revision when preparing for the final 

exam. 

For 1, you are recommended to include a summary (in your own words) of the main 

topics/themes encountered, covering both mathematical concepts and historical notes. 

You should complement each summary by indicating the key technical details of relevant 

problems.  

For 2, you might wish to comment on how you encountered each topic/theme: what you 

found surprising; what you found easy or hard; to what extent GeoGebra or Maple helped 

you with your understanding; how your personal understanding of a particular 

topic/theme has been influenced by studying its historical evolution. 

Clearly these directions were not prescriptive, thus allowing each student 

considerable leeway in choosing how to articulate her/his own learning. All nine 

students show significant engagement in the module. However some chose to focus 

exclusively on summarizing mathematical and historical detail (valuable for module 

revision and exam preparation), rather than reflect on their engagement and reveal 

aspects of the affective domain.  

DATA FROM STUDENTS‘ LEARNING JOURNALS 

Students‘ personas 

Liljedahl (2007) considers three personas, narrator, mathematician and participant, 

that students use in journaling. His goal is to achieve authenticity in representing the 

processes in which students engage in tackling mathematical problems. 

The narrator moves the story along. … The mathematician is the persona that provides 

the reasoning and the rational underpinnings for why the mathematics behind the whole 

process is not only valid but also worthy of discussion. Finally, the participant speaks in 

the voice of a real-time evolving present. This persona reveals the emotions and thoughts 

that are occurring … as he is experiencing the phenomenon. (p. 663) 

Let us adapt these personas to the purpose of the title of this paper. The narrator 

chronicles the progression of the module. The mathematician documents the 

mathematical detail (both conceptual and technical). The historian, a new persona 

necessary in this context, documents the historical detail (narrative, timeline, context, 

etc.). The participant reveals what is actually happening for the student as the 

module progresses. For our purpose, we focus exclusively on the participant persona, 

for it is precisely this persona who reveals a student‘s affective engagement in the 

module. It is important to point out that personas, by their nature, overlap to some 

extent, and so we choose (as outlined below) to consider a rather broad expression of 
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the participant persona including situations when this persona draws on the 

substance of mathematics or history, but with an affective lens. 

Of the nine students taking the module, only five of them expressed their participant 

persona significantly in their journals. There were 161 such expressions amongst 

these five: Michael (13), Olivia (33), Rachel (37), Seán (30) and Tara (48). 

Classification of data in the affective domain 

In classifying these 161 instances, nine codes were identified:  

 Expressions of interest (33) 

 Expressions of enjoyment (17) 

 Expressions of surprise (29) 

 Anticipating (looking forward) (10) 

 Recalling (linking to already known facts) (5) 

 Reflecting (articulating general insight) (34) 

 Understanding (articulating specific insight) (25) 

 Identifying what is easy/hard (39) 

 Identifying what is helpful (36) 

The distinctions between the first three of these are not always clear-cut. Typically 

‗interest‘ refers to a fairly neutral expression, ‗enjoyment‘ indicates something 

stronger, while ‗surprise‘ identifies situations where a student has shown a 

significant change of attitude or deepening of insight. 

In the context of the data, it makes sense to refine Liljedahl‘s participant persona into 

five sub-personas: 

 The maths participant who expressed evolution of mathematical understanding 

(95) 

 The history participant who expressed evolution of historical understanding (32) 

 The inner participant who expressed a strong personal conviction indicating 

attitudinal change (15) 

 The outer participant who expressed a considered judgement about the world 

outside (13) 

 The spectator – the other participant who articulated the affective domain without 

evidence of particular understanding, conviction or judgement (27) 

The frequency of each code and sub-persona is indicated in brackets. Of course the 

sum of the frequencies, in each case, exceeds 161. The general approach to 

classification here is well-established grounded theory adapted to the context and 

scale of the data. Here, the maths participant is to be found where the mathematician 
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and participant personas overlap; likewise the history participant is located where the 

historian and the participant meet. The intention is that this refinement of the 

participant persona will bring out more clearly distinctions within the affective 

domain as students reflect on mathematics and its history. The use of the nine codes 

appears to be of much less significance. In the presentation of data and discussion 

which follow, we will focus on the personas. 

PRESENTATION OF DATA 

Let us read the words of each persona (identifying the student by pseudonym and 

indicating the codes in each case). First, the maths participant relating how he feels 

and thinks about making progress with his understanding of mathematics:  

Question 2 [Let x = t be a root of the cubic x
3
 = cx+d. Find the other two roots in terms 

of c, d and t.] was one of the questions I struggled with but when it was explained on the 

board, the ease with which x = t was found to be a solution of x
3
 = cx+d was eye 

opening. It certainly made me feel it could be accomplished easily. (Michael; surprise, 

easy/hard.) 

This was called Leibniz‘ transmutation. It is developed through the use of the 

characteristic triangle and yields a transformation of the quadrature of another curve, 

related to the original curve through a process of taking tangents. I found this lesson 

useful for developing the idea of how Leibniz developed the transmutation. (Michael; 

helpful.) 

The outer participant joins in with the maths participant as they make a judgement 

about the presenter‘s behaviour yet in the context of mathematical reflection: 

In today‘s lecture we watched Donny Lee from Singapore, work on Leibniz and his 

formula for π, on You Tube. He links the famous formula … to Leibniz transmutation 

rule. He does this with great enthusiasm, so much so that when watching it for the first 

time I believe he got ‗carried away‘ to a certain extent which resulted in me being 

completely lost. However when I watched it for a second time I think I learned and 

understood a little more. I hope this will continue to happen. (Rachel; reflecting, 

understanding.) 

Now we hear the maths and history participants together as they place mathematical 

development within an historical narrative: 

For the essay I picked the history of notation as I thought it covers so much time that it 

would help me learn more about the development of Maths. I enjoyed doing it as I was 

interested in the development [through] the ages and what different people at different 

times [did]. But I found it very hard to condense such a massive topic. I could have 

[written] pages and pages. I also [tried] my best to bring in some [GeoGebra] and Maple. 

(Tara; interest, enjoyment.) 

Next the history participant alone, reflecting on how the historical discipline helped 

her understanding: 



Working Group 12 

 CERME 7 (2011)  1766 

From keeping the Journal and constructing the time line, I know if I had to write a bit 

about all of the above, I could. I found this really [helpful]. (Tara; helpful.) 

The history and inner participants join forces showing a powerful transformation in 

perspective, articulated unambiguously: 

Since researching my essay on women mathematicians my attitude towards mathematics 

has been altered. Although of course these male mathematicians achieved great things 

during the 16
th

 & 17
th

 century, I can‘t help but think about women such as Sophie 

Germain and Maria Agnesi. These women had to fight so much harder than their male 

counterparts to achieve [and] succeed in this area. They did not receive the same respect 

or education that they should have been entitled to. (Olivia; surprise, reflecting.) 

Now we hear the voice of the inner participant alone, clearly asserting his own 

learning style and suggesting a personal strategy on how to gain even more insight: 

Felt in a much better mood about the maths since last class and was raring to go. As a 

result, dove in today head first into analysing the diagrams given on 23/2 (yesterday) and 

using the graphs and seeing Geogebra in action helped me visualise. From today‘s [two] 

classes I have concluded that I am in fact a very visual learner rather than theoretical 

[and] algebra side of things. All I need to do now is to make stronger links between them! 

(somehow)  (Seán; anticipating, reflecting.) 

Here is the strong voice of the outer participant in the presence of the history 

participant, critical of Derbyshire‘s treatment of the narrative of early algebra: 

I feel that Derbyshire presents a biased attitude towards Al-Khwarizmi‘s achievements 

and the Arabic way of thinking in general. He has a very negative opinion of Al-

Khwarizmi‘s way of thinking. In fact, I feel that he has an extremely condescending 

attitude towards this great Arabic mathematician. On the other however Derbyshire 

appears to believe that the Hellenic way of thinking is much superior to the Arabic way. 

He praises Diophantus throughout. (Olivia; reflecting.) 

Finally an example of the spectator, expressing interest in the preoccupation of the 

Arabic mathematician with Islamic law: 

We learn that the Islamic law of inheritance played an extremely important role behind 

the development of algebra. I find it extremely interesting that Al-Khwarizmi devoted a 

chapter in his book ‗al-jabr‘ to the solution to the Islamic law of inheritance using 

algebra. (Rachel; interest, reflecting.) 

DISCUSSION AND CONCLUSIONS 

Here the cohort of students is small – only nine – and the cohort of those who 

engaged in the affective domain a mere five. Yet it is remarkable how rich the data is 

and how varied the style of its expression. The classification by code and by (sub-) 

persona provides a structure underpinning an intricate interaction between different 

aspects of students‘ learning processes in the affective domain and the 

implementation of diverse teaching approaches.  
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The voices of these participants, and, in particular, that of the inner participant, 

resonate with recent work of Rosas Mendoza and Pardo Mota (2010). These authors 

report on how students engage in a very personal way with mathematical ideas when 

working with original sources, such as Newton‘s Principia. Two of the extracts 

given above (the second and last) demonstrate significant engagement with original 

sources. There is strong evidence, especially in the voice of the history participant, 

of a humanistic understanding of the development of mathematics (Liu, 2010), and 

that sustained collective effort with mathematics bears fruitful results. All 

participants, and especially the maths participant, displayed evidence of ‗working 

with doubt‘ and of the ‗struggling mathematician‘ which/who draws a parallel 

between the learning of mathematics and the development of mathematics by its first 

inventors (van Maanen, 2010). We see here that working with an historical lens 

invigorates learning. 

The module described here drew from a variety of sources: YouTube, ‗popular‘ 

mathematics, fundamental invention (Lee, 2007; Derbyshire, 2006; Leibniz 

1675/1920); it evoked diverse affective (and other) engagement from students as 

evidenced by the personas and sub-personas described above. Liljedahl (2007) 

suggests that students work with more mathematical awareness when they tune in 

explicitly on personas while journaling. Such ‗specific focus‘ places demands on 

students. To what extent are such demands reasonable? It seems that the use of 

journals is particularly fruitful when used in the context of history of mathematics. 

Moreover, it is helpful to refine the participant persona as described in this paper 

since such refinement helps distinguish aspects of students‘ affective engagement 

with mathematics and its history. There are, of course, practical questions when we 

seek to implement such a framework in the teaching situation. How might students 

tune in to their personas and sub-personas, even when not journaling? How can this 

work be sustained, be implemented efficiently, be deepened? How can its 

contingency be nurtured, its authenticity assured? 
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A CROSS-CURRICULAR APPROACH USING HISTORY IN THE 

MATHEMATICS CLASSROOM WITH STUDENTS AGED 11-16 

Peter Ransom 
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Over the past decade I have developed many lessons that use history in the 

mathematics classroom. These lessons are cross-curricular using events from history 

to enthuse students in their learning of mathematics. They show that the mathematics 

used today had, and continues to have, applications to everyday life. As well as 

being classroom lessons these episodes form mathematics masterclasses done on 

Saturday mornings around the UK incorporating Texas Instruments handheld 

technology. The lessons use old and new technology to provide students with an 

insight into how they are made and used. Recent developments with the STEM 

(science, technology, engineering and mathematics) initiative in the UK mean these 

lessons are even more relevant. The two newest episodes are described here.  

THE RESEARCH IMPETUS 

I incorporate events from history into mathematics lessons because I find it very 

interesting to see the practical applications of mathematics set into the period when it 

was used. My research questions are qualitative and are concerned with whether 

students find it interesting and if it helps improve their attitudes to mathematics. I 

chose to write about these two episodes since they have been developed over the past 

year and are both very rich in mathematical history. The Galileo episode emerges 

from an anecdotal point of view incorporating cross-curricular work with science, 

the Brunel one uses examples from his original calculation books. 

Using Jankvist and Grattan-Guiness previous works (Jankvist 2009, Grattan-Guiness 

2004), Tzanakis & Thomaidis (2011) classify the arguments and methodological 

schemes for integrating history in mathematics education and my episodes fit into the 

two-way table mainly as History-as-a-tool and Heritage though there are overlaps 

into the History-as-a-tool and History cell (op.cit. section 4, Table 1). The over-

riding concept in my work is History-as-a-tool. 

The reliability of this research in the sense of reproducibility by someone else is 

impossible to quantify, since teachers use such episodes in different ways with 

different students and probably not in costume! Every session I do with students is 

different according to local conditions and the knowledge students bring to the 

sessions, so results will vary. 

THE EVOLUATION OF THE EPISODES 

Back in the 1990s I was introduced to the Royal Institution mathematics 

masterclasses for gifted and talented 13/14 year old students. These took place (and 

still do) on Saturday mornings and last for 2´ hours. They are organised by local 
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groups of interested teachers and generally take place at prestigious places covering 

schools within travelling distance. They put on a programme of 4 to 8 sessions 

(though most places do 6) inviting staff at local schools to nominate a couple of 

students who would benefit from these masterclasses. Members of staff are also 

invited to attend and without these volunteers the sessions would be difficult to run 

since they attract between 30 and 60 students each session. These volunteers help 

when students are involved in the tasks since the sessions involve a lot of 

interactivity. The topics offered vary considerably and cover a wide range of 

mathematical topics. As the years progressed I felt that there was plenty of material 

that was suitable for general classroom work and so by developing the masterclasses 

I do in my own classroom I was able to trial the work with a wide variety of ages and 

abilities.  

In my opinion the work should have relevance to the students, so I always try to 

include material that covers mathematics primarily and history secondly. However 

science, engineering and geography also play significant parts and all these are 

brought together to provide a holistic coherent scenario in which to develop the 

mathematics. Technology changes daily and in preparing our students for the future 

we need to use the technology of today as well as that of yesterday so that students 

become digital natives rather than digital immigrants. In my school and 

masterclasses I use handheld technology by Texas Instruments since that is what I 

had in school and it fits the work remarkably well, being portable and wireless. 

Sometimes the opportunities arise by chance: a suitable anniversary, an interest or an 

opportunity can be the spur to spending many hours pursuing threads which gets 

sewn into a rich tapestry of mathematics. The STEM (science, technology, 

engineering and mathematics) initiative in the UK is aimed at developing an interest 

in those subjects since they have shown a drop in numbers at degree level over the 

years. The STEM programme aims to rationalise and improve the provision of 

support for students. It puts into practice the recommendations of the STEM 

Programme Report that was published in October 2006. This report focused on how 

best to support STEM through school, post-16 education and university and how to 

streamline the current numerous STEM initiatives and implement them more 

effectively in every school, college and learning provider. The Government wants to 

increase students‘ STEM skills in order to provide employers with the skills they 

need in their workforce help to maintain the UK's global competitiveness and make 

the UK a world-leader in science-based research and development. The proposals in 

the STEM Programme Report build on the Government's strategies for developing a 

strong supply of scientists, engineers, technologists and mathematicians. By tackling 

these areas with scenarios that show how they were dealt with in the past I believe it 

gives students enthusiasm for mathematics and provides them with a rich 

background of general knowledge. The episodes I mention here are the two latest 
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ones that have been trialled with teachers and students in the classroom and then 

improved after feedback from them and my peers in the last year. 

GALILEO AND PENDULA 

This was the basis of two one-hour classroom lessons with 15 low-achieving 14 year 

olds. I wanted to introduce some wireless handheld technology (TI-nspires) so that 

the class could develop their IT skills, so we set up an experiment that involved just 

string and a mass to act as a pendulum. The students were asked to work in pairs 

since there was a need for one to record data and the other to time the pendulum 

swinging. After logging on to the wireless system in the classroom, all students were 

sent a file to the nspire handhelds. This consisted of a page about Galileo and a bit 

about his work with pendula, but not the result he found. The advantage to the 

student (and teacher) is that the work they are doing is relayed wirelessly to the 

interactive white board and refreshed every 30 seconds so the teacher can see how 

the students are progressing with the work. There is also the added advantage that 

any student‘s work can be made to fill the board, so misconceptions can be identified 

and corrected at an early stage, or good work can be brought to the notice of the 

whole class with the student presenting their work. 

The materials provided in the room included rulers, string, sticky tape, a few 

stopwatches and some small bits of metal with holes in that can be used as the 

pendulum‘s mass. They then worked in pairs to measure the time taken for 10 

oscillations of a pendulum (using a stopwatch or their iPhone!) and recorded the time 

and length of the pendulum, after having discussed what factors they thought 

affected the time of a swing.  

    

   

Fig 1: Screenshots from the pendulum experiment and analysis 
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They recorded the data collected in a spreadsheet page, using that to calculate the 

time of one swing. They then used a statistics page to show the data from the 

spreadsheet. With the low attainers in this class we stopped at that point though 

higher attainers can experiment with changing the variables on the axes until they 

find a straight line. Built in menus allow the student to find the equation of the 

straight line that links the length of the pendulum with the square of the time, then by 

considering the gradient an approximation for the value of acceleration due to 

gravity can be found. 

Previously I thought this activity was too difficult to do without the technology since 

the low attainers did not have the graphing skills necessary and this would have 

frustrated their learning. Using the technology removed this blockage and allowed 

them to realise that there was a connection between the length of the pendulum and 

the time taken for a single oscillation. 

The other benefits to this class‘ learning included the following: working 

cooperatively; developing their creative skills and recording the lengths in metres 

when they tended to use centimetres to measure. Watching them talk to each other 

about how and where to put the pendulum was fascinating. Some students attached 

the string to the doorframe, some to the backs of chairs which they put on the table 

so they could work with a pendulum length of about one metre. Others tried small 

lengths of less than 0.2 metres, but soon realised that there were some timing 

difficulties. 

This STEM based activity links the science of pendula with the mathematics and 

involves students thinking for themselves about making working pendula. This 

episode was repeated with 90 15 year old students in a large hall at a London 

comprehensive school in November 2010. It was less successful than in the 

classroom due to other mathematical activities taking place at the same time meaning 

that the whole group could not be engaged in discussion about the findings. 

Feedback from students in the final stages was positive however – they enjoyed 

working on group activities more than working as individuals since they had learnt 

from each other and the new technology had not impeded their learning. (Sometimes 

it is the teacher who fears that technology they do not understand will interfere with 

their students‘ learning, but this is rarely the case.) They mentioned that they saw a 

reason why they had been taught gradient in the past because it now referred to a 

physical problem. 

Did the historical aspect make a difference? I have no evidence to say ‗yes‘ or ‗no‘ at 

this point since no question was directed at this aspect. However the experiment 

lesson was preceded by one, where I asked the students to prepare a PowerPoint 

presentation about Galileo, his life and his mathematical works. This exceeded my 

expectations since the students were totally engrossed in the work, demonstrating 

their ability to use the Internet to obtain facts and create impressive files. (This links 
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in with the History side of the two-way table mentioned in Tzanakis & Thomaidis 

(2011).) 

When trialling new work with my students I never know what will happen, but with 

over 30 years‘ experience of the 11-18 year classroom I think I can judge reasonably 

well what will be accepted. In the plenary at the end of a session students are asked 

about what they learnt and it is only the comments that students offer at the end of 

the lesson that give me an insight into whether these lessons are successful or not. 

Comments such as ‗I learnt loads today about Galileo and some maths‘; ‗It was good 

working in pairs‘ encourage me to continue with such lessons adapting them for 

different classes. Comments such as ‗It was too hard‘; ‗We didn‘t have a stopwatch‘ 

means I make amendments to the work and try again with another class. This episode 

survived and will be developed further over the next year. 

BRUNEL: BUILDING BRIDGES 

Isambard Kingdom Brunel (1806-1859) was an engineer who designed and built 

many things thought impossible in his day. His Clifton suspension bridge still spans 

the Avon gorge near Bristol. Much has been done in the UK to encourage teachers 

and students to work with this image (and others) using dynamic geometry software 

to find the equation of the bridge‘s curve.  

   

Fig 2: Isambard Kingdom Brunel yesterday and today and the student investigation 

 

Fig 3: The chain and framework 
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I decided to make this a more practical activity by investigating the shape of the 

curve caused by a suspended chain (see above). Initially the work was trialled with 

prospective teachers at Bath Spa University, then with actual teachers at the Brunel 

Museum in Rotherhithe, London. The work with 14/15-year-old students was on a 

large scale with 90 of them in a school hall. The equipment used was a chain (1 

metre long) and framework I have previously used in another activity. It is possible 

to use a cereal box with the front panel cut away to suspend the chain.  

They also work in a more practical sense by suspending chains on a framework and 

measuring the horizontal and vertical distances from an origin. This data they put 

into a spreadsheet page on a TI-nspire handheld then try to find the equation of best 

fit using either a graph or statistics page. This helps develop their measuring, 

algebraic and IT skills. 

   

   

Fig 4: Screenshots of the data and successive transformations of y = x
2
 

   

   

Fig 5: Screenshots of transformations of y = cosh x 
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Teachers and students appreciated the practical approach and felt that it strengthened 

their understanding of transformations. The work with the hyperbolic trigonometric 

function was not mentioned to students under-16 since that is not part of their 

syllabus, but the link between the transformations of the quadratic and coshx was 

appreciated by the teachers, though that aspect has yet to trialled in the classroom. 

It is possible to visit the Brunel collection at Bristol University and I have acquired 

photocopies of Brunel‘s actual calculation books (see illustrations below). Some of 

the mathematics he used is appropriate in today‘s classroom and worksheets have 

been developed that have been trialled in various situations. 

 

Fig 6: Brunel‘s use of simultaneous equations, Pythagoras and calculus 

Students are asked to check Brunel‘s solution to the simultaneous equations above, 

comment on the results and look at the proportion of the two sets of answers. These 

are used in calculating the regular distances between holes in a metal rod. One 

student found this work fascinating commenting that it was very interesting to see 

how simultaneous equations were used in real life. 

Students under 16 work with the Pythagoras manuscript, those who have experience 

of calculus also work with the Thorney Broad sheet. I cover up some of the terms 

and solutions and students have to work these out themselves.  

 

Fig 7: Brunel‘s box of mathematical instruments 

Proportional dividers, seen here at the bottom of the box (Isambard Kingdom 

Brunel‘s initials, IKB, are engraved on them) are used to enlarge diagrams with 

given scale factors, or used to divide circumferences of circles into a given number 
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of parts. Traditionally the sides are labelled with circles (to divide a circumference 

into 6, 7, 8 ..., 20 parts); lines (to enlarge a given line with a scale factor from 1 to 

10); planes (to enlarge a given area with a scale factor from 1 to 10); solids (to 

enlarge a given volume with a scale factor from 1 to 10). The two legs are equal in 

length and the central slide allows the pivot to move, thus in effect creating two 

similar triangles. I have produced replicas in card that students cut out and make, 

using a paper fastener to act as a pivot. This gives a practical use of ratio and 

develops an understanding of similar triangles, enlargement and dividing a line in a 

given ratio. The accuracy is quite astounding! 

 

Fig 8: Actual and student made proportional dividers  

SURVEY ANALYSIS 

No formal survey was conducted when developing the materials due to time 

limitations in the classroom. However there was an opportunity in January 2011 to 

collect some data from a group of 24 students aged 15 and 16 from the Southbank 

International School who attended a session at the Brunel Museum at Rotherhithe, 

London. The students were at the museum for just over 3 hours which included a 

visit to the shaft that Brunel built. The purpose of the visit was to work with 

previously unused handheld technology to collect data that could be analysed in the 

classroom when they returned. This was a joint venture between the mathematics and 

science departments and both a mathematics and a science teacher were present from 

the school. The students were told to write down the data so that further study could 

take place when they returned to school. This meant that there was not much time 

available at the session to actually engage in the theory of the mathematics and 

science and that probably explains why the students gave it higher marks for 

enjoyment rather than for what they had learnt!  

50 minutes was spent on each of the activities described (plus another 50 minutes on 

air resistance) and in the final 5 minutes an evaluation sheet was given to each 

student to gauge some opinion of each activity. They were asked to circle a number 

out of 10 for each activity and give some opinions. There were three lines available 

for students to write about what they had learnt and their comments. 

The data was analysed using TI nspire Teacher Software and some of the screen 

shots of the analysis are shown below. 



Working Group 12 

 CERME 7 (2011)  1778 

   

Fig 9: Spreadsheet results with box and whisker plot comparing gender enjoyment  

This shows part of the spreadsheet with the column headings. The following 

abbreviations were used: p (for the pendulum activity), c (for the chains activity), e 

(for the enjoyment of the task), l (for the learning that took place), f (for a female 

response), m (for a male response), o (for the overall enjoyment). Therefore pef 

refers to the number given on the pendulum activity for the enjoyment by the 

females. 

Here two box and whsiker plots compare the pendulum enjoyment of males and 

females. We see that the median in each case is 7 and dispersion for males is more 

than that for females. 

   

Fig 10: Box and whisker plots of enjoyment and learning for each gender together with 

the overall enjoyment of each gender 

It is perhaps more interesting to compare what the students felt about their learning 

with their enjoyment. The screen shot on the left compares the males enjoyment and 

learning; that on the right compares the females enjoyment and learning for the 

pendulum activity. It appears that the females felt they learnt more than the males, 

though the small sample size means that further investigation would be needed 

before any firm conclusions could be deduced. Since no formal testing of the 

learning took place I make no claims for the efficacy of the activities apart from the 

enjoyment factor! 

Some of the comments, being an open response, were not very illuminating. Here are 

some which were more relevant: 

‗I learnt the difference between a catenary and a parabola. 

It was fun and interactive, made learning easier. 

I learnt how to find the equation of a curve. 

I learnt how the length of the string affects the time. 
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I learnt how to use the calculator to adjust the graph. 

Good and interesting.‘ 

It was a pity that I did not have more time with this student group to have more input 

into the analysis of the data collected with the activities, but the prime purpose of the 

day was to collect the data for them to analyse in their lessons. The historical aspect 

combined with the handheld technology provided the enthusiasm to make this an 

enjoyable experience overall as the third screen shot above shows. 

Nobody scored the event below 5 and both the male and female median value was 6. 

The mean value by both genders was 6.2 (to 1 d.p.). 

CONCLUSION 

My experience with using history in the mathematics classroom is in relating the 

mathematics students do with episodes from history when it was used. I believe 

students need to see where mathematics has been used to appreciate its importance. 

These activities were developed for use in the classroom and masterclasses, not as a 

research project, so the evidence of their success (or failure) is mainly ephemeral 

through comments received by participants after each session.  
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INTRODUCTION TO THE PAPERS OF WG13:  

―EARLY YEARS MATHEMATICS‖ 

Ingvald Erfjord, Ema Mamede, Gôtz Krummheuer 

This Working Group dealt with the research domain of mathematics learning and 

mathematics education in the early years, age 3 to 7. The working group met for the 

second time during a CERME Conference. Several members met in CERME VII for 

the second time. As already found at the first meeting at CERME VI, this research 

group has to cope with a tremendous variety of educational approaches in preschool 

and kindergarten in the different countries. The following table gives an overview of 

the national origins of the presenters of working group 13: 

 

Country Number of papers Number of posters Presenters 

Cyprus 1  1 

Germany 3  5 

Israel 2  2 

Italy 1  1 

Norway 3 1 6 

Portugal 1  2 

Spain 1  2 

The Netherlands 1  1 

United Kingdom  1 1 

TOTAL 13 2 21 

Table 1: Number of papers, posters and presenters from different countries 

 

In these countries, especially Kindergartens serve different tasks. This variety is 

related to the diverse societal conception of early years education, with major 

differences in what role direct teaching of mathematics and other academic subject 

matters play and to the individual diagnosis of learning progress in these domains. 

Due to these differences, certain research questions and methods which are highly 

relevant for one country are almost unimaginable to consider in another one. This 

diversity offers a great challenge and opportunity to establish an European wide 

leading research group. 
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In congruence to this initial situation, the group was confronted with a wide array of 

research questions and their related theoretical founding, which is shown in the 

following table: 

 

Main theoretical orientation Topics 

Educational psycholgy  

 Conceptual development Concept of half 

Geometrical knowledge 

Concept of numbers and operations 

 Classroom teaching 

experiment 

Fractions 

Early algebraic thinking 

Educational science Relationship of playing and learning 

Cultural psychology Co-learning 

Mathematical and communicative 

competence 

Sociology, socio-linguistics Mathematics learning 

Support system 

Codes and frames 

Multi-culturalism 

Semiotics Gestures 

Table 2: Different theoretical orientation and topics 

 

Despite this large range of theoretical interests, the members of working group 13 

accomplished a conversation of mutual respect and partly envisioned options of 

„bridging― the gap among the different theoretical paradigms with respect to the 

topic of the development and teaching of early years mathematics. 
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ISSUES ON CHILDREN‘S IDEAS OF FRACTIONS WHEN 

QUOTIENT INTERPRETATION IS USED 

Ema Mamede                                                   Manuela Oliveira 

            CIFPEC, University of Minho                                  EB1 Campo 

This paper focuses on children‘s understanding of fractions when quotient 

interpretation is used to introduce them this concept. An intervention program was 

conducted with a 7-years-old classroom, from a public primary school, in Fafe, 

Portugal. This intervention program comprised seven sessions in which children 

learned the representation of fractions and were challenged to solve some problems 

of ordering and equivalence of fractions. These sessions were organised following 

the official curricular content (starting by the equal sharing problems) but also 

according to the children‘s rhythms and demands. Children‘s performance and their 

arguments solving the tasks of ordering and equivalence of fractions are presented 

here. Issues on their learning process are characterized and discussed.  

FRAMEWORK 

Fractions is one of the most complex concept that children have to learn during the 

elementary school, but also a necessary one. Literature already provided information 

about students‘ difficulties (see Behr et al., 1984; Hart, 1981; Kerslake, 1986) with 

fractions. More recently, literature has been discussing the issues related to the 

effects of the interpretations for fractions on children‘s understanding of this concept 

(see Mamede, Nunes & Bryant, 2006; Mamede & Nunes, 2008; Nunes, Bryant, 

Pretzlik, Wade, Evans & Bell, 2004) and on the children‘s schemes of action (Nunes, 

2008; Nunes & Bryant, 2008).  

Distinct interpretations of fractions seem to affect differently children‘s 

understanding of the ideas of fraction. At the primary school, the children are 

supposed to understand at least fractions in quotient, part-whole and operator 

interpretations. But in these interpretations the meaning of the numerator and 

denominator differ. In part-whole interpretation, the denominator designates the 

number of parts into which a whole has been cut and the numerator designates the 

number of parts taken. So, 2/4 in a part-whole situation means that a whole – for 

example – a chocolate was divided into four equal parts, and two were taken. In 

quotient interpretation, the denominator designates the number of recipients and the 

numerator designates the number of items being shared. In a quotient situation, 2/4 

means that 2 items – for example, two chocolates – were shared among four people. 

Furthermore, it should be noted that in quotient situation a fraction can have two 

meanings: it represents the division and also the amount that each recipient receives, 

regardless of how the chocolates were cut. For example, the fraction 2/4 can 

represent two chocolates shared among four children and also can represent the part 

that each child receives, even if each of the chocolates was only cut in half each 
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(Mack, 2001; Nunes, Bryant, Pretzlik, Evans, Wade & Bell, 2004).  In operator 

situations, the denominator indicates the number of equal groups into which a set 

was divided and the numerator is the number of groups taken (Nunes et al., 2004). In 

an operator interpretation, if a boy is given 2/4 of 12 marbles, means that the 12 

marbles are organized into 4 groups (of 3 marbles each) and the boy receives 6 

marbles – that is 2 groups of the 4 into which the 12 marbles were organized. Thus 

number meanings differ across these interpretations. These differences affect 

children‘s understanding of fractions when building on their informal knowledge. 

Mamede, Nunes and Bryant (2006) conducted a survey on 80 first-grade children, 

aged 6 and 7 to compare their understanding of ordering and equivalence of fraction 

presented to them in quotient and part-whole interpretations. These children had 

received no school instruction about fractions. The results show that children‘s 

performance on problems presented in quotient interpretation was much better than 

in part-whole interpretation. In quotient interpretation the rates of success were 55% 

for 6-year-olds children and 71% for 7-year-olds children, for ordering problems; 

and 35% for 6-year-olds and 77% for 7-year-olds children, for equivalence problems. 

In part-whole interpretation the rates of success were 24% for 6-year-olds children 

and 20% for 7-year-olds children, for ordering problems; and 9% for 6-year-olds and 

10% for 7-year-olds children, for equivalence problems. The children‘s resolutions 

were also analysed giving evidence that strategies based on correspondence 

combined with partitioning were popular among the group of children who solved 

the problems in quotient interpretation whereas partitioning was the strategy adopt 

by those who worked in part-whole situations. 

More recently Mamede (2008) conducted an intervention program with 37 first 

graders (ages 6-7) to introduce fractions in distinct interpretations. The children were 

addressed randomly to work in part-whole, quotient and operator interpretations of 

fractions. Again the children had received no instruction about fractions. The results 

showed that those who were introduced to quantities represented by fractions in 

quotient interpretation could succeed in ordering, equivalence and labeling tasks; 

those who were introduced to fractions using part-whole and operator situations were 

able to succeed only on the labeling of fractions, but not on the ordering and 

equivalence tasks.   

Thus, the type of interpretation used to work with fraction in the school interferes 

with students understanding of fractions. This idea is also supported by Nunes et al. 

(2004) who describe the results of a survey conducted with 130 students in Year 4 

and 5 (8- and 9-year-olds) to analyse the pupil‘s ability to compare equivalent 

fractions presented in Quotient and Part-whole situations. In quotient situation item 

the pupils were asked to compare the fractions 1/4 and 2/8; in part-whole situation 

they were asked to compare 2/4 and 4/8. Results show that the rates of correct 

responses were 46% for the part-whole item and 77% for the quotient item. Thus, in 
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spite of considering different fractions in each situation, these results suggest that 

children perform differently in these two situations. 

Research has been giving evidence that quotient situations are more suitable for 

children to build on their informal knowledge for fractions. The informal ideas about 

fractional quantities appear much earlier than the formal learning of fractions in 

school. Research developed with younger children shows that in a division situation, 

there are some children as young as 6-year-olds who can understand the inverse 

relation between the divisor and the quotient, when the dividend is the same (Correa, 

Nunes & Bryant, 1998) when discrete quantities are involved, and when continuous 

quantities are involved (Empson, 1999; Kornilaki & Nunes, 2005). This 

understanding of the inverse relation between the divisor and the quotient can be 

seen as a precursor of understanding of the logic of fractions: the greater the divisor 

(which would be represented by the denominator in a quotient interpretation), the 

smaller the quantity. 

Streefland (1991, 1997) recommends the use of quotient situations to introduce 

fractions to children because these situations rely on the idea of fair sharing, which 

can provide the model for fractions and the part-whole concept related to 

equivalence and operational relations. The author not only recommends but also 

provides evidence of success in the use of the quotient interpretation to introduce 

fractions to children, describing a theory for teaching fractions based on the realistic 

approach that uses this type of interpretation to introduce fractions to children (see 

Streefland, 1991). Starting from problems using situations taken from daily life 

focused on division situations, Streefland produced good improvements on 

children‘s understanding of fractions, helping them to perceive the meaning of 

numerator and denominator as connected to each other, forming a correct mental 

object for the concept of fraction. 

Traditionally, in many European countries, including Portugal, and the U.S. (see 

Behr, Harel, Post & Lesh, 1992; Behr, Lesh, Post & Silver, 1983; Kerslake, 1986; 

Mack, 1990; DEB, 1998) children are introduced to fractions at school using the 

part-whole interpretation and then this work with fractions is extended to include 

operator situations. In Portugal, in the primary school levels (1
st
 to 4

th
-grades) 

students are introduced to fractions representation using the part-whole 

interpretation, and in some cases students have their first contact with fractions on 

the 5
th

 grade. Portugal is experiencing a new curriculum for the elementary school 

levels. This new curriculum refers that fractions should be introduced to children in 

an informal way, in the second grade, relying in partitioning and equal sharing; and 

explored in the third and fourth grades in the quotient, part-whole, operator and 

measure interpretations should be explored. Nevertheless that document gives no 

other indication for teachers to introduce and explore fractions in the classroom. 

Literature already provided evidence of success when children are introduced to 

fractions in quotient interpretation (see Streefland, 1991, 1997; Mamede, 2008). 
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However, for many Portuguese primary school teachers the concept of fraction only 

makes sense when the part-whole interpretation is involved. Knowing that quotient 

interpretation of fractions can help children to build on their informal knowledge 

with understanding, how can teachers explore this interpretation in the classrooms? 

This paper tries to give evidence of a well succeeded experience conducted in the 

classroom in which fractions are introduced to children using quotient interpretation.  

The study reported here describes children‘s understanding of fractions when they 

experience partitioning and equal sharing activities, and then received instruction on 

fractions using the quotient interpretation. The teaching experiment follows the 

Portuguese official curriculum for the 2
nd

 grade mathematics, but goes further 

anticipating children‘s first contact with fractions to this level. Previous related 

studies give evidence of success of children‘s understanding of quantities 

represented by fractions when quotient interpretation is used but they do not follow 

the Portuguese curriculum in the classroom. 

The part of the study reported here focuses on children‘s understanding of fractions 

when they are introduced to them using quotient situations, after a contact with 

partitioning and equal shared activities. It tries to address two questions: (1) How do 

children understand ordering of fractions when introduced to this concept using the 

quotient interpretation? (2) How do children understand the equivalence of fraction 

in this interpretation? 

METHODS 

An intervention study was conducted using qualitative methods to describe 

children‘s performances and characterize the processes involved in their learning to 

represent and compare fractions. Children‘s answers, as well as their arguments and 

solving strategies were analysed to reach an insight on their ideas of fraction. 

Participants 

The participants were a class of 8 students from a public primary school from Fafe, 

in the north of Portugal. The children were all 7 years-old. The teacher of the class is 

one of the researchers. These children had received no instruction about fractions. 

Design 

The intervention comprised 7 sessions, of approximately 90 minutes each, in which 

children were introduce to fractions using quotient situations. In the first two 

sessions children were challenged to solve problems involving equal sharing; they 

were also introduced to the symbolic representation of fractions, in which the 

quotient situation or interpretation was used. The remaining sessions were designed 

to explore ordering and equivalence of fractions in quotient situations. 

There were 6 task of ordering of fractions and 4 of equivalence of fractions. The 

fractions used in these tasks were all less than 1. In the ordering tasks children were 
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asked to solve a problem such as: ―Two girls are going to share fairly a chocolate 

bar, and there is nothing left; four boys are going to share fairly a chocolate bar and 

there is nothing left. These chocolate bars are equal. Do you think that each girl is 

going to eat more chocolate than each boy, each boy is going to eat more chocolate 

than each girl, each girl and each boy are eating the same amount of chocolate? Can 

you write the number that represents the amount of chocolate that each child eats?‖.  

They were also asked to compare fraction given only symbolically. Analogous tasks 

were presented to them involving equivalence of fractions, in a problem such as: 

―Two girls are going to share fairly a chocolate bar, and there is nothing left; four 

boys are going to share fairly two chocolate bars and there is nothing left. These 

chocolate bars are equal. Do you think that each girl is going to eat more chocolate 

than each boy, each boy is going to eat more chocolate than each girl, each girl and 

each boy are eating the same amount of chocolate? Can you write the number that 

represents the amount of chocolate that each child eats?‖. In some sessions the 

ordering and equivalence problems were presented with no pictorial support. 

Procedure 

In all sessions the tasks were presented to the children with the support of 

PowerPoint slides. Each child had a worksheet with the same information presented 

by the teacher, in which they could draw as they wish; and manipulative aid was 

provided as coloured paper with squared, rectangular and circular shapes were 

available. In each session the tasks were presented by the teacher to the class orally 

to ensure children‘s understanding of the problem, as they usually do in the math 

class. Then children were asked to solve the problems presented to them and justify 

their results. Then the teacher challenged them to write down their arguments and 

verify their solutions.  

Data collection was carried out with the use of video and audio records, students‘ 

worksheets and field notes token by the researcher. 

Results 

In this section it is presented the results concerning children‘s performance and 

arguments solving ordering and equivalence problems of fractions. The children 

solved the tasks individually and wrote their answers on their worksheet; then they 

wrote their justification and only after that they were challenged to verify their 

solution. 

When the children were asked to compare 1/2 and 1/3, 7 of the 8 children succeeded; 

these 7 children gave a correct answer and then wrote down the explanation. 

Majority of children wrote down the explanation and then drew the pictures in their 

worksheets to verify their reasoning. Children‘s performance was even better when 

they were asked to compare 2/4 and 2/6. Figure 1 gives examples of children‘s 

performance on these ordering problems. 
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Figure 1: Children‘s resolutions comparing 1/2 and 1/3, and 2/4 and 2/6.  

The children‘s arguments were improving along the sessions. By the fourth session it 

was possible to hear valid explanations such as ―... each girl eats more pizza because 

there are fewer than boys and there is equal pizzas‖ referring to the equal number of 

pizzas; or ―Each girl eats more pizza because each girl eats a bigger piece and the 

boy eats a smaller piece than the girls‖; or ―Each girl eats more because there are two 

pizzas for four girls and each boy eats less because there are two pizzas for six 

boys‖. The children‘s arguments were improving along the sessions.  

In another episode involving an ordering task, the children were able to recognise 

and generalize the inverse relation between the divisor and the quotient, when the 

dividend is the same, as it shows the following transcription of children‘s discussion. 

Tutor:  So, if you wish to get the biggest amount of paper which fraction would you 

choose? 

M: One half... it´s more than the others. 

Tutor: How do you know that is more? 

M: One paper for two children is more than one paper for three... 

J: And more than for four and more than three... 

Tutor:  If it is so, what sign did you write J? 

J: The ‗bigger‘ sign... 

Tutor: Why did you put the ‗bigger‘ sign? 

J: It‘s always 1 paper and there is always more children. They were 2, then 3, 

then 4.... 

R: The smallest is one-fifth... I circled that one! 

Transcription 1: Children‘s explanation of the inverse relation between divisor and 

quotient for the same dividend. 

‗Each girl eats more pizza than each boy. Because there are 

more boys than girls and there is one pizza for the girls and one 

pizza for the boys.‘ 

‗Each girl ate 1/2. Because there are only two girls. And the 

boys ate 1/3.‘ 
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The children were also able to solve problems of equivalence of fractions (7 out of 8 

succeeded in all these tasks). Some episodes in which children revealed difficulties 

will be presented in the conference.  

Figure 2 shows children‘s resolutions on two equivalence tasks. In these tasks some 

children found more difficult to explain their arguments in a written mode, in spite of 

solving the tasks correctly. These examples as well as children‘s difficulties will be 

presented in the conference. However, their oral justifications improved after 

drawing their schemes to verify the solutions, as their pictures were giving them 

some support in this task. 

          

 

 

 

Figure 2: Children‘s resolutions of distinct equivalence tasks. 

In the majority of the tasks presented, children seemed to rely on the use of 

correspondence to reach the solution. When solving equivalence tasks the use of 

correspondence is even more evident as in many cases this idea is also supported by 

their justifications (see Figure 2).  

When asked to compare 1/3 and 2/6 almost all succeeded (7 out of 8 children). 

Children‘s resolutions relied mainly on partitioning and correspondence. But a few 

children seemed to reveal some type of proportional reasoning when presenting their 

justifications. This is suggested when they try to explain that fact with numbers and 

expression familiar to them, such as ‗1+1=2‘ and ‗3+3=6‘ trying to express the 

double of quantities involved (see Figure 2). 

‗No one eats more because 1/3 is equal to 2/6. I put the equal 

sign because 3+3=6 boys and 1+1=2 chocolates.‘ 

‗Eat the same because if we cut two-sixths the pieces are the 

same of one-third.‘ 

‗1/3 is the same of 2/6 because there is one chocolate and three 

children in all places.‘ 
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DISCUSSION AND CONCLUSIONS 

The results of this study allow us to establish some remarks. First, this experience 

gives evidence that children can understand fractions when introduced to them in 

quotient situations, in agreement with Streefland (1991, 1997), Mamede, Nunes and 

Bryant (2006), Mamede and Nunes (2008) who previously studied this issues. In the 

sessions of this study, the ordering problems seemed to help the children to easily 

understand the inverse relation between the divisor and the quotient, when the 

dividend is the same. This relation is essential to understand the meaning of 

fractions. Second, these children learned easily fractions labels. They were 

introduced to the representation of fractions in the beginning of the intervention, and 

soon they master the symbolic representation of fractions, when quotient 

interpretation was used.  In this type of interpretation, the magnitudes involved in the 

fractions refer to two variables of different nature (Nunes et al., 2004), - numerator 

refers to the number of items to share, denominator refers to the number of recipients 

- and this may facilitate children‘s learning of fractions labels. Third, because in 

quotient interpretation the numerator and the denominator relate to variables that are 

different in nature (Nunes et al., 2004), children easily relied on the use of 

correspondence to solve many of the tasks. This finding was also documented 

previously by Mamede, Nunes and Bryant (2006) when observing 6-7-year-olds 

children‘s strategies solving ordering and equivalence problems, when interviewed 

individually. Nunes (2008) argues that in a division situation, there are two types of 

action schemes: partitioning, which involves dividing the whole into equal parts; and 

correspondence which involves two quantities (a quantity to be shared and a number 

of recipients of the shares). The development of these action schemes defers. 

Children of 5 to 6-year-olds can establish correspondence to produce equal shares 

(see Kornilaki & Nunes, 2005; Mamede, Nunes & Bryant, 2006; Nunes, 2008), but 

they find more difficult to accomplish partitioning of continuous quantities. These 

schemes of action (Nunes, 2008) are fundamental for the learning of the 

mathematical concepts. Fourth, the equivalence problems presented in quotient 

interpretation gave the children an opportunity to promote their proportional 

reasoning. When solving the equivalence problems many children establish a 

proportional relation between the numbers of items to share and the number of 

recipients in order to reach the solution; some of them could express that relation in a 

written way, others by drawings. Proportional reasoning was also a strategy 

identified by Mamede (2007) and Nunes et al. (2004) when analysing students‘ 

strategies solving equivalence problems presented to them in quotient interpretation 

of fractions. To conclude, this short intervention program allowed the teacher to 

understand children‘s possibilities of success with fractions when they are introduced 

to the children using quotient situations. We hope that this experiment can contribute 

to promote a change in the classroom practices, following the Portuguese official 

curriculum, giving the primary teachers an example of a well succeeded experience. 

As correspondence seems to have an important role on children‘s reasoning on 
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fractions problems, it seems to be relevant to give young children the opportunity to 

develop sharing experiences based on correspondence (one-to-one and one-to-many) 

since kindergarten. 

More research is needed in order to explore other ways of introducing fractions to 

children in the classroom, using quotient interpretation of fractions. In this 

experiment, the children learned the fraction representation in the beginning 

sessions. For further research in this area it would be interesting to develop a 

longitudinal research to analyse the influence of interventions based on quotient 

interpretation of fractions on young children‘s understanding of other interpretations 

of fractions. 

REFERENCES 

Behr, M., Harel, G., Post, T., & Lesh, R. (1992). Rational Number, Ratio, and 

Proportion. In D.A. Grows (Ed.), Handbook of Research on Mathematics 

Teaching and Learning (pp.296-333). New York: MacMillan Publishing 

Company. 

Behr, M., Lesh, R., Post, T. & Silver, E. (1983). Rational-Number Concepts. In R. 

Lesh and M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes 

(pp. 92-127). New York: Academic Press. 

Behr, M., Wachsmuth, I., Post, T. & Lesh, R. (1984). Order and Equivalence of 

Rational Numbers: A Clinical Teaching Experiment. Journal for Research in 

Mathematics Education, 15 (5), 323-341. 

Correa, J., Nunes, T. & Bryant, P. (1998). Young Children‘s Understanding of 

Division: The Relationship Between Division Terms in a Noncomputational Task. 

Journal of Educational Psychology, 90(2), 321-329 

DEB (1998). Organização Curricular e Programas do 1.º Ciclo - Ensino Básico. 

Lisboa: Ministério da Educação. 

Empson, S. (1999). Equal Sharing and Shared Meaning: The Development of 

Fraction Concepts in a First-Grade Classroom. Cognition and Instruction, 17(3), 

283-342. 

Hart, K. (1981). Fractions. In K. Hart (Ed.), Children‘s Understanding of 

Mathematics: 11-16, (pp. 66-81). London: John Murray Publishers. 

Kerslake, D. (1986). Fractions: Children‘s Strategies and Errors – A Report of the 

Strategies and Errors in Secondary Mathematics Project. Berkshire: NFER-

NELSON. 

Kornilaki, E. & Nunes, T. (2005). Generalising principles in spite of procedural 

differences: Children‘s understanding of division. Cognitive Development, 20, 

388-406. 



Working Group 13 

 CERME 7 (2011)  1791 

Mack, N. (2001). Building on informal knowledge through instruction in a complex 

content domain: Partitioning, units, and understanding multiplication of fractions. 

Journal for Research in Mathematics Education, 32, 267-295. 

Mack, N. (1990). Learning Fractions with Understanding: Building on informal 

knowledge. Journal for Research in Mathematics Education, 21, 16-32. 

Mamede, E. (2008). Focusing on children‘s early ideas of fractions. In Bozena Maj, 

Marta Pytlak & Ewa Swoboda (Eds.), Supporting Independent Thinking Through 

Mathematical Education, pp. 61-67. Poland: Rzeszow, WUR. 

Mamede, E. (2007). The Effects of situations on Children‘s Understanding of 

Fractions. PhD Thesis (unpublished thesis), Oxford Brookes University. Oxford: 

OBU. 

Mamede, E. & Nunes, T. (2008). Building on Children‘s Informal Knowledge on the 

Teaching of Fractions. In O. Figueras, J. Cortina, S. Alatorre, T. Rojano & A. 

Sepulveda (Eds.), Proceedings of the Joint Meeting of the Psychology of 

Mathematics Education 32 and Psychology of Mathematics Education – North 

America, Vol. 3, pp. 345-352. Mexico: Morelia. 

Mamede, E., Nunes, T. & Bryant, P. (2006). The Equivalence and Ordering of 

Frcations in Part-whole and Quotient Situations. In Helen Chick & Jill L. Vincent 

(Eds.), Proceedings of the 29th Psychology of Mathematics Education, Vol. 3, pp. 

281-288. Australia: Melbourne. 

Nunes T. (2008). Understanding Rational Numbers. Proceedings of the Conference 

of European Association for Research on Learning and Instruction – EARLI, pp. 

23-50. Hungary: Budapest. 

Nunes T. & Bryant, P. (2008). Rational Numbers and Intensive Quantities: 

Challenges and Insights to Pupils‘ Implicit Knowledge. Anales de psicologia, 24 

(2), deciembre, 262-270. 

Nunes, T., Bryant, P., Pretzlik, U., Evans, D., Wade. J. & Bell, D. (2004). 

Vergnaud‘s definition of concepts as a framework for research and teaching. 

Annual Meeting for the Association pour la Recherche sur le Développement des 

Compétences, Paper presented in Paris : 28-31, January. 

Nunes, T. & Bryant, P. (1996). Children Doing Mathematics. Oxford: Blackwell 

Publishers Ltd. 

Streefland, L. (1991). Fractions in Realistic Mathematics Education: A Paradigm of 

Developmental Research. Norwell, MA: Kluwer Academic Publishers. 

Streefland, L. (1997). Charming Fractions or Fractions Being Charmed? In T. Nunes 

& P. Bryant (Eds.), Learning and Teaching Mathematics – An International 

Perspective (pp. 347-372). Psychology Press Ltd.: East Sussex. 



 

CERME 7 (2011) 

FINGER-SYMBOL-SETS AND MULTI-TOUCH FOR A BETTER 

UNDERSTANDING OF NUMBERS AND OPERATIONS 

Silke Ladel and Ulrich Kortenkamp 

CERMAT, University of Education Karlsruhe, Germany 

Basic concepts of numbers and operations are fundamental for mathematical 

learning. Suitable materials for developing such basic concepts are hands and 

fingers. Among other things, this is because of their natural structure of 5 and 10. To 

support the development of concepts and the process of internalization a linking 

between different forms of representations by the computer can be helpful. To benefit 

of both, the advantages of the hands and fingers and the automatically linking, we 

suggest using multi-touch-technology, i.e. computer input devices that are able to 

recognize several touch gestures at the same time. Here, children can present 

numbers with their fingers that produce virtual objects. These objects can be 

automatically linked with the symbolic form of representation.  

THE ORDINAL AND CARDINAL CONCEPT OF NUMBERS AND 

OPERATIONS 

―How many things are there?‖ – For parents as well as for mathematicians, this is a 

common question to pose, if a child already has knowledge about numbers. For the 

child, this question is almost always the initiation to start counting verbally by saying 

the number words in a row (Fuson, 1988). The fundamental principles needed for 

answering the question are a) the one-one-principle that relates every single object to 

exactly one numeral (Gelmann & Gallistel, 1978), b) the stable-order-principle 

prescribing the correct order of numbers (Fig. 1, left), and c) the last-word-rule that 

assigns the last said numeral not the last counted object, but to the quantity as a 

whole (Fig. 1, right). 

 

Figure 1: ordinal (left) and cardinal (right) concept of numbers 

Here, the change from the ordinal concept of numbers, where the numeral is part of 

the numeral row, to the cardinal concept of numbers, where the numeral identifies a 

quantity, is necessary. It is not necessary to count a quantity in order to know it, that 

is, the ordinal concept is not a necessity for the cardinal concept. Resnick (1991) 

distinguishes the development of mathematical knowledge by two components that 

are developed independently: protoquantitative schemata and the mental number 

line. To build-up a well-developed concept of numbers, these two threads of 
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development have to be linked. For many children this is a critical problem. Fuson 

refers to the following example: a child counts a quantity of five cars. As an answer 

to the question „How many?― the child points to the last-counted car and says: „This 

is the five cars.― (Fuson, 1992 p. 63).  

Children who do not have a proper linking between the two concepts can 

misinterpret addition and subtraction as a demand to count forwards or backwards 

(fig. 2 left). As long as the children calculate with numbers smaller than 20 they can 

apply this strategy successfully. But, for instance, when they want to add 55 to 27 

and begin to count „28, 29, 30, 31, ...― there is no chance to come easily and quickly 

to the correct result. Thus, it is important that children acquire a part-whole schema 

of numbers as a foundation for addition and subtraction (fig. 2 right).  

 

Figure 2: Addition and subtraction with the ordinal (left) and the cardinal (right) 

concept of numbers  

„The protoquantitative part-whole schema is the foundation for later understanding 

of binary addition and subtraction and for several fundamental mathematical 

principles, such as the commutativity and associativity of addition and the 

complementarity of addition and subtraction. It also provides the framework for a 

concept of additive composition of number that underlies the place value system.― 

(Resnick, 1991 p. 32). 

For example when you want to add 6 and 8 with the use of the part-whole schema 

you can split and add in lots of ways (e.g. fig. 3).  

 

Figure 3: different ways to add with the part-whole-schema  
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Because of our decimal number system and with regard to the decimal analogy the 

secured understanding of the number range up to 10 is assigned a key position in the 

development of mathematical competences (Claus & Peter, 2005 p. 11). If you know 

all the possible decompositions of the numbers up to 10, you are able to add and 

subtract in bigger number ranges easily, e.g. if 7 + 8 = 7 + (3 + 5) = (7 + 3) + 5 = 15, 

than 67 + 8 = 67 + (3 + 5) = (67 + 3) + 5 = 75. The missing knowledge of and 

fluency in decompositions of the numbers up to 10 as much as the lack of capability 

to recall them quickly and effortlessly is the cause of many subsequent difficulties in 

mathematical learning. 

FINGER SYMBOL SETS 

Calculating with fingers has a very bad reputation in mathematics lessons, as it is 

usually seen as an indicator for counting. Most children do as they have learned from 

young days on and count objects by „Counting-Word Tagging to Number― 

(Brissiaud, 1992). According to the ordinal concept of numbers each finger is related 

to exactly one numeral. But if each finger is labelled by a number, counting children 

are encouraged to stay with their strategy and this consequently leads to further 

problems. To illustrate this we ask what happens if the sixth finger is buckled? The 

„name― of the last finger, that indicated the quantity, was „10― before, but now the 

finger has to be renamed into „9― (Fig. 4). 

 

Figure 4: Order-irrelevance principle  

This procedure can puzzle some children. Therefore it is important not to assign 

names the fingers – there is no ―6-finger.‖ The child has to know that it is irrelevant 

which fingers it uses to present a quantity. To present „3―, the thumb, the index 

finger and the middle finger can be used as well as the little finger, the middle finger 

and the thumb, or any other combination of three fingers. As we point out below, the 

cognitive process behind this fact can be experienced and thus supported by the use 

of multi-touch-technology. 

Amongst others, the advantages of fingers and hands are their permanent availability 

and their natural structure in 10 fingers per child with 5 fingers per hand. The 10 

fingers qualify the hands to work out questions about the decimal number system, 
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e.g. „How many children do we need to see 30 fingers all at once?―  The 3 children 

stand for 3 tens. Just as well, the different decompositions of all numbers up to 10 

can be presented with the hands. The „power of five― (Krauthausen, 1995) is due to 

the ability to instantaneously recognize quantities (subitizing) up to 4. Applying this 

to the hands, the shown quantity of the fingers of one hand can be conceived 

simultaneously and hence the fingers of both hands can be conceived quasi-

simultaneously. Furthermore, one hand gets a special status because children tend to 

present numbers greater than five sequentially (Brissiaud, 1992 p. 61). For example, 

to present „7―, they tend to use one full hand and then add two fingers of the other 

hand. In this way the decomposition of the numbers from 1 to 10 with the power of 

five can be worked out. But not only these, also all other decompositions are possible 

(Fig. 5) and can be conceived quasi-simulataneously.  

 

Figure 5: Decomposition of numbers with finger-symbol-sets 

If the fingers are used like this, in sense of the part-whole schema, they are a 

qualified working material for a well-developed concept of numbers and operations 

(cf. Steinweg, 2009). Brissiaud (1992) coined the notion „From Finger Symbol Sets 

to Number―: 

„Certain children who were not exposed early to the use of finger symbol sets may 

become counters, whereas children who were encouraged to use finger symbol sets 

may preferentially choose finger strategies―.  

He could show that this way of gestured representation of quantities by some 

children is established early and in parallel to the development of the numerical row 

as an autonomous type of numerical representation. 

The decompositions of all numbers up to 10 that were acquired in this way can now 

be utilised in the following process of mathematical learning of addition and 

subtraction (Fig. 6). 
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Figure 6: addition and subtraction with finger symbol sets 

If children have a part-whole schema of numbers the transition to addition and 

subtraction is easy. It is just another way of nonverbal-symbolic representation of the 

fact that „two parts make a whole―. 

Further strategies like variation in the opposite or in the same direction can than be 

worked out easily: If one finger is buckled, than another finger must be stretched to 

keep the same quantity. To get the difference of two quantities, e.g. of 9 and 7, you 

can vary the numbers in the same direction. For example, a whole hand can be 

omitted, which corresponds to subtracting five from each quantity. It is evident that 

the difference of 9 and 7 is the as the difference between 4 and 2 (Fig. 7). 

 

Figure 7: Strategy of variation in the same direction with finger symbol sets 

Based on such strategies the decadic analogy can be build up. 

It is important to pay attention to the fact that the children stretch their fingers 

simultaneously to represent quantities with them. If they show them one-by-one the 

positive effects of these strategies are lost and the children will still use counting for 

addition and subtraction. 

As well as addition and subtraction, multiplication and division can be presented via 

hands and fingers. If 5 children all show 6 fingers, this represents five times six. The 

inverse operation is found when we start with 30 fingers that shall be represented by 

5 children.  
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This introduction can only serve as a small insight into the possible representations 

of numbers and operations by hands and fingers and their usage in early arithmetic. It 

is the process of internalization that is of essential importance: How can the children 

benefit from the mathematical content of these representations and actions and use 

them in their mental processes?  

 

THE PROCESS OF INTERNALIZATION SUPPORTED BY THE USE OF 

MULTI-TOUCH-TECHNOLOGY 

According to Aebli, the process of early mathematical learning follows four stages, 

independent of the arithmetical subject (Grissemann & Weber, 2000; Aebli, 1987). 

Coming from concrete manipulations with different objects (stage 1), the children 

have to abstract these manipulations and operations to pictorial representations 

(stage 2). Subsequently they pass over to symbols (stage 3) with the aim to automate 

their actions (stage 4). For us, stage 2 is of special importance, because there the 

process of internalization takes place. The child has to comprehend the manipulation 

of concrete objects as a representation of a quantitative structure and it has to capture 

the structure and the relations of the concrete manipulation in an intellectual activity 

(Gerster & Schultz, 2004 p. 47). Lorenz calls this process „focus of attention―. To 

facilitate this process of focus and abstraction and to develop it, a dialog is essential 

(Lorenz, 1997): „In talking about the working material and the relations between 

numbers and operations that it represents, the concepts in development of the 

learner are going to be clarified by verbalisation.― In this sense, Aebli (1987) 

suggests that the children should review their concrete manipulations and make 

forecasts about further actions. Doing this, they comment their own manipulations by 

iconic illustrations till they are able to reproduce the structures and relations of the 

manipulations in conceptions. To support this process Aebli (1987 p. 238) 

established the following rule:  

„Every new, more symbolic representation of the operation must be linked as closely 

as possible with the precedent one.―  

As shown in Figs. 5 to 7, the enactive form of representation with finger symbol sets 

should be related to the nonverbal-symbolical form of representation (MER
1
) 

(Ainsworth, 1995; Mayer, 2005). But as studies show some of the children even 

don‘t link the different forms of representations when they are designed in form of 

MERs (Clements, 2002). For them, an automatic linking designed with the computer 

(MELRs
2
) can help them to experience the relations (Thompson, 1992; Clements, 

2002; Ladel, 2009). This experience should be as natural and directly as possible. In 

this article we suggest to use multi-touch-technology for this experience, where the 

children can manipulate with their hands and fingers and an automatic linking with 

all other forms of representation can take place. In the remainder of this article we 

assume the availability of a multi-touch-enabled table. Such a table consists of a 
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display surface connected to a computer and some tracking hardware that can 

recognize several touches on the display simultaneously and report them to the 

computer software. Similar technology with a different form factor is available in 

desktop monitors, tablet computers and devices like the Apple iPad, or mobile 

phones. With the availability of hardware as already imagined by Kay (1972) we 

now have to answer the question of the educational implications more than ever.  

The basic underlying idea for all the activities sketched only briefly in the following 

is that the computer can track the children‘s actions on the table and give nonverbal-

symbolic representations of either the current situation or the action that lead to it in 

form of a written protocol. 

In a first scenario, the children represent numbers with their hands and fingers as 

described before. This enactive form of representation shall produce an iconic one on 

the display. The computer creates quadratic pads on the surface of the multi-touch-

table. Already at this stage, the focus of attention of the children can be laid on the 

fact of bundling the 5 fingers of one hand to a bar of 5 and the 10 fingers of two 

hands to a bar of 10. Through the contact of the fingers with the multi-touch-

interface there is not only a link between the enactive form of representation with 

other forms of representation but also between the tactile and the visual sense. While 

representing numbers enactively and thus iconically, there is an automatic link to a 

nonverbal-symbolic form of representation. This representation can be imagined like 

a paper tape or sales slip and serves as a kind of protocol for the manipulations the 

children do. Such a protocol can support the focus of attention and the numerical 

aspects of a task (Dôrfler, 1986). 

In this activity it is possible for children to experience that it is of no particular 

importance which fingers they use to present quantities. Using the thumb and the 

index finger or using the little finger and the ring finger both yield the number ―2‖. 

At a table, it is also possible that the children work in teams: Two children can 

―share the work‖ to present two fingers if each touches the table with one finger. 

While this sounds funny for the number two, it is of great importance for partitions 

of larger numbers. Two partners can try to find all ways to partition numbers up to 20 

into two numbers up to 10. 

Working in teams or groups the children are also able to present numbers greater 

than 10, emphasizing the social aspects of learning. Because the protocol 

immediately reflects the actions of the children their focus of attention is on the 

mathematical content of their actions automatically, guiding them to abstraction. 

We can also use the technology as a diagnostic tool for the number concepts of 

children. Recording the way the children touch the table with their fingers it is 

possible to measure the time intervals between the touches of each finger. We can 

judge whether the children are still counting to put a given number of fingers onto 

the table, or whether they work already with suitable finger symbol sets.  
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Just showing the number of fingers touching the surface can also help the children to 

experience the difference between the ordinal and the cardinal aspect of numbers. 

The child can touch the table with its fingers in different sequences, different 

positions or with different fingers – in all cases the protocol just depends on the 

quantity of fingers.  

It is also possible to support the four basic arithmetic operations and their basic 

concepts in such an environment. Regarding addition, students can develop the basic 

concept of a union by manipulating the virtual objects (pads) and arrange them close 

to each other. For example, if the child merges a group of 3 pads and a group of 5 

pads the protocol will show the symbolic representation of this action as „3 + 5 = 8―. 

Here the focus of attention lies on the fact that this action constitutes a basic concept 

of addition, together with its nonverbal-symbolic form of representation. In multi-

touch-technology there is also the possibility to draw a circle around some pads with 

the effect that these pads are bundled (a so-called lasso-gesture). This again is a 

manipulation based on the basic concept of union. Another task in the realm of 

addition and subtraction may be that 3 pads are shown and the child should create so 

many pads that in the end there are 7 (3 + _ = 7). 

The basic concept of balance can be represented as well. Children can create 

quantities, remove from them, manipulate them with their fingers, and see the 

consequences of the manipulation at the same time in the nonverbal-symbolic 

protocol. Likewise it is possible to give instructions in the nonverbal-symbolic form 

and to see the output in the iconic forms with the pads. 

It is rather easy to imagine that addition and subtraction can be done in such an 

environment, and we have shown some ways how the action or the state can be 

linked to a nonverbal-symbolic representation. For multiplication and division it is 

advisable to take advantage of the time as another dimension. The temporal-

successive idea of multiplication that can be traced back to a repeated addition is 

mapped to a repeated touch action of the same quantity of fingers several times. The 

protocol may then show, for four touches with five fingers, ―5 + 5 + 5 + 5 = 20― as 

well as ―4 • 5 = 20―. Thus the children can see, that there are different ways to 

protocol their manipulation. If several children are working together they can take 

advantage of the spatial-simultaneous idea of multiplication, creating the same 

quantity by several children at the same time. For division, one example activity 

would be to move pads and build piles of the same amount to divide a given number 

of pads.  

FORECAST 

We are currently working on implementing the above scenarios using a multi-touch-

table built at CERMAT. A first study that examines the critical point in translating 

numbers and operations from and in different forms of representation is going to take 

place in October 2010. At the same time we will conduct a pre-study about the way 
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children touch with their fingers and present quantities on a table. The programming 

of the multi-touch-learning-environment is currently in progress using a multi-touch 

extension of a dynamic geometry software system. 

Finally, we aim to answer the research question about the impact of the availability 

of such multi-touch-learning-environments regarding the diagnosis and the support 

of acquiring basic concepts of numbers and operations. 

 

NOTES 

1. MER: multiple external representations (Ainsworth, 1999) 

2. MELRs: multiple equivalent linked representations (Harrop, 1999) 
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University of Stavanger [1] 

In the last decades, a lot of research regarding the professional knowledge of 

mathematics teachers in school has been conducted. Far less research has been 

done concerning the professional knowledge of kindergarten teachers, and there is 

little evidence regarding what kind of mathematical knowledge for teaching that is 

needed by kindergarten teachers. This paper analyzes a case study from a 

Norwegian kindergarten and discusses how the tasks of teaching [2] that have been 

observed in this kindergarten setting differ from those of teachers in school. Based 

on the analyses, we suggest that part of the theoretical framework has to be adjusted 

before it can be used in a kindergarten setting. 

INTRODUCTION 

In the last decades, a lot of research has been conducted in order to learn more about 

the mathematical knowledge that mathematics teachers need in their teaching 

practice and the impact of such knowledge (e.g. Ponte & Chapman, 2006). 

Researchers agree that knowledge is important (e.g. Hiebert, Gallimore, & Stigler, 

2002), and some suggest that there is a connection between the teachers‘ 

mathematical knowledge and the students‘ results (Hill, Rowan, & Ball, 2005; 

Baumert et al., 2010). So far, most of the research has focused on teachers in 

elementary and middle school. 

Based on results from several studies, Ball and her colleagues (e.g. Ball, Thames, & 

Phelps, 2008) present a framework of mathematical knowledge for teaching (MKT). 

According to their framework, mathematics teachers need a combination of content-

specific knowledge and pedagogical content knowledge in order to facilitate learning 

of mathematics. Although their framework has been developed from studies of 

mathematics teachers in elementary and middle school (in the U.S.), it is tempting to 

suggest that kindergarten teachers also need some kind of MKT in their practice. 

When reviewing the literature, however, attempts to investigate the kind of 

mathematical knowledge needed by kindergarten teachers has so far been scarce. Lee 

(2010) is one of very few examples, but her focus is on pedagogical content 

knowledge, and she does not mention the MKT framework. Carlsen, Erfjord and 

Hundeland (2010) have investigated the competence of kindergarten teachers from a 

sociocultural view (and so have others), but they did not in any way build upon or 

relate to the MKT framework. In this paper we use a case study from a Norwegian 

kindergarten as a context for a first attempt to investigate some possibilities and 

limitations of using the MKT framework as an analytical tool in a kindergarten 

context. The following research question has been formulated: 
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What are the similarities and differences between the ―tasks of teaching‖ of mathematics 

teachers in school and those of kindergarten teachers? 

THEORETICAL BACKGROUND 

Before going into the MKT framework in more detail, it is important to clarify a few 

issues related to the Norwegian kindergarten context. As identified in Starting Strong 

II (OECD, 2006, chap. 3), there is often made a distinction internationally between 

two main traditions in early childhood education. The Nordic countries (including 

Norway) and some countries in central Europe are often placed within what is 

referred to as a social pedagogy tradition in early childhood education. Within such a 

tradition, kindergartens are viewed as institutions where a broad concept of 

pedagogy is used, and a combination of care, upbringing and learning is emphasized 

(ibid.). The other main tradition is referred to as the pre-primary tradition, and within 

this tradition, kindergarten is viewed as an institution with a main focus on preparing 

the children for school. Within the social pedagogy tradition, free play is 

emphasized, whereas kindergartens in countries with a pre-primary tradition often 

have a stronger resemblance with traditional schools (ibid.). Such differences are 

important to have in mind when discussing the use of the MKT framework in a 

kindergarten setting. 

Another important aspect when discussing Norwegian kindergartens is related to a 

particular political initiative. In 2009, the Norwegian Government decided (through 

law regulations) that all children (1-6 year olds) should have the right to go to 

kindergarten (Kunnskapsdepartementet, 2009). As a result, a number of new 

kindergartens were built. This massive increase of kindergartens did not lead to a 

corresponding expansion of kindergarten teachers, and several municipalities still 

experience a severe lack of educated kindergarten teachers. At the same time, the 

knowledge and competence of the kindergarten teachers was strongly emphasized by 

the Government (ibid.). Norwegian kindergartens are thus faced with a huge 

challenge, and in this connection it is appropriate to approach the question of what 

kind of mathematical knowledge these kindergarten teachers need.  

The focus in research concerning teacher knowledge has shifted from using the 

number of courses or study points as an indicator (e.g. Begle, 1979) in order to 

document teachers‘ apparent lack of understanding about the mathematics that their 

students are supposed to learn (Cooney, Shealy, & Arvold, 1998), to a focus on the 

many facets of teachers‘ mathematical knowledge for teaching (e.g. Ball et al., 

2008). A large proportion of the research that includes the latter focus builds upon 

Shulman‘s (1986) conceptions of the different aspects of teachers‘ professional 

knowledge. His model originally distinguished between seven different kinds of 

knowledge, whereas three of those had a subject-related content: pedagogical content 

knowledge, content knowledge, and knowledge of curriculum. Shulman‘s model has 

now been developed further by Ball and her colleagues (e.g. Ball et al., 2008), and 
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these researchers from the University of Michigan present a content specific model 

for teachers‘ mathematical knowledge for teaching. 

Figure 1. Aspects of MKT (from Ball et al., 2008, p. 403). 

These researchers have a particular focus on the so-called work of teaching, and as a 

result of their studies, a list of some distinct and important tasks of teaching was 

proposed [2]. Although these tasks of teaching have been identified from studies of 

mathematics teachers in school, it is interesting to investigate whether or not 

kindergarten teachers are faced with the same tasks in their work. We discuss this in 

the context of a shopping game in a Norwegian kindergarten, and we focus on a 

selection of tasks that appeared relevant for this particular context.  

METHODS 

The context for the study is a group of 3-year old children in a Norwegian 

kindergarten. Mary is the main kindergarten teacher in this class, and she does not 

have an approved education as kindergarten teacher yet. The reason for selecting 

Mary and her group as a case in this connection, is that we believe that analyses of 

her teaching practice can be used as a starting point for identifying the MKT that 

kindergarten teachers need, and which she appears to be in the process of 

developing. Hiebert, Gallimore and Stigler (2002) argue that practitioner knowledge 

along with professional public knowledge provide a knowledge base for the teaching 

profession, and this argument can be used as rationale for our selection of case as 

well. 

In a larger context, Mary and her group had been part of a developmental study for 

about half a year at the time of this case study. During that year, a number of visits 

had been made to the kindergarten by the main researcher in order to discuss, plan 

and evaluate learning activities with the kindergarten teachers.  

The data we analyze here is from an activity where Mary decided to stimulate the 

development of the children‘s concept of number and counting in the context of a 

shopping game. In addition to video recordings of the actual activity and field notes, 
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data were gathered from audio recording of interviews and discussions with Mary in 

connection with the planning and evaluation of the activity.  

The recordings of audio (and video) were transcribed, and these transcripts were 

analyzed through content analysis (e.g. Kvale, 1996) with MKT as a theoretical lens. 

RESULTS 

When the interview starts, Mary and the researcher have a little discussion about 

their last project. In that project, their focus had been on figures and shapes, and now 

they want to shift their focus towards numbers and counting. The children had 

already made experiences with numbers (or numerals) in relation to emergency 

numbers (somewhat equivalent to 911, only there are three different in Norway). 

They had talked about these numbers and linked them with photos of an ambulance, 

a police car and a fire engine respectively. Mary starts elaborating on her ideas and 

thoughts so far, and a discussion about the new project evolves. Mary does not want 

to leave their previous focus on shapes and figures completely behind, but she still 

wants to shift her main focus somewhat. She discusses this with the researcher: 

Researcher:  Yes. Mmm. Then I think it sounds reasonable that you choose something 

[an issue] that you really [want to] spend time on.  

Mary:  Yes, because I observe that, when we have spent so much time on circles 

and triangles, then they manage it! And then ... then we know that we 

should spend some more time on other things [issues] as well. And then ... 

no, I think that the counting [in itself], that [issue] we manage to connect 

with most [of our activities], both in songs, books, in assembly - well, we 

simply count all kinds of [objects]. Then we‘ll be able to manage it. 

They keep discussing how the issue of counting appears in different settings, like in 

games. When playing games, especially board games where dices are used, the 

children need to count the steps while they are moving pieces along the board. This 

kind of counting appears to be difficult for the children in Mary‘s group, she reveals. 

In their continued discussion, they focus on the connection between counting out 

loud and making a one-to-one correspondence, which the children have to master 

when counting objects. Mary and her colleagues have experienced that the children 

count asynchronously in many occasions. This particular kind of knowledge, which 

might be defined as knowledge of content and students/children, appears to be of 

importance to the kindergarten teacher. In order to be able to support the children‘s 

learning, a kindergarten teacher needs some knowledge about how children develop 

number sense, counting skills etc. Mary tells the researcher that the children in her 

group know the numbers 1-3, and some children can even count further, but 

something recently came up which surprised her: 

Mary:  Yes, they do! Well, some even manage to count till 10 in both Norwegian 

and English. But even though he is counting both in Norwegian and English 
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till 10, then I was actually surprised when we were sitting down reading in 

that ―duck-book‖ - that counting book - eh ... that counting by pointing, and 

I didn‘t quite manage to connect the dots there. So it became a bit: Oh, 

[inaudible] that counting by pointing then it went a bit pell mell, so ... and 

then I was a bit worried based on what I maybe had anticipated, because I 

expected something [more] from a child who speaks so extremely well! And 

[he] manages to explain himself incredibly well. But maybe it was ... I 

hadn‘t actually - then I got a bit surprised. 

Here, Mary shares her experiences from a situation that emerged when she was 

reading together with a boy who she believed could count really well. He knew his 

numbers from one through ten in both English and Norwegian, but he still appeared 

to have problems using the counting as a tool in order to find the quantity. This 

illustrates a kind of knowledge of content and students/children, and in this example 

it was a matter of Mary discovering that there was something she did not know about 

before she experienced this situation.  

Mary decides to facilitate the playing of a shopping game in her group, and she 

intends to use this as an arena to stimulate the children‘s further development of 

counting skills. The children need to figure out how much a certain good costs, count 

out the correct amount of money, pay for the goods, and possibly receive the correct 

amount of change if they have paid more than the costs. Mary‘s idea was that all of 

this would provide a nice context for stimulating the children and provide them with 

rich experiences in relation to numbers, quantity and counting. 

The next time the researcher visits their kindergarten Mary and her colleagues have 

already started experimenting with the shopping game. They had decided to keep the 

prices low, and they agreed to represent the prices with a numerical representation 

along with the correct number of dots. This decision relates to a task of teaching 

where the kindergarten teacher needs to select the appropriate representation for 

particular purposes, and the knowledge involved in this process can be labeled as 

what Ball and colleagues (2008) refer to as knowledge of content and students. 

The starting point, based on Mary‘s experiences with a particular boy, was a belief 

that the children would not be so skillful in pointing by counting. When they started 

playing the shopping game, Mary soon experienced that she had to adjust her goals 

somewhat: 

Mary:  No, what has happened is that ... well, before we managed to finish this 

properly, we were very focused on that counting by pointing. And suddenly 

then all managed to ... [count] till more than 10. I think there are two - we 

had a round at an assembly, and then they counted, yes then they counted till 

more than 10. I think there were two [of the children] who started to shake 

with the finger at 6.  

Researcher:  Mmm. 
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Mary:  So, they have managed to come very far with this [already]! 

Researcher:  Yes. 

The children were obviously motivated to play the shopping game, and all of a 

sudden most of them were able to count objects up till 10 and even appeared to 

understand about the price tags. Then something happened: 

Mary:  What became a little bit funny was when [laughs a bit] Kari [a colleague] 

came to film [laughs a bit more]. Then they easily understood [about] the 

prices. They did, that was not a problem. What became difficult [for them] 

was to count out the correct amount of money. They didn‘t manage that ... 

properly. Then they were ... actually, they were more concerned with those 

items ... and the shopping part. They were very eager to shop. 

The children had rather quickly developed their counting skills, and they were able 

to count the number of coins they possessed. When they were going to use their 

counting skills to ―count out‖ the correct amount of money from a larger amount, 

however, many children struggled.  

Mary:  But it became difficult when they had - when I had given them some money, 

and said: ―How many [coins] do you have to pick out then? 

Researcher:  Yes, so finding the correct amount [of money], that was difficult.  

Mary:  It was a bit difficult in the beginning. Yes, but I don‘t think it will take long 

before they understand that as well.  

Researcher:  No, because there is a little difference in asking about how many coins there 

are, and finding ... four coins, in a way. 

Mary:  Yes, because that was a bit difficult [for them], because they had to pick out 

that many [coins] when I had given them more, or when I held them [those 

coins] in my hand and said: ―Yes, but now - how many [coins] do you need 

now in order to pay for that thing?‖ Then they just wanted to take all the 

coins. Actually, even though it was 7, and maybe they should only use 4 (...) 

Mary‘s experiences in this situation apparently went beyond the practice based 

knowledge and experiences that she had made before. 

The discussions between Mary and the researcher indicate that counting is a complex 

activity. To use a context like this in order to facilitate children‘s learning, a 

particular kind of knowledge is needed. In the discussions below, we investigate how 

the tasks of teaching that Mary face are related to some of the tasks of teaching that 

were identified by Ball and colleagues (2008) in their studies of mathematics 

teachers in U.S. schools.  

DISCUSSION  
In a typical Norwegian kindergarten, there are no mathematics lessons, no 

mathematics textbooks, no blackboards, and no traditional classroom with desks. The 
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children‘s learning takes place in everyday activities and play situations. As a result, 

the (Norwegian) kindergarten teachers are faced with challenges that are different 

from those of mathematics teachers in school. When discussing a possible 

application of the MKT framework in a Norwegian kindergarten setting, such 

contextual (and cultural) differences are important to be aware of. 

The dialogue between Mary and the researcher has indicated that Mary has some 

kind of MKT about counting that she makes use of in the context of the shopping 

game. She relates previous experience from shapes and figures to the new topic of 

counting. The need for some kind of pedagogical content knowledge (including 

knowledge of content and students/children in particular) appears evident in this 

situation. The challenge is to try and distinguish what kind of content-related 

knowledge (specialized content knowledge in particular) that kindergarten teachers 

like Mary need. A focus on tasks of teaching is a relevant tool to use when 

approaching such a challenge. Mary is also involved in work related to presenting 

ideas. Mary‘s work of teaching is, however, quite different from that of a 

mathematics teacher in school. In our particular case, Mary introduced an activity 

that she believed would provide the children with various experiences related to 

counting. She would not, however, present ideas of counting to a whole group of 

children in a lecture-like way. Instead, she has to react to challenges as they appear 

within the context of a play situation. Mason and Spence (1999) propose that the 

absence of the active knowledge (knowing-to) blocks teachers and students from 

responding constructively in the moment. In the same way, it is an important feature 

for a kindergarten teacher to act in the moment and to show awareness in a particular 

teaching situation. In Mary‘s situation, we might refer to this as situated knowledge 

of responding to the children‘s questions. The question she had to respond to, 

however, just appeared from the children‘s acting in the play situation. It was not 

asked directly by the children. 

For a mathematics teacher in school, teaching is often related to a particular textbook 

or other curriculum material. The teacher presents a mathematical idea to the class, 

and appropriate examples are used to illustrate or make specific a certain point. A 

Norwegian kindergarten teacher, like Mary, does not have a mathematics textbook. 

Instead, she presents a mathematical idea by using examples as they appear naturally 

in the play situation, and she is trying to facilitate a context in which the children can 

experience a certain idea. We would suggest that a reformulation is necessary in 

order for the tasks of teaching to be relevant in a kindergarten context. One 

suggestion is to merge the two tasks that were originally defined as ―presenting 

mathematical ideas‖ and ―finding an example to make a specific mathematical point‖ 

into ―facilitating activities that enable children to experience mathematical ideas‖.  

Another task of teaching that we identify in this case is that of connecting a topic 

taught with topics from prior years. Several issues appear problematic when trying to 

apply such a description to the tasks involved in Mary‘s practice. Most importantly, 
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she is not teaching the children in a traditional sense, and Norwegian kindergarten 

teachers (and educators) often avoid using the word ―teaching‖ altogether. Different 

topics are covered through experiences from play situations and informal discovery 

activities, and it is therefore hard to track previously taught topics in Norwegian 

kindergartens. She facilitates the children‘s learning and exploring in a play context. 

The aims that she has set for the activity are based on her impressions of where the 

children are in their mathematical development rather than knowledge of previously 

taught topics. It becomes a challenge for Mary to figure out what kind of informal 

knowledge the children have previously built in relation to this topic. Oftentimes, 

they have made experiences in free play (where Mary has not been present), or their 

informal knowledge has been built from experiences in everyday situations at home 

or in kindergarten. Whereas a mathematics teacher in school can go back to 

curriculum materials (like textbooks), previous tests or worksheets, Norwegian 

kindergarten teachers do not have this possibility. The task of connecting with 

previously taught topics thus becomes a different task of teaching when compared 

with that of teachers in school.  

Other tasks of teaching (as presented by Ball et al., 2008) are more relevant for 

describing the work of teaching of Norwegian kindergarten teachers, but the ones 

discussed above are somewhat problematic.  

CONCLUSIONS 

When Ball and colleagues (e.g. 2008) proposed their theoretical framework of MKT, 

they also included a list of common tasks of teaching that were intended to describe 

the work of teaching of mathematics teachers in school. The research that this 

framework builds upon was conducted in the U.S. only, but the tasks of teaching as 

well as the theoretical framework as a whole were still supposed to be of a more 

universal nature. When trying to apply this framework to describe the professional 

knowledge of a Norwegian kindergarten teacher, some problematic issues appear. 

Although the model‘s distinction between various aspects of teacher knowledge 

appears to be applicable in a kindergarten setting, some of the proposed tasks of 

teaching have to be modified. The main reason is that the work of teaching of a 

Norwegian kindergarten teacher is very different from that of a mathematics teacher 

in U.S. Schools. Whereas mathematics teachers in school are constantly faced with 

challenges regarding how to present mathematical ideas, the entire concept of 

presenting mathematical ideas needs to be described differently in order to apply as a 

description of the work of teaching that Norwegian kindergarten teachers are 

involved with. Although it can be described as a similar kind of challenge, the way a 

kindergarten teacher has to use play situations and everyday activities in order to 

facilitate children‘s informal experiences with mathematical ideas is quite different 

from when mathematics teachers in school attempt to present mathematical ideas to 

their pupils. Our suggestion is to merge the two tasks that were originally defined by 

Ball and colleagues (2008) as ―presenting mathematical ideas‖ and ―finding an 
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example to make a specific mathematical point‖ into ―facilitating and using activities 

and play situations that enable children to experience mathematical ideas‖. Similarly, 

the task of teaching related to connecting a topic taught with topics from previous 

years also needs some adaptation. For a Norwegian kindergarten teacher, it becomes 

more of a challenge related to uncovering and building upon the children‘s previous 

informal knowledge and experiences from everyday activities and play situations. 

The Norwegian kindergarten belongs to a social pedagogy tradition (see OECD, 

2006), and we suggest that some of the challenges with using the MKT model in a 

kindergarten context might be relevant for other kindergartens and kindergarten 

teachers within such a tradition. The work of teaching of kindergarten teachers 

within the pre-primary tradition (ibid.) is probably more similar to that of 

mathematics teachers in school, and the MKT model along with the proposed list of 

tasks of teaching might be more directly transferable in such a context. We believe 

that further research is needed in order to learn more about the tasks of teaching that 

kindergarten teachers are faced with. Although the MKT model can be used to 

describe some relevant aspects of the professional knowledge that is needed in a 

kindergarten setting, vital differences between the work of teaching as well as the 

tasks of teaching of kindergarten teachers and those of mathematics teachers in 

school exist. Further studies are needed in order to investigate such similarities and 

differences, and we believe that special attention needs to be made in relation to 

cultural as well as situated aspects. 

NOTES 

1. Our research project has been supported by OLF, The Norwegian Oil Industry Association.  

2. Tasks of teaching refer to a specific list of challenges that have been identified. The complete list 

includes: Presenting mathematical ideas, Responding to students‘ ―why‖ questions, Finding an example to 

make a specific mathematical point, Recognizing what is involved in using a particular representation, 

Linking representations to underlying ideas and to other representations, Connecting a topic being taught to 

topics from prior or future years, Explaining mathematical goals and purposes to parents, Appraising and 

adapting the mathematical content of textbooks, Modifying tasks to be either easier or harder, Evaluating the 

plausibility of students‘ claims (often quickly), Giving or evaluating mathematical explanations, Choosing 

and developing useable definitions, Using mathematical notation and language and critiquing its use, Asking 

productive mathematical questions, Selecting representations for particular purposes, Inspecting 

equivalencies (Ball et al., 2008, p. 400). 
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This study investigated kindergartners‘ imaginary perspective taking (IPT) abilities 

by examining their ability to imagine whether an object is visible from another 

viewpoint (IPT Competence 1) and how an object looks from another viewpoint (IPT 

Competence 2). The participants were 308 4- and 5-year-old kindergartners in the 

Netherlands. A paper-and-pencil test of various perspective-taking pictorial tasks 

was developed and administered to the children. The results show that IPT 

Competence 2 is more difficult than IPT Competence 1, and that both competences 

develop during the kindergarten years. Also, for both IPT Competences 1 and 2 a 

positive relationship was found with mathematics performance, while no gender 

difference was found on either IPT Competence. 

Key-words: Kindergartners, Spatial reasoning, Perspective taking ability, Gender 

SPATIAL GEOMETRY FOR YOUNG CHILDREN 

Geometry is an indispensable part of contemporary early childhood curricula and 

educational programs (Sarama & Clements, 2009). It is not confined to plane 

geometry, but spatial abilities play an important role as well. For example, in the 

Standards of the National Council for Teachers of Mathematics (NCTM, 2000) in the 

K-2 grades much attention is paid to Specifying locations (which includes 

interpreting relative positions in space) and Using visualization (which includes 

creating mental images of geometric shapes using spatial memory and spatial 

visualization and recognizing and representing shapes from different perspectives). 

Similarly, the TAL teaching/learning trajectory for geometry (Van den Heuvel-

Panhuizen & Buys, 2008) includes the sub-domain Orienting which focuses on 

localizing and taking a point of view in both the first and second year of kindergarten 

(K1 and K2). 

This emphasis on a spatial interpretation of geometry for young children is not 

surprising. It is the natural way in which children encounter geometry. They discover 

the world around them while they walk, play, and look around. They are in fact  

investigating their environment all the time; by doing so, they learn to find their way, 

to determine their own location within the environment, to describe to others their 

own position or the position of an object such as their teddy bear. Also visualization 

and spatial reasoning abilities develop through children‘s activities, such as playing 

hide-and-seek. Children try to hide in a place in which they will not be visible to the 

child that is looking for them. As such, they try to imagine or to reason what the 

other child will and will not be able to see while wandering around. 
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Although the above seems very plausible now, in the past the teaching of geometry 

to children started with plane geometry. It was Freudenthal (1973) who argued 

strongly for changing this and starting with spatial geometry at an early age. 

―Geometry is grasping space . . . that space in which the child lives, breathes and moves. 

The space that the child must learn to know, explore, conquer, in order to live, breathe 

and move better in it.‖ (Freudenthal, 1973, p. 403) 

Enhancing young children‘s spatial abilities is important for several reasons. As 

described above, spatial abilities help children to understand their environment. 

Furthermore, the development of spatial abilities is important for the development of 

mathematics ability in general. According to Clements (2004, p. 267), ―[g]eometry 

and spatial reasoning form the foundation of much learning of mathematics and other 

subjects.‖ Spatial reasoning in particular is recognized by mathematicians as a useful 

strategy in mathematical problem solving, for example through the use of diagrams 

and drawings to solve problems (Casey, Andrews, Schindler, Kersh, Samper, & 

Copley, 2008). Moreover, teaching spatial ability enhances children‘s mathematical 

attitude (Casey et al., 2008; Van den Heuvel-Panhuizen & Buys, 2008). 

Altogether, spatial abilities are important for young children to learn and therefore, it 

is worthwhile to gain more insight into how they develop these abilities. In this 

study, we focused on a specific spatial ability of kindergartners, namely their 

competence to mentally take a particular point of view. 

IMAGINARY PERSPECTIVE TAKING 

Important research on imaginary perspective taking (IPT) has been done by Piaget 

and Inhelder (1956). One of the tasks that they used to investigate children‘s IPT was 

the ―Three Mountain task‖. In this task children were positioned on one side of a 

table and asked to describe how the scene on the table would look from the opposite 

side. In this way it was found that children up to the age of nine tended to describe 

the way the scene looked from their own position. They were not able to take a 

perspective from another position than their own. 

Flavell, Everett, Croft, and Flavell (1981) came up with a distinction into two 

abilities of perspective taking. The so-called Level 1 competence concerns the 

visibility of objects: a child that has achieved this competence is able to deduce 

which objects are or are not visible from the other viewpoint. The Level 2 

competence relates to the appearance of objects: a child that has attained this 

competence is able to indicate how an object looks as it is observed from a different 

viewpoint. Hughes (1975, as cited by Donaldson, 1980) has independently proposed 

a very similar model, in which ―projective‖ and ―perspective‖ abilities correspond 

respectively to Level 1 and Level 2 competence. 
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In connection to the distinction into two abilities, Flavell et al. (1981) also found that 

the abilities differ in their rate of development. Children of three years of age 

performed well on the Level 1 tasks but had difficulties with the Level 2 tasks. 

Mathematics performance 

Many studies (e.g. Burnett, Lane, & Dratt, 1979; Casey, Nuttall, & Pezaris, 1997; 

Geary, Saults, Liu, & Hoard, 2000) have found positive correlations between 

mathematics performance and spatial ability, but most of these studies were done with 

high school and university students. Only a few studies were carried out with young 

children. For example, Robinson, Abbot, Berninger, and Busse (1996) found a high 

correlation between two-dimensional reasoning and quantitative skills in precocious 

preschoolers and kindergartners. Guay and McDaniel (1977, as cited by Lean & 

Clements, 1981), who did a study with primary school students, focused on a broader 

range of spatial abilities not only compassing two-dimensional visualization tasks, but 

also tasks involving three-dimensional mental images and mental transformation of 

these images. The results indicated a positive correlation between mathematics 

performance and two- and three-dimensional spatial tasks in primary school students. 

Gender 

The findings with respect to the relation between gender and spatial ability are 

various. Several studies found a male advantage for three-dimensional mental 

rotation (Casey et al, 2008), two-dimensional mental rotation as well as translation 

(Levine, Huttenlocher, Taylor, & Langrock, 1999), and spatial visualization (Tracy, 

1987) already in existence at kindergarten age. Horan and Rosser (1984) investigated 

children aged 4, 6, and 8 years who were offered dimension-transcending tasks in 

which the questions and the answers were formulated in a different dimension: a 

three-dimensional object was shown and the child was asked how this object looked 

to an observer in another position after the object was rotated 90º. The child could 

answer the question by selecting the correct two-dimensional picture. In these 

dimension-transcending tasks, boys performed better than girls. However, if the 

question and the answer were both presented in the form of two-dimensional 

pictures, girls performed better than boys. 

Some studies, though, did not reveal a gender effect for spatial ability. For example, 

Lachance‘s and Mazzocco‘s (2006) longitudinal study on children in lower primary 

school did not show sustainable gender differences in spatial ability in general. Also, 

Newcombe and Huttenlocher (1992) did not find gender differences with respect to 

perspective taking in their study in which they asked young children which object 

would be in a certain position relative to another observer. 

RESEARCH QUESTIONS AND HYPOTHESES 

In light of the above, we formulated three research questions to gain more insight 

into kindergartners‘ imaginary perspective taking abilities: 
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1. How able are kindergartners in IPT Competence 1 (determining whether an 

object is visible from another viewpoint) and IPT Competence 2 (imagining 

how an object looks from another viewpoint)? 

2. How are these IPT competences related? 

3. How are these IPT competences related to kindergarten grade, mathematics 

performance and gender? 

Based on previous research we could only formulate two hypotheses: 

1. Kindergartners will perform better on tasks requiring IPT Competence 1 than 

on tasks requiring IPT Competence 2. 

2. There will be a positive relation between mathematics performance and the 

IPT competences. 

METHOD 

Assessment Instruments 

Assessment of IPT. To answer our research questions, we developed a paper-and-

pencil test to measure kindergartners‘ perspective taking abilities. This test contains 

two booklets of test items, and was administered in two test sessions. The test items 

consist of a picture illustrating what each question is about and four pictures 

depicting the possible answers. Before implementing the test items in our study, we 

piloted them to ensure children‘s correct understanding of the test items. 

In Figure 1a, an example of a test item is given. This Basket item is meant for 

measuring IPT Competence 1. Figure 1b shows the Mouse item, meant for measuring 

IPT Competence 2. 

 

     

Figure 1a: Basket item                          Figure 1b: Mouse item 

The questions were read to the children by trained test administrators. For the Mouse 

item, the question was: ―How do you see Mouse if you look at him from above like a 

bird?‖ Children answered the question by underlining the picture that shows the 

correct answer. Correct responses were coded as 1, and incorrect ones as 0. Six items 

in the test concerned IPT Competence 1 and five items concerned IPT Competence 2. 
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Assessment of mathematics performance. To assess children‘s mathematics 

performance, we made use of a standardized mathematics test for kindergartners, the 

CITO Test Ordering, which is in nation-wide use. This test has separate versions for 

the first (K1) and second year of kindergarten (K2); the Cronbach‘s alphas of both 

versions are .85 and .81 respectively (Van Kuyk & Kamphuis, 2001). 

Participants 

Our study involved 384 Dutch kindergartners. Children who did not do both test 

booklets were excluded from the analysis, which diminished our sample to 308 

children, 146 girls and 162 boys; 109 children attended K1 and 199 children were in 

K2. The K1 children had an average age of 4 years and 8 months and the K2 children 

were on average 5 years and 8 months old. 

RESULTS 

Kindergartners‘ abilities in IPT Competences 1 and 2 

The data analysis showed that the kindergartners achieved a significantly higher 

success rate on test items that require IPT Competence 1 (M= .73, SD= .20) than on 

the IPT Competence 2 items (M= .34, SD= .22) [t(307) = 26.42, p < .01], see Figure 2. 

 

 

Figure 2: Mean performance on IPT Competence 1 and IPT Competence 2 items 

Relationship between IPT Competences 1 and 2 

A statistical implicative analysis (Lahanier-Reuter, 2008) was used to investigate the 

relationship between the two competences based on the children‘s responses to the test 

items. Statistical implicative analysis leads to results such as ―if we observe success on 

item a in a subject, then in general we observe success on item b in the same subject‖. 

We conducted this analysis for both kindergarten grades separately. In Figure 3 the 

results for K1 are depicted on the left and the results for K2 on the right. The figure 

shows how the items are related. The item names indicate what competence the item 

measures. For example, the item C2cucumber requires IPT Competence 2. The diagram 

shows that in K1, success on this item implies success on two IPT Competence 1 items. 

The probabilities of these implications are 90% for the grey arrows (e.g. 
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C2cucumber→C1tower) and 95% for the blue arrows (e.g. C2cucumber→C1hole). 

 

 

       
C1holeC1tower C1crossingC1basket

C2cucumber C2soccer

Graph : C:\Documents and Settings\iliada\My Documents\iliada-earino\RESEARCH PROGRAMS\preschool-Marja\PICO-MA PROJECT\pico-ma-preall_persp3_K1newn.csv99 95 90 85
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Figure 3: Implicative Relationships between successes on test items by K1 children (left) 

and K2 children (right) 

The implicative diagrams for the K1 and K2 data show a similar pattern. In both 

diagrams, the items that measure IPT Competence 2 are high up in the diagrams, 

whereas the IPT Competence 1 items are positioned below them, i.e. success on the 

IPT Competence 2 items implies success on the IPT Competence 1 items. 

Development of IPT Competence 1 and 2 

To gain more insight into the development of IPT Competences 1 and 2, we 

compared the performance on items measuring these IPT competences between 

kindergartners in K1 and K2 by carrying out independent samples t-tests.  

 

  

 

 

Figure 4: K1 and K2 children on IPT Competence 1 items (left) and IPT Competence 2 

items (right) 
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As illustrated in Figure 4, K2 children‘s performance on IPT Competence 1 items 

(M=.77, SD=.18) was significantly higher than the K1 children‘s performance 

(M=.67, SD=.21) [t(306) = -4.44, p < .01]. Also on IPT Competence 2 items, K2 

children performed better (M=.39, SD=.22) than K1 children (M=.25, SD=.19) 

[t(306) = -5.59, p < .01].  

Mathematics performance and IPT 

To investigate a possible relation between IPT Competences 1 and 2 with 

mathematics performance, one-way analyses of variance (ANOVA) were carried out 

with the IPT competences as the dependent variables and children‘s mathematical 

achievement level as the independent variable. Children‘s mathematical achievement 

level was based on their score on the CITO Mathematics Test. The scores on this test 

are indicated by a letter. An A-score means that the test score belongs to the highest 

25% scores of the complete Dutch population of kindergartners, a B-score stands for 

the next 25%, a C indicates that the score is in the third quartile, while D concerns 

the next 15% of scores and E the 10% lowest scores. The results of the analyses are 

shown in Figure 5. 

 

 

 

 

Figure 5: IPT Competence 1 (left) and IPT Competence 2 (right) relative to mathematics 

performance 

For IPT Competence 1 [F(4, 298) = 14.56, p< .01] as well as for IPT Competence 2 

[F(4, 298) = 3.12, p= .02] we found a significant relationship with the children‘s 

mathematics performance level. 

Gender and IPT 

Independent-samples t-tests were used to compare boys‘ and girls‘ performances on 

the items measuring the two IPT competences. The results indicated no gender 

difference on either IPT Competence 1 (Boys: M=.73, SD=.20; Girls: M=.74, 

SD=.21) [t(306) = –0.12, p = 0.90] or on IPT Competence 2 (Boys: M= .34, SD=.22; 

Girls: M=.33, SD=.22) [t(306) = 0.57, p = 0.57], as is illustrated in Figure 6. 
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Figure 6: Performance in IPT Competence 1 (left) and IPT Competence 2 (right) by boys 

and girls 

DISCUSSION 

In this study we investigated kindergartners‘ competences in determining the 

visibility and appearance of objects as seen from another point of view. In particular, 

we examined how these abilities are related, how they develop, and how they are 

related to gender and mathematics performance. 

Concerning kindergartners‘ ability to determine whether an object is visible from a 

different viewpoint (IPT Competence 1), we found an overall success rate of 73% 

while the success rate on items that require the ability to determine the appearance of 

an object from a different point of view (IPT Competence 2) was significantly lower, 

i.e. 34%. This result indicates that the IPT Competence 2 items are more demanding 

for the children than the IPT Competence 1 items (Hypothesis 1), which is in line 

with previous studies (e.g. Flavell et al., 1981). 

Statistical implicative analysis showed that success on several of the IPT 

Competence 2 items implied success on either other IPT Competence 2 items or on 

IPT Competence 1 items. The other direction, an implicative relation of an IPT 

Competence 1 item and an IPT Competence 2 item, was not found. This suggests that 

the development of IPT Competence 1 precedes the development of IPT 

Competence 2. This conclusion is in agreement with our finding that the children 

performed better on the IPT Competence 1 items than on the IPT Competence 2 

items. 

Children at kindergarten age experience major development in many fields. This 

turned out to be the case for the IPT competences as well. In our study we found that 

both IPT competences increase significantly from K1 to K2. 

With respect to factors that possibly influence IPT we found that the children‘s 

mathematics performance level is significantly related to their IPT competences. This 

is in line with earlier findings on the relation between spatial ability and mathematics 
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performance. However, in our study the relationship between mathematics 

performance and IPT was stronger for Competence 1 than for Competence 2. Future 

research could explore the causes of this difference and whether it changes over 

time. 

Comparison of IPT competences from the view of gender did not reveal significant 

differences. Both for the IPT Competence 1 items as well as for the IPT 

Competence 2 items, the results were similar for boys and girls. This finding is in 

agreement with previous studies on perspective taking, but contrasts with studies 

into the relationship between gender and spatial ability as assessed, for example, by 

rotation and translation tasks. Spatial ability clearly has a multi-dimensional structure 

of which the different aspects might have a different gender profile. Further research 

is indicated on this topic. 
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Within the framework of recent research in mathematics education a subject specific 

performance of children and the learning of mathematics is not only depending on 

cognitive dispositions, which are mediated by individual performance motivation, 

but in a large part constructed socially. Mathematical concepts and procedures as 

well as the description of accepted participation in mathematics thereby are not 

conveyed explicitly, but transmitted implicitly in terms of so-called ―codes‖, which 

have a socio-linguistic dimension. In the micro sociological focus of this paper the 

question should be addressed, to which extent the acquisition of basal mathematical 

knowledge in early childhood is regulated by the ability to recognize such linguistic 

codes and their meaning. In that case sequences from mathematical situations with 

children age 4 are analysed concerning to (subject specific) socio-linguistic theories 

according from Bernstein (1996) and Carruthers and Worthington (2006). First 

theoretical considerations and empirical results will be presented.  

INTRODUCTION 

According to the later work of Basil Bernstein (1996), verbal skills and the ability of 

―reading‖ and reproducing linguistic codes in interactions are playing a significant 

role in learning mathematics and for the performance of mathematics‘ discourses 

(e.g. Schütte 2010; Gellert/Hümmer 2008; Lubienski 2004). ―Success‖ in learning 

mathematics therefore seems to be dependent to the ability of decoding relevant 

meanings and rules of participation in mathematical interactions on the verbal and 

non-verbal plane in order to comprehend the mathematical content and subject 

specific mathematical demand on presenting a content. With respect to this approach 

the paper focuses on the question, to which extent the development of mathematical 

thinking and learning in early childhood is regulated by the ability to recognize such 

linguistic codes and to decode their meaning. To put it in more concrete words:  

What kinds of codes can be specified in discourses within the kindergarten context 

and which impact do they have on the acquisition and the learning of mathematics in 

the early years.
1
 

On the theoretical plane this paper tries to concatenate the socio-constructivistic 

approach of Bruner (1983) concerning learning theory with the socio-linguistic 

models of Basil Bernstein (1996) to take in to account the impact of linguistic 

representations on the process of negotiation of meaning.     

From a socio-constructivist point of view the individual ability of learning 

mathematics and to participate successfully in mathematical discourses develops in 

the course of interaction with other members of the culture. Bruner (1983) 

emphasizes that it is impossible for an individual to acquire knowledge without 
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social interaction. The participants construct in their interactional moves a system of 

linguistic codes. For this reason, we analyze the mathematical situations of play and 

exploration that we initiated in day care centres by reconstructing this process of 

―code-production‖. In the following analysis there is chosen a situation with 

exemplary character to give a short but detailed look towards the research questions 

and the current work within the project.  

THEORETICAL PERSPECTIVE 

From a socio-reconstructivistic perspective the acquisition of mathematical 

knowledge is not only an act of the (inner-psychological) internalization of concepts 

and procedures, rather it is a process that is conditional on the negotiation within 

interactions. The cognitive development of the individual itself is seen as 

constitutive product moderated through the participation in such interactions. The 

social interaction therefore is a condition for the probability of learning (e.g. Miller 

1986, p. 27f; Krummheuer 1989, p.241f). Within these interactions conducive 

instants can probably emerge. 

Supports as a condition of mathematical learning 

Concerning to Bruner (1983) the process of learning starts when an adult and a child 

„create a predictable format of interaction that can serve as a microcosm for 

communicating and constricting a shared reality―(Bruner 1983, p.14). In this 

interactional framework „ shared procedures of interpretation and negotiation ― 

(ibid., S.17) take place. Bruner developed, in the first instance without knowing 

Vygotsky‘s work, a theoretical approach within learning is afforded by a so-called 

―Supportive system‖, which is moderated by a capable other. With regard to the 

acquisition of mother tongue, which Bruner observed, he considered such a 

―Language Acquisition Support System― (LASS) (ibid., p.32) as necessary for the 

activation of the inborn ―Language Acquisition Device‖ (LAD). On the empirical 

plane Bruner reconstructs the so-called ―format‖(ibid., p.33) for which he accounted 

a supportive or rather a conductive function during the process of learning. The 

―format‖ hereby is ―a standardized, initially microcosmic interaction pattern between 

an adult and an infant that contains demarcated roles that eventually becomes 

reversible― (ibid., p. 120). For Bruner increasing autonomy within these ―formats― 

was seen as an indicator for learning progress. In his later approaches Bruner sees a 

direct conjunction between his perception and the ―zone of proximal development‖ 

developed by Vygotsky (1978). This way he introduces the concept of ―scaffolding‖ 

(Bruner 1990). Krummheuer (1989) proves these supportive structures also in 

mathematical learning processes in discourses in primary school. 

Codes within mathematical supports 

From a perspective on learning theory the supports that are mentioned before have 

the function to afford the acquisition of knowledge and transmit the rules of accepted 
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participation in a specific discourse on the structural plane. This way they establish 

conditions for the learning process and can be understood as structural and 

structuring elements of a pedagogical situation. Thereby both the plane of meaning 

as regards contents and the social plane of accepted participation are structured by 

the formatting of meanings and attitudes. Though in his research Bruner focuses 

mainly on the function of supports concerning to the early acquisition. The 

difficulties given by the form of this structures (supports) and their influence on the 

development of meanings he leaves untouched. How these difficulties arise on a 

verbal plane Schütte (2010) describes. He perceives in his work on the linguistic 

plurality in mathematics classroom that the implicit transmission of knowledge and 

subject‘s content are  main phenomena in interactions of the mathematics classroom. 

Therefore he obtains to the concepts of Basil Bernstein who speaks within his theory 

of codes of an ―invisible pedagogy‖ (e.g. Berstein 1996). According to Bernstein 

pedagogical situations and interactions are affected by regulative principles, so 

called codes. They are determined by implicit rules, which select and integrate 

relevant meaning, the way of realisation and the generating context (Bernstein 1996, 

p.111). Bernstein in that case speaks of the classification and the framing of the 

pedagogical knowledge (Bernstein 1996). The classification he assumes from the 

sociological concepts of Durkheim. It describes what belongs to a specific discourse 

and what is not part of it. This way the focus of the description is not the conjunction 

between different discourses rather the description is focussing on the boundaries 

between discourses. The classification also affects which content and meanings are 

valid for a specific discourse. It regulates which kind of content and meaning are 

acceptable within the interaction. This content and meanings have to be recognized. 

Bernstein calls this the „recognition-rule― (Bernstein 1996, p. 30ff.).  The second 

abstract, theoretical concept Bernstein introduces is the concept of ―framing‖. It 

controls the social accepted behavior and accordingly the participation. It controls 

thereby the social relationship, the hierarchy and the performance on presented 

content. In case of the concept of framing Bernstein introduces parallel to the 

concept of ―recognition rules‖ the approach of ―realisation rules‖. On the one side 

both concepts deal with the rules of recognizing which symbols or gestures are 

closely connected with which meanings and one the other side how the accepted 

realisation of acquired knowledge looks like. In other terms: What is the relevant 

message of the communication and how a reply has to be communicated. These are 

two functions that are fundamental to each communicative situation. Schütte (2009) 

describes that concerning to the implementation of new contents in mathematics 

these rules should be transmitted explicitly to make the acquisition more easy for a 

child. This way the process of acquisition would be more successful. To which 

extent the acquisition of early mathematics also follows this appraisal should be 

observed and discussed in the following on an empirical and theoretical plane.   

Another approach which Bernstein mentioned in his earlier work from the sixties and 

seventies and which he extended till his death in 2000 are the concepts of the 
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restricted and the elaborated code (e.g. Bernstein 1970; 1985; 1996). As elaborated 

the production of texts and contributions are seen if they are independent from every 

day expressions and generally admitted. As restricted are seen those, that depend on 

a specific situation and a context and only concern the given symbols and meanings 

(e.g. Bernstein 1972; Leufer & Sertl 2010; Lubienski 2004). 

Formal and informal speech  

The approach of Carruthers and Worthington (2006) concerning the learning of 

Mathematics of preschoolers can be seen as an amplification of the further concepts 

of Bernstein. Similar to Bernstein, for them Mathematics takes place in two different 

languages: the informal every day language and the formal language of mathematics 

which is determined through specific technical terms and algorithmic diagrams. 

Thereby the transfer between both ―languages‖, as Carruthers and Worthington 

declare, is not distinctive or does not exist.  So there is a discrepancy between formal 

and informal mathematics language. Over the intervening years children develop a 

so-called multi-competence, which enable them to have more than one ambassador 

of a linguistic approach simultaneously in mind. A kind of ―interims speech‖ which 

is determined by rules and structures the children produces by themselves takes the 

part of connecting informal aspects with the formal ones. The knowledge of the 

informal every day language therefore is used to develop a formal speech. A main 

competence of children according to the acquisition in the early years seems to be 

inferential to develop such a multi-competence und to switch flexibly between both 

(the formal and the informal) languages and their assignment of meaning. 

Together with the further concepts of Basil Bernstein the result for the examination 

of subject specific codes in Mathematics can be diagrammed in the following Matrix.  

                      socio- 

                      linguistic 

 

subject specific 

restricted elaborated 

formal   

informal   

 

Fig. 1: Matrix of the mathematical codes 

Interactions in mathematical Supports therefore can be coded at the same time as 

well formal mathematical as verbal restricted. This seems to be confusing at the first 

glance, but it is characteristic for mathematical Codes. One example is the use of the 

term ―if… then‖ which is characterising the mathematical logic of proof. Concerning 

to the interactionistic perspective of negotiation and accordingly the situational 

emerging meanings in interactions the theoretical approaches of Bernstein and 

plane of meaning 
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Carruthers and Worthington get a third dimension – the plane of meaning. In the 

following analysis this dimension should be useful for the exemplary description of 

the development of mathematical concepts and procedures and give a deeper insight.    

METHODOLOGY 

Process of reconstructive analysis 

Having regard to the theoretical approaches and the attempt to identify support 

structures and their coding in mathematical interactions, in the following there is 

conducted an analysis of interaction, which refers to the interactional theory of 

learning (Cobb & Bauersfeld, 1995). The method was devised by a working group 

round Bauersfeld in reference to ethnomethodological conversation analysis (Eberle 

1997; Sacks 1998; Garfinkel 1967). It focuses on the reconstruction of the meaning 

and the structure of interactions (Krummheuer, in press). Therefore it is proper to 

describe and analyse topics with regards to contents and the negotiation of meaning 

in the course of interactional processes with a supportive character. Thus the verbal 

coding within the supports and the connected concept of the ―formatting‖ (as a 

distinguished structural element in the analysis) is focussed in the analysis there is an 

emphasis on elements of the conversation analysis. Therefore the analysis lays stress 

on the functional aspects of the interactional process and highlights the rules and 

methods by which the actors construct the communication. It should be asked, how 

the functional aspect effects the performance of the process of learning.  

Short description of the sample  

The analysed sequence is part of the empirical work within the project erStMaL 

(early Steps in Mathematics Learning) at the Centre on Individual Development and 

adaptive Education of Children at Risk (IDeA) in Frankfurt a.M. (Germany). The 

research design contains the observation of 277 children age 3,5 to 6. The children 

come from 12 day care centres in the area of Frankfurt a.M. in Germany.  

ANALYSIS - „ AND WHICH ARE BELONGING TOGETHER― 

Short description of the situation 

The situation of play and exploration, which is described in the following chapter is 

accomplished by a nursery teacher. She is the attachment figure of the children and 

their group leader at the day care centre. Additionally she is in charge of the group of 

the so-called ―small researchers‖ in the kindergarten. The nursery teacher achieves 

the specification of the mathematical domain for the accomplishment of the situation, 

which is ―Measurement‖. The children who are taking part in the situation are: 

Hannah (3;3 years), Michael (3;7 years), Bettina (4;7 years) und Martha (5;3 years). 

The material the nursery teacher uses in the situation is: two green paper circles with 

different diameters (0,5m and 1,0m), a gunnysack which is filled with ten different 

objects in each case in two different sizes. During the time of the sequence the 
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children are sitting on a carpet together with their nursery teacher. To paper circles 

are lying on this carpet in the way that the children are able to sit in a hemicycle 

around it. The sequence takes place in the middle of the situation. In the sequence 

before the nursery teacher asked the children to allocate the object to the two paper 

circles according to their size. It takes some turns till every object is related to a 

circle. 

Transcript 

001 N. : And which are belonging together/ 

002 Bettina: knuckles down to the paper circles That one\ pointing with one finger 

003  at the big wooden cuboid which is lying on the big paper circle and  

004  that one pointing at the smaller wooden cuboid on the smaller paper  

005  circle 

006 N. : Take a look Bettina (.) put two things together\ here we make a line 

007  pointing with her finger in a line right beside the paper circles  

008  parallel to the edge of the carpet start right here\ pointing at one point  

009  near the edge of the carpet 

010 Bettina: takes the smaller pin from the smaller paper circle 

011 Michael: laughs 

012 N. : Two things that belong together\ 

013 Bettina: takes the bigger pin from the bigger paper circle 

014 N. : Okay\ take a look\ one here\ pointing with her finger to the same point  

015  she marked before and one here\  pointing at a place a little bit more  

016  on the left hand side next to the place she marked before  

017 Bettina: placing the bigger pin to the place that is marked second and the  

018  smaller pin to the place that is marked first by the nursery teacher 

019 N. : Exactly\ this way\  adjusts the pins on the carpet the way that they are  

020  lying parallel to the edge of the carper and the heads of the pins are  

021  abreast Who wants to search for two things that belong together now/ 

 

 

 

 

 

 

 

Fig. 2: Position of the children, nursery teacher and the material 

 

Big paper circle 

  

Nursery teacher 

Small paper circle 

Pins 

Bettina 

Michael 

Hannah 

Martha 

Camera (left) 
Camera (right) 
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Annotation: Spatial dimensions are given from the perspective of the observer 

(position of the camera). 

Analysis – Focusing linguistic codes within the supports  

The sequence is opened through the comment of the nursery teacher. Therefore she 

structured the proceedings by her question, which the children should answer. This 

way she implicates a call for action. Through the temporarily advice towards the 

immediate presence of the question which is given on the verbal plane, the nursery 

teacher confines the sequence from the previous one. The content of this section was 

the children distribute the objects according to their relative dimension to the two 

paper circles.  But this confining is also denoted implicitly and is not fastened as 

regards contents (of the previous sequence). On the content plane the expected 

structuring thereby is not taking place. Thus the reference, which is underlying the 

given question, can be only understood in mathematical terms by decoding informal 

verb ―belong‖. The realisation rule that marked the accepted participation on the 

thematically plane extensively last open. In that case one can speak of an informal, 

restricted coding. 

Bettina seems to be able to decode. She marks two objects of similar form and 

different measure. The regulating system, which forms the basis of her action, seems 

to be formal. She develops a reference, which can be seen as a subset of the 

implicated system of the teacher. She abridges the system through the addition of the 

attributes form and measure.  Both of these attributes can be seen as formal 

mathematical issues, which are representations of the mathematical domain 

geometry. Same counts for the centric dilatation, which is essential to a proof of 

congruence. The teacher does not amplify, neither positively, nor negatively. She 

―replies‖ through a further call for action <006-009>.   This way she is structuring 

another time. The call for action from the beginning of the sequence is now being 

extended towards system of rules: the objects should not only being marked, they 

have to be collected and placed in line beside the paper circles and separated from 

the other ones.  However there is no direct reference to the action of Bettina and 

obviously Bettina could not integrate the extended aspects of the system to her own. 

Probably the previous action effects a controversial conflict for Bettina and she takes 

another object. The teacher impairs another time in a structuring way and references 

implicitly to her system: two objects should be marked <011>. Also this turn lingers 

informal verbal and restricted in the linguistic code. However Bettina seems to 

understand and takes a second pin. In the following expression <012> the nursery 

teacher repeated the second aspect of the call for action from line <006-009> and 

specifies the placement of the objects as well through her verbalisation as trough her 

gesture, which can be seen as exemplification. That way she structures the 

interaction another time. Bettina decodes also this expression as a call for action, 

which has to be complied. This becomes obvious through her action in line <014-

016>. The formal interpretation of the implicit, informal-coded and extended system 
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of meaning, which is given by the teacher, here has to be speculative. The 

subsequent positive evaluation by the nursery teacher in line <019> ―Exactly\ this 

way\‖can be seen as structural limiting point of the sequence. Her non-verbal action 

in line <019-021> indeed can be seen as a further add-on of the system, but it may 

also an exemplarily given advice for the next action. It is underlined by her comment 

in line <021> through which she invites the other children to take part in the 

situation.   

Concerning to the structure of the support one can assume that the formatting of the 

nursery teacher is characteristic for supportive structures in learning situations as 

they are observed in case of child-parents-discourses (e.g. Tiedemann 2010) and also 

discourses in mathematics classroom. Thereby the content and the accepted 

participation in the discourse is - in terms of the invisible pedagogy – strongly 

framed and classified. Both classification and framing is obvious trough the so-called 

„Trichtermusters― (e.g. Bauersfeld 1978). This pattern structurally partitions the 

interactional sequence und sequences or rather ―portions‖ the contributions of the 

child. The strong classification is also observable through the format of content, 

which is underlined through the gestural exemplification or rather diagrammatics in 

terms of Peirce and focuses concrete systems of mathematical meanings.  

SUMMARY 

In the context of the analysed sequence supports in the acquirement of basal and 

mathematical concepts and procedures seem to be strongly categorized and 

regulative formatted, but they are mostly implicit in terms of content. On the verbal 

plane this is expressed by an informal and mostly restricted codification. However 

the regulative system, which is underlying the supports in mathematical interactions, 

has to be seen as formal and elaborated.
2
 This has enormous consequences for 

children concerning their process of learning: Namely there can emerge conducive 

moments in the interaction through the strong formatting of the course within the 

supports in mathematical situation
3
, though in terms of content children have to 

provide an enormous performance to decode the implicit, informal remarks 

respectively to their implicated, formal mathematical meaning. The presentation of 

the solution process has also to correspond to this implicit formal regulation system. 

The decoding becomes more complicated by the fact that the implicit and formal 

reference of framework is probably subjected to a fast changing development 

process. Though there is mostly just a little gap between the changing references or 

framings
4
, which can be seen as exemplifications attending to foster the process of 

learning, but the implicit coding seems to make it difficult for the children to 

understand the change in meaning of these exemplifications. The result can be the 

persistence on the previous reference and framing.  With respect to the previous 

theoretical considerations and the approach referring to Carruther‘s and 

Worthington‘s concept of „multi-competence― (2006) children have to develop the 

ability to translate not only between informal and formal language, but also between 
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informal and restricted language and the implicated formal meaning. In what way the 

so called ―invisible pedagogy‖ (u.a. Schütte 2009; Gellert/Hümmer 2008; Lubienski 

2004; Zevenbergen 2001) has to contemplate out of a development process, which is 

determined by the implication in the insemination of mathematical concepts and 

procedures, remains open. Hereto the longitudinal study erStMaL analyses primary 

empirical data, which can convey incipient stages. erStMaL accompanies children in 

their development from kindergarten to primary school. Another question to be 

answered empirically is, whether the phenomenon of the implicit insemination of 

mathematical knowledge can be seen as cross-cultural and equally occurring in all 

social classes. In the style of Bernstein‘s early remarks to specifics in the learning 

process in the sixties and seventies may be assumed that the social status plays an 

important role (vgl. Bernstein 1985). Considering the cultural and linguistic plurality 

(Schütte 2009) future research has to explore to which extend migrant children from 

the aforementioned settings have advantages or disadvantages in the learning of 

mathematics and givening good performances in mathematics.   

NOTES 

1. Hereby the concept of acquisition (as a uncontrolled and ―natural‖ way of comprehension) is used additionally to the 

concept of learning (as a controlled, curricular process) in this paper. Both processes (the controlled as well as the 

uncontrolled one) are taking part and overlapping in mathematical discourses with children and nursery teachers in the 

kindergarten. They also both have an impact on the development. This way the dichotomic aspects of both concepts will 

not be focussed any further in this paper.  

2. This conclusion corresponds with the findings from the empirical research of Leufer and Sertl (2010), which find out 

that subject specific linguistic codes in mathematics classroom are always elaborated. 

3. This is commensurate to the description of the acquisition of mother tongue by Bruner (1983)  

4. Framing here has to be seen in terms of Goffman (1990).  
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We analyse mathematical solutions of 7 year old pupils when they individually solve 

an arithmetic problem. The analysis has used ―the configuration of objects‖, an 

instrument provided by the onto-semiotic approach to the mathematical knowledge, 

combined with the organisation of data into a ―systemic network‖. Results are 

illustrated by three cases. The aspects inferred from the overall analysis of the 

mathematical solutions include the use of iconic representations as a counting 

instrument, and the demonstrative nature of the arguments developed by the pupils.  

INTRODUCTION 

The objective of this research is to analyse the written and verbal mathematical 

solutions of 7 year old children when solving an arithmetic problem in an individual 

context of work.  

Solutions by children when solving arithmetic problems tend to have a predominance 

of iconic and symbolic representations and a lack of explicit verbal argumentations 

(for example, Saundry & Nicol, 2006). For this reason, different research projects 

have shown an interest in studying the representations produced by children when 

solving problems (Edo, Planas & Badillo, 2009; Saundry & Nicol, 2006). To analyse 

the productions made by pupils we take their representations and other elements such 

as calculation procedures, argumentations, etc. This is why in order to analyse the 

underlying mathematical activity of pupils we use instruments of the onto-semiotic 

approach to the mathematical knowledge -OSA (Godino, Batanero & Font, 2007).  

We start with a brief review of the literature. We then present the theoretical and 

methodological instruments that have been applied to our analysis. After that, we 

describe part of the design of the study and present some of the most relevant data. 

We end with a discussion of results and final conclusions.   

REVIEW OF THE LITERATURE 

Many research works have shown that students can solve a different multiplicative 

problem before the instruction about the multiplication and the division has been 

given (Mulligan & Mitchelmore, 1997). Carpenter et al. (1993) founded out that 

even students of early years could learn how to solve multiplicative problems. Such 

Studies have also been carried out with ―diverse‖ students (Nunes et al., 2009) 



Working Group 13 

 CERME 7 (2011)  1833 

Much research has been done on primary age arithmetic problems on distribution in 

which the task is to share a number of elements that are to be shared out one by one 

among a variable number of participants; for example, to share out a number of 

cookies among different children on the basis of questions with multiple solutions 

(Davis y Hunting, 1990). Research has also been done on problems that work on the 

idea of the division of units and distribution. Charles and Nason (2000), in a study of 

the development of the concept of fractions among 8 year old children, proposed a 

type of problem in which the unit(s) is/are divided into parts.  

We examine the particular case in which the context requires the elements to be 

separated into groups, which involves a distribution in which not everything is a unit 

(or several units) that has to be divided into parts, but in which everything has to be 

separated into discrete sets, that can(not) have a different cardinal. 

THEORETICAL AND METHODOLOGICAL FOUNDATION 

Some studies involving the OSA (Malaspina & Font, 2010), in which mathematical 

solutions have been analysed, first consider the mathematical practices and then the 

mathematical objects and processes that are activated in them. In this study we adapt 

such approach with the pupils‘ practices being the reading of the text of the 

arithmetic problem and the production of a written answer. Due to space limitations, 

we will only analyze the mathematical objects that are activated by said practice. 

If we consider the mathematical objects activated in undertaking a practice that 

enables the resolution of a problem situation (e.g. tackling and solving an arithmetic 

problem), we observe the use of verbal, iconic, symbolic and other representations. 

These representations are the ostensive part of a series of concepts/definitions, 

propositions and procedures that intervene in the production of arguments to decide 

whether the practice is satisfactory. So, when a pupil performs and evaluates a 

mathematical practice s/he activates a conglomerate formed by problem situations, 

representations, concepts, propositions, procedures and arguments, which are 

articulated in the configuration of Figure 1 (Font & Godino, 2006, p. 69).  

To move from the individual analysis on pupils‘ mathematical solutions to a more 

general analysis on the whole group, we used a systemic network. This is a classical 

instrument from the organisation and interpretation of qualitative data proposed by 

Bliss, Monk and Ogborn (1983).  

DESIGN OF THE STUDY 

The participant sample was made up of 21 primary school pupils (7 years of age) at a 

school in Barcelona, Spain. The mathematical task presented to the pupils, which 

was to be solved individually and in writing, was: 1) an arithmetic problem involving 

distribution in which everything had to be separated into discrete sets of various 

elements, which could (not) have a different cardinal; 2) an open-ended situation; 
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and 3) a feasibly resolvable task using the pupils‘ prior knowledge. The problem 

was: ―If you have 18 wheels, how many toys with wheels can you have?‖ 

 

Figure 1. Configuration of objects 

The problem was read aloud and the pupils were expected to solve it with paper and 

pencil during a one-hour class. When they finished the task, they were individually 

asked, ―what did you do?‖ Their answers were recorded in audio and transcribed.  

DATA ANALYSIS 

Two types of analysis were performed, an analysis of each of the cases and then a 

global one of all of the mathematical solutions. For the former, an analysis (Figure 1) 

was made of each pupil‘s solutions. Table 1 illustrates part of an example.   

Following the categories suggested by Malaspina and Font (2010), the data was 

analysed as indicated in Table 2. Each pupil‘s mathematical practice was analysed 

individually, paying attention to 1) representations, 2) concepts, 3) properties, 4) 

procedures, and 5) arguments. We present the analysis of one of the mathematical 

practices by one of the pupils, Pupil 15.   

Figure 2 shows the systemic network obtained from the overall analysis. It is 

organised into categories and aspects (using the terminology by Bliss, Monk and 

Ogborn, 1983). We use braces ({) to represent inclusive aspects and lines to group 

exclusive categories (|). 

The analysis of the mathematical practices leads to two main categories. First we 

have pupils that put the emphasis on the cardinal of the set. Here there are three 

subcategories: 1) those which give a single answer (e.g. Pupil 10 says, ―if I had 18 

wheels I‘d have 6 toys with wheels‖); 2) those whose answers suggest more than one 

answer (e.g. Pupil 15 writes, ―I could have four toys with wheels‖); and 3) those who 

give more than one answer (the only case is Pupil 18 who gives four different 

answers ―…you could have 9 motorbikes, you could have 6 tricycles…‖). Second we 

have pupils who point to the set and only refer to it by extension (e.g. Pupil 12 says, 
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―I have made a car, a bike, a car, a scooter and another scooter‖) or give the cardinal 

for the subsets (e.g. Pupil 6 says, ―four cars and a bicycle make 18 wheels‖).  

 

Written production Verbal production 

 

 

 

 

 

I have drawn a car that has four wheels, a 

motorbike that has two, another motorbike 

that has two and a train that has ten wheels. 

And here I have explained what I have drawn 

and how many wheels they all have. And here 

I have added them up and this is the answer. 

Table 1. Data from Pupil 15 

For each of the five subcategories above, we organised the data on the basis of the 

mathematical objects following the configuration of objects in Figure 1. We 

considered each object as an aspect in the systemic network. On this occasion, we 

have grouped the procedures and properties as a single aspect and we have left the 

argument aspect for another occasion. Given the richness of the responses, for each 

aspect we have introduced meanings that have been used as categories; we do not go 

into the details of all of them. We now illustrate three significant cases.   

The case of Pupil 15 

Pupil 15 solves the problem well by giving the cardinal of one of the possible sets 

and concluding, ―I could have 4 toys with wheels‖. We consider that she is 

suggesting there is more than one answer, as she uses the verb tense ―could‖. First, 

we examine the richness of her representations. She starts with an iconic 

representation of the toys in perspective (Table 1) and then translates this into a 

symbolic numerical representation (4+2+2+6+4=18) and a verbal one (one car, two 

motorbikes and one train have 18 wheels). 

In relation to concepts, this pupil breaks down the set of wheels (18) into parts or 

subsets (she draws a 4-wheeled car, two 2-wheeled motorbikes and a 10-wheeled 

train). She is then able to treat each of the subsets as an element (a toy) in a new set 

(the set of toys). Finally, she implicitly distinguishes between a set and the cardinal 

of a set, because in her answer she refers to the cardinal of the set of toys.  
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Figure 2. Systemic network from the overall analysis of the pupils‘ answers
2 
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This pupil applies the property that ―a number can be broken down into the sum of 

smaller numbers‖, in order to break down 18 (into three different addends) and 10 

(into two different addends): 4+2+2+2+6+4. We consider this pupil to be aware of 

the application of this property because she writes (6+4) and draws a two-carriage 

train with 6 and 4 wheels, though in her verbal answer she refers to a train with 10 

wheels. 

 

Mathematical Object  Mathematical practice 

Problem situation  If you have 18 wheels, how many toys with wheels could you have? 

Representation 

 

 Iconic with perspective 

 

 

- Verbal (one, four, two, ten) 

 Symbolic         -  Numbers (4, 2, 6, 18) 

-  Signs (+, =) 

Concepts 

 Addition (Previous) 

 Implicit terms of the addition (addends and results) 

 Number (Previous) 

 Subtraction (implicit) 

 Set 

 Elements of a set 

Properties  A number can be broken down as the sum of smaller numbers (this is applied 

to 10 and to 18) 

Procedures 
 Combination of numbers to obtain 18 

 Add and subtract (mentally)  

 Determination of a set by extension  

Arguments 

 Explicit thesis: I could have 4 toys with wheels (to make 18) 

 Graphic argument: draws the 4 toys 

 Verbal argument: describes the elements of the set (a 4-wheeled car, two 2-

wheeled motorbikes and a 10-wheeled train) 

 Numerical-written argument: 4 + 2 + 2 + 6 + 4 = 18  

Table 2. Configuration of objects in Pupil 15‘s answer 

In relation to procedures, she uses the previous property to break down number 18. 

She seems to take a first number (she draws a 4-wheeled car), then adds another 

number (she draws a two-wheeled motorbike), and as the result is less than 18, she 

adds another addend (a two-wheeled motorbike); given that the result is still less 

than 18, she adds another addend (a ten-wheeled train). She iconically determines the 

set by extension.  

Finally, the explicit thesis of her demonstrative argument (she could have 4 toys with 

wheels) is justified by the ostensive presentation of the set (iconic representation and 

verbal description) and by the numerical-written verification (4+2+2+2+6+4=18), of 

which she is aware because she says, ―…and here I have added them up…‖. 
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The case of Pupil 19 

Pupil 19 solves the problem implicitly in that he draws 6 tricycles (Figure 3). We 

consider this to be implicit because the pupil expresses the cardinal of the set of 

wheels (18), which leads to start the solving process using symbolic representations.  

This pupil starts his answer with a symbolic-numerical representation based on the 

sum (3+3+3+3+3+3=18) and translates this to another symbolic expression based on 

multiplication (3x6=18, see Figures 2 and 3). Later, he switches to an iconic 

representation without perspective.  

 

 

 

 

 

 

Figure 3. Representations used by Pupil 19 

In relation to concepts, this pupil comes to the concept of multiplication and seems to 

be clear of its concept as a repeating addition. We consider this because he uses a 

mathematical property: ―18 can be broken down as the repeated addition of number 

three‖. In relation to procedures, he uses the previous property to break down 

number 18. He likely takes a first number, 3, then adds another 3, and given that 

result is still less than 18, he adds another addend (3), and so on successively until he 

reaches number 18. He iconically determines the set by extension.  

Finally, the explicit thesis of his argument (6 tricycles make 18 wheels) is justified 

by the ostensive presentation of the set (iconic representation). He gives a verbal 

description of the procedure he used to get to number 18 (I did three plus three…). 

The case of Pupil 20 

Pupil 20 solves the problem implicitly, as he draws two cars, a truck and a scooter 

(Figure 4). He also gives the cardinal of the subsets as a verbal response (2 cars, 1 

scooter and 1 truck). We find his type of representation significant, and we have 

named it in the systemic (Figure 2), iconic and symbolic (Figure 4) networks. The 

drawings are not in perspective but the pupil represents the total number wheels on 

each toy using numerical symbols ( ). The only conversion he makes is to switch 

from an iconic and symbolic representation of the set of toys to a verbal and written 

description of the cardinal of the subsets. 

In relation to concepts, he breaks down the set of wheels (18) into parts or subsets 

(he draws 2 cars with 4 wheels, 1 scooter with 2 wheels and a truck with 8 wheels). 
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After, he gives the cardinal of the subsets (2 cars, 1 scooter and 1 truck). Meanwhile, 

he implies the mathematical property: ―18 can be broken down into the sum of 

smaller numbers‖ in order to break down 18 (into four addends, three of which are 

different): four, four, two and eight. 

In relation to concepts, this pupil uses the previous property to break down the 

eighteen. We consider that he takes a first number (he draws a four-wheeled car), 

adds another number 3, then adds another (he draws another four-wheeled car), and 

as the result is less than 18 he adds another addend (and eight-wheeled truck). He 

iconically determines the set by extension. The explicit thesis of his demonstrative 

argument (2 cars, 1 scooter and 1 truck) is justified by the ostensive presentation of 

the set (iconic representation and verbal-written description). 

 

 

 

 

 

Figure 4. Representations used by Pupil 20. 

CONCLUSION 

All of the pupils make an iconic representation of the set of toys. It could be said that 

this is because of the need at this age to work using contextualised scenarios. 

However, there is also the need to use drawing as a counting instrument, as has been 

shown by Saundry and Nicol (2006). In our study, this use of iconic representations 

as a counting instrument is made clear in the representation that we have called 

iconic and symbolic (Figure 4). This is a type of representation (used by Pupils 8 and 

20), that can be considered an intermediate step between flat representations (used by 

Pupils 6, 7, 9, 11, 13, 14, 18, 19) and representations in perspective (used by Pupils 

1, 2, 3, 4, 5, 8, 10, 12, 15, 16 17, 21). 

There are three pupils (3, 17, 19) who separate the set of 18 wheels into discrete sets 

with an equal cardinal and start solving the problem using written symbolic-

numerical representations (they break 18 down into equal addends). In all three 

cases, they translate this representation into another written symbolic expression in 

which they use the concept of multiplication (Figure 5), to end with a conversion to 

an iconic representation of the set of toys. In cases 3 and 17 this is in perspective and 

in case 19 without perspective (Figure 3).  

 

Figure 5. Breakdown of equal addends into multiplication 
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Pupil 18 uses multiplication in his four different answers (which are given verbally 

and iconically). But he does not use written symbolic-numerical representations, so 

we suppose he reached his answer by making mental calculations. From his verbal 

responses, we infer that he makes an implicit use of the commutative property (―you 

can have 6 tricycles with three wheels or you can have 3 limousines with 6 wheels 

and you also get 18‖) and that, unlike the three previous pupils, he does not need to 

explicitly break 18 down into equal addends to break 18 down into the product of 

two factors. He does not need to add first in order to get to multiplication. 

All of the pupils implicitly or explicitly use the property of breaking 18 down into 

addends (we include the extreme case of Pupil 18 who breaks 18 down using 4x4+2). 

When the addends are equal, this facilitates the use of the concept of multiplication, 

and on the other hand, facilitates the process of giving the cardinal for a set of toys of 

a certain type (e.g. Pupil 17‘s answer, ―6 tricycles‖), which implies that the term 

―toy‖, which is more abstract, is not used. However, the two pupils that explicitly use 

that term in their answers (e.g. Pupil 15, ―I could have 4 toys with wheels‖), break 

number 18 down into different addends.  

In this last case we have the close relationship between properties and concepts. The 

use of a certain mathematical property (a type of breakdown of number 18) 

conditions the use of certain mathematical concepts (addition or multiplication). 

Meanwhile, the use of multiplication -a concept that is considered, in curricular 

terms, to be more difficult than addition- involves, in this case, less abstraction in 

solving the problem.  

We observe two fundamental procedures. One is related with the application of the 

mathematical property/ies that guarantee the breakdown of number 18 into addends. 

The pupils mentally apply addition and subtraction, and even multiplication, to reach 

that breakdown. The other is the determination by extension of the set (via an iconic 

representation). This latter method, used by all pupils, is the one that enables them to 

defend, explicitly or implicitly, their answer. These are demonstrative arguments that 

consist of the ostensive presentation of the set (the drawings of the toys). 

We consider the theoretical categories provided by the OSA to facilitate an in-depth 

analysis of the pupils‘ solutions and to reveal the complexity of objects (concepts, 

representations, properties, etc.) that are activated when solving arithmetic problems.  

The systemic network has also been a powerful instrument of organization that has 

led to construct a taxonomy of the pupils‘ responses when they solve a problem in 

which the whole has to be separated into discrete sets of various elements, which can 

also have (or not) a different cardinal. 
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NOTES 

1. *The represented drawings are in perspective. ** Without in perspective. 

2. The pupils that draw an iconic representation and give a verbal description of the set of toys 

(almost all), are part of the aspect ―makes a translation/conversion‖. When the pupil also makes 

another type of translation/conversion, s/he is part of ―makes several translations/conversions‖. 
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Recent studies have advocated that mathematical meaning is mediated by gestures. 

This study explores how kindergartners use gestures in a semiotic transformation 

activity involving the description of spatial relationships between objects. The two 5-

year-old children that participated in the study used gestures throughout the whole 

activity, mainly iconic gestures (representing images of objects) and gestures 

combining iconic and deictic (locating objects in space) properties. A 

multidimensional linkage between children‘s gestures and speech, as well as, a 

significant effect of the researcher‘s gestures on one child‘s gestures were found. 

Findings showed that gestures are essential in the construction and communication 

of early mathematical meaning and raise important questions for future research.  

Keywords: gestures, kindergartners, spatial thinking, semiotic transformation 

INTRODUCTION 

The semiotic approach to the learning and teaching of mathematics constitutes a very 

important trend in the research field of Mathematics Education (e.g. Gagatsis, 2003; 

Presmeg, 2006). A new trend of this research area concentrates on the examination of 

bodily movement and particularly on gestures. In the last years gestures and bodily 

movement have been considered as a source of information and a contributor in 

mathematical thinking and communication (Edwards, 2009).  

The study of gesture is still a young research field within mathematics education and 

many theoretical and methodological questions remain open (Radford, 2009). 

Existing research in the mathematical domain has focused on the role of gestures in 

the generation and the communication of meaning by students in primary and 

secondary education level. To our knowledge, the gestural activity of preschool and 

kindergarten children in relation to communicating and thinking about mathematics 

has not been addressed to a great extent yet. In this paper we analyze gestures as a 

semiotic resource used by kindergartners into the learning process of mathematics 

and specifically in a semiotic transformation task of spatial character, involving the 

conversion of a visual spatial array into verbal description. 

THEORETICAL FRAMEWORK 

Semiotic representations and gestures in mathematics education 

Mathematics education includes a wealth of ideas and concepts and constitutes an 

area of human activity and thinking, which is characterized by the use of multiple 
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representations. Gagatsis, Michaelidou and Shiakalli (2001) support that the 

advancement of mathematical knowledge is accompanied by the creation and 

development of new semiotic systems that coexist and operate simultaneously with 

the first and basic system, that of natural language.  

Representations are often concerned as connected with a sign. Saussure defined the 

sign as a combination of two mental constructs, roughly translated as a ―signified‖ 

together with its ―signifier‖ (Presmeg, 2006). Within this wide conception of sign 

Αrzarello, Paola, Robutti and Sabena (2009) regard gestures as an important semiotic 

resource related with the more traditional signs (such as spoken or written language, 

mathematics symbols, and so on).  

Gestures are defined as spontaneous movements of the arms and hands, closely 

synchronized with the flow of speech (McNeill, 1992). Parrill and Sweetser (2004) 

define the meaning of a gesture as ―the relationship between how the hands move in 

producing a gesture, and whatever mental representation underlies it, as inferred both 

from the gesture and the accompanying speech‖ (p. 197).  

McNeill (1992; 2005) proposes five dimensions of gestures with respect to their 

meaning: 1) deixis (locating existing or virtual objects and actions in space with 

respect to a reference point), 2) metaphoricity (presenting an image of an abstract 

object or idea), 3) iconicity (standing for images of concrete entities and actions), 4) 

temporal highlighting (simple repeated gestures used for emphasis) and 5) gestures 

that modulate social interactivity. These dimensions play essential roles in 

communicating and thinking about mathematics.  

The role of gestures in mathematical thinking 

Mathematical cognition is not only mediated by written symbols, but is also 

mediated, by actions, gestures and other types of signs (Radford, 2009). Particularly, 

children‘s semiotic activity in mathematics includes action, gestures and speech. 

When mathematics is seen as an embodied, socially constructed human product, 

gestures constitute a particular modality of embodied cognition (Edwards, 2009).  

Roth and Thom (2009) claim that gestures are genuine constituents of thinking. 

Radford (2009) describes gestures as the very texture of thinking and as important 

sources of abstract thinking. Gestures, along with speech and inscriptions, jointly 

support the thinking processes of students (Arzarello et al., 2009). When a better 

understanding occurs, actions become shorter and gestures and language become 

more relevant (Radford, 2009). McNeill (1992) noted that, ―Speech and gesture are 

elements of a single integrated process of utterance formation in which there is a 

synthesis of opposite modes of thought‖ (p. 35).  

Gestures can be fundamental for the effectiveness of mathematical communication 

(Roth, 2001), as well. Along with oral speech, written inscriptions, drawings and 

graphing, gestures can serve as a window on how learners think and talk about 

mathematics (Edwards, 2009) and on inner thoughts or as conveyors of ideas that are 
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already somewhere in the mind awaiting the proper material, namely, verbal 

expression (Radford, 2009). 

Spatial thinking in early childhood mathematics 

Geometry and spatial thinking are very important areas of mathematics learning in all 

educational levels, including early childhood education (Sarama & Clements, 2009). 

They involve grasping the space in which the children live and move (Freudenthal, 

in NCTM, 1989). A major spatial competence is spatial orientation, which involves 

the understanding and operating on relationships between various positions in space 

(Sarama & Clements, 2009). 

Mathematical understanding and, in terms of this study, understanding of spatial 

concepts and relationships evolves through the transformation of semiotic 

representations (Duval, 2006). Thus, as children link their spatial knowledge to 

verbal, analytic knowledge they move beyond visual thinking which is restricted to 

surface-visual ideas. Connecting spatial representations to language can help 

children develop the ability to reason and communicate about space and thus gain 

spatial sense (Sarama & Clements, 2009).   

In the present study, a spatial orientation activity is designed and used. This activity 

requires semiotic transformations, that is, conversions between spatial 

representations and verbal descriptions. 

Gestures and spatial thinking 

In activities that entail communication about space, besides words, people frequently 

use gestures (Ehrlich, Levine & Goldin-Meadow, 2006). A number of studies have 

revealed that gesture and spatial thinking are connected to one another. Krauss 

(1998) has found that people use gestures more frequently in defining spatial words 

than non-spatial words. Gestures occur often in people‘s descriptions of their 

navigation in space (Emmorey, Tversky & Taylor, 2000).  

Despite the growing evidence about the link between spatial skills and gestures, 

limited attention has been given on the role of gestures in the development of spatial 

thinking (Ehrlich et al., 2006). Ehrlich et al. (2006) explored the strategies 5-year-old 

children used to solve spatial transformation tasks. The findings of the particular 

study showed that children frequently produced gestures whose meaning was not 

necessarily expressed in the accompanying speech. Children who referred to spatial 

information in their gestures but not in their speech were more likely to succeed. 

These findings suggest that gesture has the potential to improve early spatial skills.  

The present study addresses the issue of the role of gestures in young children‘s 

ability to mentally manipulate spatial information, by examining the gestures 

kindergartners produce in a spatial orientation task that requires describing a spatial 

array of objects the children constructed themselves to another person who could not 

see it. Specifically, the questions we tackled were the following: 
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1. What are the dimensions of the gestures kindergartners produce when carrying 

out conversions from a spatial representation to verbal description? 

2. What is the relationship between the kindergartners‘ gestures and language in 

carrying out a conversion from a spatial representation to verbal description? 

3. What is the effect of the researcher‘s gestures on the kindergartners‘ gestures 

in the conversion activity?  

METHOD 

The participants were two five-year-old kindergartners from a private kindergarten in 

Nicosia, Cyprus. In this study we will refer to the two children as child 1 and child 2. 

The spatial orientation activity, in which the children were involved, was designed 

on the basis of a method of the Didactics of Mathematics that refers to the 

designation of students‘ mathematical thinking and focuses on situations of 

mathematical engagement and communication. According to this method, students 

solve problems in pairs or in groups, in order to have the chance for oral or written 

communication between them. This method allows for a precise analysis of students‘ 

answers and a specification of their mathematical ideas (Brousseau, 1997).  

Thus, the activity, which had the form of a game, required two players, one of which 

was the researcher. Each player had to use wooden bricks of different shape in order 

to make a construction. The two players sat opposite each other, having a small 

wooden wall in the middle, so that each player was not able to see what the other 

player was constructing. The aim of the activity was the first player to create the 

same construction with the opposite player, based on the latter‘s description. The 

activity involved three parts (rounds) and was carried out separately for each child. 

In the first and the third part of the activity the child had to make the construction 

and describe it to the other player (researcher), while in the second part the 

researcher was the player that had this role.  

To examine children‘s gestures and language, their reactions and utterances during 

their participation in the activity were video-recorded.  

RESULTS 

To identify the dimensions of children‘s gestures during the activity (Research 

Question 1), McNeill‘s (1992; 2005) proposed dimensions of gestures were used. 

This analysis showed that the meaning of children‘s gestures was multidimensional. 

Many gestures used by both children were of iconic nature. They used the iconic 

gestures mainly to present the shape of the various bricks they used. An example 

concerns the shape of cylinder, for which child 1 moved her finger to make a round 

line vertically in the air. For the same shape, child 2 used her pointing finger and 

thumb to form a circle (Figure 1).  
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Figure 1: Iconic gestures for the shape of cylinder by (a) child 1 and (b) child 2  

In both children‘s gestures we also distinguished a great number of gestures that can 

be considered as deictic and iconic at the same time. Children used deictic and iconic 

gestures when speaking of spatial relationships between bricks. For instance, to 

explain the placement of four bricks in her construction, child 2 used the expression 

―one on the top, one at the bottom, one on the left and one on right‖ moving both 

her hands to the corresponding positions (deictic property). At the same time she 

opened her hands to form a flat surface and put them next to one another in a 

horizontal direction and opposite to one another in a vertical direction, respectively, 

in order to present the image of the orientation of the parallelepipeds (iconic 

property) (Figure 2).  

    

 

 

                                                    

                                              

Figure 2: Child‘s 2 iconic and deictic gesture (a) for the placement of the 

parallelepiped at the bottom of the construction in a horizontal direction, (b) for the 

placement of two parallelepipeds on the left and on the right of the construction in a 

vertical direction 

A small number of gestures were identified as only deictic for both children, who 

used them to present the location of some bricks with respect to bricks that they were 

already described. For instance, to show the position of a brick, which was on the 

right side of another brick, child 2 moved her right hand up and down once (Figure 

3a).  

Temporal highlighting gestures were used even less frequently by the children, 

mainly in trying to emphasize and enforce to the researcher what they were saying. 

For example, child 2 moved her hands repeatedly one on top of the other tapping 

them at the same time in order to highlight that three bricks should be put on top of 

each other (Figure 3b). 

Metaphoric gestures were the most rarely produced. Child 1 was found to use a 

metaphoric gesture for the concept ―small‖. As she was explaining to the researcher 
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to ―take two circles (meaning cylinders), but small‖, for the word ―small‖, she 

moved her hands close to her face and formed fists (Figure 3c).  

      

 

             

 

 

         

Figure 3: (a) Child‘s 2 deictic gesture for the position of a brick on the right of another 

brick, (b) Child‘s 2 temporal highlighting gesture for the placement of three bricks on 

top of each other, (c) Child‘s 1 metaphoric gesture for the word “small” 

With respect to the connections between language and gestures (Research Question 

2), we observed that children were using gestures and language simultaneously. In 

some cases, the meaning of children‘s words and gestures coincided. While the 

children were trying to explain to the researcher where to place the bricks, they were 

like holding the brick and placing it in the position they were trying to explain. An 

example is the verbal expression of child 2 ―...take a roof and place it on top‖ which 

was accompanied by the gesture shown in Figure 4a.  

In other cases children replaced verbal expressions with gestures, in order to explain 

what they were thinking. When the children tried to describe the position of a brick, 

they frequently used the expressions ―like this (not this)‖, ―place it... emhhh, place it 
this way...‖, ―place it here‖ and simultaneously produced a gesture to illustrate what 

they mean. For example, child 1 while trying to explain to the researcher how to 

place the two ―long shapes‖ (parallelepipeds), she was showing with her hands their 

position, highlighting that they should be placed ―like this‖ (apart) and ―not like 
this‖ (not together) (Figures 4b, 4c).  

 

 

 

 

         

Figure 4: Child‘s 1 gesture accompanying the verbal expressions (a) “...take a roof and 

place it on top”, (b) “put them like this”, (c) “not like this”  

An aspect of the linkage between language and gestures that was examined was how 

this connection changed over time during the activity. An interesting example is that 

in the first part of the activity child 1 opened her hands, one hand to the left and the 

other to the right side of her body (iconic gesture) to represent the ―long shape‖, 
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meaning the parallelepiped (Figure 5a). In the third part of the activity, every time 

child 1 used the particular term, she produced a different iconic gesture consistently. 

She stretched out one hand vertically to her body and formed a straight line in the air 

by moving her hand near her chest (Figure 5b). This is explained by the different 

position of the parallelepiped between the first and the third part of the activity. In 

the first part of the activity, the brick was in a horizontal position while in the third 

part it was in a vertical position. However, the last time she referred to this shape, 

she did not use any gesture. For the same shape, child 2 used consistently a ―smaller‖ 

iconic gesture than child 1, during the first part of the activity. When talking about 

the shape (e.g. ―take 4 lines‖) she moved her pointing finger vertically towards her 

body to draw a small straight line in the air (Figure 5c).  

        

 

 

 

             

                         

Figure 5: (a) Child‘s 1 gestures for the parallelepiped in the first part of the activity, 

(b) Child‘s 1 gestures for the parallelepiped in the third part of the activity, (c) Child‘s 

2 gestures for the parallelepiped in the first part of the activity 

This gesture was not used in the third part of the activity when child 2 used the 

verbal expression ―line‖. It is noteworthy that both children, when using words 

referring to the position of this shape (where to put the parallelepiped), such as ―in 

front of‖, ―on the right‖, ―on the left‖, produced the same form of (iconic) gesture, 

consistently, changing only the corresponding place of their hand in space. In 

particular, they opened their hand(s) keeping the fingers closed to form a flat surface 

(iconic property) and moved it to the corresponding place and direction (deictic 

property).  

The researcher had an obvious effect in the way child 1 was behaving during the 

activity (Research Question 3), since she was imitating her expressions and gestures 

in respective situations. In one case, child 1 even ―extended‖ the researcher‘s 

gesture. Specifically, in the second part of the activity, while the researcher was 

explaining that two bricks are attached to each other she put the palms of her hands 

together. In the third part of the activity, when child 1 had to describe the relative 

position of two bricks and in particular that they should be apart from one another, 

she used the same gesture and the ―opposite‖ gesture that she observed before from 

the researcher. In particular, the child first moved her hands away from one another 

highlighting that they should be placed ―like this‖ (apart from each other) (Figure 

5b) and then put the palms of her hands together clarifying that they should not be 
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put in this way (not attached) (Figure 5c). On the contrary, the gesture or language 

used by child 2 was not influenced by the researcher‘s behavior.  

CONCLUSIONS   

This research examined the gestures two kindergarten children use while 

communicating in the context of a semiotic transformation activity which involved 

spatial orientation abilities. Children were found to use gestures throughout the 

whole activity. The most commonly used gestures were the iconic gestures and the 

gestures that combined iconic and deictic properties. This finding can be attributed 

on the one hand to the spatial and geometric nature of the activity which encourages 

imagistic thinking and on the other hand, to children‘s developmental stage which is 

characterized by concrete thinking processes. Metaphoric and temporal highlighting 

gestures were rarely used by the children. In contrast to producing iconic and/or 

concrete deictic gestures, in which children only think about the object or spatial 

relationship the gesture is representing, producing these types of gestures are 

cognitively complex, involve meta-cognitive abilities and therefore are developed in 

later years (McNeill, 1992). Further investigation on how the occurrence of abstract 

gestures varies in activities of spatial context or other mathematical domains among 

young children and the associations of this gestural behavior with children‘s 

mathematical achievement and other child characteristics (e.g. age, gender) could be 

theoretically and practically important.  

A close multidimensional relationship between gestures and language was revealed. 

This relationship appeared in students‘ behavior in three distinct ways. Firstly and 

most frequently, while describing their constructions children‘s gestures had the 

same meaning as their verbal expressions. Secondly, in some cases children replaced 

language with gestures and thirdly, children‘s gestures complemented and enriched 

their verbal descriptions. Although previous research (McNeill, 1992) suggests that 

by the age of five gestures co-occur with speech, the use of gestures only without the 

corresponding words, by the children of this study, in some cases, could be explained 

by a lack of flexible knowledge in the construction of sentences for describing 

spatial relations. Furthermore, the spatial character of the activity, and the fact that 

the spatial arrangement the children described had been constructed by themselves 

and was in front of them, probably endorsed the visual elements rather than the 

analytic elements of their thinking. As a consequence, gestures were stronger than 

verbal utterances in some parts of their descriptions.  

That some dimensions of the children‘s thought, such as the orientation of the shape, 

were presented in the gesture and others, such as, the form of the shape, were 

presented in linguistic form provided evidence for the complementary role of 

gestures to speech. Each mode of representation made its own contribution to the 

whole and was essential and valuable in representing children‘s spatial thinking. In 

other words, children‘s thinking for a number of spatial or geometric concepts was 

characterized by a dialectic of gesture (imagistic thinking) and language (analytic 
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thinking), that is, a synthesis of language and gesture into one comprehensive 

presentation of meaning (McNeill, 1992). 

A main concern of the study was the role of the researcher‘s gestures in the 

communicative process during the activity. In the specific activity the choice of 

having each child to start the game, the researcher to follow and then the child to 

play again, gave us the opportunity to identify the effects of the researcher‘s behavior 

on the children‘s behavior. Zooming at the interaction between the researcher and the 

children during the game, it emerged that only one of the two children was 

influenced by the researcher‘s gestures. This child not only emulated the researcher‘s 

gestures, but added a contrast to the gesture of the researcher. Specifically, the 

position of two bricks in the child‘s construction (apart from each other) was 

opposed to the position of the two bricks of the researcher‘s construction (attached) 

made previously. The child used a gesture that represented the relative position of 

two separated bricks in her construction, and then a gesture to show how this 

position differs from the image of two attached bricks (counter-example), which had 

been previously represented by the researcher‘s gesture. According to McNeill 

(1992) adding contrasts is considered as a mechanism by which gestures can affect 

thought. Thus, this finding provides further evidence for the important role of 

gestures in young children‘s development of spatial thinking. Evidence is also 

provided for the influential role of the teacher in the mathematics classroom, as the 

teacher is often a model for the students, who tend to be affected by her actions and 

expressions. However, there was not an effect of the researcher‘s gestures on the 

other child‘s gestures examined here. This inconsistent finding between the children 

raises an important question regarding the relationship between mathematics 

teaching and gestures: What factors influence the extent to which teachers‘ gestures 

affect children‘s gestures and their learning outcomes in mathematics instruction? 

The child characteristics, such as the child‘s prior knowledge, the complexity of the 

learning activities and the characteristics of the teacher‘s behavior could be some of 

the factors that future research may explore in concern with this issue.  
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HOW DO CHILDREN‘S CLASSIFICATION  

APPEAR IN FREE PLAY? A CASE STUDY 

Vigdis Flottorp 
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I analyze an episode from a field work in a multilingual kindergarten in Oslo, using 

semiotic theory. I examine verbal and non-verbal expressions of two boys playing in 

a sandpit. A key part of their play is creation of structure. My findings indicate that 

this structuring become conscious experiences to the children. I would argue that we 

cannot know about the children‘s mathematical and communicative competence 

without knowing the physical context, the play in the sandpit, and the friendship 

between the boys. 

BACKGROUND 

In Norway we got a new Framework Plan for the Content and Tasks of 

Kindergartens in 2006, which had a separate chapter devoted to mathematics, named 

‗Numbers, spaces and shapes‘. It says: 

(…) the staff must listen and pay attention to the mathematical ideas that children express 

through play, conversation and everyday activities (…) and support the mathematical 

development of children on the basis of their interests and modes of expression. (Ministry 

of Education, 2006:42) 

The Norwegian Framework stresses that mathematics have an intrinsic value for 

children, not only a value for the future. This concerns the justification for 

mathematics in kindergarten. According to some political signals, mathematics is 

important first of all for school readiness. A white paper brings out:  

In school many pupils struggle with doing arithmetic as a basic skill. There is a need for 

creating more positive attitudes to the subject. The general work in kindergartens and 

especially with the learning area ‗Numbers, spaces and shapes‘ is important in this 

context. (Ministry of Education, 2009:77) 

In the recent years learning has been stressed, focusing on basic skills. In Norway 

the kindergarten became a part of the educational system with the transition from 

The Ministry of Children and The Family to Ministry of Education. 

This has caused a revived debate concerning the concepts of play and learning. Most 

people agree that kindergarten shall be a learning arena. The question is how this can 

be realized in mathematics, and what the concept of learning implies. 

Much research on mathematics in the early years is based on experimental situations, 

often with single children. It‘s harder to find research on mathematics in free play 

and in informal everyday situations. Some studies though, I have found. Bjôrklund 

(2007) uses video and analyses toddlers in order to discover how they come to 

understand different aspects of mathematics like parts and whole, similarities and 
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differences. Her findings indicate that the children become aware of how things can 

be seen as a group of items with similar qualities, by first experiencing units as being 

separate from other units. The children tend to focus on visual characteristics of 

items especially when they differ from others. The study is interesting because of her 

focus on very small children in everyday activities, and because it reveals 

methodological problems interpreting the actions of small children.  

Fauskanger (1998) analyzes an incident where some children are playing pirates for 

weeks on a farm in the countryside. Measuring, counting and making record of 

prisoners are central parts of their play. Her study focuses on how the children 

construct mathematical knowledge in social context meaningful to them. This is 

similar to my case study, but while the episode I am analyzing is lasting for some 

minutes, hers is going on for weeks.  

Tudge & Doucet (2004) investigate children‘s engagement in mathematical activities 

of a complete day, comparing white and black children. The variation among them 

cannot be explained by ethnicity or class. Seo & Ginsburg (2004) perform a similar 

study, but include parents‘ income. These studies reveals challenging methodological 

issues, concerning how to record mathematical engagements in daily life activities.  

The latter study is indicating that enumeration is a relatively small part of the 

children‘s mathematical activities compared to shapes and patterns. My interest from 

the beginning was on geometrical phenomena more than enumeration. The research 

on small children‘s number sense is waste, while studies on their geometrical 

understanding are relatively sparse (Clements, 2003). When findings indicates there 

is less enumeration than other types of mathematics in kindergarten, but more 

research on enumeration, then my interest coincides with what seemed important to 

focus on.  

The main aim for my field work was to study the mathematics in children‘s everyday 

activities, focusing especially on geometrical concepts and on how children express 

them. I needed a tool for analysing all kinds of expressions - actions, gestures, body 

language and verbal utterance, and that‘s why I chose a semiotic approach.  

THEORY 

Semiotics is the study of culture as signs, where signs incorporate all kinds of tools 

used in communication, from linguistic to physical tools. Since these tools are human 

made, all concepts can be regarded as historically created. This also applies to 

mathematical concepts.  

Ideas and mathematical objects (…) are conceptual forms of historically, socially and 

culturally embodied reflective, mediated activity. (Radford, 2006:42) 

Mathematical concepts are like «lighthouses that orient navigators' sailing boats» 

(ibid.), but they are not ideas separated from our world. Their abstract and general 
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aspects are results of human activity, and new constructions can arise in another 

context. Consequently, knowledge is created and recreated in every situation. 

Traditionally, thinking is regarded as a mental activity. Radford (2009) advocates a 

multimodal perspective, where language, gestures and tools are considered as 

―genuine constituents‖ of cognitive activity. ―Thinking does not occur solely in the 

head, but in and through language, body and tools. (Radford, 2009:113). 

Accordingly, mathematics can become manifest in many ways. 

Concept formation is closely related to the context. This does not imply that 

knowledge can be reduced to individual constructions, because we use tools in the 

concept formation, tools which already have content. The relation between the 

subjective and the cultural content are like two sides of the same coin (Radford, 

(2006). One side is the subjective comprehension, intimately related to the person‘s 

experience. On the other side is the cultural content, transferred through the cultural 

tools in the act of meaning making (ibid., 52). This is why participation is regarded 

as crucial for learning, rather than acquisition.  

Sociocultural psychologists prefer to view learning as becoming a participant in certain 

distinct activities rather than as becoming a possessor of generalized, context-independent 

conceptual schemes. (Sfard, 2001, p. 23) 

Mathematics can be conceived in many ways. As a subject matter in school, three 

conceptions can be distinguished (van Oers, 2001). According to the first one, 

mathematics is synonymous with arithmetical operations. The second conception 

says that mathematics is about abstract structures applied to concrete situations, and 

the last one advocates that mathematics is about problem solving with symbolic 

tools. The second conception presupposes that structures are stable and a priori. This 

is not consistent with a sociocultural view, whereas the third conception is. 

According to this view, mathematical activity organizes human experience in a 

systematic way, also called mathematising. 

I myself insist on including in this one term the entire organizing activity of the 

mathematician, whether it affects mathematical content and expression, or more naïve, 

intuitive, say lived experience, expressed in everyday language. (Freudenthal, 1991:30) 

What make Sfards distinct activities and Freudenthals lived experiences 

mathematical? According to Mason and Johnston-Wilder (2004) desirable 

mathematical activity consist of some ways of acting; stressing and ignoring, 

specializing and generalizing, distinguishing and connecting, imagining and 

expressing, conjecturing and convincing, organizing and characterizing. 

Bishop (1988) argues that classifying is a fundamental part of explaining, which is 

one of what he sees as the six universal mathematical activities (explaining, 

counting, measuring, locating, designing, playing,). Explaining is a central part in all 

activities, because it is basically about exposing relations between phenomena, and 

he claims that the most important connection between phenomena has to do with 
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similarities. The quest for explanation is the quest for ―unity underlying apparent 

diversity‖ (ibid:48). This is what happens in classification.  

METHOD 

I visited a kindergarten in Oslo weakly for one year. The kindergarten is a preschool 

for practicum, located in an area with a high amount of minority speaking people. 

The section I followed, had 17 children aged 2-6 years. Five of the children had 

Norwegian as first language.  

In order to find out what was going on in the children‘s activities, I became 

participating observer. I could not plan the children‘s play or give them instructions, 

but followed their daily activities. Since I wanted to study what children do alone, I 

tried not to give them too many suggestions.  

I was interested in the social aspects of meaningmaking, and consequently I focused 

on situations with interaction between children. I was also curious about the role of 

the verbal language in a multilingual kindergarten. Hence, I concentrated on children 

with verbal language. 

I looked for situations with mathematical potential, like block building, drawing, 

games and conversation. Quite soon I distinguished some children because of their 

concentration and creativity. These children seemed to participate in the most 

interesting mathematical episodes. I do not infer that there is coherence between 

concentration and mathematics. My data selection does not tell anything about what 

is common or typical, but they can suggest how children express mathematical ideas.  

My data consist of notes, photos and videos. I classified the material, using Bishops 

categories. First I transcribed the videos roughly, dividing them in episodes after 

distinct activities. Then I chose the most interesting ones and transcribed them more 

thoroughly. In the interesting episodes some kind of problem arose, and these 

episodes were rich with regard to meaning and expression. Usually these episodes 

lasted over some time. Some episodes were interesting because they were surprising. 

Sometimes it was hard in advance to spot the interesting episodes. 

ANALYZE  

The episode lasts for only 3-4 minutes. When I start recording, the boys have placed 

different toys on the edge of the sandpit. It ends when another child enters the scene.  

One of the boys, Mohammed [1], excels with his interest in systems and numbers. 

The other one, Waqas, is a quiet and concentrated boy. They speak Norwegian with 

each other as their first languages are different.  

The sandpit toys constitute an essential part of the activity. They are artifacts with 

cultural meaning, which in this case is ambiguous. They are toys for children, but at 

the same time they resemble articles for daily use, - some look like kitchen 

equipment, other like miniature garden utilities. The cones are special since they are 
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neither kitchen nor garden utilities. They are the only items which I have given a 

mathematical name. The boys never mention any of the toys by name, but their 

actions reveal what kind of meaning they give to them. They pretend to drink from 

the cups and stir in the pans. From earlier observations I know that the children often 

use the toys for making food. Sometimes they expand this activity by making a 

restaurant, - pretending to serve and sell food. 

It looks like the play is about doing the same, because when one of the boys is 

drinking or stiring, the other one is mimicking. Consequently, it is essential to have 

the same types and the same number of sandpit toys, which they do not have. 

 

Mohammed Waqas 

cup cup 

cone cone 

2 pans 1 pan 

sea star sieve 

Fig 1: The distribution of the sandpit toys in the beginning 

The problem with Waqas having only one pan, is solved easily. He throws the sieve 

away and finds a frying pan. This item he bangs in the frame of the sandpit, 

declaring: ―Look what I‘ve found!‖ A frying pan is without holes and can have the 

same function as a cooking pan. This common feature becomes pronounced, when 

Waqas suggest that they put sand in ―everything‖. Mohammed responds that he will 

put sand ―only in two‖. Then both put sand in their pans, including the frying pan, 

showing that they agree on what ―everything‖ shall mean.  

The difference between sea star and sieve, is more difficult to solve, since there is no 

extra sea star around. Mohammed watches the toys, turns around, grasps the sieve 

and places it on Waqas‘ side, second to the edge. At the same time he points at his 

own sea star, saying: ―Look, sea star!‖ Then he turns the sieve bottom up. Then he 

controls the system by making one-to-one correspondence: He touches Waqas‘ toys 

one by one while he follows his own toys with the eyes, saying ―putting it there‖ for 

every item. In the end he declares: ―Now everything is alright.‖  
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Fig 2: Mohammed pointing at the cones while he declares:‖ Now everything is alright.‖ 

The sea star is hidden second from the end to the right. 

Mohammed creates a double similarity between the sea star and the sieve. First, he 

makes up a new criterion for classification – bottom up – which distinguishes the sea 

star and sieve from the other toys. Secondly, he creates a common feature by 

reflective symmetry, next further out.  

Waqas Mohammed 

pan sieve pan cup cone cone pan pan sea 

star 

cup 

Fig 2: The categories and the sequence of the toys on the edge of the sandpit.  

The symmetry is not incidental, because short afterwards the spades are placed in the 

sequence. Mohammed places his spade furthest out to the end with the handle turned 

to the middle. Waqas asks for help, consequently he must have understood that the 

placement is special and important. Mohammed puts his spade on his knee, handle 

turned to the middle, saying: ―It‘s like this.‖ Then Waqas places his spade on his 

side, the handle turned to the middle.  

The symmetry is not perfect, but Mohammed still declares that everything is alright. 

The purpose of the symmetry is to create a similarity between the sea star and the 

sieve. What is right in the play for the boys, is the essential condition, which is to do 

the same with the same number and kind of toys. This can be interpreted like a token 

of friendship where the boys mimicking each other.  

Friendship is an essential part of socialization. In this episode Mohammed is the one 

in command, and many would argue that reciprocity and balance are necessary for a 

friendship. According to Greve (2009) every friendship has its own style and history. 

What matters, is that the children have experiences which give them a common we. It 

looks like this is the case in this episode. They have a common project that they 

communicate to each other without misunderstandings.  
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DISCUSSION 

The play in the sandpit has many similarities with desirable mathematical activity 

described by Mason and Johnston-Wilder (2004). The boys are creating structure and 

order of the artifacts by stressing and ignoring, distinguishing and connecting. The 

toys can be classified in many ways, for example after size, color, form or function. 

The boys distinguish the pans from the rest by size. The pans and sieve are separated 

from each other by stressing topological aspects. By looking at form, the boys 

distinguish the cones from the rest. The sea star and the sieve are connected by 

placement and symmetry, ignoring all other aspects. 

The boys cognitive activity becomes manifest first of all through their 

communicative actions. They show, throw, bang and fill sand in the toys. Sometimes 

the artifacts themselves are mathematical expressions, for example when the spades 

are placed symmetric. The boys have few verbal utterances, and most of the 

utterances are deictic: ―I will get one like that,‖ says Waqas, searching for an 

equivalent to a pan. ―It is like this,‖ demonstrates Mohamed to his mate 

demonstrating how to place the spade. These words do only have meaning in the 

context, which is common to the boys. They talk well Norwegian, but still they 

communicate without many words because they do not need it. Their actions and 

deictic signals are sufficient. Accordingly it is irrelevant that they are bilingual. They 

do not use any mathematical words, yet they have made a structure of classification 

and symmetry. This can be compared to ethno mathematical studies, for example of 

children‘s geometrical patterns (Gerdes, 2007). These are describes in a 

mathematical language which is as strange to the children of Angola, as it is to these 

boys. Neither the patterns, nor the boys‘ system are coincidental. While the boys‘ 

structure is ad-hoc, the patterns of the Angolan children are stored knowledge, 

supported by tradition. The boys are making their own unique genre; they do not 

repeat a pattern. Most of the studies of children‘s mathematical classification 

concerns geometrical forms, based on features with unambiguous definitions. The 

studies examine usually to what extent children are able to separate the defining 

features from the irrelevant ones (Clements, 2003). 

While all mathematical concepts have a clear definition, the daily life concepts are 

often ambiguous. What makes a triangle to a triangle, are the human made 

definitions which have to be learned. Without them, a form with tree corners and 

curved lines could be a ―triangle‖. In the boys‘ classification, nothing is defined 

beforehand. They make up their own criteria, depending on the play and the feature 

of the toys. Their play reflects the adult‘s word, but at the same time it is different 

because they make the rules. They are in our world and in a make-believe world at 

the same time.  

Structures are just temporarily stabilized ways of approaching a problem. Mathematical 

activity in school – in order to be realistic – should focus above all on the processes of 
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structuring instead of the mastery of fixed and prescribed structures. (van Oers, 2001, p. 

63)  

In this episode the boys solve a problem, but do not use any traditional mathematical 

concepts or tools. Their actions, gestures and toys are semiotic signs which create a 

structure.  

CONCLUSION 

One single case cannot prove anything about the mathematics of small children. The 

analyses show that physical experiences and actions are fundamental in 

classification. It looks like all the communicative signs are intended. Hence, the 

children‘s mathematical experience cannot be unconscious. The children 

communicate in the most efficient way in the situation. In this case it means very few 

words. We emphasize the importance of verbalization, but in efficient 

communication we avoid unnecessary information. It is a challenge for the staff to 

create situations where verbalization is necessary and meaningful to the children. 

They should be encouraged to verbalize because of the benefits of using word, not to 

please the teacher.  

The study shows how classification is useful to children in their play, and that 

mathematics can have an intrinsic value for children. Often the structures are less 

sophisticated than in this case. Anyhow, classification is a structuring process and an 

informal learning situation, stimulating children‘s logical ability.  

The article started with a quote from the Framework Plan which stated that the staff 

should ―support the mathematical development of children on the basis of their 

interests and modes of expression‖ (Ministry of Education, 2006). The structuring in 

this case study is an example of this. There is a need for much more research on how 

the staff can support and develop learning situations on basis of children‘s activities.  

NOTES 

1
All the names are anonymous. They have been translated culturally, - for example, children with 

Urdu names have got usual Pakistani names. 
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ERSTMAL-FAST (EARLY STEPS IN MATHEMATICS LEARNING 

- FAMILY STUDY) 

Ergi Acar 

Mathematics Education in Goethe University  

Abstract. In this paper social-constructivist approaches of learning-as-participation 

will be applied. In this study, from a socio cultural perspective, we focus on family 

situations, which deals with mathematical problems as an everyday affair. It will be 

primarily presented as a comparison of an identical mathematical play situation of 

two immigrant Turkish families. The basic research questions: (1) cultural 

differences while playing, (2) the participation of siblings and (3) code switching 

during the play. 

Key words. Early Childhood Mathematics, Family, Code switching 

ERSTMAL AND ERSTMAL-FAST 

erStMaL, early Steps in Mathematics Learning, is a research project of  the 

interdisciplinary research center of  IDeA, Individual Development and Adaptive 

Education of Children at Risk, which is extensively interested in the development of 

children at risk.  This project is designed as a longitudinal study and relates to the 

investigation of mathematical cognitive development in preschool and early 

elementary school age from a socio-constructivist perspective. The Family Study of 

the erStMaL Project is named as erStMaL- FaSt, early Steps in Mathematics 

Learning-Family Study. It is also designed as a longitudinal study, which belongs to 

the erStMaL Project. 

THEORETICAL FOCUS OF ERSTMAL-FAST 

This project deals with the impact of the familial socialization for mathematics 

learning. In empirical level, we know from research projects like CEMELA and 

MAPPS (Civil 2005), that familial activities in mathematical context are corner 

stones of children‘s mathematical abilities and acquisitions. As Mills pointed out, 

parents are their children‘s first and continuing educators and nobody knows their 

own children like themselves. (Mills 2002,p.1) Thus, the family functions as parallel 

to an ongoing ―support system‖, parallel to preschool, kindergarten and (primary) 

school for the learning of mathematics. The more children experience mathematical 

situations in their families, the more learning of mathematics in early years occurs in 

the different emerging forms of participation in everyday situations in their families.  

By the term ―support system‖ it is referred to the idea of any socio- constructivist 

theory, which means that the cognitive development of an individual is constitutively 

bound to the participation of this individual in a variety of social interactions. They 

move on learning -but inevitably- they also support his/her development. With 

respect of Bruner‘s concept of a Language Acquisition Support System (LASS) that 
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exists beside an internal Language Acquisition Device (LAD), we propose a similar 

concept for the learning of mathematics, which we call analogically the  

―Mathematics Acquisition Support System‖ (MASS) (Bruner 1990). 

The process of engagement with the adult enabled the children to refine their 

thinking or their performance to make it more effective. Hence, the development of 

language and articulation of ideas was central to learning and development. 

(Atherton 2010) In these sense, familial contexts in multi-ethnic societies-like in 

Germany-, immigration, multilingualism and multiculturalism also inevitably have 

roles in early childhood mathematics education. As Suárez-Orozco & Suárez-Orozco 

write in their study on immigrant children "Immigrants are by definition in the 

margins of two cultures. Paradoxically, they can never truly belong either 'here' nor 

'there.'" (2001, p. 92) Thus, in bilingual immigrant families it is clear that their 

children at risk.  

From Zevenbergen‘s perspective (2003), according to social and cultural differences 

the way in which action and practice are structured highly influences the social and 

individual construction of identities while learning mathematics. Thus, especially in 

this study I am interested in mathematical discourse in the context of bi-cultural 

families. 

As authors Suárez-Orozco point out, the identity issues that immigrant children 

confront in feeling caught between their parents‘ culture and the culture in their new 

country: ―Children of immigrants become acutely aware of nuances of behaviors that 

although ‗normal‘ at home, will set them apart as ‗strange‘ and ‗foreign‘ in 

public…Immigrant parents walk a tightrope; they encourage their children to 

develop the competencies necessary to function in the new culture, all the while 

maintaining the traditions and (in many cases) language of home‖ (Suárez-

Orozco,Suárez-Orozco 2001, pp. 88-89). 

As H.Coffey explained, a practice of moving among variations of language in a 

different context is defined as a ―code switching‖. He identifies ―code switching‖ as 

the practice of switching between a primary (L1) and a secondary (L2) language or 

discourse in an educational context. In P.Auers‘s (1998) opinion, code-switching can 

be related to indicative of group membership in particular types of bilingual speech 

communities, such that the regularities of the alternating use of two or more 

languages within one conversation may vary to a considerable degree between 

speech communities. The conversations in bilingual immigrant families are usually 

the mixture of two languages in mathematical play situations. Paradoxically, with 

these multi-culturalism and -lingualism they create a new language, which occurs by 

both languages.  

Li Wei sorts Code Switching in 4 Categories: 

Inter-sentential switching occurs outside the sentence or the clause level (i.e. at sentence 

or clause boundaries). 
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Intra-sentential switching occurs within a sentence or a clause. 

Tag-switching is the switching of either a tag phrase or a word, or both, from language-B 

(L1) to language-A (L2), (common intra-sentential switches). 

Intra-word switching occurs within a word, itself, such as at a morpheme boundary. 

As mentioned above, tag switching and also intra-word switching can be performed 

by immigrant bilingual families in everyday affairs. Especially with regard to the 

young age of the children of erStMaL-FaSt, it can be assumed that these forms 

include intensive narrative argumentation (Krummheuer 2009, Van Oers). In 

mathematical play situations with families, explanations and narrative presentations 

which are strongly linguistic are used. By linguistic matters, code switching can be 

strongly influenced by the functioning of MASS in bilingual familial context. 

Through all these aspects, it will be interesting to find out the functioning of MASSs 

in bilingual families. 

METHODOLOGY OF ERSTMAL-FAST 

For the Family Study, 12 children who are about 4 years old are chosen from a larger 

sample that belongs to the project erStMaL. The criteria are the ethnic background 

(German or Turkish), duration of the formal education of the parents and sibling 

situations within the families.  

Our research design can be shown in the following table: 

 

more than 

one 

children 

 

only one 

child 

 

Higher Educational 

Families 

Turkish   

German   

Lower Educational 

Families 

Turkish   

German   

Figure 1: Table of research design. 

As shown above, two comparable families with different nationalities are matched.  

For erStMaL-FaSt, four play situations are conceived, which refers to the two 

mathematical domains: geometry and measurement. They are constructed according 

to specific design patterns, which will not be explained here. 

Data collection comprises of recorded videos and their transcripts. The erStMaL 

child is recorded with the members of family while they are playing.  

The data collection is organized according to following table:  
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Settings A)  
erStMaL child as single 

child 
B)  erStMaL Child as sibling 

erStMa

L Child 

is 

playing 

with  

A-

1) 

 

mother or one member of 

family (e.g. father) 

B-

1) 

 

mother or one member of 

family(e.g. father) and 

sibling 

A-

2) 

 

mother and one member  

of family (e.g. father) 

B-

2) 

 

mother, sibling and one 

member of family  

(e.g. father) 

Figure 2: Table of research setting. 

In this paper, I want to present two mathematical play situations of two different 

immigrant Turkish families as in Setting B-1.  

EPISODE- ―BUILD‖ 

The mathematical play ―Build‖ refers to geometry and spatial thinking. From given 

wooden bricks, the children and their families build three-dimensional bodies whose 

two-dimensional image is given on the playing cards. Supposedly, they perform the 

relations between two- and three-dimensional representations.  

All playing cards are placed face down on the table. Each card has of difficulty level 

from 1 to 3. The cards with the number 1 are the easiest ones and the cards with the 

number 3 are the hardest ones. To be clear in explanation, each dimension of a 

wooden brick is named also as follows: 

The player chooses one card from the pile of playing cards and tries to build the 

image on the card with the wooden bricks. In the transcription of two Scenes, to 

show the code switching, Turkish talks are written in bold; German talks are written 

in bold and cursive style. 

Scene 1 

In 1st Scene, family Gül performs a ―polyadic interaction‖. (Krummheuer 2007).  

Necessary information about Family Gül is given in the table below: 

 

Figure 3: Examples of playing cards.  

 

 

 

Figure 3: Examples of playing cards.  

 

Figure 4: Dimensions 

of a wooden brick.  
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Can        Didem      Berk Family Gül  

 

erStMaL Child 

Berk 

4;9 years old 

speaks Turkish and 

German 

Older Brother   

Can 

11 years old 

speaks Turkish and 

German 

goes secondary school 

Mother 

Didem 

studied 7 years 

(Low-Educated) 

Figure 5: Information about Family Gül. 

Play round begins with Berk. He takes a card, with number 1, the top of the pile of 

playing cards and builds it with the support of his mother and brother. After his turn, 

Can chooses one of the playing cards which is number 3. Although the card is of the 

hardest degree, he builds it easily without any help. Then mother Didem‘s turn 

comes. She chooses a card, with number 1, from the pile of playing cards.  

 

 

 

 

Figure 6: Chosen Card-Family Gül. 

At the first sight as Didem sees her card, she reacts, as it is too hard to build this 

figure. But opposed to her react, Can says that it is easy to build that figure, while 

she is looking obsessed to her card. After a while, Didem starts out to build and lays 

two wooden bricks on x side with her both hands in front of her. But again Can 

reacts contrary to his mother and tells her that she is doing it the wrong way. After 

she takes another wooden brick, she lays all of them on y side. Berk also reacts same 

as his older brother and he says that she is doing it the false way. While Can backs 

up Berk, Didem reacts just a momeeennt<93>. Up to now, although the three family 

members speak Turkish, for the first time, Didem changes language, makes a tag 

switching and moves from Turkish to German.  

After a while, Can seems that he cannot be patient and interferes the figure which is 

builded by Didem, by saying how she should do. But Didem looks this building just 

a second and changes the direction of whole figure as showed below:  
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Picture 1 Picture 2 

But Can instantly denies and says No you can‘t <98>.He takes a card in front of her, 

holds it up and shows her you are looking like that. That‘s why it is like that<99>. 

Then he puts it back in front of her. Didem turns the whole figure 90
0
  as showed on 

picture 3: 

Picture 3 Picture 4 

Then she says it doesn‘t matter if it lays like that..or like that. Can denies her 

again and responds then it is not difficult it must stand up then it is difficult <100-

101>. We understand here, the word ―stand up‖ refers to the y coordinate axis in a 

Cartesian coordinate system. It also shows us the differences between home-

language and school-language as an inter-sentential switching.  

Then Can takes a card from his mother‘s hand and by looking the card, he changes 

the position of the bricks again as showed above on the picture 4. At the same time, 

Berk reacts off maamm please it is soo. yeess sooo,and he smoothly regulates the 

wood bricks <117-118>. Berk‘s this reaction can be seen as a tag switching again. In 

the sentence, he moves from Turkish to German and then again from German to 

Turkish back. With this utterance, he addresses to his mother, and it seems that he 

got bored from the discussion between his mother and brother,too. 

Didem holds up the card, looks it again by showing to Can and says look I‘m 

looking like this . In return of Can, he takes the card from her hand and by showing 

says that‘s why it‘s up on your head <120-123>. Here, it is seen again inter-

sentential switching with the sentence ―it‘s up on your head‖. As a logical nexus, this 

sentence might refer again to y coordinate axis in a Cartesian coordinate system. On 

the other hand, between Didem and Can a direct participation occurs due to 

addressing each other. Afterward, Can regulates again the figure and changes places 

of two wooden bricks as shown as red lines in Figure 7. 

 

Figure 7: Putting order of the bricks. 
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But Didem interrupts him and tells that there is no difference among both figures and 

in conclusion, both figures are F. By explaining the form of the figure on the card, 

Didem refers it as an F, which can be named an intra word switching. It also shows 

us, how an adult can configure the mathematical figures and introduce them to 

her/his child (ren). After Can responds you don‘t unterstand.it must be like on the 

card <137-139>, Didem expresses that she just understands. Hereby Didems‘ turn 

ends up. 

Scene 2 

In 2.Scene, Family Ak performs and occurs ―dyadic interaction‖. (Krummheuer 

2007). Necessary information about Family Ak is given in the table below: 

       Leyla            Aleyna Family Ak  

 

erStMaL Child 

Aleyna 

4;8 years old 

speaks Turkish and 

German 

 

No Sibling  

Mother 

Leyla 

studied  12 years 

(High-Educated) 

Figure 8: Information about Family Ak. 

Play round begins with Aleyna. They play 4 turns each. They mostly pick up second-

degree cards. But the figures, they built, interestingly are not the same figures on the 

card. This situation follows at the fifth turn of the mother, which will be exemplified 

in this part, too. 

 

 

 

 

Figure 9: Chosen Card-Family Ak. 

Leyla picks up an upper given card, takes 2 wooden bricks from the box and lays 

them on the x side with her both hands in front of her. Then she regulates them as 

shown in picture 5. She asks for help to Aleyna while she is going on building the 

figure. By shaking her head up and down, Aleyna reacts. This reaction can be seen as 

a positive meaning, just like a confirmation of Aleyna. Right after, Aleyna attempts 
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to put a wooden brick, like her mother, near the other one. But Leyla denies her and 

shows with her finger up on the wood stick by saying up on it. up. <294>. (see fig.9) 

 

Picture 5 

 

 

 

 

 

 

Figure 9: Showing order of wooden sticks. 
Picture 6 

Aleyna puts K on L in the same art, just like how J stands. While Leyla is assisting 

Aleyna by putting up, she says you look around the card <296>. It is not clear 

enough what she really means, but it can be meant as an opposite side  that Aleyna 

looks the card from the opposite side of her mother. As it is seen although they speak 

only German, there can be different utterances by using second language (L2/ 

German) as a first language (L1/ Turkish) because of thinking in Turkish. But it 

cannot mean that is a Tag switching.  

Meanwhile Aleyna takes another wooden brick from the box and puts the new taken 

wooden brick on y side by centering up on the K as in picture 6, Leyla reacts no no 

that must be like round, shows to Aleyna the card with her finger and adds look like 

that look  should be an L. <306-308>. But Aleyna lets the wooden brick stand upon 

the K as just before.  By this explaining the form of the figure on the card, Leyla 

refers it as an L and makes a type of code-switching.  It also shows us again as in 

Family Gül, how an adult can configure the mathematical figures and can introduce 

her child. Although it is not so clear, which wooden bricks she means (E or H or I), 

they built something else as another figure. Leyla takes this brick out and puts the 

wooden brick in the same coordinate axis on the K but towards the front. Her act 

shows us what she means by L for a while. However, Aleyna clicks her tongue: tıhh. 

<329>. By this react, Tag-switching and typical reaction of Turks are seen, which 

means no.  

Then Aleyna follows by showing a card with her finger and tells that it doesn‘t look 

like that. By centering up again the same wooden brick on the K, she expresses that it 

has to be like that. Surprisingly, her mother acclaims and acknowledges her mind. 

But Aleyna seems not to understand and asks unintelligible by showing on the card it 

must be like a hammer <403>.Leyla responds by showing it upon the wooden bricks 

we had already. it was the hammer like here on the front. <407-411>. Thereby, 

they finish the play. By the explaining the form of the figure on the card, Aleyna and 

Leyla refer it as Hammer and make a type of code-switching. The word Hammer can 

be implied such as a sum of two functions in a x,y coordinate axis. This utterance is 
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just like a metaphor and with this sense; it can be named as an ―Intra word 

switching‖.  

CONCLUSION 

In this paper, a scene from Family Gül and Ak is introduced and reconstructed with 

the reference to the concept of learning-as-participation. With respect to their 

learning-as-participating, they cooperate by their discussion. They paraphrase a 

given figure on card and bring it in a new idea or perspective. Therefore, these forms 

are new representations of the sensitizing concept of learning-as-participation 

(Krummheuer, G. 2011). Considering the dynamics of the interactional turn-taking 

processes and specific relationships among utterances in Family Gül, it can be said 

that in a learning process a high degree of attentiveness occurs. In the first given 

scene, clearly learning-as-participation in a family is seen. While Didem comes up 

with a figurative meaning, Can insists on dealing with the cards according to the 

play-rules. There are not fixed roles in this family situation. However, the attitudes of 

the elder brother also affect his brother. Due to Berk‘s utterances, it can be clearly 

seen that he perceives his brother as a recipient. At this point, we see the importance 

of the participation of the sibling. The elder brother initiates an emerging 

mathematical process in the way he is discussing with his mother. 

In this point, a question comes to mind: what would be or happen, when elder 

brother does not exist in this play? In this sense, Scene 2 can be given as an answer. 

Because only the mother is an adult and a supportive person, it cannot be seen such 

an interactional turn-taking processes on the example the Family Gül. There is a high 

degree of attentiveness but no one remains true for playing card. Thus, Leyla 

supports her child not in a way, which would be based on the rules of the game. She 

does not act according to these rules and replies her daughter in the whole episode as 

if she is right, although the figure they built is completely different from the figure 

on the card. On the contrary of Family Gül, in Family Ak‘s situation, there are certain 

roles. Unfortunately in this familial situation, a defective emerging mathematical 

process is occurred by false building the figure and not enough or intensive 

discussing to justify the built figure. Due to Leyla‘s utterances, it can be said that her 

understanding of the support can be just to give a positive feedback to her daughter 

by saying ―yes, right or you are doing very good‖. Possibly this supportive system 

lacks an older sibling, as in Family Gül, who would be able to show the right way of 

the playing game. 

While we see often code-switching during the turn taking in an interaction of Family 

Gül, in an interaction of Famils Ak seldom code-switching occurs.  

On this account, it can be shown as a reason: emotional expressiveness. While the 

family member is disturbed, bored, or stressed, then he/she moves from one language 

to other language. For that several reasons, weak vocabulary, false grammar 

knowledge, cut corners, to be integrated etc can be given. When it is taken into 
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account that this family is an immigrant Turkish family, it will be not a surprise to 

cause code switching because of their emotions. To show a high emotion or reaction 

is a clear cultural difference between Turkish and German families. Hence, it is really 

often that they are seen ‗normal‘ at home, ‗strange‘ and ‗foreign‘ in public. With 

these multi-culturalism and –lingualism, they create a new emergent mathematical 

model in the learning process with their different attitudes. It remains still open, if 

this hangs a positive or negative effect. In both families, the common situation is to 

describe the figures as a letter of the alphabet. It can be explained as an effort of the 

adults to decrease to level of comprehension for their children. 

In conclusion, one might ask whether this newly created emergent mathematical 

model by immigrants can be used or improved by the researchers as a model for 

mathematical learning process in the immigrant families as a new learning process in 

multi-ethnic countries. More Research is needed in order to declare a model of 

mathematics learning in everyday situations of immigrant families. These first 

insights limit at some mathematic theoretical concepts, like zone of proximal 

development, capable adult etc. 
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The aim of this paper is to report results from a three-year project concerning 

collaboration with kindergarten teachers in implementing mathematics in the 

kindergarten. In our co-learning with the kindergarten teachers we all participated 

in a developmental project. The frame for analysing our data was developmental 

research. The analysis shows that the kindergarten teachers changed their practice 

throughout and because of their participation in the project. These changes were 

exemplified through increased mathematical consciousness in orchestrating 

mathematical activities, emerged emphasis on disseminating thoughts and ideas to 

colleagues, and changed ways of communicating with the children.   

introduction 

During the last few years, mathematics has gained increased focus as a separate 

subject area as regards the content of Norwegian kindergartens. In particular, this 

was due to an increased emphasis on mathematics in the present curriculum for the 

kindergarten. In this curriculum mathematics is explicitly mentioned as an area with 

which children are supposed to be engaged; an emphasis not made before. This 

increased focus on mathematics, made by the authorities, put the kindergarten 

teachers in a challenging situation as to how to implement and orchestrate 

mathematical activities in the kindergarten. 

A professional development project called Learning Better Mathematics (LBM
63

) has 

been initiated as a joint project with teachers in our university region and 

didacticians at the University of Agder (UiA). This project has enrolled in close 

relationship with a research project called Teaching Better Mathematics (TBM
64

) 

initiated at the University of Agder. In these two projects, teachers and didacticians 

are collaborating in order to promote mathematics teaching and learning (cf. Carlsen, 

Erfjord, & Hundeland, 2010). In this paper we report from some of the results of this 

collaboration, analysing to what extent the kindergarten teachers‘ practices have 

changed due to their participation in LBM. The study focuses on the kindergarten 

teachers‘ conceptions about their own development in orchestrating mathematical 

activities. We use the notions of co-learning and co-learning agreement (Wagner, 

                                           

63
 The LBM project was supported by The Competence Development Fund of Southern Norway, Tekna and Vest Agder 

County. 

64
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1997) in order to describe the nature of our collaboration with the kindergarten 

teachers. According to Wagner (1997), co-learning agreement is described as 

follows: 

In a co-learning agreement, researchers and practitioners are both participants in 

processes of education and systems of schooling. Both are engaged in action and 

reflection. By working together, each might learn something about the world of the 

other.  Of equal importance, however, each may learn something more about his or 

her own world and its connections to institutions and schooling (Wagner, 1997, p. 

16). 

We are aware that the kindergarten teachers (practitioners) and we as didacticians 

(researchers) bring different kinds of expertise when engaging in collaborative 

activities. These different resources contribute to one another as to possibly develop 

the orchestration of mathematical activities in the kindergarten. With this as 

background it is interesting to scrutinise the outcomes of the kindergarten teachers‘ 

participation in LBM. The following research question has therefore been 

formulated: In what ways have the kindergarten teachers‘ mathematical practices 

changed, due to their participation in the project? 

Project organisation 

The project Learning Better Mathematics encompassed nine schools and four 

kindergartens. One important element of this project was workshops at UiA. The 

content of these workshops was devoted to mathematical topics such as geometry 

and number calculation combined with didactical topics such as communication in 

mathematics teaching and learning and designing of mathematical tasks. At these 

workshops there were plenary sessions and group sessions. In the group sessions, the 

kindergarten teachers were organised in separate groups, discussing, to them, 

relevant issues of how to engage the children in mathematical inquiry relative to the 

mathematical focus of the workshop. Thus, they shared thoughts, ideas, and engaged 

in mathematical activities. Another important element of the project was institutional 

visits by didacticians in kindergartens. At such visits, kindergarten teachers and 

didacticians discussed and reflected on how to implement and orchestrate 

mathematical activities in the kindergarten, and didacticians often observed 

kindergarten teachers‘ mathematical activities with children. 

Theoretical framework  

A theoretical ground for this study is a sociocultural perspective on learning and 

development. We view learning as a fundamentally social and situated process of 

appropriation where individuals, i.e. kindergarten teachers and didacticians, make 

concepts, tools, and actions their own through their collaboration and communication 

(Rogoff, 1990; Wertsch, 1998). The reason for situating our study within this 

theoretical position is our aim of scrutinising and making sense of the 

institutionalised interaction and learning activities taking place.   By studying the 
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professional development of kindergarten teachers through interviews, we are 

analysing their processes of appropriating ways of orchestrating mathematical 

activities.  

According to the project‘s theoretical stance in general (cf. Jaworski, 2007), inquiry 

is a central theoretical notion. The aim and intention of the project has been to 

collaborate with teachers in order to promote development of mathematics teaching 

through inquiry (Wells, 1999; Jaworski, 2005). According to Wells (1999), inquiry is 

a process described as ―a willingness to wonder, to ask questions, and to seek to 

understand by collaborating with others in the attempt to make answers to them‖ (p. 

121). Moreover, according to Cochran-Smith and Lytle (1999), the core of inquiry is 

a position they call an inquiry stance. That is, when one as a researcher and/or 

teacher takes a positively, critical position towards ones own practice, reflecting on 

this practice and asks critical questions in order to make a way into the deeper 

substance of the practice. In our case the practice is thus that of the kindergarten 

teacher, the what, how and why behind the mathematical learning activities 

orchestrated in the kindergarten. In our study, the notion of inquiry serves as a tool to 

describe how the kindergarten teachers‘ practice has changed.  

Developmental research 

The methodology of this study is developmental research (Freudenthal, 1991; 

Gravemeijer, 1994). Didacticians and teachers collaborate in order to change and 

develop the mathematical practice in the classroom, engaging in these developmental 

processes, critically reflecting on these practices, and discussing their teaching 

experience. The basic assumption is hence made, that if there is going to take place 

any changes in the mathematical practices in schools and kindergartens, it is the 

teachers that have to bring such changes about.  

In developmental research there is a cyclical relationship between research and 

development. The research guides the development and the development nurtures the 

research (Goodchild, 2008). In combining this methodology with co-learning 

(Wagner, 1997), both teachers and didacticians get the opportunity to participate in 

the research process. The project activities are hence designed within such a frame. 

By adopting this methodology our aim is to experience ―the cyclic process of 

development and research so consciously, and reporting on it so candidly that it 

justifies itself, and that this experience can be transmitted to others to become like 

their own experience‖ (Freudenthal, 1991, p. 161). Furthermore, our aim is to make 

contributions both to the field of mathematics education researcher and to the field of 

practitioners in their orchestrations of mathematical activities in the kindergarten. 

Through developmental research we simultaneously study both the promotion of 

development and the developmental process as such (Bjuland & Jaworski, 2009). 

Analysis and Results 
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The empirical basis for our analyses was three focus group interviews, one in each 

kindergarten, made by one of the didacticians within the project, as well as 

observations in these kindergartens. The three kindergartens are approximately equal 

in size, both as regards number of staff (25) and children (70-80).  Eleven 

kindergarten teachers participated as indicated in Table 1. In Norway, kindergarten 

teacher education before 1994 did not include any mathematics course. After 1994 

only a minor course (6 ECTS) was included. In our study, the majority of the 

participants was educated before 1994.  

Name of kindergarten: Naturbarnehagen Pinocchio Andungen 

Name of the of kindergarten 

teachers in the interview:  

Else, Sam, Marit, 

Ronny 

Julie, Maiken, 

Lotte 

Vilde, Line, 

Unni, Venke 

Table 1: Overview of participating kindergarten teachers in the interviews 

We took a systematic and iterative approach to the analysis of the interviews. We 

scrutinised one interview each and identified emerging issues. We discussed and 

compared these issues and agreed to examine them further in a new phase of 

analysis, based on commonalities and relevance for our research question. This 

second phase of analysis revealed three findings: 

1. Increased consciousness regarding mathematics in the kindergarten. 

2. Willingness to disseminate thoughts, ideas, and experience. 

3. Improved ways of communicating mathematical ideas with the children. 

In our data there are several parallel utterances confirming the same finding. Thus, 

we will here present and analyse only some of the kindergarten teachers‘ utterances 

as regards to three findings. 

Increased consciousness regarding mathematics in the kindergarten 

When the kindergarten teachers were asked to make their own experience from 

participating in the project explicit, we found three types of comments with respect 

to increased consciousness: 

 An extended view on the nature of mathematics and how it may look like in 

the kindergarten practice. 

 A changed personal relationship to mathematics. 

 Development of experience regarding implementation and orchestration of 

activities with inquiry in mathematics sessions in kindergartens.   

As regards the first bullet point, one of the kindergarten teachers, Lotte, claims that 

she has changed her way of thinking of mathematics in the kindergarten because of 

her participation in the project: ‖It is much easier for me to open up for more 

mathematical aspects to include in the activities and to think about how I can include 

these aspects. Now I have several mathematical ideas that I will develop further‖ 
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(Lotte, Pinocchio, line 292). A common expressed argument by the kindergarten 

teachers was that they now were in a position where they were more able to exploit 

and facilitate mathematical activities with the children. Such a view was by one of 

them expressed in the following way: ―We have all developed experience making us 

more alert and ready to exploit the potential (for mathematics activities) when they 

appear. Perhaps we observed similar things before too but then we were unconscious 

of the mathematics‖ (Unni, Andungen, line 196). Marit from Naturbarnehagen added 

to the picture of what mathematics is and may look like in the kindergarten 

environment. She expressed that playing activities may be a good arena to promote 

mathematics: ―It is wonderful to see that we can play mathematics‖ (Marit, 

Naturbarnehagen, line 114). These utterances we interpret as reflecting the 

kindergarten teachers increased consciousness with respect to what mathematics may 

look like in the kindergarten environment and in unfolding mathematical activities in 

the kindergarten. They have apparently changed their approach to the mathematical 

practice as well as developed their view and experience as regards orchestrating 

mathematical activities in the kindergarten.  

With respect to the second bullet point, the kindergarten teachers talked about an 

earlier fear for mathematics which is no longer present. One of them expressed: ―I 

have been one of those who have disliked mathematics, but now I very much 

appreciate it‖ (Venke, Andungen, line 73). Ronny at Naturbarnehagen said: ―It has 

been fun to see that colleagues I have talked with in our kindergarten, which have 

had problems to see the meaning of including mathematics, now have started to 

change their view of mathematics‖. Marit, one of Ronny‘s colleagues, exemplifies 

this argument: ―We see that the project has contributed in making mathematics less 

fearful for us‖ (Marit, Naturbarnehagen, line 15). We interpret these utterances as 

confirming that they have changed their personal relationship to mathematics. 

Concerning the third bullet point increased consciousness and the changed personal 

relationship to mathematics have lead to new actions with the children. Throughout 

the project, many of the kindergarten teachers several times expressed that inquiry 

was well known and familiar to them. This was repeated in the interviews: ―The 

method inquiry is not new to us. It is an old method in kindergartens‖ (Venke, 

Pinocchio, line 73). However, it appeared that working with mathematics in an 

inquiry way was new to them. Maiken argues: ―We have worked with mathematics 

before, but not in this way, not so actively (Pinocchio, Maiken, line 26). Related to 

the third bullet point, several of the kindergarten teachers commented on what it 

means to interact and communicate with children in an inquiry way; the third main 

finding of this study. 

The kindergarten teachers emphasised how they have progressed in their  

implementation of mathematical activities. They pointed to the workshops as an 

important arena to discuss and share ideas. Line reflected on her development: 

―During the workshops, my brain starts to work and I am thinking on how I can use 
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this, whether it is too difficult to implement or if I can use parts of it? In the 

workshop on symmetry (in a plenary, pictures of symmetric leaves and flowers were 

presented), I thought that this is useful and possible because we are, in our 

kindergarten, always focusing on outdoor activities.‖ (Line, Andungen, line 102). 

This utterance indicates a readiness to implement mathematics in the kindergarten. 

On a more general level, Lotte said: ‖I believe it is important to move beyond the 

stage ‘mathematics is everywhere‘ and ‘we are counting‘. I believe we have to move 

further than that. Of course, we are counting, but we have to be more thorough, to be 

more systematic, and justify what we are doing as regards mathematics‖ (Lotte, 

Naturbarnehagen, line 274). This was not only at a superficial level, but they were 

aware that in order to support and facilitate mathematical activities with the children, 

they needed to be more systematic and comprehensive.  

Willingness to disseminate thoughts, ideas, and experience 

From our analysis of the focus group interviews we found that the kindergarten 

teachers are eager to disseminate the basic ideas of the project to other kindergarten 

teachers in their own kindergarten, to kindergarten teachers in the project, to fellow 

kindergarten teachers in their local city, and to parents. 

Only a small number of kindergarten teachers in each kindergarten participated in the 

project and came to workshops at the University. But kindergarten teachers in the 

project paid attention to disseminating project ideas to their colleagues, including 

assistants without pedagogical education. Unni said: ―The whole kindergarten 

participates. Thus, it becomes a part of the kindergarten, not only something a few 

are familiar with. Everyone becomes part of it.‖ (Unni, Andungen line 7). Also at 

Naturbarnehagen and Pinocchio they prioritised dissemination to colleagues. Maiken 

at Pinocchio talked about the situation at her department of the kindergarten, saying 

that: ‖I think the whole group of staff is more involved now than they used to be‖ 

(Maiken, Pinocchio, line 26). Staff meetings were mentioned as an arena for 

dissemination within the kindergartens: ‖In the staff meetings, apart from project 

information, we have sometimes worked in groups and we have had visits from UiA 

where inquiry and the project have been focused‖ (Unni, Andungen, line 14).  

A second kind of dissemination took place between kindergartens in the project. In 

all the interviews, kindergarten teachers emphasised the learning benefit of sharing 

ideas. Julie stated this in the following way: ―We are learning from each other‖ 

(Julie, Pinocchio, line 119). In fact Unni expressed that she would have liked to 

share even more with the other project participants: ―Sometimes, when we have 

finished the work in groups (in the workshops at UiA), I think we could have shared 

more‖ (Unni, Andungen, line 137). Thus, the kindergarten teachers participating in 

the project apparently shared their ideas and experience with utilising inquiry in 

orchestrating mathematical activities.  



Working Group 13 

 CERME 7 (2011)  1878 

Dissemination to other kindegartens were also taking place, for instance through 

arrangements for kindergarten staff in the local city. When referring to an upcoming 

planning day for those people, where Lotte and Julie were going to give a lecture, 

Lotte said: ―We are going to tell how we have worked with mathematics in our 

kindergarten, and we have planned to give several examples of inquiry in 

mathematics to the audience, because that is what we believe the audience is 

interested in‖ (Lotte, Pinocchio, line 390). One of the authors of this paper 

collaborated with these kindergarten teachers in giving this lecture. Therefore, we are 

able to conclude that dissemination of basic ideas indeed took place.  

The fourth kind of dissemination was related to involving the children‘s parents in 

the ideas of inquiry as an approach to mathematics. The kindergarten teachers 

reported about concern raised by some parents to implementation of mathematics in 

the kindergarten. However, this situation has changed: ―They were afraid that the 

children would loose the possibility to play freely and they were unsure about this 

(the mathematics). But gradually we now only get good feedback, excellent feedback 

from the parents‖ (Venke, Andungen, line 47). The kindergarten teachers also 

reported that they have got feedback indicating that some parents with children in 

other kindergartens were jealous since their children were not approaching 

mathematics in the same way: ―Other parents in other kindergartens, they are a bit 

yealous‖ (Unni, Andungen, line 54). These utterances we interpret as confirming a 

desire to disseminate project ideas broadly. For instance, dissemination took place 

through documentation of activities with posters used in staff meetings and meetings 

with parents. Written documentation gave possibilities for disseminating ideas to 

assistants and substitutes in order for them to engage with mathematical inquiry. 

They also had a wish to create a resource bank electronically available for the staff. 

Improved ways of communicating mathematical ideas with the children 

From the interviews we found evidence of improved ways of communicating with 

children in mathematical activities. One of the kindergarten teachers pointed to 

inquiry as a tool that increased the awareness of how to communicate: ―Inquiry in a 

way makes us much more conscious about how we talk (Else, Naturbarnehagen, line 

17). Ronny reflected about how inquiry facilitates profound and prolonged 

discussions with children: ―It is fun to sit together and talk with them. It is an 

excellent method for children to have a long conversations; a good long 

conversation‖ (Ronny, Naturbarnehagen, line 179).  

Maiken at Pinocchio emphasised the importance of children answering questions and 

coming up with new questions themselves: ―I have to let the children get the 

possibility to answer. Now I have to let them get the opportunity to find possible 

answers and to come up with new questions, and resist putting words in their mouth‖ 

(Maiken, Pinocchio, line 22). A similar concern for questions was visible in a 

dialogue between the kindergarten teachers Marit, Else and Ronny at 

Naturbarnehagen:  
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31 Marit: I am now much more conscious when I am together with the children, 

what I say to them and I am concerned what they might come up with 

32 Else: They are now more clever to ask and we draw on the opportunites 

arising in daily life and use them actively.  

33 Marit: We now pay more attention to this issue 

34 Ronny: We see it much clearer.  

Marit gave an example of how she facilitated mathematical communication. An 

example is the word ―under‖ in connection with an outdoor track which included 

hurdles: ―I asked him afterwards, how did you move?. He answered that he crawled 

under. It is important that they use their own words; it is not me who should tell them 

(Marit, Naturbarnehagen, line 29). 

We did not explitly find utterances concerning new ways of communicating in the 

interview at Andungen. However, in Carlsen et al. (2010) we reported from a 

mathematical activity led by Unni at Andungen. The communication was dominated 

by a variety of question giving the children opportunities to participate and 

contribute with ideas and arguments in the mathematical activity. In our conversation 

with Unni after the activity, she claimed that this intensive use of questions was due 

to her participation in the project. 

To summarise, we found that the kindergarten teachers wanted the children to take 

more active roles than before. This awareness gave children several opportunities to 

inquire; taking charge of finding solutions, asking their own questions and creating 

new mathematical challenges. We interpret this as a shift in the relationship between 

kindergarten teachers and the children.  

Discussion 

We set out the following research question for this paper: In what ways have the 

kindergarten teachers‘ mathematical practices changed, due to their participation in 

the project? We argue, based on the kindergarten teachers‘ comments, that they by 

being participants in the LBM project have changed and developed their view of 

mathematics. Furthermore, they have developed experience in implementing 

mathematical activities in kindergarten. They claimed that these changes have 

resulted in a more focused orchestration and facilitation of mathematical activities 

characterised by inquiry. We interpret these changes as indicating a changing 

practice. We will argue that the kindergarten teachers‘ changed practices are due to 

their participation in co-learning processes (Wagner, 1997) at different arenas; 

between didacticians and kindergarten teachers, between kindergarten teachers and 

between kindergarten teachers and children. When participating in such processes, 

the kindergarten teachers increased their consciousness as regards mathematics, they 

disseminated thoughts, ideas and experience, and they improved their ways of 

communicating and discussing mathematical ideas.  



Working Group 13 

 CERME 7 (2011)  1880 

The kindergarten teachers‘ awareness and valuing of the role of questions and 

contributions by the children in such activities, illustrate that the teachers have taken 

an inquiry stance towards mathematical activities in the kindergarten (Cochran-

Smith, & Lytle, 1999; Jaworski, 2005, 2007). In accordance with how Wells (1999) 

describes an inquiry process, the kindergarten teachers critically scrutinised their 

own practice, which facilitated the children‘s possibilities to inquire into the 

mathematics. In their orchestration of mathematical activities, the kindergarten 

teachers emphasised the social and interactive dimensions of learning. This was also 

visible in our observations, where the kindergarten teachers organised goal-directed 

mathematical discussions among themselves and a small group of children. We will 

argue that these indicators exemplify the kindergarten teachers‘ processes of 

appropriating inquiry as a tool and as a way of being as regards mathematics 

(Rogoff, 1990; Wertsch, 1998). 

We would also like to argue that developmental research, as a methodology for 

conducting the kind of research presented in this paper, has been fruitful when it 

comes to scrutinising the various aspects of how the kindergarten teachers have 

changed their own practice of orchestrating mathematical activities. The 

development of the practice has indeed nurtured our research, and it is our hope that 

our research may guide possible development in the future (cf. Freudenthal, 1991; 

Goodchild, 2008; Gravemeijer, 1994).  

The kindergarten teachers claimed that they currently think differently about 

mathematical activities. They reflected more thoroughly in their approach to 

orchestrating these activities, including careful considerations of how to 

communicate mathematically with children. Furthermore, they were eager to 

disseminate their thoughts and ideas at several arenas as regards mathematics in the 

kindergarten. They also claimed that they have gained from their participation in the 

project, by making references to ideas and tasks presented and discussed at 

workshops and staff meetings. These transformations we interpret as exemplifying 

what Jaworski (2005) means by appropriate inquiry as a way of being in 

orchestrating mathematical activities in the kindergarten.Through our three-year 

collaboration with the kindergarten teachers, we have observed their orchestration of 

mathematical activities, their discussions of mathematical and didactical issues at 

workshops, and their dissemination of ideas and experience from the project. These 

observations, together with the analytical findings reported in this paper, contribute 

to our argument that they have changed their practices. In Norway, in-service 

training typically has been offered as short term ad hoc courses. Our study implies 

that professional development is achievable through long term co-learning and 

fostering of inquiry communities among didacticians and kindergarten teachers.  

The three findings that have been identified as regards the research question, all 

address in what ways the kindergarten teachers´ have changed their practice. 

However, we do not consider this as evidence of successfulness of the project as 
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such.  Further research might reveal constraints and problematic issues as regards 

implementation of the project‘s aims and ideas.  
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Starting from the assumption that very young children exhibit some naïve forms of 

algebraic skills, in this work we present and discuss an episode occurred within a 

grade 2 classroom experimental work. This work is centred on an exploratory 

activity (namely, looking for regularities) in the domain of natural numbers. We 

observe that this kind of activity, if suitably managed, can activate the search for 

tricks to help mental calculation, inducing in children a first shift from an arithmetic 

behaviour, based on search for results, to an algebraic attitude, based on the search 

for relationships. Moreover, we notice how a guided use of suitable representations 

can transform children‘s natural bent to look for regularities into ‗awareness of, or 

attention to, structure‘, in the sense of (Mason et al., 2009). 

Key-words: natural strategy, algebra, structural thinking 

INTRODUCTION AND THEORETICAL FRAMEWORK 

In the last years an increasing number of researches pointed on recognizing naïve 

forms of algebraic thinking in very young children (Carraher et al., 2001; Lee and 

Freiman, 2004; Malara and Navarra, 2008; Radford, 2010). Along these lines, the 

quite simple view that identifies a one-way ―ontogenetic‖ path from the arithmetic 

thinking to the algebraic one has been doubted (Radford, 2001, 2010), while a more 

complex relationship has been hypothesized. 

Among many attempts to deeply investigate on children‘s abilities in mathematical 

generalization and abstraction, various research experiences have been developed 

concerning the study of pattern work at early school years (see for example Stacey, 

1989; Lee and Freiman, 2004; Radford, 2010 and Rivera, 2010). The work of Lee 

and Freiman, carried out also at kindergarten level, ―confirmed […] the more positive 

observation, that children engage easily and enthusiastically in pattern work having 

little or no difficulty in ‗seeing a pattern‘‖, but at the same time stressed ―the more 

negative observation, that the final stage of pattern work, checking the 

generalization, appears to be absent‖ (Lee and Freiman, 2004, p. 2). Before, Stacey 

in her work (1989) already noticed a similar behaviour in primary school students by 

observing a certain reluctance to generalize or the presence of only some rough 

forms of generalization: ―students have demonstrated a willingness to grab at 

relationships without subjecting them to scrutiny‖ (Stacey, 1989, p. 163).  

A different view is adopted by Radford (Radford, 2010). His study, besides deeply 

analyzing some early forms of algebraic thinking, in the conclusions faces the 

problem of monitoring their development. In other words, the relevant question is 
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not only to identify what children can or cannot do at an early stage, but also how to 

favour the development and possibly to improve these embodied, non symbolic 

forms of algebraic thinking. In this direction, the question arises that is crucial in the 

present study: what kind of early work leads to the development of algebraic 

thinking? 

Indeed, whilst it is now widely acknowledged that very young children are capable 

of some forms of algebraic skills, it seems also evident that ―algebraic thinking does 

not appear in ontogeny by chance, nor does it appear as the necessary consequence 

of cognitive maturation. To make algebraic thinking appear some pedagogical 

conditions need to be created‖ (Radford, 2010, p. 79), but ―the task of creating 

appropriate didactical tools for the teaching of algebra in the early grades […] has 

barely begun.‖ (Lee & Freiman, 2004, p. 1). 

In our research group, the methodological and didactic aspects and the related 

teaching proposals for an early approach to algebra, follow from a basic cognitive 

assumption, supported also by some neuroscience results, namely that (i) the aptitude 

to abstraction is typical of human nature and spontaneously exerted from the very 

early age, and that (ii) the purpose of education is just to refine and to formalize the 

forms of abstraction and to become conscious of them, what can be obtained in 

situations of cultural immersion and social interaction, together with a progressive 

development of linguistic skills (Iannece & Tortora, 2008). Therefore, in the last 

years we have been particularly interested in finding and analyzing all the natural 

strategies that can be seen as rough forms or precursors of the mathematical 

procedures, abilities and structures, and in designing suitable didactic interventions 

with the aim of let them emerge, be exploited and refined (Iannece et al., 2009 and 

Iannece et al., 2010). 

In the case of algebraic thinking, if we start from the assumptions that the algebraic 

thinking can be viewed as a particular way of expressing abstract relations and 

processes (for example arithmetical ones) and that children have a natural tendency 

to abstraction, the purpose is to lead learners to what Mason et al. have called the 

awareness of, or attention to, structure (Mason et al., 2009). As they emphasize in 

their work, learners manifest awareness of, or attention to, structure when they begin 

to focus on what stays and what changes – that is, ―becom[e] accustomed to 

considering invariance in the midst of change‖ (p. 13).  

Assuming a vision of thinking as interpersonal communication (Sfard, 2008), but 

also as intrapersonal communication made tangible by social practice and 

materialized in the body, in the use of signs and artefacts (Radford, 2010), algebraic 

thinking can be seen as a kind of ―discourse‖ (inter/intrapersonal) in which we can 

recognize this attention to structure. 

In this study we will show how an activity of free exploration in natural numbers 

domain can promote this attention, in particular when the need of obtaining untrivial 
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arithmetic results favours the search for tricks to easily perform mental calculations, 

inducing in children a first shift from an arithmetic behaviour (simple execution of 

correct operations), to an algebraic attitude, based on attention to structure. 

Furthermore we analyze how this first form of attention to structure can develop into 

more ‗formal‘ knowledge and into sound linguistic formulations, taking advantage 

from the guided use of suitable representations (objects, drawings, etc.) for the sake 

of social interaction. 

ARITHMETIC EXPLORATION 

In this section we present a second grade classroom experimentation. It is based on 

an exploratory activity on natural numbers, which starts with the following task: 

Take three consecutive numbers and add them up. Repeat this several times, using 

other groups of three consecutive numbers. What do you observe?  

It is an open task, that we usually propose to students of different grades, with more 

or less deep goals, depending on their age. In our case (grade 2), the ―simple‖ 

calculation of several sums, possibly of big numbers, is in itself a demanding task. 

This is not made by chance: indeed, it is just the obstacle consisting in children‘s still 

poor calculating skills, that stimulates a sort of tension between arithmetic and 

algebraic behaviours. As we will better see in the sequel, also due to teacher‘s 

mediation, children are forced to look for tricks that enable them to perform quite 

difficult calculations. In this way their attention naturally shifts from the simple 

search for the result of a calculation to the detection of a general structure.  

In our opinion, our experience corroborates Radford‘s view (Radford, 2001, 2010) 

that the ontogenetic relation between arithmetic and algebra is quite complex. In fact, 

the described activity has been naturally intertwined with the usual arithmetic 

curriculum of grade 2, in particular with the normal acquisition of calculation skills. 

But the insertion of this kind of activities can help to move from the diacronic feature 

of arithmetic (where the mental processes of calculations are linearly distributed in 

time, and the results are obtained from the action of an individual) toward the time-

free and impersonal features of the structural world of algebra. 

As suggested by Mason et al. ―any sensible work approach to teaching combines 

work on understanding concepts with work on mastering procedures, and combines 

tasks designed to stimulate learners to express their own thinking using technical 

terms with task designed to highlight the use of important routines‖ (Mason et al., 

2009, p. 26). We think that the activities of exploration with natural numbers, 

suitably managed, can stimulate a structural vision of procedures. In this direction 

we have found very effective as an interpretative tool the distinction proposed in 

(Mason et al., 2009) between empirical counting and structural generalization. In 

the forthcoming analysis we will try to distinguish between an action performed by a 

child in order to obtain a particular result and an action performed in the attempt to 

clarify the underlying structure.  
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Research Method 

The episode that we present here took place in Winter, 2010, in a class of 19 Grade 2 

students. The class teacher is in service for many years, with her own more or less 

unconscious pedagogical beliefs, and her own educational experience. During the 

2010 the teacher was involved in a professional development course, held by our 

research group, arranged around several topics, among which the early approach to 

algebra65. The activity of exploration on natural numbers above described, is 

formerly faced in collaborative way during this professional course.  

During the experimentation in her class, the teacher alternated work in small groups 

(5 groups composed by 3-4 children) and work within the whole class group. A 

member of our research team recorded the class discussions and took some notes 

regards the gestures performed by students. The collected data consist in the class 

discussions transcripts, in representations produced by children during the small 

group activities and in the observing researcher‘s notes.  

According with the vision of thinking as interpersonal and intrapersonal discourse I 

conducted a multi-semiotic analysis of young students‘ behaviours (representations 

use, artefacts use and linguistic expressions) in order to follow the development of 

linguistic skills. Here I choose to analyses some excerpts of the activities in order to 

show how the guided use of suitable representations supports the development 

process of linguistic abilities. 

Results of the analysis 

At the beginning of the first lesson the teacher presents the task and divides the 

children into groups. Going around, she observes that in this first phase the pupils‘ 

natural behaviour is to arrange the numbers in the ordered sequence and then to 

obtain the various terns grouping all numbers by three. So, since all the groups 

choose their various terns not by chance but arranged in regular sequences, it seems 

that even though the task doesn‘t deal with patterns, the children autonomously build 

some patterns: 1-2-3; 4-5-6; 7-8-9; etc. Then, all the groups concentrate on the search 

of relationships among the sums of consecutive terns. Similar behaviours have been 

already observed in pattern work studies, for example Lee and Freiman say: ―What 

surprised us was how strong that urge to see a pattern is – strong enough to compel 

the student to impose a pattern by modifying or ignoring some elements in a given 

configuration‖ (Lee & Freiman, 2004, p. 5). Here our hypothesis is a bit more 

refined: namely, a task like the above one, where the attention has to be directed 

toward a generic element of an infinite set, requires a harder abstraction jump in 

comparison with a typical pattern work which deals with an already ordered infinite 

                                           

65  An analysis of possible changes in teacher‘s practice and beliefs should be interesting, but it is 

not the focus of this work. 
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set, asking to determine the n
th

 element of a given succession. But children, looking 

for patterns, perhaps exhibit the ability to split this jump in easier steps. 

Almost one hour later the groups are invited to communicate their findings to the rest 

of the class. The regularities recognized by children, expressed in natural language, 

are: ‗the alternation of odd and even numbers in the sums‘, ‗the possibility to obtain 

any successive sum by adding 9 to the previous one‘ and, finally, the only one 

destined to survive, ‗all sums are multiple of three‘. 

The teacher, respecting the children‘s need to work with terns arranged in a regular 

way, suggests a slight variation, that is to work with different sequences, but 

‗ordered‘ (as the children call them) as before: 

 0-1-2; 1-2-3; 2-3-4; 3-4-5; … 

0-1-2; 2-3-4; 4-5-6; 6-7-8; … 

Here, the teacher‘s management of the activity utilizes, more or less consciously, 

children‘s predisposition to look for ―what stays and what changes‖, that is one of 

the central points of Mason‘s ‗variation theory‘: ―human beings naturally detect 

similarity through becoming aware of variation‖ (Mason et al., 2009, p. 12). Indeed, 

the children realize very quickly that in the new sequences the difference between 

two consecutive sums is still a constant but not 9 anymore, and moreover, working 

with the last sequence, they also see that the regularity of ‗alternation of odd and 

even numbers‘ doesn‘t work. Finally, only the regularity ‗all the sums are multiple of 

three‘ works. The teacher helps the children to synthesize this first experience on a 

poster, to record their findings (Fig. 1) 

 

Fig. 1 

During the second lesson the teacher decides to work with the whole class group and 

proposes to choose a sequence of terns not ‗ordered‘ as before, but to take groups of 

three consecutive numbers at random. In a natural way the children start taking into 

consideration scattered terns: Gabriele, for example, takes 1-2-3; Giuseppe 12-13-14; 

Angelo 39-40-41, Ivan 83-84-85 and so on, with even larger numbers. In this way 

the children soon face the problem of calculating quite large sums, not easily 

manageable by mental calculation. Some children spontaneously use the additive 

algorithm which can be interpreted as empirical counting. Clearly, not all the young 

children are experts with the additive algorithm when the sums become so big. 
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Pointing on this difficulty, the teacher asks to carefully observe the three consecutive 

numbers and to try to find an easier way, a trick, to calculate their sum. As Mason et 

al. observe, ―inviting children to find ‗quick way‘ to do arithmetic calculations […] 

can be an entry into appreciating structure.‖ (Mason et al., 2009, p. 14).  

The children work in groups for a little time and then, after several attempts, Ivan 

observes: ―Teacher, I understand! It‘s enough to do 84 times 3‖. He seems to become 

suddenly aware of an action that he has repeated many times. In this way Ivan seems 

to generalize not a figural pattern, but an ‗action‘ pattern.  

Not all the other children seem to understand Ivan‘s observation, therefore the 

teacher invites Ivan to explain his finding, also because the rest of the class is not 

working on this particular tern. ―If we take away one unit from 85 and give it to 83 

than they become three 84, and so if we do 84 times three, we do it faster.‖66. We can 

recognize in Ivan‘s statement an attention to structure in which his empirical 

counting performed on the particular tern moves toward a structural generalization. 

Here an able teacher‘s intervention is needed in order to stimulate a more structural 

vision. Indeed, the teacher invites Ivan to use some objects like the rulers, or to draw 

a picture, to better explain his thinking. After a few time Ivan comes to a graphic 

representation, so clear and convincing that the whole class decides, following 

teacher‘s advise, to put it on a poster (Fig. 2).  

 

Fig. 2 

It is interesting to note how Ivan‘s drawing, based on the rulers, though obviously 

concerning a single, and even very simple numerical case, bears a true 

generalization, much as in the use of geometrical figures. In fact, even if Ivan uses 

the ―little square‖ to represent two different things, namely the generic number and 

the unit, we can recognize in his representation a naïve form of notational 

symbolism. Quoting Mason again, ―there is a basic awareness based on physical 

manipulation of objects which tells the people the answer without having to do 

particular cases‖ (Mason et al., 2009, p. 15). Moreover, it is the need to 

communicate his hypothesis to the rest of the class that allows Ivan to go a step 

farther and to produce a graph with some algebraic feature, thereby to reach a form 

                                           

66 Unfortunately, we cannot report here about the interesting gestures by which Ivan accompanied 

his words, since we don‘t have any video recording of the episode, but the observing researcher 

describes the gestures as a kind of forerunner of the representation in Fig. 2.  
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of algebraic thinking, sophisticate enough. That the use of such representation 

strongly induces a clearer structural vision is proved by the fact that Ivan, after his 

drawing, is able to articulate a refined explanation in natural language: ―If we take 

away one unit from the last number and we give it to the first one, the three numbers 

become equal, and if we multiply this number by three, we are done!‖  

The search for regularities continues also in the following lessons, but what is 

remarkable here is that all the children begin to use Ivan‘s finding to calculate large 

sums, in other words the children like the ―trick‖ so much, to transform it into a 

patrimony of the class. Furthermore, in the following lesson the children use the 

discovery to perform the inverse task, which is given a number multiple of three to 

identify the consecutive numbers tern of which this number is the sum. This kind of 

task is suitably chosen by the teacher to allow the children to grasp a more clear 

structural vision of the relationships involved in the problem. Through a collective 

discussion mediated by the teacher the children easily understand that they can find 

middle number of the tern by dividing the number for three.  

SOME CONCLUSIVE REMARKS 

We have tried to show how some guided activities of exploration and search for 

regularities in the domain of natural numbers can promote algebraic thinking in very 

young children. In particular, the activity presented here, profiting from young 

children‘s poor calculation skills, stimulates the invention of tricks to succeed in 

performing calculations. In our opinion, this invention can be seen as a first kind of 

‗attention to structure‘; in other words, ‗looking for tricks‘ can act as a very early 

forerunner of the abstraction process, typical of the algebraic thinking. Therefore to 

induce in children the need for simplifying difficult tasks can be a good way to start 

them off towards the algebraic thinking. 

Many questions still remain to be faced. For instance, since it happens that some 

children, like Ivan, are more ready to develop algebraic thinking than others, how to 

let the intuitions of an individual be acquired by others; and, even more crucial, 

which kind of didactic mediation can help to transform a possibly deep but unstable 

intuition of a child into a more formal knowledge. The questions are not easy, and in 

our opinion cannot be solved in a simple or unique way: in this sense we agree with 

Tall‘s perspective, according to which, ―the study of ‗early algebra‘ needs to be seen 

not only as an activity in itself but also as part of a longer-term development.‖ (Tall, 

2001, p. 152).  

Anyway, a small contribution to both questions can come from the use of suitable 

representations and from a good context of social interaction, as we hope to have 

shown before. Indeed, teacher‘s invitation to use representations seems to help Ivan 

to reach more sophisticate forms of structural thinking and, from the other side, the 

proposal of exposing Ivan‘s discovery in a poster contributes to transform his trick 

into a patrimony of the whole class.  
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CAN YOU TAKE HALF?  

KINDERGARTEN CHILDREN'S RESPONSES  

Dina Tirosh, Pessia Tsamir, Michal Tabach, Esther Levenson, and Ruthi Barkai 

Tel Aviv University 

The notion of ‗half‘ is familiar to children from their everyday experiences before 

formal schooling begins. This study explores kindergarten children‘s ability to take 

half of an increasingly large amount of discrete items and the strategies they employ 

while doing so. It also explores the difference between taking half of a set of discrete 

items and half of a set of continuous items where each item may itself be halved. 

Results indicate that kindergarten children know that taking half implies two sets 

and that they employ different strategies when halving different amounts. 

BACKGROUND  

The importance of engaging children with mathematics during their early years has 

recently come to the fore. This is reflected in both position papers and national 

standards which often mention number and operations as a key domain to be 

developed during these years. The notion half is included in the domain of number 

concepts. For example, in their guidelines for grades Pre-K through grade 2, the 

Principles and Standards for School Mathematics states that "All students should… 

understand and represent commonly used fractions, such as µ, ⅓ and ´." (NCTM, 

2000, p. 78). The Israel National Mathematics Preschool Curriculum (INMPC, 2008) 

states that "a child should be familiar with the concept of half and its practical use in 

everyday life" (p. 17). In addition it states that, "the concept of half relates to half of 

one unit, such as half a pita bread, as well as half of a quantity, such as half of the 

cookies in a box…In kindergarten, it is unnecessary to introduce the graphic symbol 

of half." (p. 45). In Australia, the New South Wales K-6 curriculum (2002) states that 

for Early Stage 1, students should learn about "using the term ‗half‘ in everyday 

situations", and "use fraction language in everyday situations e.g. ‗one-half of a cake 

has been eaten‘"(p. 60).  

Previous studies investigated young children‘s notion of half within the context of 

fair-sharing. Fair-sharing contexts relate to situations where the total resources 

available are divided equally among the users. Thus, if an amount is shared equally 

between two people, we may say that each person has received half of the amount. 

Regarding the sharing of a continuous item, Hunting and Sharpely (1988) 

investigated the behaviours of preschool children requested to share a blanket and a 

skipping rope between two dolls. They found that while most children understood 

that a single partition was necessary, most lacked an anticipatory or a verification 

strategy for assessing the resulting equality. Regarding discrete items, it was found 

that young children were able to divide 12 crackers between two dolls by dealing one 

cracker at a time to the dolls (Hunting & Davin, 1989 in Davis & Hunting, 1990). 
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Yet, in an unstructured interview, when it came to sharing 12 jelly beans between 

two children, the same children did not share equally (Davis & Hunting, 1990). 

Davis (1989) found that students learning division may not take into consideration 

the reality of a problem. When asked to share five balloons between two children, 

one student suggested cutting the fifth balloon in half.    

While the previous studies investigated children's notion of half within a fair-sharing 

context, this study investigates the notion of half when it is not explicitly related to 

fair-sharing. Such situations arise when a child eats half an apple or takes out half of 

the blocks from a container. These situations are very different from fair-sharing 

contexts. For example, Parrat-Dayan and Vonech (1992) found that giving half of six 

apples to one doll is more difficult than carrying out this sharing task with two dolls. 

"Asking a child for half of six apples forces him or her to think of the six apples as a 

totality, such that the union of the parts forms a whole, where the two parts are 

disjuncted." (Parrat-Dayan & Voneche, 1992, p.74).  

Our current study continues and expands upon previous investigations in two ways. 

First, it investigates young children's notion of half when fair-sharing is not explicit, 

in situations when it is possible to take half and in situations when it is not possible 

to take half. In addition, previous studies did not focus explicitly on children's 

strategies for taking half. This study focuses also on the strategies.  

Our research is guided by the following questions: (1) To what extent can 

kindergarten children take half of a set of homogenous discrete objects before they 

are explicitly taught the concept of half and what strategies do they employ when 

doing so? (2) Given two sets of objects, one where the objects themselves are 

continuous and may each be halved and one where each of the objects is discrete and 

cannot be halved, is there a difference between kindergarten children‘s success in 

taking half of the set?  

METHOD  

Participants   

Four preschool classes in low-socioeconomic neighbourhoods participated in this 

study. Each class consisted of approximately 30 pre-kindergarten and kindergarten 

children between the ages of four and six years old. In this paper we focus on all 64 

kindergarten children (between the ages of five and six years old) who were expected 

to enter first grade in the upcoming school year. The kindergarten teachers were 

participating in a two-year professional development program, Starting Right: 

Mathematics in Kindergarten
67

. The children worked with their teachers on tasks 

from various mathematical domains, including geometry, measurement, and number 

and operations. Counting was part of the children‘s daily routine. Other 

                                           

67
 This research was conducted in collaboration with the Rashi Foundation. 
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mathematical activities included composing and decomposing numbers and dividing 

objects into two, three, or more sets, equal as well as unequal sets (e.g. Tsamir, 

Tirosh, Tabach, & Levenson, 2010). Fractions and the concept of half were not 

explicitly taught.   

Tools 

Individual interviews were conducted in a quiet corner of the kindergarten during the 

last month of the school year. The interviewer followed a set protocol and was 

responsible for writing down each child's actions as well as utterances. Each 

interview consisted of eight tasks. Table 1 presents the tasks and accompanying 

questions as well as the settings of each task, in the order in which they were 

implemented. The tasks were implemented in the same order for each child.   

 The setting The tasks 

1. Six bottle caps, all the same size, 

but not necessarily the same color, 

are placed on the table in a bunch. 

Please take half of the caps. How do you 

know you took half of the caps? 

2. Six bottle caps are placed on the 

table in a bunch. The interviewer 

tells the first part of a story and 

then removes four caps from the 

table. The interviewer continues 

with the questions.  

Yesterday I was in a different 

kindergarten and asked a girl named Dina 

to take half of the caps. Here is what 

Dina did. (The interviewer removes four 

caps from the table.) Do you think Dina 

was correct? Explain why. 

3. Five bottle caps are placed on the 

table in a bunch. 

Please take half of the caps. How do you 

know you took half of the caps? 

4. Five congruent pieces of note paper 

are placed on the table in a pile. 

Please take half of the papers. How do 

you know you took half of the papers? 

5-8. Four (eight, ten, and 14) bottle caps 

are placed on the table in a bunch. 

Please take half of the caps. How do you 

know you took half of the caps? 

Table 1: The interview settings and questions 

The interview began with the placement of six bottle caps on the table. We began 

with this amount because we considered it non-trivial and yet not too large for five 

year olds to handle. The second task of the interview presented a situation where the 

child‘s role was reversed. Instead of asking the child to solve a problem, the child 

was presented with an incorrect solution given by a fictitious child and then 

requested to evaluate that child‘s actions. We were interested in investigating if the 

child would be swayed by a countersuggestion (Kamii, 1982).  

For the next pair of tasks, five objects were used – first five caps and then five pieces 

of note papers. We began with the caps and not with the note papers because the first 

two tasks had used caps and we did not want to change both the amount and type of 
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object at once. A bottle cap cannot be halved. On the other hand, the pieces of paper 

used in the study were such that they could be torn in two without the use of scissors, 

resulting in two halves of a piece of paper. Thus, taking half of five bottle caps 

cannot be executed whereas one could take half of five papers by taking two and a 

half pieces of paper. These tasks had two aims. First, would children accept and 

acknowledge that not every task may be executed? Second, would children differentiate 

between taking half of five bottle caps and taking half of five pieces of paper? 

The last part of the interview consisted of a sequence of four similar tasks, taking 

half of an even amount of bottle caps, in which the amount of caps gradually 

increased from four, which was thought to be quite simple, to eight, ten, and finally 

fourteen caps. This allowed us to investigate if the children would be able to take 

half of a growing number of elements. It also allowed us to investigate the children‘s 

strategies for taking half of a different number of caps.  

Methods for data analysis  

Data analysis consisted of three components. The first component related to the 

correctness of the child‘s final result or response. For example, did the child take 

four caps when requested to take half of eight caps? Did the child correctly respond 

that he could not take half of five caps? In the case of taking half of five pieces of 

paper, we considered a correct solution to be the tearing of one piece of paper into 

approximately two equal halves, thus producing two and half pieces of paper. 

The second component related to analyzing the methods employed by the child when 

he or she attempted to take half of the presented objects. Methods were recorded 

regardless of the final outcome and were derived from the actions performed. Some 

children immediately took half of the objects without any observable strategy. Others 

employed one of three identified strategies: (1) Children who first counted all of the 

caps in the given set, concluded how many would be considered half, and took this 

amount employed the count all strategy. (2) Divide and adjust, was displayed by 

children who either arbitrarily or perhaps by visual estimation, divided the given set 

into two subsets, counted the number of caps in each subset, and then adjusted the 

two subsets by moving a cap or two to equate the number of caps in each subset. (3) 

Children who built two subsets simultaneously, putting one cap at a time in each of 

two subsets, until all the caps were used up were said to build stepwise. Some 

children using this strategy put two caps at a time in each new set. Finally, some 

children took actions that did not fall into any category. 

The third component in the analysis related to children's explanations. As expected 

from young children, the explanations were brief phrases and not necessarily full 

sentences. Qualitative analysis of explanations added a dimension to our 

understanding of why children acted as they did and the possible reasons for their 

responses. They also provided some insight into the children‘s conceptions of half.  
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RESULTS 

In this section we begin by presenting results of the first two tasks – halving six and 

responding to an incorrect suggestion for halving six. We follow with the next two 

tasks, halving five caps and five pieces of note paper. Finally we report on responses 

to the sequence of halving an increasing even amount of caps. 

Half of six 

Most children (90%) correctly took three caps out of the set of six caps. Out of those 

who explained their actions, some pointed to each pile of three caps, claiming "half 

and half" or "both are equal". This type of explanation could possibly be referring to 

the child‘s attempt at fairness. Some children merely reiterated what they had done. 

For example, one child commented, "Three, half is three". Some children 

decomposed the number six stating, "Three and three is six". Of the children who did 

not take three caps, five children took two caps explaining, "a half is a little bit". 

This is in line with studies which have shown that children refer to any part of the 

whole, but preferable the smaller part, as a half (Parrat-Dayan & Voneche, 1992). 

One child did not take any caps at all nor did he respond verbally. Children's 

methods for taking half of six are discussed along with the results of the last four 

tasks where children were repeatedly requested to take half of an increasing amount 

of caps.  

Regarding the second question, 81% of the children correctly rejected Dina‘s 

suggestion. Similar to children who in the first task merely reiterated what they had 

done, here, some children pointed out the result of what Dina had done saying, "Here 

there are two [caps] and here there are four." Others pointed out, "It should be 

equal." Others told the interviewer what Dina should have done, "She (referring to 

Dina) did not take three." Among the 19% of children who incorrectly accepted 

Dina's suggestions, the explanations varied. One child claimed that Dina was correct 

because "she left some for the others as well". Another child seemed to sympathize 

with Dina claiming that "she wanted to play with the caps". Finally, just as children 

decomposed six into three and three, one child claimed that Dina was correct because 

"four and two is six". Table 2 presents the results of the first two tasks.  

 Took 3 caps  Did not take 3 caps  Total 

Accepted Dina's suggestion 12 7 19 

Rejected Dina's suggestion 78* 3 81 

Total 90 10  

*Correct response to both tasks 

Table 2: Frequency (%) of responses to Tasks one and two. 

We first note that while only 10% of the children did not answer the first question 

correctly, 19% did not answer the second question correctly. Perhaps, countering a 
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proposed suggestion is more difficult than proposing one's own solution. Regarding 

consistency, most of the children (85%) were consistent while answering the two 

questions - 7% gave incorrect responses in both cases while 78% gave correct 

responses for both tasks. Regarding children who were not consistent, we note that 

12% of the children correctly took three out of six caps but then accepted Dina's 

incorrect suggestion. One such child explained his correct solution to the first task by 

claiming that "three and another three is six." His explanation to his incorrect 

response on the second task was "four and two is six." In other words, this child used 

the same type of explanation for both tasks, decomposing the number six.  

Half of five 

Tasks three and four related to taking half of five, first five caps and then five pieces 

of paper. The same child, who did not respond to the first two tasks, did not respond 

to these tasks either. Results, summarized in Table 3, indicated that almost 80% of 

the children responded that it is not possible to take half of five caps. Of those that 

claimed it was possible, one child took all five caps for himself. Six children took 

three caps and six children took two caps. All of the accompanying explanations 

reverted to describing what was just done. As one child claimed, "I took two."  

Response Cannot take 

half of 5 caps 

Can take half 

of 5 caps 

Total 

Cannot take half of 5 papers 70 2 72 

Can take half of 5 papers    

Tore one piece of paper 3*  2  5 

Did not tear one piece of paper 5   16  21 

Total 78 20  

*Correct response to both tasks 

Table 3: Frequency (%) of responses to tasks three and four, taking half of five items. 

Regarding the 78% of children who correctly claimed that half of five caps could not 

be taken, many tried to take half, moving the caps back and forth in an attempt to 

take half or to create two sets with an equal amount of caps. Accompanying 

explanations included, "This is two and this is three" or "You have half and I don‘t". 

Others suggested how the situation may be remedied, claiming either, "One cap 

should be added" or "One cap should be removed." Others simply stated, "It is not 

possible". 

Most of the children (70%) claimed that one cannot take half of five, regardless of 

the object at hand. It could be that not being able to take half of five caps influenced 

children‘s performance on the paper task. In fact, children's explanations for why 

they could not halve five pieces of paper were similar to those they gave for the 

bottle caps. Only 5% of the children suggested halving one of the papers. The 
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children who did so first asked permission from the interviewer, asking if they could 

tear one of the papers. When granted permission, each of the children tore one of the 

papers into two approximately equal parts, gave two and a half papers to the 

interviewer and took two and a half papers for themselves. They then claimed, 

"Three papers for me and three for you." Perhaps children were relating to the torn 

piece as a whole piece. Regarding the 21% who claimed that they could take half of 

five papers but did not tear any of the papers, one child took four pieces of paper, 

10% of the children took 2 pieces of paper and 10% took three pieces of paper. 

Halving an even number of bottle caps  

Recall that the last four tasks requested of the children to repeatedly take half of an 

increasing amount of bottle caps.  Interestingly, the one child who did not respond to 

the first four tasks did complete the last four tasks. It is possible that it took some 

time for this child to warm up to the interviewer. Table 4 summarizes children's 

responses to these tasks. (C denotes the number of caps presented.)  

Responses C=4 C=8 C=10 C=14 

Correct response 98 92 85 70 

Took less than C/2 -- 3 6 8 

Took more than C/2 -- 5 3 2 

Did not complete the task 2 -- 6 20 

Table 4: Frequencies (%) of children's responses to Tasks 5-8, taking half of an even 

number of items  

First, we note a difference between children's responses when taking half of four and 

ten caps, and again between ten and 14 caps. Among incorrect responses, 

approximately a third of the responses consisted of taking less than half while 

approximately a fifth of the responses consisted of taking more than half. Among 

them were two children who correctly took half of four and eight caps (and also of 

six caps in the previous task) but then took four caps out of ten and again four caps 

out of fourteen. These children, as did most children who completed the task 

incorrectly, did not explain their actions.   

When the number of caps was 14, seven (11%) children did not even attempt to 

complete the task. A fifth of the group attempted the task but did not complete it. As 

one girl commented, "It's too many. I won't succeed." Another girl claimed, "I can't. 

It's hard for me." Others acknowledged that taking half of 14 might be difficult but 

persisted. Faced with 14 caps, one child who eventually correctly completed the task, 

commented, "Wow, this will take time". On the other hand, almost all of the children 

immediately halved four caps. We also note that one child consistently took two caps 

and one child consistently took all of the caps, regardless of the amount of caps 

presented. Neither of the children explained their actions.  
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Children employed a variety of methods when attempting to take half of the caps. As 

noted in the method section, three strategies were identified: count all, divide and 

adjust, and build stepwise. Table 5 presents the percentage of children who 

employed each strategy and gave a correct solution. Strategies are presented in order 

from the most to the least frequently used strategy. Regarding incorrect solutions, 

when the number of caps was less than 10, no specific strategy was noticeable. When 

there were 10 caps, 5% of the children attempted to use the build stepwise strategy 

and the rest (10%) did not have a noticeable strategy. When there were 14 caps, 11% 

of the children did not even attempt the task, 5% of the children attempted to use the 

divide and adjust strategy and the rest (14%) did not have a noticeable strategy. 

Method M=4 M=6 M=8 M=10 M=14 

 Immediate  96 88 39 -- -- 

Strategy      

 Build stepwise 2 2 28  27  38 

 Divide and adjust -- -- 14 27 19  

 Count all -- -- 11 23 3 

Other -- -- -- 8 10 

Total 98 90 92 85 70 

Table 5: Frequencies (%) of children's methods accompanying correct halving  

We first note a difference between the amount and types of strategies employed by 

the children when dealing with four and six caps versus the larger sets. 

Approximately 90% of the children immediately and correctly took half of four and 

six caps while none of the children even tried to do so when there were 10 or 14 

caps. One reason for this difference may be children's ability to subitize – "the direct 

and rapid perceptual apprehension of the numerosity of a group" (Kaufman, Lord, 

Reese, & Volkmann, 1949, in Clements & Sarama, 2007) that allows children to 

easily handle sets with a small number of caps. Perhaps being able to rapidly identify 

two and three allowed the children to easily take half of four and six without 

employing more complex strategies. 

The build stepwise strategy was the strategy most frequently used. The count all 

strategy was the strategy least employed. In fact, only two children even attempted to 

use this strategy when presented with 14 caps. On the other hand, it consistently led 

to a correct solution. This was not the case with the divide and adjust strategy. Some 

children, who attempted to use this strategy when halving 14, divided the caps into 

two not necessarily equal subsets and then found it difficult to adjust them. That is, 

they could not figure out how many caps should be moved from one set to the other 

in order for both to have the same amount of caps.  
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Not being able to complete the task also occurred when using the build stepwise 

strategy. Three children, who used this strategy for taking half of ten, started off by 

placing two in one set, two in another set and again two in the first set and then two 

in the second. They then ended up with two caps and concluded that the task could 

not be completed. Perhaps because they used two caps as a building block, it did not 

occur to them that this block could also be divided. When it came to taking half of 14 

caps, two of the children adjusted the strategy. One child began as before, building 

stepwise with a block of two caps. When again faced with two caps he paused and 

said, "This is hard." He then thought a little more and separated the two caps, adding 

one to each set, successfully completing the task. The second child adjusted the 

strategy by building stepwise using one cap instead of the two she had previously 

used. Thus, she had no difficulty in halving 14.  

DISCUSSION  

This study set out to investigate children's concept of taking half of a set of items. 

Being that the sample was relatively small and came from one country, we cannot 

make any generalizations. However, for the most part, children in this study 

succeeded in taking half of the objects presented to them, carefully constructing two 

sets with an equal number of elements and then taking one of these sets. There are 

two equally important components of this understanding. The concept half implies 

two sets. The concept half implies equal sets. While both of these are necessary 

components of half, it seems that the necessity of two sets may be more dominant or 

rooted than the necessity for the sets to be equal. None of the children thought to 

divide the caps into more than two sets and only one child consistently took all the 

caps for himself. Children who completed the tasks incorrectly almost always 

divided the caps or papers into two sets that were not equal. These children may have 

related the halving task to an everyday sharing task, where sometimes, it is important 

to share but maybe less important to share equally. This is similar to the study 

mentioned in the background of children‘s unequal sharing of 12 jelly beans (Davis 

& Hunting, 1990). It is important to note also that some children knew that their 

answer was incorrect or incomplete, but could not fix it. It could be that these 

children had not yet developed the skills to use a strategy efficiently and flexibility.   

Halving five pieces of paper turned out to be a complex task. This complexity may 

be related to the items themselves. On the one hand, the pieces of paper are discrete 

items. On the other hand, each piece is continuous and may be halved. It could be 

that just as very young children may be reluctant to cut a cake in half (Piaget & 

Szemirska, 1952), some children may be reluctant to tear paper in half. Perhaps a 

more authentic problem, such as taking half of five chocolate bars, would have 

prompted the children to break one bar in half. Or it could be that children were 

responding to a social norm whereby tearing paper is unacceptable. Recall also that 

20% of the children claimed that they could take half of five caps. It could be that 

these, as well as other children were responding to a didactical contract (Brousseau, 
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1997) and specifically the implicit rule that all problems must have a solution. 

Regarding children's incorrect response to Dina, young children may be more naïve 

than older children and believe that if Dina took four caps, she must have had a good 

reason to do so. In other words, children's knowledge of half is fragile.  

In addition to increasing our understanding of children's conception of half, this 

study also points to the importance of implementing a variety of tasks when trying to 

assess children's knowledge as well as requesting children, even young children, to 

explain their actions. Had we not presented the children with Dina's incorrect 

solution, we may have missed how their empathies may affect their mathematics. 

Had we not gradually increased the amount of caps to be halved, we may have 

missed the opportunity to investigate children's strategies for taking half. Asking 

children to explain each action also proved insightful. We may have thought it 

sufficient and correct when a child explained why three is half of six by 

decomposing the number six into three and three. However, when the same child 

explained his incorrect acceptance of Dina‘s actions by decomposing six into four 

and two, we realized that our previous assessment may have been haste and that this 

child may not yet relate equality of sets to the notion of half.  

Finally, we note that little difference was found between this study, which 

investigated the children‘s conception of ―taking half‖, and that of studies which 

investigated the notion of half within a fair-sharing context. Will taking a third be 

similar to fair-sharing between three? Will taking a fourth be similar to fair-sharing 

between four? We suggest more research into children‘s conceptions of half, as well 

as other fractions, which will offer insight into the different tasks we might 

implement with kindergarten children, as well as the different items we may employ 

in these tasks, in order to promote young children‘s initial fraction knowledge.  
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This study investigates kindergarten children‘s identifications of examples and 

nonexamples of triangles, pentagons, and circles and their self-efficacy related to 

these tasks. The participants of this study included children who had been abused 

and neglected. When comparing the group of abused and neglected children with 

other children, results indicated that both groups of kindergarten children had high 

self-efficacy beliefs which were not significantly related to knowledge. Significant 

differences in knowledge were found between the two groups.  

Early knowledge of mathematics is often seen as a predictor of later school success 

(Jimerson, Egelnad, & Teo, 1999). Abused and neglected children
69

 are especially at 

risk, as these children lag behind their peers in cognitive development (Gowen, 

1993). During the elementary school years, the mathematics achievement scores of 

abused and neglected students are significantly lower than their peers, even when 

controlling for socioeconomic status (Kendall-Tackett & Eckenrode, 1996). One of 

the key mathematical domains during the preschool years mentioned by many 

national guidelines is geometry. During these years, children are developing and 

refining their spatial and geometric thinking. The first aim of this study is to 

investigate the geometrical knowledge of kindergarten children, including abused 

and neglected kindergarten children. Are differences in geometrical knowledge 

already noticeable in kindergarten? 

Abuse and neglect during the preschool years can have a significant, as well as 

lasting impact on an individual's self-perception (Waldinger, Toth, & Gerber, 2001). 

One aspect of self-perception related to the promotion of knowledge is self-efficacy 

(Bandura, 1986). Bandura (1986) defined self-efficacy as "people's judgments of 

their capabilities to organize and execute a course of action required to attain 

designated types of performances" (p. 391) and claimed that, "…beliefs of personal 

efficacy make an important contribution to the acquisition of the knowledge 

structures on which skills are founded" (Bandura, 1997, p. 35). Primary caregivers, 

as they provide feedback of children's performances, play a significant role in 

developing children's self-efficacy (Bandura, 1993). Thus, abusive parents may 

contribute to negative self-efficacy. On the other hand, an inflated self-efficacy belief 
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may result as a form of self-protection in the face of parental abuse and neglect.  In 

such cases, a high self-efficacy gives the child a false sense of self. The second aim 

of this study is to investigate kindergarten children‘s geometric self-efficacy beliefs, 

that is, beliefs related to performing geometrical tasks. Is there a difference between 

the geometry related self-efficacy of abused and neglected children and other 

children?  

When investigating children‘s knowledge it is important to consider both real 

achievement and perceived achievement in tandem. One study of elementary school 

children found that maltreated children, more so than nonmaltreated children, tend to 

overestimate their level of competence, particularly for arithmetic (Kinard, 2000). 

The third aim of this study is to investigate the relationship between children‘s 

geometric knowledge and self-efficacy beliefs. We investigate this relationship 

among kindergarten children, including abused and neglected kindergarten children.  

Theoretical background 

Two main issues are at the heart of this study: young children‘s geometric knowledge 

and young children‘s self-efficacy beliefs. This section begins by describing previous 

studies related to young children‘s geometric knowledge and then reviews studies 

related to mathematics self-efficacy. 

Young children learn about and develop concepts, including geometrical concepts, 

before they begin kindergarten. At this age, young children begin to perceive 

attributes but need guidance in order to assess which attributes are critical for 

identifying a figure and which are not (van Hiele, 1958). For example, studies have 

found that when a triangle is not oriented with a horizontal base, children may not 

identify it as a triangle (e.g. Burger & Shaughnessy, 1986). Children may also accept 

curved sides, either concave or convex, when identifying triangles (Clements, 

Swaminathan, Hannibal, & Sarama, 1999). Within the domain of geometry, the Early 

Years Foundation Stage Statutory Framework in England (2008) and the mandatory 

Israel National Preschool Mathematics Curriculum (2008) specifically require that 

by the end of kindergarten children use mathematical language to describe two-

dimensional figures. This study focuses on identifying triangles, pentagons, and 

circles.  

Few studies have investigated preschool children's self-efficacy. This may be due to 

children's difficulty in differentiating between what is real and what they desire to be 

real (Stipek, Roberts, & Sanborn, 1984). Research finding are mixed. Some studies 

have found that young children may have overly high self-efficacy beliefs (Stipek, 

Roberts, & Sanborn, 1984) while others have found that young children are able to 

understand the process of self-evaluation and may fairly judge their own competence 

(Anderson & Adams, 1985). "Mathematics self-efficacy…is a situational or problem-

specific assessment of an individual's confidence in her or his ability to successfully 

perform or accomplish a particular task or problem" (Hackett & Betz, 1989, p. 262). 



Working Group 13 

 CERME 7 (2011)  1904 

Research related to self-efficacy and mathematics has shown that regardless of 

mathematical ability, students with a higher self-efficacy tend to expend more effort 

on mathematics tasks than students with lower self-efficacy (Collins, 1982). Such 

students are willing to rework problems, discarding faulty strategies in favor of 

trying new ones, and in general display a more positive attitude towards mathematics 

than students' with a lower self-efficacy. Studies have also shown that students' self-

efficacy beliefs predict mathematics performance (Bandura, 1986; Pajares, 1996) and 

do so to a greater degree than mathematics anxiety (Pajares & Miller, 1995). Among 

first and second graders, academic self-efficacy was found to be related to 

mathematics achievement (Liew, McTique, Barrois, & Hughes, 2008). It is important 

to note that self-efficacy beliefs may be domain specific or general. Most studies 

related to mathematics self-efficacy measured a very general belief in mathematics 

self-efficacy which did not necessarily relate to specific mathematics topics (i.e. 

Usher, 2009). This study will focus on the child's self-efficacy while engaging in 

geometrical tasks and will investigate the relationship between kindergarten‘s 

children‘s geometric knowledge and their geometric self-efficacy.  

METHODOLOGY 

The participants of this study included 141 kindergarten children, ages 5-6 years old, 

living in low socio-economic neighbourhoods. All of the children were scheduled to 

enter first grade during the following school year. Of the 141 children, 69 children 

were labelled as abused and neglected by the social welfare department of their 

municipality. All of the children attended municipal kindergartens in their local 

neighborhood in the morning. While most children go home after school is over, the 

69 abused and neglected children were bussed after school to day-care centres run by 

their municipality where they received hot meals and enrichment. 

The research took place in the last three months of the school year. A structured 

interview was developed for this study interweaving questions related to geometric 

self-efficacy with questions related to geometric knowledge. Children who were 

identified by the social welfare department of the city as being abused and neglected 

were interviewed individually in a quiet corner of the day-care center which they 

attended in the afternoons. The other children were interviewed individually in a 

quiet corner of their kindergartens in the morning.  

The focus of this study was on identifying and reasoning with triangles, pentagons, 

and circles and associated self-efficacy beliefs. The interview began with the 

following self-efficacy questions: If I show you a picture of a shape, will you be able 

to tell me if the shape is a triangle? Are you very sure or only a little bit sure? These 

self-efficacy related questions were based on the Pictorial Scale of Perceived 

Competence and Social Acceptance for Young Children (Harter & Pike, 1984). In 

that study, children were show pictures of two children engaging in some task, one 

successful and one not successful. The interviewer asked the child to point to the 

child he or she identified with. After the child pointed to the appropriate picture, the 
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child was asked if he or she was a lot like the child in the picture or a little bit like 

the child in the picture. Thus, a four point scale was created. Likewise, in the current 

study, the first two questions, taken together, created a scale of 1-4 describing 

children‘s belief in their ability to identify triangles. For example, if a child answered 

―yes‖ to the first question and ―a little bit‖ to the second question, his self-efficacy 

was graded at 3. If he answered ―no‖ to the first question and ―very sure‖ to the 

second question, his self-efficacy was graded at 1.  

Children were then presented one at a time with four figures, each figure drawn on a 

separate card, and asked, ―Is this a triangle‖? Why? The entire set of questions, 

including the first two self-efficacy related questions, was then repeated for a 

pentagon and a circle with a different set of figures presented for each shape. Figure 

1 displays the figures presented for each set of questions. Figures were presented in 

the order shown in each row. 

Is this 

a… 

Intuitive 

example 

Non-intuitive 

example 

Non-intuitive non-examples 

triangle? Equilateral 

triangle 

 

 

Scalene 

 triangle 

 Rounded-

corner 

―triangle‖ 

Pizza 

pentagon

? 

Regular 

pentagon 

 

Concave 

 pentagon 

Curved-sides 

―pentagon‖ 

Hexagon 

circle? 

 

 

Circle 

 

 Spiral Decagon  

Figure 1: The set of figures presented in this study 

In choosing the figures, both mathematical and psycho-didactical dimensions were 

considered. When considering triangles, the equilateral triangle may be considered a 

prototypical triangle and thus intuitively recognized as a triangle, accepted 

immediately without the feeling that justification is required (Hershkowitz, 1990; 

Tsamir, Tirosh, & Levenson, 2008a). The scalene triangle may be considered a non-

intuitive example because of its ―skinniness‖. Whereas a circle may be considered an 

intuitive non-example of a triangle, the pizza-like ―triangle‖ may be considered a 

non-intuitive nonexample because of visual similarity to a prototypical triangle 

(Tsamir, Tirosh, & Levenson, 2008a). Similarly, the regular pentagon was thought to 

be easily recognized by children who had been introduced to pentagons whereas 

studies have shown that even among children who had been introduced to pentagons, 

the concave pentagon is more difficult to identify (Tsamir, Tirosh, & Levenson, 

2008b). Triangles and pentagons may vary in the degree of their angles providing a 
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wide variety of examples. In contrast, the circle‘s symmetry limits the variability of 

its characteristic features. Thus, only one example of a circle was given. The 

nonexamples of each shape were also chosen in order to negate different critical 

attributes. Due to the young age of the children, we chose to limit the amount of 

figures presented to each child and thus did not include in this study intuitive 

nonexamples. Finally, we hypothesized that, in general, the triangle and circle would 

be figures known to the children from their surroundings whereas the pentagon is a 

figure less known but part of the preschool mathematics curriculum.  

RESULTS 

This section begins by describing children‘s self-efficacy beliefs related to 

identifying the different shapes. It then describes the results related to children‘s 

actual identification of the figures. Finally, it analyzes the relationship between self-

efficacy and knowledge.  

Self-efficacy beliefs  

Recall that a scale of 1-4 was used to grade children‘s self-efficacy, 4 being very 

high and 1 being very low. Results, presented in Table 1, indicated that, in general, 

the children had a high self-efficacy related to identifying the different shapes. In 

addition, no significant difference between the self-efficacy of the two groups of 

children was found for any of the shapes. 

Children Abused and neglected children Other children 

 M SD M SD 

Triangle 3.7 .62 3.7 .67 

Pentagon 3.1 1.1 3.5 .75 

Circle 3.7 .75 3.9 .46 

Table 1: Children‘s geometric self-efficacy per shape per group 

Cronbach‘s alpha was used to investigate internal consistency between the self-

efficacy scores for each shape per group of children. A weak internal consistency 

was found in both groups, α=.50 for the group of abused and neglected children and 

α=.34 for the other children. These results indicate that, for these children, self-

efficacy may be task or shape specific. This is consistent with previous self-efficacy 

studies which claimed that mathematics self-efficacy may be problem-specific 

(Hackett & Betz, 1989). On the other hand, when considering that the self-efficacy 

questions all related to identifying shapes mentioned in the preschool curriculum, we 

allowed that a general geometric self-efficacy grade may still be calculated for each 

group. Results indicated no significant difference between the geometric self-

efficacy of the abused and neglected children (M=3.7, SD=.43) and the geometric 

self-efficacy of the other children (M=3.5, SD=0.61). 

Geometric knowledge 
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We begin by describing children‘s identifications of the individual figures presented 

to them. Due to limited space, this paper does not analyze the children‘s explanations 

which accompanied identifications but provides sample illustrations where relevant. 

Results, summarized in Table 2 indicated that all of the children correctly identified 

the equilateral triangle. This coincides with studies which have found that the 

equilateral triangle with a horizontal base may be considered a prototypical triangle 

and is thus intuitively identified as such (e.g. Tsamir, Tirosh, & Levenson, 2008a).   

Figure name Abused and neglected children Other children 

Equilateral triangle 100 100 

Scalene triangle 20 35 

Rounded-corner ―triangle‖ 19 22 

Pizza 46 56 

Regular pentagon 71 71 

Concave pentagon 29 24 

Curved-sides ―pentagon‖ 57 70 

Hexagon 26 32 

Circle 100 100 

Spiral 51 61 

Decagon 83 85 

Table 2: Frequencies (in %) of correct identifications per figure per group 

The rounded-corner ―triangle‖ was the most frequently misidentified figure. As one 

child claimed, ―It has the shape of a triangle". Interestingly, the equilateral pentagon 

was identified correctly by less than three-quarters of the children in both groups, 

though learning to identify pentagons is part of the kindergarten curriculum. As 

expected, few children in both groups identified correctly the concave pentagon. One 

child explained, ―It looks like a bridge and has only four points.‖ Regarding the 

circle, although all of the children correctly identified the circle, approximately half 

of the children incorrectly claimed that the spiral was a circle. Perhaps, the children 

focused on the roundness of the spiral and the absence of sides. One child claimed it 

was a circle and added ―it continues to roll.‖ Finally, although few children correctly 

identified the scalene triangle, when comparing the groups of children, this was the 

only figure for which a significant difference was found 2 (1, N=138)=4.33, p<.05. 

After reviewing the results of children‘s responses to the individual figures, we 

grouped together the figures according to the shape they were intended to 

investigate. For each shape, triangles, pentagons, and circles, the mean score was 

configured resulting in a grade for each child ranging from 0-100% for each shape. 
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Results, presented in Table 3, indicated that abused and neglected children had a 

significantly lower triangle grade than other children, p<.05. No significant 

differences were found between the two groups of children for the other shapes. 

Finally, averaging all 11 figures and creating a general geometric knowledge grade, 

we noted that the neglected and abused children scored significantly lower (M=.57, 

SD=.11) than the other children (M=.62, SD=.14), t(117)=241, p<.05). 

Children Abused and neglected children Other children 

 M SD M SD 

Triangle .46 .20 .54 .20 

Pentagon .46 .18 .50 .19 

circle .78 .24 .82 .24 

Table 3: Children‘s geometric knowledge per shape per group 

Relating geometric knowledge and geometric self-efficacy 

The third aim of the study was to investigate if children‘s geometric knowledge was 

related to their geometric self-efficacy. Nonparametric correlations were configured 

for each geometric shape per group of students. Results for both groups of children 

indicated that no significant relationship was found between children‘s ability to 

identify triangles, pentagons, and circles and their respective self-efficacy beliefs. 

Finally, when considering general geometric knowledge and general geometric self-

efficacy, no significant relationships were found in either group. 

SUMMARY AND DISCUSSION 

This paper describes an investigation of geometric knowledge and geometric self-

efficacy among kindergarten children, including children who were abused and 

neglected. We begin by discussing similarities in self-efficacy and then similarities in 

knowledge. We then discuss differences, which for this group, arose when 

comparing geometric knowledge. 

When asked to assess their abilities to identify triangles, pentagons, and circles, 

children in both groups reported a high self-efficacy, believing greatly in their ability 

to identify each of the mentioned shapes. There are several possible reasons for this 

response. First, it could be that children have a tendency to reply in a positive 

manner or to the high end of any question or scale posed to them. Thus, asked if they 

can or cannot do something, they respond almost automatically in the positive.  

Perhaps a naïve belief in one‘s own capabilities is indicative of all children who are 

young. While these, and possibly other reasons, may explain the high self-efficacy 

rating children exhibited, it remains that for the participants of this study, there were 

no significant differences between the self-efficacy of abused and neglected children 

and other children. In addition, children‘s high self-efficacy did not correlate with 

their knowledge. As mentioned in the background, young children may find it 
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difficult to differentiate between what is real and what they desire to be real (Stipek, 

Roberts, & Sanborn, 1984). And yet, among first and second graders, academic self-

efficacy was found to be related to mathematics achievement (Liew, McTique, 

Barrois, & Hughes, 2008). Perhaps, between kindergarten and first grade, there is a 

leap in the development of children‘s sense of self. Perhaps differences between the 

two groups of children regarding geometric related self-efficacy, and possibly other 

academic related self-efficacy, may come to the fore at a later age. 

Regarding children‘s identifications of geometric shapes, if we focus on the first 

example of each shape presented to the children, the equilateral triangle, the 

equilateral pentagon, and the circle, we note that the frequencies of correct 

identifications were exactly the same for each group of children. That is, figures 

which are symmetrical and possibly prototypical of their shape in general, may be 

easily identified by all kindergarten children regardless of their home backgrounds. 

In addition, there were no significant differences between the two groups of children 

in their general knowledge of pentagons and circles. Regarding pentagons, this 

finding may not be surprising. The pentagon is less common in children‘s everyday 

experiences and is usually first introduced in kindergarten. On the other hand, 

knowledge of circles was also similar between the two groups. It was thought that 

knowledge which might stem from the child‘s everyday experiences might produce 

different results for the different groups.  

When looking at the differences between the two groups, less correct identifications 

were noted among the abused and neglected children than among the other children 

for the non-intuitive scalene triangle, as well as for each of the nonexamples of 

triangles, and a significant difference between the two groups of children was found 

in their general knowledge of triangles. Finally, when the results of the other shapes 

were also taken into consideration, abused and neglected children exhibited 

significantly less knowledge than other children. These findings indicate that even 

before children begin first grade, differences are detectable between the two groups 

of children. Knowledge of geometric shapes most often begins before formal 

presentation in school. As such, these differences may possibly stem from the home 

environment. 

Abused and neglected children learn in the same kindergartens as other children. 

Thus, in order to plan lessons and interventions, it is important to note both the 

similarities and differences among these children. A high self-efficacy which is not 

realistic is an issue common to both groups of children and needs to be addressed. In 

addition, the non-intuitive examples of triangles and pentagons were incorrectly 

identified by most of the children in both groups. Thus, it is important to actively 

promote this knowledge among all kindergarten children. And yet, differences do 

exist. Equity is not only about giving a fair chance to children from different socio-

economic backgrounds or minority students. It is about providing ―high expectations 

and strong support for all students‖ (NCTM, 2000, p. 12). Children who have been 
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abused and neglected have special needs. Schmid (2007), in his report on children at 

risk in Israel, suggested that identification of risk factors in early childhood may 

prevent or minimize problems which develop later on. This study is a first step in 

considering the mathematics educational needs of children at risk. Additional 

research is needed to address possible interventions which take into consideration 

both similarities and differences in knowledge, self-efficacy, and possibly affective 

issues when promoting mathematics for all children, including children at risk. 
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PLAYING AND LEARNING IN EARLY MATHEMATICS 

EDUCATION – MODELLING A COMPLEX RELATIONSHIP 

Stephanie Schuler 

University of Education Freiburg 

Playing and learning  in early childhood often used synonymously, later on 

antithetically – are both key concepts in educational contexts. Considering 

theoretical models and empirical research on the relationship of playing and 

learning there remain no objections on learning while playing. But learning is not 

without requirements and depends on situational conditions. In the empirical study 

children are videotaped using selected materials and games in every day 

kindergarten contexts. The research results in descriptions of mathematical learning 

opportunities and their situational conditions.  

Keywords: play, games, arithmetic skills, early childhood education, video study 

INTRODUCTION 

Concerning early mathematics education there are often brought up two important 

questions: What and how should children learn in the early years (3 to 6 years old)? 

Answers to the first question are mostly connected to fundamental mathematical 

ideas like quantitative and spatial thinking, patterns and relationships, contents that 

are not only relevant for a preschool curriculum. In distinction from formal school 

education there is consensus that young children acquire these skills primarily in a 

playful way (cf. Moyles, 2010, Pramling-Samuelsson & Fleer, 2009). Kindergarten, 

the place of early childhood education, is shaped by free play, open offers and 

informal learning opportunities. Thus play and the relationship of playing and 

learning have to be explored more closely when talking about mathematics for the 

early years. 

Play is probably one of the most dubious notions. It withdraws defining, because it 

comprises very different phenomenon.
70

 However there are many attempts to 

describe play with different characteristics. Depending on the theoretical approach, 

phenomenological (cf. Scheuerl, 1990), action-theoretical (cf. Oerter, 1993), 

cultural-historical (cf. Vygotskij 1933/80), these characteristics differ in quantity and 

label. Following an empirical approach play cannot be uniquely defined but just 

case-by-case explicated. Hence different types of play and the same concrete activity 

can be more or less play (cf. Einsiedler 1999). This conclusion matches with the 

synopsis of a literature review: ―In essence, play could be viewed in its broadest 

                                           

70
 Above there exists a linguistic and a cultural problem: E.g. in German ―Spiel‖ includes ―play‖, ―game‖, ―match‖ and 

―gambling‖. Beliefs about play and learning vary in different countries (cf. Pramling-Samuelsson & Fleer, 2009). 
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sense as describing almost all the activities that young children engage in‖ (cf. Fleer, 

2009, 2). 

In a historical perspective the role of play during childhood is described manifoldly. 

Play is attributed an emotional (cf. Oerter, 1993), a social (cf. Parten, 1932) and a 

cognitive role (cf. Piaget, 1969). During infancy and toddlerhood play is associated 

with learning mainly in the context of training and rehearsal. In early childhood, the 

so called play age, play becomes in terms of Vygotskij (1933/80) not the 

predominant but the leading activity. It creates the zone of proximal development 

and allows the child to rise above itself while following challenging rules. Exponents 

of play pedagogy remark that the utilisation of play is not possible, because children 

create their own learning contexts in play broadly independent from adults‘ learning 

intentions (cf. Flitner 2002). 

Summarising play in early childhood is the motor of development and hence 

associated with learning. Consequently the underlying question seems not to be ―Can 

children learn while playing?‖ but rather ―How can learning while playing be 

modelled?‖ and ―Can children learn mathematics while playing?‖. 

THEORETICAL MODELS ON THE RELATIONSHIP OF PLAYING AND 

LEARNING IN CHILDHOOD  

Einsiedler (1982, 5) compares two basic models referred to the relationship of 

playing and learning:  

■ Every play implies learning. 

 

Figure 1: Simple Input-Output-Model 

■ Learning while playing is an interactive relationship between personal and 

situational conditions. 

 

Figure 2: Person-Situation-Model 

The former model is a historical position against the supposition that playing and 

learning are incompatible. The latter model points out that learning while playing is 

possible but depends on personal and situational conditions. Einsiedler (1989, 297) 

refers to this dependence as the problem of contingency of learning while playing. 

 
playing learning 

 

situation 
learning 

 

person 
playing 
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Given constructivist assumptions it is disputable if the contingency of learning in 

play must be considered as a special problem. Even intentional learning, the 

increasingly leading activity during primary school, is not utterly controllable by 

teaching. Knowledge is constructed individually linked to former experiences and 

mental structures. Constructivist, social-constructivist but also cultural-historical 

theories highlight the organisation of situational conditions of learning (cf. 

Gerstenmaier & Mandl, 1995). 

EMPIRICAL STATEMENTS ON THE RELATIONSHIP OF PLAYING AND 

LEARNING 

Mainly there are two different types of empirical studies in the context of playing 

and learning. First there are short or long term intervention studies which are 

interested in learning effects when inserting games (commercial or didactical) in 

kindergarten or first/second grade (cf. Ramani & Siegler 2008; Kamii 2004; Peters 

1998; Floer & Schipper 1975). Second there are observational studies which are 

interested in the context of playing in kindergarten settings and in the conditions for 

learning in these settings (cf. van Oers 2010, Ginsburg 2009). 

Studies of the first type with a control group design could show that playing with 

particularly chosen games (e.g. games with mathematical potential for number 

concept) are similar successful as teaching. In kindergarten games can foster 

mathematical abilities of disadvantaged children. 

Observational studies draw the conclusion that children in kindergarten need adult 

guidance or more knowledgeable others in the context of play to promote their 

mathematical thinking. Ginsburg (2009, 413f) states that developing mathematical 

thinking depends on the environment, play and the teachable moment. Quite similar 

van Oers (2010, 34) summarises his studies: „The emergence of mathematical 

thinking in young children is a culturally guided process, wherein mathematical 

meaning can be assigned to actions of the child. These actions can be further 

developed through collaborative problem solving with more knowledgeable others in 

the context of activities that make sense to the children.‖ 

In essence empirical research on playing and learning in early childhood underlines 

the central role of the educator and the quality of materials, games and activities. 

RESEARCH QUESTIONS 

The study generally follows the question if early mathematics education can be 

organised by playing games. The goal is shortly outlined as follows
71

:  

How can learning opportunities develop in informal contexts like free play and open 

offers with educational materials and games to acquire the number concept? 

                                           

71
 Further information about research questions and research results can be reread in Schuler & Wittmann 2009. 
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In detail we ask the following research questions:  

1. What (theoretical) potential for children‘s construction of number concept do 

these materials and games have in principle?  

2. Under what conditions can learning opportunities occur while playing these 

games or with these materials? 

RESEARCH METHODS AND METHODOLOGY 

The study is rooted in the methodological frame of Grounded Theory, one type of 

theory generating qualitative research (cf. Strauss & Corbin, 1996). According to the 

research questions it is a two-phase design (cf. figure 3) that will lead to a 

(grounded) theory about the conditions for learning opportunities in informal 

contexts: 

■ The first phase is a theoretical analysis of games and educational materials (cf. 

Schuler & Wittmann, 2009). 

■ The second phase is an empirical evaluation of selected, theoretically proved 

games and educational materials. 

 

Figure 3: Two-phase research design 

According to the methodology of Grounded Theory, there are several phases of video 

propped data inquiry. Children are recorded while playing with selected materials 

and games during free play and open offers.  

Basis of the data analysis are transcripts of video sequences. These are analysed by 

the following tools of videography to deduce and reduce the complexity of video 

data (cf. Dinkelaker & Herrle, 2008): 

■ The segmental analysis surveys the sequential process and the phases of the 

whole scene. 

■ The configurational analysis surveys the spatial organisation of the whole scene. 

■ The sequential analysis enables the reconstruction of the sequential meaning. 

Acquisition of number concept in kindergarten 

 

 

 

 

 

1. Theoretical analysis of 

materials 

■ Distinction and classification 

on a conceptual level 

■ Mathematical potential 

■ Visualisation of number 

■  

2. Empirical video-based study 

■ Mathematical activities 

■ Description of the situational 

context 

■ Possibilities and limitations 

Conditions of mathematical learning opportunities in informal contexts 
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The following tools of Grounded Theory data analysis support the development of 

theoretical concepts and their relationship and result in a local, data grounded theory 

(cf. Strauss & Corbin, 1996; Kelle & Kluge, 1999; Mey & Mruck, 2007): 

■ Theoretical sampling means the ongoing change and interplay between action 

(data inquiry) and reflection (data analysis and theory construction) (cf. Mey & 

Mruck 2007, 13). Hypotheses are continually phrased and conduct further data 

inquiry. Video sequences are purposefully chosen for theoretical saturation. 

■ Theoretical coding is not only a description and classification of phenomena but 

the creation of theoretical concepts that explain the phenomena. 

■ Comparative analysis contrasts phenomena and contexts in order to develop 

theoretical concepts. 

Mathematical learning opportunities while playing games in kindergarten 

For brevity of the article it is not possible to show the whole process of data analysis. 

Referring to one transcript I illustrate some of the tools mentioned above and 

coincidentally highlight learning opportunities that may occur while playing the 

Quips game (cf. figure 4) during the informal context of free play. 

Game: Quips (Ravensburger) 

Player: (1) 2 to 4 

Material: 4 boards, 90 chips in 6 colours,  

1 die with colours, 1 die with sets one to three 

Rule: Each player gets a board and plays the two  

dice. The cast of dice determines the colour 

and the quantity of chips that each player can  

take and put into his board. Surplus chips have  

to put back or given away to another player. 

Figure 4: Rules of the game ―Quips‖ 

The segmental and configurational analysis (cf. table 1) survey the sequential 

process and the spatial organisation of the whole scene. The scene starts with the 

open offer of the Quips game during free play and closes with the end of the game. 

The scene is structured in four segments. 

During free play the educator creates liability by proposing a game. Leni takes up the 

suggestion. Christian and Leon join the two. Their choice reveals social affordance 

that can be observed quite often in informal contexts. Segment 2 lasts approximately 

15 minutes. Each of the players dices four times. Segment 3 lasts 12 minutes and 

each player dices fourteen times. Christian and Leon primarily want to put chips into 

the holes on the board (affordance of the material). They have difficulties following 

the rules: waiting to have a turn, recognizing and naming the colours, counting 

objects, comparing sets. They leave the game after four rounds. Moritz changes from 

the status of a spectator to the one of a player (affordance of the game). The game 



Working Group 13 

 CERME 7 (2011)  1917 

accelerates and the three players finish the game (liability through rules and the play 

group). 

 

00:00 1. Choice of game, formation of the play group 

The Educator puts the game „Quips― during free play on the table. 

Leni (2;11) takes a seat at the table and opens the box. The  

educator sits down as well. Christian (3;1) and Leon  

(3;0) enter the room and come to the table. They want to play too. 

03:04 2. Game with four players (four dice rounds) 

The rules of the game are clarified while playing the game. Moritz joins the 

game as a spectator. 

18:40 3. Game with three players (fourteen dice rounds) 

Leon and Christian leave the game and the room. Moritz  

(4;10) takes Christian‘s seat and game board. 

 

 

30:53 4. End of game, putting away the game 

Table 1: Short segmental and configurational analysis 

The following transcript (cf. table 2) is located in segment 2. Its Lenis turn and her 

fourth cast of dice. Moritz follows the games as a spectator. Leon has already 

announced that he wants to leave the game. The right column contains figures of dice 

and game boards and above open codes. 

Time Speaker Transcript Materials and codes 

16:35 E LENI THROWS DICE How many have you got 

Leni? 

 

 

question(ing) 

 Leni One two. LENI LOOKS ON HER BOARD 

 
counting objects 

 E You need two and how many have you diced? comment(ing) 

question(ing) 

 Leni Two. LENI POINTS TO THE DIE WITH 

COLOURS 

subitizing 

 E How many are there? How many dots? 

EDUCATOR POINTS TO THE DIE WITH 

question(ing) 

l 

E 

C L 

l 

E

 K  

M 

O 
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SETS 

 Moritz Three. LOW VOICE subitizing 

 Leni One two three. LENI POINTS 

SYNCHRONOUSLY ON THE DIE WITH 

SETS 

counting objects 

 E Exactly, then you can take three orange chips. 

LENI TAKES TWO ORANGE CHIPS Have 

you already got three orange chips? 

request(ing) 

 Leni No you must two LENI SHOWS THE 

EDUCATOR THE TWO ORANGE CHIPS IN 

HER HAND 

arguing 

 E But- arguing 

 Leni Because I have two. LENI PUTS THE TWO 

ORANGE CHIPS INTO THE HOLES ON HER 

BOARD 

 
reasoning 

 E But you have diced three, you can give away 

one. 

arguing, requesting 

comparing exactly 

17:30 Leni Yes. LENI TAKES ONE ORANGE CHIP AND 

PUTS IT IN CHRISTIANS BOARD 

following request 

Table 2: Transcript from segment 2 with codes 

Mainly one mathematical activity can be observed in this transcript: counting 

objects. Leni counts holes on her board, dots on the die and she takes chips out of the 

box. The other observation is an argument between the educator and Leni that is 

based on a different reading of the situation. Leni reads her cast of dice from her 

board: she needs two more orange chips. She does include the die with sets probably 

just in a vague but not in an exact manner. Beyond that the educator considers the 

exact set on the die and compares it with all other boards. The rule to give away 

surplus chips requires this complex reading. After the argument Leni follows the 

educator‘s request that she can give away one. The scene offers learning 

opportunities related to the content idea quantitative thinking and to process ideas:  

■ counting objects, subitizing 

■ comparing sets and units of sets 

■ reasoning, arguing 

The learning opportunities are embedded in the educator‘s questioning, commenting, 

requesting and arguing and are based on the game‘s rules.  
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RESEARCH RESULTS AND FURTHER CONCLUSIONS 

The focus of our research is on the situational conditions of learning (cf. figure 5). 

They are necessary requirements for learning but they do not guarantee it. The design 

of our study does not allow any statements on what single children have learned 

while playing the game, but just what opportunities to learn may occur (see previous 

section). Furthermore we can describe more closely situational conditions that 

support these learning opportunities (cf. Einsiedler 1982). So far we could emerge 

three main blocks of situational conditions: Affordance, liability and conversational 

management. 

 

Figure 5: Situational conditions of learning while playing 

The context of play is generally contingent on three variables: the educator, the 

playgroup and the play material. Materials and games introduced in kindergarten 

should offer a mathematical potential concerning central content ideas. This 

potential can be analysed in advance (cf. Schuler & Wittmann, 2009). Abridged 

affordance and liability encourage children to start, to maintain and to repeat a game. 

The conversational management is crucial for mathematical learning opportunities. 

Affordance and liability 

Each material possesses an intuitive affordance (cf. Lewin following Heckhausen 

2006, 31, 105ff) that supports the involvement with the material, but which does not 

necessarily lead to mathematical activities. Boards and chips of the Quips-game for 

example invite children to put the chips into the holes on the board or to pile them 

up. As we have seen in the transcript above, rules can offer mathematical activities 

beyond a material‘s intuitive affordance and thus create liability. Intuitive affordance 

of materials is replaced in games by (the affordance of) keeping the rules and 

winning the game. In the informal context of free play we can observe that children 

leave or change a material after a short time and others stay and play the game until 

the end. No rules or overcharging rules promote the abandoning of materials and 

games. Individually challenging rules lead to a longer lasting and repeated 

involvement. Thus the educator has to be sensitive to individual competencies and 

possible variation of rules. This seems to be a particular challenge in informal 

Context of play 
educator 

playgroup 

play material 

conversational management 

liability affordance 
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contexts where children of different age and competence play together. Liability is 

also produced by temporal, spatial and social standards: e.g. announcing special 

periods for playing games, playing games at a separate table, presence of the 

educator. Not only materials are equipped with affordance but also social contexts. 

Playing with other children and playing with the educator exerts a social affordance. 

Conversational management 

As we have seen in the transcript above the conversational management influences 

the mathematical potential that develops in interaction. Besides content ideas like 

comparing sets, counting objects there occur process ideas like arguing and 

reasoning. These general mathematical skills are not material inherent, cannot be 

analysed in advance and depend on the educator‘s conversational competence (cf. 

Schuler & Wittmann 2009).  

Mathematical potential develops through the educator‘s comments on the game‘s 

course, through questions that stimulate explanations, reflections on actions and 

thoughts, and reasoning. She has to communicate individually challenging rules 

through stimuli, comments, questions and requests what requires a sensitivity for 

possibilities and variations in the games course. 

Further conclusions 

Potentially suitable materials and games need a competent educator with regard to 

didactical and conversational aspects. The educator has to analyse, assess, choose 

and present materials and games. She has to discern the child‘s or children‘s 

individual approach to the material and has to consider the mathematically 

productive aspects. Through temporal and spatial organisation she creates liability 

and she utilises the case of social affordance to involve children in playing. 

Considering these situational conditions learning opportunities occur during play 

regarding central mathematical content and process ideas. 

To organise early mathematics education in informal contexts like free play with 

potentially suitable materials and games educators need a mathematical, didactical, 

pedagogical and conversational competence that cannot be taken for granted. The 

qualification of present and future educators needs to take into account these aspects. 
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Research on university level mathematics education is a relatively young field, which 

embraces an increasingly wider range of theoretical approaches (e.g. 

cognitive/developmental, socio-cultural, anthropological and discursive) and 

methods/methodologies (e.g. quantitative, qualitative and narrative). Variation also 

characterises research in this area with regard to at least two further issues: the role 

of the participants, students and university teachers, in the research – from ‗just‘ 

subjects of the research to fully-fledged co-researchers – and the degree of 

intervention involved in the research – from external, non-interventionist research, to 

developmental/action research in which researchers identify problems and devise, 

implement and evaluate reforms of practice (Artigue et al, 2007).  

2011 marks the 20
th

 anniversary of the publication of Advanced Mathematical 

Thinking (Tall, 1991), a volume that is often heralded as a first signal of the 

emergence of this new area of research. A few years later a second signal was given 

by the 1998 ICMI study that resulted in The teaching and learning of mathematics at 

university level (Holton, 2001). In the meantime Advanced Mathematical Thinking 

(AMT) groups ran both in previous CERME and PME conferences; sessions 

exclusively on university mathematics education are part of the EMF conferences 

since 2006 ; the RUME, UMT and Delta conferences emerged in the USA, the UK 

and South Africa respectively; the International Conferences on the Teaching of 

Mathematics at University Level were launched in 1998; etc.  

WG14 (University Mathematics Education, hereafter UME) emerged out of the 

above developments and out of the realisation that this is a distinct area of 

mathematics education research. Its distinctiveness can be attributed to several 

characteristics. Firstly, the classic distinction between ‗teacher‘ and ‗researcher‘ does 

not always apply in UME as researchers in mathematics education in this area are 

often university-level teachers of mathematics themselves. In particular there is a 

growing group of mathematicians specializing in research on mathematics education 

at university level, where advanced mathematical knowledge and experience is really 

an asset (if not a necessity). Secondly, mathematics education theories and research 

methods find new uses, and adaptations, at the university level. These adaptations are 

often quite radical as the post-compulsory educational context is different in many 

ways – the voluntary presence of students, the important role of mathematics as a 
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service subject, the predominance of lecturing to large numbers of students, the 

absence of national programmes for university education, to mention but a few. In 

this sense UME is a distinct area of mathematics education research, not merely a 

mirror of mathematics education research at a more advanced educational level. 

Finally, in recent years, research in this area has been growing in different parts of 

the world. WG14 is one opportunity to collate evidence of this growing research 

activity from Europe and beyond. 

The WG14 Call for Papers invited contributions from as wide a range of research 

topics as possible. These included: concept formation, mathematical reasoning and 

proof in university mathematics; teaching at university level (including the 

perspectives of university mathematicians); ICT in the teaching and learning of 

university mathematics (including curriculum design); socio-cultural, 

anthropological and discursive approaches in university mathematics education; 

affective and social aspects of the learning and teaching of university mathematics; 

the transition from secondary to tertiary mathematics; novel approaches to teaching 

mainstream (e.g. calculus and linear algebra) as well as more advanced topics, both 

to students of mathematics and other areas (e.g. engineering, sciences, finance); 

theoretical approaches to the study of teaching and learning mathematics at 

university (including a focus on specific approaches and on contrasting or combining 

approaches). 

This report draws on the presentations, reactions-to and discussions of the 21 

accepted papers that met these terms. The number and quality of these papers marks 

the recent surge in the quality of research outputs and a move away from the earlier 

days of perhaps more naïve, less rigorous research in this area – brought about partly 

by the university sector‘s increasing urge to adapt teaching to changing student 

cohorts and by a growing, and wider, tendency towards an in-depth probing into 

traditional teaching practices in higher education. 

Across the WG14 discussions certain themes and questions emerged as crucial. 

These included: exploring whether UME needs to generate new theories or adapt 

already existing ones; attending to issues of both theory and practice; acknowledging 

that research on teaching and learning in higher education develops also outside 

mathematics education, and benefiting from these developments; working towards 

the generation of new theories while valuing already accumulated knowledge in the 

field; etc. Colleagues observed that, beyond staple references to classic constructs 

from the AMT era (such as concept image – concept definition; APOS theory, 

process – object duality etc.), several works presented in WG14 employ (often in 

tandem with the above) approaches such as the Anthropological Theory of Didactics 

(ATD: Chevallard, 1985), and discursive approaches (e.g. Sfard, 2008).  

Generally speaking papers seem to be classified into those with a focus on the 

teaching and learning of particular mathematical topics (calculus continues to attract 

more attention than other topics) or on wider, cross-topical issues such as the 
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transition to university mathematics, use of IT, language, motivation, teacher 

knowledge and development, curricular, pedagogical and institutional issues, etc.. 

Furthermore an area of growth is of studies that examine the different role of 

mathematics in courses towards a mathematics degree, courses for pre-service 

teachers, as a ‗service‘ subject (physics, biology, economics etc.). While a substantial 

number of papers remains in the increasingly well-trodden area of students‘ 

perceptions of specific mathematical concepts (again calculus prevails in these), a 

focus on university teachers and teaching is also emerging, if often a little timidly, 

and diplomatically, resulting in descriptive, openly non-judgemental studies. In 

conjunction with those studies a genre of collaborative studies, with mathematicians 

engaged as co-researchers, also seems to be on the rise. In the nutshell descriptions 

of the WG14 papers that follow the order of presentation is loosely structured around 

some of the themes mentioned above.  

Xhonneux & Henry is one of the papers that employs the ATD framework to 

distinguish between mathematical and didactic praxeologies in the context of 

teaching and learning of Lagrange's Theorem in calculus courses to mathematics and 

economics students. Gyôngyôsi, Solovej & Winslow is another: in it a part of a 

transitional course in Analysis was taught with a combination of Maple and paper-

based techniques and resulted in mixed reception and performance by students. A 

third is Barquero, Bosch & Gascñn: from its analyses 'applicationism' emerges as the 

prevailing epistemology of mathematics in science departments that potentially 

hinders the teaching of mathematical modelling to science students. 

Another set of approaches that was employed by a number of WG14 papers were 

discursive. Jaworski & Matthews employed such approaches to trace university 

mathematicians‘ pedagogical discourse and suggest links of this discourse to their 

ontological and epistemological perspectives. Biza & Giraldo described how 

computational inscriptions – in this case differentiability – have potentialities and 

limitations that can be helpful in students' exploration of newly introduced 

mathematical concepts. Three papers made use of Sfard‘s commognitive framework. 

Viirman employed this framework to trace the variation in the pedagogical 

discourses of mathematics lecturers in the course of their introducing the concept of 

function. Stadler described students‘ experience of the transition from school to 

university mathematics as an often perplexing re-visiting of content and ways of 

working that seem simultaneously familiar and novel (for example in the case of 

solving equations). Nardi outlined interviewed mathematicians‘ perspectives on their 

newly arriving students‘ verbalisation skills; and, observed that discourse on 

verbalisation in mathematics tends to be risk-averse and not as explicit in teaching as 

necessary. Several papers focused on the transition from school to university 

mathematics (including Gyôngyôsi, Solovej & Winslow and Stadler mentioned 

above). Biehler, Fischer, Hochmuth & Wassong proposed that blending traditional 

course attendance with systematic e-learning study can facilitate the bridging of 
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school and university mathematics. Faulkner, Hannigan & Gill noted the shifting 

profile of students who take service mathematics courses (in the context of an Irish 

institution): many more are diagnosed as at risk, fewer have an advanced 

mathematics secondary qualification and the percentage of non-standard (e.g. 

mature) students has grown. Zimmermann, Bescherer & Spannagel described MaSE-

T, a mathematics self-efficacy test designed to measure the impact that self-efficacy 

perceptions have on choice of studies. Vandebrouck noted that in the transition from 

school to university, mathematics students need to reconceptualise the concept of 

function in terms of its multiple representations and its process-object duality. 

Finally, De Vleeschouwer & Gueudet observed that students can learn to appreciate 

the duality in linear forms (described here in micro-macro terms) if given an 

appropriate set of tasks that require them to engage with these concepts at both 

levels. 

Many of the papers mentioned above had a clear focus on a specific mathematical 

concept or issue. In addition to these, Iannone & Inglis discussed a range of 

weaknesses in Year 1 mathematics students‘ production of deductive arguments 

(rather than in the oft-reported perception that a deductive argument was expected of 

them). Juter reported the highly individual and not easily classifiable character of 

pre-service secondary mathematics teachers' concept images of elementary Calculus 

concepts. And Souto-Rubio & Gñmez-Chacñn mapped out students‘ difficulty with 

developing visualisation skills in the context of the Riemann integral. 

Some papers focused on particular curricular and pedagogical aspects of university 

mathematics. Agathokleous argued how teaching Abstract Algebra to pre-service 

primary teachers can facilitate students‘ appreciation for the connectedness across 

mathematical domains. Jukic & Dahl, through data collected in the Croatian and 

Danish context, aimed to illustrate that students taught in different styles are likely to 

perform differently. Bergsten presented evidence that students tend to find lectures 

useful and attractive, despite their bad press in some education quarters. 

Finally, a few papers addressed theoretical issues directly. Barton outlined efforts to 

combine the three-fold activity of research, development and theory building into 

LATUM, a model for learning and teaching university mathematics that is proposed 

as a model for designing alternative university mathematics delivery. And, 

Pettersson proposed ‗threshold concepts‘, a theoretical construct from the general 

education literature, as a means for gaining insight into student learning and 

engaging teachers in pedagogical discussion. 
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WHY ABSTRACT ALGEBRA FOR PRE-SERVICE PRIMARY 

SCHOOL TEACHERS 

Eleni Agathocleous 

Cyprus Ministry of Education and Culture 

There has been a rapid increase in the volume of research papers focusing on 

mathematics teacher education and in particular on the characteristics that should 

describe the desired mathematical knowledge for teachers. In this paper, it is 

suggested through theoretical discussion on the character of Abstract Algebra and 

via Peirce‘s semiotics, that a one-semester course in Abstract Algebra, specially 

designed for pre-service primary school teachers, can enhance the development of 

the basic, multifaceted characteristic of connectedness. Some concrete examples are 

given in the end of the paper, taken from in-class observations and reflections on a 

similar course taught by the author, for two consecutive semesters. 

Key words: Teachers‘ mathematical knowledge, Connectedness, Abstract Algebra, 

Semiotics. 

INTRODUCTION 

In this paper I argue that a course in basic notions of Abstract Algebra, specially 

designed for pre-service primary school teachers, can help teachers regroup and 

enrich their existing mathematical knowledge, as well as achieve connectedness 

across various mathematical domains as well as across time, as a mathematical idea 

develops and extends. These basic notions of Abstract Algebra include the notions of 

group, ring and field, accompanied by a very basic introduction to functions, 

modular arithmetic and complex numbers. Unlike a standard introductory course in 

Abstract Algebra intended for mathematicians, the aim of this course would not be 

the teaching of group theory, quotient rings or maximal ideals for example. But 

instead, the introduction of groups, rings and fields as a means to put existing 

mathematical knowledge (such as the number systems N, Z, Q, R) or new 

mathematical knowledge (such as the number systems C and Zn) into new forms, in 

order to reveal more information on the structure of these mathematical systems as 

well as present new ways of understanding old knowledge. The theoretical 

discussion in this paper focuses on the unifying character of the basic notions of 

group, ring and field, and I employ Peirce‘s Semiotics to show how the use of these 

notions is on the highest level of the hierarchy, helping the learner make the desired 

connections suggested by the literature on teachers‘ mathematical knowledge.  

TEACHERS‘ MATHEMATICAL KNOWLEDGE  

What mathematical knowledge does it take to teach primary mathematics well? Is it a 

matter of quantity? Of depth? Or is it a matter of different quality? There has been a 

rapid increase in the volume of research papers focusing on the relatively new area of 
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mathematics teacher education (Adler, Ball, Krainer, Lin, & Novotna, 2005) and 

investigating the ―unsolved‖ (Ball, Lubienski, & Mewborn, 2001) problem of 

teachers‘ mathematical knowledge (see, e.g., Davis & Simmt, 2006; Ball & Bass, 

2000; 2003; Ball et al., 2001). It is a shared belief that if a teacher does not know 

mathematics, then he/she cannot teach mathematics (Ball & Bass, 2003; Murphy, 

2006). However, one of the first attempts to investigate the relevance between 

teachers‘ knowledge and students‘ achievement showed that the number of advanced 

mathematics courses taken by teachers, was not relevant to students‘ achievement 

(Begle, 1979). Even though Begle‘s findings as well as views concerning research in 

mathematics education, were later doubted by critics (see, e.g., Elerton & Clements, 

1998; Howson, 1980), many others since then have argued in favour of this view, i.e. 

that advanced mathematics courses offered by mathematicians for mathematicians 

might be of no value to teachers and can even have negative effects on their 

pedagogical approaches (Cooney & Wiegel, 2003; Davis & Simmt, 2006; Murphy, 

2006). Relevant studies by Askew, Brown, Rhodes, Wiliam, and Johnson (1997), 

Ball and Bass (2000; 2003), Ball et al. (2001) and Davis and Simmt (2006), point out 

a need for different mathematics for teachers.  Davis and Simmt (2006) suggest that 

teachers‘ mathematical knowledge is not a matter of ―more of‖ or ―beyond‖, but it is 

of a different quality. This ‗new‘ mathematical knowledge should foster teachers‘ 

understanding of mathematics in a broader and unifying sense, so as to enable them 

to make connections across mathematical domains and help students build a coherent 

mathematical knowledge (Askew et al., 1997; Ball & Bass, 2000; 2003; Ball et al., 

2001). Furthermore, teachers are to anticipate the way mathematical ideas change 

and grow; hence, they should also be able to make connections across time, as 

mathematical ideas develop and extend (Ball & Bass, 2003).  

Even though there is no general agreement as to the level or the type of mathematical 

knowledge teachers should have, we see from the above discussion that the 

multifaceted characteristic of connectedness - across various mathematical domains, 

conceptual aspects of one same notion, or even across time as a mathematical idea 

develops - is widely present in the literature. Another example is the study of Ma 

(1999), in which she compares Chinese and U.S. elementary teachers‘ mathematical 

knowledge. Ma uses the term ―profound understanding of fundamental mathematics‖ 

to describe teachers‘ mathematical knowledge, which is later described by Ball and 

Bass (2003) as ―a kind of connected … and longitudinally coherent knowledge of 

core mathematical ideas‖ (p.4). Ball and Bass (2000) explain that ―depth‖ for Ma is 

the connecting of ideas with the larger and more powerful ideas of the domain, 

―breadth‖ is related to the connecting of ideas of similar conceptual power and 

―thoroughness‖ is what groups everything together into a coherent whole.  

The need for a connected mathematical knowledge for teachers is also suggested by 

studies that focus on the teaching and learning of specific mathematical ideas. One 

such example is a study by Lamon (1996) of children‘s partitioning strategies and the 
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development of their unitizing process. In her section Implications for Instruction 

she writes 

The many personalities of subconstructs of rational number that children must 

conceptually coordinate may all be understood as compositions and recompositions of 

units. Because the rational numbers are a quotient field, partitioning itself is an operation 

that plays a role in generating each of those subconstructs ... Students need extensive 

presymbolic experiences involving these conceptual and graphical mechanisms in order 

to develop a flexible concept of unit and a firm foundation for quantification, to develop 

the language and imagery needed for multiplicative reasoning, and to conceptually 

coordinate the additive and multiplicative aspects of rational numbers. (p.192) 

All of the above concerning the multiple faces of a rational number, the 

multiplicative versus the additive structure, the development of flexible concepts, 

etc. are characteristics of the students‘ desired knowledge. One can only begin to 

understand how complex, rich, versatile and flexible teachers‘ content knowledge 

should be, so as to be able to correspond to such high and demanding expectations.   

WHY ABSTRACT ALGEBRA  

Abstract Algebra is an advanced mathematics course usually meant for mathematics 

students, and it is no surprise that the literature concerning the pedagogy of Abstract 

Algebra, focuses on the teaching of the course to university students majoring in 

mathematics, or to high-school mathematics teachers (see, e.g., Burn, 1996; 

Dubinsky, Dautermann, Leron, & Zazkis, 1994; Leron & Dubinsky, 1995; Simpson 

& Stehlíková, 2006). The subject is hard enough, even when taught to mathematics 

majors and we have the, apparently famous, quote: ―The teaching of Abstract 

Algebra is a disaster, and this remains true almost independently of the quality of the 

lectures‖ (Leron & Dubinsky, 1995, p. 227; Simpson & Stehlíková, 2006, p.347). So 

why should one attempt to teach notions of Abstract Algebra to pre-service primary 

school teachers?  

History, Character and Basic Definitions 

Until the end of the eighteenth century, Algebra was concerned with mainly the 

study of polynomial equations and was regarded as a generalization of Arithmetic. 

The nineteenth century was for Algebra the period of transition, of complete reform. 

Some of the basic characteristics of the mathematics of the nineteenth century were a 

turn toward rigor and the need for axiomatization, and the emergence of abstraction. 

Following Geometry, Algebra became another branch of Mathematics that 

mathematicians tried to axiomatize. Furthermore, the attention was now turned to the 

study of mathematical objects, such as vectors, matrices, transformations, etc, and 

various operations acting on them, which expanded the role of Algebra to the study 

of form and structure, giving birth to Abstract Algebra. It is in this century that we 

have the explicit formulation of the fundamental concepts of a group, ring and field, 

which grew out of the work of many mathematicians such as Galois (1811-1832), 
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Cayley (1821-1895) and Dedekind (1831-1916). These three concepts constitute the 

focal point of the Abstract Algebra course that we propose, since they have by 

definition a unifying nature. In the preface of his book, Herstein (1999) mentions that 

one aspect of the role of Abstract Algebra is ―… that of a unifying link between 

disparate parts of mathematics …‖ (Herstein, p.xi); and Robert (1987) refers to 

concepts of the theory of groups as ―unifying and generalizing concepts‖ (in Dorier, 

1995, p.175). But what is it exactly that gives the concept of a group such unifying 

powers? Let us first recall the definition: 

Definition1: A non-empty set G is said to be a group if we define an operation  in G 

such that: (1) If a, b  G then a b  G, and we say that G is closed under , (2) 

Given a, b, c  G then a (b c) = (a b) c, and we say that the associative law holds 

in G, (3) There exists a special element e  G such that  a  G, a e = e a = a. This 

element e is called the identity or unit element of G, (4)  a  G there exists an 

element b  G such that a b = b a = e. We write this element b as a
-1

 and we call it 

the inverse of a in G. If in addition, we have that  (5)  a, b  G, a b = b a, i.e. the 

commutative law holds, then we say that G is an abelian group. 

From the definition alone, one can recognize the shift of attention from specific 

objects and operations, to the interrelationships between objects produced under the 

action of some operation. Seeing for example that (Z, +) and (Q
×
, ) are both groups, 

implies, among other things, the realization that 0 in the first example and 1 in the 

second play exactly the same role, and therefore the ‗identification‘ of these two 

seemingly unrelated objects. Similarly, z and –z connect together in the same way 

that q and q
-1

 in the second example do, where z is any integer and q any rational. 

Another very useful example involves the even and odd numbers and the realization 

that (2Z, +) forms a group whereas (2Z+1, +) does not since closure fails to hold in 

the second case. Proving this requires seeing the even and odd numbers in their 

general form as 2k and 2k+1 respectively, where k any integer. And this in turn, 

requires the learning as well as the use of the definitions of these two kinds of 

numbers, which is a type of knowledge that is expected from the teacher (see Ball & 

Bass, 2000, the Introduction).  

Definition2: A non-empty set R is said to be a ring if there are two operations + and  

such that: (1) (R, +) is an abelian group, (2) if a, b  R then a b  R, (3) a (b c) = 

(a b) c, for a, b, c  R, (4) (i) a (b+c) = a b + a c   and   (ii) (b+c) a = b a + c a. If in 

addition we have that (5)  a, b  R, a b = b a, then we say that R is a commutative 

ring and the axiom 4(ii) is unnecessary. 

The axioms for a ring look familiar since they are a generalization of what happens 

to the integers. The object (Z, +, ) is indeed a commutative ring with unit. One can 

see that what rings are ‗missing‘ from behaving like the rationals or the reals are the 

multiplicative inverses and of course the need for the multiplicative identity element, 
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equivalently called unit, which we denote by 1. What we are about to define as a 

field, has exactly these two extra axioms. Therefore 

Definition3: A non-empty set F is said to be a field if there are two operations + and  

such that: (1) (F, +, ) is a commutative ring with unit, (2) for every non-zero a  F 

there is an element a
-1

  F such that a a
-1

 = 1. 

And so a teacher can now say that (Q, +, ) is a field. What have we exactly achieved 

by that? This is the type of questions that will be answered in the next two sections. 

Groups, Rings, Fields - A Semiotic Perspective 

In this section, through Peirce‘s semiotic hierarchy I expect to show how the learning 

and the use of the notions of a group, ring and field lie on the highest level of the 

hierarchy, thus leading to the making of the desired connections suggested by 

research on teachers‘ mathematical knowledge. 

Semiotics is the study of signs, especially as elements of a system, and as such, 

semiotics serves as a natural theoretical framework for the learning and teaching of 

mathematics, since mathematics requires certain sign systems ―to keep a record of 

and code the knowledge‖ (Steinbring, 2006) and mathematization ―means 

representing problems or facts by means of symbols, indices and relational 

representations‖ (Hoffmann, 2006, p.279).  

For Peirce, a sign is anything that ―stands for something (its object)‖ in such a way as 

to generate meaning (called its interpretant) (Otte, 2006, pg.23). The signs are of 

three types. On the first level we have the icons, which are, as the word says, icons – 

pictures – likenesses of what they represent. A number is an example of an icon; i.e. 

―1‖ stands for the number or the idea of ―one‖. If now we choose to write ―m‖ to 

imply any integer, then ―m‖ becomes a name, an index, of something existing. An 

index is on the second level of the hierarchy. Other examples of indices are the ideas 

of ―unit‖, ―additive inverse‖ and ―identity element‖, when these are considered as 

names or categories for the appropriate icons. One way to think of what an index 

does is that is organizes icons ―in higher order relationships‖ (Davis & McGowen, 

2001, p.10). However, if we make the realizations (i.e. prove) that for every integer 

m, -m is the ―additive inverse‖ of m, 1 m = m, 0+m=m, etc. then we are on the third 

level of the hierarchy, the symbolic level, as the aforesaid realizations are of a law-

like nature and they are generalizations regarding the behaviour of the integers. In 

Peirce‘s words, the symbol, which is on the third and highest level of the hierarchy, 

refers to its object ―by virtue of law‖ (in Radford, 2000, p.252). But we see that it is 

through an index that we can say that the integers have a certain quality. It is the 

index ―additive inverse‖ for example, that allows us to say that all integers have an 

additive inverse. In the words of Peirce again 

A symbol is a conventional sign which being attached to an object signifies that 

object has certain characters. But a symbol, in itself, is a mere dream; it does not 
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show what it is talking about. It needs to be connected with its object. For that 

purpose, an index is indispensable. No other kind of sign will answer the purpose 

(in Otte, 2006, p.30). 

If we now consider all the indices that appear in the definition of a ring and the way 

these organize the icons of the integers, such as the numbers themselves, the signs 

―=‖, ―+‖, etc., then we have, according to Peirce, the connection between the symbol, 

if I may denote it by ―the ring (Z, +, )‖, and the integers. And as we attach to the 

integers the symbol ―the ring (Z, +, )‖ we automatically ‗see‘ in the integers all those 

properties that we all learn from our early years until university. Deacon (1977) 

refers to the shift to the symbolic level of the hierarchy as  

… a way of off-loading redundant details from working memory, by recognizing a higher 

order regularity in the mess of associations, a trick that can accomplish the same task 

without having to hold all details in mind. (in Davis & McGowen, 2001, p.10) 

The notions of group, ring and field behave exactly like that: they allow which ever 

object we are investigating, i.e. the integers, the complex numbers, the 2 2 invertible 

matrices, to be ―apprehended, pretty much all at once‖ (Davis & McGowen, 2001, 

p.10), i.e. through the symbol ―the ring (Z, +, )‖, ―the group (Z, +)‖,  ―the field (C, +, 

)‖, ―the group of 2 2 invertible matrices GL(2,R)‖, etc., without having to hold all 

details in mind. As such, the notions of group, ring and field are systems of symbols 

and they form a part of a connected symbolic system, the symbolic associations of 

which are being understood from the ―myriad connections‖ between the indexes 

(Davis & McGowen, 2001, p.10) organized by this system.  

From the above discussion we see that by moving up on the hierarchy, we achieve a 

shift in understanding: a shift from the specific and isolated, i.e. the number 1, 0, 2, -

2, ´, to ideas such as ―unit‖, ―additive or multiplicative inverse‖, ―the ring (Z, +, )‖, 

etc., which connect together seemingly different parts of our knowledge, putting 

them into a coherent whole.  

IN-CLASS OBSERVATIONS AND REFLECTIONS 

This last section aims to provide the reader with some concrete examples from, and 

suggestions, if you will, regarding the teaching of basic notions of Abstract Algebra 

to pre-service primary school teachers.  

While being a Lecturer in Mathematics Education at a university in Cyprus, I taught 

a course for pre-service primary school teachers, called General Topics in 

Mathematics. This was the second and last part of a series of mathematics courses for 

primary school teachers, and it was optional. Only the first course was obligatory. I 

taught this course for two consecutive semesters. The spring semester course ran 

over a period of thirteen weeks and my students and I met once a week, for three 

hours. The summer semester course was seven weeks long and we met twice a week, 

for three hours each time. I kept the syllabus for both courses the same. I chose a 
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variety of topics from traditional Algebra, Logic, Set Theory, etc. and during the last 

three lectures I gave a brief introduction to the complex numbers and the notions of 

group, ring and field, including examples from areas they had already seen before, as 

well as some basic examples from modular arithmetic. In class observations and 

discussions revealed similar reactions and results from both classes.  

The following are some examples from in-class observations as well as from the 

students‘ answers in the final exam: (1) The students seemed to have appreciated 

more the importance of the distributive law, as they saw how it connected together 

the abelian groups (Q, +) and (Q
×
, ) for example, in order to give the well-known 

field (Q, +, ). This is a concrete example of the symbolic (in Peirce‘s language) 

character of the notions of a group, ring and field in the sense that it shows how the 

groups (Q, +) and (Q
×
, ) and the field (Q, +, ) are part of a symbolic system and 

their association is being understood from the connection between the indexes, via 

the distributive law (see also the quotes from Davis & McGowen, 2001, in p.6 

above). (2) It appeared that the notion of closure was being brought to their attention 

for the first time. They did not understand the necessity of this axiom in the 

definition of a group. Their reactions were pretty much along the line ―if you add a 

number you will get a number and that is pretty much obvious, so why do we need 

this statement?‖ I asked them: what happens if you add 0 and 4? -2 and 100? 1000 

and 44? So we concluded that when you add two even numbers you seem to get an 

even number. What followed was the realization that this does not happen with the 

odd numbers. The next step was to prove that even + even = even and odd + odd  

odd. The notion of ―closure‖ in this example, intended to force the students to focus 

their attention on specific sets of numbers and to help them see a ‗different‘ 

distinction between them. ‗Different‘ distinction in the sense that when examining 

whether even and odd numbers are groups, these sets stop being just the sets of icons 

(the lowest level of Peirce‘s hierarchy): {0, 2, 4, ...} and {1,3,5, …} but instead, they 

become systems of connections in the highest level of the hierarchy, since statements 

of the form ―(2Z, +) is closed‖ and ―(2Z+1, +) is not‖, lie on the symbolic level.  (3) 

One of the earlier topics that were presented in this course was the notion of 

function. The concept of a function came up again in one of the examples, were they 

had to prove that the following set G of functions is a group: G = {Ta,b : R  R | Ta,b 

(r) = ar + b, a, b  R, a  0}. At first, there was an immense reaction (expected) 

from the students about the impossibility of this exercise due to its highly symbolic 

(not symbolic in Peirce‘s language) character, or in their words, to the appearance of 

―too many letters‖. When I explained that the function Ta,b is merely a generalization 

of functions like the ones they saw before, for example like the function f(x) = 3x+2, 

etc., then the complaints seized. It was very interesting and rewarding to see their 

surprised faces when they realized that (a) the identity element is the function T1,0 

and that this object behaves in exactly the same manner as 0 in (Z, +) for example, or 

1 in (Q
×
, ), (b) even if this problem is so different from everything they saw before, 
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the procedure to find the inverse element of G was exactly the same as the steps they 

followed earlier in the course, in order to find the inverse of a specific function. In 

other words, they were very surprised to see that the same method could work in 

such different, for them, situations. As was already discussed in the section above, 

recognizing different kinds of inverses, i.e. 1, 0 and T1,0 in this example, imply the 

making of connections that lie on the highest level of Peirce‘s hierarchy. 

Furthermore, these are examples of connections that help teachers build connections 

across different mathematical domains, since in this case we were comparing number 

systems with groups of functions. The students presented difficulty however, which 

was also shown in the final exam, in showing that the inverse Ta,b
-1

 is still a member 

of G; i.e. even though almost everyone showed that Ta,b
-1

(r) = 
1

a
r

b

a
, not everyone 

could see why we are not done until we write  Ta,b
-1 

= T1/a,-b/a, 1/a  0. (4) Difficulty 

for students also presented in the case of modular arithmetic. Since there was not 

enough time to really digest this new kind of ―numbers‖, even though they were 

pretty quickly able to find the additive and multiplicative inverses of Z5 for example 

and they appeared to understand why not every non-zero element of Z6 has a 

multiplicative inverse, in the exam when they were asked to explain why (Z4
×
, ) is 

not a group, the majority did not succeed. However the majority succeeded in the two 

more familiar examples where they had to explain why (2Z+1, +) and (Z
×
, ) are not 

groups. (5) The two new topics, modular arithmetic and complex numbers, created 

some problems for the students because of time shortage. However, the introduction 

to complex numbers that the students had, gave them some sort of continuity 

regarding the number system and it helped them realize and understand the, up until 

then unknown to them, relationship N  Z  Q  R  C. The last two examples 

emphasize the need for a one-semester course on these topics, as these new ideas 

seem to take time to get through to the students.  

CONCLUSION 

As it is pointed out by Dorier (1995, p.1), concepts such as the concept of a group, 

were invented not only to solve new problems but ―mainly to find general methods to 

solve different problems with the same tools‖ (Dorier, 1995, p.1). All of the above 

different examples from the area of functions, modular arithmetic, as well as the 

various number systems, were solved by using the same ‗tools‘, i.e. the concept of 

group, ring and field. This ‗proves‘ in a way how the unifying character of these 

‗tools‘ can be used in the training of future teachers, in order to help them achieve 

the desired connections. However, a remark regarding the cost of such a course 

should be added here, since its potential difficulty can cause problems if the course is 

taught in universities where teachers do not have to take any kind of actual 

mathematics courses, but only courses in mathematics education instead.  

As it is pointed out throughout this paper, this is a theoretical attempt to show how 

the concepts of a group, ring and field can help to regroup and enrich teachers‘ 
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mathematical knowledge in a way agreeable with the literature on teachers‘ 

mathematical knowledge. What can follow this paper and produce useful and 

insightful information, is research that investigates which part of this knowledge and 

in which form, teachers actually transfer into their own classroom, and which also 

examines the actual effect of such a course on teachers‘ mathematical knowledge.  
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Recent research on the teaching of modelling highlights the existence of strong 

institutional restrictions on the widespread and long-term diffusion of mathematical 

modelling practices in current educational systems. We present a research project 

that aims at studying these restrictions in first year Sciences University degrees, 

especially those arising from the ‗prevailing epistemology‘ concerning the role 

attributed to mathematics in Natural Sciences. We characterise this epistemology as 

‗applicationism‘ and describe its main features. The analysis of teaching materials 

and a survey and interview to science university teachers bring concrete evidence to 

the prevalence of such ‗applicationism‘ and the way it may hinder the teaching of 

mathematics as a modelling tool. 

THE ‗ECOLOGY‘ OF MATHEMATICAL MODELLING 

This paper focuses on studying the teaching of mathematics in Natural Sciences in 

universities degrees. It focuses more specifically on the didactic problem of studying 

the ‗ecology‘ of mathematical modelling in these institutions. By ‗ecology‘ we mean 

the necessary conditions for an activity to ‗live‘ in an institutional environment and 

the restrictions hindering the evolution of implementing this activity. The origin of 

this ecological problem, which was first applied to mathematical objects and 

practices before being enlarged to a wider institutional perspective, can be located in 

the study of the process of didactic transposition and its related phenomena 

(Chevallard 1985, see also Bosch & Gascñn 2006). More recently, to study the 

‗ecology‘ of the mathematical practices that exist (or could exist) in a teaching 

institution and the possible ways of constructing them (the didactic organisations), 

Chevallard (2002, p. 42) introduced a hierarchy of ‗levels of didactic co-

determination‘ that consists in the following sequence: 

Civilization  Society  School  Pedagogy  Discipline  Domain  Sector  Theme  Subject 

As we indicated in Barquero et al. (2010b), this hierarchy goes from the most 

generic level –Civilization– to the most concrete one – the subject or questions that 

are to be studied by a group of persons. The lower levels going from the discipline to 

the subject are considered as the mathematical levels if the considered discipline is 

mathematics. The didactic transposition process (Chevallard 1985) tends to provide 

a structure of taught disciplines into different domains, sectors and themes that 

usually comes from the scholar discipline but is modified according to the education 
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institution considered. For instance, in Spanish universities, a first year course of 

mathematics for science students is usually structured into three domains: calculus, 

linear algebra and differential equations, divided into classical sectors such as ‗real-

valued functions‘, ‗limits‘, ‗derivatives‘, ‗integration‘, etc. containing different 

themes, to which every subject or question to study belongs. At secondary school 

level, other domains appear depending on the curricular reform in force. These low 

levels are the ‗specific‘ ones and are used to analyse the constraints coming from the 

specific way of organising teaching contents at school: from the division into 

disciplines and blocks of contents, until the low-level concatenation of subjects.  

The upper levels of determination refer to the more general constraints coming from 

the way Society, through School, organises the study of disciplines (pedagogical 

level). They concern the status and functions traditionally assigned to educational 

contents and the general way of organising teaching and learning activities at school. 

These levels offer important conditions – and also set a lot of constraints – that 

concretely affect what the teacher and students can do in the classroom. For 

instance, the amount of hours and sessions assigned to the teaching of a concrete 

discipline, the possibilities for disciplines to interact more or less easily, the way 

students are grouped (by age, by level, by gender, etc.), the organisation of the 

school space, etc. All those conditions and constraints belong to the school level, 

while the pedagogical level refers to those only affecting the teaching and learning 

of ‗disciplines‘. The way disciplines are grouped, valued, linked, diffused belongs to 

this level, as for instance the choice of an interdisciplinary way of studying 

questions or the way of presenting disciplines as independent. The society and 

civilization levels concern the way the rationale, functions, aims of school 

instruction is considered and valued.  

We focus here on the general problem of integrating mathematical modelling, 

considered a central aspect of mathematics (see Barquero et al. 2008 and 2010b), 

into current educational systems. Our objective is to study, analyze and describe 

some institutional constraints that hinder the implementation of these modelling 

activities. From our perspective, the study of these constraints and the way new 

teaching proposals can overcome them appear as a necessary step for the 

dissemination of mathematical modelling activities at all school levels. 

Taking into account the different levels of didactic co-determination is not only 

useful to reach these variety of constraints acting on the classroom activities, but also 

to know better at what level it is necessary to act in order to set up suitable 

conditions that make the development of this mathematical modelling activities 

possible
72

. In this paper, we focus on analyzing some restrictions which come from 

                                           

72
 Within the framework of the ATD, most of the research related to mathematical modelling and teaching practices 

(Artaud 2007, Bolea et al. 2004, Barquero et al. 2008, Barbé et al. 2005) takes into account the problem of the 

‗ecology‘ of didactic organisations, which has to be located at the core of all research aiming to integrate mathematical 
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the most generic co-determination level, especially all those related to what we call 

the ‗dominant epistemology‘ in university institutions. By ‗dominant epistemology‘ 

we understand the way in which the university as an institution and, more 

specifically, the community of university teachers (and students) consider what 

mathematics is and how it is related to the natural sciences. This situation can be 

summarized in the formulation of the following didactic problem: 

In which way does the university community understand the role of mathematical 

activity and, especially of mathematical modelling in the development of Natural 

Sciences? What restrictions are derived from this ‗prevailing epistemology‘ in 

relation to the ‗life‘ of mathematical modelling in university settings? What 

conditions, at what level of co-determination, can help overcome these restrictions? 

GENERAL CONSTRAINTS ON THE TEACHING OF MODELLING 

ACTIVITIES 

2.1. A characterization of ‗applicationism‘ 

At the levels of society and school, we focus on investigating the dominant 

epistemology in the teaching institution considered (the university), and its effect on 

the different mathematics teaching practices. Our first hypothesis is that the 

widespread understanding of mathematics and its relation to natural sciences is what 

we can call ‗applicationism‘ and this can be depicted in the following way: first 

mathematical tools are built within the field of mathematics and then they are 

‗applied‘ to solve problematic questions from other disciplines, but this application 

does not cause any relevant change, neither in mathematics nor in the rest of 

disciplines where the questions to study appeared. ‗Applicationism‘ thus assumes a 

strict separation between mathematics and other disciplines. For example, in the 

majority of the Spanish university courses we have examined, the study of 

population dynamics is a subject located in the sector of differential equations under 

the label of ‗application‘, as if some dynamic laws could exist without any 

mathematical tool to describe them and, in the same way, as if differential equations 

could independently exist without any extra-mathematical problem to solve. In this 

context, mathematical modelling is understood as a mere ‗application‘ of previously 

constructed mathematical knowledge or, in the extreme, as a simple 

‗exemplification‘ of mathematical tools in some extra-mathematical contexts 

artificially built in advance to fit these tools.  

To be more specific, we propose to characterise ‗applicationism‘ using the following 

indicators (Barquero et al., 2010a): 

                                                                                                                                            

modelling in current teaching and learning practices. 
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I1: Mathematics is independent of other disciplines (‗epistemological purification‘): 

mathematical tools are seen as independent of extra-mathematical systems and they are 

applied in the same way, independently of the nature of the system considered.
73

 

I2: Basic mathematical tools are common to all scientists: all students can follow the 

same introductory course in mathematics, without considering any kind of specificity 

depending on their speciality (biology, geology, etc.). 

I3: The organisation of mathematics contents follows the logic of the models instead of 

being built up from considering modelling problems that arise in the different disciplines. 

All occurs as if there were a unique way of organising mathematical contents and 

different ways of applying them. 

I4: Applications always come after the basic mathematical training: the result is then a 

proliferation of isolated questions that have their origin in the different systems. The first 

thing is to learn how to manipulate the mathematical concepts and later learn about their 

use. The models are built from concepts, properties and theorems of each theme 

independently of any extra-mathematical system. 

I5: Extra-mathematical systems could be taught without any reference to mathematical 

models, that is, there exists the belief that natural science can be taught without any 

mathematics.
74

 

To empirically contrast to what degree applicationism prevails in university 

institutions, we decided to use these indicators to analyse teaching materials (syllabi 

and textbook prefaces) and to interview and survey some geology and biology 

teachers of a science faculty in Catalonia. 

2.2. Applicationism in syllabi and book prefaces 

The analysis of about 30 syllabi of mathematics for Natural Sciences university 

courses of 10 different Spanish universities constitutes a good indicator of the 

mathematics proposed to students. Here we consider the particular case of a first 

course of mathematics in the degrees of biology, geology, chemistry and 

environmental sciences. The written description of different mathematical courses of 

Spanish first year university scientific programmes states that the teaching of 

mathematics follows a double objective: on the one hand, they strive to give students 

basic mathematical training; on the other hand, they try to introduce students to 

mathematical modelling [I1, I2]. For instance, in the case of a geology degree 

(2006/07) at the UAB university, the following is proposed (our translation): 

                                           

73  
This indicator is more general than the others, as it refers to a characteristic of mathematics as a discipline, and not to 

the way it is taught. 

74 This is an extreme indicator of the independence between mathematics and natural sciences (especially in the case of biology and geology) that is surprisingly widely shared to the 

point that, in most cases, people state that scientific systems could be studied without any mathematical tool.
 



Working Group 14 

 CERME 7 (2011) 1942 

 

This program claims a double objective. The first and most important one is to give 

students the basic mathematical training focused on linear algebra and on one-variable 

differential calculus, which will allow them to understand the language of Science. 

The second aim is to introduce them to the field of Geology, that is, to mathematical 

modelling, using simple examples that could be analyzed by previously introduced 

mathematical tools. 

In a more detailed analysis of the mathematical contents of these courses, we notice 

they are organized in ‗topics‘, ‗themes‘ or ‗modules‘ centred on a main concept 

(limits, derivatives, integration, linear applications, diagonalisation, ordinary 

differential equations, etc.) each including a number of definitions, properties, 

theorems, proofs, various techniques and types of problems. At the end of the study 

process, problems tend to turn into ‗applications‘ such as giving a ‗rationale‘ to the 

contents and showing their functionality [I5]. The corresponding study programme is 

generally structured in three main areas: linear algebra, one-variable differential and 

integral calculus, and ordinary differential equations [I3]. Always left to the end, the 

teaching of modelling problems is basically absent from Spanish ‗real‘ university 

curricula.  

It stands out that the ‗traditional‘ organization is not structured around modelling 

problems or ‗applications‘, but rather follows a very standard list of topics or blocks 

of themes. We also observe that this organization places the technological and 

theoretical block at the origin of mathematical activity. As a consequence, it tends to 

propose types of problems, which are particularly limited and isolated, to obtain 

examples of all the notions and properties of each topic [I4, I5]. This situation leads 

us to think that these mathematical tools only provide ‗qualitative‘ information on 

the study of scientific facts. It suggests the possibility that natural sciences could be 

taught without mathematics [I5]. 

Similarly, some of the prefaces and content organizations in most of the 

recommended books for these courses helped us to uncover the presence of 

applicationism. Good examples of this are Salas & Hille (1995) and Anton (2003). 

The main aim of these books is to introduce students to a ‗basic common language‘ 

for all scientists and in a completely independent way of natural sciences disciplines. 

[I1, I2]. Salas & Hille (1995) explain it in the following terms (our translation): 

In this edition, you will find some easier applications to physics and, as extra chapters, 

some more difficult applications. […] Despite the incorporation of more applications, this 

book is still a mathematics book, not a science book or an engineering book. It is about 

calculus and its main basic ideas are limits, derivatives and integrals. The rest is 

secondary; the rest could be left out. Salas & Hille (1995, p. 7) 

The organization of these books is again and again structured around several blocks 

of themes, following a purely deductive logic. The common structure of most 

textbooks contains the following blocks of themes: limits and continuity, 
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differentiation, mean-value theorem and applications, integration, applications of 

integrals, transcendent functions, integration techniques, conic sections, sequences, 

infinite series [I3]. The references to applications usually appear at the end of each 

chapter as an example of how to use the mathematical tools introduced. Often, these 

applications are included in a separate section labelled ‗additional exercises‘, which 

offers an expansion of the field of problems that can be solved with the mathematical 

techniques introduced in that chapter [I4].  

2.3. Applicationism as described by teachers and researchers in Natural 

Sciences 

The next step of our research was to look into the discourses of university teachers 

and researchers when they are asked about the criteria used to design and manage 

mathematics teaching in Natural Sciences degrees. For this purpose, we first 

conducted a survey on the indicators that characterize applicationism. The survey 

was distributed and answered by 30 teachers and researchers in the departments of 

biology, geology and environmental sciences at the Autonomous University of 

Barcelona (UAB). In a second phase of the research, we completed the findings with 

interviews to four teachers that had participated in the survey, with the objective of 

explaining and expanding their answers. The results obtained in the survey were, for 

most questions, quite clear. We next summarize some of the main findings and 

complement them with the explanations provided in the interviews. 

In the first question, more than 50% of the 

respondents did not agree on the fact that the 

mathematics taught in their respective scientific 

disciplines were any different from the ones 

taught in the rest of Natural Sciences. One can 

hence confirm that the mathematics taught in one 

particular science is not specific to it [I2]. 

Respondent C added:  

―I think that the differences between programs need 

not be very significant. The mathematical language 

is unique, and the attraction for mathematics can come from different scientific 

perspectives but is always the same. Nevertheless I think that details matter, the type of 

examples, the adaptations, being able to visualize that those equations can be translated 

into specific phenomena […].‖ 

Where people agreed most was in the second 

question: 93% agreed (43% strongly agreed) that 

mathematics is introduced with independence 

from scientific systems [I1]. Regarding that idea, 

respondent A agrees with this separation:  

1. “The mathematics of the first year Biology 

degree is different from the rest of Natural 

Science degrees.” 

              1. Strongly disagree 8 27% 

2. Disagree 8 27% 

3. Neither agree nor disagree 4 13% 

4. Agree 3 10% 

5.  Strongly agree 1 3% 

6. I do not know 6 20% 

TOTAL 30 100% 

2. “Mathematics is generally introduced 

independently of the biological systems that 

can be mathematically modelled. 

Frequency 

% 

1.. Neither agree nor 

disagree 

2 7% 

2. Agree 15 50% 

3. Strongly agree 13 43% 

TOTAL 30 100% 
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―I do not think that mathematics should be introduced linked to geological systems. 

How could one link it with such basic mathematics? I do not find it convenient or 

pertinent because we do not have to explain why mathematics is needed in each one of 

our courses. Mathematics must be there, for their own sake.‖ 

90% of the respondents agreed with the third 

statement (37% strongly agreed), that the 

mathematics that is taught is structured around 

problems of a mathematical nature, and not of a 

scientific nature [I3]. On this point, respondent C 

explains:  

―I think that (the mathematics taught) are still centred 

on mathematical problems, but I do not know whether 

this is bad, I find it natural. I said earlier that 

programs did not have to be completely different and the differences should appear in 

the examples. What I meant is that I am glad that the mathematics programs for 

physicists and for bio-scientists do not contain large differences and share a common 

body, which cannot be physics, chemistry or biology: it has to be mathematics […]‖. 

 

It is also quite clear that the respondents 

disagreed with the fourth statement (47% 

strongly disagreed, 40% disagreed), that 

mathematics are only taught after the need for it 

arises from the study of scientific phenomena 

[I5]. On the other hand, 90% disagreed (40% 

strongly disagreed) with the idea that extra-

mathematical situations where mathematics are 

used appear linked to a general Natural Science 

problem that is relatively unified rather than a set 

of independent questions. This idea, introduced 

by I4, supports the progressive disappearance of a 

general scientific problem. Instead, there is a 

proliferation of isolated problems (arising from 

different systems). The interviews suggest a similar trend:  

―A set of isolated and separated questions appears, and, I must add, it is a shame. But 

this is what is done. It is not only that there is no relationship with the instrumental 

courses, but also that there is no relationship between the descriptive courses! They are 

all satellites on their own isolated orbits […] We could look for very serious reasons, 

but one always ends up finding the usual suspects, inertia and lack of unity.‖ 

(Respondent C)  

3. “Mathematics is structured around 

mathematical problems and not around biology 

problems.” 

1. Strongly disagree 0 0% 

2. Disagree 3 10% 

3. Neither agree nor disagree 0 0% 

4. Agree 16 53% 

5.  Strongly agree 11 37% 

TOTAL 30 100% 

4. “Mathematics is taught only after the study 

of biological systems requires it.” 

1. Strongly disagree 14 47% 

2. Disagree 12 40% 

3. Neither agree nor disagree 3 10% 

4. Agree 1 3% 

TOTAL 30 100% 

5. “Biological situations where mathematics is 

applied are linked to a general biological 

problem that is relatively unified.” 

1. Strongly disagree 12 40% 

2. Disagree 15 50% 

3. Neither agree nor disagree 3 10% 

TOTAL 30 100% 
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―Each one seems to reign over his/her little kingdom, and explains the topics separately. 

The student will never have a global view, but I think that we, the teachers, do not have 

it either. There is no tradition of working in community, of meeting and agreeing on the 

content of each subject […] I do not see how it can be possible to avoid this tradition in 

the future, to escape from this inertia around us.‖ (Respondent A). 

Regarding the last statement in one of the most extreme indicators of applicationism, 

we find divided opinions, only 10% remaining 

neutral. Around 47% disagree that it would be 

possible to teach a Natural Science degree by 

reserving mathematics only for the quantitative 

aspects. But what we find surprising and to some 

extent worrying is that approximately 44% agree 

with the statement. This suggests that it would be 

possible to achieve a relatively complete and deep study of scientific phenomena 

without using mathematics.  

The interviews also reflect this divergence of opinions. Those who agree with that 

possibility add:  

―Yes, it would be possible. I have known several students that have obtained their 

degree without passing the mathematics subjects, and even worse, without even trying.‖ 

(Respondent A). ―One could do it, but the degree would be incomplete, it would be 

merely descriptive […] But as soon as one would need to study deeper or establish 

relationships between phenomena, then mathematics are needed.‖ (Respondent B).  

Respondent C is clearly opposed to this point of view:  

―Absolutely not. In fact, one cannot live without it at any degree. One should have the 

capacity of not being afraid of an abstract formulation of any discipline, and even more so 

for sciences. It would be madness that someone suggested removing mathematics or said 

it is not necessary. Anyone that tries to do forecasting or modelling will need it.‖  

Lastly, respondent D insists on the ‗error‘ of thinking of mathematics as being 

unique:  

―I would say that if the mathematics taught in secondary schools were well understood by 

a large percentage of students, one would not need much more mathematics, especially in 

the more general subjects. The problem is that this is not the case. It is a different matter 

when one needs some type of specialization that requires some specific mathematical 

tool. But it would be a mistake to think that all kinds of biologists require the same kind 

of mathematics.‖ 

3. CONCLUSIONS 

One of the main characteristics of ‗applicationism‘, which represents one of the 

strongest restrictions on the normal life of mathematical modelling, is that it 

establishes a clear distinction between mathematics and the rest of natural sciences. 

6. “An entire Biology degree can be taught 

almost without using mathematics” 

1. Strongly disagree 5 17% 

2. Disagree 9 30% 

3. Neither agree nor disagree 3 10% 

4. Agree 10 33% 

5.  Strongly agree 3 10% 
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It is furthermore supposed that both ‗worlds‘ evolve with independent logic and 

without many interactions. This fact, which partly results from the first three 

indicators of applicationism, leads to greatly reduce the possible ways of teaching 

mathematics as a modelling tool for the study of scientific systems. In general the 

mathematics that are taught at first year sciences degrees present a highly stereotyped 

and crystallized structure that does not mingle with the systems that are modelled 

and, besides, the taught mathematics are never ‗modified‘ as a consequence of being 

applied in the construction of such models. 

This radical separation between mathematics and natural sciences makes it very 

difficult for students to consider mathematics as a constituting tool of natural 

sciences and, thus, to value the necessity of its learning. This is one of the most 

generic restrictions that hinder mathematics teaching at this level, a restriction that 

appears at the general levels of society and school at the scale of didactic 

codetermination levels.  

Our research on the implementation of modelling activities into the teaching system 

through ‗Study and Research Courses‘ (Barquero et al. 2008 and 2010b) shows, on 

the contrary, how problematic scientific questions can be successfully situated at the 

origin and core of the mathematical activity that is taught in natural sciences degrees. 

It has been seen how the study of these questions starts a process of mathematical 

modelling that ends up with the construction of an entire mathematical organisation. 

This ‗first‘ process generates new questions of an extra-mathematical nature that 

must not be abandoned or ignored but must generate new modelling processes. In 

these dynamics it no longer makes sense to think of two kinds of different and 

independent logic that rule both ‗worlds‘, the mathematical one and the world of the 

rest of the scientific disciplines. It even becomes necessary to think of a single world, 

the world of scientific activity of which mathematical modelling is an integral part. 

Another restriction of ‗applicationism‘ on the life of mathematical modelling shows 

up in the usual organisation of mathematical study programmes taught at natural 

science degrees. In fact, neither the structure given to the contents nor the way of 

developing them in class make it possible to carry out mathematical modelling work 

based on the study of problematic questions that arise in scientific fields which are 

close to the speciality chosen by the students. The raison d‘être (mathematical or 

extra-mathematical) of the contents, which are part of this basic mathematical 

training the students need to acquire, is not part of the study programme. The 

‗modelling activity‘ is restricted and limited to the simple illustration or occasional 

and anecdotal exemplification of certain pre-established models to systems fitted out 

with pre-established problems. This set of restrictions, which greatly limits the 

‗nature‘ and ‗structure‘ of the possible mathematical activities taught in natural 

sciences degrees, may first of all be situated at the levels of pedagogy and discipline. 

However, these restrictions have a great impact on the more specific levels, that is, 
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on the specific way how mathematics taught are organized in areas, sectors, themes 

and questions.  

The characterization of ‗applicationism‘ appears as a useful tool to analyse the 

restrictions on the life of mathematical modelling which are derived from the current 

interpretation of mathematical activity and its role in natural sciences. It seems clear 

that research cannot ignore the proper level of the scale of levels of co-determination 

in which these restrictions appear, as general a level as it could be. Only by knowing 

these restrictions well, will we be able to put forward the necessary conditions to 

achieve a ‗real‘ integration of mathematical modelling, conditions that have to take 

into account the necessary evolution of the prevailing epistemology and the 

establishment of a ‗new epistemology‘ as, for instance, the one proclaimed by 

Chevallard (2006). These are the questions that lead our current research project. 
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DESIGNING ALTERNATIVE UNDERGRADUATE DELIVERY: 

OIL & MASSAGE 

Bill Barton 

The University of Auckland 

As we reconsider undergraduate mathematics, we need to pay attention to theory, 

practice, research, and development. I draw on a theory-building project, an 

intimate examination of practice, a radical re-examination of undergraduate 

delivery, and diverse research literature, to identify some key features of 

undergraduate mathematics education. The interplay of constructs labelled 

„mathematical essence‟ and „learning culture‟ emerges as a useful focus of attention 

for my understanding of the undergraduate teaching and learning. Not only does it 

encompass the recurring themes of the three activities, but, connected with the 

concept of „curricular contribution‟, it helps me design new developments and 

research questions. 

Key words: undergraduate mathematics, research framework, mathematical 

knowledge, learning culture. 

Sheer pleasure is any academic‘s reaction to fortuitous conjunctions of their teaching 

practice, current research, and aspirations for development. It should be no surprise 

that validated insight and significant advance in understanding also result. This year 

I have experienced such a feeling as I engaged with colleagues in three activities 

concerned with the undergraduate experience. My aim has been to find a way to 

explain, or even just talk analytically about, some phenomena of the undergraduate 

mathematical environment. This paper creates a framework that will help. 

Two features of mathematics learning emerge, Phoenix-like, from recurring 

discussions in all three activities. The Phoenix refers to the resurrection of ideas that 

can be found in much mathematics education literature, but they are burnished anew 

by a focus on undergraduate mathematics, and the intimate examination of practice. I 

identify these constructs as ‗mathematical essence‘ (the real oil) and ‗learning 

culture‘ (the pedagogical environment that massages our actions). 

But let us start by describing the three activities, and follow with three recurring 

themes within those activities. 

THREE ACTIVITIES 

Research: Videoing Lecturers 

In 2009 a group of researchers began a three-pronged investigation of undergraduate 

mathematics. The Lecturer Perspective component, based on Alan Schoenfeld‘s 

‗Knowledge Orientation Goal‘ framework (2008), involves a group of lecturers 

videoing their lectures and discussing excerpts as a professional community. As one 

of the lecturers involved, this intensely personal experience has given me insights 
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into both my own practice, but also my own practice vis a vis that of my colleagues 

(Barton, Oates, Paterson, & Schoenfeld, 2009). The Student Perspective component 

builds on the work of Rodd and Bartholomew (2006) characterising the 

mathematical identity of university students (both mathematical majors and others). 

The Interactions component focusses on the way questions can be used in lectures 

and tutorials to promote deeper mathematical engagement.  

A Public Lecture: The Pleasure Principle 

In April, 2010, I argued that undergraduate mathematics was founded more on 

tradition and habit than on any consideration of educational aims or research. The 

US National Research Council report Revitalizing Undergraduate Mathematics 

(1991) endorses and gives detail to such a view. The challenge to my department to 

consider a radical revision of how we present mathematics to undergraduates has 

been taken up. A group are preparing a proposal for a course in mathematics for 

those not intending to major in the mathematical sciences. Given the economies of 

scale of the existing course (that is, existing student/staff ratios and workloads), how 

might we rationally design the programme for improved learning? Can we design a 

course that will give non-majoring students a sensation of the intense pleasure in 

mathematics experienced by researchers (see related discussion in Madsen & 

Winsløw, 2008)? 

Theory: Building a framework 

During 2010 an opportunity arose for researchers in England and New Zealand to 

meet three times to discuss a framework for describing undergraduate mathematics. 

Previous frameworks (e.g. APOS theory of Dubinsky and colleagues, see Asiala et 

al., 1997) focus on learning theory more than the whole environment. The framework 

is intended to help us formulate research questions that will explain the phenomena 

we observe in mathematical science teaching and learning. The meetings were driven 

by an awareness that much of the existing mathematics education research literature 

is based on school assumptions. In what ways is the undergraduate experience 

different and similar? What research conclusions are likely or unlikely to be valid? 

What frameworks are in use in undergraduate research, and what important issues are 

being overlooked? Opportunities for a wider-ranging approach exist in the recent 

emergence of university centres dedicated to undergraduate learning and teaching at 

The University of Auckland (CULMS <http://www.math.auckland.ac.nz/CULMS/) 

and Loughborough University (MEC <http://mec.lboro.ac.uk/>). 

RECURRING THEMES 

Recurring Theme #1: Responsibility for learning 

The most explicit recurring theme in the three activities is student responsibility for 

their own learning. It was quickly identified as a significant point of difference 

between school and undergraduate environments in the theoretical framework 
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discussions. In schools, teachers assume (or have thrust upon them) responsibility for 

getting the students to complete homework, engage in tasks in class, and reach 

mathematical understanding. At university, voluntary lecture attendance may be 

ameliorated by terms requirements of tutorial participation or assignment 

submission, but failure is firmly a student failure, not a lecturer failure. In our 

developmental discussions of course delivery mechanisms, it is no surprise that 

university conventions around lecture and tutorial attendance are also major issues. 

However the complexity of learning expectation and responsibility was driven home 

in the research activity when examining a video-tape of my own lecturing. 

With my senses honed by the accompanying critical eyes of my colleagues, I saw 

myself on video act under unwarranted assumptions about what students would do to 

support their own learning, and also I undermined their learning independence. For 

example, several times I adjusted my expectations of what the students would have 

done with respect to revision of the previous lecture, thereby eventually removing all 

consequences of a student not having taken the responsibility for getting themselves 

prepared. Alerted to the phenomenon, I saw repeated versions of it in subsequent 

videos of both myself and my colleagues. The unintended changes in outcome are 

reminiscent of the Topaze effect of Brousseau‘s theory of didactic situations (1987, 

p25). Recent analysis of this effect in undergraduate mathematics has been done by 

Grønbaek, Misfeldt and Winsløw (2009). 

The combined effect of these experiences is an awareness of the interaction between 

the assumptions and the actions of lecturers and students. We claim increased student 

independence at university, but as lecturers we may rarely address the issue explicitly 

and our actions may counteract any statements of expectation. The didactic contract 

(to again use Brousseau, 1987) is complex, and our resulting actions can be 

contradictory, in my own case at least. 

Recurring Theme #2: The Discipline of Mathematics 

A second theme to emerge from all three activities is an abiding concern for 

mathematics as a discipline—and this word is intended in both meanings. 

Mathematics is a field of enquiry, and mathematics is a mode of being. I include the 

connotations of strictures and suffering. Our theoretical framework discussions 

repeatedly harked back to the role of research mathematicians as pedagogues and 

how that defined some aspects of university education both positively (direct contact 

with the discipline and authentic mathematical ―modes of enquiry‖ (Watson & 

Barton, 2010)) and negatively (lack of attention to pedagogical theory). Our course 

development discussions very rarely descended into arguments about content or 

sequencing, but often reached swift agreement on the need for ‗mathematical habits 

of mind‘ and extended debates about what, exactly, these constituted. The group 

contained several mathematicians, and personal accounts of wrestling with 

mathematical problems at the research level exposed a common core of experiences 

and emotional attachments that would be beneficial for students, even those not 
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entering mathematical careers. The ultimate aim of non-continuing mathematics 

courses were expressed as the ability to recognise the mathematical nature of a 

problem and not fear the need to address it, possibly by learning new mathematics 

for oneself. Much discussion concerned the nature of a mathematical mind. 

Attention to the ‗mathematicality‘ of the undergraduate experience emerged also in 

the videos of lectures. We noted a difference between lecturers who were 

mathematics educators and lecturers who were mathematicians. The former, who 

came from school teaching backgrounds, expressed concern about the correctness of 

their mathematics and wanted to discuss the mathematical implications of the 

videoed excerpt. The latter, who have mathematics research credentials, were more 

worried about the pedagogical consequences of their actions. Judy Paterson referred 

to this as our teacher selves and mathematical selves, focusing attention on the way 

our conceptions of ourselves affects the teaching, and hence learning, experience. 

In both the development and research environments the correctness of the 

mathematics is also regularly discussed. On the surface the discussion is about how 

much an introduction to a mathematical concept can be limited in the interests of 

simplicity, and what are the downstream effects of the resulting misconception. For 

example, what are the consequences of introducing all vectors as free vectors for 

later definitions of vector spaces? Differing perspectives of the same concept is 

related to what Mike Thomas calls versatile thinking (Thomas, 2008) and developing 

students‘ ability to ―see‖ many perspectives is non-trivial.  

But correctness in the sense that there is a right way to present material also implies a 

certain attitude towards mathematics, or at least towards undergraduate mathematics 

education. A focus on correctness, especially when the teaching mode is a 

transmission one, conveys the assumption (intended or not) that mathematics is a 

given—it is like this, learn it and use it in this way. Any other way is wrong. That 

such a view is, in fact, held by many mathematicians emerges from Leone Burton‘s 

(2001) study of seventy mathematicians. Such an attitude contradicted our other 

discussions about the essential nature of mathematics being a rational exploration of 

the consequences of possible constructs, and the idea (also found amongst 

mathematicians in Burton‘s study) that mathematics is a social construct. 

In all three activities the changing and contemporary nature of mathematics was also 

discussed (Lñvasz, 2006). Compared with the average ten-year period for major 

school curricular revisions, university courses are minimally revised individually 

rather regularly, but the whole programme is typically extremely stable over long 

periods. Personal and factional investments in each part of the programme make 

changes to keep pace with the evolution of the subject very difficult. 

Recurring Theme #3: The Tyranny of Examples 

Viewed cold, I was surprised at how much my lectures focused on doing examples 

and exercises rather than teasing out problems, asking open questions, or exploring 
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deep understanding. Compared with my goals (which the research project required 

me to write down prior to the lecture and reflect on afterwards), I devoted a much 

larger proportion of the time available to short-term technicalities of standard 

mathematical exercises. 

The mathematical paucity of practice like mine has been noted before many times. 

Just as any sensitive human being can be brought to appreciate beauty in art, music or 

literature, so [they] can be educated to recognize the beauty in a piece of mathematics. 

The rarity of that recognition is not due to the ―fact‖ that most people are not 

mathematically gifted but to the crassly utilitarian manner of teaching mathematics and of 

deciding syllabi and curricula, in which tedious, routine calculations, learned as a skill, 

are emphasised at the expense of genuinely mathematical ideas, and in which students 

spend almost all their time answering someone else‘s questions rather than asking their 

own. (English mathematician and Bletchley Park code-breaker, Peter Hilton, 1998) 

Nevertheless the dominance of exercise mode, and the perception amongst students 

(enhanced by assessment practices) that successful mathematics means solutions to 

exercises, is an enduring phenomenon in schools and universities. Changing 

students‘ focus on exercises emerged as a problem to be solved in both the 

theoretical and developmental discussions. 

EMERGING CONSTRUCTS 

These three (and other) recurring themes speak to both the mathematics and the 

learning culture. The parallels with Bernstein‘s concepts of classification and 

framing are noted, and his strong and weak characterisations can be applied 

(Bernstein, 1990). 

What I wish to call the ―mathematical essence‖ refers to the focus on mathematics 

not just as a syllabus list of content, but as a research and practical discipline. 

Mathematics in all its manifestations is the ―real oil‖ that makes learning at this level 

different. At university level, practitioners in the field interact with learners for the 

first time. How they act shapes the perception of mathematics, its nature, its uses, 

and what it is like to act mathematically. Mathematical essence has several 

components which we can, artificially, categorise into three groups: content and 

‗horizon‘ knowledge (Ball, 2003); processes, habits of mind (Cuoco, Goldenberg, & 

Mark, 1996) or modes of enquiry (Watson & Barton, 2010); and attitudes and 

VPRO‘s (an amalgam of values, philosophy, roles and orientations, (see Barton, 

2009)). We know sufficiently well from the research literature in each of these areas 

that all aspects of the mathematical essence need to be taken into account in any 

framework that purports to characterise undergraduate mathematics teaching and 

learning. 

On the educational side, rather than approach teaching and learning from a 

pedagogical perspective, I argue (from the experiences above) that it is more 
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productive to consider the students‘ and lecturers‘ personal experience of pedagogy, 

that is, take a cultural point of view. Hence I will talk about a learning culture. 

The concept of a learning culture is common in business (for example, Conner & 

Clawson, 2004) where it refers to the atmosphere in a corporation that either 

promotes or hinders development (in particular of management) in such matters as 

client relations or employee participation. Culture massages us in particular ways. In 

the undergraduate mathematics environment I use the term to refer to the 

expectations, intentions and actions of both students and lecturers with respect to 

pedagogical structures (many of which will be university conventions). For example, 

what do lecturers and students expect of, and how do they respond to, grading 

requirements, the physical layout of lecture theatres and tutorial rooms, enrolment 

processes and prerequisites, course guidelines and notes, opportunities to interact, 

and a myriad of other components of university life? 

Another way of understanding learning culture is through the concept of the hidden 

curriculum (Snyder, 1970). He discusses the inferred tasks a student experiences 

―that are rooted in the professors' assumptions and values, the students' expectations, 

and the social context in which both teacher and taught find themselves‖ (Chpt.1.) 

and notes that neither professors nor students desire the resulting study habits. 

Perceiving the educational situation in a personal way enables me to examine actual 

events rather than abstract constructs: I am forced to think about how I write an 

examination (and what that means) rather than examinations themselves as objects; I 

must worry about the advice I give to students for their next courses (and how they 

could respond) rather than focus on calendar entries of pre-requisites; I pay attention 

to the use I make of my lecture time rather than to an abstract concept of a lecture. 

So far, however, all I am proposing is a re-categorisation of mathematics and 

pedagogy, or, perhaps, a re-viewing from a more elaborate and personal perspective 

respectively. But my experiences this year have made me realise that my interest lies 

not in each of these separately, but in the interplay between the mathematical essence 

and the learning culture (see Madsen & Winsløw, 2008, for a detailed study of this 

relationship). Teaching is located in the tensions between them, and the teaching task 

is to make them work together to create better learning. Student learning is the 

background against which the effectiveness of teaching is judged. 

Yet now I wish to introduce a further dimension, adapted from the work of French 

mathematics educator Michèle Artigue (2002). In discussing the role of technology 

in mathematics education, Artigue distinguishes between three ―values‖. The 

pragmatic value refers to the productivity of the technology, how does it help us in 

the mathematical action we are currently undertaking, how efficient is it, how useful? 

For example, a calculator allows us to multiply real numbers efficiently without 

pencil and paper algorithms. The epistemic value refers to how technology helps 

students understand the mathematical objects they are dealing with. For example, the 
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ability of a graphics calculator to flip between tabular, algebraic and graphical 

representations of a function promotes a versatile understanding of function in 

general. The heuristic value refers to how technology contributes to understanding 

future concepts, or how technology prepares students for more advanced concepts. 

For example, the ability of Matlab to draw first a surface, and then its contours on the 

domain, paves the way for a visual understanding of the grad of a function as a 

vector field. 

Let us apply these three values to undergraduate mathematics. Let us call them 

curricular contributions rather than values. The pragmatic contribution refers to the 

way that an educational expectation, intention or action is directly addressed to the 

learning of some aspect of the mathematical essence. For example, what sort of 

assignment will contribute to a students‘ use of a partial derivative. Does it expand 

their ability to use them into other contexts, does it help the student evaluate them? 

The epistemic contribution refers to the way some aspect of mathematics is more 

deeply understood. For example, can I write an examination that will contribute to a 

students‘ understanding of a partial derivative? Does it expand the contexts for 

partial derivatives, does it help a student see partial derivatives as elements of a 

matrix? 

The heuristic contribution refers to future understanding, or future mathematical 

pathways. How can a lecturer increase the range of situations in which students will 

consider partial derivatives? What attitudes can I impart that will encourage students 

to learn about partial derivatives beyond that presented in my course? 

Layering these contributions onto the interactions between the mathematical essence 

and the learning culture, I end up with a framework as in Fig 1. 

 

Fig 1: A model of Learning And Teaching in Undergraduate Mathematics (LATUM) 

The LATUM model enables me to talk about many phenomena observed in 

researching, practising, and theorising about undergraduate mathematics. For 
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example, from Recurring Theme #1, a students‘ acceptance for responsibility for 

learning is dependent on the value they put on the mathematics, whether they see it 

as content or a mode that is being learned, and which of the contributions they 

perceive to be at play (for example, a pragmatic ―I need to understand this so that I 

can find eigenvalues from matrices presented to me in tests and examinations‖, or an 

epistemic ―doing these exercises will show me what eigenvalues are all about‖). We 

can see immediately that responsibility based on a perceived heuristic contribution 

(―eigenvalues are a stepping stone to advanced methods in stochastics‖) will only 

occur if a lecturer has actually pointed to such a possibility. Do we do this routinely? 

Describing responsibility in this way immediately generates researchable questions 

of direct practical value. What are the contributions perceived to be at play by 

students who do take responsibility for learning compared with those who do not? 

Do students who take responsibility for learning focus more on modes and processes 

(rather than content) than their less responsible companions? What values, 

philosophies, roles and orientations are communicated by lecturers who best elicit 

student responsibility? 

From Recurring Theme #2, what of the lecturers with a school background who are 

worried about the way they present as mathematicians? The LATUM model presents 

undergraduate mathematics as an interplay between learning culture and 

mathematical essence. A lecturer‘s role, therefore, is to keep the two aspects in 

balance, ensuring that the learning environment is not dominated by either pedagogy 

nor mathematics. School teachers are adept at managing a learning culture (they do 

not survive otherwise), and it has become second nature to most. We should not be 

surprised, therefore, that their attention should be on the mathematical essence, and 

particularly on those parts of it where they lack confidence, in order to be able to 

maintain the required balance. And vice versa for research mathematicians. 

The research question arising from this is to observe the way the balance is held in a 

lecture or tutorial, and investigate whether bringing this to the attention of the 

lecturer will result in better balances. Can we treat ―lecture balance‖ as a variable in 

student learning? Does better balance result in better learning? 

The tyranny of examples (Recurring Theme #3) fits naturally into the LATUM 

model. My observation of university mathematics leads me to postulate that, in the 

mathematical essence, content is dominant; in the learning culture, assessment is 

dominant; and the curricular contribution most at play is the pragmatic contribution. 

Both students and lecturers buy into these preferences. The tyranny of examples is 

the result. Note that, in this construction, the tyranny of examples is an output of the 

undergraduate mathematics environment, not a cause of learning outcomes. 

Hence, an intervention style research project that upsets the dominance of one (or a 

combination of) content, assessment, and pragmatism in a systematic way over a 

long period of time is strongly indicated. What will replace the tyranny of examples? 
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Ultimately, of course, we want to be able to manipulate the environment to produce a 

set of prior agreed learning outcomes. This is didactic engineering (Brousseau, 1987) 

on a macro scale, and has previously been theorised by Winsløw (2006). 

CONCLUSION 

As we teach in undergraduate mathematics courses, as we reflect and theorise about 

what happens, as we research questions of interest, we find that certain themes recur. 

These are not new insights—we can find them talked about amongst our older 

colleagues, and read about them in the earliest writings on undergraduate teaching. 

Who has sat in a common room and not heard complaints about the lack of 

preparation of students? Who has walked university corridors and not met 

enthusiastic students wanting to share their latest insight? Who has walked into a 

lecture theatre and never had the experience of a student coming up afterwards and 

asking a question that showed they lacked the prior knowledge you had assumed? 

Who has leaned, pen in hand, over a tutorial group and never learned something new 

from a student who saw a problem in an unexpected way? Who has marked finals 

examinations and not had moments of despair about their own ineffectualness? 

The complexity of the environment requires a framework that will help us to explain, 

or just talk analytically about, some of these phenomena. We also need ways to ask 

relevant questions. I find the framework presented above helps me with some, (not 

all), of my wonderings as I seek alternative answers to some of my own practices. 
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WHY DO STUDENTS GO TO LECTURES? 

Christer Bergsten 

Linkôping University 

This paper investigates, from a student perspective, the fact that, despite arguments 

put forward against the educational value of large group lectures, this teaching 

format prevails and attracts students in undergraduate mathematics education. 

Keywords: mathematics lectures, students‘ attendance, case study. 

INTRODUCTION 

Doubts about the value of large group lectures as a teaching format at universities 

have been raised frequently (Bligh, 1972; Fritze & Nordkvelle, 2003; Holton, 2001). 

The lecture is an efficient model of teaching as an outcome of the massification of 

higher education. In case of an eminent scholar who presents a new theory or view, a 

lecture is certainly appropriate. Given that undergraduate mathematics courses are 

highly standardised (and so the teacher could be viewed as ―exchangeable‖) and 

often based on textbooks, the purpose of the lecture format is questionable. Students 

might rely on texts and might want to spend more time in study groups, where they 

could ask questions after studying the texts. Consequently it would be of interest to 

investigate how students view lectures. One can assume that they go to lectures 

because they get something out of it. In this paper it will discussed what this 

―something‖ may refer to. Reasons may not only be related to learning mathematics 

as disciplinary content, but also to issues such as becoming informed about examin-

ation specifics or social issues such as participation in the academic community.  

RESEARCH ON MATHEMATICS LECTURES  

Fritze and Nordkvelle (2003) identify, from a systems theory perspective, three 

different functions of a lecture. The lecture reflects both scientific truth, by ways of 

argumentation and reflection, and educational decisions in order to make this 

scientific content accessible to students. Thirdly, since students regard lectures in a 

course as ―a part of a socialization scheme‖, the lecture takes on a third function of 

an ―organization activity‖ (ibid., p. 232). The case study reported in this paper, aimed 

at further differentiating the first two of these functions. 

Much of the literature on tertiary mathematics education focuses on the quality of 

teaching and learning of subject content matter (e.g. Bradley, Sampson, & Royal, 

2006). In the general context of tertiary education, Biggs (2003, p. 75) lists four 

aspects of teaching/learning that from the literature seem to support quality learning 

of content matter: (i) a well-structured curriculum; (ii) an appropriate motivational 

context; (iii) learner activity, including interaction with others; and (iv) self-

monitoring. The minimal extent to which the third of these categories applies to large 

group lectures has been given as an argument for the low learning potential of 
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lectures (Fritze & Nordkvelle, 2003; Bligh, 1972). However, what the ―learner 

activity‖ consists of remains unspecified. The educational value of large group 

lectures has been questioned for several additional reasons:  

 students‘ attention cannot be maintained during a whole lecture (Bligh, 1972); 

 lectures are often not understood by the students (Rodd, 2003, p. 15);  

 lectures are most often linearly well ordered outlines of a ready made mathe-

matical theory, not offering a view of mathematics as a human social activity, 

coloured by creativity, struggles, and other emotional aspects involved in 

mathematical activity (Alsina, 2001; Weber, 2004), thus showing only what 

sometimes is called the ―front‖ of mathematics and hiding the ―back‖;  

 students do not learn much from lectures (Leron & Dubinsky, 1995);  

 lectures are not effective in stimulating higher-order thinking (Bligh, 1972); 

 lectures do not provide feedback and social interaction (Bligh, 1972). 

However, despite such research results on lecturing, ―the lecture survives, probably 

because it serves many functions not so well observed in the present research‖ 

(Fritze & Nordkvelle, 2003, p. 328). Rodd (2003) argues that ―university 

mathematics departments recognise the potential of lectures, not as information-

delivery venues, but as a place where the ‗awe and wonder‘ of mathematics can be 

experienced‖ (p. 20), and claims that ‗active participation‘ and ‗identity and 

community‘ can also be experienced as a ‗witness‘, similar to the act of experiencing 

a theatre play. Effects of inspiration may thus be an essential outcome from a good 

lecture. Related to this, the lecturer as a person, and humour, have been seen as 

critical for how lectures are appreciated (Fritze & Nordkvelle, 2003). The notion of 

teacher immediacy (Frymier, 1994) thus refers to issues of closeness in classroom 

student-teacher interaction. Arguments for the importance of personalisation in a 

mathematics context can be found in several studies (Anthony, 1997; Anthony, 

Hubbard, & Swedosh, 2000; Forgasz & Swedosh, 1997), and the lecturer can be seen 

to provide a personalisation of the formal mathematical discourse (Anthony et al.; 

2000; Wood & Smith, 2004). Inspiration is also emphasised by Alsina (2001, pp. 3-

6). Weber (2004) identified three teaching styles used in undergraduate mathematics 

(small group) lecturing. In the logico-structural style a strictly formal way of 

working was used. While the procedural lecture style had the main focus on the 

technical work, the semantic style emphasized the intuitive meanings of the 

concepts. In large group lectures these styles can be mixed (e.g. Bergsten, 2007), as 

well as the linguistic modes used. Wood and Smith (2004) noted that ―[l]ecturing is a 

mixed mode activity‖ (p. 3), using verbal and non-verbal means to organise students‘ 

attention to ―written language, mathematical notations, visual diagrams‖ (p. 3). The 

authors also noted that ―in the spoken text… the lecturer makes use of a range of 

words like actually, fairly, obviously to personalise and introduce values and 

judgments into the presentation‖ (p. 7). Wood and Smith conclude that these 
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differences of modes and representational forms require a lot from the students. The 

study by Anthony (1997) showed that the importance given to lectures was higher by 

students than by lecturers, both for success and failure, including ―boring 

presentations of lectures‖ and ―non attendance of lectures.‖ Students also ―placed 

more importance than lecturers on active learning and note-taking‖ during lectures. 

Successful students found ―the availability of worked examples in lectures and 

tutorials‖ and ―clear presentation of lectures‖ more important than did non-

successful students (pp. 60-61). Moreover, the study by Hubbard (1997) showed that 

students value the information about what is ―important‖ provided by lectures but are 

often dissatisfied with the format of a lecture as well as lecturers‘ ability to teach. 

This may well be due to a discrepancy in beliefs and perceptions about the role of 

lectures between lecturers and students (Anthony et al., 2000, p. 250). 

In the case study by Bergsten (2007) of a mathematics lecture in a large group of first 

year engineering students, a key observation was how the complexity and richness of 

different educational aspects of a lecture in undergraduate mathematics can come 

into play during a time of only 90 minutes. Within a TPA format (theorem-proof-

application), the observed lecture/lecturer was content-driven and rich in 

information; used a mixed mode of semantic-procedural teaching styles; exhibited a 

formal separation of theoretical and practical knowledge; showed an overall strong 

coherence, higher in rigour than the aims stated; displayed a dominance of an 

algebraic mode over an imagistic; was rich in gestures and informal language but at 

the same time establishing mathematical norms for the course and for Mathematics; 

created a relaxed atmosphere of doing mathematics as it seems together; and used 

various semiotic means to objectify the target knowledge, as he conceived it, for the 

students. With an aim to structure this complexity, Bergsten (2007, pp. 69-70) 

outlined a systemic triangular model for critical characteristics of a mathematics 

lecture, consisting of mathematical exposition, teacher immediacy, and general quali-

ty criteria for mathematics teaching. Mathematical exposition involves the dynamic 

interplay of mathematical content, mathematical process, and institutionalisation. 

A CASE STUDY 

Method 

Lectures make up a substantial component of beginning calculus courses in many 

university engineering and science programmes. These lectures are directed towards 

large student populations and thus have a major impact on mathematics education at 

the tertiary level. It was therefore an obvious choice for this study to choose lectures 

within this context. The case studied, two experienced lecturers running a calculus 

course with engineering students, one group of 141 engineering students specializing 

in industrial economy, and one group of 132 students studying physics and electric 

engineering, thus represents a common situation for the problematique in focus.  
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All data were collected by the author, who videotaped the lectures (which took place 

in an early part of the course), distributed and collected a questionnaire immediately 

after the lectures, and interviewed a sample of the students attending the lecture 

(after the lectures). In this paper only data from the questionnaire will be reported.  

Bergsten (2007) identified critical aspects that could influence students‘ appreciation 

and attendance of lectures. These aspects provided the basis for the questionnaire 

used in the present study. To enhance validity, the questions in Part 2 (see Table 1) 

were discussed with a research colleague and tried out in a small pilot study before 

the final questionnaire was used. It employed four level Likert items and was 

structured in three main parts; Part 1: four items concerning attendance, reading and 

note taking (see Table 2); Part 2: 16 items on views about lectures in general; Part 3: 

18 items on views about the particular lecture just attended. The answers could be 

commented and a final open question was asked. In this paper the analysis will focus 

only on Part 1 and Part 2 of the questionnaire. The items in Part 2 were designed to 

address the overall question Why do students go to lectures? more or less explicitly 

(item group A), more implicitly by asking on some specific issues that should be 

provided by lectures (item group B), or by asking if some aspects count as important 

for mathematics lectures (item group C). Finally, two questions were asked (item 

group D) to investigate whether students find that lectures generally employ too 

much formal mathematics. On the following statements in Part 2 of the questionnaire 

the students were asked to mark one of the categories Fully Agree, Agree, Partly 

Agree and Disagree. The items from the different groups were mixed in the 

questionnaire according to their order numbers given in Table 1:  

Group A 

items 

1. It is easier to understand the course material by attending a lecture than 

reading the textbook only 

2. It is from the lectures that one understands what is important for the 

examination 

7. It is by way of the lectures that I learn to understand what proof is and why 

proof is needed 

Group B  

items 

4. A mathematics lecture should link the pure mathematical results to 

applications outside of mathematics 

6. A mathematics lecture should present formal definitions and proofs for those 

mathematical concepts and results that are being treated 

12. Lecturers in mathematics should sometimes use everyday language, gestures 

and diagrams to illustrate the mathematical concepts and methods used 

14. A lecture should provide extra inspiration to continue working with 

mathematics 

15. A lecture should make the strength and beauty of mathematics visible 

16. A lecture should include some humour 

Group C 

items 

3. It is better when the lectures cover as much as possible of the content of the 

course, instead of going into some selected topics more deeply 
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5. In lectures in mathematics it is important to show methods for solving 

theoretical tasks and tasks where mathematical definitions and theorems must be 

used 

8. It is more important that a lecturer in an intuitive way explains the meaning of 

the mathematical concepts and results than providing formal definitions and 

proofs 

10. It is better to highlight the important ideas in a proof than doing each step of 

the proof in detail 

11. In a lecture it is more important with examples that show how to solve tasks 

than to prove the theorems that are used 

Group D 

items 

9. The lectures in mathematics normally employ too much algebraic calculations 

13. The lectures in mathematics normally employ too much proof 

Table 1: Part 2 of the questionnaire with items ordered by groups. 

In addition to answer frequencies, a simple correlation analysis was performed to 

base the interpretation of the data. The answers were also analysed for each of the 

two lecture groups, showing no significant difference between the groups concerning 

the frequency distributions, or pair wise item correlations for Part 2. This homo-

geneity can also be interpreted as an indication of reliability, as the groups are 

comparable in terms of previous mathematics studies. 

Questionnaire results 

In this section the results from the questionnaire will be presented before discussing 

them in the section that follows. Table 2 shows that more or less all students who 

attended the observed lectures always go to the calculus lectures, while the 

attendance to the classes (study groups) is lower but still high. A great majority of 

the students also take extensive notes during lectures. This strong focus on the 

importance of lectures is also witnessed by the high percentage of students who do 

not study the corresponding sections in the textbook in parallel.  

Statement \ answer category always often sometimes rarely N 

I attend the lectures in this course 92 7 0 1 273 

I attend the classes in this course 58 33 6 3 273 

 almost 

everything 
a lot a little 

almost 

nothing  
 

During lectures I normally take notes 

on 
85 11 2 2 271 

 before after both neither  

I normally read the relevant chapter 

in the textbook before or after the 

lecture 
8 35 12 44 266 

Table 2: Part 1 of the questionnaire: Statements and frequencies (%). 



Working Group 14 

 CERME 7 (2011) 1965 

 

In Part 2, the answers to item group A (see Table 3) point to the common view 

among the students that by attending lectures it is easier to understand the content 

than only by textbook study; one understands what is important for the exam; and 

one learns to understand what proof is and why it is needed. 

On group B items the students agreed or strongly agreed that a lecture should present 

formal definitions and proofs for those mathematical concepts and results that are 

being treated; sometimes use everyday language, gestures and diagrams to illustrate 

the mathematical concepts and methods used; provide extra inspiration to continue 

working with mathematics; make the strength and beauty of mathematics visible; and 

include some humour. The students agreed or partly agreed (on item 4) that a lecture 

should link the pure mathematical results to applications outside of mathematics. 

Item 
Fully  

Agree 
Agree 

Partly 

Agree 
Disagree Mean Median N 

1 81 15 4 1 1.3 FA 273 

2 25 51 22 2 2.0 A 271 

7 23 40 31 6 2.2 A 269 

4 16 41 36 7 2.4 A 269 

6 28 42 25 5 2.1 A 269 

12 56 31 10 3 1.6 FA 273 

14 41 40 16 3 1.8 A 272 

15 34 41 20 5 1.9 A 269 

16 59 29 8 3 1.6 FA 273 

3 33 42 21 4 1.9 A 271 

5 62 30 7 1 1.5 FA 270 

8 45 40 13 2 1.7 A 269 

10 40 34 19 7 1.9 A 267 

11 43 31 22 4 1.9 A 273 

9 1 12 51 36 3.2 PA 263 

13 11 29 42 18 2.7 PA 272 

Table 3: Frequencies (%), means and medians for Part 2 of the questionnaire (ordered 

by item groups; A: 1 2 7, B: 4 6 12 14 15 16, C: 3 5 8 10 11, D: 9 13). 

Within item group C the students agreed or strongly agreed that it is better when the 

lectures cover as much as possible of the content of the course, instead of going more 

deep into some selected topics, indicating that students want lectures to give a full 

overview of the course; it is important to show methods for solving theoretical tasks 

and tasks where mathematical definitions and theorems must be used; it is more 

important that a lecturer in an intuitive way explains the meaning of the 

mathematical concepts and results than providing formal definitions and proofs; it is 

better to highlight the important ideas in a proof than doing each step of the proof in 

detail, and it is more important with examples that show how to solve tasks than to 

prove the theorems that are used. 

The answers to item group D showed that the students generally do not find that 

lectures employ too much algebraic manipulations or proof. Individual correlations 
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between the items 1-16 are shown in Table 4, which is structured by item groups A-

D (within group correlations are marked in bold). The item groups A, B, C and D are 

analytically defined and not empirically observed categories. Therefore correlations 

between items from different groups are also to be expected, due to their content in 

other aspects than those defining the groups. Nevertheless, it is evident from Table 4 

that items within the item groups are positively correlated (to different degrees), 

most strongly in group B with items related to the teacher immediacy dimension. 

One exception here is item 6. This item correlates naturally with item 7 and that 

items 6 and 7 both have a negative correlation with item 13 makes sense. However, 

the negative correlation between item 6 and both items 8 and 11 opens up for the 

interpretation that the students want the lectures to present formal aspects of 

mathematics but that intuitive and exemplary ways of explaining are seen as more 

important ingredients of a calculus lecture. The strong correlations between the three 

items 8, 10 and 11 within group C point to a preference among the students for a 

more intuitive presentation of mathematics than giving full formal proofs, an 

interpretation supported also by the positive correlations between item 13 and items 

8-12. Item 12 correlates naturally with several items (on intuition, ideas and 

examples), thus indicating how those presentations are preferred. 

2 27               

7 10 9              

4 0 14 2             

6 8 4 36 7            

12 20 16 5 17 -8           

14 12 3 6 11 2 26          

15 -4 -3 14 11 14 15 46         

16 23 5 6 9 -3 27 35 39        

3 11 16 1 14 -2 9 2 7 -1       

5 19 6 -2 14 0 15 6 -2 9 4      

8 14 12 -19 11 -27 24 9 1 11 14 16     

10 15 13 -3 0 -18 21 2 -6 5 12 13 20    

11 8 5 -14 14 -35 35 9 -7 11 9 14 33 31   

9 -14 -4 -1 12 -13 13 2 2 6 6 -8 3 3 20  

13 -3 9 -21 14 -42 27 6 -5 5 2 10 29 18 42 29 

item 1 2 7 4 6 12 14 15 16 3 5 8 10 11 9 

Table 4: Pearson correlations between individual items of Part 2 of the questionnaire. 

To the final open question: What is it that makes a good lecture?, there was a great 

variety among the 200 answers delivered. A first categorization of around 50 

different aspects was made, where the most common were the following (with the 

number of comments found in brackets along with some illustrative student quotes): 

 The lecturer as a person (100; e.g. inspiration 38, humour 26, engagement 17, 

pedagogical 9, using easy and clear language 5). Quotes: The charisma of the 

lecturer! ; Humour and contact with the audience; That it is easy to listen to 

the lecturer, not boring or monotonous; The lecturer speaks clearly and uses 
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an everyday language. The lecturer should also be funny so that I do not fall 

asleep during the lecture. 

 Demonstration of examples (40; how to do it, usefulness for exams). Quotes: 

Examples, examples, examples, how to solve the problems. Tricks and methods 

to approach the tasks; Many examples, applications so that one understands 

how to use theorems/proofs. 

 Good explanations, to support understanding (35; one can follow, what it is 

for, why it works). Quotes: When it says click and you feel you understand a 

problem and the structure of its solution, then mathematics all of a sudden is 

fun!; Illustrative diagrams and the engagement of the lecturer. 

 Clarity (33; not skipping linking details, structure). Quotes: A good structure, 

with a mix of theorems, proofs, examples and humour; Structure and good 

writing on the whiteboard; That you understand what the lecturer is saying. 

 A comfortable pace (20; not too quick, not too slow, calm). Quote: Pace 

combined with understandability. 

 Coherence (15; read thread). Quote: A red thread that is interesting to follow. 

 Good mix between theory and methods (11). Quote: A good mix of examples 

and theory, and an inspiring lecturer. 

Some students gave only one or two aspects, while others combined several to a 

whole. Further comments pointed to the importance of a good balance of level of 

difficulty and pace, also to be able to take notes. Interesting mathematics and 

applications were asked for, as well as providing a good complement to the textbook 

and aha-experiences, and be forced to be active. 

DISCUSSION 

Students in this study go to lectures. In the previous study (Bergsten, 2007), the 

interviewed lecturer also stated that his students normally go to the lectures: 

I don‘t know why. It is an easy way to get something done, they think they can use things 

from the lecture, collect materials, thinking the lecturer will say something that is useful 

for the exam. (p. 63) 

The data presented here show that students do not only value such usefulness. 

Explicit answers to the main question Why do students go to lectures? point to the 

view that it is easier to understand the mathematical content of the course by 

attending lectures than only by studying the textbook. Another reason is that one 

understands what is important for the examination, as found also by Hubbard (1997), 

and what mathematical proofs are and why they are needed. There is a strong 

emphasis on the value of both, intuitive explanations (diagrams, metaphors, gestures) 

and formal presentations (definitions, proof, algebraic calculations), as well as 

examples, but less strong need of applications from outside mathematics. The data 

indicate that that the semantic mode of presentation is a stronger factor in attracting 

students to lectures than the procedural or logico-structural style (in the sense of 
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Weber, 2004), even if clarity and coherence were emphasised. It was a strong 

agreement among the students about the importance of teacher immediacy, that the 

mathematics lecturer should inspire to study mathematics and use humour, make the 

strength and beauty of mathematics visible, and use everyday language, gestures and 

diagrams to illustrate the mathematical concepts and methods used. The 

dissatisfaction with the lecture format and the lecturers‘ teaching ability, as found by 

for example Hubbard (1997), was completely absent in the questionnaire responses 

reported here. The high attendance as well as the closed form items and the open 

comments indicate, rather, that the opposite view was dominating. In relation to 

Bergsten‘s (2007) triangular model for a quality lecture, the importance of the 

dimensions teacher immediacy and mathematical exposition find strong support in 

the data presented here, while general criteria for quality teaching (Biggs, 2003), not 

directly addressed in the questionnaire, are more implicit in aspects such as 

coherence, clarity, applications, pace, and student activity in terms of note taking.   

That lectures have impact on the students at a diversity of aspects and levels was 

evidenced by the great variety of descriptions on what characterizes a good lecture. 

This points to the complexity and ―richness‖ of the lecture format, as discussed 

above with reference to Bergsten (2007). It is clear from the students‘ open 

comments in the present study that one main reason for the ―success‖ of a lecture is 

given to the lecturer as a person, being able to engage and inspire the students. This 

emphasis on teacher immediacy has been pointed to by several authors and can be 

seen as part of the game of lecturing, as features of acting. Illustrating also adds non-

symbolic and non-discursive elements to the semiotic objectification of knowledge, 

which can function as critical elements in the meaning-making processes of the 

students. Wood, Joyce, Petocz and Rodd (2007) found that despite availability of 

textbooks and online material, for their learning students value lectures higher. 

Other aspects mentioned by many students in the questionnaire, such as clarity and 

coherence, a mix of (many) examples and theory, an optimal pace, clear language 

and writing, can be related more to lecturers‘ pedagogical awareness (Nardi, 

Jaworski, & Hegedus, 2005) than personal charisma. An aspect less discussed in the 

literature is the importance of the opportunity for students to take notes. From the 

data in this study, including student interviews not reported here, it is evident that 

this is a student activity component of the lecture format that is essential for what the 

students‘ get out from attending a mathematics lecture.  

The results presented here will be critically discussed in the full study, where all 

questionnaire data will be analysed in relation to student interviews and an analysis 

of the video recorded lectures as well as interviews with the lecturers. 
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Varying mathematical skills, rising dropout rates and growing numbers of first year 

students confront the universities with major organizational and pedagogical 

problems. This paper describes an innovative way of teaching and learning that 

claims to improve this situation by specific bridging courses particularly including 

self-diagnostic e-assessment and supporting self-regulated learning. In order to give 

an overview of our whole bridging-course programme we will discuss our material 

with regard to content-related and pedagogical aspects as well its integration in 

various course scenarios. Focusing on selected results of an accompanying 

evaluation study we will finally substantiate the acceptance and success of our 

courses and highlight some interesting findings regarding our learners.  

Keywords: bridging courses, eLearning, blended learning environments. 

INTRODUCTION 

The transition between school and university studies is a difficult one. The gap 

between school and university seems to be larger in mathematics than in other 

subjects (cf. Gueudet, 2008, Bescherer, 2003, de Guzman, 1998, Holton, 2001, Tall, 

1991).  

In 2003, the project VEMA – ―Virtuelles Eingangstutorium Mathematik (Virtual 

Entrance Tutorial for Mathematics) (http://www.mathematik.uni-kassel.de/vorkurs) 

started the development of multimedia resources primarily for supporting the pre-

term bridging courses, which are intended to bridge this gap. VEMA was initiated at 

the University of Kassel and was extended to the Universities of Darmstadt and 

Paderborn later on. During the years the project extended its concern and redesigned 

the whole pre-term courses by new course scenarios that better integrate the 

multimedia learning material into the course. The material as well as the course 

scenarios have been continuously improved taking into account our yearly 

experiences and evaluations.  

THE INTERACTIVE MATERIAL OF VEMA 

The content of the VEMA-material 

In order to support students to individually recapitulate certain topics we decided to 

structure the content into small learning units called ―modules‖. Each module 

essentially concentrates on one mathematical topic. In its latest version the learning 

material contains six chapters: ―Arithmetic‖, ―Powers‖, ―Functions‖, ―Higher 

Functions‖, ―Analysis‖ and ―Vectors‖. On average each chapter has about 10 

http://www.mathematik.uni-kassel.de/vorkurs
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modules. The clear module-structure supports self-regulated learning and helps 

teachers in choosing content suitable for the field of study of their students. 

Structure of a learning unit 

We chose a well-defined and consistent structure for all modules, i.e. each module 

consists of identical types of knowledge units. This structure helps learners in their 

navigation through the material, which is further supported by the layout of the 

interactive book: There are two navigation frames. One enables learners to choose 

the modules to which they like to switch and the other enables selecting the different 

units of a chosen module by clicking on the corresponding icons.  

The structure of a module mainly consists of the units: overview, introduction to the 

domain, info, Info/Interpretation/Explanation (IIE), application, typical mistakes, 

and exercises. Before and after learning with a module, learners can perform a 

diagnostic test to assess their knowledge of the domain. 

i. The diagnostic pre-test contains 4 to 5 exercises and gives the opportunity to 

the students to test their pre-knowledge concerning the content of the module. 

After a student has performed all tasks, the system automatically corrects his 

answers and provides feedback in form of a score for each exercise and for the 

test as a whole, a model solution, an individual feedback on his mathematical 

competencies and provides learning advice for further working on the module. 

With this individual feedback the students are supported in structuring their 

learning. 

ii. Then the modules start with the overview unit, which essentially consists of a 

list of the major topics and learning goals.  

iii. The second unit is called introduction to the domain. It uses discovery-based, 

inductive and exemplary approaches to familiarize the learner with the 

content. We also support the knowledge construction process by interactive 

exercises: learners have the opportunity to make mistakes, to withdraw them 

and to recapitulate the task until finding a correct solution. The content is 

presented to learners on a concrete level, with visualizations and references 

made to their assumed previous knowledge. 

iv. The third info unit lists the definitions, theorems and algorithms of the module. 

These are the central concepts of the module. The info unit presents the 

content on an abstract mathematical level, the pure definitions, theorems and 

algorithms are presented without examples or exercises. 

v. The fourth IIE unit (Info / Interpretation / Explanation) repeats the central 

definitions, theorems and algorithms of the info unit. A network to other 

concepts is built. Illustrations, concrete examples and explanations are added. 

In case of theorems one can find plausible arguments and/or proofs for their 

correctness. The learners also find interactive exercises, flash-films and 

animations they can interact with and which help them to developing a deeper 
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understanding of the concepts. Since the learners can look at the concepts from 

various perspectives the memorisation of knowledge is supported, too. 

vi. The fifth unit is called the application unit: Here such applications inside and 

outside mathematics are presented that show the connection of the actual 

domain to other mathematical and non-mathematical domains. This unit may 

contain examples e.g. from engineering contexts that are relevant for the 

engineering students but may be also relevant for other students to see the 

practical relevance of mathematics. The inner-mathematical applications are 

used to connect the definitions, theorems and algorithms within mathematics.  

vii. The sixth unit is called the typical-mistakes unit: In this unit erroneous 

argumentations or solutions are presented to the learner, who is invited to find 

the mistakes, to correct them and to explain possible reasons for them. These 

exercises are provided to train the learners‘ diagnostic competencies and to 

depict misconceptions in order to avoid them in the future. The learners can 

check their answer by comparing to a correct argumentation or solution. For 

future mathematics teachers this is important for training their diagnostic 

competence (cf. Wittmann 2007). 

viii. The last unit is the exercises unit: This unit is important for the learners for 

checking their understanding of the topic and to give opportunities for 

practicing the concepts. For each exercise a model solution is available to 

compare own solutions with. These model solutions can also be used as hints 

for getting an initial idea or for helping when the solution process gets stuck. 

ix. The diagnostic post-test has the same structure as the diagnostic pre-test. Its 

idea is to give the students the opportunity to check their performance after 

having worked on a module. The diagnostic pre- and post-tests also aim at the 

elaboration of the students‘ abilities in self-regulation and self-evaluation, 

which are major factors for successful learning (Ibabe & Jauregizar, 2010). 

TYPES OF BLENDEND LEARNING SCENARIOS 

For our bridging courses we combined self-directed and externally-regulated 

learning types of instructional formats (cf. Niegemann et al., 2008, p.66). Both 

formats have their justification in the specific case of bridging courses: on one hand 

learners are new at the university, so they have to acclimatise themselves with the 

new learning environment. Here attendance phases can help them to familiarize 

before the terms start. On other hand learners at university level have to be more self-

directed in their learning than at school. Here eLearning phases can help to adapt 

their learning behaviour (cf. Mandl & Kopp, 2006). For our bridging courses we 

developed two different blended-learning course scenarios: a course scenario with an 

extensive attendance part (P-course) and a course scenario with an extensive 

eLearning part (E-course). When registering to the bridging courses each learner can 

freely choose between these types according to individual preferences. 
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The P-course 

This course scenario is structured and led by the teacher while the learner has fewer 

opportunities for self-regulated learning. The course lasts 4 weeks; each week 

consists of three days with attendance at university with three hours of lectures and 

two hours of practice-session each. The remaining days are free for individual 

learning and homework. This homework consists of two parts: one part has exercises 

on the topics that were taught in the lectures and another part has specific tasks for 

individual working on the modules, aiming at recapitulating or preparing content for 

the next attendance day. Some of the diagnostic tests are available and recommended 

to the students. 

The E-course 

This course covers 4 weeks with 6 days attendance at the university. The remaining 

time is to be spent for online learning. The first week starts with one or two 

orientation days, where the learners are introduced to the learning system and course 

material and get advice how to learn with the material. The first modules are 

presented by means of lectures. Later in the course there is only one attendance day 

at the end of every week. The learners have the opportunity to ask questions about 

the content in the first part of the morning session and can pre-select the topics for 

the lectures in the second part of the morning. The afternoon is devoted to small 

group learning with exercises related to the content of the morning lectures. The 

small group work is supported by a tutor. 

The rest of the learning time is free for learning with the online resources. Questions 

that come up in this process can either be asked and discussed on the next attendance 

day, posted in the forum of the learning platform or posed to the human online tutor, 

who is available during all normal working hours, including opportunities for online 

chatting. Moodle supports the learners in choosing their learning paths: The 

diagnostic tests with the individual feedback support students in structuring their 

learning, and a list of recommended modules for every study programme helps to 

identify the most important topics. Besides, we provide a text that explains the use of 

the material, the diagnostic tests and the role of the days at the university 

THE EVALUATION-STUDY 

In context of his PhD-project the second author of this paper extensively investigated 

the 2008 bridging courses in Kassel. His PhD project aims at designing, evaluating 

and refining the bridging course scenarios as described above. Major questions of the 

study were the identification of the reasons for the students‘ choice of the course 

variants, the description of the participants concerning personal aspects, the 

investigation of the course effects on the learners‘ performance and attitudes, the 

analysis of the acceptance and the rating of both, courses and learning material, and 

the investigation of the students‘ use of the learning material (cf. Fischer 2008). 



Working Group 14 

 CERME 7 (2011) 1975 

 

For data collection, three questionnaires, one at the beginning, one in the middle and 

one at the end of the course, and two assessment tests were used. The questionnaires 

were anonymous online-forms requiring a personal key that enables us tracing the 

students‘ answers while keeping the students anonymous to us. Part of the items 

were adapted from different studies (Prenzel et al., 2002, Baumert et al., 2008, 

Bescherer, 2003) and items from the general course evaluation questionnaire of 

Kassel University. Thus we composed a new instrument for an investigation of 

blended learning scenarios for mathematical bridging courses. An electronic pre- and 

post-test was administered under exam conditions in a computer room for measuring 

students‘ mathematical proficiency levels. While the pre-test included exercises from 

school-mathematics, the post-test focussed on the bridging courses‘ content. In the 

following we can discuss only a few selected results of the study. 

The courses from the learners‘ perspective 

For investigating the acceptance of our bridging courses in general as well as the two 

course scenarios in specific, the students had to answer to three questions: 1. ―In 

general I was satisfied with the bridging course‖, 2. ―The participation in the 

bridging courses is absolutely recommendable‖ and 3. ―I would decide for the E-/P-

course of the bridging course again‖. A Likert type scale with four answering 

categories was used here: (1) ―is not true‖, (2) ―is rather not true‖, (3) ―is rather true‖ 

and (4) ―is true‖. 

Question P-course E-course 

M SD N M SD N 

1: ―In general…‖ 3.57 0.62 254 3.64 0.53 96 

2: ―The participation in…‖ 3.69 0.62 254 3.69 0.56 96 

3: ―I would decide for …‖ 3.67 0.68 254 3.48 0.79 96 

Table 1: Results for questions concerning the acceptance of the courses. 

Table 1 reveals very high scores for the courses in general and similar results for the 

two course types. Hence we can state that the learners were very satisfied with the 

bridging course type they had chosen. This proves the success of our course design 

decisions from this point of view.  

Results from pre- and post-test assessments 

The pre-test showed very similar results for both course types, but for the post-test, 

the results in the E-course are even better than in the P-course (see Table 2). 

An analysis of variance for the results of the post-test considering the course variant 

as dependent variable and the results of the pre-test as covariant showed that the 

difference in the results of the course variants is highly statistically significant.  
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Test Results for P-course Results for E-course 

M SD N M SD N 

Pre-test 2008 

Maximum: 19 points 
8.52 3.14 226 8.52 3.64 146 

Post-test 2008 

Maximum: 20 points 
9.21 3.13 131 10.93 4.02 72 

Table 2: Assessment results. 

Since we only hoped to achieve at least comparable results for both course types in 

order to disprove the argument that the E-course may be a popular scenario for some 

students but it will not improve the students‘ performance as much as by traditional 

scenarios, we were happy to have such positive results. 

Students‘ reasons for choosing a course variant  

The students had to indicate which factor of a given list was relevant for their 

decision for a course variant and how important the respective factor was (Likert 

type scale). For each factor we calculated the mean in order to identify reasons with a 

high impact and reasons with a low impact.  

For the E-course we found that the mean scores for extrinsic factors such as job-

related restrictions, living situation, being on vacation or other external reasons had 

low values between 1.24 and 2.4. In contrast, the questions for intrinsic reasons 

revealed high mean scores from 2.73 to 3.52. Therefore we can interpret them as 

main factors for the decision: this includes reasons concerning the opportunity for a 

more self-regulated learning within the E-course, the possibility of individual timing 

as well as a personal interest in eLearning as a learning method. It is not surprising 

that the reduced numbers of days with compulsory attendance was a further 

important reason for the students‘ choice (M = 2.7). 

The results for the P-course showed again that extrinsic reasons like the availability 

of a computer, the internet or an internet-flat rate had very low mean scores from 

1.06 to 1.32. Aversions to learning with the computer (M = 2.13) or bad experiences 

in eLearning (M = 1.33) were also reasons with a low impact. Instead the 

opportunities of personal contact with other students (M = 3.4) and with the teacher 

(M = 3.64) as well as the opportunity of experiencing typical lectures were reasons 

with high mean scores (between 3.4 and 3.64) and can therefore be interpreted as 

main factors. We also asked for doubts in one‘s ability of self-regulated learning (M 

= 2.6) and doubts concerning the method eLearning itself (M = 2.61) but these 

results show that these are not strong factors for or against the choice of the course 

variant. 

At the beginning of the study we assumed that especially those students would 

decide for the E-course who either have an affinity to working with the computer or 

who already have made (positive) experiences in learning with the PC. That‘s why 
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we asked for these aspects in both course-scenarios and surprisingly found no 

substantial differences between the answers of the P- and E-course participants:   

Question Results for P-course Results for E-

course 

M SD N M SD N 

―I have already experiences in 

eLearning‖ 
1.97 0.4 376 1.95 0.33 209 

―I like to learn with the PC‖ 3.23 0.74 376 3.4 0.7 209 

―In the last year in school I have 

already learnt with a PC‖ 
3.32 1.58 376 3.39 1.55 209 

Table 3: Results for questions on learning with computer. Answering categories for the 

third question: (1) almost every day, (2) 2-5 times a week, (3) about once a week, (4) 1-

2 times per month, (5) less often, (6) never. 

Usage of the learning material within the E-course 

Within the E-course the students were asked questions concerning their use of the 

diagnostic tests and of the modules. The participants had to indicate how often they 

had used the diagnostic tests. The results can be found in Table 4: 

Test (1) 

practically all 

(2)  

most of them 

(3) 

some of them 

(4) 

barely none 

M SD N 

Pre-tests 28.5% 33.8% 22.5% 15.2% 2.25 1.03 151 

Post-tests 19.9% 30.5% 23.8% 25.8% 2.56 1.08 151 

Table 4: Use of the diagnostic tests. 

The results show a slightly higher average usage of the diagnostic pre-tests, which is 

also supported by the user data that were collected in moodle: The number of pre-

test-users is always higher than the respective number for the post-tests. The 

variability in the test usage is fairly high. 

We also asked the participants to indicate how helpful the diagnostic tests were for 

them. Those students who didn‘t use the pre-tests (10.6% of the interviewees) or the 

post-tests (19.9%) could indicate it separately and were filtered out. The following 

table shows very positive results for both test types. 

Tests (1) (2) (3) (4) (5) (6)  M SD N 

Pre-tests 30.4% 42.2% 19.3% 6.7% 0.7% 0.7% 2.07 0.97 135 

Post-tests 21.5% 48.8% 23.1% 4.1% 2.5% 0% 2.17 0.9 121 

Table 5: Acceptance of the diagnostic test by those you used them. Answering 

categories: (1) ―helpful‖ … (6)‖ not helpful at all‖. 
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Since the students had the opportunity to use a CD offline instead of learning online 

with moodle, we asked them ―Did you learn online within the learning platform or 

offline with the CD?‖ For this we used a scale with options from (1) ―only online‖ 

over (3) ―nearly equal‖ up to (5) ―only offline‖. The quite high spread of SD ≈ 1.4 

however revealed quite varying student opinions, so we decided to have a more 

detailed look at the results. 

Hence we analyzed the results differentiating four different groups in view of the 

fields of study: E1 (electrical engineering & computer science), E2 (construction 

engineering & mechanical engineering), E3 (bachelor of mathematics or science & 

mathematics teachers for grammar schools) and E4 (teachers for primary and lower 

secondary schools):  

 

Figure 1: ―Did you learn online within the learning platform or offline with the CD?‖ 

It is noticeable that the groups E2 and E3 answered very similarly, while group E4 

tends to learn offline. For group E1 we can identify two subgroups: One that is only 

learning online and another one that is learning almost only offline. Further data 

analyses showed that this split into subgroups can neither be explained by gender nor 

by the field of study (construction engineering & mechanical engineering).  

Obviously there seem to be typical learning approaches that depend on the field of 

study, while others are independent of it. This assumption is further emphasized by 

an analysis of the students‘ use of the modules. We asked the students to indicate for 

each module unit within the first three chapters how intensively they have typically 

used them. We calculated the percentage of all users that indicated an intensive 

usage and visualized the results for the groups E1-E4 in figure 2. The y-axis of this 

diagram displays the percentage of ―intensive users‖ of the respective module unit 

that can be found on the x-axis. For comparing the profiles of the different groups, 

we sorted the units on the x-axis with respect to the results of group E3 (Bachelor of 

mathematics and science, mathematics teacher for grammar schools) in decreasing 

order.  
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Figure 2: Percentage of intensive users for the units of a module. 

We see that the learning profiles of the groups E1 and E3 are very similar as well as 

the profiles of the groups E2 and E4. This result was not expected since the fields of 

study of the groups would rather imply a different pairing. This suggests that it is not 

only sensitive to evaluate the courses with regard to the variants and the fields of 

study but also to classify different types of learners and to explore them. 

PERSPECTIVES 

The second author of this paper is currently working on different aspects of the 

evaluation study in the context of his PhD project. We have collected data on 

learners attributes e.g. personality, motivation, attitude towards mathematics and 

abilities in self-estimation and self-regulation. A classification of different types of 

learners and of typical learning strategies will be related to the learning behavior in 

the course and the effects of the courses on students‘ mathematical knowledge and 

attitudes. The data on students‘ rating of different elements of the courses and the 

learning material will be used for identifying aspects for improvement of the course 

design. We also revise our diagnostic tests, develop new content and design a new 

course structure in moodle for a better integration of interactive material. We expect 

that the instruments that we have developed will also be useful for the evaluation of 

blended learning bridging courses in general.  

NOTES 

This paper is partly elaborated in Biehler, R., Fischer, P. R., Hochmuth, R., & Wassong, Th. (in press). Self-regulated 

learning and self assessment in online mathematics bridging courses. In A.A. Juan, M.A. Huertas, S. Trenholm, & C. 

Steegmann (Eds.), Teaching Mathematics Online – Emergent Technologies and Methodologies. Hershey, PA: IGI 

Global. 
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Abstract. The aim of this paper is to discuss potentialities and limitations (and the 

suitable balance of these) of electronic environments in the development of students‘ 

understanding of the derivative. We re-analyse results of two studies in which the 

property of local straightness was used. In the first (Greek) study sufficiently 

accurate computer inscriptions are used to build students‘ understanding on the 

derivative and tangent line. In the second (Brazilian) study explicitly inaccurate 

inscriptions shake a student‘s faith in the computer‘s reliability, towards more solid 

theoretical understanding. 

Keywords: teaching and learning of Analysis, derivative, tangent line, local straightness, 

electronic environments. 

INTRODUCTION AND THEORETICAL BACKGROUND 

In this paper we address the role of dynamic electronic environments in students‘ 

understanding of advanced mathematical notions and critical mathematical thinking. 

Particularly, we discuss how inscriptions of mathematical objects in certain 

electronic environments and their pedagogical use may interact with students‘ 

understanding of these objects. As an inscription, we consider any representation of 

mathematical objects (e.g. graphs, figures etc.) on the computer screen. Our focus is 

on the pedagogical role of the potentialities of these representations, as well as their 

limitations associated with the electronic and software technical constraints. 

Especially, we address the case of local straightness (Tall, 1989) as a property of a 

curve with twofold particular interest. Firstly, this property can express the 

differentiability (or non-differentiability, through its lack) of a function at a point. In 

this sense it can be used towards introducing the definition of derivative and the 

general definition of tangent line. Secondly, the examination of this property on 

critical examples of functions offers the pedagogical opportunity to contrast the 

infinite mathematical processes (e.g. limit) with the limitations of the electronic 

inscriptions. In this sense it can be used towards facilitating students‘ more 

sophisticated mathematical understanding (Giraldo, Carvalho & Tall, 2003). 

To this aim we report and highlight connections between results from two studies. In 

the first one (Greek study), students are introduced to the concept of derivative with 

the mediation of an electronic environment in which sufficiently accurate 

inscriptions of local straightness are offered (Biza, 2008). In the second study 

(Brazilian study), the students have been previously introduced to the notion of 

derivative through the property of local straightness in an electronic environment, 
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and now are asked to investigate cases of functions in which the inscription is 

explicitly inaccurate (Giraldo, 2004). By sufficiently accurate inscriptions we refer 

to the inscriptions that are designed to be as faithful as possible to the mathematical 

theory (e.g. the graph is not deformed when it is zoomed on); and by explicitly 

inaccurate inscriptions to the ones that are purposely conceived as in conflict with 

the mathematical properties (e.g. when a continuous graph seems discontinuous). 

Given the space limitation, we provide only the necessary methodological and 

theoretical information for each study and we confine ourselves to some of the 

results in order to discuss the interaction between students‘ perspectives with the 

inscriptions in the electronic environments.  

Research highlights that, for the purpose of conceptual understanding in Analysis, 

instruction should be focused not only on the use of algebraic representations but 

additionally should take into account the geometric and intuitive representations of 

the corresponding mathematical objects as well as the interactions among these 

representations (Kaput, 1994). Such modes of instruction have been gaining strength 

also due to the advances in computer technology (Habre & Abboud, 2006). The 

introduction of technology in the teaching of Analysis in recent years proved very 

―important to facilitate students‘ work with numerous epistemological discontinuities 

such as discrete/continuum, finite/infinite, determinate/indeterminate‖ (Ferrara, Pratt 

& Robutti, 2006, p. 257). Using technology for the introduction of limit and 

derivative demands an approach that can balance and bring together intuitive and 

formal perspectives (ibid). One such approach is suggested by Tall‘s (1989) dynamic 

and visual idea of local straightness. This notion refers to the fact that, if we focus 

close enough to a point on a function graph, where the function is differentiable, then 

this graph looks like a straight line. This straight line estimates the tangent line of 

the graph at this point. The introduction to derivative through the local straightness 

can be supported by zooming tools in appropriately designed software (Tall, 1989). 

Nevertheless, the visual representation of analytic concepts – in which mainly the 

limit is involved (e.g. continuity, derivative) – often contrasts with the formal status 

of these concepts. Giaquinto (2007) claims that there is a mismatch between these 

concepts and their visualisation and in order ―to employ visual means to arrive at 

analytic beliefs we have to import assumptions that link the perceptual with the 

analytic‖ (p. 179). However, he acknowledges that ―visual thinking can increase a 

student‘s understanding‖ (p. 184). Furthermore, the use of technology in the teaching 

of analytic concepts may be influenced by the limitations of the electronic 

environments due to their finite structure (e.g. finite step calculation, graph sketching 

through polygonal estimation, etc.). Giraldo et al. (2003) introduced the term 

theoretical-computational conflict to describe ―situations in which a computational 

representation for a mathematical concept is (at least potentially) contradictory to the 

associated theoretical formulation‖ (p. 63). If these conflicts are exploited within a 
suitable pedagogical approach – rather than avoided – they may facilitate the 
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enrichment of students’ understanding (Giraldo & Carvalho, 2006). Taking into 

account the above discussion, we consider electronic environments as artefacts that 

offer special means for students in their interaction with mathematical objects.  

the Greek study 

The context of the study 

The participants of this study (Biza, 2008) were fifteen Year 12 students (aged 17-18 

years) of a Greek secondary school. The students were selected because of their 

availability and their previous experience in the use of Dynamic Geometry (DG) 

environments in their school mathematics. This group of students aimed for tertiary 

studies related to mathematics, science, engineering or medicine and, according to 

the Greek curriculum, they had to attend an introductory course to Analysis. By the 

time the research took place, the students had been taught functions, limits and 

continuity and were about to be introduced to the derivative. In addition, in their 

previous studies, the students had encountered the tangent line to the circle in 

Euclidean Geometry (Year 10) and to other conic sections (parabola, hyperbola and 

ellipse) in Analytical Geometry (Year 11) courses. This previous experience was 

regarded as crucial on the design of the experiment, which was based on previous 

research results about students‘ understanding of tangents (e.g. Biza, Christou & 

Zachariades, 2008; Vinner, 1991, Castela, 1995). These results have highlighted the 

strong influence of the circle tangent on the students‘ general perspectives on 

tangents. For example (Biza et al., 2008), students who had met the tangent line in 

different mathematical contexts (Geometry and Analysis) demonstrated Intermediate 

perspectives on tangents between the Analytical Local perspective – the tangent is 

defined through the slope or the derivative applied locally at the tangency point – 

and the Geometrical Global perspective – the tangent preserves geometric properties 

applied globally on the entire curve. These Intermediate perspectives are a fusion of 

geometric and analytic properties applied either globally on the entire graph or 

locally at a neighbourhood of the graph. These perspectives may prove to be 

inappropriate when non-trivial cases are dealt with, such as cases in which the 

tangent line has more than one common point or when it coincides with the curve, as 

well as in cases of inflection and edge points. 

The aim of the experiment was the reconstruction of previous restricted perspectives 

about tangents; the introduction to the local straightness as a property of a curve that 

has tangent line; and, the creation, through the introduction of the derivative, of a 

more general understanding of tangency. To this end the experiment intended to 

deploy the dynamic visual graphics in the electronic environment – especially the 

magnified image of a part of the graph in comparison with the entire graph – and the 

symbolic expressions – especially the limit of rate of change and the derivative – as 

mediators in students‘ understanding about tangency. According to the above aim 

the inscription of the magnified graph in the electronic environment and the selected 

examples had to be accurate enough in order to be in accordance with the 
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mathematical properties. For the needs of the experiment the mathematical classroom 

was transformed into a laboratory with five portable computers and a sixth linked to 

an overhead projector. The students were working in groups of three in each of the 

five computers and they kept notes on worksheets prepared for the needs of the 

instruction. The experiment was run by the researcher (first author) who was 

operating the sixth computer, with the support of the classroom teacher. Data was 

collected through post- and pre- teaching experiment questionnaires, audio recording 

of the experiment, students‘ responses on the worksheets and notes. 

This experiment was developed in the context of the European Union funded project 

called CalGeo (http://www.math.uoa.gr/calgeo/en/) and utilised a DG software 

named EucliDraw (http://www.euclidraw.com). In addition to DG facilities, this 

software offers a function editor and function graph sketch environment as well as 

some tools appropriate for Analysis instruction. Indicatively, I refer to the 

magnification tool that can magnify a specific region of any point on the screen in a 

separate window. This magnification can be repeated as many times as the user 

specifies through a magnification factor .The graph and its magnification are 

presented at the same time on the screen. Technically, the highly magnified graph is 

produced by recalculation and redesign of the graph. Especially for the functions 

used in the experiment the magnified image was accurate enough and not restricted 

by the size of the pixels. Thus, the produced curves were not deformed. 

In the analysis we used the Vygotskian term of semiotic mediation (1978) in order to 

describe students‘ interaction with the DG environment and their construction of the 

meaning of differentiability and tangent line. The visible objects (e.g. mathematical 

formulae, graphs, drawings, and diagrams) mediate students‘ understanding and the 

analysis focused on the evolution of students‘ attribution of meaning and the role of 

the DG environment, the examples and the researcher as teacher in this evolution.  

Interpretation of the image towards students‘ introduction to tangency 

In the first stage of the experiment, the students had constructed the tangent line and 

a secant line to a point A of a circle in the DG environment and they had been 

introduced to the local straightness as a property of a circle. They also had used the 

magnification tool in order to see how the two lines and the circle‘s curve were 

represented in the magnified image of a region around point A. The aim of this 

introductory activity was to connect the existence of a tangent line at a point of a 

curve with the property of this curve to look straight in the magnification window, if 

we focus on this point close enough. Just after this point the classroom was invited to 

investigate this property in the case of the semicircle in order to generalise it later for 

any function graph. The students worked on the semicircle, initially with pencil and 

paper in their worksheets and then in the electronic environment (Figure 1), in which 

the tangent line and the secant line AB had different colours. The point B could be 

moved along the curve and the region close to the point could be magnified as many 

times as the students wanted.  

http://www.math.uoa.gr/calgeo/en/
http://www.euclidraw.com/
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At this point the students were invited to comment on the magnified image and a 

student, Alexandros, responded: ―[The tangent] seems to coincide [with the 

semicircle] because if the magnification number is big, we cannot see the difference. 

That is because of the low resolution of the screen‖. 

For this student the inscription of the magnified graph was connected with the 

inherent technical limitations of the electronic environment although that was not the 

case. Given that students at this age are computationally literate the above comment 

was not unlikely. However, the previous discussion on the local straightness and its 

connection with the existence of a tangent line led us to expect responses based on 

the mathematical meaning of the magnified image. Thus, from the perspective of the 

instructional design, Alexandros‘ response was welcome but unexpected and led to a 

slight – but crucial – change of the initial lesson plan. 

Firstly, we discussed the differences between the images of the tangent line and the 

secant line AB (Figure 1). The secant line AB did not visually coincide with the curve 

whereas the tangent did. We argued that if the screen resolution was an issue, both 

lines and circle should match. Despite this comparison the students could not 

connect this image with the curve‘s properties. Another example of curve was 

needed, maybe a case in which the curve does not have a tangent at a point. For that 

reason the class was invited to examine the same situation if the point A is a vertex of 

a parallelogram. In this case the line could not coincide with the curve regardless of 

how big the magnification factor was (Figure 2). During the comparison of these two 

cases and trying to explain the differences between these two inscriptions the same 

Alexandros exclaimed: ―this happened because the line is the tangent of the circle‖.  

 
 

Figure 1: Magnification on a circle point Figure 2: Magnification on a vertex 

This incident indicated the conflict between the meaning the instructor (first author) 

had given to the image in the magnification window and the meaning given by the 

student(s). The inscription in the electronic environment had been constructed in 

order to be as accurate as possible and mediate students‘ understanding about 

tangency. However, the students‘ brief experience of the discussion on the locally 

straight image of the circle (stage one) was not enough to raise their awareness of the 

mathematical meaning of the magnified image. As a result another explanation was 

put forward by a student who blamed a perceived inaccuracy of the electronic 

environment. As long as there was a tangent and the curve became straight in the 

magnification window the image acted as a physical illustration without any 

connection with the curve‘s properties. The connection started to be made only when 
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we considered a case in which the property could not be applied (Figure 2). Using 

this case moved the students away from the distracting perception of the 

computational inscription as inaccurate and helped them focus solidly on the 

intended properties. Let us now consider a somewhat different case where a 

knowingly inaccurate computational inscription is used for a similar purpose. 

the brazilian study 

The context of the study 

Participants were six Year 1 students, attending a mathematics undergraduate course 

for prospective mathematics teachers in a major mathematics department in Brazil. 

Participants were selected among the students who volunteered to the experiment 

and had not had contact with the limit and derivative concepts previously at school 

(Calculus is not included in the Brazilian secondary school regular syllabus). At the 

time of the experiment, they were in the end of the first term of the academic year, 

attending the Calculus I course. During this course, they had regular weekly lectures 

in the computer lab, where they used Maple V (Waterloo Maple Inc., 1997) software 

to perform tasks such as: sketching and analysing graphs; interpreting a graph‘s 

behaviour under the change of graphic windows (e.g. by zooming in/out); and, 

determining derivatives and tangent lines (both numerically and symbolically). The 

study aimed to analyse the influence of theoretical-computational conflicts (Giraldo 

et al., 2003) in the participants‘ understanding of derivatives and limits. 

The empirical study was organized in structured (G0, G1, G2) and semi-structured, 

task-based (T1, T2, T3, T4, T5, T6) individual interview sessions, which run 

alternately (G0, followed by T1/T2/T3 set, G1, T4/T5/T6 set, and G2). The whole 

interviewing process took approximately one month. All the interviews were audio-

recorded and fully transcribed. The structured interviews included questions about 

the participants‘ conceptions of limits, derivatives and the use of the computer to 

study Analysis, and aimed for mapping out how these conceptions evolved through 

the experiment. In the semi-structured interviews, participants were given tasks 

intentionally designed to engender theoretical-computational conflict situations. 

They were asked to interpret results produced by the computer, which would 

apparently clash against mathematical theory due to the computational algorithms‘ 

intrinsic limitations. These results included, for example, graphs looking polygonal 

when they should be smooth or continuous when they should be discontinuous. 

Thus, a confrontation between the finite structure of the computer algorithms and 

infinite mathematical processes was likely to emerge. 

Data analysis was based on the concept image/concept definition theoretical 

perspective (Tall & Vinner, 1981). Thus, we aimed to trace out the influence of 

theoretical-computational conflict situations on the participants‘ concept images. 

Data analysis was organised in two steps. Firstly, conflict episodes were identified in 

each participant‘s task-based interviews and then these episodes were compared to 
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their answers in the structured interviews. This allowed us to outline a map of the 

development of each participant‘s understandings throughout the experiment. 

Secondly, we investigated these maps for the effect the conflict episodes had on the 

participant‘s conceptions. These effects were classified into five categories: 

confirmation, reformulation, reconstruction, inclusion and reversion (Giraldo, 

2004). Our aim was not to draw up a general taxonomy for the effects of theoretical 

computational conflicts. Rather, we aimed to identify and understand the effects that 

emerged from our data. In the next section we follow and discuss the development of 

Jölio‘s (one of the participants) perceptions and attitudes. Jölio had good grades in 

the courses and was generally regarded by lecturers as a student above average. 

Interpretation of the image towards the elaboration of students‘ understanding 

In the beginning of the study, Jölio had expressed his belief that computer results can 

be used to check mathematical correctness. In the first structured interview (G0) 

Jölio talked about the role of the computer in the verification of the symbolic 

calculation without expressing any doubts on the reliability of the image: 

Jölio: We calculate the derivative and then we can put the function on the computer to 

see if it is really right. (Giraldo, 2004, p. 102) 

Later, in interview T1, Jölio was given the 

algebraic formula of the function h: R R, 

1)( 2xxh  and its function graph 

sketched in the graphic window 

100,100 0,100  of the software (Figure 

3). Based on the above he was asked to 

decide whether the function was 

differentiable at 0 0x  or not. Note that, 

even though this function is differentiable at 

0 0x , the image in Figure 3 suggests the 

opposite. Jölio, relying on this image, and  

despite of his familiarity with elementary functions like this, claimed that the 

function is not differentiable at 0 0x  and justified his claim as follows: 

Jölio: It was a second degree thing, then we took the square root and the degree became 

1. It is going to be a modulus. 

Interviewer: But do you think it‘s differentiable? 

Jölio: Because I‘ll take out the square root, when I take the square root it‘s going to be 

the modulus of the thing that is coming out. Then, the modulus function has a 

corner [...] that‘s why this one is going to have one too. (Giraldo, 2004, p. 102) 

Following his claim above, he insistently tried to eliminate the square root with 

algebraic manipulations, without success and no attempts or references to the 

 

Figure 3. The graph of 2( ) 1h x x  

on the graphic window 

100,100 0,100 . 
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necessity of changing the graphic window. During the interview, he didn‘t touch the 

computer and considered as correct the image of the graph in the screen. Finally he 

attributed his failure to express the function formula with modulus to his algebraic 

weaknesses. 

Later, in interview T2, Jölio was asked to explain the local magnification process of 

the curve 2y x  as it is represented in Figure 4. 

   

Figure 4. A curve that is differentiable, but seems not to be. 

After thinking for a while, Jölio explained:  

Jölio: That‘s weird. [...] I think that‘s because the computer cannot recognise it. The 

approximation is too small. It no longer distinguishes the curve. 

[after zooming in a bit more] 

Jölio: Even more. [...] It just links the points and the approximation is way too small. The 

sketch is coming out deformed. This is not what it‘s supposed to be! (Giraldo, 

2004, p. 168) 

Jölio‘s use of the images in the electronic environment in interviews T1 and T2 is 

remarkably different. In the former, he trusted the image in the computer and he tried 

to find an algebraic explanation for it; whilst in the second, his familiarity with the 

graph of the function generated a resilient and confident doubt about the image. In 

the first case, not having any knowledge about the function graph, he did not 

experience any conflict and relied on the graph with somewhat blind faith. This 

behaviour is consistent with the belief he had expressed in the first interview (G0). 

Whereas in the second this belief had started to be shaken and Jölio reconsidered the 

correctness of the computer‘s image and juxtaposed it with his knowledge about the 

function. Jölio‘s attitudes in the following interviews remained similar to the ones he 

had in interview T2. Later in the final structured interview (G2), he showed that his 

perspective had considerably changed: 

Jölio: What I find cool is that [...] sometimes, one function you have no idea what‘s 

going to happen, you put it on the computer, you can make experiences, you can 

turn it inside out, and upside down. Then, you can figure out what is going on, at 

least for most of the functions. So, the computer helps to understand things, it 

gives us a more global comprehension. 
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[and later] 

Jölio: It is cool, but I only rely on it [...] how am I to say [...] I only trust on the computer 

using the theory I know. [...] Because the computer flaws too, like in many, many 

times we have seen here. […] So, we have to use the computer, you know, to make 

experiences, but always together with the theory (Giraldo, 2004, p. 166). 

In the last interview, Jölio kept regarding the computer as an important mean for 

investigation. However, he no longer considered the computer as a warrant for 

mathematical truth. Rather, he claimed that the computer outcomes need to be 

checked through mathematical theory. 

CONCLUDING REMARKS 

In the first (Greek) study the students are introduced to local straightness through the 

visual representation of this property in the electronic environment. To this aim the 

chosen examples and the inscriptions were designed to be as faithful to the 

mathematical theory as possible. However, for Alexandros, the image of the straight 

curve had no mathematical meaning and thus he attributed inaccuracies to a 

sufficiently accurate inscription. Actually, the episode evidences a conflict between 

the teacher‘s and the student‘s meanings. The conflict is resolved through the use of 

a counterexample illustrated in the same electronic environment. 

The example from the second (Brazilian) study follows almost a reverse path. The 

student has been introduced to the property of the local straightness and the concept 

of derivative and now he discusses some cases in the context of a knowingly (to the 

teacher) inaccurate inscription in the electronic environment. The aim was to shake 

the student‘s somewhat passive faith in the environment. Indeed, Jölio was initially 

carried away by the image on the graphic window. Then the engagement with 

familiar examples shook his faith in the computer and, at the end, he stated very 

clearly that computational inscriptions can contain inaccuracies and that they have to 

be verified through mathematical theory. 

The presented examples are complementary. In both cases the electronic 

environment mediates the students‘ understanding: in the first one through 

sufficiently accurate representations and in the second through explicitly inaccurate 

representations. In the first we ask the students to trust the electronic environment 

and in the second to mistrust it. We claim that both of these approaches should be 

welcome in the teaching and learning process. We need strong and dynamic 

inscriptions to visualise mathematical objects and properties and at the same time we 

need to be aware of the limitations of some of these inscriptions. In both cases, the 

confrontation between the students‘ previous conceptions and the features of the 

inscriptions (potentialities and limitations), within suitably designed pedagogical 

approaches, played a crucial role to change, and possibly deepen, the students‘ 

understanding. 
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In 1997 diagnostic testing was introduced in the University of Limerick (UL) to 

identify and notify students who were likely to require help to complete first year 

service mathematics courses successfully and proceed through to second year. A 

database of diagnostic test and end of semester examination results was initiated in 

1997 and is updated annually by the authors. It has been observed by the authors 

that the student profile and their needs have changed in the 13 years since the 

initiation of the database. In this paper the authors describe the profile of the 

current student cohort in first year service mathematics courses in UL and how it 

has changed in the last 13 years. Furthermore the implications of such changes are 

outlined
1
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BACKGROUND AND METHODOLOGY 

Diagnostic testing in the University of Limerick 

The University of Limerick (UL) has used diagnostic testing since 1997 to help 

identify students who may be at risk of failing service mathematics examinations 

(O‘Donoghue, 1999; Gill, 2006). Diagnostic testing is now commonly used in third 

level education, both in Ireland and abroad, to identify weaknesses in basic 

mathematical skills (Abou Halloun & Hestenes 1985, Edward 1996; Malcolm & 

McCoy, 2007). The diagnostic test has aided the identification of the changing 

student profile in UL both in terms of students‘ mathematical competency levels and 

the educational backgrounds of the students. Such changes have been echoed in 

documentation from other Universities in Ireland such as Dublin City University (Ni 

Fhloinn 2009). O‘Donoghue, a professor of mathematics education in the University 

of Limerick, developed the UL paper based test in 1997. A number of quality 

controls were used in the design of the test to ensure it fulfilled its function. The 
1
Ordinary Level Leaving Certificate mathematics syllabus, the SEFI core level zero 

syllabus for engineers (Barry and Steele, 1993) and an extensive literature review 

were all used to inform its content and structure. After the test was piloted in a 

number of second level schools and feedback on the prototype from six mathematics 

lecturers in UL was received, the test was finalised. Each test is marked by hand so 

as to enable closer inspection of a script if required (O‘Donoghue, 1999).   
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The two largest service mathematics groups in UL, Science Mathematics and 

Technological Mathematics, are tested annually. 3,389 students have taken Science 

Mathematics within the period 1998-2010 and 4,439 have taken Technological 

Mathematics.  The diagnostic test consists of 40 questions covering nine topics, the 

majority of which are aimed at Ordinary Level Leaving Certificate Mathematics
2
 

standard or below. The diagnostic test has not changed since it was first developed in 

1997. The test is distributed to students in their first mathematics lecture of the 

academic year without prior warning. If students receive 19 out of 40 or below in the 

test they are encouraged to avail of the support services provided by the Mathematics 

Learning Centre (MLC). These students are categorised as being ‗at risk‘ 

(O‘Donoghue, 1999). 19 was chosen  as the cut off point as these students were 

considered to be seriously deficient  in the basic mathematical knowledge necessary 

for third level mathematics and therefore were categorised as being at risk and in 

need of support. It should be noted however that there is ―a strong argument for 

extending the ‗at risk‘ category to students with higher scores‖ (O‘Donoghue, 1999, 

p. 15). Research on the changing student profile in the University of Limerick was 

carried out in 2008. This paper aims to update those findings to the year 2010. 

Research Methodology 

Descriptive analysis is used throughout this research paper. The analyses is carried 

out using the statistical software package SPSS (Statistical Package for the Social 

Sciences Version 16). The data has been described using summary measures, such as 

means and standard deviations, and graphs, such as box plots, are used to represent 

cohort changes over time. The documentation of trends over time amongst UL 

students was informed by the work of O‘Donoghue (1999) and Gill et al (2010) and 

guided by the work of Hunt and Lawson (1996). The investigation into the 

implications of the changing profile of students in terms of changes in support 

services needed over the time period 1998-2010 was carried out by detailing the 

chronological order in which new mathematics support services were introduced to 

UL. The pilot study in 1997 examined data on the Technology mathematics students 

only and so the changing profile of both the Science and Technology service 

mathematics students is most effectively analysed between the years 1998-2010. 

MAIN FINDINGS-THE CHANGING STUDENT PROFILE (1998-2010) 
 

The student profile of Science and Technological Mathematics courses in UL has 

changed greatly between the years 1998 and 2010 (see Table 1). Changing student 

profiles of service mathematics students such as this, which have been shown to 

impact on the teaching and learning of mathematics in third level education, have 

been documented internationally (Kitchen,1999). 
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Degree Programmes 

The number of degree programmes required to take Technological and Science 

Mathematics has increased between 1998 and 2010. Within Technological 

Mathematics there had been an increase from 8 to 9 degree programmes. Science 

Mathematics has seen a large increase from 8 degree programmes in 1998 to 15 in 

2010 with courses such as Health and Safety and Psychology now being required to 

take Science Mathematics. 

Percentage of ‗no-show‘ and ‗at risk‘ students 

In 1998 100% of students registered for Technological and Science mathematics sat 

the diagnostic test i.e. they were present in their first lecture of term. The number of 

Technology mathematics students sitting the diagnostic test has declined to 82.6% in 

2010, which represents a 21.1% decline from the 1998 baseline. A slightly larger 

decline to 76.5% occurred for Science mathematics students, which represents a 

30.7% decline from the 1998 baseline (see Table 1). The reasons for these students 

not turning up to their first lecture to take the test has not yet been examined 

however upon analyses of the ‗no-show‘ students‘ end of semester results from a 

previous year (2007) the vast majority of ‗no-show‘ students performed below 

average when compared to the rest of the cohort (see Figure 1). Figure 1 highlights 

that students who do not turn up to take the diagnostic test may be at risk of failing 

their end of term examinations as well as those who perform poorly in the diagnostic 

test. There has been an increase in the percentage of ‗at risk‘ students, i.e. students 

who receive 19 out of 40 or below in the diagnostic test. The number of ‗at risk‘ 

students in the Technological mathematics group increased by 25.2% in 2010, which 

represents a 77% increase from the 1998 baseline. An even larger increase of 24.9% 

occurred for Science students in 2010, which represents a 117% increase from the 

1998 baseline (see Table 1).  

 
(Note- 0= did not sit the test, 1= 1-10 in test, 2=11-20 in test, 3=21-30 in test, 4= 31-40) 

Figure 1 ‗No-show‘ students‘ performance in end of term test against the performance 

of students who sat the diagnostic test. 
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A decrease in mathematical standards such as this may be due to, as suggested by 

Hunt and Lawson (1996), a shift in emphasis of second level mathematics towards 

topics not covered in the diagnostic test. Although the suggestions of Hunt and 

Lawson (1996) may hold in an Irish context, it is thought that the increase in at risk 

students may also be explained by the decrease in students taking Higher Level 

Leaving Certificate Mathematics, a decrease of 12.7% and 16.4% occurred within 

Technological and Science Mathematics cohorts respectively in 2010, which 

represent a 31% and 30% decline from the 1998 baseline. From Table 1 it is evident 

that within the Science and Technological Mathematics student cohorts the 

percentage of students taking Higher Level Leaving Certificate Mathematics has 

declined over the period (1998-2010). This is an important finding as performance in 

mathematics in third level education has been shown to be better when students have 

higher level mathematics as pre-requisite knowledge (Barry & Chapman, 2007). 

The increase in the number of non-standard students is also contributing to the 

decline in diagnostic test performance over time. Non-standard students consist of 

mature students (i.e. those over the age of 23), non-national students and those who 

have completed previous degree/diplomas/certificates and have used these as an 

entry qualification to UL. A 12.4% and 8.6% increase of non-standard students 

occurred in Technological and Science Mathematics respectively in 2010, which 

represents a 4133.3% and 600% increase from the 1998 baseline (see Table 1). A 

change in student intake such as this has been shown to influence overall 

mathematical performance in UL as well as in other institutions such as Coventry 

University (Lawson, 2003). Second Level mathematics can no longer be assumed as 

the previous knowledge of students. Lecturers of these modules are therefore faced 

with new challenges which call for adaptations in teaching styles to cater for the 

current cohort and not that which sat in front of mathematics lecturers twelve years 

previous (Hourigan & O‘Donoghue, 2007). The measures put in place to cope with 

these changes are discussed in section 4. 

Year 1998 2010  1998 2010 

Technological Mathematics Science Mathematics 

% of total 

taking test 
100% 82.6%  100% 76.5% 

% ‗at risk‘  32.8% 58.0%  21.3% 46.2% 

% doing HL 41% 28.3%  55.4% 39.0% 

% doing OL 58.7% 69.8%  43.1% 59.4% 

Non-standard 

students  
0.3% 12.7%  1.5% 10.1% 

Table 1: Profile of students in Science and Technological Mathematics 
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PROFILE OF NON-STANDARD STUDENTS IN 2009 

Due to the large increase in the prevalence of non-standard students undertaking 

degree programs which involve service mathematics it is useful to examine the 

performance of these students and how it may impact on mathematics education 

within the University of Limerick. This examination focuses on non-standard 

students‘ performance in 2009 as at the time of writing the current non-standard 

students have not yet sat their end of term examination. 

Performance of non-standard students in the diagnostic test 

Mature students make up the majority of the non-standard cohort in UL, therefore the 

majority of non-standard students have not engaged in mathematics for a number of 

years. This is apparent in their diagnostic test results (see Figure 2). Non-standard 

students have mean diagnostic test scores below that of the standard students who 

have come directly from Leaving Certificate. According to their performance in the 

diagnostic test, the majority of non-standard students are at risk of failing their end 

of semester examinations. Figure 2 highlights that non-standard students are 

mathematically less prepared entering UL than standard students are.  

Performance of non-standard students in end of semester examination 

Non-standard students‘ performance improves in their end of semester examinations, 

for both Science and Technological cohorts, when compared to their diagnostic test 

performance. When Figures 2 and 3 are compared it is clear to see that the gap 

between standard and non-standard students is less obvious in terms of their 

examination performance. There is still a gap between the performance of standard 

and non-standard students in end of term service mathematics. However the majority 

of non-standard students pass their semester 1 examination (the pass mark being 

40%) despite the fact that the majority of them were considered to be at risk of 

failing as highlighted by the diagnostic test (see Table 2 and 3 and Figure 3). 

Probable reasons for this improvement in performance are discussed below.  

 

Figure 2: Comparison of diagnostic test performance for Standard and Non-standard 

students- Technological (left) & Science (right) Mathematics (2009) 
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Figure 3: Comparison of end of semester 1 examination performance for Standard and 

Non-standard students-Technological (left) Science (right) Mathematics (2009)  

] Science Students 

Diagnostic Test Mean value out of 

40(SD) 

Diagnostic Test Mean value out of 

40(SD) 

Standard students  51.5 (16.3) 

n=260 

Standard students  55.5 (17.0) 

n= 290 

Non-standard 

students 

31.8 (16.5) 

n=44 

Non-standard students 30.2(20.0) 

n= 49 

Semester 1 

examination 

Mean value out of 

100(SD) 

Semester 1 

examination 

Mean value out of 

100(SD) 

Standard students 54.8 (6.0) 

n=257 

Standard students 60.4 (19.8) 

n=254 

Non-standard 

students 

49.4 (23.9) 

n=43 

Non-standard 47.1(24.0) 

n=46  

Table 2 Technological and Science Mathematics students‘ diagnostic tests (expressed 

as a percentage of correct answers out of 40 questions) and end of semester results in 

2009 

Comparison of attendance at support tutorials of standard and non-standard 

students 

Tables 2 and 3 and Figures 2 and 3 highlight that the non-standard students improve 

in their mathematical performance between the beginning of the semester and the 

end. Why might this be? The percentage of non-standard students attending support-

tutorials, run by the Mathematics Learning Centre (MLC), is much higher than that 

of the standard students (support tutorials will be outlined in greater detail in section 

4). Technological and Science Mathematics students are offered a weekly support 

tutorial in addition to their regular weekly tutorial. The findings shown in Figures 2 



Working Group 14 

 CERME 7 (2011) 1998 

 

and 3 and Tables 2 and 3 reveal positive indicators for engaging in support services 

such as support tutorials and one-to-one consultations in the Mathematics Leaning 

Centre. These findings could also be accredited to the fact that non-standard students 

may be more motivated than standard students (Hirst, 1999). 

IMPLICATIONS OF THE CHANGING STUDENT PROFILE-INCREASE IN 

SUPPORT SERVICES 

The provision and uptake of support structures in place in UL reflect the changing 

student profile which has been documented thus far. 

Support services were initiated in 1997 when O‘Donoghue carried out his pilot study 

to measure the extent of the errors and gaps in students‘ mathematical knowledge. 

‗Front-end‘ tutorials were set up in the first two weeks (one each week) of the first 

term to enable students to revise fundamental mathematics skills in arithmetic and 

algebra. In addition, students were strongly encouraged to attend a ‗support tutorial‘ 

on a weekly basis throughout the entire term. Support tutorials run alongside regular 

tutorials and cover the same material at a slower pace and in a smaller group. The 

Department of Mathematics and Statistics acknowledged that further support was 

warranted so in 2001, the Mathematics Learning Centre (MLC) opened. This fully 

supervised drop-in centre is a place where students can study and/or receive 1-1 

attention. This service is provided for 20 hours a week. In the first year of operation, 

1516 visits to the drop-in centre were recorded. In 2009/10, a total of 1,129 

individual students availed of the drop-in centre making 4527 contacts/attendances 

over the academic year. Significant increases in the number of support tutorials has 

also occurred since 1997, when two support tutorials (one for traditional students and 

one for mature students in Technology Mathematics) ran on a weekly basis. In 

2009/10, a total of 228 support tutorials in 21 modules were provided by the MLC 

with a total of 3,835 contacts/attendances recorded at these classes. This was an 

increase of over 1,400 contacts on the previous academic year. Between the drop-in 

centre, examination revision and support tutorials, 8,946 contacts were made with 

the MLC. 

Online support was set up by the MLC with the view to increasing contact time with 

students who needed mathematics support. Fact sheets tailored specifically for UL 

service mathematics courses were designed and peer reviewed by colleagues from 

the Department of Mathematics and Statistics, and made available online for all 

students. Past examination papers and sample solutions are made available on the 

site as are links to useful websites such as the University of Loughborough‘s 

Engineering Mathematics website 

(http://www.ul.ie/~mlc/support/Loughborough%20website/book.html).  

One further development made by the MLC to cope with growing numbers of non-

standard students was the introduction of a one week refresher mathematics course, 

entitled ‗Head Start Mathematics‘. This course was designed to help students who 
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had been away from formal mathematics education for a long period catch up on 

essential mathematics skills they were likely to need for their service mathematics 

courses. The course, which is run in August before students start in UL, is free of 

charge and covers topics such as number systems, algebra and graphing etc. In 

August 2010 2 weeks of this course were run to accommodate the increasing 

numbers who wished to receive the free tuition. The feedback from participants thus 

far has been very positive (Gill 2010).  

The mathematics learning centre is currently putting together screen casts of areas of 

mathematics which students often have difficulty with in order to try to alleviate 

some of the pressures put on the centre by the growing number of students. This 

additional means of mathematics support is currently being developed in 

collaboration with Swinburne University in Australia. 

DISCUSSION- IMPLICATIONS OF THE CHANGING STUDENT PROFILE 

Gill et al (2010) highlighted, through the use of diagnostic testing, the declining 

mathematical standards of third level students entering Technological and Science 

Mathematics courses in UL. This paper offers a discussion on a probable contributor 

to this decline i.e. the changing profile of students within these service mathematics 

courses. The main changes in student profile between 1998 and 2010 can be 

summarised as follows: 

 An increase in the number of degree programmes within the service mathematics 

courses 

 An increase of 77% of Technological Mathematics students being labelled at risk 

and an increase of 117% of Science Mathematics students being labelled at risk 

from the 1998 baseline  

 The proportion of students entering UL with Higher Level Mathematics has 

declined along with a corresponding increase in the proportion of students 

entering with Ordinary Level Leaving Certificate maths 

 The percentage of non-standard students has gone from approximately 1% of the 

entire cohort to almost 12% for Science and Technological Mathematics 

combined  

 The ‗no-show‘ students, i.e. those who did not sit the diagnostic test in their first 

mathematics lecture, perform poorest in their end of semester examination. These 

students along with those who perform poorly in the diagnostic test are currently 

being targeted for an intervention, the results of which are to be reported in a 

future paper.  

An investigation of the non-standard students‘ performance in 2009 revealed that 

they perform below average in the diagnostic test when compared to the standard 

students but improve by the time they sit their end of term examination. Non-
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standard students are more likely to avail of the support services put in place by the 

Mathematics Learning Centre. A major implication of the changing student profile 

was the need for increased mathematics support services which were more tailored to 

the specific/changing needs of the UL students within the period 1997 and 2010.  

The increase in support services is but one of the changes that needs to occur in 

mathematics education in order to attempt to cater for the varying backgrounds of 

new student cohorts. Lecturers and tutors of mathematics need to take note of the 

changes which have occurred over time and plan their teaching content and style 

accordingly. A lack of willingness to change to suit the needs of the current student 

profile would be likely to lead to ―deterioration in the effectiveness of the learning‖ 

in UL and indeed in other third level institutions which are experiencing similar 

changes in student profile (Hunt & Lawson, 1996, p. 171). The need for yearly 

assessment of the student profile is imperative if student-appropriate teaching is to 

take place.  

NOTES 

1 
This paper revisits the UL database which was formally reported on up to 2008. 

2 
Leaving Certificate Mathematics can be taken at three levels in Ireland; Higher, Ordinary and Foundation Level. The 

Higher Level curriculum is the most advanced level. It covers more topics and to a more sophisticated standard than the 

other levels. The minimum mathematics entry requirement for direct entry to third level education in Ireland is a grade C 

or higher in Ordinary Level Leaving Certificate Mathematics.
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We investigate how the integration of a computer algebra system (Maple 13) in parts 

of students‘ work may help students relate theoretical and practical aspects of 

convergence of sequences and series of real numbers and functions.  

TRANSITIONS IN INTRODUCTORY ANALYSIS: THE PROBLEM 

Many universities are aware of the difficulties students experience during their first 

months of study, and they therefore introduce a variety of measures to ease the 

institutional transition. In particular, university mathematics programmes adapt the 

first courses to the students‘ background from upper secondary school. In Denmark 

this means for instance that basic differential and integral calculus are revisited and 

extended progressively to functions of several variables, along with other standard 

topics from the field of calculus. Following the style of North American calculus text 

books, these first courses focus on students‘ practice with concrete calculations and 

analysis of functions, while the theoretical part (precise definitions, theorems and 

proofs) is left in the background or it is entirely omitted. If the basic courses are 

shared with students from other specialties like physics or engineering, this may 

further motivate such a choice. 

However, the problem will not go away. Mathematics students soon encounter real 

analysis where a rigorous approach to topics such as continuity and convergence is 

inevitable not only as something talked about in lectures, but also as something 

worked on by students. As pointed out by Winsløw (2008) the students are in fact 

presented with two types of challenges or transitions, often in rapid succession: 

(1) they will have to do autonomous work on theoretical aspects of practices they 

previously encountered in calculus (calculations with ―ordinary functions‖) 

(2) they will also encounter new practices and theories which are based on these 

theoretical elements (eg. function spaces, abstract metric spaces, norms,…). 

Our research addresses mainly the first transition. More concretely, we investigate – 

theoretically and also empirically – concrete designs for integration of a computer 

algebra system (a CAS, in this study Maple 13) in parts of students‘ work, aiming to 

help students relate theoretical and practical aspects of convergence of sequences 

and series of real numbers and functions. In particular we are interested in designing 

new types of tasks which may realise the lever-potential and the materialization 
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potential (cf. Winsløw, 2003), and we are particularly interested in the effects, for 

―weak students‖, of such reasoned instrumentation (cf. Elbaz-Vincent, 2005, 63). 

INSTRUMENTED TECHNIQUES AND INSTRUMENTATION 

We now outline the theoretical framework for this study. Our basic model for the 

mathematical activity of students comes from the anthropological theory of didactics 

(Chevallard 1999; Barbé et al., 2005, sec. 2). That is, we consider the work of 

students (and any mathematical activity) as organised by types of tasks T, carried out 

using a technique ; the discourse about the practice block (T, ) is organised in a 

technology , which may pertain to a whole family of practice blocks; and several 

technologies are structured and justified within a wider theory , which in our study 

is essentially the theory of convergence of series of functions and numbers within the 

mathematical domain of real analysis (involving several definitions, theorems and so 

on). This way, a mathematical activity is always modelled with a praxeology (T, , , 

). Of course, the main point regarding the use of a CAS is that it provides an 

inventory of instrumented techniques (where by ―instrumented‖ we indicate that a 

more or less powerful tool is involved in the technique; cf. Artigue, 2002). These 

may at first present themselves simply as alternative techniques for solving an 

existing type of task, such as determining the limit of a sequence of real numbers. 

But in practice, the new techniques rarely correspond exactly to existing types of 

tasks, and at the same time they often need to be combined with non-instrumented 

techniques. Moreover the theory blocks may need to be adjusted – not least at the 

level of technology – to accommodate such combinations. 

Elbaz-Vincent (2005) studied examples and principles of how Maple computes limits 

of functions and series in symbolic mode (these routines are essentially based on 

power series expansions); it disposes of a range of other techniques for numerical 

computations. As any techniques, instrumented techniques will only provide 

meaningful or correct answers for a restrained type of tasks, which could in principle 

be determined theoretically.  However, most users – including students – will have to 

relate to the results in a more pragmatic way. Even in situations where all that 

matters is to solve a given task, it then becomes important to develop practical means 

to evaluate the result (or absence thereof) from applying an instrumented technique. 

This also means that, most of the time, a complex interplay of instrumented and non-

instrumented techniques will have to be constructed, made explicit and reasoned 

within theory blocks which become, as a result, different from what they are in the 

absence of instrumented techniques. In this paper, we will give a number of 

examples of such modifications of praxeologies to be developed by students and 

teachers. 

These modifications will have to be understood relatively to the affordances of the 

involved techniques, as defined by Artigue (2002, 248): their pragmatic value, i.e. 

the efficiency for solving tasks; and their epistemic value, i.e. the insight they 
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provide into the mathematical objects and theories to be studied. These values may 

be experienced to differ greatly, especially by teachers. 

Such differences may be studied in more detail from the point of view of semiotic 

representations of mathematical objects (cf. Winsløw, 2003). An instrumented 

technique provides, within its scope, access to transformations of representations (eg. 

symbolic or graphical) whose epistemic value depends both on the users‘ means to 

access or perform intermediate steps (the absence of which is often referred to as a 

black box effect). It also depends on the users‘ means to relate them to a didactically 

targeted theoretical block. The possibility of using instrumented techniques leading 

to a stronger focus on, and access to, theoretical objects and principles, is referred to 

as the lever potential and the materialization potential, respectively.  

To achieve this we need to construct entirely new organisations of tasks for students, 

involving instrumented techniques in a way that develop their epistemic value for 

students (cf. also Artigue, 2010, 467f). In the present project, this means that 

students‘ work with the designed instrumented practices should be related to, and 

support, their work with theory blocks, and so facilitate the transition (1) mentioned 

in the introduction. This way instrumented techniques should also become a more 

integrated element of the students‘ developing praxeological equipment, instead of a 

set of alternative techniques which are at best tolerated because of their pragmatic 

value. While this process of instrumental genesis may be studied in an individual 

perspective, it is clear that in didactic contexts it can be also heavily dependent on 

institutional conditions and norms, as the teaching institution takes more or less 

responsibility to organise and evaluate the use of instrumented techniques. This 

aspect of teaching is often referred to as instrumental orchestration (Trouche, 2005).  

To establish and study efforts towards reasoned instrumentation at this institutional 

level, taking into account in particular the potential effects of instrumented semiotic 

representations, is indeed the overall purpose of this study. We now proceed to 

outline the concrete mathematical and institutional context in which it is situated.  

SERIES AND SEQUENCES – INSTRUMENTED TECHNIQUES 

At the University of Copenhagen, the bases of mathematical  analysis are taught in 

three courses during the first year: an introductory course involving mainly practical 

blocks of calculus in one and several variables; a follow-up course (Analysis 0) in 

which theoretical blocks, in particular evolving around ― -arguments‖, are also 

worked on by students; and finally a more advanced course (Analysis 1) in which 

notions related to convergence, series (including Taylor and Fourier expansions), and 

metric spaces are to be studied, with a strong focus on theoretical blocks.  

In the introductory course as well as in a corresponding course on linear algebra, 

instrumental orchestrations based on Maple have become an integrated and relatively 

stable part since the first developmental project around the year 2000 (data from that 
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project were analysed in Winsløw, 2003). In particular, students become familiar 

with basic use of Maple techniques in common tasks in these areas. But until now, 

the more advanced courses have not made systematic efforts in this direction, 

probably because of the more theoretical focus.  

At the same time, while the introductory course has a very high passing rate, 

Analysis 0 and in particular Analysis 1 seem to filter out a number of students (up to 

25% in recent years), who then drop out of the programme – a state of affairs of 

concern to the institution and to Danish society, in which mathematicians are sorely 

needed, not least for teaching positions in upper secondary schools. 

The hypothesis that these problems reflect a transition problem of type (1) has been 

further elaborated by Winsløw (2008), and it is likely to mirror the situation in many 

similar institutions. On the other hand, there seems to be little research done on 

instrumental orchestration in this context. This motivated us to explore the potentials 

of resuming Maple-based instrumental orchestrations in the course Analysis 1, 

through the design of tasks which explicitly appeal to instrumented techniques. The 

aim was to realise materialization and lever potentials through the facilitation of 

students‘ autonomous work with technology and theory, facilitated by the use of 

instrumented techniques to solve at least part of the problems presented to them. 

Before going into the theoretical and empirical analysis of concrete problems, we 

first map out the target praxeologies appearing in the first weeks of Analysis 1 and 

considered in this study, with a special regard to the design of tasks. 

Target praxeologies  

The praxeologies focused on here are all concerned with deciding on the following 

questions for a given sequence or series of numbers or functions: does it converge? 

How? To what? And why? This gives, as a first ―map‖ of the praxeologies 

concerned, the ―grand tasks‖ shown in Table 1.  

 SEQUENCES SERIES 

NUMBERS 

Given (an) 

 

T11: is (an) convergent? 

T12: if so, what is the limit? 

T1k* (k=1,2): prove answer 

T21: is an convergent? 

T22: if so, how (absolutely,… ?) 

T23: ...and what is the limit? 

T2k* (k=1,2,3): prove answer 

FUNCTIONSG

iven (fn), e.g. 

fn(x) = anx
n  

 

T31: is (fn) convergent?  

T32: if so, how (uniformly ?) 

T33: …where (eg. interval(s))? 

T34: … what is the limit? 

T3k* (k=1,2,3,4): prove answer 

T41: is fn convergent? 

T42: if so, how (uniformly ?) T43: 

…where (eg. interval(s))? 

T44: …what is the limit? 

T4k*(k=1,2,3,4) : prove answer 

―REVERSE‖ T5c: Given number or function, find approximating sequence or series 

according to some criteria c (eg. a power series…) 

Table 1: Grand types of tasks, further subdivided according to techniques 
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According to the techniques employed, the tasks listed in Table 1 are further 

subdivided. For example, T21 is associated with a number of particular techniques, 

such as the ratio test 21,RT whose domain of application correspond to a type of task 

T21,RT for which the limit of |an+1/ an| can be found using a technique for T11 (and the 

result is either less than 1, in which case the result is yes, or greater than 1, in which 

case the answer is no). We notice that in this case the technique involves solving a 

task of type T11, and in fact several techniques corresponding to the ―grand tasks‖ Tik 

listed in Table 1 involves solving another task Ti‘k‘ (often but not always with i‘<i), 

which is why the didactical process will often address the tasks more or less in the 

order of the table. It is also clear that the non-instrumented techniques for types of 

tasks included in Tik are typically closely associated with theory (theorems and 

definitions) which, when it comes to solve Tik*, are to be used explicitly and with 

attention to precise conditions.  

The instrumented techniques (in fact common to all T2k) offered by Maple consist in 

symbolic ( 2,S) or numeric ( 2,N)  evaluation of sum (a_n, n=1..infinity); while their 

domain of validity may be less clear, it nevertheless corresponds to types of tasks T2,S 

and T2,N. The technology pertaining to these techniques involves further explanations 

related to the syntax of Maple, variations that can be tried, etc. While the pragmatic 

value of these techniques is high (for tasks belonging to these types) their epistemic 

value is ―low‖ in the sense they are not associated with satisfactory techniques for 

Tik*. In fact, the theory according to which technologies are to be justified and 

related is still that of convergence of functions and series, involving definitions and 

theorems pertaining to various special cases (closely related to the non-instrumented 

techniques, which will then have to be mobilized eventually, for the solution of Tik*).  

The types of tasks covered by T5c include, in particular, determining a power series 

that approximate a given function. It is inverse to the task T44,PS of determining, for a 

power series that converge on some interval, the corresponding function.  

Designing tasks for instrumented work 

We now give some examples of how instrumented techniques were integrated into 

the work of students, all coming from the first two of the four ―take home exams‖ 

based on which the students were graded in this course. 

Example 1. The students were given four series, including 

(a) 2

1

(3 7 1) n

n

n n    and    (c) 
2

2
1

1
( 1)

3

n

n

n n

n n
 

The instruction is to use Maple to compute five partial sums, or alternatively do a 

point plot, in order to get an idea of whether the series converge or not; and also to 

see if Maple can decide this directly. Finally the students should give an answer with 

proof to the question of whether the series are divergent, conditionally convergent or 

absolutely convergent (tasks included in T21, T22, T21*, T22*). As regards T21, a 
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general challenge consists in determining the type of the given task and hence that 

will solve it. Having an idea of whether the series converges or not is indeed helpful, 

and this is where the instrumented techniques come in. The most immediate, 2,S, 

does not work for the given tasks (so they do not belong to T2,S), while 2,N 

apparently works for both (as it returns finite numbers):  

> A:=sum((3*n^2+7*n+1)^(-n), n=1..infinity); 

 := A
n 1

( )3 n2 7 n 1
( )n

 

> C:=sum((-1)^n*(n^2+n-1)/(3*n^2+n), n=1..infinity); 

 := C
n 1

( )-1 n ( )n2 n 1

3 n2 n
 

> evalf(A), evalf(C); 

,0.09228936139 -0.07614037580  

However the partial sums ( 2,PaS) and even more the point plot method ( 2,PoP) reveal 

that the series (c) alternates between two values (about 0.09 and -0.24) and the value 

given by 2,N is the average of these. This means that the series (c) does not give a 

task of type T21,N, while students may in fact be confused by the apparent 

contradiction of the results achieved with 2,N and 2,PaS or 2,PoP. The task (c) thus 

demonstrates the necessity of combining instrumented techniques with other ones  – 

an important point brought out here by careful instrumental orchestration. At the 

same time, the materialization potential realised by 2,PaS or 2,PoP helps to choose 

non-instrumented techniques for T21, T22, T21*, and T22* (for (a), root criterion, for 

(c): divergence criterion related to a task of type T11 or T12 to show that |an|  0). 

Example 2. For the power series  x
n
/(n(n+1)) the students were asked to find the 

sum function (T44) using Maple, then prove the result (T44*). Here, the symbolic 

technique 44,S gives: 

> sum(x^n/(n*(n+1)), n=1..infinity); 

( )ln x 1
( )ln x 1

x
1  

which the students might not easily find by other methods. However, using the 

Taylor series of ln and the above formula, it is easy to solve T44*. This use of 44,S 

also helps in reasoning about the convergence of the series at 0 and 1, which are in 

play in later parts of the exercise, and thus to a realization of the lever potential. 

Example 3. Students were asked to use Maple to compute the exact value of s = 
4

1k
k using Maple (the result s = 

4
/90 is immediate, using 2,S) and then to 

investigate which of the sequences an = 
4

1

n

k
k

  and bn = 
3 41

3 1

n

k
n k gives the 

best approximation to s. This task belongs to T5c (approximate numbers by sequences 

or series). Here, using numeric computations or point plot one sees that 
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n na s b for all n, and that in fact bn is closer to s than an for n  3. The students 

are finally asked to prove their hypothesis. This is achieved using non-instrumented 

techniques, taken from the proof of the integral criterion, but the experiment with 

numeric values of the sequences can support this transition to the theory block when 

materialization of the two sequences has already suggested a hypothesis. A further 

epistemic value of the instrumented technique in this task resides in the fact that 

students may (in fact should) develop themselves the criterion c for the ―best‖ 

approximation, by looking at the numeric values of s–an and s–bn . 

Example 4. The students were asked to produce a plot of the functions 

( ) 1/ [1 exp( (2 ))]nf x n x  for five values of n, in order to ―illustrate the 

convergence properties of the sequence‖. This in fact involves T3k  for all k. Just as in 

the previous example, the materialization potential can be realized to generate strong 

hypotheses for later work (on T3k*) if the instrumented techniques related to 

simultaneous plotting are used well (this includes the choices for n and the interval 

on which the functions are plotted).  

SOME FIRST RESULTS  

The instrumental orchestrations exemplified above were first used in the spring 2010 

edition of Analysis 1, with about 150 students (divided in 6 classes for exercise 

sessions). Although all students have easy access to computers with Maple, the 

course had previously not involved instrumented techniques. For this and other 

reasons, a ―modest‖ approach was adopted, with Maple being involved in just a few 

classroom exercises per week, and in about 20% of the questions in the take home 

exams (these were handed in by students in two paper copies, including print-outs of 

Maple sheets). The main purpose of this intervention was to get basic information 

about the effects of the tasks and the feasibility of more ambitious designs in this and 

similar courses. The goal of these elements of instrumental orchestration was of 

course to support students‘ access to tasks that require more autonomous work with 

theoretical blocks, but we did not expect that the limited experiment would result in 

major documented impact of this kind. Instead we analysed, more locally, the 

performance of students on tasks with instrumented techniques, mainly in their 

written productions in the two first take home exams. We present the results for the 

four examples given in the previous section below. Also, secondary and more 

informal evidence was collected from teachers and students. In particular, the 

standard course evaluation questionnaire filled by students at the end of the course 

was extended with items about their experience with Maple-use in the course. Some 

of this evidence is also presented below.  

Performance on exam tasks: instrumented techniques vs. overall performance 

In Tables 2, we present the overall results of students‘ work on the four examples of 

exercises that were explained in the previous section.  The tables show the number of 
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students in groups defined by the following rough but objective criteria (so that, for 

instance, the sum of the first row gives the number of students in group H): 

H: overall high achievers, with at least 75% of points in the take home exam 

L: overall low achievers, with less than 75% of points in the take home exam (still 

plenty of room to pass the course - the limit is an average of 50% in the four exams). 

+I: correctly used instrumented techniques in the exercise(s) described in the ex. 

–I: did not (or not correctly) use instrumented techniques in the exercise(s) described 

The first three tables (corresponding to example 1, 3, 4) pertain to the same set of 

exercises, so the groups H/L are the same. 

Ex.1 +I –I  Ex.3 +I –I  Ex.4 +I –I  Ex.2 +I –I 

H 73 9  H 71 10  H 77 4  H 73 4 

L 42 17  L 40 21  L 47 13  L 54 1 

Tables 2: Performance of students on exam tasks involving instrumented techniques 

We notice the similarity of results for Ex.1 and 3, probably because they require 

students to work with very similar combinations of instrumented techniques for 

computing series and sums. While the Maple commands to be used are in themselves 

quite basic, most mistakes in group L are in fact also quite basic, like using or 

plotting the first five partial sums to conclude that a series is not convergent (while 

in fact it is). Similar errors are found in Ex. 3 where the first terms may also confuse. 

Also, error messages like ―Float(undefined)‖ are misinterpreted as ―divergent‖ by a 

few students. In Ex. 4, the difficulties with instrumented techniques appear slightly 

smaller for both groups, probably because only one (plotting) is required and works 

(unlike in Ex. 1 and 3 where one must carefully select and combine techniques). The 

difficulty is the choice of plotting interval – some students, who choose a wrong one, 

just get a bunch of parallel lines. 

We finally notice that virtually all students have used the required instrumented 

technique correctly in Ex. 2 (the four students in –I H simply abstained from Maple 

use, a phenomenon further discussed later). This can be easily explained by both the 

ease and the pragmatic value of using the instrumented technique ( 44,S) here. 

Moreover this occurred at a later stage of the course where the students had seen 

many more complicated uses of Maple, including Ex. 1 and 3. The absence of 

challenge does not mean that this type of use of Maple is useless (it works, in this 

case, as an intelligent ―table of series‖), just that the lever potential achieved is of a 

more pragmatic value than in the cases where strong theoretical perspectives are 

activated in the choice of an instrumented technique.  

Student questionnaire : diverging ‗voices‘ 
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It is not surprising that students with an overall lower performance also commit more 

errors in using instrumented techniques. Our purpose was not to make easy tasks but 

to include practical (and instrumented) elements in the tasks that would ease the 

transition to more theoretical parts, at least for low achieving students. To know 

about this would require a rather intensive study of these students‘ work during the 

course, which we did not manage to do. The weaker but easier alternative, structured 

interviews based on select tasks, had to be given up because we did not get a 

sufficient number of volunteers (exam period was followed immediately by summer 

holiday).  

Nevertheless, interesting evidence is found in the course evaluation, done via the 

course website towards the end of the course and with student replies being 

anonymous. Three questions concerned the use of Maple in the course. In the two 

first, students are asked to indicate their level of agreement with the propositions ―I 

think that the use of Maple in the home exercises contributed to my understanding of 

them‖, and ―I think the use of Maple in the home exercises improved my solutions‖. 

Here, the 80 responding students are divided rather equally on agreeing and 

disagreeing. The third question invites for ―comments and suggestions regarding the 

use of Maple in this course‖ and is of course with open field response. As many as 

32 students have responded to this field; they can not be considered ―representative‖ 

but they do represent strong opinions on the matter. These are also divided roughly 

in two halves, students who think the use of Maple is superfluous or tedious, and 

students who found it useful and supportive. Here are some examples of these 

comments (translated from Danish): 

I think it was good that the Maple part was relatively simple, and without it certain 

exercises would have been difficult to get into. 

Maple is not necessary in a course like An1. The pure mathematical methods totally suffice 

to understand and solve all the exercises (…) without ugly tricks like numerical evaluation 

of expression. In all my home exams I did everything without Maple, and in the end I did the 

Maple part without being surprised of any result. 

I am pretty sure I didn‘t get more understanding from the use of Maple, and I have 

understood from older students that we will not need Maple in the future [authors: more 

advanced courses in the mathematics programme]. It‘s irritating. 

The extent now [authors: of Maple use in the course] is fine, but it shouldn‘t be more (maybe 

a bit less). But it clearly helps your understanding. 

CONCLUDING REMARKS 

Combined with our analysis of take home exams and observations in a few classes 

where Maple was used (often computers were missing), we think that two minorities 

of students may be identified relatively to the categories of Table 2: 
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–I H  (―the proud purists‖): Relatively successful students who don‘t think Maple 

has it‘s place in a ―real‖ mathematics course and who sometimes choose to 

deliberately not do the Maple part (according to the course policy, declared in the 

first weekly, they are not penalised for this if they solve the non-Maple parts 

correctly).  

+I L (―the challenged but helped‖): students who have troubles with several of the 

exercises, particularly the more abstract and technically demanding ones, but who 

appreciate and succeed with the parts where instrumented techniques can be used. 

This is in part because these parts are relatively easy (according to one instructor, 

they even take some L-students above the ―passing line‖ of 50%) but also, at least for 

(and according to) some students, because these parts help their ―understanding‖.  

Making the optional character of Maple-use more apparent could probably satisfy the 

first group. The needs and work of students in the latter group has to be studied more 

intensively than we were able to in this study. 

REFERENCES 

Artigue, M. (2002). Learning of mathematics in a CAS environment: the genesis of a reflection 

about instrumentation and the dialectics between technical and conceptual work. International 

Journal of Computers for Mathematical Learning 7, 245–274. 

Artigue, M. (2010). The future of teaching and learning with digital technologies. In C. Hoyles and  

J. B. Lagrange (Eds.), Mathematics education and technology – rethinking the terrain, 463-475. 

New York: Springer.  

Barbé, J., Bosch, M., Espinoza, L. & Gascon, J. (2005). Didactic Restrictions on the Teacher's 

Practice: The Case of Limits of Functions in Spanish High Schools. Educational Studies in 

Mathematics, 59(1-3), 235-268. 

Chevallard, Y. (1999). L‘analyse des pratiques enseignantes en théorie anthropologique du 

didactique. Recherches en Didactique des Mathématiques, 19(2), 221-266. 

Elbaz-Vincent, P. (2005). A CAS as an assistant to reasoned instrumentation. In : D. Guin, K. 

Ruthwen and L. Trouche (Eds), The didactical challenge of symbolic calculators : turning a 

computational device into a mathematical instrument, pp. 41-66. New York: Springer. 

Trouche, L. (2005). Instrumental genesis, individual and social aspects. In : D. Guin, K. Ruthwen 

and L. Trouche (Eds), The didactical challenhe of symbolic calculators : turning a 

computational device into a mathematical instrument, pp. 197-230. New York: Springer. 

Winsløw, C. (2003). Semiotic and discursive variables in CAS-based didactical engineering. 

Educational Studies in Mathematics 52 (3), 271-288. 

Winsløw, C. (2008). Transformer la théorie en tâches : la transition du concret à l‘abstrait en 

analyse réelle. In A. Rouchier & I. Bloch (Eds) Actes de la XIIIème école d‘été en didactique des 

mathématiques (cd). Grenoble : La Pensée Sauvage. 



  

 CERME 7 (2011)   

UNDERGARDUATE STUDENTS‘ USE OF DEDUCTIVE 

ARGUMENTS TO SOLVE  ―PROVE THAT…‖ TASKS 

Paola Iannone
1
 and Matthew Inglis

2
 

1
 School of Education and Lifelong Learning, University of East Anglia, UK 

2
 Mathematics Education Centre, Loughborough University, UK 

In this paper we report findings from an investigation of 222 proof attempts 

produced by 74 year-one undergraduate mathematics students at a university in the 

UK. We classify the proofs according to an extended classification originally used by 

Stylianides and Stylianides (2009). We found that already at the beginning of Year 1 

most undergraduate students in our sample associate the request for a proof of a 

statement to the production of a deductive argument. Moreover, when students failed 

to produce a correct proof this was mostly because of difficulties in producing 

deductive arguments. We suggest that more attention should be given to the process 

of producing deductive arguments rather than to the types of non-deductive 

arguments that some students produce as proofs. 

INTRODUCTION 

Undergraduate students‘ difficulties with proof production at university level have 

been widely documented in the literature (Moore, 1994; Harel & Sowder, 1998, 

2007; Weber, 2001; Selden & Selden, 2003; just to cite a few examples). Indeed in 

2009 the ICMI Study 19 was dedicated to ―Proof and proving in mathematics 

education‖ with one study group solely focusing on proof and proving at tertiary 

level. Much of the attention of researchers in this field has been devoted to the types 

of arguments that undergraduate students produce when asked to solve ―prove 

that…‖ tasks. One of the most popular theoretical frameworks for analysing 

students‘ proofs (not only at undergraduate level) has been proposed by Harel and 

Sowder (1998, 2007). This framework offers a comprehensive taxonomy of students‘ 

Proof Schemes, where  

…a person‘s proof scheme consists of what constitute ascertaining and persuading 

for that person.    (Harel & Sowder, 1998, p. 244) 

The taxonomy offered by Harel and Sowder (1998) is based on extensive empirical 

work at all levels of school and at university. The authors describe three categories of 

proof schemes (each one comprising several sub-categories) which they call External 

Conviction proof scheme, Empirical proof scheme and Analytical (deductive) proof 

scheme (ibid. p. 245). An External Conviction proof scheme is found when students 

… merely follow formulas to solve problems, they learn that memorisation of 

prescriptions, rather than creativity and discovery, guarantees success. And when the 

teacher is the sole source of knowledge, students are unlikely to gain confidence in 

their ability to create mathematics. (ibid. p. 245) 



Working Group 14 

 CERME 7 (2011) 2013 

 

An Empirical proof scheme is one in which 

… conjectures are validated, impugned, or subverted by appeals to empirical facts or 

sensory experiences.   (ibid. p. 252) 

and an Analytic Proof Scheme is  

… one that validates conjectures by means of logical deduction.  (ibid. p. 258) 

Harel and Sowder (1998) also indicate that the latter is the proof scheme that 

students should aspire to and the one generally held by the community of 

mathematicians. Because of the prominence that Harel and Sowder (1998) give to 

deductive arguments, and the statement that this is indeed the proof scheme shared 

by professional mathematicians, we will take deductive arguments to be the desired 

outcome of ―prove that…‖ tasks. In fact Harel and Sowder (2007) refine their 

definition of Analytical proof scheme as to include two proof scheme classes: 

Transformational proof schemes and Axiomatic proof schemes and state that: 

All the transformational proof schemes share three essential characteristics: 

generality, operational thought, and logical inference.  (ibid. p. 7) 

In the studies cited by Harel and Sowder (2007) a picture emerges of university 

students still uncertain about what the role and place of proof at university level is, 

with students gaining conviction about mathematical statements through various 

types of arguments, including many students relying solely on empirical arguments. 

To cite just one more example of research in this direction, Recio and Godino (2001) 

reported that only very few of the university students in their sample were successful 

in proof tasks and that 40% of the students in the sample relied on empirical 

arguments as proof. Whilst proof schemes offer a ―truly comprehensive‖ (Harel & 

Sowder, 2007) perspective on learning and teaching proof, it can be argued that 

much of the focus of this framework is on the types of arguments that students find 

convincing when asked to solve proof tasks rather than the process they use to 

produce such arguments. In this paper we examine what types of arguments year-one 

mathematics students at a high-ranking university in the UK produce when asked to 

solve proof tasks and we argue that, at least in this case, students are aware of the 

requirement of proof but their difficulties lie in the process of producing correct 

deductive arguments.  

THE STUDY 

The main aim of the study reported in this paper was to find out whether self-efficacy 

is an accurate predictor of academic performance, and in particular of proof 

production. For the scope of this study we have defined self-efficacy, following 

Bandura (1977), as the judgment students make of their own capability of performing 

a given task (in our study the task is proof production). The results of this part of the 

study were presented in Iannone and Inglis (2010). For the scope of his paper we 

have analysed the proofs that the students produced in the second part of the 
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questionnaire they were asked to fill in. Seventy-six first year students in 

mathematics (or on a joint degree with a substantial mathematics component such as 

computer science or natural sciences) at a high-ranking university in the UK took 

part in this study. Data collection took place in week 8 of the first semester during 

one of the Linear Algebra lectures. A booklet of questions was given to each 

participant, and the students were asked to work through the questions at their own 

pace. The first section of the booklet consisted of 28 statements; ten consisted of our 

Proof Self-Efficacy Scale (Iannone & Inglis, 2010), designed following Bandura‘s 

(2006) guidelines. A further ten statements were formed from the items of the 

General Self-Efficacy Scale (Schwarzer & Jerusalem, 1995). Eight extra items were 

also introduced to readdress the balance between forward- and reverse-scored items 

(taken from the Need for Cognition scale, Cacioppo & Petty, 1982). The participants 

were asked to read and decide the extent to which they believed the statements were 

characteristic of them, using a five-point Likert Scale (from ―extremely 

uncharacteristic‖ through to ―extremely characteristic‖). The order in which the 

statements appeared was randomised for each participant. The second part of the 

booklet consisted of four proof construction tasks novel to the students and designed 

in collaboration with a mathematics lecturer so that they would represent appropriate 

tasks for this cohort, in the sense that they were tasks similar to ones that the students 

had encountered during the lectures. The order in which the proof tasks appeared 

was again randomised for each participant. The participants were given 20 minutes 

to work on the proof tasks.  

The proof tasks included in the booklet were: 

A. Prove that the sum of two odd numbers is even. 

B. Prove that the sum of the first n natural numbers is equal to 
1

2
n(n 1). 

C. Let d, a and b be integers. Prove that if d | a and d | b then d
2 
| (a

2
 + b

2
). 

D. Prove that if the sum of the digits of a natural number is divisible by 3 then 

the number itself is divisible by 3. 

The proof Task D was introduced even if after the meeting with the mathematics 

lecturer it was deemed to be too demanding for this cohort. As we will see in the 

analysis of the data this was indeed the case. A marking scheme was devised to 

evaluate the proofs. Each proof was marked out of five. In Appendix we report the 

questions in the questionnaire, the marking scheme and the model solutions to the 

tasks. We analysed the proofs and classified them following the refinement of a 

proof classification originally developed by Stylianides and Stylianides (2009) in the 

context of a study with primary prospective elementary teachers. Whilst categories 

M1, M4 and M5 of the original classification served our aims, categories M2 (―valid 

general argument but not a proof‖, ibid. p. 246) and M3 (―unsuccessful attempt for a 

valid general argument‖, ibid. p. 246) were too broad and we decided to divide them 
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further in categories P1 to P5. So we obtained the following classification of proof 

tasks:  

Type Description 

M1 Correct proof 

P1 The last part of the proof is missing  

P2 The hypothesis are expressed correctly but the proof stops after the 

statement of the hypothesis 

P3 The solution does not represent the most general case 

P4 The solution resembles the correct proof but there are not enough details 

to see whether this is correct or not 

P5 The solution follows a correct deductive argument but some mistakes in 

the calculations occur   

M4 The solution consists of an empirical argument 

M5 Some mathematical statement is presented but this is unrelated to the 

proof requested 

0 Task left blank 

Table 1: Responses categories 

Before we discuss the classification of the proof tasks we give here some examples 

to clarify the categories mentioned above. We assume that the categories M1 and 0 

are self-explanatory so we will very briefly discuss the other categories giving some 

examples from the students‘ work. 

P1 – The last part of the proof is missing 

Solutions in this category comprise deductive arguments without conclusions. 

Typical examples here are proofs by induction (Task B) which stop at the end of the 

inductive step.   

P2 - The hypothesis are expressed correctly but the proof stops after the 

statement of the hypothesis 

In several of the solutions for the proofs Tasks A and C students wrote the 

hypothesis correctly (for example stated correctly that d | a means a = kd with k an 

integer number) but were unable to proceed. Attempts of proof of this kind resonate 

with Moore‘s (1994) findings who observed that students can sometimes state the 

hypothesis in the theorem to prove, but are unable to start the proof.  
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P3 - The solution does not represent the most general case 

 

Fig. 1: Example of category P3 

This category was mostly found in the solution of Task A. An example is reported in 

Fig. 1 above. In this case the student failed to express the most general case, proving 

instead the statement: the sum of two equal odd numbers (i.e. twice an odd number) 

is even.  

P4 - The solution resembles the correct proof but there are not enough details to 

see whether this is correct or not 

An example in this category is the following: 

 

Fig. 2: Example of category P4 

In this example the student has tried to give a verbal argument for the proof. 

However lack of clarity and details mean that it is not possible to ascertain whether 

the argument is correct or not. 
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P5 - The solution follows a correct deductive argument but some mistakes in the 

calculations occur 

Typically this occurred in the proofs by induction where the students made a mistake 

in the calculations for the inductive step. 

M4 - The solution consists of an empirical argument 

In this category we have grouped examples of ―proof by example‖ where students 

gave a numerical example as a proof. This is clear in the following example: 

 

Fig. 3: Example of category M4 

Here the student gave one numerical example and terminated the answer with a tick 

– perhaps signaling that s/he was satisfied with the answer or was satisfied with 

having found a confirming example. 

M5: Some mathematical statement is presented but this is unrelated to the proof 

requested  

Responses in this category included all sorts of unrelated mathematical facts, but no 

recognisable deductive arguments. 

ANALYSIS AND FINDINGS 

Two participants were removed from the analysis of the data as they attempted none 

of the proof tasks. This left us with 74 responses.  

A classification of the proof tasks excluding Task D, according to the categories 

outlined above yield to the following table: 

 A B C Total 

M1 28 34 21 83 

P1 0 11 5 16 

P2 3 8 8 19 

P3 30 0 1 31 
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P4 3 2 2 7 

P5 0 3 6 9 

M4 0 0 2 2 

M5 7 4 6 17 

0 3 12 23 38 

Total 74 74 74 222 

Table 2: Classification of the proof tasks excluding Task D 

We excluded Task D as it was solved correctly only two times across the sample, 

with only five students accruing marks for it.  

The distribution of the marks over the three remaining proof tasks had mean 7.76 and 

standard deviation 4.35, suggesting that the three tasks were suitable for this cohort 

of students (i.e. not at ceiling or floor levels). As for the classification of the proof 

tasks Table 2 shows that 37% of the total number of tasks attempted by the students 

were correct, with the task solved correctly the most times being task B (solved 

correctly 34 times) followed by Task A (solved correctly 28 times) and Task C 

(solved correctly 21 times). Considering categories P1, P5 and P3 as (attempts at 

producing) deductive arguments and category P2 as manifestation of the inability to 

produce a deductive argument (we infer this by the formal statement of the 

hypothesis but the lack of any other writing to follow, see also Moore, 1994) the 

distribution gives the following frequencies: 

Deductive arguments (M1, P1, P2, P3, P5) 158 

P4 7 

M4  2 

M5 17 

0 38 

Tot 222 

  Table 3: Summary of the types of arguments used across the tasks 

Table 3 shows that more than two thirds of the arguments that the students produced 

(or attempted to produce) were in fact deductive arguments. Only two arguments 

produced out of 222 were empirical arguments.  

CONCLUSIONS 

In this paper we have classified 222 solutions to proof tasks collected during a study 

involving year-one mathematics students in a university in the UK. Our classification 

of proof tasks aimed at investigating what type of arguments students produce when 
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asked to give a proof a mathematical statement. We found that the students in our 

sample, at a very early stage in their university degree, know largely what the result 

of a proof construction task ought to be (at least in algebra), namely a deductive 

argument. Their difficulties were mostly related to failure to produce a correct 

deductive argument rather than failure to recognise that a proof involves some kind 

of deductive argument. Remarkably, in our sample, we found only 2 ―empirical 

proofs‖ pointing to the fact that our students on the whole did not regard 

investigating one or more examples of a conjecture to be sufficient proof. Our 

findings resonate with other findings in the research literature (e.g. Weber, 2001; 

Weber & Alcock, 2004) where researchers have repeatedly pointed out to the 

difficulties students have in producing correct deductive arguments. Our findings 

also seem to be in contrast with other research findings on proof production (for 

example Recio & Godino, 2001) where researchers have pointed out the reliance of 

university students on empirical arguments to solve ―prove that…‖ tasks. One 

possible explanation for this is that the students in some of these research projects 

are not always mathematics students. For example in the paper by Recio and Godino 

(2001) we have cited previously, participants were ―students who took a mathematics 

subject in different faculties and polytechnic‖ (p. 84). Although the authors do not 

give more details about their sample, we argue that this could include students from 

many departments and not necessarily sciences. The participants in our sample were 

mostly mathematics students, with some students coming from other disciplines with 

a strong mathematics component (e.g. computer science, natural sciences, 

mathematics with economics). Perhaps it is the background of the students that 

accounts for such discrepancies in the findings. The data we have presented seem to 

indicate that the students in our sample (e.g. students with a strong mathematics 

background) already operate with an analytical proof scheme, and therefore the goal 

of instruction in this case should be to help the students become versed in the 

production of deductive arguments rather than the elaboration of their proof 

schemes. If we confront this with Harel and Sowder (2007) where they write: 

We emphasize again that despite this subjective definition the goal of instruction 

must be unambiguous—namely, to gradually refine current students‘ proof schemes 

toward the proof scheme shared and practiced by contemporary mathematicians. 

(Harel & Sowder, 2007, p. 7) 

we would argue that perhaps more attention (in research and in teaching) should be 

given to the process by which students produce evidence to gain conviction about 

statements and write deductive arguments to produce proofs rather than to what are 

the types of evidence that students at university level offer as proofs.    
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APPENDIX 

In this appendix we report the questions included in the questionnaire we gave to the 

students (labelled here Task X), a solution designed according to what the students 

would have seen in the lectures and the marking scheme (the last two items not 

included in the questionnaire).  

Task A: Prove that the sum of two odd numbers is even. 

http://sigmaa.maa.org/rume/crume2010/Abstracts2010.htm
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Proof: Let n = 2k1−1 and m = 2k2−1 be odd numbers. We have  

m + n = 2k1 − 1 + 2k2 − 1 = 2(k1 + 2k2) − 2 even. 

2 points for expression of odd number; 2 for expression of sum; 1 for conclusion 

Task B: Prove that the sum of the first n natural numbers is equal to
1

2
n(n 1). 

Proof:  For n = 1: 
1

2
n(n+1) = 1. 

Suppose this is true for n − 1 and show this is true for n. We have 

Sn−1 = 
1

2
(n − 1)(n – 1 + 1) = 

1

2
 (n − 1)(n).  

Add n and obtain Sn = 
1

2
 (n − 1)(n) + n = 

1

2
n(n + 1). 

Hence this is true for all n in N.  

2 points for base step; 2 for inductive step; 1for conclusion.     

Task C: Let d, a and b be integers. Prove that if  d | a and d | b then d
2 
| (a

2
 + b

2
). 

Proof: d | a  a = kd and d | b  b = md, hence 

(a
2
 + b

2
) = (kd)

2
 + (md)

2
 = k

2
d

2
 + m

2
d

2
 = d

2
(m

2
 + k

2
)  d

2 
| (a

2
 +b

2
). 

2 points for expression of divisibility; 2 for expression of sum of squares; 1 for 

conclusion. 

Task D: Prove that if the sum of the digits of a natural number is divisible by 3 then 

the number itself is divisible by 3. 

Proof: Let d be a natural number. Let d = dkdk−1 ...d0 its expression in digits. If we 

expand this expression in base 10 we have 

D = 10
k
dk + 10

k−1
dk−1 + ... + d0 we can write this as  

d = (10
k
 − 1)dk + (10

k−1 
− 1)dk−1 + ... + 9d1 + dk + dk−1 ... + d1 + d0 

Note that all the items in the form 10
x
 − 1 are divisible by 3 (they are in fact a string 

of 9s). So we can write d = 3A + dk + dk−1 ... + d1 +d0 . Hence d is divisible by 3 if and 

only if dk + dk−1 ... + d1 + d0 is divisible by 3. 

2 points for expression base 10; 2 for changing into (10
k−1 

− 1) etc; 1 for conclusion. 
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HOW WE TEACH MATHEMATICS:  

DISCOURSES ON/IN UNIVERSITY TEACHING 

Barbara Jaworski and Janette Matthews,  

Loughborough University, UK 

A series of seminars called ―How we Teach‖ has focused on the teaching of 

mathematics at university level. Participants are mathematics educators and 

mathematicians in a university School of Mathematics. Video recordings of the 

seminars have been analysed to uncover a teaching discourse in the mathematical 

community involved. Analysis reveals the preferred approaches to teaching (within 

institutional boundaries), the resources teachers use and the ways teachers think 

about students‘ learning of mathematics. Issues arising are illustrated by key 

quotations and the paper offers a first attempt at characterising the discourse and 

suggesting implications for teaching development and the education of new teachers. 

Keywords: university mathematics teaching, discourse, community, development. 

INTRODUCTION 

This paper results from analysis of data from a series of seminars presented by 

university mathematics teachers on the topic ―How we Teach‖. They take place 

within a School of Mathematics which includes a Mathematics Education Centre and 

focus on research into university mathematics learning and teaching. Over two and a 

half years, with 20 seminars to date, most have been video-recorded and 10 seminars 

have been analysed. We have chosen to analyse seminars regarded as being most 

representative of an established university discourse. They were each presented by a 

mathematician or a mathematics educator, to a mixed audience, all of whom teach 

mathematics to mathematics or engineering students. 

Our intention is not to reveal how mathematics teaching is, but rather how those 

teaching mathematics talk about their teaching within their institutional setting. We 

have recorded and analysed what teachers say they do, how and why, and the related 

discussion between seminar participants, covering approaches to teaching, reasons 

behind these approaches, and issues arising for the presenter, or in discussion. 

WHAT DO WE KNOW ABOUT TEACHING AT UNIVERSITY LEVEL? 

Various members of the international research community suggest that we do not, as 

yet, know very much about how mathematics is taught at university level. For 

example, from New Zealand and the US respectively, we have: 

It is apparent on inspection of the literature that … there is relatively little research into 

teaching and learning of mathematical sciences at the undergraduate level and very few 

academic journals that focus on publishing such research. (Barton & Thomas, 2010, p. 1). 
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… while some mathematicians have written about their teaching,, others have 

analysed aspects of their teaching and students‘ learning in innovative collegiate 

courses, … very little research has focused directly on teaching practice – what 

teachers do and think daily, in class and out, as they perform their teaching work 

(Speer, Smith & Horvath 2010, p. 99). Speer et al. (2010), point to five (rare) 

examples of published research on ―collegiate teaching‖ in the US which provide 

… empirical analyses that describe teaching at a sufficiently fine level of detail that 

teachers and other researchers can inspect and learn from the instructional choices and 

learning of others. 

Some current research in Europe is also looking at university teaching with such 

level of detail in trying to characterise teaching practices, inform our community and 

open up a wider awareness of what we are doing to allow us to address how we 

might do it better (e.g., Jaworski, Treffert-Thomas and Bartsch, 2009; Ioannou & 

Nardi, 2009; Petropoulou, Potari, & Zachariades, 2010). Clearly we need more of 

this kind of research as well as outlets for publishing it. 

The research reported in this paper aims to open up the field of study of university 

teaching for better communication and developing awareness. However, its focus, in 

seeking a teaching discourse, is not on the practice of teaching per se, but on how 

the mathematical community expresses its thinking about teaching and the design of 

its teaching. Concomitantly, this research, and the actual practice of the research (in 

this case, the motivation for and holding of the seminars), can draw teachers‘ 

attention to alternatives to common practice, encourage critical approaches to 

thinking about teaching, and foster teaching development. 

Two words that have appeared in the above text and perhaps need further remarks 

are discourse and community; although space restricts what it is possible to say. Rom 

Harré and Grant Gillet (1994) write: ―Actions and acts they accomplish make up 

discursive practice‖ which is ―the repeated and orderly use of some sign system, 

where these uses are intentional, that is, directed at or to something‖ (p. 28). Also, 

―… a discursive practice is the use of a sign system, for which there are norms of 

right or wrong use …‖(p. 29). Derek Edwards (1997) writes that a focus on discourse 

shifts notions of human actions as rule governed and based on cognitive 

representations ―towards a concern with norms and descriptions‖, and that ―norms do 

not govern actions, but … actions are done and described in ways that display their 

status with regard to some rule or expectation (p. 7). Harré and Gillet write further, 

―The crucial insight that allows us to explain psychological phenomena as patterns of 

discursive acts is that norms and rules emerging in historical and cultural 

circumstances operate to structure the things people do‖ (p.33). We would claim that, 

in the teaching of mathematics, we are dealing with multiple sign systems, each with 

their own ―norms and rules‖. Mathematics itself offers symbolic sign systems, as 

well as conventions for writing mathematics, for example, proof structures.  

Teaching mathematics uses a complex set of sign systems, which include the 
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mathematical: these would encompass ways of describing teaching and learning with 

all the ontological and epistemological associations on which such descriptions rest. 

We work within a community of practitioners in mathematics, including teachers and 

researchers and various areas of research in both mathematics and mathematics 

education. We can talk here of a ―community of practice‖ in which 

The concept of practice connotes doing, but not just doing in and of itself. It is doing in a 

historical and social context that gives structure and meaning to what we do. In this sense 

practice is always social practice (Wenger, 1998, p.47).  

Etienne Wenger describes three ‗dimensions of practice‘ which he explains are ‗the 

property of a community‘; these are ‗joint enterprise‘, ‘mutual engagement‘ and 

‗shared repertoire‘ (p. 73). Briefly, they involve common purpose and activity and a 

shared language. Ways of interpreting or describing such a community can be seen 

as a discourse as set out briefly above. So, in our study reported in this paper, we 

seek to identify aspects of both community and its discourse about teaching 

mathematics, as seen through analysis of the words uttered by practising 

mathematics teachers in How we Teach seminars. 

METHODOLOGY 

One intention in creating the seminars was to provide a forum for such a discourse to 

become overt and consequently open to challenge. We wished to reveal common 

practices, taken for granted assumptions, and differences in ways of seeing 

established practices, and, through making all of these more visible, give our 

community a chance to look critically at what we do, and how and why we do it. In 

one sense we wished to flesh out our ‗joint enterprise‘, ‘mutual engagement‘ and 

‗shared repertoire‘, or recognise issues which challenge such concepts. One essential 

recognition was the institutional norms and expectations within which modes of 

practice were taken for granted. For example, programmes of study are modularised 

and the main medium of teaching is the lecture addressed to a given cohort of 

students (up to 250 in some mathematics modules). Our data shows an overwhelming 

focus on teaching through lectures: those who teach are most commonly called 

lecturers Although seminar participants address tutorials and other media for 

learning, discussion of the activity of lecturing by lecturers predominates. This 

makes it harder to see alternative modes of teaching except in the context of how 

they would fit into a lecture mode. In addition, the two constituencies, of 

mathematicians and mathematics educators, may actually see things differently. So 

we have needed to look critically at who is making the observations we note. 

We have analysed data from 10 seminars . Our choice has been to analyse those 

which have seemed to contribute most centrally to an established university 

discourse at this university – that is those dealing with the mainstream teaching of 

mathematics to students studying mathematics as part of a mathematics or 

engineering degree.  Thus, we have four from established mathematicians (who do 
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research in mathematics), two from former mathematicians (who now do research in 

mathematics education), three from mathematics educators (who do research in 

mathematics education) and one from a university teacher (who does no research). 

The excluded seminars are not so centrally focused and are seen as more peripheral 

to our main aims for analysis. 

Analysis has involved several stages: 

1. To ground perspectives, two researchers viewed together the video-recording of one 

seminar and discussed their interpretations of what the data reveals. 

2. Two researchers independently analysed one further seminar, noting key episodes and 

identifying their content in a linear pass through the recording. 

3. Discussion in (2) suggested a style of analysis for the other seminars as follows: 

a. One researcher produced a data reduction of the recording with a timeline noting 

factual details of episodes and highlighting significant ideas. 

b. The same researcher produced a synoptic, descriptive account of the seminar, 

including the main themes and issues. 

c. Both researchers discussed the analysis in (a) and (b), seeking justification for 

interpretations, and starting to identify key ideas and issues in the data. This led to 

identifying categories in the data. 

4. Periodically, two researchers reviewed analysis to date and mapped out an 

interpretative account of the seminars, seeking a trustworthy description of the 

discourse overall, a characterization supported by significant quotations, and further 

analysis of these quotations as indicated below. 

INITIAL CATEGORISATION  

Broad categorisation has suggested the following areas of focus: 

What is included in teaching? This includes institutional practice, students 

groupings, a VLE (LEARN), and the various (other) resources that are used in 

teaching.   

Strategies/Approaches to teaching: These include use of questions, tests, examples, 

group work, animations, video, weblinks, Electronic Voting Systems (EVS), and 

Computer Assisted Assessment.  

Provision of resources for students: This includes provision of notes, problem sheets, 

solutions, and a series workbooks (HELM)
1
 provided free to students.  

Approaches to/relationships with students: This focuses on different ways in which 

lecturers and students meet each other and kinds of interactions that result. 

Links to research: This includes references to research either that undertaken at this 

university or research in the public domain. 
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ISSUES EMERGING DURING CATEGORISATION 

Categorisation, as summarized above, may seem unsurprising. What was more 

interesting (for us as we worked on the data) were the issues that emerged from 

discussion around the various approaches to teaching, use of resources and 

interaction with students. We have grouped these issues within further categories or 

themes. We give examples below and provide key quotations, essential in 

highlighting the differing voices that make up the discourse. We refer to particular 

seminar contributers as M or ME to denote Mathematician or Mathematics Educator 

respectively. So, M2 or ME5 is always the same person.  

Some lecturers brought mathematical examples to engage other participants and 

provide a basis for discussion. However, in the main, the discourse was meta-

mathematical, assuming the basis of mathematics but talking about processes and 

practices rather than focusing in the mathematics. There were identifiable levels 

within this discourse, that is levels of reflective pedagogic perception of the teaching 

process (see Nardi, Jaworski & Hegedus, 2005 for a spectrum of pedagogic 

discourse). So far we have categorised these as follows: A) What we do, how we do it 

and why – this is offered with a certainty of action and purpose; B) What the issues 

are that we are trying to address – this points to questions relating to students and 

the uncertainties inherent in trying to promote desired outcomes for students; C) 

What we don‘t know, but that it would be useful to know – genuine questions to 

which it would be valuable to know some answers, but which we cannot address 

with any certainty at the moment. In addition we see remarks which suggest some 

underpinning theory, even if implicit. It seems clear that lecturers‘ words often carry 

with them something of the lecturer‘s beliefs about learning and how teaching relates 

to learning. While it is not our intention to associate individual lecturers with 

theoretical positions, it does seem worth recognising possible areas of theory on 

which discourse can be seen to be based. We start with 3 such areas, each dependent 

on perceptions of knowledge. 

1. I need to convey knowledge to students (e.g., absolutist/Platonist theory). 

2. Students construct their own knowledge (e.g. constructivist theory). 

3. We are bringing students into our mathematical culture (e.g. sociocultural 

theory). 

As a starting point for further consideration we have annotated the quotations below 

as to whether they can be seen to fit into one or more of these levels and areas.  

Why should students come to a lecture? 

There were differences in viewpoint, among seminar participants. as to whether 

students should attend lectures. Some lecturers design modules to encourage students 

to attend, others leave it to students to make their own decisions as to how to study 

and, correspondingly, make resources fully available to all.  
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[ME2] says, ―I don‘t care if they don‘t come to lectures because it is all on LEARN. They 

have got all the workbooks. All the learning resources are there‖. I think, when you say 

that, you do yourself a huge disservice. Because you are missing all the little things that 

you do [in a lecture] that are of benefit to the students, [ME3: B/2/3]. 

There is recognition that students do not always choose wisely. 

I don‘t care [about attendance] if they can manage; but it is clear from exams there are 

students who would benefit from coming who are not. [M1: B/1] 

Others see poor attendance as a reflection on their teaching. 

I see poor attendance as a challenge. Some say it doesn‘t matter if they turn up as long as 

they are learning … poor attendance is a sign I am not doing something right. [ME4: B/1] 

It therefore seems important to consider what aspects of lectures would make 

students find the experience valuable enough to wish to come. 

We certainly don‘t ever define what the place of a lecture is. And we all look at this very 

differently ... and have different expectations of students. And that might be confusing for 

students. [ME2: B/C/1] 

I think they [lectures] can be fantastic for providing inspiration and structure to students 

about how a topic should be thought about. [ME5: A/1]  

What I would like is for students to come to lectures and be able to do something at the 

end that they could not do when they came in. [ME3: A/3]  

What is the role and nature of lecture notes, and who produced them? 

It was an implicit assumption that students need ‗good notes‘. There was 

considerable discussion on the nature and value of good notes, and disagreement on 

who should provide them, how and why. Some thought students need to learn how to 

make good notes for themselves. Some lecturers provide a full set on LEARN, and 

work through these in a lecture. Others produce ―notes with gaps‖ where spaces are 

left for students themselves to fill in solutions to examples. If they want to be given 

the solutions, they have to attend the lecture. 

I think they need to ... read my lecture notes in advance, come to lectures ... listen to my 

exposition, make their own notes about the key points, certainly get extra examples down. 

Then they can go away and use the workbooks productively. [ME8: A/2] 

They think they don‘t need to attend the lectures. If they have the notes, that is all they 

need … . So they had to turn up to get a full set of examples. I don‘t know if that is a 

good way of doing it. [M7: C/3] 

So what I have evolved is ... having gappy notes ... There are bits of writing and then 

there are big gaps where the students do more bits of writing. What this allows me to do 

… is put in quite a lot of commentary about ‗this is what we are doing‘ and ‗this is what 

we are supposed to be thinking about‘. So it is not really like getting a text book where it 

says definition, theorem, proof and so on … all that stuff that I want to say …, can 

already be there for the students but they still have this sort of interaction with the notes 
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where they are writing a lot of the mathematics. It allows for the notes to become 

something that you have but that you … physically do something with during lecture 

time. [ME5: A/2] 

I think you should treat students like adults. You should put in front of them all they need 

to do well. You must not restrict their knowledge in any way. [ME2: A/2] 

How do students come to understand mathematics? 

Possibly related to these different viewpoints on what a lecture can or should 

provide, there were differing views on what students can gain from a lecture. 

Should we teach the students that in lots of situations they shouldn‘t expect to learn 

during a lecture but they should be expected to do something after the lecture? [ME3: 

C/2] 

… you give them the materials, make it tolerably understandable but they don‘t 

understand a subject until they have done the tutorial sheets, worked their way through it, 

gone back to lecture notes and then they understand. [M2: B/2]  

Consideration of the issue of understanding suggested that perhaps we had differing 

perspectives on what we mean by ―understanding‖ and how understanding emerges. 

Some seemed to suggest that understanding will emerge through lots of focused 

practice, perhaps working through many examples. Perhaps students also believe 

this. 

Maths is not a spectator sport. You can only learn maths by doing it yourself. [M3: A/2] 

You know the technique. Once you have done a few hundred [examples e.g., differential 

equations, integration by parts], you do begin to understand. … The understanding comes 

in when you have done enough. [M2: B/3] 

In an ideal world, the anticipation is that they will be going away and practising and they 

have a great resource to do it.‖ [HELM workbooks]. [ME8: A/2] 

Many of the students want to know the procedure for getting through the problem and if 

they have that they are less concerned about the conceptual underpinning … What I 

would really like to do is get them thinking about the concepts as well as be able to 

answer the question that is being set. [ME7: B/C/3] 

What kinds of things can we do to promote understanding? 

Approaches that were discussed include use of examples, discussion of errors and 

use of tests or quizzes. Examples are seen as important to illustrate/explain 

mathematical concepts and procedures. 

A certain amount of time is taken up with basic definitions of theorems and proofs and 

the rest should be examples. Maybe what they don‘t appreciate is that I design the 

examples to illustrate the concepts of what I am teaching but not necessarily to give 

examples that are problems they will meet in the exam. [M1: A/1] 

I don‘t worry if they don‘t understand everything at start. I don‘t think they will until they 

have worked their way through some examples. [M2: A/2] 
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Asking students to come up with their own examples requires them to engage with 

the mathematics rather than memorise. 

If you know a test like this is coming … you can memorise a bunch of definitions. If you 

are asked to give examples, that requires you to do something…to really think about what 

does it takes to satisfy two different properties at once. [ME5: B/2] 

But perhaps examples alone are not enough. 

[it is] important to discuss the conceptual background of the material because examples 

are much easier for most students. … . If I do only that [examples], students miss the 

most important part. [M4: A/B/3]  

Some lecturers use short tests at start of lecture, or quizzes to be taken weekly online. 

Everyone knows something they did not know a few minutes ago about their own 

knowledge … are they up to date with what we have studied in the last few weeks and 

can they apply it to examples. [ME5: B/2] 

By frequently testing and making them go back over past work, I am hoping they will 

have an overview of all the techniques to a certain level, all the time. [ME8: B/3] 

A focus on errors can offer valuable feedback. 

Giving students information on the errors that they have made is I think a very valuable 

way of giving feedback for bright students…. I collected in the errors they made on their 

course work …. and asked them if they can spot where the errors are. [ME3: A/3]  

There was discussion of ways in which our teaching differs according to our 

perception of students‘ mathematical strength, or whether students are main stream 

mathematicians or in some other programme such as engineering.  

[Teaching in Context] is motivating for [engineering] students [who] tend to give [it] very 

good feedback. They start to see the relevance of mathematics. [ME4: A/3] 

For the very weakest engineers…I would give them some graphs.  I would ask them to 

describe in their own words some of the properties of some of these functions … a way of 

introducing students to some of the terminology. [ME3: A/3] 

[I] direct material to an averagely competent student. In narration, I give simplified 

explanations for those below averagely competent. [M1: A/1] 

I feel I have to give something to the good students who are going to get high firsts and 

who may do research. Perhaps it is just a handful of students in the room but they pay 

tuition fees like everyone else. [M1: A/2] 

Use of technology in lecture presentation 

The medium of the lecture is very important for some lecturers, especially those who 

favour a chalk or white board. For some, use of a chalk board is what used to happen 

when they were students, but has now been superseded by current technology – e.g., 

overhead projector (OHP). For others, there is value still in a large chalk board: 
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Students need to see the whole calculation. They need to keep looking back to where they 

started from, see the key points [M2: A/2] 

A problem with, for example, OHP or PowerPoint is that only the most recent part of 

the mathematical argument is visible at any time. Some mathematics lecturers still 

prefer to use a chalk board to present material in a lecture because the large expanse 

of board allows (potentially) a view of the whole argument at one time. The 

university gives credence to this argument by maintaining a number of lecture rooms 

for this purpose, despite the fact that chalk dust is detrimental to electronic 

equipment which needs also to be provided. Those using boards also suggest that 

students like notes to be written in real time – a PowerPoint presentation is too fast to 

take notes. 

At the other end of the technological spectrum a few lecturers are using electronic 

voting systems (EVS) in lectures, and see many advantages in doing so, both for the 

students who gain insight into the thinking of their peers and for lecturers who can 

see the spread of response in their students as a whole. 

Students like to see others getting it wrong – know they are not on their own. [They are] 

getting an experience they don‘t get by just reading at home on their own. [ME4: B/3] 

Resources for teaching and learning. 

Use of the LEARN environment for supporting teaching and learning is highly 

emphasised in the university. However, could the placing of resources on LEARN be 

a panacea? Should we consider more overtly whether students use these materials?  

The advantage for me ... I am more comfortable lecturing knowing there is this material 

available [e.g., HELM workbooks]. If you don‘t like what I am doing in lectures that‘s 

fine, just read the book. [ME2: A2] 

I suspect we don‘t teach students how to use books [ME3: C/3] 

And many students looking at a page of mathematics look at the formula and ignore the 

words [ME5: B/1/3] 

Some lecturers questioned the role of the student and how students learn to learn. 

What do you need to know in order to be a successful student who can go to a lecture, 

take appropriate notes and then go away and do something with those notes that will be 

productive in terms of increasing your understanding? [ME5: C/2] 

DISCUSSION 

The characterisation offered above recognises certain aspects of the discourse; it also 

offers opportunity for discussion of the underlying issues and how they relate to 

teaching and its development. The discourse has been highly meta-mathematical. By 

this we mean talking about teaching mathematics, talking about students, our goals 

for and perspectives on students, talking about the resources we use and our reasons 

for doing so – often in terms of our intentions for students.  Where mathematical 

examples have been used, they have been designed to stimulate a focus on teaching 
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approaches. So far, we have not looked explicitly at how lecturers treat particular 

mathematical content – despite the fact that we have a project looking explicitly at 

the teaching of linear algebra (Jaworski et al., 2009).  We have plans to do this more 

explicitly in the near future. Recently, the seminars have become a part of the 

University‘s professional development programme for new mathematics lecturers; 

here, the characterisation above can contribute to clearer visions of how the ways we 

talk about teaching relate to the actual teaching and its promotion of learning. 

A final point brings us back to the nature of our community in the School of 

Mathematics, consisting as it does of both mathematicians and mathematics 

educators. Readers might discern, from the A, B, C categorisations above, positions 

of particular individuals with respect to their views on teaching.  With regard to our 

community as a whole, where our teaching is concerned, we can justify the terms 

―mutual engagement‖ and ―shared repertoire‖ although we have demonstrated small 

differences in the latter. A ―joint enterprise‖ is harder to justify, and this possibly 

relates to our categorisation. At level A, teachers operate within their own certainty 

of what it means to teach and why, and we see here differing kinds of certainty. 

However, in areas B and C, we see recognition of the complexity of decisions and 

related issues for teachers, a willingness to question and consider other possibilities, 

and a growth of common understandings, or at least respect for alternative points of 

view. These seem to relate to what Nardi et al. (2005) call ―reflective and analytic‖ 

and ‗confident and articulate‘ positions in their spectrum of pedagogic awareness. In 

our development of teaching and the education of new lecturers, increased pedagogic 

awareness, leading to possibilities for changing and improving teaching, seems 

essential. Categories relating to theoretical positions are much more tentative at this 

stage and we offer them as starting points in thinking about how theories and beliefs 

can influence the ways we teach.  We welcome discussion on this with other 

researchers who address such connections. 
1
 HELM: Helping Engineers Learn Mathematics is a series of booklets developed specifically for 

engineering students, focusing on basic mathematical concepts and used with various groups of students in 

mathematics and engineering 
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This paper reports a parallel study of two university calculus courses in Croatia and 

Denmark using different teaching approaches. Both have lectures to a large group of 

students but they use different types of exercises. In Denmark, the exercises are 

student-centred, while the Croatian university uses a teacher-centred approach. The 

content of the courses are similar regarding the concepts we study in this paper. The 

students‘ retention was tested two months after the course exam on these concepts. 

Our statistical data analysis shows that the Danish students of our sample performed 

significantly better than the Croatian students of our sample on the conceptual 

questions, and vice versa for the procedural ones. 

INTRODUCTION  

The teaching of basic calculus concepts at the undergraduate level is wide and many 

students who study calculus are not in mathematics study programmes. Calculus at 

university level is usually taught by professional mathematicians who do not all seem 

to realize that there may be problems of communication between them and the 

students who study in non-mathematics study programmes (Maull & Berry, 2000; 

Guzman et al, 1998). When compared to mathematics students, engineering students 

seem to change their understanding of mathematical concepts as they progress 

through their studies (Maull & Berry, 2000). In order to gain more insight into the 

calculus knowledge of non-mathematics students, we investigated the level of 

retained knowledge in students from technical and natural sciences studies 

programmes. Our previous survey (Jukić & Dahl, 2010) showed that the students 

taking part in our experimentation had forgotten a large portion of notions regarding 

the derivative concept in differential calculus, and furthermore the surveyed students 

with the lowest course passing grades outperformed the students with high passing 

grades two months later in our questionnaire. The study reported in the present paper 

examines the retention of core calculus knowledge at two different non-mathematics 

student populations.  

THEORETICAL BACKGROUND  

Conceptual knowledge describes knowledge of the principles and relations between 

pieces of information in a certain domain and procedural knowledge is knowledge of 

the ways in which to solve problems quickly and efficiently (Hiebert & Lefevre, 

1986). Haapasalo and Kadijevich (2000) redefined conceptual knowledge, 
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highlighting its dynamic nature; it concerns the ability to browse through networks 

consisting of concepts, rules, algorithms, procedures and even to solve problems in 

various representation forms. Grundmeier et al (2006) showed that students 

generally choose a procedural over a conceptual way of dealing with problems in 

integral calculus. Pettersson and Scheja (2008) discovered that students developed 

their knowledge in integrals in an algorithmic way, not because of misconceptions, 

but because it was more suitable for them and enabled them to deal functionally and 

successfully with the presented tasks. Mahir (2009) investigated conceptual and 

procedural performance in integration in a group of undergraduate students who 

successfully completed a calculus course. She found that the students did not have 

satisfactory conceptual knowledge of integration, but those who had some 

conceptual knowledge, also showed some good procedural performance. 

Teaching strategies can roughly be divided into student-centred and teacher-centred 

teaching (Killen, 2006). In the teacher-centred model, the teacher has direct control 

over what is taught and how the learners are presented the information they should 

learn. In the student-centred model, the learner is put at the focus of the 

teaching/learning process, instead of the teacher. The teacher has less direct control 

over how and what the students learn. An example of such approach is the use of 

small group work or cooperative learning. Studies showed that teaching strategies 

employed in the class can influence the development of one type of knowledge more 

than another; teacher-centred methods would favour the development of procedural 

knowledge and student-centred methods would favour the development of 

conceptual knowledge (e.g. Garner & Garner, 2001; Allen et al, 2005).  

We examine what calculus knowledge is retained by students from two different 

mathematical populations two months after the course instruction and examination 

have taken place. Since these two populations are not completely comparable, we 

regard this as a parallel study, so caution is needed when making statements 

comparing the two populations. 

THE TWO POPULATIONS: INSTITUTIONAL SETTINGS 

In this section we will describe the institutional settings in the two universities where 

our survey was conducted: the University of Osijek in Croatia and Aarhus University 

in Denmark. In order to examine the calculus courses and their contexts, lectures and 

exercises were observed at the universities. Furthermore the teaching materials, 

exams and curricula were examined and interviews with lecturers, department heads, 

and teaching assistants were conducted at both universities to gain insight into the 

similarities and differences of both study programmes. 

The Croatian University 

The calculus course consists of lecture lessons and exercise lessons where the 

teaching approach is teacher-oriented. Lectures are given in a traditional form to a 

large group of students, and exercises are based on direct instructions, used in groups 
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of 30 students where a problem-solving or performance procedure is shown to the 

students. Conceptual ideas are taught in the context of procedural methods. A first 

year calculus course is divided in two one-semester courses, entitled Calculus 1 and 

Calculus 2. Differential calculus is part of Calculus 1 and integral calculus is part of 

Calculus 2. Part of Calculus 1 is oriented on repetition of high school A-level, using 

formal mathematical theory, what makes it different from high school mathematics. 

Also, the majority of the calculus courses are focused on functions in one variable. 

Every science study programme has its own calculus courses, but these courses have 

70% of the content in common. The courses differ not just in course content, but also 

in the number of teaching hours. They may vary between 60 and 105 hours per 

semester, altogether for lectures and exercises. The process of examining the 

students‘ knowledge begins during the calculus course. Students have several written 

partial exams with open-ended questions during the semester as a substitution for the 

final exam at the end of semester. Students have to pass all partial exams and their 

grade is determined after the last partial exams. Those who fail any of the partial 

exams during the semester have to take the final exam to pass the course. Students‘ 

knowledge in formal mathematical theory in theorem-proof style is also examined. 

Students get the final grade for both calculus courses separately. 

The Danish university 

The calculus course is a joint course for all mathematics and science study 

programmes. The course is organized into traditional lecture lessons and exercise 

lessons. Lecture lessons are given to a large group of students, but exercise lessons 

use small group work, based on problem solving where the teaching approach is 

more student-oriented. A first year calculus course is divided in two courses where 

functions of one variable and several variables are connected to differential and 

integral topics. Topics investigated in the questionnaire belong to Calculus 1. Both 

calculus courses take place during a seven-week half-semester (quarter) period with 

63 hours, altogether for lectures and exercises. The process of evaluating students‘ 

knowledge starts after Calculus 1, where students take a multiple choice test, which 

determines whether or not the student can take the final written exam after Calculus 

2. The grade obtained in the final exam is a joint grade for Calculus 1 and 2. 

About comparing the two universities 

The calculus content investigated in this paper belonged to the core of all 

programmes. One of the major differences between the populations was the teaching 

methods, but that is not the only difference that might explain how the students 

answer the questions in our survey. This means that pointing to one single factor 

causing the difference is not possible, therefore caution is needed and we cannot 

identify a single cause to the differences in the results of both populations.  
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METHODOLOGY 

We conducted a survey examining a selected number of core concepts in differential 

and integral calculus through questionnaires given to first year non-mathematics 

students. The survey took place in the spring of 2009 at University of Osijek and in 

the autumn of 2009 at Aarhus University.  

The Croatian students were given two questionnaires. The first examined their 

knowledge of derivatives, from Calculus 1, and the second examined their 

knowledge of integrals, from Calculus 2. The participants were students from the 

following study programmes: electrical engineering, civil engineering, food 

technology, physics, and chemistry. 227 students participated in the first 

questionnaire and were surveyed two months after the exam in differential calculus. 

225 students participated in the second questionnaire and were surveyed two months 

after the exam in integral calculus. More than 94% of the students answered all 

questions in the first questionnaire and more than 97% of them answered all 

questions in the second questionnaire.  

The Danish students were given one questionnaire combining the questions from the 

Croatian questionnaires since those concepts are covered in Calculus 1. The students 

belonged to the following study programmes: biology, chemistry, chemistry & 

technology, computer science, geology, geo-technology, information technology, 

molecular biology, medical chemistry, molecular medicine, and nano-science. 147 

students participated in the questionnaire. More than 94% of the surveyed students 

answered all the questions. 

The Danish university does not have engineering programmes and the Croatian 

university does not have all the study programmes surveyed in the Danish university. 

Since the aim of our parallel study was to examine knowledge retention in non-

mathematics students, we do not consider these differences as significant. We 

wanted to get some insight into the knowledge of non-mathematics students from 

two different populations, and not in students belonging to a particular study 

programme. Even though the Danish and Croatian students have met calculus 

concepts in high school, the university courses provide different approaches to 

calculus (building calculus conceptions using formal theory) and build relationships 

between calculus objects (e.g. connecting them with functions of several variables). 

This diversity in teaching styles between high schools and universities has also been 

noted by various researchers (e.g. Guzman et al, 1998). We wanted to examine the 

retention of knowledge related to core calculus concepts after university calculus in 

students coming from different programs, contexts and teaching methods. 

Questionnaire design 

We designed the questionnaires with multiple choice questions where the wrong 

options represented typical misunderstandings and errors. Before being given to the 

students, professional mathematicians and the lecturers of the courses were consulted 
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about the relevance of the questions, formulation, and appropriateness of the options 

of answers as offering typical misunderstandings. We wanted to examine the 

students‘ retention of concepts about derivatives and integrals in a short period of 

time, since the questionnaire had to be filled out by the students while they attended 

their class/lecture (the permission to pass the questionnaire during lecture time is 

easier to get, so multiple choice questions seemed to be a very convenient way to 

assess the students in a short period of time).  

There were four questions about derivatives. The question Tangent deals with the 

geometric interpretation of the derivative of a function at a given point. In Quotient 

our intention was to test the students‘ knowledge about the quotient differentiation 

rule. Composite examines how the students deal with the derivation of a composite 

function. Slope incorporates several key concepts from differential calculus: slope of 

tangent line as the derivative of the function f at the given point and the process of 

differentiation. There were also four questions about integrals. Area deals with the 

geometric interpretation of the integral. It can be argued that among the offered 

answers ―none of the above‖ would be the correct one, since the answer ―the area 

between the curve )(xfy  and the x-axis for x between a and b‖ is correct only in 

the special case where f (x)  0 for x [a, b] and f(x) is bounded. However, as we had 

conjectured that the students were likely to overlook or ignore the subtlety of the 

case of non-positive or non-bounded functions, we did not consider ―none of the 

above‖ as the right option (and we are aware this can be a potentially contentious 

choice). Antiderivative asked what the anti-derivative of a function is. Depending on 

the approach that was used in teaching, two of the offered answers could be 

considered as correct. Therefore, in the data analysis we labelled both possibilities as 

correct. Method asked for the most appropriate/easy method for solving a particular 

indefinite integral. The integration by parts is considered as the only correct option. 

The use of substitution for this example is ―non-standard‖, and students would need 

a table to recall the integral of the logarithm. Basic integrals consisted of two 

indefinite integrals that are usually given in the tables of basic integrals and two 

possible solutions for each integral. The number of offered options for this question 

was inspired by the number of possible misunderstandings we considered for each 

integral. All the questions can be seen in the Appendix. The questions can be 

grouped as mainly involving either procedural or conceptual knowledge. The 

conceptual category consists of the questions Tangent, Slope, Area and 

Antiderivative, whereas Quotient, Composite, Method and Basic integrals are 

classified as procedural. However, this categorisation in conceptual or procedural 

questions is not absolute. Some questions could be placed in both groups, since they 

involve both kinds of approaches. For instance several differentiation rules have to 

be connected in Composition, and this, at least in some cases, can be considered as 

conceptual knowledge. On the other hand, it is possible that some students had 

experienced tasks like Slope, and thus their solution could be based only on recalling 

the method without any conceptual knowledge. This is the reason why the question 
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is formulated in a little tricky way, so that if the students apply a procedure without 

carefully thinking, they will fail to answer it correctly. Also, in our case, the students 

were more exposed to the chain rule of differentiation, unlike the question Slope.  

RESULTS OF THE QUESTIONNAIRE 

Table 1 below shows the distribution of correct answers for all questions in the two 

populations. No question was answered correctly by all students. 

Type Topic Question Croatia Denmark Fisher‘s 

p-value 
#/total % #/total % 

Conceptual Differential 

calculus 

Tangent 102/214 46 93/140 66 0.0007 

Slope 34/217 16 51/142 36 <0.0001 

Integral 

calculus 

Area 160/224 71 141/143 99 <0.0001 

Antideriv. 

 

(170+37)/

223 

93 (109+30)/

142 

98 0.0504 

Procedural Differential 

calculus 

Quotient 167/221 76 90/139 65 0.0312 

Composite 144/218 66 94/141 67 1.000 

Integral 

calculus 

Method 142/224 63 64/140 46 0.0011 

Integral a 99/223 46 22/141 16 <0.0001 

Integral b 145/220 65 81/142 57 0.0963 

Table 1: Distribution of correct answers. P-values here indicate the size of the 

differences among the populations. 

There was a significant difference in how the Croatian and Danish students answered 

six of the nine questions, eight if we accept an alpha of 0.10. The Danish students 

significantly outperformed the Croatian students in almost all the conceptual 

questions, but in the procedural questions, the Croatian students significantly 

outperformed the Danish students in four of the five questions. The fifth question 

(Composite) had an almost identical rate of correct answers.  

Table 2 below shows how well each of the two populations solved each of the 

conceptual questions compared to each of the procedural questions. 

The results of Table 2, and data from Table 1, show that for the Croatian students 

there was a significantly different performance in 16 of the 20 comparisons of the 

two groups of questions. Of the 16 comparisons which showed a significant 

difference (alpha of 0.10), nine times the procedural question was answered the best, 

while seven times, the conceptual question had the best answer rate. Hence it appears 

that there is almost no difference in how the Croatian students answer the conceptual 

and procedural questions, just a small preference for the procedural ones. Among the 



Working Group 14 

 CERME 7 (2011) 2039 

 

procedural questions, the Croatian students achieved better results in the derivative 

questions than in the integral questions. In the conceptual group, their results were 

better in the integral questions than in the derivative question.  

Croatia Conceptual Denmark Conceptual 

Dif Int Dif Int 

Procedural Ta Sl Ar An Procedural Ta Sl Ar An 

Dif Qu * p * p 3356 * c Dif Qu 8017 * p * c * c 

Co 0001 p * p 2588 * c Co 1.000 * p * c * c 

Int Me 0011 p * p 0864 c * c Int Me 0007 c 1151 * c * c 

Ia 5031 * p * c * c Ia * c 0001 c * c * c 

Ib 0002 p * p 2207 * c Ib 1126 0005 p * c * c 

Table 2: Fisher‘s p-values comparing answers to the procedural and conceptual 

questions by population. * denotes p<0.0001. P-values are noted without 0. The letters 

p (procedural) and c (conceptual) denotes which question had the best answer rate. 

For the Danish students there was also a significantly different performance in 16 of 

the 20 comparisons of the two groups of questions. Of the 16 comparisons which 

showed a significant difference (alpha of 0.10), three times the procedural question 

was answered the best, while 13 times, the conceptual question had the best answer 

rate. Hence, it appears that the Danish students of our sample perform much better at 

the conceptual questions than at the procedural ones. In the procedural group of 

questions, the Danish students achieved better results in the integral questions than 

in the derivative questions. In the conceptual group, their results were better in the 

integral questions than in the derivative questions.  

DISCUSSION AND CONCLUSION 

Having in mind that the questionnaires took place only two months after the 

examination, and that the questions were multiple-choice, we regard the obtained 

overall results as weak. There was only one question where both populations had a 

correct answer rate above 80% (Antiderivative). The lowest Croatian result is seen in 

the question Slope (16%) and the highest in the question Antiderivative (93%). The 

Danish students achieved the lowest result in the question Integral a (16%) and the 

highest result in the question Area (99%). 

Both student populations were taught procedural and conceptual knowledge. In 

terms of long-term retention, procedural knowledge is quite fragile, meaning that 

procedures are often forgotten quickly or remembered inappropriately (e.g. Allen et 

al, 2005). This is perhaps reflected by the fact that Table 2 shows that 12 times a 

procedural question did better in comparison with a conceptual question, 20 times 

the opposite. Also Table 1 shows that no procedural question had a correct answer 



Working Group 14 

 CERME 7 (2011) 2040 

 

rate above 76%, while three of eight times, the correct answer rate to a conceptual 

question was above 90%. Hence, our data lead us to think that the Danish students 

retained more conceptual knowledge than procedural knowledge, while the Croatian 

students were almost equally strong/weak in the conceptual and procedural 

questions. In terms of long-term retention, conceptual knowledge is stable, but 

possessing conceptual knowledge without procedural fluency is considered to be 

ineffective (Bosse & Bahr, 2008). 

The results of our study can be connected with a long dispute on which type of 

knowledge is more important and in which order they should be learnt (Rittle-

Johnson et al, 2001; Haapasalo, 2003). Today, we regard both types of knowledge as 

important and complementary, thus universities should focus on attaining balance 

between conceptual and procedural knowledge. Learning new concepts and 
practicing the skills associated with those concepts are strongly 
interconnected, therefore, a balance of learning concepts and procedures 
with explicit connections to those concepts will enhance the long term 
retention of both (Schoenfeld, 1988).  

If we have a look at the results of our two populations, the Croatian students showed 

significantly better performance in the procedural questions, and the Danish students 

were significantly better in the conceptual group of questions. The teaching approach 

at the Croatian university is teacher-centred while it is more student-centred at the 

Danish university. One may wonder if these results are connected with the teaching 

approaches. Some studies showed that the teaching strategies employed in class can 

influence the development of one type of knowledge over the other; teacher-centred 

on procedural knowledge and student-oriented on conceptual knowledge. Garner and 

Garner (2001) found similar results in the case of applied calculus examining the 

retention of students‘ knowledge after eight months, but Allen et al (2005) found 

significant differences only regarding conceptual knowledge, and no difference in 

procedural knowledge between students exposed to different teaching strategies in 

differential equations, examining them after one year. Schumacher and Kennedy 

(2008), who examined calculus knowledge in students exposed to teacher-centred 

and student-centred teaching approach, found no statistical significance in success 

between the two groups of students. The studies that we refer to here had 

investigated students‘ retention in courses that only differed in the teaching approach 

and in the number of course hours. Students in our study also had some further 

differences in terms of previous training, of course content and of examination 

styles. Therefore, caution is needed when trying to point to one factor explaining the 

difference. This will be the topic of future research.  

APPENDIX 

Derivatives questions surveyed with given options for answers 

1. Question Tangent: What is the geometric interpretation of the derivative of the function 
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RRf :  at the point x0? Offered answers: maximum/minimum of the function f at x0; 

slope of tangent line to the curve )(xfy  at x0; continuity of the function f  in the given 

point; none of the above.  

2. Question Quotient: Differentiate the function
3

2 2
)(

x

x
xf . Offered answers: 

23

223

)(

)3)(2()2(

x

xxxx
; 

3

223 )3)(2()2(

x

xxxx
; 

23

223

)(

)3()2(

x

xxxx
. 

3. Question Composite: Differentiate the function f(x) = sin
2
 6x. Offered answers: 2sin(6x); 

12sin(6x); 12sin(6x)cos(6x). 

4. Question Slope: Calculate the slope of the tangent line to the curve 
2)3( xy  at the point x 

= 1. Offered answers: 9; 18; 6. 

Integral questions surveyed with given options for answers 

1. Question Area: What is the geometric interpretation of the definite integral 

a

b

dxxf )( ? 

Offered answers: The area between the curve )(xfy  and the x-axis for x between a and 

b; The arc length of the curve )(xfy  on the interval ba, ; continuity of the function f 

on interval ba, ; none of the above. 

2. Question Antiderivative: What is an antiderivative of a function f? Offered answers: 

xxf d)( ; every function F such that )()(' xfxF  holds; The set of elementary 

functions; none of the above. 

3. Question Method: Which method should be used for computing the integral dxxex
? 

Offered answers: substitution 
xet ; integration by parts; trigonometric substitution; none 

of the above. 

4. Question Basic integrals: 

a. 
21 x

dx
=? Offered answers: (a) Cx )1ln( 2

 and (b) Cxarctan .  

b. 
3x

dx
=? Offered answers: (a) Cx 2

2

1
 and (b) Cx )ln( 3

. 
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Mathematical concepts are mentally represented differently depending on 

individual, context and existing conceptions of related concepts among other things. 

The present paper reports on a study of students‘ representations in analysis with an 

emphasis on the types of representations and the links they have between their 

representations. The data collection was designed to evoke different parts of the 

students‘ concept images and also to return to the concepts several times over time 

at every data collection session. The results show that formal and intuitive 

representations in combination are rare. The number of links between concepts is 

not in itself a measure of the quality of the concept image, as there is a vast number 

of erroneous links misleading the students to think they understand the concepts. 

INTRODUCTION 

Students‘ experiences of understanding a mathematical concept have a range from 

being able to explain all aspects of the concept in relation to other concepts (as 

defined by for example Hiebert and Lefevre, 1986) to just having heard of the 

concept, depending on how understanding is assessed and personal definitions of 

understanding. Prior research reveals university students‘ unjustifiably strong self 

confidence about their own mathematical abilities of understanding limits of 

functions (Juter, 2006) despite their inabilities to explain core features of the 

concept. The capability to solve routine tasks gives a sense of mastery of the concept 

that is not changed from an episode of failure in a special case, like the interview 

sessions in the study. A sense of understanding, false or otherwise, prevents further 

learning in the particular topic area, which in turn may lead to a weak mathematical 

ground for new learning. This is serious for future mathematics teachers who are 

going to provide opportune learning situations for their students. If their concept 

images (Tall & Vinner, 1981) are weak, or in worse cases wrong, there is no room 

for the flexibility and deep conceptual discussions necessary for appropriate 

teaching. This paper reports part of a study of pre-service teachers‘ understanding of 

limits, derivatives, integrals and continuity and links between the concepts. The 

study also concerns teacher identity from a social as well as a cognitive perspective 

(se for example Juter, 2010). The following research questions were raised: How do 

the students connect limits, derivatives, integrals and continuity to other concepts? 

How do the students represent (graphically, formally, through examples or other 

descriptions) the concepts for themselves? How do their representations with 

connections work as a base for analysing graphs with respect to the four concepts 

examined? 
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Data analysis resulted in a classification system (table 1) useful for categorising 

students‘ traces of connections between concepts in their concept images in form of 

mathematics actions such as problem solving, proving and explaining solutions or 

methods. 

UNDERSTANDING AND REPRESENTING CONCEPTS 

Skemp (1976) distinguished understanding a concept from its core features, 

relational understanding, which enables implementation of the new concept to 

existing concept images (which is how Hiebert and Lefevre, 1986, defined 

conceptual knowledge, p 3), from understanding by just being able to perform a 

particular operation in what he denoted instrumental understanding. Either way to 

understand a new concept requires mathematical development of existing 

representations. Tall (2004) introduced a model describing development in three 

different modes, the conceptual-embodied world with an emphasis on exploring 

activities, the proceptual-symbolic world focusing the dual features of concepts as 

objects and processes expressed in symbols or procepts (Gray & Tall, 1994), and the 

formal world where mathematical properties are deduced from the formal language 

of mathematics in definitions and theorems. Students‘ concept images develop 

through the worlds with different emphasis on the three modes allowing them to 

understand concepts differently. Based on Pinto‘s and Tall‘s (2001) definitions of 

formal learner and natural learner together with Tall‘s three worlds and Skemp‘s 

definitions of understanding, I created a set of categories to classify students‘ links 

between concepts presented in table 1 (see Juter, 2009, 2010, for further details). 

Examples of classifications of students‘ links from the present study are provided in 

the table. 

The last four types of links are not desirable for the students, who often are unaware 

of the quality of the links, particularly if irrelevant or invalid links are mixed with 

valid ones. Links are formed in different situations, e.g. at lectures, with peers or in 

solitude. Textbooks, lecturers‘ selections and general interests of the group of 

students frame the learning environment and therefore affect the representations 

students are using. Students‘ abilities, ambitions and confidence also influence their 

representations. Representations used when learning a certain topic may become 

vague if they are not endurable enough, e.g. not sturdily linked to other concepts. If a 

person learns a new mathematical topic in the embodied world and his/her abilities 

then develop to symbolic treatment he/she has changed the way of thinking to a 

proceptual-symbolic mode (Tall, 2008). If the learning phase in the conceptual-

embodied world has been too short or otherwise inadequate, parts of the concept 

image may become disjoint or vague, rendering the person unable to explain core 

features of the concept. In the present study all students are future mathematics 

teachers, but they are taught at different universities, by different teachers and under 
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various circumstances which gives them a range of various learning environments to 

develop mathematical representations from. 

Type of link Definition  

Valid link,  

procedural (vp) 

True relevant link with focus on calculations or applications, 

ex: The derivative of velocity gives acceleration 

Valid link, naturally 

conceptual (vn) 

True relevant link revealing a core feature of the concept, not 

formal,  ex: Derivative is the slope of the tangent at a point 

Valid link, formally 

conceptual (vf) 

True relevant link formally revealing a core feature of the 

concept,  ex: If the limit )()(lim afxfax exists in every point 

then f(x) is continuous 

Irrelevant link,  

no reason (ir) 

No actual motivation for the link is provided 

Irrelevant link,  

no substance (is) 

Peripheral true link without substance relevant for the 

concept, ex: You can add derivatives 

Invalid link, 

misconception (im) 

Untrue link due to a misconception of the concept, ex: 

Continuous means the same change everywhere 

Invalid link,  

counter perception (ic) 

Untrue statement contradicting prior statements ex: sinx is 

continuous and continuous means linear 

Table 1. Definitions of links between concepts. Examples in italics. 

THE STUDY 

Students from four groups, two from each of two different universities in Sweden, 

were part of the study. All students, a total of 42, were pre-service teachers in 

mathematics who were studying to teach grades 7 to 9 and upper secondary school. 

The study started with one group, group 1, two years before the remaining three 

groups were added to the project as table 2 indicates. All students in the four groups 

were enrolled in the study. 

Group Autumn 1 Autumn 2 Autumn 3  Spring 4 Autumn 4-5 

1 

 

Questionnaire 

Tasks 

Interview 1 Interview 2 

 

Interview 3 

observation 

 

2-4   Questionnaire  

Interview 1 

Interview 2 

 

Interview 3 

observation  

Table 2: Data collection times for the groups in years 1 to 5  

The first data collection in three of the groups (1, 2 and 4) was at the beginning of 

the students‘ analysis course where they filled out a questionnaire aimed at revealing 

their pre-knowledge of the concepts investigated. The questions were openly 

formulated for the students to be able to answer without influence from other 

formulations. Questions about the concepts were ―Describe the concept of limit of a 

function/derivative/integral‖, ―What do you use limits/derivatives/integrals for?‖ and 

―What does it mean for a function to be continuous?‖ There were some questions 

about the course and a mathematics teacher‘s main qualities as well. The students‘ 
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responses to the questionnaires were used to determine which students to interview. 

The selection was done to reflect the variety of representations, e.g. formal or 

intuitive, in the descriptions of concepts among the entire group of students. The 

purpose of the questionnaire in group 3 was the same but it was somewhat differently 

designed since the students had completed their analysis course at the time of data 

collection. The questions about what to use the concepts for was replaced by some of 

the tasks the other groups got after the course. The questions and tasks in the 

questionnaires and interviews were designed to make the students respond to the four 

concepts in various contexts and to come back to the same concept repeatedly. This 

way the responses were confirmed and clarified and different contexts evoked 

different parts of the students‘ concept images allowing a more nuanced picture from 

the data. All interviews were individually conducted and audio recorded. Data was 

collected from a teacher identity point of view as well, and methodology and results 

from that part are presented in Juter (2010). Focus in what follows is on the cognitive 

representations of the students. 

The aim with the first interview in groups 1 and 3 was to investigate the students‘ 

representations of the concepts as traces of their concept images, and links among 

the concepts. The questions and tasks were quite open at first to let the students 

choose their own formulations of the concepts. Then the instruments used were more 

directed to different aspects of the concepts. One instrument was a table of 29 words 

and phrases used with the purpose to work as stimuli for the students to recall parts 

of their concept images. The words were for example tangent, border, sum, slope, 

rate of change, infinity and interval (see Juter, 2009 for details). The students were to 

describe the evoked parts or say if there was no recollection linked to a particular 

concept (results in table 3). This matrix was used in all groups about half year to a 

whole year after their analysis course to let the students‘ conceptions stabilize after 

the course. Four graphs (figure 1) with different characteristics linked to the four 

concepts studied were also given to the students to determine whether or not the 

represented functions have limits, are differentiable, integrable and continuous in 

every point (results in table 4).  

 

Figure 1. Graphs of functions for the students to analyse 

For each of the four concepts, a set of four descriptions was presented to the students 

on separate cards. The aim was to let the students respond to the different ways of 

representing the concepts. First they got a formal definition and were asked if they 

could see which concept it was. Then they got a picture describing the definition 

which could help them determine which definition it was. After that they got a 
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sentence intuitively explaining the concept and then an example that included 

calculations related to the concept. The students were asked to choose their preferred 

representation and also to explain how they would use different representations in 

their own teaching. They got the concepts in the order limit, derivative, integral and 

continuity and therefore the last concept could easily be guessed. This was obvious 

in a few cases when the students were asked to explain the link between the picture 

and the definition (results in table 5). The first interview in groups 2 and 4 did not 

include the matrix of recalled links since their analysis courses took place during the 

same semester. The matrix was presented to those students in the second interview 

about six months after the analysis courses. The open questions used in the 

questionnaire were used again in the interviews to reveal how the concepts had 

developed in the students‘ concept images. Conceptual issues were addressed again 

in the second interview in various forms. The first and second interview comprised 

the same components together for all students, but differently disposed depending on 

the time of their analysis courses.  

RESULTS 

The results are divided in three sections according to the data collection with the 

matrix of words to evoke the students‘ concept images, the four graphs in figure 1 for 

the students to analyse, and the cards with various sorts of representations. The 

analysis was done to reveal the students‘ perceptions of the concepts, including links 

between concepts, as traces of their concept images from a range of various 

mathematical settings. In table 3 the interviewed students‘ links from the word 

matrix are classified in the categories defined in table 1. The numbers after the 

categories determine the number of links of each kind. The students were divided 

into three groups, I, II and III, according to their conceptions. The three students in 

the first group, group I, had few valid links of which none were formally conceptual 

(vf). Several links were irrelevant (ir, is) or invalid (im, ic). The four students in 

group II had more valid links than the students in group I, but also no formally 

conceptual ones. The students had few irrelevant or invalid links. Group III 

comprised three students with many valid links, including formally conceptual links 

and very few irrelevant or invalid ones. The labels by the students‘ names in table 3 

indicate which group they belong to. The students are listed in order of strength of 

their concept images with the weakest first.  

Student Limit Limit Derivative Derivative Integral Integral Continuity Continuity 

Andy  

(I) 

vp 1 

vn 2 

vf 0 

ir 3 

is 0 

mc 2 

vp 5 

vn 0 

vf 0 

ir 3 

is 8 

mc 1 

vp 5 

vn 0 

vf 0 

ir 3 

is 8 

mc 1 

vp 0 

vn 0 

vf 0 

ir 3 

is 6 

mc 8 

Betty  

(I) 

vp 0 

vn 1 

vf 0 

ir 2 

is 2 

mc 3 

vp 1 

vn 2 

vf 0 

ir 1 

is 2 

mc 1 

vp 1 

vn 0 

vf 0 

ir 0 

is 0 

mc 1 

vp 0 

vn 1 

vf 0 

ir 0 

is 0 

mc 3 

Chris vp 1 ir 5 vp 4 ir 2 vp 5 ir 2 vp 0 ir 1 
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(I) 

 

vn 1 

vf 0 

is 1 

mc 0 

vn 0 

vf 0 

is 0 

mc 3 

vn 0 

vf 0  

is 1 

mc 5 

vn 3 

vf 0 

is 0 

mc 2 

Diana  

(II) 

vp 4 

vn 0  

vf 0 

ir 0 

is 1 

mc 3 

vp 10 

vn 0 

vf 0 

ir 1 

is 0 

mc 2 

vp 5 

vn 1 

vf 0 

ir 0 

is 0 

mc 2 

vp 0 

vn 1 

vf 0 

ir 1 

is 1 

mc 1 

Elise 

(II) 

vp 2 

vn 0 

vf 0 

ir 0 

is 0 

mc 1 

vp 2 

vn 5 

vf 0 

ir 3 

is 0 

mc 0 

vp 4 

vn 3 

vf 0 

ir 1 

is 2 

mc 0 

vp 0 

vn 1 

vf 0  

ir 0 

is 2 

mc 1 

Frank 

(II) 

vp 6 

vn 1 

vf 0 

ir 0 

is 2 

mc 1 

vp 7 

vn 2 

vf 0 

ir 0 

is 0 

mc 0 

vp 3 

vn 3 

vf 0 

ir 1  

is 1 

mc 0 

vp 2 

vn 1 

vf 0 

ir 2 

is 0 

mc 3 

Glenn 

(II) 

vp 7 

vn 2 

vf 0 

ir 2 

is 1 

mc 5 

vp 7 

vn 4 

vf 0 

ir 0 

is 3 

mc 0 

vp 5 

vn 0 

vf 0 

ir 0 

is 2 

mc 0 

vp 4 

vn 1 

vf 0 

ir 0 

is 4 

mc 2 

Harry 

(III) 

vp 7 

vn 0 

vf 1 

ir 0 

is 1 

mc 2 

vp 11 

vn 1 

vf 0 

ir 0 

is 2 

mc 0 

vp 10 

vn 0 

vf 1 

ir 0 

is 1 

mc 0 

vp 3 

vn 2 

vf 1 

ir 0  

is 2 

mc 1 

Ivan 

(III) 

vp 8 

vn 1 

vf 2 

ir 3 

is 2 

mc 1 

vp 6 

vn 7 

vf 1 

ir 5 

is 0 

mc 0 

vp 6 

vn 4 

vf 1 

ir 3 

is 3 

mc 0 

vp 2 

vn 4 

vf 0 

ir 2 

is 2 

mc 0 

John 

(III) 

vp 5 

vn 5 

vf 3 

ir 2 

is 1 

mc 0 

vp 6 

vn 1 

vf 6 

ir 1 

is 1 

mc 0 

vp 7 

vn 5 

vf 1 

ir 0 

is 1 

mc 0 

vp 3 

vn 1 

vf 0 

ir 3 

is 1 

mc 0 

Table 3. Links between concepts categorised according to table 1. The categories 

Invalid link, misconception (im) and counter perception (ic) are merged in mc 

Some students readily talk about their conceptions and views while others are not so 

forward in an interview situation. It is therefore important to take the total number of 

links for each student into account when reading table 3. Andy had a large number of 

irrelevant or invalid links but few valid ones, particularly for continuity where he had 

no relevant links. He had a lot to say about the concept, for example that a 

continuous function has to be linear, has no peaks in its graph and changes the same 

way everywhere, but nothing substantially valid. Andy had a total of 59 links of 

which 34 were irrelevant and 12 invalid. He showed traces of a stronger concept 

image for limits than for the other concepts. An example of a valid naturally 

conceptual link (vn) is his explanation of limits as intervals: ―a limit is a form of 

interval which is shortened to a great extent‖, and he explained further by drawing a 

figure of a graph with an interval on the y-axis, i.e. the function values, around a 

point and saying ―it [the graph] closes in on the point from both ways and you press 

together like this [the endpoints of the interval at the y-axis]‖. Other parts of the 

study confirmed his naturally conceptual understanding of limits, i.e. he was able to 

discern and explain vital aspects of the concept. Elise had 27 links in all of which 17 

were valid, i.e. a considerably larger part of the total number of links than Andy had 

(13 out of 59 valid). She showed a high level of natural conceptual understanding of 

the concepts of derivative and integral. John had 53 links. He had 10 formally 
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conceptual links of his total of 43 valid links, leaving 10 irrelevant links. John 

showed an overall strong and rich concept image of the concepts studied through the 

data collection. Continuity was the concept with the least amount of links for John, 

but also for the other students, which may come from the fact that derivatives and 

integrals are a major part of the required upper secondary school courses and limits 

are therefore to some extent dealt with, but not necessarily continuity. The students 

have consequently not had the same time to implement continuity to their concept 

images as the other concepts.  

Graph a Yes No 

Limit ABCEFHIJ  DG 

Continuous ABCDEFGHIJ  

Differentiable ABCDEFGHIJ  

Integrable ABCDEFGHIJ  

Graph b Yes No 

Limit ABCEFHIJ DG 

Continuous BDEFHIJ ACG 

Differentiable ACDFGHI BEJ 

Integrable ADEFHIJ BCG 

Graph c Yes No 

Limit CFGH ABDEIJ 

Continuous C ABDEFGHIJ 

Differentiable DEFIJ ABCGH 

Integrable CEFI ABDGHJ 

Graph d Yes No 

Limit ABEGI CDFHJ 

Continuous  ABCDEFGHIJ 

Differentiable DEFI ABCGHJ 

Integrable CEFI ABDGHJ 

Table 4. Students‘ answers to whether the four graphs have limits, are differentiable, 

integrable and continuous in the indicated intervals in the graphs in figure 1 

Graph a was not a problem to most of the students. On the other hand, it was harder 

for the students to determine whether Graph b is differentiable or not. The peak made 

them confused and seven students answered incorrectly. Andy, Betty, Elise and Ivan 

responded correctly to all the limit parts of the tasks and in the last two tasks. Elise, 

Frank and Ivan were all wrong concerning differentiability. The traces of the concept 

images in table 3 of these students were very different and in this part of the data 

collection there is no pattern showing who is high achieving and who is not, or who 

has a strong concept image or not. Betty, Elise and Ivan had the highest number of 

correct answers in table 4, but table 3 indicates that they belong to different groups 

(I, II and III respectively). This type of task is not typically what the students had 
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seen in their courses so it was new to all of them. Chris, Diana and Glenn had the 

highest error rates. Diana and Glenn were both in group II in table 3 implying a 

rather strong concept image for the concepts except for limits. Both students had 

three of the four limit tasks wrong in table 4. Andy and John, in each end of table 3, 

had the same score in table 4. 

Table 5 shows how the students represented the concepts from the cards with four 

different representations, formal, picture, calculated example and sentence, for each 

of the four concepts. 

Students Limit Derivative Integral Continuity 

Andy P, DC F, P, 
PD C P, DC P, uD C 

Betty  P, 
PD C S, DI P, E, S, DI P, S, DI 

Chris P, S, DI F, P, E, S, 
PD C P, S, DC E, DI 

Diana  E, DI F, P, 
PD C P, S, DI P, DI 

Elise E, DI F, P, E, S, 
PD C P, S, DC S, DI 

Frank S, DC E, S, 
PD C S, DC S, uD C 

Glenn  S, DI P, E, DC P, DI S, uD C 

Harry F, P, DC P, E, DC P, E, DC E, S, DC  

Ivan F, P, DC F, P, DC F, P, DC S, 
PD C 

John P, DC F, DC P, DC S, DC 

Table 5. Students‘ preferred representations of the concepts (F: Formal, P: Picture, E: 

Example, S: Sentence) and their abilities to recognise the formal definitions (DC: 

Definition correct, 
PD C: Definition + picture correct, uD C: Definition correct but 

unable to explain, DI: Definition incorrect) 

Table 5 reveals that continuity was the concept hardest to recognise from the 

definition, followed by limit. The fact that continuity was the last concept addressed 

helped the students understand which one it had to be. This became apparent when 

they were asked to explain the formal representation in relation to the picture (those 

cases are marked uD C in the table). All students except Betty recognised the 

definition of derivative and a majority could identify the definition of integral from 

the card. Derivative was the concept the students had most kinds of representations 

for. Chris and Elise both used all four representations intertwined. Students who 

could recognise the formal definitions (DC in table 5) often used pictures to 

represent the concepts. Pictures in combination with formal representations were also 

common in the cases where the definition was recognised from the formal 

representations. Students who were unable to determine which formal definition a 

card represented, but could determine it from the added picture (marked PD C in the 

table) often preferred pictures as a representation for the concept. Betty, Frank and 

Glenn did not use any formal representations in this context. The students are listed 

in the same order as in table 3 where the first students have weaker concept images 

and the last ones have stronger concept images. Andy, who is in the first group, is 
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different from the others with his ability to recognise the concepts from their 

definitions despite his results reported in table 3. Among the students who could not 

recognise the definitions (DI in table 5) sentences were the preferred alternative, and 

never formal which could be expected. The sentences were intuitively stated and 

typically chosen as alternatives to formal representations. There were only two cases 

of formal and sentence representations together, and in both cases all four 

representations were used (Chris and Elise).  

DISCUSSION 

The students‘ links between topics were very diverse and the data collection reported 

in table 3 gives a picture of continuity not being implemented in their concept 

images with very few links of all sorts. The other concepts were more elaborated 

with more links but the links do not only imply understanding. A large number of 

links may be misleading the students to believe they understand, like in Andy‘s case, 

since they are able to talk about the concept. If counter perceptions, which for 

example Andy and Chris showed evidence of, can be evoked simultaneously the 

students are more likely to see their flaws than if their misrepresentations are just 

invalid without a contradiction. 

Andy and Betty represented the concepts mainly in pictures (table 5) and that is 

reflecting how they read the graphs in table 4 as well. Andy and Betty were among 

the students with the highest rates of correct answers when analysing the graphs 

(table 4) and the ones with the weakest concept images in the matrix of words (table 

3) which is a surprising result. They were often unable to explain their claims 

correctly, which is a problem especially for future teachers, but they had a sense of 

the characteristics of the concepts. Ivan, one of the students with the strongest 

concept images in table 3, had three errors concerning differentiability in the analysis 

of the graphs (table 4). Ivan‘s representations in table 5 are mainly formal and by 

pictures, moreover table 3 reveals that the derivative is in fact a concept he can 

handle procedurally, conceptually and formally, yet table 4 shows that he is uncertain 

of the core features of the concept. This type of overarching non-routine tasks 

requires the students to know more than just definitions in isolated mathematical 

contexts. They need to be able to relate the characteristics of the concepts to the 

graphs with their different properties and to use their representations in their 

analysis. A strong concept image is not enough for students to discern the necessary 

features. Comparing with Andy and Betty, the similarities are pictures as preferred 

representations. Dissimilarities are that Andy and Betty do not use any formal 

representations in either of the contexts reported in table 3 and 5 except one in 

Andy‘s case, whereas Ivan does in both. Ivan has an overall richer representation of 

all concepts studied and uses and refers to formal formulations, but it appears as if he 

uses his formal representations without having a clear and flexible understanding of 

them linked to his other representations of the concepts in situations new to him. 
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Table 3 and table 5 match each other when it comes to the students‘ use of formal 

representations and they indicate that a strong concept image means formal 

representations as opposed to a weaker concept image. Table 4 reveals a complete 

lack of trends in relation to tables 3 and 5 and the students‘ representations reported 

therein. The traces from their concept images depicted in these three tables imply 

complex relations between abilities to make assumptions about graphs from the 

various sorts of representations investigated. Rich concept images, including formal 

representations, do not imply higher abilities to distinguish the essence of the four 

concepts from the type of tasks used (figure 1).  
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Abstract. In this paper I draw on interviews with university mathematicians in order 

to discuss their comments on Year 1 students‘ verbalisation skills. Analysis was 

conducted in the spirit of enculturative and discursive theoretical perspectives and 

here focuses on: the role of verbal expression to drive noticing; the importance of 

good command of ordinary language; the role of verbalisation as a semiotic 

mediator between symbolic and visual mathematical expression; and, the precision 

proviso for the use of ordinary language in mathematics. I conclude with the 

observation that discourse on verbalisation in mathematics tends to be risk-averse 

and that more explicit, and less potentially contradicting, pedagogical action is 

necessary in order to facilitate students‘ acquisition of verbalisation skills. 

 

KEY WORDS: university mathematicians, verbalisation, enculturative and 

discursive perspectives, student learning. 

Being able to use ordinary language in order to construct and convey mathematical 

meaning is an indispensable tool of the mathematical thinker. The mathematics 

community has always revered eloquent mathematical exposition and, at least until a 

collectively accepted and used symbolic mathematical language became increasingly 

dominant from early 19
th

 century onwards, substantial ideas in mathematics (by 

luminaries such as Cauchy and Lagrange) were often conveyed in ordinary language.  

Yet research on how mathematicians and their students acquire verbalisation skills is 

scarce or subsumed in broader studies of mathematical expression. In the early 1990s 

research on students‘ handling of the verbal and symbolic elements of mathematics 

language often focused on students‘ comprehension and response to mathematical 

texts, rather than students‘ own generated verbal utterances. For example, Furinghetti 

and Paola (1991) discussed students‘ understanding of mathematical texts in the 

context of difficulties with formal proof. Dee-Lucas & Larkin (1991) found that: 

proofs written in ordinary language resulted in better student performance than 

equation-based proofs on problems related to both equation and non-equational 

proof content; the presence of equations cause students to shift attention away from 

non-equational content; and, learners have more difficulty processing equations than 

verbal statements of the same content. With regard to students‘ own writing some 

studies (for example, MacGregor, 1990) have suggested that writing sentences helps 

students write correct symbolic expressions.  
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In this paper I explore some of the characteristics that make verbalisation skills an 

important component of mathematical learning. I also discuss some provisos for an 

appropriate and effective use of verbal expression in mathematics. To this purpose I 

draw on data collected for a broader study (Nardi, 2008) which aimed to elicit 

university mathematicians‘ perspectives on the teaching and learning of mathematics 

at university level. In the following I introduce briefly the study and the theoretical 

underpinnings of the discussion I present in this paper. 

A STUDY OF MATHEMATICIANS‘ PEDAGOGICAL PERSPECTIVES 

The study I draw on in this paper is in an area that has been gaining increasing 

interest in university-level mathematics education research in recent years: the study 

of university teachers and teaching, with a focus on the pedagogical and 

epistemological perspectives of university mathematicians (e.g. Jaworski, 2002). The 

study has its theoretical origins in several traditions of educational research such as: 

clinical partnerships between researchers and practitioners (Wagner, 1997); 

communities of practice (Wenger, 1998); Schôn's (1987) reflective practice; and, 

Chevallard‘s (1985) notion of transposition didactique. From these traditions the 

study has acquired the following characteristics – see (Nardi, 2008, p6-9) for an 

elaborate account. It is: collaborative (namely, it brings together mathematicians and 

researchers in mathematics education in a collective discussion of pedagogical 

issues); context-specific and data-grounded (namely, this discussion is conducted in 

the specific context of, and with data from, the participating mathematicians‘ 

teaching experiences); non-deficit (namely, the discussion, while encouraging self-

reflection and critique, does not primarily aim at the identification of problematic 

aspects of mathematicians‘ teaching by the mathematics educators); and, non-

prescriptive (namely, the discussion, while it encourages the identification of 

preferred and recommended practice, does not lead to explicit pedagogical 

prescription). Of course given above characteristics a study of this type clearly serves 

the dual purpose of research and university teacher development. 

The data collected for the purpose of the study consist of focused group interviews 

(Wilson, 1997) with twenty-one mathematicians of varying experience and 

backgrounds from across the UK. In acknowledgement of the loose sense in which 

the term ‗community‘ (Wenger, 1998) may have among mathematicians, these 

backgrounds included pure and applied mathematics, as well as statistics. Eleven 

interviews with groups of three to five mathematicians were conducted, lasting 

between two and four hours. Discussion in the interviews was triggered by Student 

Data Samples, namely samples of students‘ written work, interview transcripts and 

observation protocols collected in the course of earlier studies of (overall typical in 

the UK) Year 1 introductory courses in Analysis / Calculus, Linear Algebra and 

Group Theory. See (Nardi, ibid, p9-14) for summaries of these studies. The Samples 

were sent to the interviewees at least a week prior to the interview with a request to 

read and reflect on them in preparation for the interview. 
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In accordance with data-grounded theory techniques (Glaser and Strauss, 1967) the 

approximately 250,000 words of interview transcript were initially arranged in 

clusters of episodes on the following six themes: four focused on student learning 

(students‘ mathematical reasoning; in particular their conceptualisation of the 

necessity for proof and their enactment of various proving techniques (1); students‘ 

mathematical expression and their attempts to mediate mathematical meaning 

through words, symbols and diagrams (2); students‘ encounter with fundamental 

concepts of advanced mathematics such as Functions (3) – across Analysis, Linear 

Algebra and Group Theory – and Limits (4)); one focused on university-level 

mathematics pedagogy (5); and, one focused on the often fragile relationship 

between the communities of mathematics and mathematics education (6). There were 

80 episodes. The data I discuss in this paper concern the issue of students‘ 

verbalisation skills and collate evidence interspersed in 7 out of the 80 episodes. 

The discussion here is in the light of enculturative and discursive perspectives on 

mathematical learning. In terms of the former (e.g., Sierpinska, 1994; Wenger, ibid), 

students are seen as incoming participants to the practices of the mathematics 

community; learning occurs communication and practice; and, in this process the 

main role of their university teachers is to introduce them to these practices.  

In terms of the latter (e.g. Sfard, 2007), the learning of mathematics involves a 

change of discourse, where discourse is meant as a distinct form of communication 

that a community engages with. A discourse is made distinct by the community‘s 

word use, visual mediators, endorsed narratives and routines. Words include 

mathematical terminology. Visual mediators include diagrammatic and symbolic 

representations of mathematical meaning. Endorsed narratives include definitions 

and theorems. And routines include practices such as conjecturing, proving, 

estimating etc.. Sfard (ibid) describes the changes of discourse involved in 

mathematical learning in terms of two levels: object-level (namely adding endorsed 

narratives, e.g. accumulating knowledge of new definitions and theorems) and meta-

level (namely adding new objects, changing rules of the discursive game, changing 

word use etc.). Below I outline the analysis of the episodes – overall but particularly 

those clustered under theme (2) above – in the terms of these two perspectives. 

Students‘ mathematical expression – whether verbal, visual or symbolic – is 

expected to undergo a substantial shift, particularly in the early parts of their 

university studies. At least in the UK where the study was conducted, mathematical 

discourses in school and at university are markedly distinct. Brief examples of the 

differences between the two discourses involve routines such as proving (in school 

students are rarely, if at all, expected to provide a formal proof of a claim that they 

make) or the employment of certain visual mediators (in school students are not 

generally expected to make extensive use of formal mathematical language, symbols 

such as quantifiers etc.). 

The interviewed mathematicians paid particular attention to the tension that they see 
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their students experiencing while undergoing this discursive shift. Below I list five 

characteristics that, according to the participating mathematicians, typify this 

tension: 

 Inconsistent Symbolisation: students‘ attempts at producing ‗acceptable‘ 

mathematical writing result in inconsistent use of symbolic language; 

 Ambivalent Visualisation: students‘ appreciation of the role of visualisation in 

gaining and presenting mathematical insight is ambivalent. Their use of it is 

lacking in confidence or lacking altogether. 

 Undervalued Verbalisation: students undervalue, and often avoid entirely, 

expressing their mathematical thoughts verbally. 

 Premature Compression: students‘ mathematical writing is typically 

prematurely compressed, namely ridden with gaps, leaps of logic and omissions. 

 Appearances: students often enact their perception of the need to be 

mathematical (use the discursive norms of mathematical reasoning such as 

providing justification or proof etc.) as a need to appear mathematical (appear 

to make extensive use of mathematical symbols, terminology or expressions). 

The last two characteristics can be seen as combined repercussions of the first three. 

Data substantiation of each of the five can be found in (Nardi, 2008, mainly Chapter 

4). Further elaboration on relationships across all five is part of a longer paper that is 

currently in preparation. Here I draw on the developing text of that paper in order to 

provide a sampler of the data analysis concerning these five characteristics: to this 

purpose I focus on data from one of the five, Undervalued Verbalisation. 

the MaTHEMATICIANS‘ case and provisos for verbalisation 

Across the seven episodes the interviewed mathematicians reported extensively the 

students‘ lack of ability in and appreciation for verbal expression in mathematics. At 

the heart of this reporting was the concern that students‘ inadequate appreciation for 

verbal expression was an indication of the students‘ difficulty with – and lack of 

awareness of their obligation for – making their thinking as transparent as possible. 

The mathematicians also appear concerned about the students‘ lack of awareness of 

the benefits that come with the mastering and employment of verbalisation skills in 

mathematics. In what follows the discussion of the data is structured around four key 

issues: the role of verbal expression to drive noticing and emphasise; the role of 

good command of ordinary language; the role of verbalisation as a semiotic 

mediator between symbolic and visual mathematical expression; and, provisos for 

(and issues emerging from) the use of ordinary language in mathematical 

expression.  

The interviewees stressed that the mere presence of symbols in a mathematical 

sentence is not sufficient for driving students‘ attention to the key mathematical idea 
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in the sentence. As a helpful and efficient routine, that the students currently lack but 

need to adopt the interviewees propose the assistance on this matter from verbal 

adjuncts to the symbolic expression. They offer the definition of convergence as an 

example of a statement where such assistance can be potent. The premise for their 

discussion of this example is the following mathematical problem: 

 

Fig.1 A Year 1 Calculus question requiring emphasis on the meaning of quantifiers 

Typically students responded with omitting a small but significant number of terms: 

 

Fig. 2 Two typical responses to the question with missing emphasis on quantifiers 

Discussing what could possibly trigger students‘ noticing the need to cover all terms 

of the sequence, the interviewees highlight the importance of full sentences: 

‗It seems that after all the presence of the quantifiers themselves in the text of the 

question is not emphatic enough to suggest universality or existence to the students. 

And words, sentences, those creatures ever-absent from students‘ writing exist 

exactly for this purpose: of emphasis, of clarification, of explanation, of 

unpacking the information within the symbols.‘ p151 
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The more skilled students are in producing such sentences, the better the cognitive 

support they will gain from verbalising their mathematical thought. Hence the 

interviewees‘ discussion of the importance of good command of ordinary language. 

The following mathematical problem is the premise for their statements on this: 

Suppose A in an nxn matrix which satisfied A2=0 (the nxn zero matrix). 

1. Show that A is not invertible. 

2. Show that In+A has inverse In-A. 

3. Give an example of a non-zero 2x2 matrix A with A2=0. 

Fig.3. A Year 1 Linear Algebra question requiring clarification on implication order 

In part (ii) of this question the 

students need to show that, 

because the product of In+A 

and In-A is I, In-A is the 

inverse of In+A. The 

interviewees notice that one 

student (Fig.4) starts her 

response with a different, and 

incorrect, statement of her 

intentions:  

 

 

Student LD, part (ii) 

Fig. 4 A typical response to the question with 

apparently muddled implication order 

This student script was commented upon as follows: 

‗I am not very keen on if this is true, then the product of I-A and I+A will be I, even 

though she is doing the absolutely right thing, starting from the product and ending 

up with I. You know why? Because it‘s getting so close to appearing as if she is 

assuming what she is supposed to be proving. What she wants to be saying is 

really this is true because…. There is a subtlety missing there regarding the converse 

statement and their Grammar is not up to scratch to help them see the difference.‘ 

p59 

Unlike the previous example – in which an emphasis on the need to offer a universal 

coverage of the sequence‘s terms could have been provided by a verbal 

accompaniment to the symbolic expression – here the student‘s inaccurate verbal 

expression does not lead her astray. However the interviewees take the opportunity 

provided by such inaccuracies in students‘ writing in order to stress the strong link 

between command of ordinary language and ‗good mathematical writing‘:  

‗It should be made clear to the students that this type of command of the language 

[for example, people being unable to distinguish between a main and a subordinate 

clause…] is not irrelevant to good mathematical writing. And that applies all the 

way through to completion of their studies. I sometimes see final year students and I 

wonder whether they deserve marks for a response that I could only detect as correct 

amidst grammatically incorrect statements. When you put things on paper with 
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such ambiguity and inconsistency, such as sentences without verb or subject etc., 

maybe you should expect a lesser reward too.‘ p151 

In the above, the interviewees state that mathematical writing that is characterised, 

for example, by grammatical ambiguity and inconsistency deserves lesser rewards. 

They also wonder whether students‘ awareness about the significance of grammatical 

and syntactical correctness needs to be emphatically raised. In the concluding 

remarks in this paper I return to this suggestion in order to discuss briefly whether 

this appreciation of the role, and employment, of ordinary language in mathematics 

is perhaps more disproportionately expected from the students than their exposure to, 

and systematic practising of, this valuable routine reasonably allows for. But first, I 

cite the participants‘ statements on what they appear to see as the most valuable 

aspect of verbalisation skills in mathematics: the role of verbalisation as a semiotic 

mediator between symbolic and visual mathematical expression.  

The interviewees cite the definition of convergence as a case illustrating the value of 

the connection between symbolic, verbal and visual forms of mathematical 

expression. Students‘ first encounters with the hefty symbolisation employed in this 

definition are some of the first occasions in which students realise that this mode of 

expression is the discursive norm in mathematical writing and a norm they are 

expected to accustom to quite quickly. The interviewees stress that verbalisation is a 

meaningful way to help students face ‗what they see as madness‘ at this stage and 

steer them away from construing the strings of symbols in the definition as little 

other than ‗formalistic nonsense‘. The example of the student in the following is 

telling: 

‗…a student who wrote down a neat response to a convergence question  applying the 

definition impeccably  and then asked why does this prove the convergence?! What an 

excellent question! I tried to explain that this is the definition of convergence but students 

don‘t quite understand the relation between this expression and what convergence 

ought to mean exactly.‘ p187 

Elaborating on the sources of difficulty with the definition, the following link across visual, 

verbal and symbolic accounts of the definition was offered: 

‗… the difficulty lies with the successive appearance of quantifiers in the definition 

whereas the primary notion for the students ought to be that no matter what I specify the  

region about the A, from a certain point onwards everything fits inside this box. Making 

this link between this image and the formalisation behind this is utterly important. 

Otherwise the definition is nothing other than formalistic nonsense.‘ p188  

Verbalization can then invest a symbolic account of the definition with meaning:  

‗… this is exactly the meaning into words such as eventually and arbitrarily, which 

I constantly put in my writing in my attempt to convey the idea underlying the formal 

expression of the definition. Most students however simply ignore them as 
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irrelevant waffle and copy the definitions only in their notes. I even try grouping the 

various parts of the definition with different colours of chalk!‘ p188 

But then, if a verbal account offers an opportunity to face difficulty with 

understanding a complex definition such that of convergence, why, we may wonder, 

do students typically bypass this opportunity? One explanation is offered below: 

‗But using words is risky: I have seen verbal explanations of the definition which are 

in fact wrong! Like many textbooks are! Which is not embarrassing given the long 

debates about acceptable verbalisations of the definition. Verbalising, 

geometrisising it etc. is fine as long as we stay this side of correctness!‘ p189 

What the above seem to suggest is that resorting to ordinary language is seen as 

potentially containing some inherent risk, a jeopardy for mathematical precision. Is it 

therefore conceivable that the students, in their avoidance of, or trepidation towards, 

verbalisation are simply adopting the risk-averse discourse of the community 

towards ‗verbalising‘ and ‗geometricising‘? The following seems to suggest so: 

‗… sometimes steering clear of intuitions and pictures etc, yes, working through strings 

of quantifiers, even though one may not be so sure of what is going on, can be seen as less 

messy, less risky. I think some students may in fact see it this way and be happy to work 

this way and just do what they are told. You can view this as the recipe, you can do this, 

you do this and you do this… You just follow the steps. And in some ways they are safer 

this way because they will not make mistakes as long as they are technically doing the right 

steps.‘ p189 

Wordless discourse seems to exert some allure on mathematicians (see two examples 

in Fig.5) perhaps because of its capacity to convey meaning with curt elegance. But 

does this trepidation towards verbalization contrast with – even contradict… – the 

expectation that students will appreciate and employ verbalisation in mathematics? I 

conclude with a few thoughts on this potential contradiction. 

A contrast between expectations and practice? 

In the above the interviewed mathematicians make a strong case for verbalisation in 

mathematics: it can drive our noticing of key mathematical ideas and can act as a 

crucial semiotic mediator between symbolic and visual mathematical expression. 

They also stress that, for verbal skills to deliver on this potential, good command of 

ordinary language is important. They observe that students avoid verbalising their 

mathematical thoughts and they describe this student tendency as missing an 

opportunity to overcome difficulty with understanding certain complex ideas in 

mathematics. In discussing certain provisos for what makes verbalisation an 

acceptable part of mathematical discourse, they cite attention to precision as one 

such proviso and express their weariness with the potential risk of ambiguity in 

verbal expression. Their discourse seems to be quite risk-averse and they recognise 

that students‘ avoidance of verbalisation may be underlain by a similar aversion to 

risk.  
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What is conspicuously absent in the discussion above is the acknowledgement that, 

if verbalisation skills are an important part of students‘ learning at this stage (with 

‗learning‘ meant as a ‗change of discourse‘ (Sfard, ibid)), then explicit and 

systematic pedagogical practice has a role to play in facilitating this discursive 

shift. At least in these interviews the pedagogical strategies employed towards this 

facilitation appeared mostly implicit in the interviewees‘ statements – that they strive 

for eloquence in their exposition in lectures and that they aim to set a good example, 

for instance, through their own writing on the board. Given the rather severe absence 

of mathematical eloquence from most of the student scripts we examined in the 

course of these interviews, it seems that a more explicit and systematic approach to 

developing students‘ verbalisation skills in mathematics is necessary. 

  
Fig.5. Two proofs without words: the allure of a word-less mathematical discourse. 

ENDNOTES 

1
The interview data sampled here are presented in the format of a re-storied 

narrative. The narrative approach of re-storying (Clandinin and Connelly, 2000) 

adopted in this work involves reading the raw transcripts, identifying and 

highlighting experiences to be told across this raw material and then constructing a 

new narrative that represents these experiences. So, while fictional, the new narrative 

is entirely data-grounded. In this sense the interviewee utterances quoted in this 

paper were constructed entirely out of the raw transcripts of the interviews with the 

mathematicians. A quotation typifies and condenses the views expressed by a 

substantial number of participants. (For an example of the re-storying construction 

process as well as other influences on the data analysis see p27-28 in (Nardi, 2008)).  
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A threshold concept is a ‗portal‘ or a ‗conceptual gateway‘ that leads to a 

previously inaccessible, and initially troublesome, way of thinking about something. 

A new way of understanding may thus emerge – a transformed view of the subject. 

The framework of threshold concepts has been used for some years in research of 

teaching and learning in higher education in several subjects but there are only few 

articles in mathematics education using this framework. The aim of this paper is to 

introduce threshold concepts into mathematics education. The result of searching 

papers in mathematics education using threshold concepts is presented. The need for 

more research using this framework to create a meeting point for mathematicians 

and educationalists and to improve students‘ learning is pointed out. 

Keywords: Mathematics education, students‘ conceptions, threshold concepts, 

troublesome knowledge, university student learning. 

INTRODUCTION 

The aim of this paper is to introduce threshold concepts (Meyer & Land, 2003) as a 

framework for research in mathematics education. This framework has for some 

years been used in research of higher education in several subjects but is nearly 

missing in the mathematics education research. Using the framework of threshold 

concepts can be very powerful for improving student learning, by providing a 

language for discussing learning and a meeting point for educational researchers and 

mathematicians. Threshold concepts have been used successfully to engage subject 

specialists into pedagogical discussions (Cousin, 2009). My own experience is that 

the notion of threshold concepts works well also in mathematics (Pettersson, 2008). 

Students who are confronted with a mathematical concept sometimes find learning 

troublesome. There is a large body of research on students‘ difficulties in shaping 

their conceptions in accordance with the expectations of the learning environment. 

For example, the research on students‘ conceptions in calculus has shown that the 

learning of several concepts is problematic for the students (for an overview, see e.g. 

Artigue, Batanero, & Kent, 2007). The concept of limit of functions is one of the 

problematic instances in the learning of calculus. The concept of limit is a central 

part of calculus, not only for its own sake, but also because it is used in the 

definitions of derivative and continuity. Also to get good conceptions of integrals 

there is a need of a good conception of limit, even though not all definitions 

explicitly use the concept of limit. ‗Limit‘ is one example of a concept that could be 

classified as a threshold concept (Meyer & Land, 2003). 
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The notion of threshold concepts has for some years been used in research in higher 

education in several subjects. However, in searching for articles in mathematics 

education using the notion ‗threshold concept‘, nearly no findings will appear. In this 

paper I will first present the theory of threshold concepts and then present some 

cases using threshold concepts as a framework in economics, engineering and 

computer science education. I will also present the result of a search for articles 

using threshold concepts within mathematics education research. Finally I will offer 

some arguments for using this framework in research on mathematics education. My 

contribution through this paper is to start a discussion of how focusing threshold 

concepts can support also research in mathematics education. 

WHAT IS A THRESHOLD CONCEPT? 

Meyer and Land (2003) introduced the notion threshold concept. In students‘ efforts 

to develop their understanding of a subject some concepts may be more crucial than 

others. A threshold concept can be seen as a ‗portal‘ or a ‗conceptual gateway‘ that 

leads to a previously inaccessible, and initially troublesome, way of thinking about 

something. A new way of understanding may thus emerge – a transformed view of 

the subject. Threshold concepts are concepts that bind a subject together and the 

acquisition of such concepts is important to grasping the ways of thinking and 

practising in the subject (Land, Cousin, Meyer, & Davies, 2005). Threshold concepts 

are concepts that university teachers typically describe as ‗core concepts‘, but it 

should also be noted that threshold concepts should be regarded first and foremost 

from a student learning perspective (Meyer & Land, 2003). 

A mathematical concept is given by a definition but the definition must be 

interpreted by a learner. Tall and Vinner (1981) use the notion ‗concept image‘ to 

talk about a student‘s interpretation of a concept including everything a student 

connect to the concept; processes, pictures, examples and also the definition and an 

interpretation of the definition. Threshold concepts are concepts for which the 

building of a well connected concept image is troublesome. Meyer and Land (2003) 

presented the mathematical concepts ‗limit‘ and ‗complex number‘ as examples of 

threshold concepts. There are also several examples from other subject areas such as 

‗opportunity cost‘ in Economics and ‗gravity‘ in Physics (Meyer & Land, 2006). 

CHARACTERISTICS OF THRESHOLD CONCEPTS 

Threshold concepts are characterised as initially troublesome, transformative, 

integrative, and irreversible (Meyer & Land, 2006). They also tend to serve as 

boundary markers and may get the students into a liminal space where the students‘ 

understandings are unstable. To identify threshold concepts in a subject area we can 

search ‗core concepts‘ and then use previous research about troublesome learning 

and students‘ conceptions of these concepts. This will give us candidates for 
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threshold concepts for which we through new research can check the characteristics 

of threshold concepts. 

Troublesome knowledge 

The learning of a threshold concept is likely to be troublesome for the students. 

Perkins (1999) defines ‗troublesome knowledge‘ as a kind of knowledge which 

appears counter-intuitive, alien or seemingly incoherent. A way for students to avoid 

this troublesome knowledge is to remain in a common sense or intuitive 

understanding of the concept. Pushing students to change their understanding is not 

unproblematic as it can involve an uncomfortable and emotional repositioning 

(Cousin, 2009). 

Transformative 

Understanding a threshold concept will bring about a significant shift in students‘ 

perception of a subject or a part thereof (Meyer & Land, 2003). It is not just a new 

understanding of the concept; it involves transformation of the understanding of the 

whole subject area where the concept is located. It includes an ontological as well as 

a conceptual shift. The shift in perspective may lead to a reconstruction of 

subjectivity. It is likely to involve an affective component. The transformation may 

be sudden, but it is mostly stretched over a long period. 

Integrative 

Threshold concepts are concepts that bind a subject together. Understanding a 

threshold concept will expose previously hidden relations between concepts in the 

subject area (Meyer & Land, 2003). Mastery of threshold concepts helps the student 

to overcome a fragmented view of the subject, things fall into place (Cousin, 2009). 

Integrating prior understandings is also part of the transformation of understanding 

of the whole subject area (Davis & Mangan, 2007). 

Irreversible 

The change in perspective brought about in the course of developing an 

understanding of a threshold concept is unlikely to be forgotten or will be unlearned 

only by considerable effort (Meyer & Land, 2003). This does not exclude 

modification or rejection for a more refined understanding. One problem in this 

irreversibility is for teachers, who have transformed their understandings, to look 

back across thresholds to be aware of the kind of understandings the students are 

likely to have before transformation has occurred (Cousin, 2009). 

Boundary markers 

Threshold concepts tend to be bounded in that they ―serve as boundary markers for 

the conceptual spaces that constitute disciplinary terrain‖ (Land, Meyer, & Smith, 

2008, p. x). A student entering a new conceptual space by grasping a threshold 

concept will find that this new conceptual space will be surrounded by other 
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threshold concepts. These threshold concepts form a frontier to new conceptual 

areas. 

Liminal spaces 

During the process of mastery of a threshold concept the students may enter a liminal 

space (Meyer & Land, 2006). The notion is taken from the word limen, a Latin word 

meaning boundary or threshold.  This space could be compared with the period of 

adolescence; not yet being an adult, not quite a child. In this unstable state the 

learner may oscillate between old and new understandings just as adolescents move 

between acting as a child and as an adult. These liminal spaces are spaces of 

transformations. Most of the students in this state will oscillate between grasping the 

concept and then loosing that grasp. A learner engaged with the project of mastering 

a threshold concept would enter the liminal space and hopefully the learner will 

come out from this space with a transformed understanding of the concept. However, 

the liminal space can also become a ‗stuck place‘ for the student. Reaching a 

transformed perspective can be blocked for some students by the ‗epistemological 

obstacles‘ inherent in the threshold concept (Mayer & Land, 2005). These students 

will then fake understanding through the practice of mimicry, learning by rote or 

learning how to solve typical problems (Cousin, 2009). 

THRESHOLD CONCEPTS IN SEVERAL DISCIPLINES 

Over the past few years, research using the framework of threshold concepts has 

been carried out in different subjects, such as economics, engineering and computer 

science (Land, Meyer, & Smith, 2008). Starting with the ETL-project, Enhancing 

Teaching-Learning Environments in Undergraduate Courses, in UK where several 

institutions took part, threshold concepts is ―now moving from a position of being a 

leading edge new perspective to one which is catching the interests of academics 

educational researchers in a growing number of countries‖ (Meyer & Land, 2006, 

p.xii). 

In a project aimed at empirically identifying threshold concepts in computer science 

Zander, Boustedt, Eckerdahl, McCartney, Mostrôm, Ratcliffe, and Sanders (2008) 

used interviews and questionnaires to obtain data from teachers and students. 

‗Object-oriented programming‘ and ‗memory/pointers‘ emerged as candidates for 

threshold concepts. The project also investigated how students understand these 

concepts with the aim to improve teaching and learning. 

Shanahan and Meyer (2006) studied a threshold concept in Economics; ‗opportunity 

cost‘. The results points out that there are important implications for the manner in 

which students are introduced to threshold concepts. When learning threshold 

concepts ‗first impressions matters‘. Efforts to make the concept easier by 

simplifying students‘ first impressions may set students on a path of ritualised 
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knowledge that creates barriers to a deeper understanding and prevents students from 

crossing the threshold. 

In electrical engineering Carstensen and Bernhard (2008) considered the 

troublesome concepts ‗frequency response‘.  They propose that certain concepts can 

function as a ‗key‘ that opens up the portal of understanding. Teaching such ‗key‘ 

concepts do not just open up for understanding of that concept, but also the learning 

of other concepts related to it. Using the tool ‗Bode Plots‘ to illustrate frequency 

response was found to function as such a ‗key‘. The results from focusing the 

teaching on these ‗key‘ concepts opening up for understanding the threshold 

concepts showed an improvement in the scores achieved by students on a test at the 

end of the course. 

Just a few examples are given within this paper; many more findings have been 

published (e.g. Land, Meyer & Smith, 2008). Recently a new book on threshold 

concepts was published (Meyer, Land, & Baillie, 2010). However, there is a lot more 

to do, especially in relation to mathematics education. 

THRESHOLD CONCEPTS IN MATHEMATICS EDUCATION 

The notion of threshold concept is established in the research of higher education in 

general but searching for articles in mathematics education using the notion 

threshold concepts gives just a very few findings. Using the database ERIC and the 

combination ‗mathematics‘ AND ‗threshold concept‘ searching in all text produced 

five hits when searching in the period of 2003-2010 (access 2010-09-06). Two of 

these five articles are about ‗threshold values‘ of variables used in physics and 

resources on the Internet. The remaining three articles are published in Educational 

studies in mathematics (Williams, 2009), European journal of engineering education 

(Masouros & Alpay, 2010) and Higher education (Scheja & Pettersson, 2010). 

Using the database Academic Search Premier and the combination ‗mathematics‘ 

AND ‗threshold concept‘ searching Boolean/Phrase in all text produced 32 hits of 

peer reviewed articles when searching in the period of 2003-2010 (access 2010-09-

06). However, scanning the list of these articles only seven are in the area of 

mathematics education; that is reporting research about teaching and learning in 

mathematics courses. These seven articles include the three articles fund in ERIC. 

The other four are published in Educational studies in mathematics (Bramby, 

Harries, Higgins, & Suggate, 2009), European journal of engineering education 

(McCartney, Boustedt, Eckerdahl, Mostrôm, Sandres, Thomas, & Zander, 2009; 

Booth, 2008) and International journal of mathematical education in science and 

technology (Pettersson & Scheja, 2008). 

Threshold concepts are in focus in two of the articles. Scheja and Pettersson (2010) 

discuss the transformative aspect of threshold concepts suggesting that the 

transformation involves a transformation of the students‘ conceptions as these 

develop through shifting contextualisations of the concepts. McCartney and 
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colleagues (McCartney et. al., 2009) also focuses threshold concepts, but mostly 

related to software engineering. The article summarizes findings concerning how 

computer science students experience the liminal space and discuss how this might 

affect teaching. 

In the other articles threshold concepts are more or less just mentioned. Masouros 

and Alpay (2010) focuses on the design of a computer-based mathematics resource. 

When discussing the mathematics content of the resource they emphasize that special 

effort should be given to troublesome topics that lead to a transformation in 

understanding, mentioning threshold concepts and referring to Meyer and Land 

(2003). 

Williams (2009) puts forward the notion ‗threshold moment‘ where seeing and 

grasping at the nexus of two or more activities often seem to be critical to 

breakthroughs in learning. In a footnote Williams makes a note on literature on 

‗threshold concepts‘ and also points out that not very much has been published about 

threshold concepts in mathematics. 

Barmby, Harries, Higgins, and Suggate (2009) discuss children‘s understanding and 

reasoning in multiplication. When the authors talk about key representations for a 

concept they relate this to the notion of ‗key development understandings‘ defined by 

Simon (2006). They make a quotation from Simon and in this quote parallels with 

the notion of ‗threshold concepts‘ are mentioned. Barmby and colleagues do not take 

this any further. 

Booth (2008) addresses the issue of teaching and learning engineering mathematics 

based on a form of understanding that goes beyond facts, theorems and algorithms. 

She points out that the mathematicians as mathematics teachers in the engineering 

education mostly are interested in the learning objects, in what to learn, also 

mentioning that educational researchers have much knowledge about the ways 

students might be comprehending the learning objects, ―in particular when it comes 

to ‗threshold concepts and troublesome knowledge‘ ‖ (p. 383) referring to Meyer and 

Land (2003). 

Pettersson and Scheja (2008) explore the nature of students‘ understanding of the 

concepts limit and integral. As a reason to study these concepts it is argued that these 

concepts are threshold concepts giving references to Meyer and Land (2005, 2006) 

and to previous research about students‘ conceptions in calculus. 

Looking at these articles found by searching databases it could be seen that the 

notion threshold concepts until now is just used in really few research articles in 

mathematics education. In the next paragraph I point out that this framework is very 

useful also in mathematics education. 
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TO BE USED IN MATHEMATICS EDUCATION 

Using the framework of threshold concepts is potentially even more successful in 

mathematics than in other subjects. In mathematics the concepts are an important 

part of the curriculum and the concepts are explicitly defined in a way that is 

uncommon in other subjects such as economics and engineering. The concepts and 

the relation between them build the core of mathematics (Davis & Hersh, 1990). 

In my own research (Pettersson, 2008; Pettersson & Scheja, 2008; Scheja & 

Pettersson, 2010) I have studied students‘ conceptions of function, limit, derivative 

and integral. Looking through previous research about students‘ learning of calculus 

(e.g. Artigue et. al., 2007) these concepts are candidates as threshold concepts. The 

characteristics of threshold concepts, as integrative and transformative in the 

learning process, points out the importance of research about conceptions of these 

concepts. Pettersson and Scheja (2008) points out the students‘ algorithmic way of 

interpreting the concepts of limit and integral. Looking at these concepts as threshold 

concepts and focusing on the transformative aspect of the threshold showed that the 

students started to pass the threshold (Scheja & Pettersson, 2010). Challenging 

questions in the interviews showed to be important to start this transformation. 

Threshold concepts can in this way be used to focus on powerful transformation 

points in the students‘ learning; they are ‗jewels in the curriculum‘ (Land, Cousin, 

Meyer, & Davies, 2006, p. 198). They give the students opportunities to develop 

fundamental conceptual understanding. Using threshold concepts in teaching a 

subject offers an opportunity to focus on the points that are really useful in mastering 

the subject (cf. Carsetensen & Bernhard, 2008). Focusing the most important 

concepts of the subject will also be a way of avoiding an overstuffed curriculum 

(Cousin, 2009). 

Threshold concepts are characterized as potentially troublesome. The students are 

likely to encounter troublesome knowledge and experience conceptual difficulty. 

These concepts are potentially ‗stuck points‘. The students get into the liminal space 

with uncertainty and oscillation in understanding. This unsecure phase of learning 

may be necessary and unavoidable but we do not want the students to stay for a long 

time in the liminal space. Scheja and Pettersson (2010) argue that the students‘ 

shifting from an algorithmic contextualization to a contextualization inviting 

reflection on conceptual dimensions of limit and integral is a way to move on from 

the liminal space. Threshold concepts are rarely mastered at a specific point of time, 

an ‗aha‘ moment, mastery might take years to complete (McCartney et. al., 2009). 

However, teachers listening to the students‘ uncertainties give possibilities for 

helping the students through the liminal space. Knowledge about these potentially 

stuck places is important in the teaching. Shanahan and Meyer (2006) pointed out the 

importance of the first impression; to simplify the threshold concepts do not help the 

students. 
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One of the big advantages of research on threshold concepts is that it animates 

interests and discussions among academics. This kind of educational research gives 

centrality to the subject specialists and gives a platform for partnership between 

educational researchers and subject specialists. Such a focus on threshold concepts is 

also a good way to involve both subject specialists and educational researchers in a 

discussion on student learning, curriculum design and teaching the subject. Getting 

academics together to discuss and identify threshold concepts in their subject area 

has proved to be very fruitful (Cousin, 2009). My own experience of discussing 

teaching and learning mathematics at university with mathematicians is that 

threshold concepts appear to fit very well in mathematics. Presenting the idea of 

threshold concepts to mathematicians always bring up discussions about what 

threshold concepts there can be in calculus, in linear algebra and other subject areas. 

These discussions usually spark ideas about students‘ conceptions and how to 

improve student learning. The metaphor of a threshold to pass seems to be easy to 

take in and to be a good starting point for educational discussions. 

Research using the framework of threshold concepts has the possibility to improve 

the teaching and learning of mathematics. The framework will be powerful in 

research of university mathematics education but it can also be used in research on 

mathematics teaching and learning at other levels such as primary and secondary 

school. 

CONCLUSIONS 

The framework of threshold concepts has successfully been used in educational 

research into several subjects. However, there are still few publications related to 

mathematics education. Using this framework in mathematics education will 

contribute to mathematics education in several ways. There are several concepts in 

the subject of mathematics that are troublesome for the learners. Knowledge about 

concepts which are transformative and integrative will help us to improve teaching 

and learning. To focus on threshold concepts is a way to avoid an overstuffed 

curriculum (Cousin, 2009). Research has also pointed out that the students scored 

higher when the teaching was focusing threshold concepts (Carstensen & Bernhard, 

2008). The notion of threshold concepts also creates a meeting point for 

educationalists and mathematicians. The notion provides a language for discussions 

about how to improve teaching and learning. There is a growing body of results 

about threshold concepts in several subjects, but there is a lot more to do in relation 

to mathematics. 
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CHALLENGES WITH VISUALIZATION: THE CONCEPT OF 

INTEGRAL WITH UNDERGRADUATE STUDENTS  

Blanca Souto Rubio and Inés Mª Gñmez-Chacñn  

Universidad Complutense de Madrid 

In this paper, some components of a conceptual framework for the study of 

visualization processes from a cognitive point of view are presented along with a 

discussion of examples of empirical data relating to the concept of integral: (1) the 

coordination of registers of representation for explaining some of the students 

difficulties in the understanding and learning of mathematical concepts (the 

integral); (2) characteristics of visualization (in Calculus): it is related to the use of 

the graphic register in coordination with other representations and accompanied by 

a global apprehension; (3) the use of the graphic register (non-visual, mixed and 

visual methods are identified) and the higher cognitive difficulty of visual methods.  

Key- words: Visualization, Representations, University level, Integral. 

INTRODUCTION  

This paper grew out of a study conducted in 2008/2009 with a group of first year 

students at the Universidad Complutense de Madrid (UCM). The main aim of this 

study was to improve the teaching of mathematical analysis by emphasising 

visualization processes (Souto, 2009; Souto & Gñmez- Chacñn, 2009). From the 

beginning, a big challenge was: how to characterize visualization processes in order 

to be able to observe them in our particular context? The literature review related to 

this topic highlighted a large diversity of terms and theories around the notion of 

visualization; most of them referred to primary and secondary levels (Duval, 1995, 

1999; Arcavi, 2003; de Guzmán, 2002; Presmeg 1985, 2006; Eisenberg & Dreyfus, 

1991). Therefore, we noticed a lack of empirical studies on visualization among 

undergraduate students and of a corresponding adaptation of some of these 

theoretical elements to this level of teaching.  

For the sake of brevity, in this paper we focus on cognitive aspects of visualization. 

We mostly use the theory of registers of semiotic representation (Duval, 1995, 1999). 

Firstly, some theoretical ideas from this framework are outlined and reviewed. 

Secondly, some examples of empirical data are analyzed. It is not our aim in this 

paper to provide an exhaustive analysis of the results obtained in the previous study 

(Souto & Gñmez- Chacñn, 2009), but just to analyze examples of data chosen in 

order to provide insight into some of the specific knowledge on individual students‘ 

reasoning in relation to visualization processes, obtained in this study.  

The concept of integral has been chosen because it offers an opportunity to discuss 

key issues concerning visualization. Research on the concept of integral (Mundy, 

1987; González-Martín & Camacho, 2004) emphasize that during the first year of 
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university, students use the concept of integral in a very mechanical way due to the 

lack of coordination of the concept of area and of integral, among other reasons. 

Furthermore, in an attempt to improve the comprehension of the concept, other 

authors have recommended explicit attention to visualization (de Guzmán, 2002; 

González-Martín & Camacho, 2004).  

ABOUT THE CONCEPTUAL FRAMEWORK 

Within the cognitive approach, the theory of the registers of semiotic representation 

(Duval, 1995, 1999) was useful in order to describe and analyze students‘ difficulties 

in the learning of mathematical concepts. In order to explore visualization processes, 

it has been found fruitful to combine it with some results from research on the role of 

visualization in mathematical reasoning (de Guzmán, 2002; Arcavi, 2003), on 

individual differences in the preference to visualize (Presmeg 1985, 2006) or on 

reasons for a reluctance to visualize (Eisenberg & Dreyfus, 1991), since that allows 

us making choices of important aspects for visualization inside Duval‘s theory. 

Understanding and learning of mathematical concepts  

We agree with Duval (1995, 1999) that the only possible access to mathematical 

objects is through their representations in the different semiotic registers. From this 

perspective, the understanding of a concept is built through tasks that imply the use 

of different registers and promote the flexible coordination of representations. 

Therefore, learning mathematics implies ―the construction of a cognitive structure by 

which the students can recognize the same object through different representations‖ 

(Duval, 1999: 12). 

In this context, improving learning implies, in particular, to minimise difficulties, 

misunderstandings and mental blockings that could appear in different actions 

related to a register: representation, treatment and conversion (Duval, 1995). As we 

noted in the introduction, in our specific case - the understanding of the concept of 

integral – research conducted with the semiotic approach highlights as a source of 

difficulties the lack of coordination between both the graphic and algebraic registers, 

and the predominance of the latter in the students‘ answers. This leads us to pay 

special attention to the use of the graphical register and to visualization.  

Visualization in mathematics education  

According to Duval (Duval, 1999: 15), visualization can be produced in any register 

of representation as it refers to processes linked to the visual perception and then to 

vision. For the aim of the present study, this notion is too broad; although we take 

into account some other characteristics of visualization pointed out by Duval. We 

find more useful Arcavi‘s definition, which is limited to the use of figures, images 

and diagrams. 

―Visualization is the ability, the process and the product of creation, interpretation, use of 

and reflection upon pictures, images, diagrams, in our minds, on paper or with 
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technological tools, with the purpose of depicting and communicating information, 

thinking about and developing previously unknown ideas and advancing understandings‖ 

(Arcavi, 2003: 217). 

Therefore, in the frame of this research we identify visualization with the use of the 

graphic register. However, some remarks related to this definition are needed. 

In the characterization of visualization in the context of problem solving, we find 

very useful the difference between visual and non-visual methods established by 

Presmeg in her research about preference to visualize (Presmeg, 1985). However, we 

have to be cautious when combining Presmeg‘s and Duval‘s approaches. For 

example, the following equivalence cannot be established: visual method (Presmeg) - 

use of graphic register (Duval). We must be cautious for two reasons. Firstly, when 

Presmeg (2006) talks about visual images, she includes mental images that belong to 

the world of mental representations, which are different from Duval‘s semiotic 

representations (Duval: 1995: 14). We adopt this sense of mental images in relation 

to visualization. Secondly, the use of the graphic register does not imply that the 

method is visual. Duval (1999: 14) distinguishes two types of functions for the 

images: the iconic and the heuristic. The latter involves a global apprehension and it 

is related to visualization (Duval, 1999: 14). If there is use of the graphic register but 

there is not global apprehension or the image performs an iconic function, we will 

not therefore use the term visualization. Thus, the relevant connection is between 

visual methods (Presmeg) and this heuristic function of images (Duval). 

Finally, Eisenberg and Dreyfus (1991) indentify three reasons to explain the 

reluctance of some students to visualize: ―a cognitive one (visual is more difficult), a 

sociological one (visual is harder to teach) and one related to beliefs about the 

nature of mathematics (visual in not mathematical)" (1991:30). With the help of 

Duval‘s approach, it will be possible to describe this particular cognitive difficulty of 

visualization. 

PARTICIPANTS AND DATA COLLECTION 

The study was conducted with a first year group of 29 mathematics students at 

Universidad Complutense de Madrid, 15 female and 14 male. In this first year, the 

students followed a course called Real Variable Analysis, in which the formal 

definition of the concept of integral is introduced. However, they were supposed to 

have learned the basic rules for integration by using primitives as well as its relation 

to the calculation of some areas under curves already in secondary school. 

For the data collection, the instruments used were a questionnaire with problems and 

semi-structured interviews. The questionnaire was composed of 10 non routine 

problems in mathematical analysis, some taken from other studies (Mundy, 1987; 

works quoted in Eisenberg & Dreyfus, 1991). Most of the problems are posed in the 

algebraic register but they also allow a visual interpretation (Eisenberg & Dreyfus, 

1991). Thus these problems allow the analysis of students‘ performance with regard 
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to the coordination of registers, and particularly the use of the graphic register. The 

results obtained from the questionnaire required deeper investigation into affective, 

cognitive and sociocultural aspects of individual students. In order to do this, 6 semi-

structured interviews were conducted. These were divided into several parts: 

individual background, tasks about beliefs and preference of visualization, questions 

on questionnaire‘s answers. In this paper, attention is paid only to the cognitive 

aspects of the data. 

For the data analysis, we privileged the use of systemic networks for the 

questionnaire and transcriptions for the interviews. Systemic networks (Figure 8) 

allow looking simultaneously at all the students‘ answers to the problems. Both, 

students and their answers, were labelled with a number from 1 to 29 included 

between parentheses. In particular, systemic networks favour the observation of the 

following elements: strategies and kinds of representation used by each student; 

frequency of use and difficulties of each register; and students‘ conceptions. 

ANALYSIS AND DISCUSSION OF RESULTS 

Students' difficulties analyzed through the theory of registers of representation 

Students‘ answers to the questionnaire were analyzed using Duval‘s theory of 

registers of representation. The results described below are based on the analysis of 

the systemic network (Figure 8) associated with the following problem (Figure 7), 

but they are representative of what happens with other problems in the questionnaire. 

What‘s wrong in the following calculation of the integral? 

 
Figure 7 Statement of the first problem 

Firstly, the choice of representation and register is very important for solving the 

problem successfully. These decisions are directly related to the conception used for 

the integral concept. All the students who gave valid answers, placed on the top of 

Figure 8, were either focused on the function (global properties as continuity or 

asymptotes; or local at x=0) or they contemplated the interpretation of the integral as 

the area under a curve. This led two of the students to the use of the graphic register. 

However, most of them (22 students) interpreted the integral as a process 

(calculation of primitives and Barrow Rule) which leads all of them to the use of the 

algebraic register. In this case, the students were not able to correctly answer the 

question. They repeated the same calculation or made some errors (using a different 

primitive, interchanging the signs when applying the Barrow Rule, considering the 

constant of integration, miscalculations). 
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STUDENTS’ ANSWERS CONCEPTIONS  

Valid 
answers 

- As the function is not continuous, Barrow Rule can´t be applied.    (1) 
Continuity. Function as 
part of the hypothesis of a 
Theorem 

- Recalculate the primitive (with +C) and The primitive of 1/x
2
 is calculated correctly  

(4) 
Primitive´s calculation 

- The f is not 
defined in 0 

But the integral is not well defined, as x = 0 )1( 2x
Dom

 

Function as application 
that gives one value to 
another. 

It is not integrable in [-1, 1] (7)  
The calculation is wrong because we are not taking into account 
this value of the x   

(17)  

- In x=0, f 
goes to 
infinite 

It is not possible to calculate, as the function tends to when x 

tends to 0  
(14) 

(29) 

Function depending on 
one variable. Idea of limit, 
asintotes.  In x = 0 the function goes to infinite. The 

integral can’t be calculated in that way for that 
function. 

 

(28) 

Function  graphic. 
Integral as an area under 
a curve. - The 2nd = is wrong (without justification). The function is 

drawn and it is concluded that it cannot be negative.  

 

(22) 

Non valid 
answers 

Calculation 
redone or 
indicated how 
to redo 

- The same steps 
are repeated  

S/He concludes that is correct  (13) (24) (20) Integral as an area under 
a curve. He points that -1/x is negative and adds that  (19) 

S/He tries another way (primitives)  
(12) 

IntegralCalculation of 
Primitives 
 
 
Definite Int.Barrow’s 
Rule 

- Other primitives 
are used 

 2x 3-2 x
 

results, with errors, -4 

3
x

3
2- x

  
result -2/3 (18) 

S/he points the primitive would be 
used 

332

3

3
1

11

xxx

 

(11) 

- Change of the 
order in Barrow 
Rule 

2
1

1

1

11
1

1x

   
(2) (19) (25) 

With miscalculations 2
1

1

1

11
1

1x

   
(27) 

- Change of variable. Problems with variables of integration. Derivation 
instead of integration 

(16) 

- Other errors  

Direct substitution:   0)1(1 222dxx  (23) 

Signs   011
1

1

1x

 
(5) (8) (21) (27) 

Others  (9) (12) (15) 

- Comments 

- Being fussier, we could say that the integration 
constant should appear, which dissappears when 
applying Barrow Rule. 

(13)  

- The integrals give areas under curves that are 
always positive (Not graphic representation) 

(27) 
Visual: Integral as an 
area under a curve. 

 
 
 
Calculation 
not redone 

- It’s correct Without justification  (3)  

-Problems 
with the 
integral 

- I cannot integrate. For me, it would be right.  (6) 
 

- Problems with variables of integration (16) 

- Others examples of primitives   (10) 
Integral Calculation 
of Primitives 
derivation inverse 
process 

- Problems with primitives such as 

1

1

n

x
dxx

n
n when n is 

positive. This method cannot be applied to negative 
exponents. And he puts as an example n = 1.   

(26) 

 

 

 

Figure 8: Systemic network associated to the problem 

Secondly, we examine the way in which representations are used. The data show that 

the initial kind of representation chosen does not determine completely the success 

of the resolution. For example, student 4 was the only one who focused at the 

beginning on the integral as the calculation of primitives, but answered successfully. 

This was possible because of the flexible combination of this calculation with 

another argument about the domain of definition of the function. Moreover, the 

analysis of the answers highlights how the coordination of registers led to a better 

understanding of the problem (see in Figure 8, answers 28 and 29). However, there is 

a risk of making some errors (Figure 8, answers 19, 27) if the mobilisation of both 

registers is not accompanied by further reflection. 

Thus, our results are coherent with previous research (Mundy, 1987; González-

Martín & Camacho, 2004) described in the introduction. From a didactic point of 

view, the use of different kinds of representations and registers and their 
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coordination seem to be essential. But then, how to promote their flexible 

coordination when teaching?  

Essential for visualization: the global apprehension 

Global apprehension of images is required together with the coordination of 

registers. However, some students do not go further than having a local apprehension 

and cannot see the relevant global organization (Duval, 1999: 14). Our analyses 

adopt these ideas as we try to show with the description of the following episode 

from the interviews.  

  

Figure 9: Statement of the task based on Young’s Inequality 

The episode concerns Young‘s Inequality (Figure 9) and the interpretation of a 

graphic representation when asked for the connection with the theorem. Silvia is the 

name of the student chosen for the interview. She was selected because her responses 

to the questionnaire showed some preference for the graphic register, while she did 

not answer satisfactory any problem. The interview enabled us to go deeper into her 

difficulties with visualization.  

At first, only the image was shown. Silvia detected isolated elements and even made 

some references to the integral as an area. Later, we showed her the statement of the 

inequality. She assumed the relation to the image, but it did not seem to be clear for 

her. She frequently requested help by asking questions. Afterwards the following 

conversation took place. In order to be able to continue with the interview, support is 

given to help her to identify correctly all the elements in the image with those in the 

statement. Thus, in spite of the fact that Silvia seemed to be able to coordinate the 

two registers, there was not any moment of clear understanding.  

Interviewer: OK, what kind of explanations would you need with the drawing? Have you 

understood it completely, the drawing? 

Silvia:  Um… Well…[…] 

Interviewer: OK, this [ab, the rectangle] is equal or less than this integral, the one which 

is in the drawing? 

Silvia:  Well, it‘ll be this, from 0 to a (she points with the finger to an interval over 

the x- axis). This one, the S‘s. 

Interviewer:  OK, and the other? 
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Silvia:  Well, T‘s. (Silence, she seems pensive) 

Interviewer: This is a little more difficult for you to see, isn‘t it? 

Silvia:  Yes.[…] Well, to understand it [the theorem], with the drawing I wouldn‘t 

understand it. 

Silvia could not go beyond the mere identification of the represented units. For her, 

the image was only an illustration, an iconic representation that does not work as a 

means of visualizing the statement of Young‘s Inequality. Therefore, the main 

conjecture for Silvia‘s difficulties with visualization in this case is the lack of global 

apprehension. From a didactic point of view, the following challenges emerge: Is it 

possible to teach how to apprehend an image globally? If so, how can it be done?  

The high cognitive requirement of visual methods 

During another task in Silvia‘s interview, she explained why she chooses ―the way 

they give [in class], the definition‖ as follows: ―I don‘t know. It‘s like everything is 

more mechanical. In the other way [visual] you have to relate, to think. […] It isn‘t 

that I prefer it [algebraic], but it‘s easier. So, instinctively, I do it‖. This excerpt of 

the interview concerns the cognitive rationale pointed out by Eisenberg and Dreyfus 

(1991) for the reluctance to visualize. In order to go deeper into this issue, the 

students‘ use of the graphic register in the answers to the questionnaire was 

analyzed. Taking into account the distinction between iconic and heuristic functions 

performed by images (Duval, 1999), and its relation with non-visual and visual 

methods (Presmeg, 1985), different kinds of techniques for solving a problem using 

the graphic register have been detected: non-visual, mixed and visual. The data 

collected from the following problem (Figure 10) of the questionnaire allow us to 

illustrate some characteristics of each kind of technique.  

If f is an odd function on aa,  calculate ( )( ( ))
-

+ň
a

a
b f x dx  

Figure 10: Statement of the second problem 

This problem was answered by 20 students, and only 8 used the graphic register. The 

first kind of resolution (Figure 11) appeared with higher frequency (5 out of 8 

students). The images appear together with the algebraic register, in which the main 

reasoning takes place. The images were employed either to try to remember the 

definition of odd functions, or to deduce some other properties. Therefore, the image 

was unnecessary and it performs an iconic function. The method of resolution was 

considered to be non-visual. In fact, the example shown (Figure 11) is accompanied 

by an image that the student interpreted by giving an incorrect definition of odd 

functions. In spite of this, this misunderstanding did not affect the algebraic 

reasoning, which is valid. 

In the other two resolutions, images were interpreted as performing a heuristic 

function. However, they differ according to the number of conversions made 

between the algebraic and the graphic registers. The second resolution (Figure 13) 
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was given by two students. It has been called mixed as a first step is needed in the 

algebraic register, in which the additive property of integrals is applied, before 

converting to two graphic representations, one for each integral. As an informal 

conversation with the student who gives the answer in Figure 13 clarified, this 

conversion allowed him calculating the value of the integrals, without performing 

treatments in the algebraic register, and coming back afterwards to it in order to 

finish the evaluation of the integral. Thus, two conversions were made (algebraic- 

graphic- algebraic). 

 

Figure 11: Non visual method 

 

Figure 12: Visual method 

 

 
Figure 13: Mixed method 

The third resolution (Figure 12) is completely visual since it includes, at the 

beginning, just one conversion to the graphic register, in which the main argument is 

developed. In order to give this visual answer, more concepts and relations than in 

the non-visual ones (including the pure algebraic one) must be considered 

simultaneously: a visual interpretation of the integral as an area, and the odd 

functions as those symmetric around the origin; the recognition that adding a 

constant quantity to a function means a translation of its graph along the y-axis (this 

notion is not necessary in the algebraic reasoning); finally some image treatment of 

that sort of ―cutting‖ and ―gluing‖ areas, taking into account their signs. Therefore, 

this original answer given by only one student provides the opportunity to show how 

the cognitive theory of registers of semiotic representation serves to explain and to 

go deeper into the cognitive difficulty of visualization noted by Eisenberg and 

Dreyfus (1991).There is also at the end an algebraic answer used for checking. It 

follows a linear process consisting in the succession of several algebraic treatments, 

made without errors, giving as result 2ab. Obviously, in both arguments, the result is 
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the same. However, each kind of argument leads us to see the problem in a very 

different way. 

Therefore, from a didactic point of view, the combination of visual and non-visual 

arguments when teaching seems to be advisable, since it provides complementary 

kinds of understanding. However, as was argued in the conceptual framework and as 

the empirical data have shown, this should not be misinterpreted as just using the 

graphic register. The following challenges for teaching emerge: how to combine 

visual and non-visual methods in class in order to improve the understanding of the 

students? How can the higher difficulty of visual arguments be handled in the class?  

CONCLUSION 

In this paper, we aim to: (1) present some theoretical ideas found to be relevant in a 

conceptual framework for a cognitive perspective of visualization; (2) show the 

analysis of some examples of empirical data in order to provide insight into two 

levels, the theoretical ideas presented and the individual students‘ reasoning.  

The theoretical framework of the cognitive theories of registers of semiotic 

representation (Duval, 1995, 1999) was useful in order to: (1) describe some 

difficulties of the students in the understanding and learning of mathematical 

concepts, in this case, the integral; (2) explore some conditions for visualization (in 

Calculus), related to: the explicit or implicit use of the graphic register, to the 

coordination with other representations (in the same or different registers) and, as 

Silvia‘s episode showed, to the necessity of a global apprehension of the image; (3) 

examine the students‘ use of the graphic register and the higher cognitive difficulty 

of visualization argued by Eisenberg & Dreyfus (1991). Moreover, visualization is 

related to the heuristic function of images (Duval, 1999) which has been identified 

with the visual methods (Presmeg, 1985). This connection led us to distinguish three 

different kinds of methods for solving a problem using the graphic register: non-

visual, mixed and visual. Although this possibility has not been fully exploited in this 

paper, it enables us to shift our attention to individual differences in the preference to 

visualize.  

From a didactic point of view, some challenges around a specific teaching of 

visualization emerge: how to use different kind of representations and registers in 

order to promote a flexible coordination between them? Is it possible to teach how to 

apprehend an image globally? How could it be done? How to combine visual, mixed 

and non-visual methods in class in order to improve the understanding of the 

students? How to manage the higher difficulty of visual methods?  
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THE SECONDARY-TERTIARY TRANSITION: A CLASH 

BETWEEN TWO MATHEMATICAL DISCOURSES 

Erika Stadler 

Linnaeus University 

The aim of this paper is to illustrate some aspects of the transition between 

secondary and tertiary studies in mathematics, based on an analysis of a critical 

case of two students trying to solve a system of linear equations with help from their 

teacher. In their conversation, different aspects of the transition appear, which both 

can be assigned to changes in the mathematical content and differences in the way 

mathematics should be regarded and communicated. Students draw on a school 

mathematical discourse, while the teacher answers them within a scientific 

mathematical discourse. The notion of functional understanding is used to describe 

students‘ attempts to build bridges between these discourses. 

Keywords: transition, secondary, tertiary, school mathematics, mathematics teacher 

This paper reports from a case study of the secondary-tertiary transition. The study is 

based on an episode with two novice teacher students, working with a university 

textbook exercise in linear algebra with help from their teacher. The aim of the paper 

is to examine the transition in terms of an encounter between two mathematical 

discourses; school mathematics and mathematics as a scientific discipline. After a 

short overview of some earlier research concerning the transition, presentation of 

data is alternated with analyses of the two students working on the exercise with help 

from their teacher. The paper ends with conclusions and final comments about their 

transition between secondary and tertiary mathematics. 

EARLIER RESEARCH ON THE SECONDARY-TERTIARY TRANSITION 

Nowadays, the secondary-tertiary transition is a well-researched area. The transition 

has been studied from various theoretical perspectives that explicitly or implicitly 

point at different crucial aspects of students‘ learning of mathematics in a new 

learning environment (de Abreu, Bishop & Presmeg, 2002; Gueudet, 2008; de 

Guzmán, Hodgson, Robert & Villani, 1998). The transition has also been closely 

connected with the transition from elementary to advanced mathematics as well as 

from elementary to advanced mathematical thinking (Artigue, Batanero & Kent, 

2007), specifically focusing on students‘ encounters with mathematical abstraction 

(Nardi, 2000). Lithner (2003) offers a more specific study of university students‘ 

work with textbook exercises. He developed different categories of students‘ 

reasoning according to what extent the reasoning is based on more superficial 

features of the exercise or relies on more intrinsic mathematical qualities in the task. 

In relation to the transition, the new institutional context where the studying takes 

place is crucial, as are students‘ actions and statements in relation to new demands 

on learning mathematics. This complex relation between institution and subject has 
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been studied within the anthropological theory of didactics where the transition can 

be regarded as a movement between different praxeologies (Alveres Dias, Artigue, 

Jahn & Campos, 2010).  

Some common features that can be identified in these previous studies about the 

transition are changes in the way the mathematical content is treated, an increasing 

level of abstraction and new demands on students as learners. In this paper, I have 

chosen to take a very detailed perspective on these issues, zooming in on a specific 

episode where these features of the transition can be understood in terms of the clash 

between two different mathematical discourses as one additional perspective on the 

changes that the transition can bring about. The rationale for this approach lies in the 

fact that the work with textbook exercises and students‘ interaction with a university 

teacher are two main activities in university studies in mathematics, and it is 

reasonable to think that aspects of the transition are visible in these kinds of 

situations. 

SCHOOL MATHEMATICS AND MATHEMATICS AS A SCIENTIFIC 

SUBJECT AS TWO DISTINCT MATHEMATICAL DISCOURSES 

As an attempt to capture the tensions between secondary and tertiary mathematics, I 

have chosen to view school mathematics and mathematics as a scientific discipline as 

two distinct communities of discourses (Sfard, 2007) in order to describe differences 

between treatment of the mathematical content and the learning situation at a social 

institution. Because a discourse contains specific rules of how to communicate, it can 

both be inclusive and excluding. Mathematics can be regarded as a specific kind of 

discourse. According to Sfard (2007) a mathematical discourse consists of 

mathematical words, visual mediators, routines and narratives. Interlocutors make 

use of mathematical words, such as variables, unknowns, equations and cases, when 

communicating about mathematics. Visual mediators, such as symbolic artefacts and 

manipulatives, can be used as a cursor on the objects of communication. Narratives 

are descriptions or accounts of objects. These can be any written or spoken text that 

is used within the discourse and can be subject to endorsement, i.e. narratives can be 

judged as true or false. Routines refer to repetitive patterns in the interlocutors‘ 

actions. Routines can be due to properties of mathematical objects but can also be 

about the rules of the discourse itself. It is plausible to suppose that the mathematical 

discourse differs between secondary and tertiary mathematics education. I have 

chosen to give an account for these differences in terms of school mathematics and 

mathematics as a scientific discipline as two different mathematical discourses. 

Even though the notion of ―school mathematics‖ is frequently used, it seems to lack a 

scientifically grounded definition, but is used in a more common sense and everyday 

manner. In this paper, I will associate school mathematics with teaching methods that 

are commonly used in Swedish secondary school mathematics classrooms. 

Mathematics lessons starts with the teacher giving a short demonstration of some 
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standard examples. For the rest of the lesson, the pupils work individually with 

textbook exercises that are similar to the ones that have been demonstrated at the 

blackboard. A main focus is to learn what to do, i.e. an emphasis on algorithms and 

procedures. Mathematics as a scientific discipline concerns mathematics as it is 

considered within an academic and scientific discourse, for example university 

courses in mathematics (Robert & Schwarzenberger, 1991). The use of exact 

definitions, theorems and proofs is significant, which is often communicated through 

generic examples. Thus, a dichotomy between mathematics studies at secondary and 

tertiary level can be identified. From a students‘ perspective, the transition can be 

regarded as a process of enculturation into the university mathematical discourse, 

based on their previous knowledge and understanding. The notion of functional 

understanding is used to describe students‘ attempts to participate in the new 

mathematical discourse that they meet at university (Stadler, 2009), i.e. to tell new 

narratives and undertake new routines within a mathematical discourse that is more 

in accordance with mathematics as a scientific discipline, even though the students 

are not yet in all respects ready for it. 

METHOD  

The data, presented in this paper, is selected as a critical case from a more compre-

hensive study about the transition (Stadler, 2009). In the larger study five teacher 

students in mathematics were studied during their first semester of mathematics 

studies in Calculus 1 and Algebra during a time period of ten weeks, and Calculus 2 

and Linear Algebra during another ten-week period. The students were frequently 

interviewed and observed during lectures, tutorials and their individual work with 

textbook exercises. The episode reported in this paper was audio recorded and 

transcribed in full. Analysis of the transcriptions was inspired by grounded theory 

(Charmaz, 2006) and used constant comparisons, memos, sorting and categorisation. 

However, instead of generating own categories, the analysis focused on empirical 

instances of discursive elements of school mathematics and mathematics as a 

scientific discipline. 

The episode took place during the first week of the linear algebra course. The reason 

for the choice of this episode was that it constitutes a critical case of the secondary-

tertiary transition, understood as a clash between two mathematical discourses. The 

notion of a critical case comes from Flyvbjerg (2006) and can be defined as ―having 

strategic importance in relation to the general problem‖ (p. 229). The episode 

revolves around a textbook exercise that requires both routines and the use of new 

words and narratives and an interaction with the mathematics teacher at university. 

The dialogue about this exercise between the students and the teacher can be 

regarded as capturing many aspects of the transition in a single conversation and 

several empirical instances of an encounter between students‘ previous experiences 

of a school mathematical discourse and mathematics as a scientific discourse, offered 

by the teacher. 
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RESULTS AND ANALYSIS 

Linear algebra has been regarded as a mathematical domain that seems to be 

cognitively difficult for students to learn (Dorier & Sierpinska, 2001). Vector spaces 

and their origins is one area that can be particularly problematic for novice university 

students. However in the first course in linear algebra at the university where the 

study took place, the course mainly treats systems of linear equations, matrices, 

determinants, dot and cross products, vectors, changes of basis, eigenvalues and 

linear transformations in two and three dimensions.  

It is against this background that the task, which Jenny and Ellen are working with, 

should be regarded. The exercise is number 14 in the first chapter of their textbook in 

linear algebra. The exercise is formulated as: 

Solve the system of equations for all values of the constants a and 

b.  

The students attempt to solve the task by successive elimination. 

The third equation is reduced to: 

   

-
1+ a

2

æ 

è 
ç 

ö 

ø 
÷ z = -9 + b 

To proceed, the students would have to analyse different cases depending on the 

values of the constants. In particular, whether the constant a equals minus one or not 

will generate different types of solutions of the system of linear equations. However, 

Jenny and Ellen get stuck and ask the teacher for help. 

Ellen: We want to find the values of these constants. We understand that if a 

equals minus one, then the brackets equals zero, and then b will equal nine. 

Teacher: Yes, well, yes. Well, I think we should start with the basic problem here, 

because you expressed things slightly incorrect. You said that you should 

determine these constants, a and b. But that is not what you should do. You 

should, for all values on a and b, find the solutions of the system of 

equations.  

The task that Ellen and Jenny are working with puts to the fore some interesting 

aspects of the transition in relation to previous research. There is an increasing level 

of abstraction (cf. Nardi, 2000) in comparison to prior tasks in the chapter. It requires 

the students to simultaneously handle variables, constants and parameters. These 

unknowns have different meanings and functions for the equations and consequently 

for the solution of the exercises and should be treated in different ways. From a 

school mathematical context, students seem used to that unknowns, represented by a 

letter, should be decided or determined by finding their values. Accordingly, Ellen‘s 

initial statement that they want to find the values of the constants can be interpreted 

as a misunderstanding of the aim with the exercise, but also as an everyday and an 

operational way to describe how they have worked with the task. New requirements 

are put on students‘ reasoning with the textbook exercise. The students must relate to 

intrinsic features of the mathematical content in the task, rather than just using a 

bzyx
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standardised algorithm for solving systems of linear equations (cf. Lithner, 2003). 

The teacher‘s emphasis on finding solutions of the system for all values on a and b 

can be interpreted as an attempt to highlight this distinction and inviting the students 

to participate in a partly new mathematical discourse.  

Instead of giving the students a more direct answer to their questions, the teacher 

gives a more comprehensive explanation, which can be interpreted as making an 

effort to highlight the generic character in the exercise concerning role and function 

of the constants. Ellen and Jenny ask for a routine for how they should proceed to 

determine the values of a and b. The teacher gives them an account of the role of the 

constants in the system of linear equations. These different approaches can be 

interpreted as an expression of the transition, where the teacher focuses on the 

general character of the mathematical content, while the students are primarily 

interested in a specific routine for finding a solution of the task. Thus, there is an 

obvious mismatch between the students‘ and the teacher‘s mathematical discourses. 

Further work with the task results in the expression: 

   

z =
18 - 2b

1+ a
 

Jenny: If you divide with a, it should not be… 

Teacher: Yes, exactly! Go on! 

Jenny: Minus one. 

Teacher: Yes, that‘s right. If we want an expression for z, we must divide by one plus 

a on both sides. And then, we have to be careful when, as you said, Jenny… 

Jenny: …when a equals minus one. 

Teacher: Yes. Exactly. So you must start looking at… But, then you must not say that 

a is or must not equal minus one. You should examine both cases. If a does 

not equal minus one, then one plus a does not equal zero and then there is 

no problem with division and we can get an expression for z. But you must 

not stop there, you must also examine the case when a equals minus one.  

That division by zero is not an acceptable mathematical operation seems familiar to 

Jenny, but it is a considerable abstraction from knowing this for natural numbers to 

apply it on a rational algebraic expression. Jenny‘s use of knowledge in relation to a 

very local mathematical context, namely the algebraic expression at hand, can be 

regarded as an empirical instance of functional understanding. At the same time, the 

teacher attempts to involve the more encompassing ideas of solving systems of linear 

equations and how a division with zero should be interpreted in that context.  

The students and the teacher re-write the system of equations for the case when  

a = -1 and solve it.  

Teacher: Okay, and now a equals minus one. Let me write a little bit here. That 

equals minus two z there [refers to the second reduced equation]. And in the 

last equation, well, if a equals minus one, the left hand side will equal zero. 
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And then we have: zero equals minus nine plus b [0 =  9 + b]. So, re-write 

the system of equations once again for the case when a equals minus one, 

and use that as a point of departure for thinking. Which situation do we 

have now according to the last equation? 

Jenny: That one?  

Teacher: Yes. What conclusions can you draw? 

Jenny: That if a equals minus one, then b equals nine. 

Teacher:  Well, we agreed that a and b should be free. You must not say that b must 

equal nine. If I ask you the question, if b equals ten? 

Ellen:  Then this is not valid. Then we don‘t have any solutions. 

Teacher:  No. Exactly. Thus, if b equals ten, then the last equation says that zero 

equals one. And the conclusion must be that no solution exists for b equals 

ten. 

Ellen: Mm. 

Jenny: But how do we write this in our solution? Solutions only exist if b equals 

nine or what? 

Teacher:  Yes, but we shall push things one step further and analyse which solutions 

we get, because we have to organize things in different cases, partial 

solutions. 

Ellen:  Oh gosh! 

Teacher:  But didn‘t you follow my example?  

Ellen: Yes! 

The students discuss with the teacher about how they should move on. They consider 

the case when b = 9 and the system of equations has infinite many solutions. 

Teacher:  So, an interesting case is when b equals nine, because then we have x plus y 

plus z equals five. We have minus two y minus two z equals minus two. And 

finally, the last condition, zero equals zero. So, what about the last 

equation? 

Ellen:  We don‘t need to care about that one. 

Teacher: You have to have a parameter there. You‘ll get infinite many solutions in 

that case. So, if I say that z equals four, then y becomes something and we 

put it up there and x becomes something. And if z equals seven, well, then 

we‘ll get a y-value and then an x-value. 

Regarding the last equation, 0 = -9 + b, the teacher asks the students to analyse and 

draw conclusions. Jenny‘s and Ellen‘s various responses to the teacher can be 

interpreted as that they are working in a school mathematical context with familiar 

mathematical routines such as solving equations and writing down complete 

solutions. Once again, the teacher emphasises that the constants a and b do not have 
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any specific values but should be regarded as ―free‖. As mathematical words within a 

discourse, these constants get a new meaning. Even though Jenny gets a remark from 

the teacher not to fix the values a and b, her statement ―if a equals minus one, then b 

equals nine‖ could be interpreted as a first sign of understanding the new way of 

dealing with different cases and treating unknown constants, even if it is just a 

conclusion of what she thinks the teacher wants her to say. Her question about how 

the solution should be written indicates a focus on routines that differs from the 

teacher‘s focus but also serves as an attempt to take part in a new way of using 

narratives and solving a mathematical textbook exercise. At the same time, Ellen 

manages to draw a correct conclusion about what happens if the last equation ends 

up in a contradiction or both sides equal zero, but seems to be put under pressure 

when the teacher wants to push the discussion a little bit further. The teacher 

constantly continues to push the students towards a more scientific mathematical 

context, where the solution is not an aim in itself but rather a tool for drawing more 

general mathematical conclusions.  

The students and the teacher discuss the case when b does not equal nine. The last 

equation 0 = -9 + b becomes a contradiction, and in this case the system will have no 

solution. Then the case when a does not equal minus one is discussed. 

Ellen: How do we do with this case when a does not equal minus one? Shouldn‘t 

we do some kind of ―partial solutions‖? 

Teacher: In general, it depends, but in this case, I can tell, it won‘t be needed. 

Because there you have the equation when a doesn‘t equal minus one. Then 

you can divide by one plus a on both sides to get z and then there won‘t be 

any problems.  

Ellen:  Sorry, what did you say about… What were we supposed to do here, you 

said? If… if a does not equal minus one? 

Jenny:  Then we can get z and put it in the… 

Ellen:  But then we can have a z that does equal anything and contains both a and 

b? 

Teacher:  Yes, and that is not an unnatural thing in any way. If you think about, well, 

of course the whole system depends on the parameters a and b. So it is self-

evident that the solutions do so too. Or, well, it isn‘t self-evident but it isn‘t 

unnatural either, so to say. 

Ellen:  Mm… 

The teacher leaves the students, who try to finish their work with the exercise. 

Ellen: But, should we do something more with this case? 

Jenny:  I don‘t think so. 

Ellen:  We shouldn‘t change it with a t or something like that? 
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At first glance, Ellen‘s final statements can be interpreted as self-deprecatingly 

ironic, directed towards their mathematical ignorance and inability. However, her 

comments might also be interpreted as a first attempt to use narratives within a more 

scientific mathematical discourse. Ellen seems to have grasped that just solving a 

system of linear equations may sometimes not be enough. Instead, several cases and 

options may occur during the work. Ellen may not has fully grasped how to deal with 

different cases, but using the word ―case‖ and trying to fit it in a suitable statement 

can be regarded as an initial step towards taking part in a more scientifically oriented 

mathematical discourse. 

A main feature in the episode is the discrepancy between what the students regard as 

their main problem while working with the exercise and the help and explanations 

that are offered by the teacher. The students seem to work and understand things 

according to a mathematical discourse, which may be described as school 

mathematics, based on their previous experiences from upper secondary school. For 

example, one difficulty for the students is to deal with three different kinds of 

unknowns; variables, constants and parameters. The students seem to be used to that 

an expression with unknowns should be solved or treated as an equation. The 

unknown values should be found, preferably as numerical values. To handle the 

system of equations by finding x, y and z and simultaneously taking all possible 

values of a and b into consideration can be a difficult thing to do. A simpler way to 

think about the different cases is to solve the system for specific values of a and b. 

However, one should not conclude that this is due to students‘ misconception. 

Rather, it can be regarded as a pragmatic way to handle a complex situation. What 

seems to be an immature way to think and act is simply the way that they manage to 

think and act, because this is what they are familiar with. 

SUMMARY AND CONCLUDING REMARKS 

In this paper, a critical case was chosen to illustrate the transition as an encounter 

between a school mathematical discourse and a discourse of mathematics as a 

scientific discipline. The episode shows several empirical instances of discrepancies 

between the students‘ and the teacher‘s use of different mathematical discursive 

elements. The students ask for routines that can be used to solve the exercise at hand. 

The teacher constantly tries to steer focus to more general aspects in the exercise by 

using words and narratives accordingly. Instead of meeting the students‘ demands of 

routines, the teacher offers narratives about the role of the unknown constants.  

The mathematical exercise that the students are working with contains an inherent 

abstraction. On the surface, the exercise seems standardised and ordinary, but 

demands mixing an algorithmic solution with an extensive analysis of different cases 

and a new way of talking about the solutions. The switching between different kinds 

of unknowns also makes the exercise complex, which puts additional demands on 

students‘ reasoning (Lithner, 2003). The students encounter situations that they 
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interpret according to previous experiences and apply well-known routines, when 

these situations should be regarded and treated in a partly new way.  

In the episode, it is obvious that the students and the teacher participate in different 

mathematical discourses, but it also shows how these students are trying to adapt 

their reasoning in accordance with how they understand the situation at hand. The 

students ask for instructions of ―what they should do‖, but the teacher provides 

explanations of ―how things are‖ and treats the exercise as a generic example. The 

teacher puts new expectations and demands on the students when using new 

discursive elements. 

Functional understanding has been defined as students‘ attempts to participate in a 

new mathematical discourse (Stadler, 2009). In the episode, the students‘ functional 

understanding can be identified in empirical instances where the students are trying 

to use words and narratives in the new discourse even though they are not yet 

familiar with them. Initially, the students attempt to use routines from a school 

mathematical discourse, but gradually change their orientations towards new words 

and narratives, which they are trying to operationalize into new routines within a 

more scientific mathematical discourse. It can be concluded that the transition from 

secondary to tertiary mathematics puts new demands on students‘ use of 

mathematical words, their communication with narratives and ways of applying 

routines. To cope with the new learning environment that the university constitutes 

and the new mathematical content that they encounter, students both have to learn a 

partly new kind of mathematics but also learn how to learn mathematics.  

The results in this study also contribute to our further understanding of the school to 

university transition. A recurrent theme in research concerning the transition is the 

changeover from elementary to advanced mathematical thinking and analysis of 

students‘ learning of mathematics in a new learning environment (Artigue, Batanero 

& Kent, 2007; de Guzmán, Hodgson, Robert & Villani, 1998), characterising the 

transition in terms of an increasing level of abstraction (Nardi, 2000) or as a 

movement between different praxeologies (Alveres Dias, Artigue, Jahn & Campos, 

2010). In contrast to these directions of research, where individual, sociocultural and 

institutional aspects are considered on a more general level, the current study does 

not attempt to give a comprehensive account of the transition. Instead, by making use 

of Sfard‘s discursive framework (Sfard, 2007), it provides a fine-grained analysis of 

a critical case for the transition as an encounter between a school mathematical 

discourse and a discourse of mathematics as a scientific discipline. Specifically, the 

current study gives an account for difficulties that may be involved in such an 

encounter and what enculturation can be for novice students in a specific learning 

situation – namely, their attempts to participate in a new learning environment and 

handle partly new demands and conditions.  
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In this paper, I would like to introduce the concept of perspective and to stress the 

importance of dealing with perspectives on functions for students entering university 

.  This theoretical concept is meant as complementary to the process/object duality, 

enriching thinking in the passage from the conceptual embodied world to the formal 

axiomatic one. Drawing on a typical task of the transition between secondary school 

and university, I point out the difficulties for students to solve tasks when algebraic 

techniques are not sufficient. 

Key words: mathematics, functions, university students, concept image, perspective 

In this article I want to investigate one problem that arises in the transition between 

secondary school and university concerning the concept of function. This area has 

been extensively studied for several decades but the context of the teaching situation, 

always changing, justifies that the interest is continuously renewed.  

SPECIFICITIES OF THE TRANSITION BETWEEN SECONDARY SCHOOL 

AND UNIVERSITY 

Many studies have already indicated the characteristics of this transition (Artigue 

1991, 2007; Gueudet, 2008). From an institutional perspective, many macro-ruptures 

can be identified: a shift from a course with one teacher to lectures and tutorials; 

acceleration of teaching time with a rapid turnover of content and lessons with faster 

assimilation; shorter presence of teachers; lack of familiar problems from secondary 

school; and, wider range of tasks that make their internalization much more difficult 

than in secondary school, the latter being delegated to personal work of students, 

who must therefore be more autonomous in their learning. 

Robert (1998) also noted a distribution between the types of mathematical notions 

which is different from secondary school to university, especially the emergence at 

university level of new mathematical notions carrying a high level of formalism and 

generalization. She also pointed out the differences in the level and the nature of 

tasks (necessity of available knowledge, necessity of flexibility in this knowledge, 

for instance use of different settings and representation systems, new requirements in 

term of proofs at the university level, etc.).  

THE COMPLEX NOTION OF FUNCTION 

The notion of function is at the intersection of several mathematical fields (real 

numbers, limits, algebra, etc…), appears in many frames (Douady 1986) and requires 
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the consideration of several representation systems (graphical, algebraic, symbolic 

etc.) (Duval 1991). Functions are therefore complex objects which are still being 

learnt when students enter university.  

The teaching and learning of functions has been studied through many different 

theories: Tall and Vinner (1981) introduced the distinction between concept image 

and concept definition, the concept image being generally different from the concept 

definition, especially for functions. Following Bachelard (1938), Sierpinska (1992) 

used the notion of epistemological obstacles regarding some properties of functions 

and especially the concept of limit. Another approach is based on the processes / 

object duality (Dubinsky 1991): the conceptualization begins with actions on 

previously constructed mental or physical objects. Then actions are interiorized to 

form processes which are then encapsulated to form objects. Sfard (1991) also claims 

that the abstract concepts can be conceived as two different forms: structurally, as 

objects, and operationally, as processes, the two views being complementary. Tall 

(1996) also adds the perspective of procept, an amalgam of two components: a 

process which produces a mathematical object and a symbol that represents at the 

same time the process and the object. With respect to functions, algebraic or 

graphical representations are procepts which can both be handled as processes and as 

objects. Finally, of relevance to these works are Tall‘s (2004) three worlds of 

mathematics: in this perspective growth of mathematical thinking occurs as a 

transition from a conceptual-embodied world to a proceptual-symbolic world and 

then to a formal-axiomatic world.  

With regard to the teaching of functions, I claim that the transition between 

secondary school and university can be interpreted, in some sense, as a way to move 

from the conceptual-embodied world to the formal axiomatic one, through 

embedding a higher level of conceptualization of the notions related to the domain of 

analysis: indeed, the beginning of the teaching at the university level corresponds to 

a displacement from functional thinking to set-theoretical thinking, from utilizations 

of most functions as processes to utilizations as objects, with a higher degree of 

formalisation and a balancing in the utilization of procepts, especially the use of 

graphical representations moves from an object‘s role to a tool for supporting 

formalizations and proofs. 

On the other hand, Balacheff and Gaudin (2002) find two types of concept image 

(they speak about conceptions) among pairs of students who finish secondary school: 

a ―curve – algebraic‖ concept image for which functions are primarily special cases 

of plane curves, those having a specific algebraic form; and, an ―algebraic – graphic‖ 

concept image for which a function is first an algebraic formula, the associated graph 

coming after. It seems that the concept image of average students is closer to the 

latter.  They are unable to manipulate functions which are not given in algebraic 

forms. Moreover, these students cannot easily shift from the algebraic representation 

system to another.  As Coppé et al. (2007) stress, that the current practice of teaching 
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in secondary schools (in France) seems to reinforce the idea that a function is only an 

object belonging to the algebraic frame. 

THREE PERSPECTIVES ON THE OBJECT OF FUNCTION 

In addition to the above works on students‘ students‘ concept images of functions, I 

consider the notion of perspectives (Rogalski, 2008). More precisely, I claim that 

different perspectives can be adopted on the object of function: a point-wise 

perspective, a global perspective and a local perspective. This distinction enriches 

the different levels of conceptualization introduced above.  

Indeed, the balance from conceptual embodied world to the formal axiomatic one is 

accompanied by the development of local properties about functions: limit, 

continuity, differentiability, equivalent expressions, Taylor‘s local expansions near 

some points which are the basic notions of calculus. I claim that working at 

university level on functions implies that students can adopt a local perspective on 

functions whereas only point-wise and global perspectives are constructed at the 

secondary school. In this paper, I would like to explain some difficulties of novice 

students at university through  associating them with their difficulties to adopt point-

wise and global perspectives on functions. These difficulties appear when they are 

asked to solve tasks where techniques of the algebraic frame are not sufficient. Let 

me outline what I understand with this notion of perspective. 

In the first perspective, functions are considered as correspondences between two 

sets of numbers, an element of the first set being associated with a unique element of 

the second set. This point-wise perspective is in accordance with the definition of 

functions given in textbooks at grade 9 in France, four years before the beginning of 

university. At this level, functions are represented by numerical formulas that operate 

as a program for calculation, such as calculus programming. A table of values is also 

a good representation of a function from this perspective, especially for pupils who 

are aware only of integers on the real line.  

The second perspective is the global one, necessary to understand the notion of 

variation and to interpret properties such as parity or periodicity. As pointed out by 

Coppé et al. (2007), the table of variation is a good representation of a function from 

this global perspective.  The graphical representation of a function can be 

manipulated from a point-wise perspective as well as a global perspective but the 

algebraic expression can represent a function from a global perspective only for 

experts. Indeed, for students, interpreting an algebraic formula as a function from a 

global perspective seems relatively natural only for classical functions x
2
, √x whose 

global properties are well known. For more complex algebraic formulas, the most 

natural perspective is the point-wise one. So, the use of graphical representations 

should allow easy connections between perspectives. However, a large algebraisation 

of tasks at the end of the secondary school tends to limit which perspective can be 

adopted on functions.   
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The third perspective is the local one. Even though the notions of limit, continuity 

and differentiability of functions are introduced in secondary school, the local 

perspective seems necessary only at university level. Again, problems of continuity 

or differentiability are introduced in an algebraic way and they consist mainly in 

calculating limits by algebraic rules. So, the algebraisation of tasks erases the point-

wise and global perspective and moreover it doesn‘t allow reaching out to the local 

perspective. 

Finally, I assume that reaching an object level understanding of function is not the 

only challenge of the secondary school. In fact, I assume that students must be able 

to articulate different perspectives on functions and especially have to adopt the 

global perspective on functions to overcome all the obstacles which come with local 

notions at the beginning of the university: structure of the real line, notion of equality 

between two real numbers, etc.. 

A TEST TO TRACK ABILITIES FOR ADOPTING PERSPECTIVES 

In order to diagnose the difficulties that students have with adopting the point-wise 

and global perspectives on functions, I designed a task for which techniques of the 

algebraic frame were not sufficient. More precisely, this task was dealing with the 

function G below, defined by an integral: 

 

In secondary school, as well as in the beginning of the university, integrals are 

defined as areas under curves of functions, and are approached as definite integrals. 

However, in the two institutions, the link between integrals of continuous and 

primitive functions is made quickly and students work mostly in the algebraic frame. 

For this link, the so called fundamental theorem of calculus is usually proven by the 

teacher, when the function to integrate is continuous, positive and strictly increasing.  

I decided to investigate this function G because in the two institutions its study is 

very close to well known tasks and its level of difficulty is accessible for both 

secondary school students and students university. Indeed, even if they are not 

familiar with this kind of function G, students of both institutions had already met 

tasks concerning indefinite integrals over intervals of the form 

[a, x] or [a, β(x)] (β being a linear function) at the time of the experimentation. 

Moreover, questions about global and point-wise properties of G according to 

properties of f are more interesting in the context of this kind of integral (between x-

1 and x+1), as we will see below. 

The experimentation was dealing with one group of students from secondary school 

(15 students) and one group of students from university level (109 students from 

University Paris Diderot). The precise statements proposed to students were chosen 
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by their teachers (from one side in a secondary school and on the other side in the 

university) with instructions for treating questions concerning global or/and point-

wise properties of G.  

The beginning of the test given by the teacher at the university level was the 

following one (a fifth question concerned a local property of limit): 

Let f be a continuous function over R and G the function defined over R by 

 
1) Show that if f is a constant function, G is also a constant function. 

2) Show that if f is even (respectively odd), G is even (respectively even). 

3) Show that G is differentiable and compute G‘. 

4) Compute G when f is defined by f(t)=|t|.  

f is assumed to be continuous. Students have to show global properties of G. They 

must also prove that G is differentiable and compute G‘. Questions 1) and 3) can be 

treated only in the algebraic frame without any perspective on f and G. Problems 

with perspectives can appear with question 2) – if f even then also G is even – and 

for question 4) – find G when f is the absolute value. We will see this below with 

examples of student responses. 

The test given by the teacher at the secondary school level was the following: 

In the problem, D means the set of differentiable functions on R. For each f in D, we 

define G such that for all x in R,  

 
1a) Show that for each primitive F of f over R, G(x)= ´ [ F(x+1) – F(x-1)]. 

1b) Compute G when f is defined by f(t)=t
n
, n integer greater than 1. Show that if f is a 

polynomial function, than G is a polynomial function with the same degree. 

1c) 
 
Compute G when f is defined by f(t)=cos(πt). 

2a) Show that for all f in D, G is also differentiable over R, and that for all x in R,  

G‘(x) = ´ [ f(x+1) – f(x-1)]. 

2b) Show that the following properties are equivalent: (1) G is constant and (2) f is 

periodic with period 2. 

3a) Suppose f is increasing over R. Show that G is increasing and that for all x in R, 

f(x-1) ≤ G(x) ≤ f(x+1). 

3b) Suppose f is defined by f(t)= 4 exp(t) / [ t
2
+4]. Study the variations of f over R. 

Deduce the variations of G over R.  

In this exercise, students can work inside the algebraic frame from questions 1) to 

question 2a) and also for question 3b). It means that the conception of functions as 

objects belonging to a functional frame (with all its complexity) seems irrelevant. 

The issues I want to study can appear with question 2b) – G is constant if and only if 
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f is 2 periodic - and 3a) – if f increases then G increases and for all x, f(x-1) ≤ G(x) ≤ 

f(x+1). We will also see this below.  

RESULTS AND EXAMPLES OF STUDENT RESPONSES 

As I was interested in the transition between secondary school and university level, I 

chose to analyze only responses of secondary school students who were expected to 

enter university. Only five responses were analyzed. On the other hand, as I was 

interested only in qualitative results, the analysis of students‘ responses at university 

level was done in a separate round, in order to find the characteristics which have 

been identified in the five responses of the school students. 

As expected, most of secondary school students‘ difficulties were about question 2b) 

and question 3a). Only one student succeeded in these two questions whereas, except 

for some minor errors and the second part of the question 1b) (which is more 

difficult), all of them succeeded in the other questions. I suppose that algebraic 

techniques are not sufficient to succeed in these tasks. There is a necessity to surpass 

the algebraic frame and to adopt global and point-wise perspectives on f and on G. 

For instance, in question 2b), students have to establish global properties on f and G 

– f is 2 periodic and G is constant - through considering a point-wise property for f – 

for all x, f(x-1) = f(x+1). Here is a typical response: 

 

(1) G is constant  G ‘(x)=0 

(2) f is 2 periodic  f (x)=f (x+2) 

We start from one side to go to the 

other: 

G‘ (x) = ´ [f(x+1)-f(x-1)] and G‘(x)=0 

... 

 f(x+1) = f(x-1) 

 f(x+1) + f(1) = f(x-1) + f(1) 

 f(x+2) = f(x)  (2)  so  (1)  (2). 

Figure 1: example of response for question 2b) – secondary school student 

This student explained his procedure as follows: « on part d‘un membre pour arriver 

à l‘autre membre » (« we start from one side to go to the other »). There is no 

quantification, useful to translate the global properties for f and G in the formal 

language.  Moreover, equivalences are wrong. The student can not recognize the 

property of periodicity with the statement f(x-1) = f(x+1). It is necessary for him to 

formulate f(x) = f(x+2). Then, all algebraic techniques seem to be good: here he adds  

+ f(1) to each side. I suppose that this student is unable to reach a global perspective 

on f and G. His reasoning seems to be in the algebraic frame only.   
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On the first part of question 3a), students have to establish a global property on G – 

G is increasing – from a global property on f – f is increasing – through point-wise 

properties – for all x,  f(x-1) < f(x+1) and for all x,  G‘(x) > 0. But, in four of the five 

students‘ responses, these interpretations are again done formally without any 

quantification, in an algebraic way. Students seem unable to see the necessity of two 

variables x and y in order to write the property of growth. They use equivalences 

which are wrong. Again, I think that the reasoning is only at an algebraic level, not at 

all in the functional frame.  

  

3a) We know that f is increasing. 

So f(x+1) > f(x) > f(x-1) 

 f(x+1) > f(x-1) 

 f(x+1) - f(x-1) > 0 

 ´ [f(x+1) - f(x-1)] > 0 

 G‘ (x) > 0   

So G is increasing. 

3a) G is differentiable over R (2a) 

x+1 > x-1 

 f(x+1) > f(x-1)  because f is increasing 

 f(x+1) – f(x-1) > 0 

 ´ [f(x+1) - f(x-1)] > 0 

 G‘ (x) > 0 

G‘ (x) > 0 over R, so G is increasing over R. 

Figure 3: examples of responses for question 3a) – secondary school students 

The second part of the question 3a) – to prove f(x-1) ≤ G(x) ≤ f(x+1) - is the most 

difficult task. No student really succeeded in this question. The difficulty seems to be 

linked to the necessity to adopt a point-wise perspective on G – the computation of 

G(x) for a fixed x – together with a global perspective on f – for all t in [x-1,x+1],  

f(x-1) < f(t) < f(x+1).  

This difficulty with perspective appears also in many responses of university 

students, concerning questions 2) and question 4) of the university test, as it was 

expected. 

In question 4) (university test), there is a necessity to treat several cases according to 

the fact that 0 belongs or not to [x-1, x+1], that is to say x < -1, x in  

[-1, 1] or x > 1. Students must adopt a point-wise perspective on G – computation of 

G(x) for x fixed – and a global perspective on f over [x-1, x+1]. However, many 

students treat the task at an algebraic level, thinking for instance that the absolute 
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value can be integrated without adopting these perspectives. Figure 4 represents a 

typical example of this mode of reasoning in the algebraic frame: 

 

 

4) For f(t)=| t | 

 

We have ∫ | t | = | t
2
 / 2 |  => 

∫ x-1 
x+1 

f(t) dt  =  | (x+1)
2
 / 2 |-| (x-1)

2
 / 2 | 

So G(x)= ´ [ | (x+1)
2
 / 2 |-| (x-1)

2
 / 2 | ] 

Figure 4: examples of response for question 4) – university student 

In students‘ responses for question 2) (university test), the same kind of observations 

can be made. Most of students translate the global property – f even – without the 

quantification - f(t) = f(-t). Again, the reasoning seems to be in the algebraic/formal 

frame in many responses as in figure 5:  

  

In the case f even:  

f(t)=f(-t) so ∫ x-1 
x+1 

f(t) dt = ∫ x-1 
x+1 

f(-t) dt 

 ´ ∫ x-1 
x+1 

f(t) dt = ´ ∫ x-1 
x+1 

f(-t) dt 

so G(x)= ´ [F(x+1) - F(x-1)] =  

´ [F(-(x+1)) - F(-(x-1))] 

= ´ [F(-x-1) – F(-x+1)] = G(-x) 

So G is also even. 

If f even then f(t)=f(-t) 

G(-x)= 

If f odd then f(-t)=-f(t) 

G(-x)= ´ ∫ x-1 
x+1 

f(-t) dt  

= ´ ∫ x-1 
x+1 

-
 
f(t) dt = - ´ ∫ x-1 

x+1 
f(t) dt 

G(-x) = - G(x) 

Figure 5: examples of responses for question 2) – university students 
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Few responses (about 25%) show the ability for students to adopt a point-wise as 

well as a global perspective on the manipulated objects. Because of the brevity of 

this paper, it is impossible to report about them.  

CONCLUSION  

In this paper, I wanted to stress the importance of dealing with point-wise and global 

perspectives on functions for students entering university. I have claimed that this 

distinction enriches the process / object duality and the students‘ way of thinking in 

the passage from the conceptual embodied world to the formal axiomatic one. 

Through a typical task of the transition between secondary school and university – 

the study of the function G – I have pointed at the difficulties for students to solve 

tasks when algebraic techniques are not sufficient. On one hand, I think that these 

difficulties are linked to the students‘ inability to consider functions as complex 

objects with point-wise as well as global properties. On the other hand, I can think 

that these difficulties are increased by the current practice of teaching in secondary 

schools in France, which reinforces tasks belonging to the algebraic frame only 

(computations of limits, derivative, tracing graphs as objects, not as tool for 

reflections on tasks...) and which erases the perspective which can be adopted on 

these objects. In particular, tasks belonging to the graphical register are reduced 

while they could enrich students‘ perspectives on functions. 

Moreover, I have claimed in this paper that these difficulties with point-wise and 

global perspectives on functions can be related with difficulties for students to enter 

on one hand in the formal axiomatic world and on the other hand to develop the local 

abilities which are necessary at the beginning of the university. I will continue to 

investigate these ideas in the future by designing a questionnaire for university 

students which will explore the students‘ perceptions of local and formal properties 

(the utilization of the formal definition of limit for instance). On the other hand, I 

will introduce tasks at the end of secondary school using new technologies to focus 

on the graphical register of functions, not only the algebraic one, to investigate local 

problems such as continuity and differentiability problems on functions. 
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DISCOURSES OF FUNCTIONS – UNIVERSITY MATHEMATICS 

TEACHING THROUGH A COMMOGNITIVE LENS 

Olov Viirman 

University of Gävle & Karlstad University, Sweden 

This paper reports on an ongoing study focusing on the teaching of functions in 

undergraduate courses in mathematics at three Swedish universities. In this paper 

excerpts from the lectures of three teachers at one university are analysed, using 

commognitive theory. Characteristic features of the teachers‘ discourses about 

functions are presented. Definitions are found to be the central type of narrative, 

while theorems and proofs are largely absent, despite the fact that the teaching is of 

a traditional type, often connected to the ―definition-theorem-proof‖ format. Three 

main categories of routines are found: substantiation, construction and motivation 

routines. It is also seen that the teachers are more concerned with questions of 

―why‖ to do things than ―when‖ to do them.   

INTRODUCTION 

Students‘ conceptions of the function concept have been extensively studied (see e.g. 

Harel & Dubinsky, 1992; Schwarz & Hershkowitz, 1999; Vinner & Dreyfus, 1989). 

In an earlier study (Viirman, Attorps & Tossavainen, 2011) we looked at a small 

group of university mathematics students, investigating their concept images of the 

function concept, and making comparisons with the historical development of the 

concept. We worked within a theoretical framework building on the idea of concept 

image, as developed by Tall and Vinner (1981), and also on Sfard‘s (1991) theories 

of the process/object duality of mathematical concepts and of the three stages of 

concept formation. Out of this work grew a desire on my part to continue this 

research, but with a different focus, leading to the ongoing work of which a first 

report is given in the present paper. My main interest is now in the teaching, 

investigating how mathematics teachers at the university level work with the 

function concept, and what they do to promote the learning of this concept in their 

students. I believe that there is a need for studies of the actual practice of 

mathematics teaching at Swedish universities, hopefully gaining insight that might at 

a later stage be used to help improve university mathematics teaching. 

THEORETICAL FRAMEWORK 

Over the last decade or so Sfard has written extensively of acquisition and 

participation as basic metaphors underlying theories of learning (cf. Sfard, 1998). 

Through the acquisition metaphor learning is described in terms bringing to mind the 

accumulation of material goods, while through the participation metaphor learning is 

seen as the process of becoming a member of a certain community. The framework 
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used in our earlier study is very much based on the acquisition metaphor. The present 

work, however, takes a participationist view on learning. 

In recent years, Sfard has developed a participationist theory of thinking (Sfard, 

2008), drawing on ideas from Vygotsky and Wittgenstein. The foundational tenet of 

participationism is ―that patterned, collective forms of distinctly human forms of 

doing are developmentally prior to the activities of the individual.‖ (Sfard 2008, p. 

78, emph. in original) Based on this idea, Sfard defines thinking as ―an 

individualized version of (interpersonal) communicating‖ (ibid, p. 81), and coins the 

neologism commognition in order to encapsulate both inter- and intrapersonal 

communication. Different types of communication are called discourses, and these 

discourses are in constant development, growing and increasing in complexity. 

Within the commognitive framework, then, learning may be defined as 

individualizing discourse, becoming ever more capable at communicating within the 

discourse, with others as well as with oneself (Sfard 2006, p. 162). This is achieved 

through a process of adjusting one‘s discursive activities to fit the leading discourse 

(or, more rarely, the other way around). The unit of commognitive analysis is the 

discursive activity, the ―patterned, collective doings‖ (ibid, p. 157). Hence, what I 

will be looking at in this study is the discourse of function, as it is manifested in the 

communicative practices of the teachers (and students). But what characterizes 

specific discourses? Sfard presents four characteristics which can be used to describe 

and distinguish different discourses (Sfard, 2008, p. 133ff): 

word use - words specific to the discourse or common words used in discourse-specific 

ways  

visual mediators - visual objects operated upon as a part of the discursive process. 

Examples from mathematical discourse could be diagrams and special symbols. 

narratives - Sequences of utterances speaking of objects, relations between and/or 

processes upon objects, subject to endorsement or rejection within the discourse. 

Mathematical examples could be theorems, definitions and equations. 

routines – Repetitive patterns characteristic of the discourse. Typical mathematical 

routines are for instance methods of proof, of performing calculations, and so on. 

A more thorough presentation of the commognitive theory of mathematical discourse 

is beyond the scope of this paper, but a few words about routines and rules of 

discourse are needed.  The discursive patterns are the result of processes governed by 

rules. Sfard distinguishes between object-level and meta-discursive rules of 

discourse. The former regard the properties of the objects of the discourse, while the 

latter govern the actions of the discursants. A routine, then, is a set of meta-rules 

describing a repetitive discursive action (ibid, p. 208). This set can be divided into 

the how and the when of the routine, determining in the first case the course of action 

and in the second case the situations in which action would be deemed appropriate.  
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So, given this, the question this study aims to answer is: What characterizes the 

discourses about functions presented by the teachers, primarily regarding narratives 

and routines? 

PREVIOUS RESEARCH 

The teaching of mathematics in higher education, while not as well-researched as the 

function concept, has seen an increase in research activity over the last decade. An 

early example of research focusing on mathematics teaching at university outside of 

a teacher education context is the work of Burton (2004), studying professional 

mathematicians as learners, and possible implications for university mathematics 

teaching. More recently, the actual practice of mathematics teaching at the university 

level has earned growing research interest, in particular with the work of Jaworski 

and Nardi (e.g. Nardi, 2008; Nardi, Jaworski & Hegedus 2005), investigating 

university mathematicians' views about the teaching of mathematics. There are also a 

number of other studies, including some (e.g. Weber, 2004; Wood, Joyce, Petocz & 

Rodd 2007) focusing on so-called traditional mathematics instruction. In Sweden, 

research on the teaching of mathematics at university is rare, but one example is 

Bergsten (2007), discussing ways of investigating the quality of mathematics 

lectures, building on a case study of one calculus lecture on limits of functions. 

Since Sfard's commognitive theory is relatively recent, and still under development, 

not that many studies have been reported using this framework, and those that do 

exist tend to focus on the mathematical learning of younger children (e.g. Sfard 

2001, 2007; Sfard & Lavie 2005) or on elementary mathematics, like arithmetic 

(Ben-Yehuda, Lavy, Linchevski & Sfard, 2005). However, very little has been 

published on university mathematics learning from a commognitive standpoint. The 

one example that I'm aware of is the work of Ryve (2006), which makes use of, but 

also critiques, an early version of Sfard's theory, as presented in for instance Sfard 

(2001), in order to investigate student interaction in problem-solving. As far as I 

know, there is yet no published research using commognitive theory to investigate 

university mathematics teaching. 

METHOD 

The empirical data in my study consists mainly of videotaped lectures and lessons 

given by teachers in freshman year mathematics courses at three Swedish 

universities, chosen for diversity – one old, large university, one more recently 

established, and one smaller, regional university. The teachers were then selected 

among those giving freshman courses on relevant topics during the time available for 

data collection. In two cases, this, together with the obvious fact that the teachers had 

to agree to participate in the study, effectively made the choice for me. At the large 

university, where the number of possible participants was greater, I again aimed for 

diversity, both in topics covered and in teaching experience. One thing all teachers in 
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the study have in common, however, is an active interest in teaching. In the present 

paper, I have chosen to focus on three 45-minute excerpts from lectures given at the 

same university, one of the larger in Sweden. The collection and transcription of data 

is ongoing, and the excerpts chosen were simply the most extensive transcriptions 

available at the time of writing. The first excerpt is from an introductory course, 

mainly preparatory for calculus. The teacher (referred to as teacher A below) is a 

woman in her fifties, who got her doctoral degree in the 1980's, and has taught at the 

university for about 20 years. The second is from a course in algebra, and the teacher 

(B) is a male graduate student in his twenties, giving his first course as a lecturer, 

having earlier only served as a teaching assistant. Finally, the third is from a course 

in linear algebra, given by a male teacher (C) in his thirties, having recently gotten 

his first position following some years of post-doctoral work. The students in all 

three courses were first semester engineering and computer science students. The 

excerpts were transcribed verbatim, speech as well as the writing on the board. The 

transcribed lectures were then analysed, using the four characteristics of discourses 

described above to try to distinguish the discursive patterns characterizing the 

teachers' respective discourses of functions. I first analysed each lecture separately, 

and then looked at all three together, searching for differences and similarities. Since 

the unit of commognitive analysis is the discursive activity, I have intentionally 

chosen an outsider perspective, trying to view the enfolding discourse in as unbiased 

a way as possible. At the same time, I am of course aware of, and also making use of, 

the fact that my mathematical knowledge makes me an insider to the discourse. 

However, I have specifically tried to avoid making references to what is not present 

in the discourse, except in contrasting different teachers‘ discursive activities. 

RESULTS 

My focus in this paper will be on the narratives and routines characterizing the 

discourses of the teachers. Observations regarding words and visual mediators used 

will be referred to whenever they are relevant to the analysis.   

A central type of narrative in all three discourses is the definition, which can be 

formal or informal in character, with informal definitions often relying heavily on 

metaphor. In this respect certain differences between the discourses can be seen. 

Teacher A consistently introduces new concepts in informal terms, and then presents 

a formal definition, as in the following example (all excerpts have been translated 

from Swedish by the author): 

Teacher A maybe it's the whole of B, but maybe it's just a small part of B that actually 

comes out, that the machine spits out. Then we speak of the domain of f.  

Teacher A (…) and that you could write like this if you want: f of a, the set of all f of a 

when you let a vary over all [writes: }:)({ Aaaf ] 

Teacher B, however, generally starts by stating a formal definition, and then giving 

an informal interpretation. 
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Teacher B but if C is a whole subset of A, then we define f of C as simply the set of all 

values of the function starting in C, the set of all f of x, where x lies in C. 

And this leads us to our last definition [writes: f(A) is called the domain of f] 

f of A – f of the whole set A - is called the domain of f  

Teacher B so the domain is all the elements in B that the function gets to 

In fact, in the case of the definition of 'function', he gives no informal interpretation 

at all. But there is also one case (definition of injectivity) where he introduces the 

concept informally before giving the formal definition. Teacher C, finally, uses a 

third approach. He presents the definitions formally in writing, while simultaneously 

explaining them verbally in an informal fashion, like this: 

Teacher C [writes: Definition: nFm RR ] a function from R
m
 to R

n
 is called a linear 

map if it is linear, that is if it satisfies two conditions  

Teacher C [writes: if 1) F(v+w)] the first one is that it respects addition in the 

following way: if you have two vectors v and w, and you add them, and then 

you apply a function F,  and get vectors in R
n
 then that is the same thing as 

if you take each of the vectors, toss them into R
n
 and add them there. 

Teacher C [writes: =F(v) + F(w)] 

Hence, for teachers A and C, the informal definitions provide endorsement for the 

formal ones. As for teacher B, he often endorses his definitions through reference to 

a lack or need. Before giving his formal definition of function, he says that ―what we 

haven't learned is how we connect two sets in the sense that to each element in one 

set we associate an element in the other set‖. Interestingly enough, his definition 

doesn't mention the ―one-valuedness‖ property central to the modern concept of 

function (to each element in the domain there is exactly one element in the range). 

Instead he introduces this later, endorsing it partly through another reference to need 

– without it we wouldn't be able to work with functions at all – and partly by 

referring to the metaphorical description of the function as a machine. 

As for other central narratives of scholarly mathematical discourse, theorems and 

proofs, these are much more rare in the discourses of the three teachers. Only teacher 

C actually states and proves a theorem. Instead the narratives through which the 

discourses are developed are mainly examples illustrating specific properties. For 

teacher A, these examples are almost invariably given primarily by formulas. The 

one exception, a fairly convoluted function, used to illustrate the fact that the rule in 

the definition of function doesn‘t require an actual method of computation, is 

explicitly referred to as a ―silly example‖. The examples given by teachers B and C 

are more varied, including geometrically constructed functions (rotations and 

projections), and functions given by tables of values. 

Regarding the routines, the differences in discursive practices are more pronounced. 

One common category of routines is what we could call substantiation routines, 
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aiming at verification or rejection of statements. These often concern the use of 

definitions. For instance, all three teachers present routines for checking whether a 

specific example satisfies a given definition. An example, from Teacher B: 

Teacher B This function is injective 

Teacher B Such a statement, bold as it is, you show by assuming that the values of the 

function are equal, and from that showing that this implies that x1 and x2 are 

equal 

He then goes on using formal algebraic manipulation to show that the last statement 

follows from the first. On the other hand, in a passage, which unfortunately is too 

long to be quoted here, teacher C uses graphical representations of plane vectors to 

show that rotation in the plane by an angle π/2 satisfies the two conditions in the 

definition of a linear map. Having done one vector addition, he then appeals to the 

geometric intuition of the students: 

Teacher C yes, I have just taken that picture and moved it here through rigid rotation, 

so that parallelogram addition up here has to function just like that one 

Teacher C So that rotation satisfies that condition 

Both are examples of substantiation routines, but the means of substantiation are 

different. 

Other substantiation routines are those using definitions to exclude non-examples: 

Teacher A if we return to this crazy example which wasn‘t a function, the circle 

Teacher A It wasn‘t a function because even if we insert something between -1 and 1, 

we would perhaps want that it was a function with A being -1 to 1, the 

interval, but then when we insert something which isn‘t 1 and not -1 [she 

clearly marks the origin in an already drawn picture of the unit circle in the 

x-y-plane] then we get two y-values that fit, it is different 

Teacher A So that the function doesn‘t give us exactly one, it gives us more than one 

Teacher A And then it isn‘t a function 

Here, the teacher uses a graphic argument, directly showing why the circle cannot be 

the graph of a function. Examples of this kind of routine can be found elsewhere in 

her lecture, as well as in that of teacher B. They are however not found in the 

discourse of teacher C. 

A second category of routines commonly found in the discourses of the three 

teachers, but taking very different forms, are construction routines, concerned with 

the construction of discursive objects or narratives. In the discourse of teacher A we 

can find repeated use of routines for constructing the graph of a function given an 

algebraic formula, and for finding the value of a function at a point given the graph. 

These constructions are all very sketchily outlined, however, and it is clearly stated 

(―we have already talked about this when we did quadratic curves‖) that this is 
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something which they have been doing for some time. Also there are several 

instances of routines for determining the range or the largest possible domain of a 

function given a formula. A typical example: 

Teacher A it doesn't say on the board what Vf is. You have to look, what function is it, 

and then you have to try to figure out what values can come out here then 

Teacher A and in this case, there's a square here, plus 2, squares can be 0 or larger 

Teacher A and it can be any number larger than 0 this square, so it can be 2 plus 

something positive, so it can be any number larger than or equal to 2. So 

fV in this example is the interval starting at 2 and continuing upwards 

As we can see, this is something done by looking at the formula, not by for instance 

looking at the graph, which had been drawn just 20 minutes earlier (although it had 

now been erased). Routines for determining domain and range are also present in the 

discourse of teacher B, and handled in pretty much the same way.  

The construction routines in the discourse of teacher C are mainly concerned with 

constructing maps from matrices, and vice versa. This is a central topic of the lecture, 

being the subject of the theorem which gets stated and proven. In fact, the proof is 

basically an instance of such a routine. There are variants using vector algebra and 

geometric reasoning, but both follow this basic pattern: 

Teacher C  it is easy to solve that type of problem 

Teacher C if you know the images of the basis vectors under a certain linear map then 

you put them as columns, and that is the standard matrix of the map 

A general trait of the discourse of teacher C is his frequent use of geometric 

reasoning. The other two teachers are much more reliant on algebraic methods. 

A third, less common category of routines, which however is very much present in 

the discourse of teacher B, could be called motivation routines, dealing with 

presenting motives for developing new mathematics. The discursive pattern can be 

described in the following way: OK, so now we know this, but here is something else 

that we don't know. What would we need in order to find this out, or be able to do 

this? We would need this. OK, let's define it. We have already seen one example, in 

the motivation given for introducing the concept of function, and here is another: 

Teacher B now that we know what a function is, then maybe one wants to illustrate it 

in a better way than just writing like this, like in this way you don't see, ok 

you know what the function does, but you don't really get any idea of what 

it looks like 

This is followed by a description of the ―function machine‖, and by the definition of 

the graph of a function. This type of motivational pattern is not found in the 

discourses of the other two teachers. 
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DISCUSSION 

First I want to comment on the invisibility of the students in what has been presented 

here. This is partly due to the fact that the excerpts are from lectures, where students 

tend to be less active. However, there is a certain amount of teacher-student 

interaction in the excerpts, some of it very interesting, but an analysis of this is 

beyond the scope of this paper. Here I will instead give some reflections on what I 

see as the character of the teachers' discourses.  

All three teachers give traditional lectures, speaking and writing at the board. 

However, the traditional ―definition-theorem-proof ― (DTP) format (Weber, 2004) is 

not so apparent, theorems and proofs being largely absent. There are at least two 

possible reasons for this. Firstly, in all three lectures, the function concept is 

introduced for the first time in the course, leading to a greater prevalence of 

definitions and examples, with theorems possibly following later. Secondly, all three 

courses are first-semester courses, and as such situated somewhere between 

elementary and advanced courses, perhaps making the DTP format less applicable. 

While sharing the overall lecture format, the teachers differ in the discourses they 

present. These differences are obviously to a great extent predicated by differences in 

course content. In the discourse of teacher A, teaching to prepare for calculus, the 

formula is very much the preferred realization of function. This is seen in the way 

she introduces examples and also in her choice of words. She almost consistently 

speaks of curves rather than graphs, indicating that what she has in mind is 

continuous functions. When she does give an example of a function not given by a 

formula she describes it as ―silly‖. Teacher B, teaching algebra, uses the language 

and methods of formal logic in a way neither of the other teachers do. He also 

presents a much more general idea of what a function might be. I have already 

mentioned the prevalence of geometric reasoning in the discourse of teacher C 

(linear algebra). But there are some surprises as well. In Nardi (2008, p. 167), the 

mathematician (actually a composite portrait of a number of mathematicians 

interviewed by Nardi) claims that the graph as a realization of function is essential in 

analysis but meaningless in algebra. Still, teacher B devotes quite some time to the 

concept of graph, discussing it at a high level of detail. A possible explanation for 

this could be laying groundwork for the use of functions in other courses. If so, this 

aim is not made explicit, something which is typical of all three lectures. 

Connections between different branches of mathematics are seldom made, despite 

the fact that functions are central to so much of mathematics. This lack is also noted 

in Nardi (2008, p. 167).  I would also like to comment on the process/object duality 

(Sfard, 1991) of the function concept in the context of the discourses of the three 

teachers. All three primarily talk of functions in process terms. However, at the same 

time, they obviously view them as objects: 

Teacher A it is a function; it is the function x
2
 which I move one step to the right and 

two steps up 
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Teacher C we speak of the domain of the function, where the function starts (…) and 

of the target set, where the function is going 

It would be interesting to know what effect, if any, this might have on students' 

learning. 

Sfard (2008) speaks of the ―how‖ and ―when‖ of routines. The ―when‖ is seen as 

more problematic, due to the fact that ―Presenting the when of routines, that is, 

constructing exhaustive lists of conditions under which given patterns tend to appear 

in a discourse of a given group or person, is more complicated, if not altogether 

unworkable.‖ (ibid, p. 209) For analytical purposes the questions of ―how‖ and 

―when‖ are natural, since they are what can be observed. But in the actual discursive 

practices of the teachers, the question of ―when‖ to use a certain discursive pattern is 

mostly addressed by discussing ―why‖ it should be used. Perhaps a reason for this is 

that explaining why something is done can give more comprehensive criteria of 

when it should be done, avoiding the problem of presenting conditions of use. 

REFERENCES 

Ben-Yehuda, M., Lavy, I., Linchevski, L & Sfard, A. (2005). Doing wrong with 

words: What bars students' access to arithmetical discourses. Journal for Research 

in Mathematics Education, 36(3), 176-247. 

Bergsten, C. (2007). Investigating Quality of Undergraduate Mathematics Lectures. 

Mathematics Education Research Journal, 19(3), 48-72. 

Burton, L. (2004). Mathematicians as Enquirers: Learning about Learning 

Mathematics. Dordrecht: Kluwer. 

Harel, G. & Dubinsky, E. (Eds.). (1992). The Concept of Function: Aspects of 

Epistemology and Pedagogy. Washington, DC: Mathematical Association of 

America. 

Nardi, E. (2008). Amongst Mathematicians. Teaching and Learning Mathematics at 

University Level. New York: Springer. 

Nardi, E., Jaworski, B. & Hegedus, S (2005). A spectrum of pedagogical awareness 

for undergraduate mathematics: From ‗tricks‘ to ‗techniques‘. Journal for 

Research in Mathematics Education, 36, 284-316. 

Ryve, A. (2006). Approaching mathematical discourse: two analytical frameworks 

and their relation to problem solving interactions. Department of Mathematics 

and Physics. Mälardalen University. 

Schwarz, B. & Hershkowitz, R. (1999). Prototypes: Brakes or Levers in Learning the 

Function Concept? The Role of Computer Tools. Journal for Research in 

Mathematics Education, 30, 362-389.  



Working Group 14 

 CERME 7 (2011) 2112 

 

Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on 

Processes and Objects as Different Sides of the Same Coin. Educational Studies in 

Mathematics, 22, 1-36. 

Sfard, A. (1998). On Two Metaphors for Learning and the Dangers of Choosing Just 

One. Educational Researcher, 27(2), 4-13. 

Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking 

as communicating to learn more about mathematical learning. Educational Studies 

in Mathematics, 46, 13-57. 

Sfard, A. (2006). Participationist Discourse on Mathematics Learning. In J. Maasz & 

W. Schloeglmann (Eds.), New Mathematics Education Research and Practice 

(153-170). Rotterdam: Sense. 

Sfard, A. (2007). When the Rules of Discourse Change, but Nobody Tells You: 

Making Sense of Mathematics Learning From a Commognitive Standpoint. The 

Journal of the Learning Sciences, 16, 565-613. 

Sfard, A. (2008). Thinking as Communicating. Human Development, the Growth of 

Discourses, and Mathematizing. Cambridge, U.K.: Cambridge University Press. 

Sfard, A. & Lavie, I. (2005). Why cannot children see as the same what grown-ups 

cannot see as different? Early numerical thinking revisited. Cognition and 

Instruction, 23, 237-309. 

Tall, D. & Vinner, S. (1981). Concept Image and Concept Definition in Mathematics 

with particular reference to Limits and Continuity. Educational Studies in 

Mathematics, 12, 151-169. 

Viirman, O., Attorps, I. & Tossavainen, T. (2011). Different Views – Some Swedish 

Mathematics Students‘ Concept Images of the Function Concept. To appear in 

Nordic Studies in Mathematics Education, 16(1). 

Vinner, S. & Dreyfus, T. (1989). Images and Definitions for the Concept of 

Function. Journal for Research in Mathematics Education, 20, 356-366. 

Weber, K. (2004). Traditional instruction in advanced mathematics courses: a case 

study of one professor's lectures and proofs in an introductory real analysis course. 

Journal of Mathematical Behavior, 23, 115-133. 

Wood, L. N., Joyce, S., Petocz, P. & Rodd, M. (2007). Learning in lectures: multiple 

representations. International Journal of Mathematical Education in Science and 

Technology, 38, 907-915. 



  

 CERME 7 (2011)   

SECONDARY-TERTIARY TRANSITION AND EVOLUTIONS OF 

DIDACTIC CONTRACT:  

THE EXAMPLE OF DUALITY IN LINEAR ALGEBRA 

 Martine De Vleeschouwer, Unité de didactique des math., Université de Namur 

Ghislaine Gueudet, CREAD, IUFM de Bretagne UBO 

This contribution concerns the teaching and learning of duality in linear algebra. 

Combining an institutional, and a didactic contract perspective we argue that some 

of the novice students‘ difficulties can result from specific features of the university 

contract, at different levels. Analyzing university textbooks, we identify such 

features, in the case of duality. Drawing on these observations, we design an 

experimental teaching, aiming to support the students‘ entrance in the new contract, 

at different levels. We investigate the impact of this experimental teaching. Analyzing 

students‘ productions, we observe that they developed abilities specific to the 

university contract, concerning duality or more generally mathematics. 

Keywords: Secondary-tertiary transition, Linear Algebra, Didactic contract, 

Institutions 

Duality in linear algebra is recognized as an arduous topic for novice students. The 

general aim of our work is to understand the difficulties they meet in duality, and to 

propose a teaching of duality likely to overcome these difficulties. Duality can be 

considered as a content specific of university mathematics, far away from secondary 

school. It led us to situate our study within the wider issue of secondary-tertiary 

transition. In previous work (De Vleeschouwer 2010a), we studied the students‘ 

difficulties, and proposed categories of difficulties, using an institutional focus. The 

work we present here corresponds to two new directions of research. On a theoretical 

level, we propose to consider the change of didactic contract between secondary 

school and university, and to combine it with the institutional perspective. In our 

empirical work, we have designed and implemented an experimental teaching 

intervention, aiming to support the students‘ entrance in the new didactic contract. 

We investigate here its impact on the students‘ outputs. 

In part 1, we outline our theoretical propositions, articulating the didactical contract 

and the institutional perspective. In part 2, we specify our analysis to the context of 

linear algebra, and especially to duality in linear algebra. We present in part 3 the 

experimental teaching; we analyse its impact, drawing on students answers to a 

questionnaire, in part 4. 

DIDACTIC CONTRACT, INSTITUTIONS AND THE SECONDARY-

TERTIARY TRANSITION 

The notion of didactic contract was introduced by Brousseau (1997), to describe ‗a 

system of rules, mostly implicit, associating the students and the teacher, for a given 
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piece of knowledge‖ (Brousseau 1997). Another interpretation of the contract, which 

is especially relevant in our study, is formulated in terms of sharing responsibility 

towards knowledge, between the students and the teacher. It seems thereof 

straightforward to claim, like Artigue (2007), that when a student enters university 

―the didactic contract is no longer the same‖. Several authors retain this perspective 

to study novice students‘ difficulties (Bloch 2005, Grønbæk, Misfeldt & Winsløw 

2009). Nevertheless, the contract features identified are often very general: the 

students must show more autonomy, they must be able to develop reasonings 

involving sevral frames (Douady 1987) etc. These features seem to characterize 

general institutional expectations and not a particular mathematical content. 

Considering the work of Chevallard (2005) can enlighten this last issue. According 

to him, a subject encounters a given mathematical knowledge in an institution. The 

institution frames this knowledge as a mathematical organisation, or praxeology, 

entailing four components: a type of tasks, a technique to accomplish this type of 

tasks; a technology, which is a discourse justifying the technique, and a theory. 

Mathematical organisations exist at several levels, from specific to general. 

Considering the didactic contract with this perspective leads to distinguish several 

levels of contract, in a given institution: 

- a general contract, independent of the knowledge at stake (Sarrazy, 2005, terms it 

the pedagogic contract). For example, at university in some countries attending the 

courses is not compulsory; taking notes is under the students‘ responsibility etc.; 

- a didactic contract for mathematics, concerning generally mathematics in the 

institution: for example, the requirement of rigorous proofs; 

- a didactic contract for a given content, concerning particular mathematical notions.  

With these distinctions, the main question studied in this article can be formulated 

as: is it possible to support the students‘ entrance in a new contract at different 

levels, and how? We address this issue in the context of duality in linear algebra. 

Firstly, we identify features of the didactic contract at university, correponding to 

different levels, for the teaching of duality. 

INSTITUTIONAL DIDACTIC CONTRACT AND DUALITY IN LINEAR 

ALGEBRA 

We do not consider here the general contract; we start with the level of the didactic 

contract for mathematics. Considering several research works about transition 

(Praslon 2000, Bloch 2005, Bosch et al. 2004, Winsløw 2008) we retain that the 

following difficulties of the students correspond to changes of the didactic contract 

for mathematics, between secondary school and university: 

- difficulties with building examples; 
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- difficulties with working in different frames, with moving between different 

representations ; 

- difficulties with working at the technology-theory level, which means in particular 

producing a discourse justifying a technique.  

According to the authors mentioned above, at university the student is (at least 

sometimes) responsible for these issues, which were only under the responsibility of 

the teacher at secondary school.  

On a more precise level, about linear algebra and duality, we infer rules of contract 

by analysing textbooks (De Vleeschouwer 2010b).  

A central change is that several concepts, in linear algebra, can change status, 

according to the context. For example, a matrix can be considered as representing a 

linear function in given bases; it can also be considered as an element of a vector 

space. A function can be seen as process acting on given objects; it can also be an 

element of a vector space. This last example is crucial in duality, where the students 

will have to determine the dual of a given vector space: a set of linear forms. In 

Belgium where our study takes place, students also encounter matrices and functions 

at secondary school. But these matrices and functions are not considered as elements 

of sets. At university, the student must be able to switch between both statuses, 

which are moreover not explicitly presented. 

In 2008-2009 we elaborated and tested a teaching of duality taking into account 

these features of the contract, both at the discipline level for mathematics and at the 

content level for duality. 

SUPPORTING THE ENTRANCE IN A NEW CONTRACT: AN 

EXPERIMENT AT NAMUR UNIVERSITY 

We present below the main choices made with regard to the experimental teaching. 

Its focus is on duality, but also develops some prerequisites (as a minimum repertoire 

of vector spaces). We first want to situate its context, both in terms of the students 

involved and of teaching organisation. 

The University of Namur has set up a device called ―springboard operation‖, aiming 

to support novice students, entering university (De Vleeschouwer 2008). It consists 

in remedial sessions proposed to the students, lasting between 2 and 4 hours each 

week. The first author of this paper participated as a teacher in the springboard 

operation, for first year students seeking a Master's degree in mathematics at the 

university of Namur (26 students in this first year in 2008-2009). She implemented 

the experimental teaching mainly in the context of this springboard operation (the 

variety of vector spaces was developed in a group work). This choice is the result of 

institutional constraints: setting up an experimental teaching in the ―normal‖ course 

would have been refused by the mathematicians responsible for this teaching. 

Usually, only some of the students attend the springboard sessions. For the 
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experimental teaching, all the students were invited to participate; 20 of them finally 

followed the sessions. Our analysis concerns these 20 students.  

Before the teaching of the duality, students had already seen, in the theoretical course 

and in the exercises concerning algebra, the vector spaces (algebraic structures, 

linear dependence and dimension, sub-vector spaces); the linear functions and the 

associated matrices. 

The experimental teaching within the springboard operation starts before the 

teaching of duality with a mandatory group work, aiming to provide the students 

with a minimum repertoire of vector spaces. Duality itself was tackled one month 

after the start of the academic year, in October 2008, and the corresponding teaching 

lasted five weeks:  

- during week 1, students received a theoretical course (1.5h) concerning linear 

forms and dual space. Then they participated in an activity, which purpose is to make 

students aware of the various statutes that a matrix may have in linear algebra: 

element of a group, a ring, a vector space or representing a linear function; 

- during week 2, we proposed to the students an activity, ―linear forms and dual‖, 

described below (1h). Moreover, a theoretical course was given (1.5h), concerning 

the bidual space, the reflexivity theorem and the transpose transformation; 

- during week 3, illustrations of dual and bidual spaces are presented (1h);  

- finally during weeks 4 and 5 students had sessions of exercises (2x2h) on duality. 

We focus in this paper on the ―linear forms and dual‖ activity. We now present this 

activity and the corresponding choices, described in detail in (De Vleeschouwer 

2010b). 

As mentioned above (§2) a function, and thus a linear form, can change status, 

according to the context. In the context of duality in linear algebra, different statuses 

of linear forms can appear in the same task. 

A linear form φi belonging to a dual basis X‘ of a basis X of a vector space E 

combines indeed two statuses: 

- the status of process, operating on the elements of a vector space E. This status 

appears in the relationship linking basis X = {x1, …, xn} of vector space E to its dual 

basis X‘ = {φ1, …, φn} :  i, j = 1,…,n : φi (xj) = δij, where δij is Kronecker's delta; 

- the status of element of a vector space: the dual space of E (denoted E‘ ), as an 

element of a basis of E‘ . 

This combination of statuses can be considered as an aspect of the institutional 

didactic contract, at the level of a specific content. ―A linear form is a process, and 

an element of a vector space, and students should be able to switch between these 

two statuses‖ is a rule of this contract. It is certainly linked with the process/object 

dialectics (Dubinsky 1991), but we do not retain here a cognitive focus: we consider 
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how the institution shapes the content. This rule remains implicit; and this change of 

status yields difficulties of the students. In the experimental teaching we organized, 

we have chosen to make this rule explicit to students.  

We introduced for this purpose a specific vocabulary, presented to the students 

during the teaching in the springboard sessions. This vocabulary is thus not an 

analysis tool for our research; it can be seen as a meta-language proposed to students. 

From the researcher‘s point of view, it is directly connected with the levels 

introduced by Chevallard (2005); we can not develop the point here, details can be 

found in De Vleeschouwer (2010b).  

We say that a linear form φ is considered at a micro level when it is seen as a process 

operating on the elements of a vector space E (on a field K). We explain to the 

students that this choice of vocabulary is a metaphor, indicating that φ is considered 

in detail, which permits to observe the transformation it operates on the vectors of E. 

At this micro level, we can consider its kernel, range, rank amongst others.  

When a linear form is considered as an element of a vector space, we call it the 

macro level. In this case this linear form can be considered amongst other linear 

forms on the same space E, constituting thus a set. In this set, one can define addition 

and product laws; with these laws one obtains a vector space, the dual of E.  

On both levels, the same object φ is considered, but under different statuses. We 

explicitly presented to the students these levels using the vocabulary ―micro‖ and 

―macro‖ during teaching, and connected them by saying that the macro level is 

obtained by a zoom out, the micro level by a zoom in (see De Vleeschouwer 2010b 

for the figures associated with this metaphor).  

In order to evaluate the precise impact of this experimental teaching, we proposed, 

four months after the experimental teaching, a questionnaire to the students who 

attended it, and analysed their answers. We present this work in the next section. 

More than their success or failure, we try to identify in the students‘ answers indices 

of their entrance, or non-entrance, in the new contract. 

IMPACT OF THE EXPERIMENTAL TEACHING 

We present here an extract of the questionnaire, and analyse the corresponding 

students‘ answers in terms of didactic contract.  

34 Let P 3
 be the vector space of polynomials of degree less than or equal to 3, 

with real coefficients. Let, for 1, ..., 4i , pi :  such as x : 
3 2

1( ) 2 4p x x x , 3

2( ) 2 2p x x x , 3

3( ) 1p x x , 3

4( ) 2 3p x x .  

Prove that 
1 2 3 4, , ,A p p p p  is a basis of P 3, and determine its dual basis. 
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35 Let 1 2 3, ,f f f  such as: 

5

1

1

:

( , , , , ) ( ) 3 2

f

v a b c d e f v a e
  

5

2

2

:

( , , , , ) ( ) 2

f

v a b c d e f v a b c
 

5

3

3

:

( , , , , ) ( ) 3 6 2

f

v a b c d e f v b c e
 

1 Give an example of vector space comprising 1 2 3, ,f f f . 

2 Does 1 2 3, ,f f f  form a linearly independent set of vectors? 

3 Give an example of linear form which does not belong to Span{ 1 2 3, ,f f f }. 

36 Choose a vector space different from polynomials, n  or n  ( n ), and give 

an example of linear form over this space. 

Table 1 : Extract of the questionnaire proposed to the students 

The methodology we employ here is based on the a priori analysis (Hejny et al. 

1999) of the questionnaire. We identify, in the questionnaire, specific aspects of the 

university contract, and observe in the students‘ answers if these issues raised 

difficulties, or if they evidence on the opposite an entrance in this contract. 

The first question is related with polynomials and refers explicitly to duality, since 

the students have to determine the dual basis of a given basis. The students must 

consider jointly the micro and the macro level of linear forms, which is typical of the 

new contract at the level of the 'linear forms' content. The second question concerns 

functions. The proposed functions 
1 2 3, ,f f f  are defined at a micro level. They are 

linear forms; nevertheless, this term is not used in the text in order to avoid that the 

students answer 'the dual space' to question 2.a). For their answers to question 2. b), 

the students must consider these functions as vectors, which means changing levels, 

to work at the macro level. They have to place their reasoning at a level different 

from the level of the text.  

Question 3 requires that the students work in a frame different from the polynomials 

(question 1) or the algebraic frame (common in the courses). The change of frames is 

also typical of the university didactic contract at the discipline level. In the second 

part of question 3, a linear form must be proposed at a micro level, as a process 

acting on the elements of the chosen set.  

Moreover, questions 2.a), 2.c) and 3 require to build an example. Such a task is 

typical of the university contract, at the discipline level; the same statement holds for 

the variety of frames, another feature of the questionnaire. 

We now consider the students‘ answers, focusing on the issues identified in the a 

priori analysis. 
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Two main techniques have emerged from students‘ responses to determine if the 

polynomials in question 1 constitute a basis: working with polynomials or with n-

tuples. Eight students (40%) prefer to work with 4-tuples instead of polynomials, but 

only two of them justify their reasoning (for instance a student cites the theorem 

asserting the existence of an isomorphism between P 3 and 
4
). We can consider that 

in doing so, these students comply with the didactical contract at the discipline‘s 

level which considers that the different steps of a mathematical reasoning should be 

justified. All students who responded to the questionnaire were able to determine 

that the given polynomials were linearly independent. It does not seem to be a 

problem for them to work in a non-usual frame, as often required at University. 

70% of the students present the linear forms of the dual basis in a complete, detailed 

form (departure space, arrival space and image of any vector, see Figure 1). We 

interpret these kinds of answers as typical from the university contract, at two levels. 

At the discipline level, a mathematical answer has to be as complete as possible. At 

the content level, a function must be characterized by these three elements, whereas 

at secondary school generally only the expression ― ( )f x ‖ or the graph is given. 

Twelve students (60%) describe analytically the four linear forms '

ip  and, at the same 

time, consider them as elements of a set (the dual base): they write explicitly 

― ' ' ' '

1 2 3 4' , , ,A p p p p ‖ (see Figure 1). In doing so, students consider the linear forms 

both at the macro level and at the micro level. 

 

Figure 14: Conclusion of a student's answer to the second part of question 1 

Concerning question 2.a) fifteen students (75%) succeed in giving a vector space 

comprising the given linear forms, and nine of them (45%) cite the dual space. It 

requires to consider at the macro level functions which have been described in the 

text as processes (micro level). This change of status does not seem to constitute a 

difficulty for a majority of students. The same statement holds for the sub-question 

2.b): while the linear forms were given at the micro level, seventeen (85%) students 
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succeed to consider them at the macro level, and answer correctly that they are 

linearly independent. Moreover six students convert the linear forms into 4-tuples 

before starting calculations (see Figure 2). We can interpret this fact as the 

conversion of a function from the mico level to the macro level. In Figure 2, we see 

that the student concludes question 2.b) by writing "the vectors are linearly indep." 

instead of "the linear forms are linearly indep."  

 

Figure 2 : Example of a student's answer to question 2 

Analyzing students‘ answers to question 3 shows that they seem to have built a 

variety of vector spaces: amongst the vector spaces cited by the students, eleven are 

vector spaces of matrices (square matrices of size 2 or 3); two are vector spaces of 

functions (transformations of  or of 
2
), one can be considered as algebraic ( 3  

built over ). The unsuccessful attempts concern 2 or 3  (cited by three students) 

or  (cited by two students); one student makes a non-relevant answer. Note that the 

module structure, which generalizes the vector space structure, was not presented to 

students. This perhaps explains the presence of proposals involving 2 or 3  in the 

responses of three of them. The variety of frames for linear algebra is typical of the 

new institutional contract at the discipline level. Moreover eight students justify the 

label ‗linear form‘ given to their example although seven of them give only a partial 

explanation: ―arrival space is the field‖. It seems that the part of justification in the 

didactic contract at the discipline level is not obvious. 
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 CONCLUSION  

In this work we attempted to determine rules of the didactic contract at university, in 

the case of duality. Using previous research works, and a textbooks analysis, we 

identified contract rules at different levels: some of these rules correspond to precise 

notions, like linear forms, while others concern more generally mathematics.  

We designed a teaching intervention aiming to support the entrance of students in 

this new contract. The objective of such a teaching is not to change the contract, by 

reducing the students‘ responsibility. In the case we presented, we chose to make 

explicit a usually implicit rule, at the level of a specific content (linear forms), 

introducing a meta-language (micro/macro) for students‘ use. We have also proposed 

to the students exercises where they were required to change frames, to build 

examples, and more generally to comply with new university expectations, at the 

level of the discipline. We do not claim that all the rules should be made explicit. 

Some of the contract rules have to remain implicit, this well-known paradox is an 

essential condition for learning (Brousseau 1997). Introducing the micro-macro 

meta-language, we did not only unveil a rule about linear forms; we contributed to 

raise the awareness of the students about the different statuses of mathematical 

objects at university, and the possible need for change of status, according to the 

context. The meta-language makes this new responsibility explicit. 

The analysis of the students‘ answers to our questionnaire evidence that they at least 

started to enter in the new contract. We did not carry out a comparison with other 

students (the conditions of our study did not offer such a possibility); but the first 

author of the paper, as a teacher, noticed that the students do not seem to meet the 

usual difficulties, and we consider that the experimental teaching significantly 

contributed to this progress. We now intend to extend our study to other topics: the 

precise rules of the didactic contract at university remain largely unknown. 
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Abstract: Because of its many uses, the constrained optimization problem is 

presented in most undergraduate mathematics courses dealing with calculus for both 

mathematicians and economists. Our research focuses on the teaching of Lagrange's 

Theorem in both branches of study, mathematics and economics. This paper 

addresses two objectives. First, we describe the methodology of our research project 

concerning the didactic transposition of Lagrange's Theorem in university courses. 

Secondly, we compare two mathematics courses dealing with calculus given at the 

universities of Namur and Louvain by means of the Anthropological Theory of 

Didactics.  

Keywords: Lagrange's Theorem, optimization, didactic transposition, 

Anthropological Theory of Didactics  

INTRODUCTION 

Constrained optimization plays a central role in optimization theory but also in 
economics. In fact, constrained optimization can be seen as one of the fundamental 

techniques that economists use to solve economic problems. Lagrange‘s Theorem 

and the derived method of Lagrange multipliers [named after Joseph-Louis Lagrange 

(1736-1813)] provide an appealing strategy for finding the maxima and minima of a 

function subject to equality constraints; so we are interested in studying the teaching 

of this theorem in both branches of study, mathematics and economics. 

Based on the author's own teaching experiences at the University of Namur 

(Belgium), it is apparent that a considerable number of first year students struggle 

with calculus courses and, in particular, with Lagrange's Theorem. Furthermore, the 

mathematical exercises in these classes involve students using a large number of 

standardized procedures for obtaining answers to clearly delimited types of exercise 

questions. Dreyfus mentions in this context that 

 they end up with a considerable amount of mathematical knowledge but 
without the  working methodology of the mathematician, that is they lack the know-
how that  

 allows them to use their knowledge in a flexible manner to solve problems of a 
type  

 unknown to them. (Dreyfus, 1991, p.28) 
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Hence, we question in our research project whether the choice of the didactic 

transposition of Lagrange's Theorem may influence the students' perception and 

understanding. Therefore, we question whether our findings help to enlighten 

mathematics professors concerned with increasing students' comprehension of this 

theorem. In fact, we also would like to show how teachers' practices are influenced 

inside the didactic transposition by a combination of didactic reasons and 

mathematical reasons. 

Next, we describe the theoretical framework used to guide our research. In order to 

investigate the constraints under which a professor should operate when conceiving 

and carrying out the teaching of Lagrange's Theorem, we analyzed existing didactic 

transpositions by means of the ―Anthropological Theory of Didactics‖ (ATD) of 

Chevallard (1992, 1999). This model describes mathematical activity in terms of 

mathematical (or didactic) organisations or praxeologies. The third section provides 

a description of our methodology, which used ideas from the ATD, a useful tool for 

the analysis of mathematical and teaching activities. In the fourth section, we briefly 

describe the epistemological reference model (ERM), which constitutes our basic 

theoretical model used to describe the didactic transposition. Related, mathematical 

praxeologies are then used to describe and compare the knowledge to be taught 

around the Lagrange's multiplier rule as it is proposed at the universities of Namur 

and of Louvain. Finally, we provide conclusions and a brief survey of perspectives of 

our research work. 

THE ANTHROPOLOGICAL APPROACH 

As we utilize an institutional perspective76 in our research, the choice of the 

―Anthropological Theory of Didactics‖ (ATD) proposed by Chevallard (1992, 1999) 

appears pertinent to investigate characteristics of teachers' practices. This model of 

mathematical knowledge envisions mathematics as a human activity involving the 

study of types of problems. Below, we provide a brief summary of the principal 

content of this theory based on a paper written by Barbé, Bosch, Espinoza and 

Gascñn (2005). 

In the anthropological approach, an object exists from the moment one person or an 

institution individually recognizes this object as existing, and more precisely, if 

someone relates to it. These relationships can be established through activities 

making use of the object. We identify two inseparable aspects of mathematical 

activity. First, the pratico-technical block (or know-how) is formed by types of 

problems or problematic tasks, T, and by the techniques, 

Studying problems of a given type (with an aim of solving them) is considered to 
be “doing mathematics”. Furthermore, in the anthropological approach, 
                                           

76
 Institutional perspective means that we observe practices relative to a (mathematical) object, these practices are 

expected to differ from one institution to another. 
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procedural methods, resolutions of problems or accomplishments of tasks 
suppose the existence of a technique. This holds true even if the given technique 
can scarcely be explained or shown to others or even to ourselves. 

Secondly, we assume in the anthropological approach that one can rarely find human 

practices without a copious environment of discourse. The objective of this ―spoken 

surrounding‖ is to describe, explain and justify what is done. Therefore, there is the 

knowledge block of mathematical activity that offers the mathematical discourse 

necessary to justify and interpret the practical block. The knowledge block is divided 

establishes profound justifications of the technology. In ATD, this second block is 

called the technological-theoretical block. 

Types of problems, techniques, technologies and theories can be seen as the 

fundamental elements of the anthropological model of mathematical activity. We 

also employ them to describe mathematical knowledge, which can be considered 

both a means and a product of this activity. When we examine various types of 

problems, techniques, technologies and theories together, we entitle them 

mathematical praxeological organisations or, in short, mathematical organisations or 

mathematical praxeologies. An examination of the etymology of the word 

―praxeology‖ shows how practice (praxis) and the discourse about practice (logos) 

are closely connected. 

ATD posits that we can analyse more than only mathematical activities. Any form of 

human activity can be interpreted in terms of praxeological organisation. Therefore, 

we also introduce the concept of didactic praxeologies when speaking about the 

process of study of mathematical constructions.  

Given the increasing interest and demand to investigate teachers' practices and their 

role in the didactic relationship, an investigation on these didactic praxeologies 

appears warranted. 

In order to achieve the aforementioned objectives, our research was guided by the 

following research questions amongst others:  

37 What are the essential characteristics of the teaching of Lagrange's Theorem in 

mathematics and economics?  

38 Are there similarities and differences between the teaching of Lagrange's 

Theorem in mathematics and in economics with respect to the mathematical 

praxeologies? 

39 May it be possible to improve students' understanding/interpretation of 

Lagrange's Theorem by exchanging ideas between the two disciplines? 
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FOUR KINDS OF KNOWLEDGE 

Teaching and learning are not isolated, but take place in the complex process of 

didactic transposition (Chevallard, 1991). With regard to this transposition, we need 

to distinguish among four kinds of knowledge: ―scholarly‖ mathematical knowledge, 

mathematical knowledge ―to be taught‖ and mathematical knowledge ―as it is 

actually taught‖ by professors to students. When including students' comprehension 

and learning into the process, we have to add the fourth kind of knowledge – 

mathematical knowledge ―learnt‖, which is generally difficult to access. A basic 

theoretical model, the epistemological reference model (ERM) (Bosch & Gascñn, 

2005), is used to analyse at the same time the scholarly knowledge, the knowledge to 

be taught, and the knowledge actually  taught and learned.  

We used the following procedural methodology in order to investigate our research 

questions and related questions: 

―Scholarly‖ mathematical knowledge 

To understand ―scholarly‖ mathematical knowledge, our first step consisted of an 

epistemological analysis of Lagrange's Theorem and of associated mathematical 

literature in mathematics and economics.  

The mathematical knowledge ―to be taught‖ 

To gain deeper insight in the mathematical knowledge to be taught, we analyzed 

textbooks and course notes about Lagrange's Theorem from different mathematics 

courses, both for mathematics and economics students, using the ATD. In doing so, 

we exercised caution because only the ―knowledge to be taught‖ can be reproduced 

from these textbook elements. The ―knowledge actually taught‖ unfortunately 

appears only in the students' notes and in the specific teaching practices carried out 

in the day-to-day teaching praxeologies in classrooms.  

Mathematical knowledge ―taught‖ and ―learnt‖ 

Next, we explored teachers' and students' conceptions about Lagrange's Theorem. 

We contacted professors who are (or were) responsible for teaching Lagrange's 

Theorem in either an economics or a mathematics course (or both) dealing with 

calculus, or more particularly with optimization. This was done at Belgian 

universities in the French-speaking part of the country. By means of a questionnaire 

composed of 27 multiple-choice and open-ended questions, we attempted to identify, 

as precisely as possible, the environment and conditions of the teaching of 

Lagrange's Theorem. A second questionnaire built upon the first one was then 

designed in order to obtain information about students' conceptions and ideas. This 

questionnaire was composed of 14 multiple-choice and open-ended questions. 

Course observations and students' presentations and evaluations at exams (involving 

three different tasks to solve) completed our data collection process. 
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Note that our research is still in progress. ―Scholarly‖ mathematical knowledge and 

mathematical knowledge ―to be taught‖ are already analysed, mathematical 

knowledges ―taught‖ and ―learnt‖ are the topics we are currently concerned with. 

EPISTEMOLOGICAL REFERENCE MODEL OF LAGRANGE'S 

THEOREM 

One hypothesis to be developed, explored and possibly amended in our doctoral 

research study is a reference mathematical model for Lagrange's Theorem that 

includes five mathematical organisations MO1, MO2, MO3, MO4 and MO5. These 

mathematical organisations respectively address the following types of tasks: 

 T1: Find candidates for optimal solutions for a constrained optimization 

problem subject to equality constraints. 

 T2: Solve a constrained optimization problem subject to equality 

constraints. 

 T3: Develop the theory concerning Lagrange's Theorem.  

 T4: Use an interpretation of Lagrange's multiplier. 

 T5: Develop the theory concerning Lagrange's multipliers. 

Many relationships among these mathematical organisations can be described but we 

limit ourselves in this paper to the following brief remarks: MO1 originates from the 

original works of Lagrange, whereas MO2 is concerned with the solving of particular 

constrained optimization problems. In fact, Lagrange's Theorem may or may not 

intervene in the technique of MO2. Accomplishing T1 can therefore be one step in the 

process of accomplishing T2. MO3 can be regarded as part of the theory of MO1 (and 

also MO2), but it is also the self-contained praxeology that deals with the proving of 

Lagrange's Theorem, among other tasks. MO4 uses Lagrange's multipliers as a 

mathematical tool (Douady, 1986), whereas MO5 constitutes an additional 

mathematical organisation concerned with Lagrange's multiplier being seen as a 

mathematical object in the sense of Douady (1986).  

COMPARISON BETWEEN TWO TEXTBOOKS 

To describe emerging mathematical and didactic praxeologies we are going to 

analyse existing textbooks with regard to our ERM. However, due to space 

limitations of this paper, the presented analysis only considers two mathematics 

textbooks, one from each discipline – economics and mathematics. Nevertheless, we 

will be able to show how the anthropological approach renders a comparison 

possible.  

The components of Lagrange's Theorem we are considering are integrated in the 

course ―Mathematics for Economic Analysis I‖ (Thiry, 2006) for first-year students 

in economics and business management at the University of Namur and in the course 
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―Mathematical Analysis II‖ (Ponce & Van Schaftingen, 2010) for first-year students 

in mathematics at the University of Louvain (Belgium). 

Mathematics for Economic Analysis I (Thiry, 2006) 

Twelve pages in the textbook deal with Lagrange's Theorem (in Chapter 4,  

―Multivariable Optimization‖). We analysed these pages in terms of praxeologies. 

Looking at this knowledge to be taught, we can name it ―Analytic solving of equality 

constrained optimization problems‖. In fact, the textbook starts with one well-known 

economics-based optimization problem: the utility maximization problem
77

 the 

consumer faces, and tries to solve it: 

 first, by the substitution method, 

 then, by noticing that substitution is not always possible. Therefore, the use of 

the method of Lagrange multipliers is announced. 

After this short introduction, the textbook mathematically defines the problem it is 

going to solve. The textbook poses the following type of problems: 

TI: Find all the candidates for optimal solutions to the following constrained 

optimization problems        

  

 TII: Solve (P1) (or (P2) respectively). 

 TIII: Approximately determine the maximum of (P1) (or the minimum of   

 (P2)) when k is increased (or decreased) by  

The section about Lagrange's Theorem is followed by exercises where we can find 

one additional type of problem: exercises that are mainly like TII but require 

mathematical modelling. We do not consider these problems in the paper due to 

space limitations.  

Let us start with TI. Before obtaining an appropriated technique to solve this type of 

problem, we switch to the technological-theoretical block and read the technology 

1 used to justify the appropriated resolution process. In terms of a geometric 

interpretation and by the use of the Implicit Function Theorem, we get a 

characterization of the solution: a solution (x*, y*) of the equality constrained 

optimization problem has to verify 

 g(x*, y*) = k and  

  f(x*, y* g(x*, y*). 

This necessary optimality condition is then formally stated in the third section, 

―Lagrange's Theorem‖.  

                                           

77
 This problem can be resumed by "How should I spend my money in order to maximize my utility?" 
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 […] the observation of the contour lines shows us that a point (x*, y*), 

extremum of  f under the constraint g(x, y) = k necessarily verifies the 

aforementioned equations.  We now formulate these conclusions in the form of a 

theorem (that will not be  proved here). (Thiry, 2006, p. 164) 

The author does not give a rigorous proof, which is why we say that the theory 

closest to the given statement and which justifies the technology presented before is 

nearly absent from the notes. The section continues by defining Lagrange's function, 

and reformulates the theorem by means of this function. The whole section can be 

considered as technology justifying the technique for ―finding candidates for optimal 

solutions‖. Section 4 finally establishes the algorithmic technique I to follow to 

find candidates as stated in TI. The type of tasks TI I and the 

I constitute a first praxeology [TI I I, /] where ―/‖ symbolizes the 

absent or implicit theory. 

Finding all the candidates does not solve the problems of type TII, even if a solution 

to TI is necessary to solve TII. We therefore need a second step in the resolution 

process, which is presented in the textbook in Section 5. No technological-theoretical 

block is presented for this second step in the resolution process, but only a 

proposition is provided that details the technique II
 used to identify whether a 

candidate is effectively an optimum for the equality constrained optimization 

problem.  

 The following proposition (that will not be proved) furnishes a test based on 

second- order derivatives to decide whether a stationary point is effectively a 

maximum or  a  minimum. (Thiry, 2006, p. 169) 

This technique is illustrated by means of an example. We say that we obtain the 

following praxeology [TII I II I

praxeological elements are not rendered explicitly. 

Then, as it is the case for TI III concerned with the solving of type 

of tasks TIII III
 and it is summarised in the 

proposition 4.12 (Thiry, 2006, p. 171). The associated technique then is exposed in 

the proposition 4.13 (Thiry, 2006, p. 172) and is completed with one exercise. We 

get a third praxeology [TIII III III, /] where the slash indicates again that the theory 

is practically absent in the textbook. 

Combining the three aforementioned praxeologies, we find that the considered 

knowledge to be taught is principally composed of the traces left by MO1, MO2 and 

MO4. In fact, the first type of tasks is a particular case of tasks of MO1. Furthermore, 

with regard to our ERM, the first praxeology constitutes a particular reconstruction 

of MO1. The theories I II not having appeared explicitly, we say that the 

scope of tasks emerging from MO3 is not at all covered by the textbook. The second 

praxeology arises from MO2 and covers a task that can't be solved only by the 

technique of Lagrange's multiplier rule. Hence, students have to seek techniques 
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from ―external arguments‖ that are out of range of Lagrange's Theorem. We make 

the assumption that students, who give up on the resolution of a constrained 

optimization problem subject to equality constraints after having applied the 

multiplier rule, do not distinguish between the solving of tasks TI and TII. This may 

be caused by the presentation of Lagrange's Theorem as the main technique to solve 

equality constrained optimization problems without insisting that this theorem only 

describes necessary, not sufficient, optimality conditions. The third praxeology then 

clearly comes from MO4 as regarded in an economical context. Finally, only a few 

remarks and definitions in the text can be considered as traces left by MO3 and MO5.  

Mathematical Analysis II (Ponce & Van Schaftingen, 2010) 

Chapter 5 in this textbook covers optimization problems. The first section deals with 

unconstrained optimization problems, whereas the second deals with equality 

constraints and the third deals with inequality constraints. A last section offers 

multiple exercises. We are interested in the six pages treating optimization problems 

with equality constraints (Section 5.2). We call this knowledge to be taught 

―Analytic solving of equality constrained optimization problems by penalty method‖.  

Before looking at that particular section, let us mention that each chapter of this 

textbook starts with a list of questions students are going to be confronted with at the 

final exams. The final section of each chapter provides more exercises. For the 

constrained optimization problem and Lagrange's Theorem in particular, we find two 

relevant types of problems: 

 TIV: Give a geometric interpretation of Lagrange's multipliers. 

 TV: Given function f : 
2
   : (x, y f(x, y) determine the minima and  

  maxima of f constrained to g(x, y) = 0. 

Most of problems of type TV in the textbook treat geometric problems and use 

therefore technology from geometry (e.g., distances, planes, surfaces). Furthermore, 

the type of problems TV resembles TII, affirming that mathematics and economics 

students are confronted with the same type of problems.  

The section about equality constrained optimization problems opens directly with a 

theoretical discourse and gives the mathematical formulation of Lagrange's Theorem 

(Proposition 5.4, Ponce & Van Schaftingen (2010), p. 162-164). Its proof needs 

lemma 5.5 and both propositions are rigorously proved by a so-called penalty 

method
78

. One remark is then given which concerns the values the multipliers can 

take
79

. No further explanations are provided and the section ends with two example 

                                           

78
 This method consists of neglecting the constraints while adding a penalty term to the function to be optimized if 

the constraints are violated. A consequence of this method is the avoidance of the Implicit Function Theorem. 

79
 See p. 164, Ponce & Van Schaftingen (2010).  
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VI VII. We add these problems to the list of types of 

problems and therefore define: 

 TVI: Minimize the function f : 
n
  : x f(x) under the equality   

  constraint g(x) = 0, where g : 
n
  : x g(x). 

 TVII: Prove the ―inequality of arithmetic and geometric means‖. 

In summary, we conclude that, for the types of problems TIV and TV, only the most 

s stated and proven even if, from a mathematical point of view, 

VI could be used to solve TV. The formulation of Lagrange's Theorem is 

then used as technology (without giving further argumentation) to solve TVI and TVII. 

However, neither the complete pratico-technical block nor the complete 

technological-theoretical block is explicitly presented in the textbook to solve the 

introductory tasks. We obtain the following praxeology [TIV TV

the two problems solved as examples are concerned, the associated technique is 

furnished, so that we get [TVI VI TVII VII

sense of furnishing only the theorem that justifies the technique. We presume that the 

understanding of Lagrange's Theorem may be hindered if no supplementary 

information is given (for example, during lectures), and that students will encounter 

problems in solving tasks of types TIV and TV. However, this analysis only concerns 

the textbook and the mathematical knowledge ―to be taught‖ and does not represent 

the mathematical knowledge ―actually taught‖.  

With regard to our ERM, the textbook does a nearly complete presentation of task of 

MO3 ―Proof Lagrange‘s Theorem‖ (with one possible proof amongst others). As this 

trace of the mathematical organisation is presented before solving particular tasks 

arising from MO2, we see that the technological discourse concerned with these tasks 

of MO2 is replaced by adding MO3 to the theoretical discourse. Furthermore, the 

students have to reason the associated technique to solve tasks of type TV by 

themselves. We do not find traces of MO1 regarded as self-contained praxeology in 

the textbook. Finally, as far as MO4 is concerned, the type of tasks TIV arises from 

this mathematical organisation. However, MO5 is completely absent. 

Comparison 

In order to compare the knowledge to be taught as it is presented in textbooks 

provided to students, we have to take into account that they target different 

audiences. We therefore obtain a first discrepancy between the teaching of 

Lagrange's Theorem in mathematics and economics. Students in economics are 

confronted with a detailed pratico-technical bloc of MO1 and often obtain profound 

technological arguments to justify the technique of Lagrange's multiplier before 

completely solving the equality constrained optimization problem. Traces of MO1 

and MO2 can be found. Conversely, mathematics students are directly confronted 

with the more ―general‖ task of finding solutions and tasks of MO1, which are 
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incorporated in the solving process of tasks of MO2. Students in mathematics directly 

have access to a praxeology of type MO3. This affirms that proving is one of the 

dominant activities in mathematical studies. The technological discourse of MO2 is 

then reduced to the formulation of the theorem in question, and students are left to 

find the associated technique by themselves (or by assisting at the theoretical course 

or in exercise sessions).   

CONCLUDING REMARKS 

Data collected from our experiences still need to be analysed in more detail in order 

to answer our research questions. The methodology presented will be pursued to 

obtain more insight into the didactic transposition of Lagrange's Theorem. This paper 

highlighted some discrepancies between the mathematical knowledge to be taught in 

mathematics and in economics due to the fact that, first and foremost, the role of 

mathematics in each discipline is different. Even if this is not a surprising result, it 

demonstrates the descriptive power of ATD as a tool for our ongoing analyses.  In 

fact, the second objective of the paper was to show how ATD can render an analysis 

of the complex process of didactic transposition possible. It provides a classification 

of the didactic material presented in the textbooks and, with regard to our 

epistemological reference model, makes a comparison between these textbooks 

possible. As already mentioned, we need to be cognizant that textbooks do not 

represent the mathematical knowledge ―as it is actually taught‖. We therefore have to 

refine our epistemological reference model and to carry out further analyses 

concentrating on the latter to get deeper access in teachers' practices and students' 

perceptions. Furthermore, in order to investigate the mathematical knowledges 

―taught‖ and ―learnt‖ we aim at deploying a second theoretical framework with a 

cognitive perspective that ATD alone has not.    

The intended outcome of this research project does not include a didactic 

engineering in the sense of Artigue (1989), but we expect to understand better the 

essential qualities of Lagrange's Theorem and how teachers can improve their 

practices. 
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Knowing of the traditionally high drop out rates in mathematics courses students 

often expect to fail. This results in a low motivation for learning mathematics and a 

low mathematics self-efficacy expectation. However, self-efficacy beliefs of a person 

have been identified as an important factor for performing tasks successfully 

therefore high self-efficacy beliefs are especially important for students who are 

training to be mathematics teachers. In order to determine the mathematics self-

efficacy expectations of students of math education and to measure the influence of 

pedagogical interventions on self-efficacy, an adequate instrument is needed. This 

paper describes the development and validation of a scale for measuring the 

mathematics self-efficacy expectations of prospective teachers (MaSE-T).  

Keywords: self-efficacy, secondary trainee teachers, pedagogical intervention. 

INTRODUCTION 

Negative attitudes and expectations towards mathematics are mostly founded in low 

performances at school or bad experiences in math classrooms. These negative 

beliefs lead to an expectation of not being able to handle mathematics in general. As 

a consequence, for many ‗non-mathematicians‘, e.g. students of medical, biological 

or economic study courses, mathematics is incomprehensible or inaccessible. Some 

are even scared when they see mathematical formulas or they have to solve a 

mathematical problem, even if they use mathematics subconsciously in everyday life. 

These low self-efficacy expectations in mathematics can lead to bad results in exams, 

which will again decrease the student‘s self-efficacy in mathematics. As a result the 

students will drop out of the study course. 

The belief in one's own mathematical competence (skills and knowledge) is an 

important factor to perform a given task or problem successfully (Bandura, 1977). 

Increasing mathematics self-efficacy will get ‗non-mathematicians‘ to dare more 

mathematics in everyday life as well as in the mathematics courses of their program 

of study. In general, it can influence their behavior and attitudes when they are faced 

with mathematical tasks. For these reasons a learning scenario which increases the 

mathematical self-efficacy besides the content knowledge should be more valuable 

than a course which ‘only‗ increasing the knowledge. This means that the success of 

mathematical learning scenarios, e.g. at school or at university, should not only be 

measured by testing knowledge. Pre- and post-testing the mathematics self-efficacy 

expectations during a course in mathematics will provide information whether the 

learners' mathematics self-efficacy expectations have increased. Besides, the 
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development of self-efficacy beliefs of students in a learning scenario can provide an 

opportunity for assessing the success of learning scenarios. 

Especially for students of mathematics education it is important to possess adequate 

self-efficacy beliefs in mathematics. On the one hand, even as a teacher, they have to 

be able to understand mathematical publications on low levels. On the other hand, 

teachers should set an example for students concerning their mathematical beliefs 

and serve as models. Teachers with low self-efficacy expectations will hardly 

motivate students to do mathematics and to believe in their own competence. This is 

one of the reasons why we focus on the higher mathematical education of 

prospective teachers in our research. 

Measuring the mathematics self-efficacy expectations of students who want to 

become teachers, demands an adequate instrument for measuring the right level. 

Existing instruments in German language are either on middle school level or focus 

on engineering students and do not meet the requirements of German mathematics 

teacher education. Thus, a new instrument has been developed and validated. In this 

article we first give a review of the theoretical basics of (mathematics) self-efficacy. 

After that we describe the development of an instrument for measuring the 

mathematics self-efficacy of prospective teachers. Finally we validate our 15-item 

mathematics self-efficacy questionnaire (MaSE-T) in an adult student population. 

Additionally the relationships between MaSE-T and gender, preparation for primary 

or secondary schools, as well as the level of specialization in mathematics (major, 

‗middle‘, or minor) are investigated. The paper ends with concluding remarks and an 

outlook on future research. 

SELF-EFFICACY AND MATHEMATICS SELF-EFFICACY 

Self-efficacy can be defined as the judgement of one‘s capabilities to successfully 

perform a particular given task (Bandura, 1977; Bandura 1997; Zimmerman, 2000). 

These expectations and beliefs influence whether somebody starts working on a task 

and the intensity of the performance (Pajares & Kranzler, 1995). As a consequence 

people with low mathematical self-efficacy will avoid mathematical tasks or 

situations or will give up solving very fast. 

Self-efficacy beliefs are a main factor in someone's decision making process, e.g. the 

choice of academic courses or career decisions (Hackett & Betz, 1981; May & 

Glynn, 2008). Especially low self-efficacy beliefs lead to ‗negative‘ decisions in the 

related domain. Consequently, successful learning scenarios – at school or at 

university – should increase learners‘ self-efficacy expectations as well as their skills 

and knowledge. A main source of self-efficacy expectations is one's own successful 

performance. If a student completes a task autonomously with more or less feedback 

or gets high marks in exams, s/he develops positive expectations to handle new and 

unknown situations or problems. However, the effect could be weaker due to the 
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non-existing own performance if learners only ‗consume‘ information about how to 

solve the task (Bandura, 1977). 

In general, self-efficacy expectations ‘are task and domain specific‘ (Pajares & 

Miller, 1995, p.190). For that, measurements of self-efficacy expectations should be 

always fitted to the related domain or task. For example, questionnaires have been 

proposed to measure self-efficacy expectations in the field of computer usage 

(Compeau & Higgins, 1995; Cassidy & Eachus, 2002; Barbeite & Weis, 2004) or 

mathematics in general (Betz & Hackett, 1983; Pajares & Miller, 1995; May & 

Glynn, 2008). Mathematics self-efficacy expectations indicate the belief of a person 

in his/her own competence to solve mathematical problems and tasks successfully. 

Mathematics self-efficacy is positively related to math performance (Pajares & 

Miller, 1994; Kabiri & Kiamanesh, 2004; Liu & Koirala, 2009). This means that the 

higher a person rates on mathematics self-efficacy scales, the better this person can 

perform on solving mathematical problems and vice versa. There are also gender 

differences in mathematics self-efficacy expectations. Males are usually scoring 

higher in mathematics self-efficacy questionnaires than females (Betz & Hackett, 

1983; Randhawa & Gupta, 2000). It can be assumed that gender effects are based on 

social and cultural roles and the masculine image of mathematics. 

The survey proposed by Betz and Hackett (1983) and the revised version by Kranzler 

and Pajares (1997) have widely been used in research. These surveys mainly consist 

of three kinds of items: math problems, math tasks used in everyday life, and 

performance in college courses. However, these surveys have several drawbacks: (1) 

some items are formulated on a level too low for students studying mathematics at 

German universities, for example: ‘Fred's bill for some household supplies was 

$13.64. If he paid for the items with a $20 bill, how much change should he 

receive?‘ It is important that questionnaires for measuring mathematics self-efficacy 

expectations require an adequate level of mathematical content knowledge. (2) Math 

problems and real-world math tasks are not clearly separated. For example, the item 

mentioned before is included in the ‘math problem‘ scale, but could also belong to 

the scale with real-world math tasks because it is a everyday situation. (3) It would 

be interesting to see whether there is a difference between the expectation to solve a 

mathematical problem without context and a corresponding task which is 

contextualized in a real-world setting. In the existing surveys, there is no link 

between mathematical problems and real-world tasks. Therefore we decided to 

construct an own questionnaire described in the next section. 

THE MATHEMATICS SELF-EFFICACY SCALE FOR SURVEYING 

PROSPECTIVE TEACHERS (MASE-T) 

The first version of the questionnaire consisted of 25 items: mathematical problems 

without contexts (10 items), real-world mathematical problems (10), and reasoning 

problems (5). In contrast to the scales by Betz and Hackett (1983) and Pajares and 
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Miller (1997), each mathematical problem was related to a real-world mathematical 

problem. In table 1 there are some example items for math-problems (Xa) of the 

questionnaire with their corresponding real-world math problem (Xb). In addition, a 

third scale has been included with 5 reasoning problems, for example ‗I am confident 

in proving that the square root of 2 cannot be represented as fraction‘. All items were 

arranged randomly and had to be rated on a 5-point Likert scale ranging from 1 (‗I 

am not at all confident.‘) to 5 (‗I am totally confident.‘). 

 

item  

1a ‗I am confident in determining the approximation formula of a somewhat 

cuboidal geometric body's diagonal.‘ 

1b ‗I am confident in estimating whether a 2.5 meter long board can be transported in 

a van.‘ 

2a ‗I am confident to solve the systems of equations with x + y = 7 and x ∙ y = 30.‘  

2b ‗I am confident in calculating the length and width of a rectangle, if the perimeter 

counts 72 cm and the area is 288 cm² large.‘ 

3a ‗I am confident in calculating the side length of a perpendicular triangle by using 

a trigonometric function.‘ 

3b ‗I am confident in calculating the covered difference of height by knowing the 

incline of the street.‘ 

Table 1. Example items of the questionnaire. 

EMPIRICAL STUDIES 

In a first study, the 25-item questionnaire has been tested and analyzed aiming to 

reduce the number of items. In a second study, a reduced questionnaire (15 items) 

has been tested for reliability and validity. 

Study 1: 25-item mathematic self-efficacy scale 

Sample 

831 first year university students of mathematics education at the German 

universities of education in Ludwigsburg (526 students), Schwäbisch Gmünd (126), 

and Weingarten (179) participated in the study. The sample consisted of 215 males 

and 615 females (one missing) with a mean semester count of 1.33 (SD=0.86; range 

1-8). The overrepresentation of female students is normal in study courses of teacher 

education at universities in Germany. 

Procedure 
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All students were asked to complete the questionnaire anonymously during a 

mathematics lecture at the beginning of the winter semester in 2008/2009. The 

participation was voluntarily and without any reward. 

Results 

Internal reliability over all items was very good (Cronbach's alpha = 0.89). This 

value indicates a high degree of internal consistency of the items. Despite having a 

three-dimension scale (mathematical problems, real-world mathematical problems, 

and reasoning problems), each item contributes to the measurement of a single 

construct (mathematics self-efficacy expectations). 

Factor and item analyses conducted on the collected data lead to a four factor model 

(PCA method, 50.7% of total variance). All items loaded on the first factor, which 

suggests that all items are related to mathematics self-efficacy. Hence, the remaining 

three factors can be the considered to be related to the three mathematical 

dimensions. As a result, based on reliability coefficients and factor loadings, the 25-

item scale was reduced to a 15-items scale
2
. Therefore now each of the three 

dimensions consists of 5 items. As a consequence, some of the former corresponding 

mathematical problem items and real-world problem items have been removed. Thus, 

for a few items the corresponding items are missing.  

Study 2: 15-item mathematics self-efficacy scale 

The second study aimed at testing the psychometric properties of the reduced 15-

item scale. In addition, the validity of the questionnaire had been tested by 

correlating the mathematics self-efficacy score with the grades of the ‗Abitur‘, the 

final high school exam.  

Sample 

The total sample (N) of the main study consisted of 1318 participants (320 males, 

995 females). Participants were again first year students (mean semesters 1.43, 

SD=0.97; range 1 to 9) of students of mathematics educations at the universities of 

Education in Ludwigsburg (493 students), Schwäbisch Gmünd (166), Weingarten 

(174), Heidelberg (165), and Karlsruhe (320). 

Additionally, the sample can be divided into different groups with regard to two 

dimensions. On one hand it can be separated into four groups of students by their 

study course specialization. Therefore the first group were students who will be 

future teachers for primary school (n=640; 90 males, 550 females). Further groups 

are future teachers for secondary general school (n=189; 58, 181), for intermediate 

secondary school (n=362; 145, 217), and future teachers of schools for special needs 

children (n=120, 26, 94). It can be assumed that students for secondary schools 

perform best on the MaSE-T scale. On the other hand the sample can be divided by 

the students‘ level of specialization in mathematics for study. In Baden-

Württemberg, Germany, students of education can choose whether they take 
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mathematics or not (n=237; 37, 200). If mathematics is chosen as a subject it can be 

studied as major (n=401; 88, 313), ‗middle‘ (n=396; 116, 280) or minor (n=275; 78, 

197) subject.  

Procedure 

Students from the participating universities were again asked to complete the 

questionnaire anonymously and voluntarily during 20 minutes of their mathematics 

lecture at the beginning of the winter semester in 2009/2010.  

Results 

After the reduction of items the internal reliability, measured by Cronbach‘s Alpha, 

was nearly the same as in the first study (alpha=0.84, n=1273) and indicates a high 

internal consistency. The alpha values of the three dimensions of the scale are still 

acceptable (see Table 2). 

The validity of the questionnaire was tested by relating the MaSE-T scores to 

different variables such as grades in the final high school exam, gender, chosen 

school type, and the level of specialization of mathematics.  

First, mathematics self-efficacy scores were correlated with the grades in the final 

high school exam. At a first glance marks in exams don‘t give information about the 

belief in one's own mathematics self-efficacy expectations. At a closer look 

mathematics self-efficacy can be seen as a predictor for mathematical academic 

outcomes (Multon et al., 1991; Betz & Hackett 1983). It can be hypothesized that the 

final exam grade in math can also be a predictor for mathematics self-efficacy 

expectations. A correlation between the two scales was significant (r=0.47, p<0.01, 

n=345). This means that students with higher grades in their final school exam rated 

higher in the mathematics self-efficacy scale.  

Second, gender differences have been investigated in order to test whether male 

subjects have higher mathematics self-efficacy scores than female subjects. Gender 

differences have been reported in earlier studies (Betz & Hackett, 1983; Randhawa 

& Gupta, 2000). Table 3 shows the total score of mathematics self-efficacy and the 

mean scores of the subscales separated into males and females. Males scored 

significantly higher in total MaSE-T and the subscales ‗real-world mathematical 

problems‘ and ‗reasoning problems‘ than females.  

dimension n Cronbach‘s Alpha items 

total MaSE-T 1273 0.84 15 

mathematical problems 1309 0.77 5 

real-world mathematical problems 1302 0.70 5 

reasoning problems 1294 0.74 5 

Table 2. Reliability of the MaSE-T scale. 
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males     

(n=319) 

females   

(n=992) 

test of 

significance 

scale Mean
2
 SD Mean SD p 

total MaSE-T score
1
 52.1 9.7 49.5 9.1 <0.001 

mathematical problems 18.5 4.3 18.4 4.1 0.812 

real-world mathematical 

problems 
19.3 3.6 17.9 3.5 <0.001 

reasoning problems 14.3 4.1 13.1 4.0 <0.001 

1
Higher scores in mathematical self-efficacy indicate a greater confidence in the ability to 

accomplish the mathematical task. 

2
Minimum score 15 / maximum score 75.  

Table 3. Gender differences in MaSE-T scores. 

Comparing the MaSE-T scores of the groups aiming for different school types   

(table 4), also significant main effects for groups (F=7.80, F(3,14)<5.56, p<0.01) were 

identified. A post hoc analysis reveals that prospective teachers for intermediate 

secondary schools have a significantly higher MaSE-T score (p<0.01) than the other 

groups. Lowest MaSE-T scores had students who will become teachers for schools 

for children with special needs, which were significant lower than the scores of the 

other groups
3
 (p<0.05). 

Comparing groups according to students‘ with different levels of specializations in 

mathematics with the MaSE-T score (table 5), an ANOVA revealed a significant 

main effect of the factor group (F=33.24, F(4,14)<9.73, p<0.001). Post hoc tests 

showed that students who didn‘t choose mathematics as a subject had significantly 

(p<0.001) lower MaSE-T scores than students who have chosen mathematics, as 

predicted. In addition, students who have chosen mathematics as minor have 

significant lower MaSE-T scores (p<0.001) than the major and ‗middle‘ students (see 

Table 5).  

These two results between groups, study course specialization as well as the subject 

choice of mathematics, are covered by the findings of Hackett and Betz (1989). They 

found that mathematics self-efficacy beliefs are predictive for the choice of major. 

On the one hand, students with low self-efficacy expectations in mathematics avoid 

studying mathematics or don't choose mathematics as their major (Table 4). On the 

other hand, in the group of students who have chosen mathematics as a subject, the 

students with the highest MaSE-T score are those who will become teachers for 

intermediate secondary school. In contrast, students with low mathematics self-

efficacy beliefs often choose to become primary school teachers because they often 

think that only basic arithmetic skills are needed. Secondary school teacher students 
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know they‘ll have to do some ‗real‘ math, consequently the group of prospective 

teachers for intermediate secondary school score the highest at MaSE-T. 

 

Group n Mean SD 

Primary school 640 49.3 9.1 

Secondary general school 189 49.2 9.7 

Intermediate secondary school 362 53.3 8.5 

School for special needs children 120 46.4 9.9 

Table 4. Mean MaSE-T scores of different study course specializations 

 

Group n Mean SD 

major subject 401 53.0 8.3 

‗middle‘ subject 396 52.6 8.5 

minor subject 275 49.0 8.3 

math not as a subject 237 42.7 9.2 

Table 5. Mean MaSE-T scores for different levels of specializations in mathematics. 

DISCUSSION 

In this paper, a questionnaire for measuring mathematics self-efficacy expectations 

of prospective teachers (MaSE-T) has been introduced. The refined 15-item MASE-

T scale achieved a suitable level of internal reliability (alpha=0.84). Validity of the 

scale was indicated on one hand by producing significant gender differences. On the 

other hand, a positive correlation between MaSE-T and the final school exam grade 

has been found. The differences between samples grouped according to their chosen 

school type and to the different levels of specializations in mathematics also indicate 

the validity of the MaSE-T scale. While students with higher MaSE-T score chose 

mathematics as their major subject, students with lower scores avoided mathematics 

as field of study.  

In future studies, the change of students' mathematics self-efficacy in different 

learning scenarios for students in mathematics education can be measured. By this, 

lectures and tutorials can be evaluated regarding to the change of the mathematics 

self-efficacy.  

NOTES 

1
 In this paper 'prospective teachers' means students at universities in the first phase of the German teacher education. 
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2
The reduced 15-item questionnaire can be downloaded on www.sail-m.de in a German and English version. This article 

is based on the German version, the English one hasn‘t been validated yet. 

3
This group contained a relative high number of students which didn‘t choose mathematics as subject. A closer look at 

the data showed that the mean of the major subject students is similar to the mean of intermediate secondary school 

students. 
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INTRODUCTION 

Technologies in mathematics education have been a topic of the working group since 

the CERME 1999. Since then, technologies as well as research in this field have 

significantly evolved. In particular, recent years have brought about an important 

shift in considering technologies within a wide range of resources for students, 

teachers and teacher educators. There have been new developments concerning 

software, hand-held technology, online classroom activities, but also more traditional 

geometry tools, curricular materials, textbooks etc. The introduction of the term 

―resource‖ in the title of the technology working group since the CERME 6 congress 

in 2009 reflects this shift (Gueudet, Bottino, Chiappini, Hegedus & Weigand,  2010).  

Technologies and resources have become more abundant and accessible, bringing 

about some changes in math teaching and learning (Hoyles & Lagrange 2010). They 

offer new possibilities for representation, modelling, simulation and access to 

information and knowledge (Tooke & Henderson 2001), and suggest new ways of 

generating student engagement, motivation and creativity (Passey, Rogers, Machell 

& McHugh, 2004). Teaching methods with technologies are increasingly focusing on 

problem-solving approaches (Fuglestad, 2009). Technologies also offer means of 

collaborating and sharing resources between students and teachers (Trouche, Hivon, 

Noss, & Wilensky, 2010). But presently, despite the use of digital technologies in the 

public and business world, and the tremendous number of research and practical 

classroom papers, the use of technologies in mathematics education and the impact 

on the change of curricula are still limited (Hoyles & Lagrange, 2010).  

The group organized the contributions around four main themes: (1) Design and use 

of technologies and resources, (2) Technologies, resources and teachers‘ professional 

development, (3) Students‘ learning with technologies and resources, and (4) 

Technology-based assessment in math teaching. Surprisingly, the latter does not 

appear as a matter of concern since all papers addressed the first three themes.  

The group work was organized in two sub-groups discussing respectively the issues 

of technologies and resources in relation with teachers‘ professional development 

(theme 2), and the issues related to the design of technologies and resources and their 

impact on students‘ learning (themes 1 and 3). In the following, we give a brief 

overview of the group work according to the three above-mentioned themes.  
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THEMES IN WG15 

1) Design and use of technologies and resources 

Papers related to this theme concern on the one hand the design of innovative 

technological tools or resources. Ladel & Kortenkamp design and develop a multi-

touch technology for learning numbers and operations, Sabra & Trouche study the 

design by a community of teachers of online secondary school math textbook. On the 

other hand, the use of existing technological tools and resources are addressed, such 

as the use by teachers of specific curricular material accompanying TI-Nspire 

(Persson) or of math textbooks (Özgeldi & Æakiroğlu), students‘ use of TI-Nspire 

technology (Aldon), of a spreadsheet (Tabach) or of graphic calculators (Consciência 

& Oliveira; Storfossen). The question of the design of specific tools for students with 

special needs, such as visually impaired students (Kohanová) or students with 

dyscalculia, was raised. In the group discussions, added value of technology 

appeared as the most important element determining what kind of tool to use, how 

and what for. Various roles have been assigned to technology in math education by 

the participants: fostering motivation, enhancing calculation, visualization, (guided) 

exploration, hands-on experience on abstract models, allowing validation by 

providing feedback, but also helping teachers teach with systems providing 

individualized learning paths based on students‘ competence diagnosis. 

2) Technologies, resources and teachers‘ professional development 

Papers related to this theme investigate teachers‘ use of technologies and resources 

(both inside and outside the classroom), factors affecting their integration in 

classrooms, and issues related to teachers‘ professional development. These issues 

are addressed focusing on different aspects, from different perspectives and adopting 

different methodologies. The analysis of the teachers‘ practice in classroom is 

investigated at different levels of granularity, each one requiring the design and use 

of different methodological tools, from fine-grained analyses (Billington), through 

survey studies (Bretscher), to studies combining both qualitative and quantitative 

methods (Drijvers). As it clearly emerged, the integration of technologies and 

resources in the classroom poses a number of challenges to teachers, several of 

which can be described and discussed in terms of the Technological Pedagogical 

Content Knowledge that they need to develop (Fuglestad). From the instrumental 

perspective, some of these challenges can be related to the need for the teacher to 

transform an ICT tool both to a mathematical and a didactical instrument 

(Haspekian). All these considerations raise the issue of the teachers‘ professional 

development and how it impacts the teachers‘ use of technology. Studies concerning 

this issue regarded, for instance, the actual (Amado) or intended use (Pittalis) of 

technology by pre-service or in-service teachers, who attended specific training 

courses on technologies in math education. The issue of teachers‘ professional 

development is strictly related to the issue of the dissemination of research results 
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among teachers. Developing communities involving both researchers and teachers is 

proposed as a means to trigger collaboration and communication among them and to 

foster the dissemination of research results (Lagrange).  

3) Students‘ learning with technologies and resources 

Papers addressing issues related to this theme concerned both widespread 

technological tools, such as dynamic geometry software (Attorps et al.; Camacho & 

Santos), symbolic or graphic calculator (Consciência & Oliveira; Storfossen; 

Weigand), and more innovative tools like TI-Nspire handheld device (Aldon; 

Persson) or online games (Kolovou & van den Heuvel-Panhuizen). Some of these 

papers focus on student-tool interactions in order to study processes of students‘ 

appropriation of the tool (Consciência & Oliveira; Camacho & Santos) or students‘ 

transition between various tools (Tsitsos & Stathopoulou). These studies draw 

mostly on the instrumental approach (Rabardel 2002) as a theoretical framework 

specifically designed for studying teaching and learning phenomena involving 

technology. In other papers technologies are considered rather as a tool mediating 

mathematics learning. The choice of a tool and the design of appropriate tasks are 

the main concerns in these papers (Attorps et al.; Kolovou & van den Heuvel-

Panhuizen). The task design is supported by two main theoretical approaches: 

variation theory (Marton & Booth, 1997) and theory of didactical situations 

(Brousseau, 1997). Studies involving innovative pieces of software investigate their 

potentialities for mathematics learning (Ladel & Kortenkamp) as well as for 

organizing and exploiting the internal resources (Aldon). Another important issue 

discussed in the group was the question of assessment of students‘ competencies 

(Weigand): what kind of knowledge and skills developed by the student working 

with technologies do we want to assess and how can we assess it?  

CONCLUSION 

What lessons can be learnt from the work of the WG15? Although the three themes 

proposed to the working group appeared as strongly articulated, some important 

issues emerged for each of them. The design of technologies and resources seems to 

be driven by the consideration of their added-value for the teaching and learning 

mathematics and relies on the users‘ feedback, which becomes part of the design 

process. The group discussions allowed getting a deeper insight into the complexity 

of ICT integration in teachers‘ practices, which requires a double instrumental 

genesis in teachers: a personal one, yielding an instrument for teachers‘ math 

activity, and a professional one, yielding an instrument for math teaching. This raises 

the issue of teacher training focusing on the development of teachers‘ technological 

pedagogical content knowledge. The idea of teachers‘ communities sharing resources 

and practices in using ICT emerges as a powerful means to favour teachers‘ 

professional development. In studying students‘ learning with technologies, the 

instrumental approach becomes widely used to analyse student-tool interaction. It 
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highlights a strong interconnectedness of mathematical and technological 

knowledge. However, the impact of technology on students‘ achievements appeared 

as very difficult to measure, mostly due to the lack of appropriate methodology.  

What perspectives can be outlined for the future CERME conference? There is still a 

need to develop a comprehensive theoretical framework to support teachers in their 

integration of ICT to the benefit of students‘ learning and methodological tools to 

evaluate the impact of using ICT on students‘ learning and teachers‘ practices. 

Emerging topics, such as communities of practice, quality of resources or best 

practices, require further theoretical and methodological development. Finally, some 

topics, which are under-represented, would deserve researchers‘ interest: use of 

―new‖ new technologies, such as interactive white board, mobile devices, Web 2.0, 

as well as designing ICT for students with special needs.  
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This paper refers to the use of technologies by student teachers in the classroom. I 

present a taxonomy that help to distinguish the various forms of teacher and 

students‘ uses of technology. In a pedagogical perspective the use of technologies 

can be seen in three distinct ways: as an accessory, as a teacher-centred activity and 

as a student-centred activity. I present three tasks illustrating this taxonomy. The 

role of the teacher and role of the student, the nature of activities, the environment 

and the class management are three aspects whose combination is essential to 

understand what a pedagogical perspective on the use of technologies. 

Key-words: student teacher, technologies, pedagogical perspective, tasks. 

INTRODUCTION 

Hoyles and Noss (2003) pointed out that technologies emerged to relieve us of the 

more routine and monotonous, repetitive and even somewhat less interesting work. 

But while alleviating this work, technology impels us to invest in higher order skills, 

such as knowing how to interpret a graph, making conjectures, being able to relate 

concepts and use them, learning to critically analyze the results, and flexibly using 

different mathematical representations. In turn, an appropriate use of technology may 

lead students to learn more mathematics and more profoundly. 

On the other hand, technology if used in inappropriate manner does not produce 

major changes in learning. Still, the computer allows some types of activities, such as 

discovery, and facilitates the development of mathematical intuition in such ways 

that would be very difficult or even impossible to achieve without the technology.  

Thus we arrive at the imperative of a substantial change on the teacher‘s role in the 

classroom, which remains a sensible current recommendation (Laborde et al., 2005). 

We therefore realize how important it remains to investigate how teachers introduce 

technologies in the classroom.  

THE USE OF TAXONOMIES TO DESCRIBE THE USE OF 

TECHNOLOGIES 

Pierce and Stacey (2001) have considered that the introduction of technologies in 

mathematics teaching and learning can take place at two levels: functional and 

pedagogical. The distinction between these levels appears to be in the student‘s role 

and access to the technology.  In the functional perspective the use of technology 

seems to be confined to the teacher and the students‘ role is mainly of mere 



Working Group 15 

CERME 7 (2011) 2149 

 

spectators. On the other hand, a pedagogical perspective would be one that takes 

place in an educational context, namely a school subject or other, where there is 

direct interaction of teacher and students with technological tools. 

Indeed, the concept of technology as a pedagogical tool entails essential aspects, 

such as rethinking the methods and purposes of learning mathematics, the roles of 

the teacher and students, the nature of the activities proposed and the class 

management (Kokol-Voljc, 2003). The concept of technology as a pedagogical tool 

is inseparable from the use that is made of it. Technologies can be regarded as 

pedagogical tools when three crucial conditions are simultaneously assured: the 

topic, the purpose and the opportunity. 

In brief, the notion of pedagogical perspective is connected with the tool use and it 

depends on who is using it and on the classroom situation where it is used.  

Galbraith (2002) and Goos (2005) developed a taxonomy on the use of technology 

by mathematics teachers. This taxonomy helps to distinguish the various forms of 

teacher and students‘ uses of technology. These authors presented a set of metaphors 

to describe how technologies can pave the way for incorporating new roles in 

teaching. Thus, when the knowledge and expertise of teachers in the use of 

technology is small or limited, and the computer use is not their personal initiative 

and will, but the result of an imposition of the educational system itself, we have a 

dominating action (technology as master) of technology on teaching practices. Today 

many secondary schools have interactive whiteboards, forcing the teacher even 

without genuine desire to use it solely for the purpose of satisfying an imposition of 

the educational system. The current pressure on the teacher to engage with the use of 

technologies can lead to concentrating on the basic contents, without any concern 

about the impact that technology may have beyond the immediate. The use of 

technology becomes the result of complying with an obligation, on a specific time. 

On a second level of use the imposition or recommendation for use of technologies 

does not dominate. The teacher has some confidence and interest in technological 

advances, and enjoys knowing and using them. For example, the computer is used 

for word processing, for the development of materials such as worksheets and tests 

and technology is used to support lessons. However, there is still no change in the 

classroom activities. Galbraith (2002) and Goos (2005) consider that this is a use of 

technology as a servant (technology as servant). In addition to the worksheets or tests 

designed on the computer, using a PowerPoint in the classroom can be an example of 

a use of technology as a servant.  

These two perspectives of using the technologies seem to fit the functional level, in 

that it does not introduce major changes in classroom activities or allow students 

direct interaction with technology. Students are generally spectators, although they 

may believe that the lesson may have been more colourful, more modern, with a few 

adornments out of the traditional. Sometimes students find it very nice to have a 
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lesson with a PowerPoint presentation or with the teacher writing on the IW instead 

of the blackboard but there is nothing new to the learning process, and the roles of 

teachers and students do not change. Similarly, the teacher can use the calculator 

linked to an IW to show to the whole class the results of certain operations and 

procedures or to display the graph of a function, managing to do it with more 

quickly, accurately, and using a great diversity of examples instead of just one.  

A third perspective of using technology is a partnership (technology as partner). This 

situation occurs when technologies are used occasionally in the classroom by the 

teacher and students, enabling them to achieve some knowledge that would 

otherwise be very difficult or even impossible. In this case, teachers develop a 

partnership with the technologies as tools to help solving the problems and activities 

and as a means of promoting learning. This way of using technology gives the 

students more power over their own learning, but for that to happen it is necessary 

that the tasks should be designed and adjusted to the purposes of learning. This is 

where the big issue is - the nature of the tasks and how they are presented to 

students. These should enable the student to experiment, investigate and draw 

conclusions. Students need to have access to the computer in the class, and the 

activities proposed should be rich enough and appropriate to promote learning. 

Sometimes there is the simple transposition of a paper and pencil assignment to a 

task with technologies. A task planned for paper and pencil cannot simply be 

proposed to be done with technology with unchanged learning aims. It is well know 

that some paper and pencil problematic tasks may become trivial when solved with 

technology. When tasks are technology based, the situation is more complex, as 

adding technology deeply affects the task itself (Laborde, 2008). 

Finally, the last way to use the technologies to which these authors designate by 

extension of self (technology as an extension of self) is the highest level of 

technology use. Such use must occur in a mathematics laboratory equipped with 

computers, adequate software, graphing calculators, view screen, sensors, and 

possibly an IW. At this level, effective and creative use of technology is an integral 

part of the repertoire of the teacher, along with their teachers' competence and 

knowledge of mathematics. In this case, it is very important to know how to put the 

technologies for students learning and promote their ability to use them in a timely, 

intelligent and critical way. The use of technology should not be reduced to a means 

of confirming answers or illustration of mathematical objects but have the function 

of raising questions, creating situations that lead students to think and encourage 

their participation in class work. 

AIMS OF THE STUDY  

Thomas and Cooper (2000) argue that there is great inconsistency between what 

prospective teachers learn about technology and their work later on in the classroom. 

The transposition of the experience offered by the pre-service training into the 
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classroom practices is a complex process. Hence, the purpose of this study is to 

understand how prospective teachers, with a solid and consistent preparation for the 

pedagogical use of computer, integrate technologies when they start teaching at the 

beginning of their professional practice. Several questions were formulated 

including: 

• What is the importance and value of the knowledge and training they have acquired 

in the pedagogical use of technologies? 

• How is their use of technology integrated in their teaching? 

THE EMPIRICAL DATA 

This study involved two teams of two student teachers each, in two different schools. 

The data collected included classroom observation, and interviews with the student 

teachers at different times of the school year. It has also integrated the collection of 

teaching materials produced to support lessons and other documents relevant to the 

study. The data here referred represent a small portion of all the empirical material 

obtained during the research that lasted for one academic year. 

These student teachers were on their final year of training to become professional 

secondary mathematics teachers, after having taken four years of university studies 

in mathematics and education courses. During their academic studies they had a 

specific training on technologies in mathematics education as part of a course in 

mathematics education. They all had the same preparation on the use of several tools 

and software for mathematics teaching (dynamic geometry, spreadsheets, graphical 

calculators, applets...) 

I present and analyze three lessons involving 10
th

 grade classes (students aged 15-16) 

with the use of computers, each one based on a different assignment. The lessons 

reflect different characteristics that illustrate diverse ways of realizing the 

pedagogical perspective of technology use.  

The taxonomies developed by the authors mentioned above have proved insufficient 

to categorise the data collected. As seen in other studies a combination of theoretical 

ideas and data supported variability justified the reason to develop a new taxonomy. 

This situation resembles, for example, the work developed by Drijvers, Doorman, 

Boon, Reed and Gravemeijer (2010), whose empirical data led to six orchestration 

types, placing the focus on how the teacher intentionally and deliberately organises 

the classroom and the use of technological artefacts in a given mathematical task. 

The authors describe the six types in terms of their specific features but they also 

divide them into two broad classes: three of the types can be seen as teacher-centred 

while the other three can be described as teacher-centred orchestrations.     

 In the case of the present study, substantial differences identified are located in the 

proposed tasks and in the form of presenting them to the class by the student 

teachers. Therefore it became necessary to distinguish and rethink about the 
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classroom practices of the student teachers with the use of technologies in 

connection to the tasks presented and the particular ways in which they were 

formulated. The analysis sustained the perception that technology use under a 

pedagogical perspective can be seen in three distinct ways: as an accessory, as a 

teacher-centred activity and as a student-centred activity. In certain aspects, this 

categorisation is in tune with the orchestration types (Drijvers et al, 2010) but it 

places an increased focus on the nature of the task as a crucial condition to promote a 

certain use of the computer. 

Pedagogical perspective I – The equation of the circle ―appears‖  

In this class, the student teachers (team A) wanted to lead their students to the 

discovery of the Cartesian equation of the circle. The activity asked students to 

construct circles and with the help of Cabri Geometry find the equation of the circle 

and obtain the centre coordinates. This is the translation of a paper and pencil 

activity to the computer that does not seem to have added anything new to students‘ 

learning. In the next lesson they did the same activity with paper and pencil. 

Circles 

Using CABRI GEOMETRY II follow the steps:  

Select the option ―Show axes‖ and then mark a point.  

With the option ―Equation or coordinates‖, identify the coordinates of the point. 

With the option ―Circle‖, construct a circle by centre in the point and any radius. 

Mark a point on the circle, with the option ―Point on object‖. 

With the option ―Distance or length‖ measure the distance from the point to the centre of the circle. 

Get the equation of the circle, with the option ―Equation or coordinates‖. Write the equation of the circle. 

With the option ―Pointer‖, change the position of the centre, by drawing and check the changes in the equation. What do 

you conclude? 

With the option ―Pointer‖, select the point on the circle and change the radius.  What do you conclude? 

Figure 1: The task about the equation of the circle 

The main intention for using the computer in this class was to lead students to 

discover by themselves an algebraic representation of a geometric object, avoiding 

the algebraic manipulation. The student teachers expressed this idea as follows: 

ST:  We wanted that the students discovered the equation of the circle. We used 

the computer because they could do a series of experiments and arrive at the 

equation without having us writing on the board and saying: this is the 

equation of a circle. They could try and reach that conclusion by themselves 

The equation of the circle emerges not by the hand of the teacher, but by Cabri. I 

argue that an essential part of mathematical knowledge was omitted; students did not 

have the chance to develop a mathematical concept that is associated with another 

one already known the distance between two points in a Cartesian plane. In an 

elusive way the computer allowed these students to "reach" the Cartesian equation of 
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the circle. The computer use can be seen as a misleading servant in that it exhibited 

the equation of the circle but did not allow students to perceive or understand its 

basis. Thus we can consider this use of the computer as an accessory. 

Pedagogical perspective II – The area of the square in 29 steps 

The area of the square besides being a dynamic problem, allows multiple connections 

between mathematical contents studied in 10th grade. However, there seems to be an 

excess of instructions from the student teachers (team A) that totally affects the 

students thinking, not giving them space to reflect and to establish their own strategy 

for addressing the problem. It is worth noting that students were used to working 

with this software since the beginning of the school year and that this situation was 

presented at the end of the year. One possible explanation for this self-directed 

activity can be found in the way the student teachers conceive the roles of the teacher 

and students in the use of technology in the classroom. These student teachers seem 

to feel the need to provide the path to the students and leave them no room to find 

unforeseen situations.  

In the twenty first steps nothing new emerged comparing to other constructions made 

with Cabri in previous classes. The last nine steps were those who brought 

something new to the students. 

With CABRI GÉOMÈTRE II, follow the steps:  

We want to make the construction shown. So we start by constructing the square [ABCD] and,                          

afterwards we construct the square [EFGP].  

1) With the option Segment, construct the line segment [AB]. 

2) Now we have to construct the line segment [BC] with the same length of [AB]. Use the                                      option 

Circle and construct a circle by center B and radius [AB]. 

3) Use the option Perpendicular Line and construct the line perpendicular to [AB], and passing through B. 

4) Construct the point of intersection of the circle and the perpendicular line (option Intersection Points), naming it C 

(option Label). 

5) With the option Parallel Line, construct the line passing through C and parallel to [AB]. 

6) Construct a perpendicular line to [AB], passing through A. 

7) Construct the intersection of the last line and of the parallel line to [AB], and name it D. 

8) Construct the segment lines [BC], [CD] e [DA]. 

9) Hide the circle and all the lines. 

How? 

- Select the option Hide/Show. 

- Select the objects to be hidden.  

10) Mark a point P on the segment line [AB], using the option Point on Object. 

11) Measure the length of [AP], with the option Distance or Length. 

How? 

… … … 

22) Tabulate the values of the area while point P moves on the segment line [AB]. 
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How? 

- Select the table, with the option Pointer. 

- Activate the option Animation and click on point P, holding down this button and drag. 

- To stop the animation, click the left mouse button or the Esc key on your keyboard. 

- The values should appear in the table. If you want to view a larger number of registers increase the number of rows. 

23) Construct a horizontal line passing through point O (the origin of axes). 

24) Construct a perpendicular line to previous line passing through point O.  

25) Use the option Measurement Transfer to transfer the length of the line segment [AP], to the x-axis and the area of 

the square [PEFG] to the y-axis. 

26) Name the previous points by Q and R.   

27) By each of these points construct perpendicular lines to the axes and construct the point S as the intersection the two 

perpendiculars. 

28) Activate the option Trace On/Off and click on point S. 

29) Animate the point P using the option Animation. 

Observe the model and answer to the following questions: 

1. Between what values can vary the displacement of point P? 

2. What reflects the graph obtained? 

3. When is the maximum area reached? And when is the minimum reached? Interpret it in the context of the 

problem. 

4. Indicate the co-domain of this function. 

5. Define algebraically the function.  

Figure 2: The task about the area of the square 

The initial orientation seems to have been both excessive and unnecessary, given that 

students had done similar constructions before. This activity could have been an 

opportunity for students to practice and investigate ways to make the construction, 

using their own imagination and their understanding of the diagram, rather than 

following a course set by the hand of the teachers. These student teachers, like other 

more experienced teachers, apparently feel difficult to give their students the 

opportunity to create, to think independently, to imagine, and to find a way other 

than perhaps the one they have thought of. For these reasons, I believe that we are 

facing a pedagogical perspective that is teacher-centred. 

Pedagogical Perspective III – Slicing the cube 

In the study of cross sections, the students usually work with paper and pencil or 

manipulative materials. Students have great difficulty in visualizing the cross 

sections even when they are given opportunities to view and manipulate the physical 

object. A dynamic geometry environment is an excellent choice to promote the 

manipulation and visualization of the cross sections. In this case (team B), the 

software GEOMETRY was suggested to students, and they were given a reference 

guide to use the program. 
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Cross Sections 

In this task we use the software GEOMETRIA. See the reference guide and follow the steps: 

Draw a cube.  In each case draw the cross section obtained by slicing the cube; identify and draw the geometrical shape 

produced.    

 

 

a) The slicing plane is DBE. 

 

 

b) The slicing plane is HFB.  

 

 

c) The slicing plane is IJK, where:  

         I is the midpoint of [HG]; 

         J is the midpoint of [GF];                     

         K is the midpoint of [FB]. 

 Figure 3: The task about cross sections 

In solving the various tasks proposed the students had the opportunity to choose their 

own strategy, issues have arisen naturally through the class and discussed with the 

teacher. The student teachers and their students were partners in a process of 

knowledge development, and together shared questions and difficulties. The students 

felt that technology helped them understanding the mathematics, gained confidence, 

and believed the computer was a useful tool in solving the problems. The student 

teachers themselves were pleasantly surprised with the involvement of students in 

the pursuit of answers and in the discussion even for students who usually seemed 

less motivated in mathematics classes. Thus with satisfaction they said: 

ST: I am surprised. Even some of my more indifferent students were working as 

well as those more interested! I never saw them like this! 

This was a clear case where the computer was used from a pedagogical perspective 

that is student-centred. 

FINAL REMARKS 

The students teachers involved in this study had the same initial training, the same 

preparation regarding the use of technology, which included a discussion of their 

potentialities, possible approaches and educational purposes, but as shown in the 

data, their practices diverged in many respects. 

Research has shown that preparation acquired in one or more academic courses are 

not enough for future teachers to make an immediate transfer of this knowledge to 

the classroom. Adler (1996), while accepting that formal academic courses should be 
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part of the education of future teachers argues that knowledge about teaching – in 

this case, how to use technology in the classroom – is not solely acquired in formal 

courses but rather it is developed through a continued participation in a community 

of teachers. Appropriate use of technology in the classroom actually requires 

learning through participation in a practice that is neither linear nor immediate. In 

each of the teams of student teachers, a pedagogical perspective of technology use in 

the classroom was marked by some differences that can be justified or explained by 

their own ways of thinking about mathematics teaching and learning and, 

particularly, by the way the student teachers saw the roles of teacher and students in 

the classroom.  

These student teachers shared a willingness to have their students enjoying 

mathematics and engage them in learning; however they seemed to have different 

ideas of how to do it. One of them (from team B), a great supporter and user of 

technology, argued that schools should integrate all technologies that are now part of 

our daily life. All of them seemed to hold the idea that technology can be an 

important way to engage students and make them enjoy mathematics more. In team B 

a greater concern with the purposes and goals of the computer use in classes was 

prominent. The practices of these two student teachers revealed a view on using the 

computer that was according with the recommendations offered in the curriculum. It 

was clear their intention to inquire about and search, to find the best suited software 

to work on a particular content and the care taken in the preparation of the tasks. 

They were skilful in the ways in which they shared their power in the classroom, and 

gave their students a greater and better opportunity to engage in learning. 

The other team put technologies at the same level of other materials, for example, 

manipulatives. Moreover, they showed a great concern with student disruptive 

behaviours and the fear of indiscipline was a cause for some initial tension. The 

second downside is related to how these student teachers perceived their role. The 

teacher was conceived as someone who holds all the knowledge and must pass it on 

to the students, which entailed to define the path that students should follow, and 

avoiding all difficulties in students‘ minds. 

As mentioned above, the role of the teacher and role of the student, the nature of 

activities, the environment and the class management (Kokol-Voljc, 2003) are three 

aspects whose combination is essential to understand what a pedagogical perspective 

on the use of technologies means and what it may consist of. 
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ENVIRONMENT: THE CASE OF AMY 
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Learning beginning algebra is difficult for many students as they must master the 

use and interpretation of symbolic expressions. This study investigates the use of 

spreadsheets in a beginning algebra course and tracks the development of one 

student, Amy, as she moves towards the use of explicit symbolic expressions. Results 

indicated that the spreadsheet served as a scaffold, helping to bridge between 

arithmetic and algebra. 

Keywords: beginning algebra, spreadsheet environment, symbolic expressions 

Introducing algebra to middle grade students is a challenge. Beginning algebra 

students must learn to incorporate symbolic expressions in their language, 

manipulate them, and make sense of them (Arcavi, 1995). Several research projects 

have employed the use of technological tools in order to overcome some of these 

hurdles by bypassing the need to communicate symbolically. One such example is 

Kaput's SimCalc project (Kaput, Carraher, & Blanton, 2007) which connected 

graphical, numerical, and visual representations in order to make sense of changing 

phenomena. A different approach was adopted by Tabach, Hershkowitz, Arcavi, and 

Dreyfus (2008), who implemented a functional approach within a spreadsheet 

environment. Regardless of the use of technological tools, in many countries, 

students are still expected to be able to generalize or model a given situation using 

symbolic notations, as well as manipulate symbolic expressions in a paper and pencil 

environment. Under these conditions, what is the place of computerized tools in a 

beginning algebra course? Can a computerized environment be used as a scaffolding 

tool, a tool that will help bridge the gap between arithmetic and algebra but which 

may be released from use as knowledge evolves?  

This paper follows one student, Amy, during a year long beginning algebra course, 

which took place in a Computer Intensive Environment (CIE). This environment had 

the following characteristics: (1) full and unconstrained access to spreadsheets 

(Excel) in class and at home, (2) freedom of choice about if, when, and how to use 

the computerized tools, as well as the strategy employed to solve the given problem 

situations, and (3) an ad-hoc learning textbook consisting of a sequence of problem 

situations and simple tasks. An explicit invitation to use spreadsheets as a working 

tool (including the technical instructions thereof) was only given in approximately 

one-fifth of the problems, mostly in order to get acquainted with the tool. In all other 

cases, the teacher supported and legitimized any choices made by students regarding 

the ways, means, and strategies used to solve the problems. Thus, the intensiveness 

of the environment relates to the availability of the computerized tools at all times, 
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but not necessarily the intensiveness of their use. By focusing on one student, this 

paper aims to gain insight into the learning experiences and processes afforded and 

supported by such an environment. 

THEORETICAL BACKGROUND 

Algebraic thinking involves describing phenomena and generalizations. There are 

several representations with which one may represent a given problem situation –

story, table, graph, or symbolic expression. In a computerized environment, these 

representations are all dynamic notation systems. However, in a pencil and paper 

environment, symbolic expressions are the only notation system which stays 

dynamic (Kaput, 1992); hence its power and the importance of mastering it. The 

following sections briefly discuss student's development of symbolic generalization, 

including the use of symbolic expressions within a spreadsheet environment. 

Symbolic generalization. In a pencil and paper environment, three stages of 

generalization processes by pre-algebra students may be identified (Arcavi, 1995; 

Friedlander, Hershkowitz & Arcavi, 1989). At the first stage, when students are 

aware that they should use symbols, they tend to represent quantities involved in a 

given situation by using different letters, disregarding existing relationships between 

the quantities. To demonstrate, let us consider the following situation:  

Moshon had $30 in his saving box at the beginning of the year. Moshon added $5 to his 

saving box each week. 

Algebra beginners may denote the amount in Moshon's saving box at the end of the 

first week by a, and the amount at the end of the second week by b. Such use 

conceals the existing connections between the amounts. At the second stage, students 

express relationships, but only partially. To follow our example, the amount in 

Moshon's saving box by the end of the first week is still denoted by a, but the 

amount at the end of the second week is denoted by a+5. Thus, the connection 

between the week and the amount of money is still hidden, while the connection 

between the amounts in consecutive weeks is explicit. Only at the third stage are 

students able to express full relationships among changing quantities in a symbolic 

way (Friedlander & Hershkowitz, 1997). That is, in our example, a will denote the 

week and 30+5a denote the amounts in the saving box at the end of week a. The first 

two stages explore local connections, whereas only in the third stage general 

connections among variables appear. Unfortunately, pencil and paper manipulations 

of algebraic expressions which express only partial relationships may not lead to 

insightful results. 

Symbolic generalization in a spreadsheet environment. Within a spreadsheet 

environment, students at all three stages are able to operate, experiment with, reflect 

on, and learn about relationships between the quantities involved (e.g., Sutherland & 

Rojano, 1993). This is possible because a large amount of numbers representing a 

certain variable can be produced and arrayed in such a way that the relationship is 
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―visible‖ even without the explicit and general symbolic expressions. This can be 

produced by one of the following options [1]: 

(a) Multi-variable approach —―dragging‖ and considering a whole array of numbers 

(i.e. a column in the spreadsheet) as a ―variable‖ dependent on another one (Dreyfus, 

Hershkowitz, & Schwarz 2001). Consider once again Moshon from the previous 

example. Students may use column A by entering the constant 5 for each cell. In 

column B, B1 will be 30. B2 will then be the joined amounts A2+B1. (b) Recursive 

generalization — the use of recursive expressions, which emphasize local 

relationships between consecutive elements such as contiguous cells of the same 

column (Stacey & MacGregor, 2001). In this case, students may describe Moshon's 

savings by writing 30 in cell A1, and in the next cell A1+5. (c) Explicit expression — 

explicitly expressing the full general relationship among the variables. In our 

example, it means expressing the savings in B1 as 30+5A1 (where column A 

represents the number of weeks passed.  

It seems that students prefer recursive formula over explicit formula (Stacey & 

MacGregor, 2001). Such preference may indicate initial difficulties encountered 

when handling explicit formula even when, in many situations, it proves more 

efficient than recursive expressions. In fact, from a practical point of view, there is 

no actual difference between the output of working recursively or explicitly in a 

spreadsheet environment. That is, after entering any of the three types of symbolic 

expressions to a spreadsheet cell, and "dragging" the expression down, relevant 

numbers will be displayed whereas the inputted algebraic expressions remain hidden.  

A main concern regarding students who use spreadsheets in their beginning algebra 

course is that they may come to feel too comfortable with the tool, becoming used to 

multi-variable and recursive expressions which express only partial relationships. In 

their study of students learning in such an environment, Tabach, Arcavi and 

Hershkowitz (2008) found that towards the end of the course, "… most students had 

shifted or started to shift to a pencil and paper environment, especially when they 

were confronted with situations requiring them to state and solve linear equations" 

(p. 69). This shift takes place gradually. What changes can we detect along the way? 

While the previous study reported on the class as a whole, this study focuses on one 

student in order to gain insight regarding the use of symbolic generalization in an 

environment which allows for both spreadsheet and paper and pencil tools.  

METHODS 

Amy Amy was one of 27 students in her seventh grade beginning algebra course. 

She was chosen for this study because of the changes she underwent during the 

course. In the beginning of the year, students were given a test in order to assess their 

problem solving skills and to investigate their initial use of algebra in this process. 

Amy scored below the class average on this test. By the end of the year, she had 

progressed and scored above average on the final exam. Throughout the course, Amy 
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exhibited a positive attitude towards the use of computer software while also 

incorporating other sources during her algebraic work. 

Amy, along with the other students in her class, had been initiated into the world of 

symbolic generalization during the very first algebra lesson. During this lesson, they 

worked in a paper and pencil environment on a problem situation involving changing 

phenomenon. During the second lesson, the use of Excel was introduced. Students 

were taught how to enter an expression (formula) into a cell and drag it down in 

order to produce a column of values. It should be noted that, as far as the students 

were concerned, Excel was a tool which could be used by entering an expression for 

the purpose of producing a string of values.   

Data Collection Several tools were used to document classroom learning processes. 

Classroom observations were conducted and a detailed research diary was written 

immediately after each lesson. All working files that students saved in their 

computers were collected. Written works and assessment tasks of all students were 

collected. 

RESULTS 

To follow Amy's advancement during the year we bring examples from her work on 

different activities which took place at different times during school year. Each 

example is related to one of three connected issues: (1) the use of symbolic 

expressions and Excel, (2) generalizing from a sequence of numbers, and (3) 

generalizing from a story.  

Example 1: September 27, Growing Rectangles activity. The activity was 

concerned with the process of growth in 3 rectangles during a period of ten years and 

entailed comparing the areas of the rectangles during this time period (see Figure 1). 

Students were requested to organize their data regarding the growing rectangles in a 

spreadsheet table and record the formulas used to construct their table. No 

instructions were given as for how to organize the data. 

Amy organized her data in an Extended Table (Tabach & Friedlander, 2004), which 

contained the following ten columns (i.e. variables): the year, six columns for the 

linear dimensions of each rectangle, and three columns for the area measures.  The 

columns were ordered by variable (Figure 2). Amy used symbolic expressions to 

describe each changing phenomena. Other than the length of rectangle C (column G) 

all linear changes were described by recursive expressions, which express a 

relationship between two consecutive numbers in a sequence (columns). Each of the 

first elements in columns B-G was a number. Thus, for the most part, Amy missed 

the opportunity to express the connections between the widths (columns B, D, and F) 

and the year (column A) as well the relationships between the lengths (columns C, 

and E) and their respective widths. The areas of the rectangles were described by 

multivariate expressions, which used the letters corresponding to the length and 
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width columns (e.g., = B2*C2). The use of multivariate formulas conceals the 

relationships between the length and area of the rectangles. That is, at this time in 

learning, Amy was able to generate multivariable expressions or recursive 

expressions. 

Rectangle A Rectangle B Rectangle C 
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. . . 

 

 

 

 

                                 . . . 

At the end of the first year, 

the rectangle's width is one 

unit, and it grows by an 

additional unit each year. 

The length of this rectangle 

is always longer than its 

width by three units. 

At the end of the first year, 

the rectangle's width is one 

unit, and it grows by an 

additional unit each year. 

The length of this rectangle 

is constantly 10 units. 

At the end of the first year, 

the rectangle's width is one 

unit, and it grows by an 

additional unit each year. 

The length of this rectangle 

is always twice the length 

of its width. 

At what stages of the first ten years does the area of one rectangle overtake another‘s 

area? 

Figure 1.  Problem situation of the Growing Rectangles.  

 A B C D E F G H I J 

1 Year Wid. 

A 

Len. A Wid. 

B 

Len. 

B 

Wid. 

C 

Len. 

C 

Area A Area B Area C 

2 1   1 10 1 2 =B2*C2 =D2*E2 =F2*G2 

3 =A2+1 =B2+1 =C2+1 =D2+1 10 =F2+1 =F3*2 =B3*C3 =D3*E3 =F3*G3 

Figure 2.  Amy's Algebraic generalizations in Excel for the Growing Rectangles. 

Example 2: October 14, Buying a Walkie-Talkie activity. The problem situation 

presented here concerned the weekly savings of eight children. Students were given 

the linear expressions which described these weekly savings (e.g., Moshon 30+5x, 

Dina 7x) and were asked to add pairs of children's savings in order to determine 

which pair will be the first to buy a Walki-Talkie which cost $400, as well as when 

this will occur. Amy organized her work in a spreadsheet table (Figure 3). She used 

three columns to describe each joined savings: two columns to describe each child's 

savings, and a third column to describe the joined amounts. Somewhat redundantly, 

she copied the savings of the same child in different columns, as can be seen in 

columns B and E in Figure 3. This organization of data is similar to the one observed 
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in the Growing Rectangles activity, in the sense that she used many more columns 

than the minimum needed. Yet, her symbolic generalization is somewhat different 

here. In this example, Amy used explicit expressions (columns B, C, E, and F) which 

reveal the full connections between the variable and the phenomena, to describe the 

individual savings (while in the previous activity mainly recursive expressions were 

used). On the one hand, these expressions were given to her and she did not have to 

create them on her own. On the other hand, other students in the class created 

recursive expressions in this activity, despite the fact that explicit expressions were 

given (Tabach, Hershkowitz, & Arcavi, 2008). Finally, it should be noted that the 

symbolic expressions created on her own in this activity used multivariate formulas 

to describe the joined amounts (Columns D & G).  

 A B C D E F G 

1 
Week # Dina Karin 

Dina & 

Karin 
Dina Moshon 

Dina & 

Moshon 

2 1 =7*A2 =10*A2 =B2+C2 =7*A2 =30+5*A2 =E2+F2 

3 2 =7*A3 =10*A3 =B3+C3 =7*A3 =30+5*A3 =E3+F3 

4 3 =7*A4 =10*A4 =B4+C4 =7*A4 =30+5*A4 =E4+F4 

Figure 3: Amy's Algebraic generalizations in the Buying a Walkie-Talkie activity. 

Example 3: October 18, Number Sequence task. This example concerns 

generalizing from a sequence of numbers. Figure 4 present a given sequence. The 

task was to find an expression that can be written in cell B6, using A6 as a variable.   

 A B 

1 0 30 

2 1 27 

3 2 24 

4 3 21 

5 4 18 

6 5  

Figure 4: The Number Sequence task 

For Amy, finding an explicit expression for a given sequence at that time of the 

course was difficult. In trying to find the requested expression, Amy invented the 

following "story": "At the beginning of the year there were $30 in a savings box. 

Each week, the amount decreased by $3". Then she wrote the following expression 

in cell B6: 30–3*A6. It seems that creating a story context served as mediation 

between the numbers and the expression, which then enabled Amy to create an 

appropriate symbolic expression. The idea of reverting to a story problem might have 

stemmed from previous mathematical tasks which were situated within a story 

context. In general, switching between different representations of a mathematical 
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problem, between verbal, numerical, symbolic, and graphic representations, was 

common classroom practice. Still, Amy's solution method for this task was unique. 

Example 4: Feb [2]. 19, Identical Columns activity. This example concerns 

making generalizations based on numbers and expressions. At this point in the year 

students had learned to present changing phenomena with symbolic expressions but 

had not yet learned to simplify these expressions. Children were given two sequences 

of numbers (in columns A and B) as well as instructions as to how the other columns 

should be filled in (see Figure 5 which displays the beginning of the Identical 

Columns activity).  

Copy the following pairs of numbers to your spreadsheet: 

 

1. a) Write in Column C the sum of the numbers from Columns A and B ( =A+B), and  

Write in Column D the sum =2*A + 2*B 

     b) Use Columns A, B, or C in different ways, to create two additional columns that are 

identical to Column D. 

2. a) Write in Column G the product =10*(A + B). 

    b) Use only Columns A and B in different ways to create other columns that are 

identical to Column G. 

Figure 5: Identical Columns activity. 

Amy's first answer to question 1b was 2*C. Reviewing classroom transcripts 

revealed that this expression was based on numerical considerations, as the first 

number in column C is 20 and the first number in column D is 40. Amy's second 

answer was A+A+B+B. This expression was based on a more symbolic 

consideration - decomposing the expression 2A+2B. Regarding question 2b, Amy 

used the same logic that proved to work in the first task, A+B+A+B… that is 

decomposing the symbolic expression. Her second suggestion was A*10+B*10, 

which may have resulted from the original expression 10*(A+B) or from her first 

answer. Either way, this example demonstrates that Amy is working with symbolic 

expressions to create new explicit expressions. Amy used the Excel spreadsheet to 

verify the correctness of her expressions, checking if the created columns were 

indeed identical.  
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Example 5: March 16, The Secret Number activity. This example demonstrates 

generalizing from verbal instructions. During a whole class discussion, the teacher 

requested students to, "Choose a number, add 3 to the chosen number, multiply the 

sum by 2, and subtract 6". To the children's surprise, the teacher was able to guess 

each child's original number from the final result. Asked to solve this "mystery", 

Amy said that the obtained number is twice the original number. The teacher agreed, 

and asked for an explanation. Amy began, "Let's choose 2 as our number". She then 

followed the steps with her chosen number and upon reaching the step "multiple the 

sum by 2", explained that no matter which number is given, the result of this step is 

an even number. Although Amy was not able to fully explain why the resulting 

number is twice the original number, we see in her attempt to do so a form of 

"generalizing using a generic example" (Mason and Pimm, 1984). She used the 

number 2 as an example of "any number".  

Students were then asked to invent a similar "game".  Amy's game was: "choose a 

number, add 1,000,000 and multiply by 2, subtract 2,000,000 and then subtract the 

number you choose. You will get back your chosen number."  This invented "game" 

is close to the original game which was presented by the teacher. However, her use 

of the number 1,000,000 shows exaggeration, as if once again, the specific example 

she chose was really a generic example. The use of a generic example is considered 

to be a step towards symbolic generalization (Mason and Pimm, 1984). 

Example 6: April 15, Train story. This example was taken from a test and 

demonstrates generalizing from a story. Students were presented verbally with a 

story about a train. The train consisted of one engine and several cars. The engine 

had 6 wheels and each car had 4 wheels. Students were first asked to calculate the 

number of wheels on a train with 5 cars, and show their solution method. Students 

were then asked to find the amount of cars contained in a train with 34 wheels. In 

order to answer this question, Amy generated an explicit expression connecting the 

number of cars in the train to the total number of wheels, 6+4x. She then wrote a 

relevant equation, 6+4x=34, solved it, and correctly interpreted the solution in the 

given situation. Although computers were available for use during the test period, 

Amy solved this problem with pencil and paper without referring to a spreadsheet.  

DISCUSSION 

The discussion begins by summarizing the progress Amy made in her use of 

symbolic expressions. It then examines how Amy chose to use the available 

spreadsheet tool in this environment as she progressed in her use of symbolic 

expressions. In the first example, Amy used mainly recursive and multivariable 

expressions. In the second example, Amy was able to use given explicit expressions 

in a meaningful manner although on her own, she created multivariable expressions. 

In the third example, Amy was able to create explicit expressions, by making up a 

verbal story as a mediator between the sequence of numbers and the explicit 
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expression. The fourth example showed initial considerations which were numeric, 

followed by transitions among explicit expressions. In the fifth example, Amy 

attempted to reveal hidden connections with the use of a generic example. Finally, in 

the last example, Amy is able to write an explicit symbolic expression related to a 

given problem, write an appropriate equation, and solve it.  

Amy's use of symbolic generalization and the transition between the ones she used 

(multivariate recursive, and explicit) is dialectic – during the same activity she 

implemented more than one kind of generalization. This dialectic process indicates 

the complexity of working with symbols in general and with explicit expressions in 

particular. Symbolic expressions are condensed, especially explicit ones, and hence 

more sophisticated. Although Amy weaved back and forth between the types of 

expressions used, as her familiarity with the symbolic notations increased, we can 

detect a shift towards working more with explicit expressions. 

Amy acted as a resourceful student. From the beginning of the school year she used 

Excel's symbolic notations in a flexible manner according to her needs. In the first 

two examples, she used the spreadsheet as a number generator to act upon while in 

the fourth example she used it as a verification tool to check her symbolic 

generalization. This represents a shift in the role of the tool – from a tool used in the 

process of production to a tool used in the process of control. Amy also had the 

freedom to choose when not to use the tool. In the third example, Amy turned to a 

different form of expression, verbal, in order to assist her in forming a symbolic 

expression. By the end of the school year, she was able to form an explicit symbolic 

expression without any mediating tools.   

A tool is not automatically an instrument. "… it becomes an instrument when the 

subject has been able to appropriate it for himself and has integrated it with his 

activity‖ (Verillon & Rabardel, 1995, p. 84). For Amy, the spreadsheet tool became 

an instrument as she began to use it in a selective manner with control. By the end of 

the course, Amy was able to act without the tool and in this sense, the spreadsheet 

acted as a scaffold which was allowed to recede into the background. Amy's progress 

in symbolic generalization demonstrates that Excel did not limit her knowledge 

growth. In fact, it seems as though it facilitated her development. 

NOTES 
1. One may enter two numbers in two consecutive cells in the same column, and "drag" both of them together. The 

resulting numbers in the column will follow a sequence with fixed difference. We do not consider such an approach 

symbolic. For more information, see Tabach, Arcavi, & Hershkowitz, 2008). 

2. During the months November, December, and January, students learned about negative numbers and the four 

operations, as well as Descriptive Statistics. Hence no data from this period is provided.  

REFERENCES 

Arcavi, A. (1995). Teaching and learning algebra: Past, present and future. Journal 

of Mathematical Behavior, 14(1), 145–162.  



Working Group 15 

CERME 7 (2011) 2167 

 

Dreyfus, T., Hershkowitz, R., & Schwarz, B. B. (2001). Abstraction in context: The 

case of peer interaction. Cognitive Science Quarterly. An International Journal of 

Basic and Applied Research, 1(3&4), 307–358.  

Friedlander, A., & Hershkowitz, R. (1997). Reasoning with Algebra. Mathematics 

Teacher, 90, 442–448.  

Friedlander, A., Hershkowitz, R., & Arcavi, A. (1989). Incipient ―algebraic‖ thinking 

in pre-algebra students. In R. G. Underhill (Ed.), Proceedings of the 13th 

Conference of the International Group for the Psychology of Mathematics 

Education, Vol. 1 (pp. 283–290). Paris, France;  

Kaput, J. (1992). Technology and mathematics education. In D.A. Grouws (Ed.), 

Handbook of Research on Mathematics Teaching and Learning (pp. 515-556). 

Reston, VA: National Council of Teachers of Mathematics.  

Kaput, J., Carraher, D. W., & Blanton, M. (Eds.). (2007). Algebra in the early 

grades. Hillsdale/Reston: Erlbaum/The National Council of Teachers of 

Mathematics.  

Mason, J., & Pimm, D. (1984). Generic examples: Seen the general in the particular. 

Educational Studies in Mathematics, 15(3), 277-289. 

Stacey, K., & MacGregor, M. (2001). Curriculum reform and approaches to algebra. 

In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school 

algebra (pp. 141–153). Dordrecht, The Netherlands: Kluwer. 

Sutherland, R., & Rojano, T. (1993). A spreadsheet approach to solving algebra 

problems.  Journal of Mathematical Behavior, 12, 353-383. 

Tabach, M., & Friedlander, A. (2004). Levels of student responses in a spreadsheet-

based environment. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 

28th Conference of the international Group for the Psychology of Mathematics 

Education, Vol. 2 (pp. 423–430). Bergen University College: PME.  

Tabach, M. Arcavi, A. & Hershkowitz, R. (2008). Transitions Among Different 

Symbolic Generalizations by Algebra Beginners in a Computer Intensive 

Environment. Educational Studies in Mathematics, 69(1), 53-71.  

Tabach, M. Hershkowitz, R. & Arcavi, A. (2008). Learning beginning algebra with 

spreadsheet in a computer intensive environment. Journal of Mathematics 

Behavior, 27(1), 48-63.  

Tabach M., Hershkowitz, R., Arcavi, A. & Dreyfus, T. (2008). Computerized 

environments in mathematics classrooms: A research - design view. In L. D. 

English, M. B. Bussi, G. A. Jones, R. A. Lesh, B. Sriraman, & D. Tirosh (Eds.), 

Handbook for International Research in Mathematics Education, 2nd edition (pp. 

784-805). NY, USA: Routledge.  

Vérillon, P., & Rabardel, P. (1995). Cognition and artifact: A contribution to the 

study of thought in relation to instrumented activity. European Journal of 

Psychology in Education, 9(3), 1-33.   



  

CERME 7 (2011)  

TEACHERS‘ AND STUDENTS‘ FIRST EXPERIENCE OF A 

CURRICULUM MATERIAL WITH TI-NSPIRE TECHNOLOGY 

Per-Eskil Persson 

Malmô University 

In a pilot research project, a curriculum material intended for two mathematics 

courses at Swedish upper secondary school has been constructed. The material is 

written for the use of TI-Nspire technology, with which it forms a dynamic system. 

Three teachers and three classes replaced their textbooks with this material during a 

half semester, and their experiences, as well as the general learning outcomes for 

the students, were investigated using various methods. This paper describes some of 

the main findings of the study, along with the more important conclusions that could 

be drawn. 

Keywords: CAS, curriculum, resource, practice, technology 

CURRICULUM MATERIAL AND TECHNOLOGY 

In mathematics instruction, textbooks can play a central role. This is especially true 

in Sweden, where it often defines the curriculum for both teachers and students. 

There exist strong beliefs among them that if you do not follow the textbook, you 

might not fulfil the curriculum and then you fail in the National Tests. These have to 

some degree rewarded the use of technology in mathematics education, but this has 

not yet provoked any more extensive changes of the textbooks. It is therefore of great 

interest to evaluate new types of material for classroom use that integrate technology 

in a more distinct way. 

Within the project ‗Nspirerande 

matematik‘, especially developed 

curriculum material was used for 

parts of the courses Matematik A 

and Matematik B at Swedish 

upper secondary school (student 

age 16-17). This material consists 

of both traditional texts and 

tasks, as in a common textbook, 

and of interactive material for the 

TI-Nspire technology (Fig. 1). 

These interactive files give the 

students opportunities to discover 

mathematical principles and 

rules, to make conjectures and 

justifications, to exercise their  

Figure 1: Example of a task for TI-Nspire 
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skills and to make self-tests of what they have learned. Some tasks are especially 

designed as activities for inquiry and collaborative learning. The material has been 

used in three classes from the theoretical programmes at different schools in the 

middle and southern parts of Sweden during spring 2010. 

Both teachers and students had full access to both handheld units and computer 

software within the TI-Nspire technology, including links between the two. The 

technology used was in the form of a computer algebra system (CAS). It is important 

to note that the students were familiar with the handheld units prior to being intro-

duced to the curriculum material. 

PILOT TEACHERS AND CLASSES 

The three teachers involved in the project were selected as well experienced and 

have taught mathematics for many years at upper secondary level. Technology in 

mathematics teaching was in no sense new to any of them at the initiation of the 

project. Graphing calculators have been standard equipment in all courses at upper 

secondary level in Sweden for many years, and skilful use of technology in different 

forms is especially promoted in mathematics curriculum. In the project, CAS was 

used in the curriculum material and also presupposed for solving some of the tasks 

and working with the special activities in the material. This, of course, could present 

different challenges to the teachers, depending on their prior experience of this tech-

nology (Weigand, 2007). A brief presentation of the teachers and their classes: 

Anna is teaching at a school in the centre of a rather large city. The students at the 

school are mixed in several respects, and the motivation and the ability of the 

students also vary to a great extent. Some students have considerable problems with 

their mathematics studies, at the same time as some show great ambitions. In the 

class, which studied their first year at the Social Science programme, the students 

represented the whole scale, and the curriculum material was therefore chosen to be 

presented only in a smaller group (7-8 students). The material used was ‗Nspirerande 

matematik – Ma A‘ (2010), more specifically the section with functions. 

Carl and Eric are working at secondary schools in two middle-size towns. The 

students come from these towns and the surrounding rural areas, and both classes  

(≈ 25 students each) consist of combinations of those who study in the Natural 

Science and in the Technological programmes. The students are of mixed ability but 

generally rather motivated for studies in mathematics. The material used was 

‗Nspirerande matematik – Ma B‘ (2010), the section with algebra and functions, 

which represents the larger part of the course, and with probability. 

AIMS FOR THE STUDY 

The intention was to make a first evaluation of the use of curriculum material for the 

two mathematics courses, which is specially designed for the interactive use of TI-

Nspire technology, based mainly on the experience of teachers and students. Of 
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special interest are the ways it was used in the classroom work and in the teachers‘ 

instructional practice, as well as how it affected the students‘ achievement. Both 

students and teachers had the opportunity to express their opinions of how well this 

material and this technology have functioned in a real educational situation. They 

have also been able to pinpoint possible problems and obstacles that they have 

encountered when using the material and/or the technology, as well as how it has 

affected the students‘ own motivation, interest and self-confidence when working 

with mathematical activities. 

As being a pilot study, its intention was furthermore to form a basis for a larger eval-

uation study, which can involve more teachers and classes, and can stretch over a 

longer time period. In such a study, it can be possible, in other ways, to do research 

of more subtle outcomes of education, such as deeper understanding of mathematical 

concepts and methods and how robust knowledge is over time. 

THEORETICAL FRAMEWORK 

The theoretical background for this study rests on the classical didactic triangle with 

its three main elements student-teacher-mathematics, discussed for example by 

Steinbring (2005). This model has, however, been presented in various ways, 

depending on the overarching theory of learning and on the special context. The 

focus here lies on processes of mathematical interaction between individuals in the 

classroom (Cobb & Bauersfeld, 1998), a mainly social constructivist view. Learning 

takes place through experiences that are mediated by tools (Vygotsky, 1978), that 

can be mental (like spoken language), symbolic (like mathematical signs) or physical 

(like compasses), and with assistance drawn from other, competent individuals. 

Calculators and computer software hold a special position here, as they can be seen 

as tools within all three aspects.  

A tool can develop into a useful instrument in a learning process called instrumental 

genesis (Verillon & Rabardel, 1995; Guin & Trouche, 1999). This process requires 

time and effort from the user. The user must develop instrumented action schemes 

that consist of a technical part and a mental part (Guin & Trouche, 1999; Drijvers & 

Gravemeijer, 2005). The teacher must actively guide the students in a controlled 

evolution of knowledge, achieved by means of social construction in a class commu-

nity (Mariotti, 2002). Of special interest is the instrumental orchestration, which is 

defined as the intentional and systematic organisation and use of the artefacts avail-

able in a learning environment by the teacher, in order to guide students‘ instrumen-

tal genesis (Drijvers et al., 2010). In the present research project, TI-Nspire CAS cal-

culators together with emulating computer software are the physical parts of the 

instrumentation process. But the setting for this is within the curriculum material, 

which is intended as the basic mediating tool for the learning process, replacing the 

ordinary textbook. 
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Affective factors have been found to play a profound role in the outcomes of mathe-

matical education. Debellis and Goldin (1997) suggested four facets of affective 

states: emotional states, attitudes, beliefs and values/morals/ethics. Especially the 

intentions and goals for the mathematical education that students and the teacher 

have are vital (Hannula, 2002). They are not always coinciding, and this is particu-

larly the case when technological tools and mathematical texts are used in instruc-

tion. There are also other elements of attitudes and beliefs that teachers hold that can 

present obstacles and cause problems, such as the perceived change in their class-

room practice or how they believe such teaching will impact on students‘ learning 

(Brown et al., 2007; Pierce & Ball, 2009). This is especially true for CAS, which 

also has the problem of becoming legitimized within the school culture (Kendal & 

Stacey, 2002). 

RESEARCH QUESTIONS 

The research questions of the evaluation study are structured into three groups in 

accordance with the didactic triangle, and are generally based on the theoretical 

background and the aims for the study: 

Effects on teaching practice and learners. How is the integrated system of tech-

nology and written content used in the classroom by teachers and students? What 

effects on classroom dialogue, student-student and teacher-student, can be detected 

when working with it?  

Teacher experience of the system. How has the ‘Nspirerande matematik‘ resources 

supported new approaches to teaching for the teachers involved in the project? 

Which difficulties or obstacles with using the material and/or the technology can be 

found?  

Learning outcomes. How do the teachers in the project estimate the effects of the 

curriculum material on students‘ development of conceptual understanding? How 

does the use of the material together with the technology affect students‘ motivation, 

interest and self-confidence when working with mathematical activities? 

RESEARCH METHODS AND DATA COLLECTION 

This pilot study has the intention of giving a first and rather general view of the out-

comes of the use of the curriculum material and the TI-Nspire technology, both in 

terms of students‘ and teachers‘ views of these and of possible learning results that 

can be connected with them. Thus a pragmatic use of mixed research methods has 

been appropriate, mainly focussing on qualitative approaches, but also with some 

quantitative elements concerning the ways the material and the technology are used 

in the classrooms. 

The classes and the teachers that participated in the project were each visited twice 

during the project, and the methods used were the following: 
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Teacher lesson evaluations and observations. The teachers should fill in one form or 

log for each lesson in which they have used the material and the technology.  

Teacher interviews. A deep, semi-structured interview with the teachers was made in 

connection with each visit at the schools. All interviews were transcribed. 

Classroom observations. With each visit a lesson was to be observed by the 

researcher, using a special observation protocol.  

Student interviews. Two students were chosen from each class to be interviewed in 

connection with the observed lesson at each visit, and these were also transcribed. 

Teacher questionnaire. After finishing this pilot project each teacher was presented 

with questions concerning their overall experience of using the material and the 

technology in school instruction. 

The teachers and the students used the material full time from an introductory meet-

ing in March until the end of the semester. Visits were made as planned at the three 

schools by two occasions, one near the end of April and one near the end of May, at 

which time interviews were made and recorded. The three teachers as well as the 

students presented in most cases extensive answers to the questions asked, and also 

gave a clear impression of honesty in them. It was possible to discuss both their pro-

gress and their shortcomings with the material and the technology, and they reflected 

on what they had done in class, both in the middle of the project and at the end of it.  

MAIN FINDINGS AND CONCLUSIONS 

The acquired data from this study will not be presented in detail here. Instead some 

of its main findings are briefly stated and partly compared with other research. 

Effects on teaching practice and the learners 

The teachers made no essential alterations of their approaches or their working 

styles due to the system. Their lesson logs showed that they used essentially the same 

lesson plans and organisation of instruction during the project as before (mainly 

based on whole-class teacher‘s presentation, individual or cooperative students‘ 

work with teacher‘s support and finally a summary of the lesson).  Maybe this was to 

be expected in such a short period, even if the material opens for change in many 

ways. For one of the teachers, this material was in line with what she was used to, 

but for the others it presented a challenge. However, some signs of progress and 

change could be detected at the end of the project for one teacher, in the direction of 

more exploring activities for the students. This could imply a partial change of atti-

tude to the ways mathematics education can be performed (Brown et al., 2007). 

Two of the teachers did not use the calculators as tools for students own learning 

and exploring to any larger extent. Balling (2003) distinguishes between the use of 

calculators as calculating tools, teaching tools and learning tools. In the project, these 

two teachers mainly used them as extensions of the calculators they had used before, 
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which means as calculating and teaching tools. The CAS technology was also a 

problem for especially one teacher, who even doubted the positive impact on 

students‘ learning. This is also in accordance with what Pierce and Ball (2009) write 

about teachers‘ attitudes. Using CAS can be considered by the teacher as an extra 

burden, especially for weak students, and distract them from core mathematical 

learning. 

The curriculum material replaced the usual textbooks and was printed out as com-

pendia. In their evaluations of the material both teachers and students compared it 

with the textbooks in all details. In those cases where differences could be seen, 

many of the students, and also their parents, questioned if the material could provide 

the ‗right‘ knowledge for the course, and there were worries about the results in the 

National Tests. Also the attitudes from colleagues and/or the principal for the school 

could have been of importance for the pre-attitudes (see Pierce & Ball, 2009). 

The combination of the calculator and the material promoted students‘ discussions 

and presented opportunities to cooperate. In all three pilot classes, the students were 

used to work in pairs or in spontaneous groups. Much of the material was chal-

lenging for some students, in ways that the usual textbook did not match sufficiently. 

The technically advanced calculators also called for cooperation in acquiring proper 

action schemes (Drijvers & Gravemeijer, 2005). These two factors together created 

good opportunities for the students to develop a dialog on a rather advanced mathe-

matical level, both with the teacher and with other students. Students from Erik‘s 

class: 

Female student:  Sometimes you want to work by yourself to get into it and understand, 

       but it is very good to be able to help each other. 

Male student:     Yes, most of the time more will be done when you work in pairs. It is 

       easier when you don‘t know. 

Teacher experience of the system 

During the project, no major obstacles or difficulties with the calculators appeared. 

Neither the teachers nor the students mentioned any larger problem with the tech-

nique or in the way the calculator software appears. Interesting was the description 

some students gave of the instrumental genesis with its different parts (Guin & 

Trouche, 1999) they had experienced, and what this also had taught them in terms of 

mathematics.  

Anna‘s (female) student: I have no problems with new technology. I understand the 

  calculator very well! The only thing is that you must remember all the steps, 

  but the calculator in itself is quite simple to understand. 

One teacher criticised the way CAS technology was used in the material. His impres-

sion was that this was written for the use of CAS and not for the mathematical 

knowledge.  
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Erik: For the understanding of the concepts, I abandoned the technology. It is 

  typical that CAS do it in this way, and therefore the material is adjusted for 

  that. CAS in the centre. It rules over the material. 

Belfort and Guimares (cited in Dick & Burrill, 2009) give a list of four possible 

shortcomings in constructing technology-based material, of which the first is: ‗The 

author‘s interest is on mastering the use of the technology where the mathematics is 

secondary‘ (p. 11). However, none of the other two teachers gave the same critique, 

and this might be misdirected in this case. The problem could instead lie in the fact 

that the use of CAS may change the classroom practice, which can be perceived by 

the teacher as a threat (Pierce & Ball, 2009). 

The content of the material in combination with the technology caused problems for 

some students. The long texts and explanations with alternating sections of tasks 

were perceived as difficult by some students. This was especially true for students 

with lesser mathematical ability, for whom the longer activities or tasks became 

obstacles.  

Erik‘s student:    It is frustrating if you are in a class and others have difficulties but not I. 

                        Then it takes very much time to get it to work for all students in the group. 

Research points in diverse directions here. Ruthven and Hennessy (2002) report that 

access to technology enables less-able students to participate in exploration, while 

Tynan (2003) concludes that the technical overhead when learning new tech-

nological features could present an extra burden for these students. This is also 

mentioned as an obstacle by two teachers in the project, while the third one instead 

has observed this category of students succeeded quite well with such activities. 

The opinions of how easy a teacher who is rather new to technology could start 

using it together with the material varied. One of the teachers perceived it as being 

fairly easy, calling for only a shorter introduction, another that a more thorough 

course was needed. The third teacher said that it was easier than he thought. One 

explanation to this could be that the material was used in different ways by them, and 

that the demands of certain knowledge therefore differed. This is in line with what 

other researchers have found (e.g. Ball, 2004), especially in the connection with the 

implementation of CAS into the classrooms. All three teachers also mentioned the 

need for an extensive teacher‘s guide accompanying the material and that different 

kinds of support, mainly when they start using the material, would facilitate this 

implementation. Implementing in a larger scale has been researched for example by 

Ball (2004), and Pierce and Ball (2009). One conclusion these authors have drawn is: 

‗The responses to this survey confirm that professional development for teachers 

needs to address attitudes and perceptions as well as technological skill develop-

ment‘ (p. 315). This is also the experience as expressed by the teachers in the present 

study. 
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Learning Outcomes 

Two of the pilot teachers would not draw any certain conclusions about their 

students‘ development of deep conceptual understanding of mathematics. One obvi-

ous reason for this is the fairly short time-span of the project. To the teachers‘ 

meaning, such effects can only be detected in the longer perspective. However, their 

estimation was that the more mathematically able students have taken advantage of 

the material and the calculators in a way that in fact it has made it possible for them 

to develop this deeper understanding of concepts. At the same time, the lesser able 

students might be at the risk of having learned less than with the usual textbook. 

One of the pilot teachers declared that her students had shown clear signs of a 

deeper conceptual understanding. This was also confirmed in the interviews with 

the students, who gave detailed descriptions of the laborious process to obtain this 

understanding. The students‘ results at the National Test gave more evidence that 

they really had understood mathematics at a more advanced and deeper level, and so 

did also the mathematical texts that the students handed in to the teacher. It is 

important to note that these students had not appeared to be among the most mathe-

matically able ones when the project started.  

Anna: The material is more stimulating than ‗ordinary‘ books, and the interaction 

 with the calculator develops a more investigating and inquiring attitude. 

Anna: Before, I thought that you had to use the pencil to understand, but I see 

many today who ‗think‘ with the keys. 

The calculators have been stimulating for the interest, motivation and curiosity 

towards mathematics. This is common for all three pilot classes, even if it was not 

true for all individual students. It is also in accordance with what most research of 

the use of technology in mathematics education shows (see e.g. Persson, 2009). For 

most students, it was also their first contact with a more advanced calculator. In one 

of the groups, the students‘ attitudes and feelings towards mathematics had changed 

dramatically. Their comparison was mainly with what they had experienced of math-

ematics instruction at compulsory school. The details in the interviews give evidence 

that it was, at least to some degree, the text, the tasks and the activities in the 

material that caused this change. The students found the mathematics there 

interesting, challenging and useful, and solving the problems gave them better self-

confidence and self-esteem (Hannula, 2002).  

Anna‘s (female) student:    This material has been extremely good and incredibly useful. 

  Before, I had a hard time with maths, but now I have Anna and the material 

  and new ways of thinking. So now I got a ‗Pass with special distinction‘ at 

 the National Test, which I had never dreamed of getting before. So it has 

  improved my and the whole class‘ attitude towards math. And you have to 

  think in new ways all the time, otherwise you don‘t find the right solutions. 
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Presently, a continuation of this pilot study has been initiated, in the form of a larger 

study involving more classes and teachers. It will take place during a whole semes-

ter, and the learning outcomes of the students will be in special focus (Artigue & 

Bardini, 2009). What are the conceptual and affective effects of using this kind of 

technology and curriculum material (now available at Nspirerande matematik, 2010), 

especially compared to common textbooks and the material linked to these? 
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Mathematics teachers may perceive difficulties in orchestrating education which 

makes use of technological tools. With instrumental orchestration as a theoretical 

lens, we investigate into which types of orchestrations teachers transform the 

technological resources. In a pilot teaching sequence in grade 12 on using applets 

for practicing algebraic skills, this question is investigated through a case study, 

questionnaires, and interviews. The results show that teachers privilege 

orchestrations in which students work individually or in pairs, at the cost of whole-

class orchestration types. Compared to their regular teaching practices and their 

expectations before the pilot, the involvement in the pilot causes teachers to adapt 

their orchestrations during the pilot. 

Keywords: mathematics education, technology, teachers, orchestration  

INTRODUCTION 

Nowadays, teachers are confronted with a myriad of both material and electronic 

knowledge resources available for mathematics teaching. More and more, such 

resources can be accessed through technological means and are available on the 

internet. However, resources do not transform teaching practices in a straightforward 

way. Several studies show that teachers may perceive difficulties in orchestrating 

mathematical situations which make use of technological tools and resources, and in 

adapting their teaching techniques to situations in which technology plays a role 

(e.g., Gueudet and Trouche, 2009). Also, different teachers may adapt the same set of 

resources into quite different teaching arrangements.  

As Robert and Rogalski (2005) point out, teachers‘ practices are both complex and 

stable. Building on this, it is argued that the availability of technological resources 

amplifies the complexity of teaching practices and, as a consequence, challenges 

their stability. It is not self-evident that techniques and orchestrations which are used 

in ‗traditional‘ settings can be applied successfully in a technological-rich learning 

environment. A new repertoire of orchestrations, instrumented by the available tools, 

has to emerge. This involves professional development of the teacher, in which both 

professional activity and professional knowledge may change. This process of 

transforming sets of technological and other resources into orchestrations is the topic 

of this paper [1]. 
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THEORETICAL FRAMEWORK 

The main theoretical perspective that frames our investigation of teachers 

transforming resources into orchestrations is the notion of instrumental orchestration. 

It is widely acknowledged that student learning needs to be guided by the teacher 

through the orchestration of mathematical situations. For example, Kendal and 

Stacey (2002) showed that teachers privilege certain techniques for using 

technological tools over others and, in this way, guide the students‘ acquisition of 

tool mastery and their learning processes. To describe the teacher‘s role, Trouche 

(2004) introduced the metaphor of instrumental orchestration.  

An instrumental orchestration is defined as the teacher‘s intentional and systematic 

organisation and use of the various artefacts available in a – in this case 

computerised – learning environment in a given mathematical task situation, in order 

to guide students‘ instrumental genesis (Trouche, 2004). We distinguish three 

elements within an instrumental orchestration: a didactic configuration, an 

exploitation mode and a didactical performance (Drijvers et al., 2010). Didactical 

configurations and exploitation modes were introduced by Trouche (2004). As an 

instrumental orchestration is partially prepared beforehand and partially created ‗on 

the spot‘ while teaching, we felt the need to add the actual didactical performance as 

a third component. Establishing the didactical configuration has a strong preparatory 

aspect: often, didactical configurations need to be thought of before the lesson and 

cannot easily be changed during it. Exploitation modes may be more flexible, while 

didactical performances have a strong ad hoc aspect.  

Even if the metaphor of instrumental orchestration is appealing, it has its limitations 

like every metaphor. If we think of a teacher as a conductor of a symphony orchestra 

consisting of highly skilled musicians, who enters the concert hall with a clear idea 

on how to make the musicians play Beethoven the way he himself reads the century-

old partition, we may feel uneasy with the metaphor. However, if we think of the 

class as a jazz band (Trouche and Drijvers, 2010) consisting of both novice and more 

advanced musicians, and the teacher being the band leader who prepared a global 

partition but is open for improvisation and interpretation by the students, and for 

doing justice to input at different levels, the metaphor becomes more appealing. It is 

in the latter way that we suggest to understand it. 

Earlier research focused on the identification of orchestrations within whole-class 

technology-rich teaching. Drijvers et al. (2010) identified six types of such 

orchestrations, termed Technical-demo, Explain-the-screen, Link-screen-board, 

Discuss-the-screen, Spot-and-show, and Sherpa-at-work, with the following global 

descriptions. This categorization, with three more teacher-centred and three more 

student-centred orchestrations, resulted from a study on the use of applets for the 

exploration of the function concept in grade 8, and emerged from observation of 

three teachers in a relatively guided situation (Drijvers et al., 2010). Of course, from 
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these limited data from a specific context, we cannot claim completeness. Rather, we 

wonder how specific this categorization is with respect to the type of technology, the 

mathematical topic, the whole class teaching format, the level and age of the 

students, and the amount of guidance teachers were provided with. Therefore, the 

goal of the study presented here is to investigate in another teaching context in which 

types of orchestrations teachers transform the available technological resources and 

how these results relate to the above categorization. 

RESEARCH SETTING 

The research was carried out in the context of a pilot initiated by the publisher of the 

main Dutch textbook series for secondary mathematics education. The publisher, 

seeking for ways to improve their product and to integrate technology, decided to 

offer to their customers‘ schools an online, interactive version of a chapter on 

algebraic skills such as rewriting expressions and solving equations for grade 12, the 

final year of pre-university secondary education. For this online module, the 

Freudenthal Institute‘s Digital Mathematics Environment (DME) was used. DME is 

a web-based environment which integrates a content management system, an 

authoring tool and a student registration system, and which already contains content 

in the form of an impressive amount of applets and modules (Bokhove and Drijvers, 

2010). The module for this pilot was designed by the authors of the textbook series, 

supported by the Freudenthal Institute DME experts. The module includes tasks as 

well as video clips with elaborated examples. The levels of feedback to students‘ 

answers decreases as the module advances. A pdf file of the original textbook 

chapter was also made available online, with embedded links to the new online 

activities [2]. Figure 1 shows a part of the book file on the left, and one student‘s 

work in the digital environment on the right. The book text includes a reference to 

the online module and the task to solve two equations. In the right screen, the student 

makes a mistake in the last line, and gets feedback saying ―This step contains both 

correct and incorrect parts. Remove or replace the incorrect parts‖. 

 

 

 

 
 

Figure 1: Screen shots from book (left) and digital environment (right) 
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After a message by the publisher, 69 teachers volunteered to join this pilot teaching 

sequence. They were provided with online guidelines for the use of the module. For 

the students, the resources in this pilot include the regular textbook, the online book 

chapter, digital modules including feedback and video clips, and the traditional 

resources such as paper and pencil and calculator. As the work is stored on a central 

server, students can access, revise and continue their work at any time and from any 

place with internet access. For the teacher, the resources are similar, but with the 

additional option of access to student work. Overviews of whole class results as well 

as individual student work can be monitored by the teacher through the internet. 

METHODS 

The research methods include a case study focusing on one teacher and a survey 

among all 69 participating teachers. The case study was carried out in two classes of 

one of the pilot schools, a school in a small, prosperous town in the Netherlands with 

mainly ‗white‘ student intake. Both classes, with 30 and 14 students, respectively, 

were taught by the same, experienced teacher. He initially volunteered for the pilot, 

but later intended to step back, because computer facilities in school were 

insufficient and his students objected to the idea of practicing algebraic skills with 

the computer, whereas they would need to master them with paper and pencil in the 

national central examination. We were able to offer a loan set of 30 netbook 

computers for the period of the teaching sequence and we convinced the teacher that 

practicing skills with computer tools was expected to directly transfer into better by-

hand skills. Then, both the teacher and his students accepted to participate. During 

the period of the pilot, this teacher had a heavy teaching load, with 26 50-minutes 

lessons a week to teach. A technical assistant was available in school to set up the 

classes with the netbook computers, and to make other practical arrangements such 

as charging the batteries, et cetera. 

Most of the lessons (23 out of 36 during an 8-week period) were observed and 

videotaped. The video registration was done by a mobile camera person, who 

followed the teacher very closely during individual teacher-student interactions, so 

as to capture all speech and screens. Data analysis took place with software for 

qualitative data analysis and focused on orchestrational aspects of the teaching.  

The very specific data from the case study were complemented with date from a 

survey among all participating teachers. It consisted of two online questionnaires, 

one before and one after the teaching sequence. The response was 49 out of 69 for 

the pre-questionnaire, and 41 out of those 49 for the post-questionnaire. Non-

response was caused by the fact that not all teachers who originally volunteered for 

the pilot really started their participation, and that some of the teachers who filled in 

the pre-questionnaire did not start either, or stopped the pilot before bringing it to an 

end. Some of them sent messages by email, indicating reasons such as time 

constraints, lesson cancellation because of illness, or other unforeseen circumstances. 
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RESULTS FROM THE CASE STUDY 

In the case study one particular orchestration type was highly dominant. We call it 

Work-and-walk-by. The didactical configuration and the corresponding resources 

basically consisted of the students sitting in front of their netbook computers, with 

wireless access to the online module and their previous work as well as to the 

textbook chapter in pdf format. In addition to this, a blackboard or whiteboard 

allowed the teacher to write down additional explanations. A data projector showing 

the online environment was available in most lessons, but was hardly used. As 

exploitation mode, the students individually worked through the online module on 

their netbook computers, and the teacher walked by and sat down with students to 

answer questions and eventually monitor the students‘ proceedings (see figure 2). As 

a reaction to student questions, the teacher in some cases went to the blackboard to 

write down an algebraic explanation or technique, but still speaking to the individual 

student who had raised the issue. Concerning the didactical performance, the 

initiative for teacher-student interaction was taken by the student in almost all cases. 

If an interaction with a student led to a new insight for the teacher, such as an 

understanding of a technical issue, he sometimes went back to students whom he had 

previously spoken to on a similar issue, as to disseminate the news.   

 

Figure 2: The teacher (left) helping a student (right) individually 

One aspect of this Work-and-walk-by orchestration concerns the determination of 

students‘ difficulties. If a student has a question while the teacher walks by, the latter 

is faced with the issue of where the heart of the problem lies: is it a lack of the 

student‘s algebraic understanding or skill? Is it a technical problem caused by the 

student, for example a mistake in entering an expression? Or is it a limitation of the 

online module, which in some cases gave inappropriate feedback, and was very strict 

in expecting a specific answer? Determination was difficult and mismatches between 

student problems and teacher reactions could be observed. Determination in some 

cases was hindered by the technical issues. As the teacher himself was not familiar 

with the module, he often was unable to solve students‘ problems, which led to 

uncertainty about whether it was a mathematical mistake or a technical problem that 

caused the technology to report an error. There was little technical guidance or 
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attention to students‘ instrumental genesis, and Technical-demo orchestration were 

not observed. 

 

 

Figure 3: Overview of student results generated by the DME 

This Work-and-walk-by orchestration took at least 90% of the lesson time in the 

lessons we observed, and remained dominant throughout the pilot teaching sequence 

as a whole without much variation; still, some changes over time in its didactical 

performance, and in the type of teacher-student interactions in particular, could be 

noticed. First, later in the teaching sequence, when he had time to find out how it 

worked, the teacher used the data projector to show the overall advancements of the 

students, so that each individual student could monitor if he or she was more or less 

on schedule (see Figure 3). Second, as both teacher and students during the teaching 

sequence got more familiar with the online module, its technical demands and its 

feedback, the student questions and the student-teacher interactions gradually 

focused more on algebra and less on technical issues. As a consequence, the 

character of these interactions changed from technical discussions into ‗Explain-the-

screen‘ or ‗Discuss-the-screen‘ interactions. Also, the teacher went to the board less 

frequently, but instead used the online module more often as an environment to 

check algebraic claims or techniques. He encouraged students to type something in 

to see if it is correct, and used this as a way to explain the algebra.  

If we relate the findings presented in this section to the six whole-class teaching 

orchestrations types identified above, we already noticed some Explain-the-screen 

and Discuss-the-screen elements within the didactical performance of the Work-and-

walk-by orchestration. The same holds, to a lesser extent, for the Technical-demo 

orchestration: technical issues regularly emerged in the individual student-teacher 

interactions, even if the teacher was in many cases not able to solve them. Elements 

of the Link-screen-board orchestration could also be observed, as the teacher 

regularly walked to the whiteboard to explain the algebra, or used paper and pencil to 

do so. The Spot-and-Show opportunities that the didactical configuration offers were 
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not exploited. The same holds for the Sherpa-at-work, even if the teacher by the end 

of the teaching sequence invited students to carry out a specific technique in the 

digital environment, which can be seen as an individual ‗Sherpa-at-work light‘. 

RESULTS FROM THE SURVEY 

Even if the word ‗orchestration‘ was not mentioned in the questionnaires, they 

provide insight in the orchestrational choices made by the participating teachers. For 

example, one question on both the pre- and the post-questionnaire was: which ICT-

means were used? In the pre-questionnaire this concerned the use of technology in 

the teacher‘s lessons preceding the pilot; in the post-pilot questionnaire, this 

concerned tool use during the pilot. Participants could click on more than one 

answer. Table 1 summarizes the findings. Data shows that the technological devices 

which are most frequently used during the pilot are the computer lab and students‘ 

computers at home, which contrasts to the more teacher-driven ‗regular‘ use of ICT 

before the pilot. Teachers seem to have changed the didactical configurations for the 

case of the pilot. 

ICT-means used  

(more answers possible) 

Pre-pilot (N=47) 

Frequency (%) 

Post-pilot (N=41)  

Frequency (%) 

Data projector 57 46 

Teacher’s computer 57 32 

Interactive whiteboard 55 37 

Computer lab 0 83 

Student computers in classroom 0 29 

Students’ home computers 0 83 

Table 1: ICT means used during the pilot 

One question on the pre-pilot questionnaire concerned the working formats the 

teachers were expecting to use during the pilot, and a similar one on the post-pilot 

questionnaire asking which working formats they used indeed. Table 2 summarizes 

the findings. It shows that individual work, work in pairs and homework are the most 

frequently used working formats, whereas whole-class explanations and whole-class 

homework discussion occurred less than expected beforehand, in spite of the 

opportunities the didactical configuration offers for it. 

 Expected (Pre-pilot, % of N=47) Effectuated (Post-pilot, % of N=40) 

Working formats Not Sometimes Often Not Sometimes Often 

Whole-class explanation 0 36 64 32 48 20 

Whole-class demonstration 19 62 19 38 47 15 

Whole-class homework discussion 4 47 49 40 47 13 

Whole-class presentation 57 38 2 100 0 0 

Individual work 6 26 66 2 2 96 

Work in pairs 9 30 60 28 25 47 

Group work  53 38 4 93 5 2 

Homework 23 28 47 7 53 40 

Table 2: Expected and effectuated working formats used during the pilot 

A follow-up question in the post-pilot questionnaire was whether technology was 

used in the mentioned working formats. The results shown in table 3 confirm the 

previous impression, namely that technology during the pilot was mainly used for 
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individual work, work in pairs and homework, and not so much in whole-class 

orchestrations. 

In this light it is somewhat surprising that the option to show students‘ home work by 

means of a data projector or interactive whiteboard, and to use it as a catalyst for 

whole-class discussion, was hardly used, whereas the teachers usually used such 

technology in whole-class teaching settings according to the pre-pilot questionnaire 

results. Even if the teachers beforehand expected some more individual work or 

work in pairs, this seems to have happened to a larger extent, and opportunities for 

using ICT in the way they were most familiar with, remained unexploited. 

 Post-pilot (% of N=41) 

ICT in working formats Not Sometimes Often 

Whole-class explanation 58 32 10 

Whole-class demonstration 41 24 20 

Whole-class homework discussion 61 34 5 

Whole-class presentation 98 2 0 

Individual work 15 5 80 

Work in pairs 51 17 32 

Group work  93 5 2 

Homework 24 32 44 

Table 3: ICT used in working formats 

To summarize the findings from the questionnaires, we conclude that before the 

pilot, teachers indicated that they used technology mainly in whole-class teaching 

settings, probably with the teacher operating the technology. In spite of this 

preference and experience, during the pilot they privileged individual work and work 

in pairs, which turn out to be the dominant orchestrations, and thereby neglected 

options for whole-class teaching offered by the technology. This is in line with the 

findings by Lagrange and Caliskan (2009). Even if the variety among all teachers 

seems to be greater than was observed in the case study, the results point into the 

same direction. They suggest that many teachers in the pilot changed their 

orchestrations from whole-class teaching using tools such as a data projector or an 

interactive whiteboard to student-centred orchestrations, for example in computer lab 

and home settings. Compared to the teachers‘ experiences with technology in their 

teaching, this is a shift from the teachers using technologies such as interactive 

whiteboards and data projectors, towards students using mainly computer labs and 

home computers.  

It is not clear if the six identified whole-class orchestration types also appear in the 

context of this pilot. The questionnaires do not offer enough information. The focus 

on individual work and work in pairs is clear, but we do not know what happened 

besides that. Spot-and-show orchestrations and Sherpa-at-work orchestrations, 

however, do seem to be very rare, even if some teachers in the interviews reported 

incidentally using these orchestration types.  
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CONCLUSION 

A first aim of this study was to investigate in which types of orchestrations teachers 

transform the available technological resources. The findings from both the case 

study and the questionnaires – albeit the first to a greater extent than the second – 

suggest that individual, student-centred orchestrations are dominant when teachers 

use the resources that were developed in the frame of this pilot. Teachers tended to 

privilege students working individually or in pairs on the online module tasks, and 

devoted little time to whole-class explanation or homework discussion, whereas their 

expectation before the pilot were different. The case study resulted in the 

identification of a Work-and-walk-by orchestration, which in itself is not very 

surprising one. However, we were surprised by its dominance and by the fact that 

other orchestrational opportunities of the available technology were not exploited, 

whereas more variation could be observed in this teacher‘s regular lessons. 

Several factors may explain this phenomenon. First, the subject, practicing algebraic 

skills, probably is more suitable for individual work or work in pairs than for whole-

class teaching. Second, the computer labs, in which many lessons apparently took 

place, may be less suitable for whole-class teaching. Third, individual orchestration 

types are probably the easiest thing to do for a teacher, who is not feeling confident 

about his or her own technical skills. Fourth and final, it may be the technology itself 

that invites student work rather than whole-class teaching. Our impression from 

interviews with teachers is that all these factors play a role. Data is insufficient to 

decide on the impact of each of them. 

A second point of interest is how these results relate to the orchestration types 

mentioned in the theoretical section. This typology emerged from whole-class 

teaching episodes, whereas in this pilot mainly individual orchestrations were found. 

Still, the case study observations suggest that the six whole-class teaching 

orchestration types identified earlier have their counterparts, or at least similar 

aspects, in the context of the present study. The overall conclusion, therefore, is that 

the six whole-class orchestration types of course are not exhaustive, but do contain 

elements that can be observed in other orchestrations as well. We expect the list of 

possible orchestrations to be extended in future, not as to strive for a complete list, 

but as to provide teachers with a diverse repertoire of possible orchestrations as 

source of inspiration to their professional activity. 

A third and final point of interest concerns the change processes that occur when 

teachers engage in an experimental setting. The conclusion here is twofold. First, the 

case study provides insight in the change process during the pilot teaching sequence. 

The findings suggest a stable and not so dynamic orchestration, in which there is not 

much change, at least not at the superficial level. Meanwhile, at the level of 

didactical performance some professional development was observed, showing for 

example an increased focus on the algebra and on what we might call ‗Explain-the-

screen‘, at the cost of attention to technological issues.  Second, the findings of the 
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questionnaires shed light on the change that takes place when teachers engage in 

such a pilot, compared to their regular teaching practices before the pilot. The data 

suggest that many teachers, who were used to integrating technology in a teacher-

centred way – the teacher using a computer connected to a projector, or using an 

interactive whiteboard – in the frame of this pilot switched to student-centred 

orchestrations. It seems that most of them did not extend their teaching technique 

repertoire during the pilot sequence with, for example, a Spot-and-show 

orchestration type, even if the technology supports the monitoring of student work by 

the teacher anytime and anyplace. 

NOTES 

1. This paper is further elaborated in a chapter with the same title which accepted for publication in Gueudet, G., Pepin, 

B., & Trouche, L. (Eds.), Mathematics Curriculum Material and Teacher Development: from text to lived resources?  

New York/Berlin: Springer. 

2. The module (in Dutch) is available through http://www.fi.uu.nl/dwo/gr-pilot/  
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In this paper we report on a teaching experiment regarding the definite integral 

concept in university mathematics teaching. The experiment was carried out at a 

Swedish university by using the free dynamic mathematics software GeoGebra. In 

our theoretical framework we apply Variation Theory, originating in the 

phenomenographic research tradition. The data of this study consist of the lecture 

plan and the engineering students‘ answers to pre and post tests. In the analysis of 

the data we applied statistical methods. The experiment revealed that by using 

GeoGebra it is possible to create learning opportunities of the definite integral 

concept that support the students‘ learning.  

Keywords: definite integral, geogebra, learning, variation theory  

introduction 

There is a constantly increasing number of software packages that can be used as 

powerful tools in mathematics teaching. Recent research shows that computer 

programs such as Maple, Mathematica, Derive, Geometer‘s Sketchpad, GeoGebra, 

when used in a classroom, support creative discoveries and mathematical 

generalizations (Lavicza, 2006).  

It has been shown that students who use technology in their learning had positive 

gains in learning outcomes over students who learned without technology (Camacho-

Machín et al., 2010; Camacho-Machín & Depool Rivero, 2003; Touval, 1997). 

Regardless of evidences of several benefits of using technology, the process of 

applying technology for mathematics education is slow and complex (Cuban et al., 

2001).  

Several studies have highlighted difficulties that students encounter with the integral 

concept. In an early study carried out by Orton (1980), it was observed that students 

had difficulty with the integral 
b

a

dxxf )(  when f(x) is negative or b is less than a. In 

another study by Orton (1983), it was noticed that some students found it difficult to 

solve problems related to the understanding of integration as a limit of sums.  

Our earlier research (Attorps et al., 2010), in line with other studies (Blum, 2000; 

González-Martín & Camacho, 2003), has even pointed out that students have an 

intention to identify the definite integral as an area. Further, Rasslan and Tall (2002) 

verified that a majority of the students cannot write meaningfully about the definition 

of the definite integral. In a similar way, studies concerning learning of calculus 
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concepts (Attorps, 2006; Rôsken & Rolka, 2007; Viirman et al., 2011) have shown 

that definitions play a marginal role in students‘ learning whereby intuition inherent 

in concept images dominates the concept learning.  

Transformation from procedural to conceptual understanding of the concept of 

integral requires gradual reconstructions of students‘ perceptions. Research has 

however documented the limitations of standard teaching methods, showing that 

students become reasonably successful on standard tasks and procedures but have 

difficulties in developing a solid and conceptual understanding of the topics itself 

(Artigue, 2001).  

The Variation Theory 

The variation theory is a theory of learning, which is based on the phenomenographic 

research tradition and described by Marton and Booth (1997). The main idea in the 

phenomenography is to identify and describe qualitatively different ways in which 

people experience certain phenomena in the world, especially in an educational 

context. There are two main principles in variation theory. The first one is that 

learning always has an object, in our case the definite integral concept. The second 

one is that the object of learning is experienced and conceptualized by learners in 

different ways.  

The object of learning can be seen from teacher‘s, student‘s and researcher‘s 

perspectives. The intended object of learning is the object of learning as seen from 

the teacher‘s perspective. It includes what the teacher says and wants the students to 

learn during the lecture. The students experience this intended object of learning in 

their own way and what they really learned - the outcomes of learning - is called the 

lived object of learning. Hereby, it is easy to understand that students‘ learning does 

not always correspond to what the teacher‘s intention was with the lecture. The 

enacted object of learning as seen from the researcher‘s perspective defines what is 

possible to learn during the lecture, to what extent, and in what forms the necessary 

conditions for specific object learning appear in a classroom setting. The enacted 

object of learning describes the space of learning, which students and teacher have 

created together. In this space it is possible for students from their previous learning 

experiences to discern critical aspects of the object of learning (Marton et al., 2004). 

In the variation theory, the experience of discernment, simultaneity and variation is a 

necessary condition for learning. Variation is the main concern in this theory and a 

primary factor in supporting student‘s learning. In order to understand what 

variations to use in the classroom to promote student‘s learning, it is first necessary 

to understand the varying ways students experience something. We can use this 

information to identify ways to encourage students to discern other aspects of the 

learning object, the aspects they have previously not discerned.  

Every concept, situation or phenomenon has particular aspects and if an aspect is 

varied and another remained invariant, the varied aspect will be discerned. The 
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understanding of the object of learning in a certain way requires the simultaneous 

discernment of critical aspects of the object of learning (Marton & Morris, 2002; 

Marton et al., 2004). The theoretical elements - discernment, simultaneity and 

variation related to learning and supposed to be critical for learning to happen - can 

be also used as an analytical tool for analyzing teaching (ibid). As a result, learning 

and teaching is brought closer together.  

The purpose of the study 

The aim of our study is to design teaching sequences for definite integrals, using 

GeoGebra, which can support the students‘ learning in university mathematics. To 

that end, we seek an answer to the following question: Is it possible to use GeoGebra 

as a pedagogical tool within the variation theory, in order to vary critical aspects of 

the concept of definite integral during a lecture in an introductory calculus course? 

Method and design of the study 

The study took place during a lecture in mathematics at a Swedish university. A total 

of 17 Chinese engineering students were involved in our study. The data were 

gathered by doing pre and post tests concerning the definite integral concept. In the 

analysis of the pre and post test results, statistical and qualitative analysis methods 

were applied. 

The questionnaire 

The questionnaire contained 6 questions, including not only ‗typical‘ questions 

(Questions 2, 3, 5 and 6), but also intuitive questions (Questions 1 and 4). Maximal 

point in each question was three. Students had 25 minutes to do this test. In both pre 

and post tests, the same questionnaire was used. It was not allowed to use technical 

facilities.  

Question 1. If you want to calculate the area between the curve and x-axis when x=0 

and x=5 (see the graphs below) you can get an approximate value of this area by 

calculating the areas of the columns and by adding them.  

a) Which of the following graphs should you choose in order to make the error as 

small as possible?                                                                                                                   

         

Graph 1             Graph 2                                      Graph 3 

b)  Can you answer why?                                 



Working Group 15 

CERME 7 (2011) 2191 

 

The aim of the first question was to test the students‘ intuitive conception about the 

definite integral concept as a limiting process. In this case it is about the upper 

Riemann sum. 

Question 2. What is this 
b

a

dxxf )(  (the definite integral of the function )(xf  in the 

interval [a, b]) according to your opinion?                                                  

The second question was to test how the students grasp the conception of the definite 

integral.  

Question 3. There are some approximate values of x  and )(xF below: 

x  1 2 3 4 5 

)(xF  -1 -0.61 0.30 1.55 3.05 

You know that .ln)(́ xxF . Approximate the value of 
5

3

.ln xdx .               

The purpose of the third question was to test how the students can apply the 

Fundamental Theorem of Calculus [1]. 

Question 4. The following is given:
7

1

5

1

.1)(2)( dxxfanddxxf  Evaluate 
7

5

.)( dxxf . 

The intent of the forth question was to test the students‘ knowledge of the properties 

of the definite integral concept. 

Question 5. Can you find any error in the following reasoning?  

2
1

1

1

1

1

1

1

11

1

2

1

1

2

x
dxx

x

dx
                                                                          

The aim of the fifth question was to test if the students grasped when it is possible to 

apply the Fundamental Theorem of Calculus. 

Question 6. Find the area of the region, which is limited by the functions 
2 3( ) 0,5 and ( )f x x g x x . Give an exact answer.                                                      

The idea of the last question was to test how the students comprehended an ordinary high 

school example of the definite integral. We also wanted to find out how the students 

could master calculation with fractions. 

Results 

Before designing our lecture, we analysed carefully the pre test results in our study. 

The aim of the pre test was to identify if the students have some initial conceptions 

concerning the definite integral concept. Although the concept in China is normally 

introduced first at the university level (Wang, 2008), we could find that most of the 
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students showed quite a good intuitive conception of the concept as a limiting 

process (Question 1) and of the properties of the definite integral concept (Question 

4). By reading earlier research, we could find that many students often have only an 

area conception of the definite integral (see e.g. González-Martín & Camacho,  

2003). Furthermore they cannot meaningfully define the definite integral (Rasslan & 

Tall, 2002). Having this information about the students‘ conceptions, we designed 

our lecture. In order to create different teaching sequences that could encourage 

students to discern varying aspects of the object of learning, we used GeoGebra.  

Teaching sequences  

Teaching sequences were implemented in an ordinary lecture with teacher 

manipulating the computer and students observing the screen. In the first application 

of GeoGebra (Fig. 1), we introduced numerical approximation of the area (Lower 

and Upper Riemann sums), as well as the definition of the definite integral with 

inherent infinite processes.  

Figure 1 visualizes the concept of the Riemann integral using lower and upper sums. 

Two points a and b are shown that can be moved along the x-axis in order to modify 

the investigated interval. The upper and lower values together with their differences 

are displayed as a dynamic text which automatically adapts to modifications. In this 

case we keep f and the interval invariant and vary the number of subintervals. By 

increasing the number of subintervals, we shorten their length. Our intention was to 

show that increasing the number of subintervals decreases the difference between the 

Lower and Upper Riemann sums, which shows that the Lower and Upper Riemann 

sums eventually coincide with the value of the integral. 

      

 

 

 

 

Figure 1: Lower and Upper Riemann sums and inherent infinite processes 

The second example (Fig. 2 and 3) should help the students to get a wider conception 

of the definite integral concept. Figures 2 and 3 visualize the Riemann integral 

related to the area between the function f and the x-axis. Two points a and b are 

shown that can be moved along the x-axis in order to modify the investigated 

interval. The area and the integral values are displayed as a dynamic text which 

automatically adapts to modifications. This time we keep only f invariant and vary 

both the length of the interval and the upper and lower limit points. Our aim with this 

teaching sequence was to show that the value of the area between the function and 
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the x-axes and the integral-value not always coincide. While the area is always a 

non-negative (but not necessarily constant) real number, the integral-value can be 

any real number.  

 

 

 

 

 

Figure 2: The value of the definite integral is identical to the area between function and 

x-axis in the interval [a, b] 

 

 

 

 

 

 

 

Figure 3: The definite integral as a real number, which can be positive, zero or 

negative 

Our ambition with the third presentation (Fig. 4) was to help the students discern 

situations when it is possible to apply the Fundamental Theorem of Calculus and 

when it is not.  

 

 

 

 

 

Figure 4: Visualization of the application of Fundamental Theorem of Calculus 

In Fig. 4 on the left, it is possible to apply the Fundamental Theorem of Calculus, 

because both of the functions f and g are defined and continuous in the closed and 

bounded interval from A to B. In Fig. 4 on the right, it is not possible because f is not 

defined and by that not continuous in the interval. By moving the point A along the 
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x-axis we can vary the position of the investigated interval. In this teaching sequence 

we keep the length of the interval and the functions f and g invariant. 

Pre and post test results 

The analysis of the data from the pre and post tests was done with a statistic 

program, the Minitab package. Using the significance level of 95% and a paired-

samples one-tailed t-test, we compared the means of the test results for each problem. 

The group consisted of 17 participating Chinese students. 

The pre and post test results indicate that there are statistically significant 

improvements in all the questions after the GeoGebra designed teaching practice.  

Question 

number 

Pre test  

mean 

Post test  

mean 
p 

Maximum 

scores 

1 1.588 2.059 0.014
* 

3 

2 0.059 0.647 0.000
* 

3 

3 0.176 2.471 0.000
* 

3 

4 0.529 2.647 0.000
* 

3 

5 0.000 0.941 0.007
* 

3 

6 0.118 2.765 0.000
* 

3 

* p < 0.05 

Table 1: Pre and post test results for the group of Chinese students 

The students‘ scores in question 1 show that their intuitive understanding of the 

definite integral concept was quite good already at the beginning. One of the students 

explained in the post test the question 1 in the following way:  

―The difference between the area of columns and the curve is smaller as the columns 

become smaller and smaller, more and more‖.   

The scores in questions 2 and 5 remained low in both pre and post tests. The most 

typical explanation to question 2 was:  

―Points a and b are the intersection points of the two functions and we can calculate the 

area‖.  

In our qualitative analysis of the results we could notice that most of the students still 

grasped the integral concept as an area. Pre and post test results in question 5 showed 

that many of the students failed to give an adequate response in question 5; most of 

them could not find any errors at all. One of the students who succeeded to motivate 

his answer in post test explained:  
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We also noticed that nearly all the Chinese students in the post test were successful 

in question 6, showing good ability to calculate with fractions. 

Discussion 

The integrating of mathematical software in teaching and learning at the university 

level is important due to its ability to give quick feedback and help students visualize 

and discern simultaneously varying aspects of the object of learning (Marton & 

Morris, 2002). One of the aspects is the understanding of the definite integral in a 

wider context as a real number and not only as an area. We could observe that the 

use of the GeoGebra software during the lecture increased the students‘ possibilities 

to experience the intended object of learning, namely the concept of the definite 

integral as a real number. In our post test results we could notice that most of the 

students still grasped the integral concept as an area (cf. González-Martín & 

Camacho, 2003). Hereby, the students‘ learning didn‘t correspond to what our 

intention was with the lecture. In our opinion, the definite integral concept is too 

tightly connected with the area conception in textbooks used at the upper secondary 

and even at the university level. Since in traditional classroom settings typical 

examples from the textbooks are primarily used to introduce a new concept, it is not 

so surprising that the students often have narrow conceptions of the mathematical 

concepts. The acquired experiences from the concept learning seem to be too solid 

and perhaps prevent adequate learning of the intended mathematical theory. 

The understanding of the definite integral concept and the Fundamental Theorem of 

Calculus unavoidably requires that a student must at the same time focus on quite 

many separate elements of knowledge. Many of them are given in a symbolic or 

implicit form, which presupposes that learners can distinguish several aspects of the 

concept simultaneously. Pre and post test results showed that many of the students 

failed to give an adequate response in question 5. We think that the students should 

be trained to use definitions as an ultimate criterion in teaching and learning of 

mathematics. We see a clear potential in using GeoGebra within the variation theory, 

but we mean that it covers only one of several representations, which could be used 

in mathematics teaching. 
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a

aFbFdxxf )()()(

Further studies need to be undertaken to identify which other factors than the 

integration of technology in teaching and learning of mathematics can be of benefit 

to both educators and students. Therefore, it would be interesting to design a study 

by choosing two groups of students; in one group lectures on Calculus will be 

conducted without any software package and in the other group the teaching block of 

Calculus will be created by using GeoGebra. 

NOTES 

1.  Suppose that  

 a) a function f(x) is defined and continuous on the interval [a, b]   

 b) F(x) is an antiderivative of f(x) on the interval, i.e. F‘(x) = f(x) for all x in [a, b]. Then 

 

(Adams, 2006) 
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New handheld calculators can be seen both as artefact allowing calculation and 

representation of mathematical objects, and resources for students and teachers 

allowing to store and to share data. Both teachers and students get hold of these 

potentialities and develop their own uses in distinct dynamics. Studying the 

interactions between teachers and students gives clues to understand the trajectories 

of these dynamics and the role played by the calculators in the construction of 

knowledge. Taking the opportunity of a broad introduction of handheld calculators 

in classrooms, we observe the conditions allowing transforming the artefacts into 

documents, part of the set of resources of teachers and students. The methodology 

takes into account long time observations, in a qualitative case study. The results 

show how different functionalities can be shared among teachers and students but 

also why and how other functionalities remain private and hidden. 

Keywords: Handheld calculators, instrumental genesis, digital resources, 

interactions, documents 

INTRODUCTION 

There is a call for renewal of teaching methods in secondary science education as 

Rocard et al. (2007) state. The question of the place and the role of technology in the 

scientific classes in order to acquire ―good scientific knowledge and an 

understanding of technology‖ (ibid., p. 6) should be addressed. There is a general 

agreement that technology brings an increase in collaborative forms of work 

(Peschek & Schneider, 2002; Kieran & Drijvers, 2006; Zbiek et al., 2007). At the 

same time, new handheld calculators appear in the classrooms with calculation 

possibilities, functionalities for representation of data, interoperability between 

applications and data storing and sharing properties. This very new nature of 

calculators can be considered as an early variety prefiguring capabilities that will 

soon become available to students and teachers in portable digital work 

environments. It gives them a particular role in teaching and learning mathematics. 

The evolution of the role of a calculator in the system of resources of teachers and 

students, inside and outside the classroom, has to be studied. Even if the activities of 

storing, retrieving and sharing documentation are subsidiary to the production of 

meaning and understanding, they play an important role for teachers in the 

construction of lessons and for students in their learning process.  

―The first challenge concerns extending the notions of mathematical situations and their 

orchestrations to out-of-school learning environments. The second challenge concerns 

renewing, from a practical and theoretical point of view, the notion of artefacts for 

learning and teaching. To enter these fields, we need to be aware that HHT [1] is no 
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longer an isolated artefact, but integrated in and articulated with a network of resources, 

particularly online resources.‖ (Trouche & Drijvers, 2010) 

In this paper, we take into account the calculator as an element of the network of 

resources of both students and teachers and study the handheld calculators not only 

for their calculation properties but also for their documentary properties. 

THE RESEARCH SETTING 

We took the opportunity of a broad introduction of handheld technology in different 

French classes to study the impact of such a technology on teaching and learning of 

mathematics. In the study reported in this paper we focus on two schools. In the first 

school during the school year 2008-2009, all the students of the scientific classes 

(16-18 years old students) have been equipped with a TI-Nspire handheld calculator. 

In the second school during the school year 2009-2010, two classes (16-17 years old 

students) were equipped with the same calculator.  

In the first school (called S1 in this paper), most of the teachers are experienced 

teachers with a low degree of technological integration (Aldon & Sabra, 2009). In 

the second school (called S2 in this paper), the two teachers we observed are 

experienced with a high degree of technological integration. These experiments 

appear to be natural experiments in the sense that the classes contexts were not built 

by researchers but by the teachers‘ teams. Both in S1 and S2 a particular teacher 

plays a role of a leader: J1 in S1 and J2 in S2 are involved in the French research 

team e-CoLab (Aldon et al., 2008).   

Our choice to study the introduction of this calculator is linked to its particularly new 

nature: apart from the fact that it includes a computer algebra system, a spreadsheet, 

a graphical and geometrical environment, this calculator has specific properties 

which allow storing, sharing and organizing data. Files can be organized into 

directories, each file being constituted of one or more activities of one or more 

pages. The different pages, using each a particular software are connected together; 

for example, starting from different measurements in the geometrical environment, 

variables can be stored and computed in other applications, such as spreadsheet or  

CAS, using a different framework. Finally, it is possible to link calculators and 

computers and to work equally with the calculator or the computer. In the two 

schools, computer laboratories were equipped with the software. 

A team of the INRP (Institut National de Recherche Pédagogique) has monitored 

these experiments to study the instrumental genesis (Guin & Trouche, 2002) of both 

teachers and students and to explore: 

 how this calculator modifies the teachers‘ and the students‘ systems of resources; 

 how it impacts the interactions between teachers and students. 
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THEORETICAL FRAMEWORKS 

The study focuses on the modifications brought by the introduction of such a 

technology in teaching and learning. We assume that the calculator is both a tool 

allowing calculation and representation of mathematical objects but also an element 

of students‘ and teachers‘ sets of resources (Gueudet & Trouche, 2008a, b; 2009). As 

a digital resource, the handheld calculators possess the main functions required for a 

documentary production: 

―The two cognitive functions, memorization and organization of ideas, seem to be the 

fundamental basis for the documentary production. [...] 

The function of creativity comprising enrichment due to the domain of interest related to 

the document surpasses that kind of organization just mentioned. [...] 

The third and last constitution function of the documentary production is the transmission 

function.‖ (Pedauque, 2006, p.3) 

These properties can be used in different domains of mediation: the private or 

individual domain, where the resource is part of the user‘s own documentation, of 

her personal library and is designed for her own use; the collective domain, where 

the resource is designed to be shared in a particular community and the public 

domain where the resource is addressed to the public sphere. Crossing the properties 

and the domains of mediations offers a grid of analysis of the position of the 

calculator in the students‘ and teachers‘ sets of resources. We speak here of sets of 

resources in a wide sense. In line with Gueudet & Trouche (2009, p. 200), we 

consider resources as ―everything likely to intervene in teacher‘s documentation 

work: discussions between teachers, orally or on line; students worksheets, etc.‖ We 

extend this citation to students‘ documentation work taking into account the fact that 

the handheld calculator plays a specific role, both as an element of the set of 

resources and an artefact allowing to mediate teachers‘ and students‘ mathematical 

activities. Several studies (e.g., Artigue, 2002; Guin & Trouche, 2002; Laborde et 

al., 2005) have shown that the integration of technology into the classrooms is a slow 

process in which the artefact becomes an instrument through a double movement of 

instrumentation and instrumentalization. The instrumentation is the process where 

the artefact modifies the user‘s activity and the instrumentalization is the process 

where the user modifies the artefact for her own use. This slow process, called 

instrumental genesis (Rabardel & Pastré, 2005) transforms the artefact into an 

instrument through the equation: artefact + scheme = instrument. A scheme, 

following Vergnaud (1996) is an invariant organization of an activity. We introduce 

a distinction between artefact and resource to stress the different properties of the 

handheld calculator. The functions of memorization, organizations of ideas and 

transmission give to the calculator a specificity: a resource may be transformed into a 

document through the process of documentational genesis (Gueudet & Trouche, 

2009). This documentational genesis has a dual nature: 
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―The instrumentalization dimension conceptualizes the appropriation and reshaping 

processes [...]. The instrumentation dimension conceptualizes the influence on the 

teacher‘s activity of the resources she draws on.‖ (Ibidem, p. 205) 

From this double movement of instrumentation and instrumentalization, resources 

become documents, that is to say resources with scheme of utilization at a given 

moment. We assume that documentary production properties are an important 

element of this transformation of resources into documents through the 

documentational genesis for both teachers and students. Looking at the calculator 

with its different potentialities, we consider it as an artefact with possibilities of 

calculation and representation (properties of creation) and as a digital resource with 

possibilities of data processing and data sharing (properties of memorization, 

organization of ideas, and communication). 

METHODOLOGY 

The purpose of the methodology is to capture and to monitor the dynamics of the 

different genesis. In this particular context, we develop our methodology to obtain 

information on the processes instead of the results of the processes. We have chosen 

to passively observe the experiments, without intervention of researchers. In S1, the 

teachers and students that we observed are in the last class of the high school (Lycée, 

Terminale S, scientific class, 18-year-old students). The choice of this class level 

comes from the practical examination that students have to take at the end of the 

year. This practical examination was an experiment carried out by the ministry of 

education during which students had to solve a mathematics problem with the help of 

software or calculators. We thought that this examination would be a good 

opportunity for teachers to develop the use of calculators in their classrooms and for 

students a sufficiently precise goal which could lead them to use their calculators in 

and outside the math classroom. In S2, we observed students of première S 

(scientific class, 17-year old students). We wanted to start our observations at the 

very beginning of both the introduction of the calculator and the beginning of 

scientific studies. Both teachers have a long teaching experience; this choice was 

done because we wanted to focus on the uses of technology in the class without 

being distracted by mathematics teaching difficulties. In our methodology, we cross 

different observations and data: 

 First, the TI-Nspire calculator, as previously said, has a functionality which allows 

structuring its contents into directories, files, problems... Hence, we decided to 

observe the students‘ calculators contents; more precisely, we chose 

representative students and asked them to send us the content of their calculator 

half-monthly from December to June. We mean by representative students with 

different mathematical and technological skills.  
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 Second, we organized observations in the classroom: in the ordinary classroom as 

well as in the computer laboratory. During these observations, we mainly focused 

on interactions between students and teacher. 

 Third, interviews with teachers before and after the observations give us 

information about the role teachers give to the calculators in the observed lessons. 

 Fourth, we took advantage of the final examination to observe and to interview 

students about their personal use of the calculator. 

 Finally, we asked students to fill in a questionnaire at the beginning and at the end 

of the year, focusing on the one hand on their opinions about the calculator and 

more generally about technology and, on the other hand, about their attitudes 

towards mathematics. 

Although the body of observations and data analysis enlightens the following results, 

in this paper, we particularly focus on the study of the content of students' calculators 

in order to draw different types of utilization in relation with the documentary 

production. These data allow us to follow a part of their documentational genesis and 

give us information about the use of calculators outside the classroom. The contents 

of a small number of calculators (eight the first year, six the second year) allow us to 

formulate hypotheses that have to be confirmed in a future study. They give us 

information about the instrumental genesis as well as the evolution of the use of 

calculators as a part of the students‘ individual set of resources. In the next 

paragraph, we give some results about these geneses seen through the analysis of the 

contents of the calculators. 

SOME RESULTS 

We lean on the analysis of the contents of the students‘ calculators to draw a parallel 

between the main functions of a documentary production as described below and the 

actual students‘ organization of their calculators. Through the content of the 

calculators, we assume that we can approach the private domain of mediation and we 

cross our information with observations in classroom and interviews to reach the 

collective and public domains. 

Memorization of knowledge and organization of ideas 

From the viewpoint of students, the handheld calculator is a means of data storage, 

which they perceive as helpful: 

It‘s reassuring in the perspective of the exam to have proofs stored, because we have to 

know very many proofs... and it‘s also possible to verify our calculations (Interview, 

May 19, 2009) 

The folder structure of this student‘s calculator is a good example showing his 

organization of knowledge, and it is interesting to follow the contents of the folders 

and their evolution during the year. Figure 1 shows the general organization of the 
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calculator which does not change during the year and Figure 2 shows the evolution 

of a particular folder (Maths oblig cours which is an abbreviation for: math lessons): 

Figure 2a shows its content in December and Figure 2b its content in June. We 

clearly see in this calculator organization a complete structure of the math course. 

Looking more deeply into the files, we see that this student uses his calculator as a 

digital notebook, giving a summary of the lesson (Figure 3) and allowing 

mathematics experiment: the slider shown on Figure 3 (on the right) changes the 

value of a and the curve of the function x->a
x
. 

 

Figure 1: Organization of data in a student‘s calculator 

 

Figure 2a: Evolution of the content of ―Maths oblig cours‖ folder (December 2008) 

 

Figure 2b: Evolution of the content of ―Maths oblig cours‖ folder (June 2009) 
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Figure 3: Two pages of the file ch.10 ―Fonctions logarithmes‖ (logarithm functions) 

Depending on the teacher‘s conceptions, these properties of memorization and 

organization of ideas are rejected, ignored or promoted and the resource may stay 

hidden and private or, on the contrary, become collective and shared in the class. 

Property of creation 

Looking at the contents of the students‘ calculators, it appears that they use them 

very often as a draft, using a file or a set of files to do the current calculation. For 

example, one of the calculator structures is made of different folders called br1, 

br2..., br being an abbreviation for the French brouillon (draft in English). The 

calculator is seen in this case as a direct creation tool bringing immediate feedback to 

a given question in a personal domain of mediation. The resource at a particular 

moment cannot become a document because the dimension of organization of ideas 

is not present. However, in all calculators, the dimension of creation exists through 

specific pages: calculation pages, representations of data and draft files linked to 

mathematical problems. The interviews with students confirm this fundamental 

aspect of the calculator and its use in the classrooms: 

Yes, in math lessons, for derivative functions, integrals and so on [...] we really use it (the 

calculator) during math lessons. (Interview, May 19) 

One very important point during the observation in the classroom was to observe the 

interactions between the teacher and the students related to the organization of the 

calculators. In S1, the first teacher did not want to interfere; it appears clearly that 

this teacher wants to give a private status to this property for her own calculator as 

well as for the students‘ calculators. As a consequence, her students‘ calculators are 

organized around the creation property, and all the data memorization remains 

private, and somewhere hidden. The second teacher, on the contrary, paid attention 

to the data organization of the calculators. It is in his class that we find the most 

organized calculators (see Figure 1). In S2, teachers despite their high level of 

technological skills do not emphasize the organization of data, and the students‘ 

calculators are organized around particular situations that teachers institutionalize as 

important in the classroom. For example, a particular lesson about statistics has been 
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stressed, and in all this class students‘ calculators a folder and files are present and 

stay present during the year even if there is no visible organization of data.  

Communication 

The calculator allows for the transmission of information between students and 

between students and teacher. The orchestration (Trouche, 2004) plays a very 

important role in the transfer from a private to a collective use of the different 

properties of the calculator. For example, in S1, the teacher used a particular class 

organization: students worked with their own calculator in a face to face 

configuration and one student (called Sherpa in reference to Trouche‘s work), 

working under the control of the teacher, calculated and showed through an overhead 

projector the screen of his calculator. Such a class organization facilitates a 

collective communication from an individual question as shown in the next excerpt 

where students have to search the intersection point of two curves: 

Sherpa: Madam, here... 

Teacher: Yes, we can see nothing much. 

Sherpa: Here, the curve is here and after there is no more curve! 

Teacher: There is no more curve? 

Another student: They are all at the same place, you can‘t see it. 

Sherpa: Yes, but you must see the intersection! 

A third student: Yes, but, where is your other curve? 

The dialogue begins with an individual question and is continued by a dialogue in 

the class between students. On the other hand, the Sherpa‘s calculator appears to be a 

vector of communication between the teacher and the students, when, taking profit of 

a question of the Sherpa, the teacher transmits information to the whole class. In this 

case, the collective calculator appears to be a generic calculator which allows the 

teacher to regulate the class work. In other words, the teacher, through the 

orchestration, transforms the creation property from the private domain to the 

collective domain. 

CONCLUSION 

The teacher‘s demeanour has a decisive influence, and the transformation of the 

calculator as an artefact with calculation and representation potentialities into a 

resource towards a document giving a help to the students‘ construction of 

knowledge depends not only on the teachers‘ technological skills but also on their 

awareness of these possibilities and on the pedagogical exploitation of these 

functionalities, mainly organization of knowledge and memorization. The position of 

the tool as an element of a system of resources of both teachers and students makes 

the negotiation of the didactical contract very complex. The availability of the 

calculator evokes different kinds of tensions: 
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 tensions between the memorization properties and the teachers‘ conceptions of 

students‘ resources; 

 tensions between the property of creativity and the teacher‘s intentions; 

 tensions between the communication property and the teachers‘ pedagogical 

organization. 

Trying to explain and describe these tensions and exploring the links between the 

documentational genesis related to the calculators and the construction of knowledge 

offer new perspectives of research that can extend and complete this study. 

NOTES 

1. HHT: Handheld technology 
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The study presented here is concerned with transitions between micro-contexts of 

mathematical practices. These micro-contexts are determined by the use of different 

software. Here we focus on a task in which students had to depict the blueprint plan 

of their schoolyard. The task completion demonstrates a productive interaction of 

tool use which combines instrumental approaches to achieve the given purpose. At 

the same time it provides a framework for the observation of knowledge and skills 

transfer during transitions from one micro-context to another. 

Keywords: instrumental jumps, transitions, microcontext, mathematical practices, 

instrumental approach 

INTRODUCTION 

The way digital technologies impact or could possibly impact processes of 

mathematics learning / teaching has been one of the main interests of the educational 

research over the last two decades (Artigue & Bardini, 2010). The use of digital 

material is not just an added tool, but creates new conditions which deviate from the 

established teaching and learning environments. Some of the changes caused involve 

the cognitive processes, the mode of production and reproduction of knowledge and 

the communication behaviour of teachers and students. The teachers redefine their 

roles and the learning process by creating new communication situations. The role of 

the teacher as knowledge carrier changes and what comes at the heart of the whole 

process is the interaction between teacher and students as well as between students 

themselves through the use of digital tools (Milionis & Balta, 2001). 

The role and use of tools in the educational process was discussed in the previous 

CERME WG7 as well.  It was considered important to address several issues such as 

design, articulation between design and use, interaction between resources and 

teachers' professional practice, technologies, tools and students‘ mathematical 

activity. The role of the tools and their transformation when used for the carrying out 

of specific activities comprise the major issues currently of concern to researchers in 

the area of ICT. The tools used in the present research were: a) Geometer‘s 

Sketchpad, a dynamic geometry environment and b) Microworld pro, a Logo-based 

environment / Turtle Geometry software. The teaching contexts in which the 

materials were converted from artefacts to instruments by the students were 

considered to be micro-contexts. We investigated how each context relates to the 

way students manage mathematical operations as well as whether and how 

mathematical knowledge is transferred from one micro-context of mathematical 
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practice to another. We also looked into the process of interaction between students 

as well as between students and teacher as mediator. 

The survey was carried out outside school hours and classroom context as part of a 

school environmental program called "Environmental journeys through mathematics 

and technology" and attended by 24 students, 13 of which were 7
th

 Grade and 11 

were 8
th

 Grade. Meetings were held in the school computer room. The Math/ICT 

teacher was actively involved along with a Science teacher. The meetings took place 

for two hours each week for an entire school year. 

Utilizing ethnographic and teaching experiment techniques (Chronaki, 2008) we 

studied the community of practice (Wenger, 1998), formed by the participant 

students and educators, while we introduced activities. The present paper 

summarizes the overall research effort and discusses research results focusing   on 

one of the research tasks in which students had to depict the blueprint plan of their 

schoolyard.   

THEORETICAL FRAMEWORK 

As mentioned in the literature (Artigue & Bardini, 2010; Guin, Ruthven, & Trouche, 

2004), researchers have become more and more sensitive to instrumental approaches 

(Verillon & Rabardel, 1995) to mathematical education, that is the processes of 

instrumentalisation and instrumentation that drive the transformation of a given 

artefact into an instrument of mathematical work. This perspective combines both the 

Piagetian and the Vygotskian theoretical frameworks. The instrumental approach is 

based on the distinction between an artefact and an instrument. The term artefact 

describes a human-made object, either material or symbolic. The term instrument 

describes a mixed entity with artefact-type components as well as utilization schemes 

(Trouche, 2005), which indicate the functional value of the instrument for the 

individual. These schemes concern the strategies developed by the individual in 

order to carry out a task. Utilization schemes are formed gradually through the use of 

the artefact. As a result the instrument is a mental construction of the individual and 

has psychological qualities. The process of the transformation of an artefact into an 

instrument is called instrumental genesis.This approach, is made of two interrelated 

processes: an instrumentation process (the artefact shaping a user‘s activity) and an 

instrumentalisation process (the artefact shaped by the users‘ activity). 

During the instrumental genesis process the role of the teacher proves to be of 

paramount importance. Trouche (2004) introduced the term "instrumental 

orchestration" in order to describe the teacher's management of the individual 

instruments in the collective learning process. He defines instrumental orchestration 

as a deliberate and systematic process of organizing the different artefacts which are 

available for a specific project. There are two ways of organizing, namely didactic 

configuration and exploitation mode. The first relates to the selection and 

arrangement of the artefacts for the project while the second refers to the decisions 
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made by the teacher about how the artefacts can be used to achieve the learning 

objectives. Drijvers, Doorman, Boon and Van Gisbergen (2010) introduce a third way 

of organizing, which they name "didactical performance", in order to stress the ad 

hoc decisions taken while teaching on how to actually perform the enacted teaching 

in the chosen didactic configuration and exploitation mode. According to this 

perspective, instrumental orchestration aims at enhancing the students' instrumental 

genesis but also causes the instrumental genesis of the teacher/researcher 

himself/herself both in the process of preparing a deliberate intervention and while it 

is actually taking place. In this paper we focus on the on-going didactical 

performance mode of instrumental orchestration and discuss the results with an 

emphasis on what we would like to describe as instrumental jumps, which in our 

view involve situations where the use of an instrument within a context may act as a 

step leading to instrumental genesis in a different context. The contexts in the 

specific research are defined by the two types of software mentioned earlier. We 

chose these types of software because they mark two different environments both in 

terms of user access and epistemological foundation. In Microworlds pro, in order to 

create events students have to describe them in a symbolic way through scripting. In 

contrast, in a Geometry Sketchpad environment they can operate directly using basic 

geometric concepts and explore objects and their relationships through dynamic 

manipulation. Our intention to focus on instrumental jumps stems from the question 

whether and how knowledge is transferred from one mathematical context to 

another. 

METHODOLOGY - THE SETTING OF THE RESEARCH 

As our interest lies, on the one hand, on studying learning in specific contexts and, 

on the other, on exploring how students involved in learning activities think, we 

believe that anthropological research orientation is a suitable kind of approach. The 

ethnographic survey was supplemented by the implementation of teaching 

experiment techniques and the researcher intervened at various stages using pre-

designed activities which intended to trigger events to be studied. The role of the 

researcher was principally that of a participant observer, who focused either on 

observation or on participation accordingly through the assignment of relevant 

activities or the learning of some software. The ethnographic equipment used 

included video and tape recordings, field notes, and the material handed in by the 

students both in final form and during the tackling of an activity.  

As mentioned earlier the research was incorporated in an environmental program and 

so it developed along two mutually assisted directions. The environmental direction 

sustained the learning community for a long time while the research direction 

seemed to be augmenting the design of teacher intervention as well as the support of 

pupils. The students had the opportunity to engage in meaningful instructional 

situations, and teachers were supported in the design of their interventions. This 

mode of intervention substantially reduced the researcher‘s participation in defining 
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and developing the activities, giving him more leeway for participatory observation. 

What is more, the participation of students from various grades prevented teachers 

from applying purely formal teaching. So the community formed differed from a 

typical class and enabled us to systematically organize communicative relationships 

between pupils of the 7
th

 and 8
th

 grades and to observe students in a less formal 

framework.  

The research consisted of three phases based on constructionism theory concerning 

learning through construction, 'learning-by-making' (Harel & Papert, 1991). The first 

phase involved designing digital games using symbolic expression software, 

Microworld pro. The second phase focused on the construction of paper digital 

cameras pinhole camera [5] and the use of dynamic geometry software for their 

digital modelling. In the third phase, certain tasks derived from the interweaving of 

research and the environmental program was given to the students so that they could 

use the instruments developed in the previous phases. This paper discusses the 

results of one of the tasks of this third phase, namely the dynamic depiction of the 

schoolyard. The examples (episodes) used to illustrate the discussion are taken from 

the work of two groups of 8th grade students who chose to use the environment of 

dynamic geometry software. This project arose from the need of the environmental 

program to design a dynamic depiction of the school with the aim of dynamic 

information encoding. Such information could contribute to immediate awareness of 

current failures and problems such as burnt bulbs, consumables shortage, and full 

recycling bins. The potential for dynamic scale manipulation of the floor plan 

derived from the need to view the site both centrally and in certain parts. To this end, 

students were given a real architectural sketch of the floor plan of the school as 

shown in figure 1. The mathematical concepts that were negotiated were those of 

reduction, growth and measurement. 

 

Figure 1: Floor plan of the school           Figure 2: Final plan of student M5  

Episodes / Discussion of the Episodes  

Although the students‘ dialogues are of great interest as they reflect the students‘ 

effort to decode the blueprint given to them, in this paper due to space constraints we 

focus our attention on some of the episodes associated with the drawing of the plan. 

Specifically, students in the two groups, three boys (M1, M2, M3) and two girls (M4, 

M5) are working at adjacent positions and are able to communicate with each other. 
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Before reviewing a few episodes, we present a typical episode and an initial analysis 

of it. It focuses on a snippet dialogue developed among three students trying to 

choose the starting point and design technique. The dialogue is illustrative of the 

different instrumental approaches that students develop through discussion. 

Episode 1 and its analysis 

404 M1: Where to start? 

405   M2:      From this angle. 

406 M2: Let‘s put a point here. 

407 M3: We must measure the distance, what to do with the point? 

408 M2: So I‘ve put the point here, how do I tell the point to move to the left, 
how long is this? I want the ruler. 

409 M3: Have you confused the programs? The point is not a turtle. 

410 M2: There may be a command for the point to move. 

411 M3: Hey! The ruler, what do I measure? 

412 M2: This is the yard. Measure, here. Come on, measure. 

413    M3:     11.2 cm. 

414 M2: Do we have to tell the point to move 11.2 to the left? I don‘t know. 

415 M3: Here we go again, after I told you the point is not a turtle. 

416 M3: Draw a line (he means segment), measure it. 

The students have never before used the specific software to depict blueprint plans 

that require precise measurements. The dialogue focuses on how the two students 

differently understand how to start the drawing of the plan. The student M2 wants to 

start his plan from point A, as shown in figure1, giving this point a command to 

move [2], while the student M3, as revealed at the end of the dialogue [3], wants to 

begin his construction with a random segment. The attitude of the student M2, who 

remains anchored in the culture he had acquired about the movement of the turtle 

according to specific commands in Microworld pro, reveals four different aspects of 

the instrumental jump process. The first is the symbolic representation of a point as a 

turtle in the logo-based environment.  For the student, this concerns not only a one-

to-one point correspondence but also a transfer of the qualities of the turtle resulting 

from its use. The second concerns the intention of the student to bring that culture to 

the new situation. The third concerns the communication of his idea to the other 

students in an effort to elicit ways to adjust the use of the turtle. The fourth aspect 

relates to the fact that his idea acquires communication features through interaction, 

a first example of which is the discouraging response of student M3. So starting with 

a problematic situation in the present work context we observe an attempt of 

knowledge transfer from a different previous work context. The initial stage of this 

knowledge transfer is the instrumental jump process described just above. From the 

probing questions that we asked during the project we made the following 

realization. Unlike student M3, who rejects the idea due to his knowledge that 

Geometer's Sketchpad does not have Logo-based characteristics, student M2, who is 
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not fully aware of this distinction, dares this mental jump and tries to find ways of 

adjusting his idea. If adjustment of the tool use is achieved successfully, then 

knowledge transfer has been completed. However, at this point the turtle idea is 

abandoned for the time being and will be picked up and further explored later.  

The different way to start the activity indicates the two different frameworks that 

provide the springboard for discussion. Student M2 suggests using the turtle and 

expects the software to have similar functionality with the logo-based environment, 

while student M3 bases his reasoning [4] on the geometric object of the segment the 

construction of which he seems to know. This latter idea prevails for the time being 

and the students work on it.  

Discussion of the rest of episodes 

Then the group of boys work on the idea of student M3 for the construction of a 

random segment and try to give it the length of 11,3 cm with suitable manipulations. 

Their successful effort allows them to proceed with the same rationale to the 

construction of a closed line consisting of four consecutive variable segments, which 

resembles a rectangle that corresponds to a part of the schoolyard blueprint.  

So, student M3 uses the artefact of the variable segment, a basic element of the work 

environment, and suggests stabilizing its length through trial and error dragging 

processes. His active involvement in both groups leads to the appropriation of his 

idea by the other students. In this way his idea becomes meaningful as it is 

transformed into an instrument through its collective use for the achievement of the 

common goal. However, two female students, M4 and M5, have not been involved in 

the debate so far, but carefully followed the discussion of their peers. The teacher 

moves a point that represents a corner of the schoolyard and the graph loses the 

shape of the rectangle. The students‘ surprise is coupled with the reminder that the 

goal is to design a dynamic plan that retains its geometric properties. ―But how are 

we going to do it, Sir? So much work to be wasted!‖ student M1 reacts. The 

reminder of the dynamic floor plan is the cause for a new round of talks, which last 

for an hour. "I found it, sir!" student M3 enthusiastically cuts in. Going on to a 

different screen he displays the vertical axes of the software and thinking aloud or 

addressing the others he explains: "I‘ll create the first dimension on the axis using 

the scale and I‘ll base all measurements on this length, here, when I change this 

point that other one changes too".  

Student's M3 idea incorporates both the preservation of the geometric properties of 

the shape and the potential for dynamic manipulation of the shape. The problem is 

that he does not know how exactly to put these specific points on the axis and 

demands that the dynamic geometry program provides a command corresponding to 

the logo-based environment. "How do I say 'Set position [11.3, 0]' Sir?", he asks. He 

had already used this Logo-based command in the first phase of the research when 

constructing a digital puzzle. At this point we intervened and provided information 
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for the resolution of the specific problem within the dynamic geometry environment. 

Here we can observe an instrumental jump made by student M3 during the process of 

instrumentation concerning the depiction of a point on a system of axis in order to 

achieve the goal of the dynamic blueprint. After that, student M3 makes point B of 

the plan, as shown in figure 1, correspond to point (0, 0) and works on his own with 

the tool "plot points" thus completing part of the schoolyard. On seeing that 

student‘s M3 request for an equivalent tool to depict points in the Sketchpad 

environment was satisfied student M2 repeats his earlier question: "How can we 

move point A, 7.3 cm to the left, is there a command?" [2]. At this point the idea of 

the turtle, which was earlier abandoned, is followed up by the group. This time we 

better evaluate the student's question and realize that, on the one hand, the simulation 

of the turtle movement command is possible while, on the other, such a simulation 

requires concepts relevant to geometric transformations. It is a pivotal point in the 

on-going process of instrumental orchestration as we experience a case of 

instrumental genesis. The Logo-based turtle movement command turns into a 

transformation instrument in the dynamic geometry environment. Then the 

discussion revolves around tools of parallel transfer transformation, which are 

embedded in the dynamic geometry environment.  

The new tools appear to be also accepted by the two girls (M4, M5) slowly getting 

involved in the drawing of the plan. While the drawing is taking place for the third 

time, student M3, who has so far managed to draw a dynamic plan, addresses those 

who have worked with the tool of parallel transfer with the words: ―But yours 

doesn‘t zoom in and out! ha! ha!‖ Indeed, the students have designed the school 

playground with accurate measurements and without moving the components 

affecting the plan. However, they have not given their plan a dynamic character. This 

idea opens new rounds of talks completed in two consecutive sessions. The focus is 

on minimizing the measurements as well as on trying to find proportional relations 

between the sides."Let‘s find all the other distances from segment 11,3", student M2 

characteristically says. Using paper, pencil and a calculator the rest of the students 

support student M2 and through discussions and individual actions they conclude to 

proportional relationships. Due to space constraints of the present paper these 

discussions are not presented here despite their interesting indications of how 

students perceive the proportional change in shape when they work with combined 

modeling tools. This area has been adequately illuminated by several other 

researchers (Noss & Hoyles, 1996; Psycharis & Kynigos, 2004).  

Students‘ discussions and actions highlighted two new ways of working for the 

drawing of the dynamic plan. The first way adopted by student M2 required the 

proportional relationship between the sides. To construct the plan he used only one 

variable (variable-length segment) relating all the lengths to it. It should be noted 

that the specific student had worked on Microworlds pro in the first phase of the 

research in a group activity to design and present something that interested them. 
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When his turn came he said: "I will not show you something but I'll tell you one way 

I found to make one and the same shape bigger or smaller without having to write a 

new program". His presentation was, in fact, the structure of a parametric process, 

which he passionately believed he had invented himself. The reference to this fact is 

to indicate that the student had learned how to minimize the variables of a parametric 

shape in a logo-based environment and functionally transferred this knowledge to the 

environment of dynamic geometry software. The second mode supported by the 

students M4, M5 involved the multiplicative relationship between each measurement 

and a number corresponding to the scale factor. The probing questions showed that 

this method of the female students stemmed from their engagement with the concept 

of scale in the geography lesson. At this point they could choose one of following 

three ways to work: based on a scale or on a proportion or on co-ordinations. 

Students M4 and M5 cooperated to a sufficient extent in the design of the floor plan 

of the school, but student M5 was the one who completed the plan after a week. 

Figure 2 shows the final draft of student M5 in which point M on the top left 

represents the slider of the rescaling. Students M2 and M3 worked at different 

workstations, each one developing his plan for a while but soon abandoned the task 

finding it rather tedious to repeat something that they already knew. Careful study of 

the students‘ M4 and M5 blueprint produced by the use of the tool ―object 

properties‖ that is provided by the software as well as the probing questions that 

followed showed us that the draft floor plan was drawn with a mixed approach. They 

based their design on the transformations tool but they also used Euclidean 

geometric constructions whenever they thought they would proceed faster. 

There is particular interest in student‘s M5 effort to name places on the blueprint in a 

dynamic way. "Sir, I would like the names of places on the plan to change size along 

with the plan. Look I wrote Schoolyard and when the size of the plan grows the word 

remains the same", she explains. We were impressed by the fact that although she 

had repeated the same scale structure to construct the plan components dozens of 

times she seemed not in need of it in this case. With more profound questions we 

realized that she firmly believed that if the word was in a closed-dynamic shape it 

should also zoom in and zoom out along with the plan. She mentioned that the word 

was on "a bordered area", implying the restricted area of the schoolyard. This 

restrictive view of the student derived from the instrumental jump she attempted 

based on her knowledge of the use of select and zoom buttons available in widely 

used software. 

CONCLUSION 

In the two groups which we could monitor very closely during the set meetings while 

intervening when we saw fit, we observed the interweaving of different mental 

schemes, technical knowledge and specific mathematical knowledge, which 

determined the progress of task completion. These mental schemes became an object 

of negotiation. The different types of tools we chose gave the students an opportunity 
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to mentally jump from one instrumental environment to another thus shaping both 

individual and collective actions. These mental passages led to the creation of mixed 

instrumental approaches. The knowledge and the utilization schemes transferred 

from one micro-context to the other were informed both by the inherent features of 

the former environment and the characteristics of the later environment. This 

combination resulted in the creation of hybrid tools. Knowledge transfer was 

achieved in some cases while in others it was  hindered, as shown by the brief 

presentation of the episodes. The conditions under which it is possible to transfer 

mathematical knowledge from one micro-context of practice to another as well as the 

role of social interaction are considered attractive research topics that deserve further 

investigation. 

NOTES 

1. The idea comes from the title of the book Transitions between contexts of mathematical practices by DeAbreu, 

Bishop, and Presmeg (2002). 

2.  Line 408, 410, 414. 

3.  Line 416. 

4.  Line 409, 415. 

5.  Pinhole camera is a simple camera without a lens. Instead of a lens it has a single small aperture.  
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FUNCTION CONCEPT AND TRANSFORMATIONS OF 

FUNCTIONS: THE ROLE OF THE GRAPHIC CALCULATOR [1] 
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This communication focuses on the activity of two secondary school students in a 

task involving the concept of function and transformations of functions of the type 

( )p x k  and ( )p x h , and analyses the role of the graphic calculator. The results 

suggest that students are beginning to have an object-oriented view of function. 

Concerning the transformation ( )p x k  they have already established the 

operational invariants, and it seems that the graphic calculator played an important 

role in that.  

Keywords: Function concept, Transformations of functions, Graphic calculator, 

Instrumental genesis, Operational invariants 

INTRODUCTION 

This communication originates from a study in which the main objective is to 

understand how secondary school students integrate the graphic calculator in their 

mathematical activity, and the role it plays in learning of functions, along the 10
th

 

and 11
th

 grades. Here we focus our analysis on the following research question: How 

do students understand the concept of function and of transformations of functions in 

a particular task, and what role does the graphic calculator play in this? 

THEORETICAL FRAMEWORK 

The process of instrumental genesis 

The availability of a tool does not automatically turn it into an instrument in the 

student activity. Rabardel (2002) stresses the difference between artefact and 

instrument: he considers that an artefact only becomes an instrument when the user is 

able to appropriate it and integrate it into his activity. An instrument is thus a mixed 

entity, constituted by the artefact and utilization schemes. 

The process through which the artefact becomes an instrument is called Instrumental 

Genesis. It concerns the two poles of the mixed entity (the artefact and the utilization 

schemes), and integrates two dimensions and orientations: Instrumentalization, 

directed towards the artefact, is related with the emergence and evolution of the 

artefact components of the instrument – selection,  regrouping, production and 

attribution of functions, deviations, catachreses, and transformation; and 

Instrumentation, directed towards the user, is related with the emergence and 

evolution of utilization schemes (Rabardel, 2002). According to Vergnaud (1998), a 

scheme always involves: (i) one or more goals, sub-goals and its anticipation; (ii) 

rules of action, information seeking, and control; (iii) operational invariants – 
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theorems-in-action (propositions taken as true), which are the means to infer the 

objectives and the rules to adapt the activity to situations, and concepts-in-action 

which are central in the schemes organization; and (iv) possibilities of inference. To 

Rabardel (2002), the analysis of the operational invariants is important from the 

instrumental point of view, since it allows identifying the situations‘ characteristics 

which users take into account. 

Several studies have shown that the process of instrumental genesis concerning 

symbolic calculators or graphing calculators is not trivial (Guin & Trouche, 1999; 

Drijvers, 2000), and that its integration with educational purposes requires some 

attention, since the technical and conceptual aspects are intertwined (Drijvers & 

Gravemeijer, 2005). 

The learning of functions, representations and multiple representations 

The concept of function is one of the most important concepts in mathematics, but is 

very difficult for many students (Sajka, 2003). One of the difficulties related with 

this concept comes from its dual nature. To Sfard (1991), the concept of function can 

be understood essentially in two ways: operationally, as a process, and structurally, 

as an object. These two visions should complement each other and form a coherent 

whole of the concept. The author claims that a mathematical concept is first acquired 

operationally and that the transition to its structural form is a process accomplished 

in three phases: internalization, condensation and reification. Gray and Tall (1994) 

also refer to the duality between processes and mathematical concepts. These authors 

claim that the mathematical notation involves a certain ambiguity, for 

example, ( ) 2f x x  may represent a process, i.e., a way to compute the value of the 

function for a particular value of x , or it may represent the object that covers the 

whole concept of function for a general x . In their opinion, the key to success in 

mathematics is to interpret the mathematical symbolism in a flexible way. 

Slavit (1997) also stresses the importance of students moving from an action view of 

function to an object-oriented view. He considers that it is very difficult for a student 

to truly understand an action performed on a function, like the transformations of 

functions, if an object-oriented view has not yet been achieved. He proposes an 

approach to the reification of the concept of function based on functional properties, 

noting that students develop a property-oriented view when the study of functions 

includes, preferably, graphics and graphics technologies. 

Mathematical concepts are closely linked with their representations. The concept of 

function can hardly be understood and acquired without the use of multiple 

representations, because each representation only provides information on some of 

its particular aspects (Gagatsis & Elia, 2005). The graphic calculator (GC) allows to 

combine multiple representations of functions (numeric, graphical, symbolic and 

physical), but as underlined by Dick and Edwards (2008), the fact that students have 

access to multiple representations of a mathematical object does not lead, 
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automatically, to a deeper conceptual understanding, nor does it lead to a flexibility 

to determine the most appropriate representation to a particular problem.  

METHODOLOGY 

In this paper we are analyzing the responses provided by two 10
th 

grade students, in 

an individual interview with the first author, to Questions 1, 2 and 4 from the 

following task: 

Consider the polynomial 3 2( ) 16 2037 5940p x x x x . 

1. Represent it graphically. 

2. Indicate two possible values for k, with opposite signs, so that ( )p x k  has only one zero. 

3. How many solutions does the equation ( ) 5940p x  have? Determine them with an error 

less than one thousandth. 

4. Determine the solution of the inequality 
2( 7) 100 0p x x . 

The interview was carried out one month after the topic Functions had been covered 

in the classroom. The task did not aim to enhance functions learning, but to create an 

opportunity to understand how students mobilize their knowledge about functions 

and how the GC is integrated in their activity, as they could freely use it during the 

interview. In the classroom, transformations of functions were explored in same 

tasks for the case of module and quadratic functions ( y a x h k ; 
2

y a x h k ), 

by assigning values to parameters, and using the GC to observe the corresponding 

effects on the graphical representation. Students used a personal CG, under guidance 

of the teacher, essentially to solve equations and inequalities graphically. The two 

selected students, Helena and Diogo, are two of the four case studies, which take part 

in a broader study. Data collection is still ongoing and involves classroom 

observation in two consecutive academic years (10
th

 and 11
th

 grades); clinical 

interviews with students; and the collection of written documents produced by them 

in the classroom. The two students have different performances in mathematics and 

have followed different approaches to the task. Helena is an average student, with 

ratings around 12 values, in a scale of zero to 20, and Diogo is a student with ratings 

above average, around 16 values. 

RESULTS 

To represent the function graphically, both students used the GC, although Helena 

did not do it immediately. She represented the axis on her sheet of paper and said: 

Helena: Well! I have no idea. [...] I don‘t know how to represent this graphically! 

Researcher: And would the GC not help you in this issue? 

Helena: But can we use the calculator? (And immediately picks up her calculator). 
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The use of the GC was not an assumption made initially by the student, but it was 

suggested by the researcher.  

Both students tried to find a proper display through trial and error, by changing the 

values directly in the window, without resorting to Zooms, and taking considerable 

time to achieve a reasonable viewing rectangle.  

The students used the algebraic representation to decide whether they had an 

acceptable graphical representation of the function, however initially both of them 

had doubts about the degree of the polynomial function. They considered that the 

degree of the polynomial is given by the sum of the degrees of its terms. When this 

point was clarified, the degree of the polynomial was a fundamental criterion for 

them. The criterion used by Helena was based on the following theorem-in-action: A 

third degree polynomial function has at most three zeros. However, she denoted 

some difficulty in interpreting what she visualized on the screen, putting into 

question this very theorem-in-action: 

Researcher: Are you already seeing the whole graphical representation? 

Helena: (Pause) It doesn‘t have more than three zeros. [...] It has two, so it could be. 

[...] It has two, if it had.... No, actually, it has four (looks closer at the 

screen). No, no, it has three. It has three zeros. 

The criterion of Diogo draws on a theorem-in-action that is false: A polynomial 

function of third degree changes its variation three times. 

Diogo: Now I know it should be this one [graphical representation], because if it is 

of third degree, changes three times, is increasing, then decreases, …. Ok, it 

is of third degree (laughs). 

Researcher: Any polynomial function of third degree increases, decreases, and …? […] 

Always? 

Diogo: Yes. 

The concept image developed by Diogo, related with third degree polynomial 

functions, does not include monotone functions. This may be explained taking into 

account that cubic functions which students explored in the classroom involved, 

almost exclusively, functions with three zeros, with the exception of one example 

that the teacher showed which had a double zero. In any case, the covered functions 

always involved change in variation. 

The transition from the representation displayed on the GC screen to its register on 

paper was done differently by the two students (fig. 1). Helena only considered the 

points of intersection with the x-axis, and drew the graphical representation as 

"viewed" on screen, without considering any scale. Diogo, on the other hand, tried to 

consider a scale, although not properly. In addition, he considered the intersections 

with the x-axis, and determined the points corresponding to the relative extremes of 

the function. 



Working Group 15 

CERME 7 (2011) 2222 

 

  

Figure 1: Graphic representations made by Helena (left) and Diogo (right). 

For determining the zeros and, in the case of Diogo, also the relative maximum and 

minimum, they used the Calc menu of the GC. Students showed no difficulties, 

suggesting that the utilization schemes have been developed. 

For the second question, both students correctly interpreted the influence of 

parameter k in the graph of the function p. It is clear that both students have already 

established the operational invariants, allowing us to infer that they used the 

following theorem-in-action: The graph of function p undergoes a vertical 

translation associated with the vector , as shown, for example, by this extract of 

the interview with Helena: 

Helena: So, I have to find a value for k (pause). […] So that the graph goes up or 

down (pause), and has only one zero. 

Researcher:  Hum. And why did you say go up or down? 

Helena: Because it is …, it is the influence of k. 

However, she did not seem to have consolidated this knowledge. In fact, in an 

attempt to understand the influence of the independent term in the graph of the 

function p, when viewing the graphical representation of a new function which is the 

sum of p with 5940, Helena said that part of the graph went up and another part went 

down. This shows her difficulty in interpreting what she visualized on the CG 

display: 

Helena: Here went up (pointing to left side) and here went down (pointing to the 

right). 

Researcher: Do you think it went down, in some part? 

Helena: (Observes the screen) No, it went up. (Goes to the function editor) This … 

To confirm the type of displacement suffered by the graphical representation, Helena 

returned again to the GC, taking advantage of the possibility of observing one 

graphical representation followed by the other: "No, it goes up.  It goes up‖. Even so 

she showed some difficulties: firstly, to understand that it would be necessary to 
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make the graphical representation of p go up (or down) in order that the minimum (or 

maximum) of the function stood above (below) of the x-axis, and, secondly, in taking 

advantage of the potential of the GC to determine a possible value for k: 

Helena: So, to have only one zero, going up, haa, this part will have to touch at the 

x-axis (points with her pen at the relative minimum and shift it up to the x-

axis). 

Researcher: To touch …? 

Helena: At the x-axis. (Pause) Yes! 

Researcher: If this part touches at the x-axis, will it have just one zero? 

Helena: Yes. And going down, haa, it has to be this part (points to the relative 

maximum and makes a gesture down to the x-axis), touching the x-axis. 

Researcher: Hum, so? (Long pause) How are you going to do this? 

Helena: Well, I don‘t know! (Long pause). 

During the interview, Helena finally understood that it was necessary to shift up the 

graphical representation of the function p, in order that the minimum remains above 

the x-axis, however, she was not able to find a more effective strategy than to assign 

values to k and observe the effects on graphical representation. Here she failed in 

constructing an efficient instrument that would allow her to answer the question 

immediately. Diogo, by contrast, was able to use an effective instrument, by linking 

together the graphical representation of p, the theorem-in-action and the concept of 

maximum and minimum of a function. For that purpose, he just looked at the 

graphical representation that he outlined in the previous question. He responds with 

confidence, not confirming the answer with the use of the calculator. 

Diogo: It must goes up, haa, the function, the graph of the function. And the only 

way I see for having only one zero, is to shift up the graph, so that the point 

less 54740 [the minimum of the function p] stands above the x-axis. […] 

Then, the value has to be at least ..., haaa, 55000! (Pause) Because if it goes 

up 55000, there will be only one point that […] intersects the x-axis. 

Researcher: There will be only one point of intersection with the x-axis? Why? 

Diogo: Because, I shifted the graph up, and only this one stood here (pointing to the 

left side), that goes down, and which continues. 

Similarly, he obtained the value less 22000 as another possible value for k (with 

opposite sign to the first). The exploration, done in the classroom, about this 

transformation of functions, allowed students to establish the operational invariants 

that have been implemented in this question. 

The last question was the one that raised more difficulties for both students. Diogo 

began by trying to interpret the meaning of ( 7)p x : 
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Diogo: So, first I'll determine p of x plus seven, making a function equivalent [to 

write an equivalent expression] to, to become clearer. I‘ll replace p of x 

here; I will add seven in this equation (points at the expression of p). 

Researcher: Are you going to add seven to the p of x? 

Diogo: To p of x. […] Seven, no! I can‘t add seven. [...] 

Researcher: Why is that? 

Diogo: Because this is influencing the x and not the y. 

Although Diogo initially misinterpreted the meaning of ( 7)p x , immediately restates 

his interpretation as he understands that this transformation corresponds to a 

horizontal displacement. Even so, he chose the displacement in the opposite 

direction: 

Diogo: I have to move, but (pause), it is in the axis of the … (pause, make a gesture 

with his hand), of x. (Pause). The function, which I drew here (points at the 

calculator display), has to move together, seven ―places‖, to the left. 

Researcher: Has to move seven units to the left? […] Why to the left? 

Diogo: Because, it is plus, and as we know that …. (Pause) No, it should be minus! 

Okay, I don‘t know. [...] I am thinking how could it be (looks at the 

statement). I am reconsidering ..., actually is to the right. [...] Because any 

value of x plus seven (pause), goes to the right (laughs). 

His first answer was correct, however, when questioned, he revealed the fragility of 

that knowledge, which suggests that the theorem-in-action had been memorized, and 

when challenged, it was eventually replaced by another one that is false. The GC 

could have been an important tool for deciding the direction of displacement, 

however, in this situation, he was unable to take advantage of the GC. Despite 

having decided the direction of the displacement, he tried to write an expression for 

that factor, however, he fails in developing the cube properly: 

Diogo: x raised to three plus 21, because is x cubed, so, I have to repeat three times 

seven, that is 21! We add three times seven to the three x here.    

Researcher: We add three times seven? (Pause) To the three x? 

Diogo: Because, usually, if there was only one x, we add seven units, but as there 

are three, so we have to add 21. (Pause) (Laughs) It is wrong, ok! (Pause) 

So, but I … (he picks up the calculator). 

His initial goal was to solve the inequality graphically and to do so, he needed to edit 

the function in the GC but, during the interview, he changed his strategy and decided 

to do a table of signs. Even then, he maintained the idea that he had to find an 

analytic expression for the factor ( 7)p x  to edit in the GC. Despite the fact that he 

had started to draw what he considers to be the graphical representation of ( 7)p x , 
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which gives all the necessary information to fill the table of signs, he still tried to 

write an expression to obtain, with the GC, the information that he assumed: 

Diogo: […] (Makes a sketch of the graphical representation) I don‘t even need to 

draw, I already know the zeros, and they will be …, minus 29, […], four, 

and the other, 62. Now … (very long pause). […] Now I am going to put 

this in a polynomial. [...] I am writing an expression, with these zeros. 

Researcher: Yes. And why do you need that expression? What for? 

Diogo: To the table of signs. (Pause) To edit it back in the calculator, so that I can 

see the resultant graph, calculate the zeros, and make a table of signs. 

The intention to write an expression to introduce on the calculator superimposes all 

his thoughts, leading him to a trajectory that makes no sense. 

Helena also chose to solve the inequality using a table of signs, however failed to 

interpreter the meaning of ( 7)p x : 

Helena: Hum, I do not understand what that p is doing there. 

Researcher: What is that p? (Long pause) OK, if p was not there, how would you do it? 

Helena: If p was not there (pause). […] I would just have to multiply this (points at x 

plus seven) by this (points at the other factor). 

Researcher: Hum. Ok, so how would you do it? 

Helena: (Long pause) […] Maybe I would make a table of signs. 

Researcher: Hum, hum. (Pause) Ok but, there is a p in there. […] Ok, how do we read 

it? (Long pause) And if we had, instead, p of x? 

Helena: (Pause) Oh! So, it is this (p of x) plus seven, and multiplied by this one 

(points at the other factor). 

The fact that the parentheses include the expression 7x  does not seem to bother her 

since she immediately decides to add seven to the algebraic expression of p. Then 

she uses the GC to determine the zeros and the sign of the two factors, but loses 

some time in finding an appropriate view window to determine the zeros. 

CONCLUSIONS AND IMPLICATIONS 

The two students are beginning to have an object-oriented view of function, which 

seems obvious when, for example, they refer to the effects that the transformation 

( )p x k  has on the graph of the function p, showing that they can think about the 

concept as a whole. The exploration they made in the classroom of this kind of 

transformation on quadratic and module functions, using the GC, seems fundamental 

in the establishment of operational invariants that emerged in Question 2. Diogo, 

unlike Helena, was able to establish connections between the effects on the graph of 

the function p and various notions associated with the function concept, such as, 

relative extremes and zeros. Helena considered only zeros as relevant points, and did 
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not feel the need to determine the relative extremes of the function, which could have 

been useful for her to solve Question 2. 

In the case of the transformation ( )p x h  it is clear that Helena has not developed the 

operational invariants. In fact, initially, she failed to assign meaning to the symbolic 

notation ( 7)p x , and only connected it to the function p after the researcher‘s 

suggestion. After that, she addressed the issue without going into any kind of 

cognitive conflict, and integrated the GC correctly in her activity, i.e., she got all of 

the necessary information to complete the table of signs. Diogo was able to grasp the 

transformation produced on function p, however, he seems to have memorized the 

respective theorem-in-action, getting into cognitive conflict when questioned about 

it. Although he has understood that the analytical expression of the new function 

could be obtained by replacing x  by 7x , algebraic difficulties did not allow him to 

obtain the simplified expression. He also failed in using his GC effectively, losing 

himself in a sort of vicious cycle that could have been avoided if he had been aware 

that it is not necessary to introduce a simplified expression in the function editor or if 

he knew that it is possible to edit an implicit function, although this hypothesis has 

not ever been discussed in the classroom. 

The students‘ difficulties associated with the transformation ( )p x h  compared to 

( )p x k  suggest that the approach developed in the classroom did not contribute to 

the development of operational invariants. Apart from the overall approach, made 

possible by the use of the GC, it might have been useful to do an exploration which 

focused more on the local behavior of functions, using numerical representation, so 

that students would be able to understand the translation direction. The 

transformations in analytical expression and in editing in the GC could have been 

simultaneously clarified through that approach. As Sfard (1991) stresses: ―the terms 

"operational" and "structural" refer to inseparable, though dramatically different, 

facets of the same thing‖ (p. 9), and although the GC, through the graphical 

functionality, encourages a structural approach, it is important that, at least at the 

beginning, students also get the opportunity to work in a more operational way, 

relating the numerical representation with other representations of functions. The 

difficulties associated with the horizontal translation have been documented in other 

studies (e.g., Zazkis, Liljedahl, & Gadowsky, 2003). The GC could be used, in this 

topic, exploring the possibility of combining multiple representations of functions. 

Concerning this particular task, the instruments developed from the GC by Helena 

are supported by its immediate power for visualization, while the instruments 

developed by Diogo are essentially supported by the establishment of connections 

with his mathematical knowledge, although, as noted before, not always 

successfully. The construction of instruments to perform a mathematical task 

depends on several interconnected factors, among which we highlight the utilization 

schemes socially developed in the classroom, the level of students‘ 

instrumentalization and instrumentation and their mathematical knowledge. 
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A SURVEY OF TECHNOLOGY USE: THE RISE OF 

INTERACTIVE WHITEBOARDS AND THE MYMATHS WEBSITE  

Nicola Bretscher 
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This study reports the results of a pilot survey of UK mathematics teachers‘ 

technology use (n = 89) in secondary schools. Previous surveys are confused by a 

lack of differentiation between hardware and software use. This survey aims to 

provide insight into the types of software teachers choose to use in conjunction with 

particular types of hardware. Teachers were asked about their access to hardware 

and software; their perception of the impact of hardware on students‘ learning; the 

frequency of their use of ICT resources and the factors affecting their use of ICT.  

Keywords: technology, teachers, interactive whiteboards 

INTRODUCTION 

The survey reported in this paper aims to explore the types of software teachers 

choose to use with different types of hardware and the frequency of their use. The 

survey was conducted as a pilot study to test the feasibility of a large-scale survey of 

UK mathematics teachers‘ technology use and to inform the future collection of 

qualitative data to contextualise and validate survey findings. The large-scale survey 

will form part of a wider study into how Information and Communication 

Technologies (ICT) are used in mathematics teaching and how teachers‘ perspectives 

and practices have changed as a result of the introduction of the UK National 

Curriculum 2007. 

Governments around the world have made huge investments in ICT for education 

(Selwyn, 2000). Despite these investments, the TIMSS 2007 study (Mullis et al, 

2008) reports that using computers for any activity as often as in half the 

mathematics lessons was rare, even in countries with relatively high availability. In 

the UK, Ofsted (2008) report that opportunities for pupils to use ICT to solve or 

explore mathematical problems had markedly decreased over the previous seven 

years of unprecedented investment in technological infrastructure. The gap between 

investment in ICT and the reality of its use in classrooms seems clear. Investigating 

the choices teachers make about the technology they use in their classrooms is 

important in order to understand the apparent failure of ICT to make an impression 

on school mathematics. 

TEACHERS‘ CHOICES: HARDWARE AND SOFTWARE  

The type of hardware and its deployment appears to be an important factor in 

structuring teachers‘ choices about technology use in their classroom practice 

(Ruthven, 2007). In particular, the hardware available affects the types of classroom 

organisation possible and the nature of pupil interactions with any software used in 
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conjunction with the hardware. It seems reasonable then that the available hardware 

might also affect teachers‘ choice of software and how they choose to integrate the 

use of such software into their classroom practice. 

Currently, little is known about what types of software teachers choose to use with 

particular types of hardware. In terms of hardware, the UK represents a special case 

since it became the first school-level market to invest heavily in interactive 

whiteboards (IWBs) (Moss et al., 2007). However, large-scale surveys of technology 

use within the UK have tended not to report in detail on technology use within 

subject areas, such as mathematics, nor to differentiate sufficiently between hardware 

and software use. Thus whilst such surveys provide a broad picture of technology 

use, they have not provided much insight into the nature of the specific uses by 

teachers in general or by mathematics teachers in particular. For example, the annual 

Becta schools survey Harnessing Technology reports that 53% of mathematics 

teachers use subject-specific software in half or more lessons (Kitchen et al., 2007). 

However, no further detail is given on what types of subject-specific software are 

used, nor an indication of the hardware involved. Surveys focusing on mathematics 

teachers‘ use of technology, such as the survey conducted by Hyde (2004), give a 

more detailed picture of the types of software used by mathematics teachers; 

however, this picture is again confused by the lack of differentiation between 

hardware and software use. Building on such surveys, this study aims to provide 

insight into the types of software teachers choose to use in conjunction with 

particular types of hardware. Further, this study aims to investigate the practices of 

ordinary teachers in ordinary classrooms, continuing the line of research suggested in 

Bretscher (2009). 

THE SURVEY 

The questionnaire design was informed by previous surveys of mathematics 

teachers‘ use of ICT, primarily Hyde‘s (2004) survey of mathematics teachers in 

Southampton and Forgasz‘s (2002) survey of mathematics teachers in Victoria, 

Australia. The questionnaire used both closed and open-ended response formats and 

contained sections on (a) About you - personal details; (b) ICT in your school - 

access to hardware/software and integration of ICT within the department; (c) ICT 

use in your own mathematics teaching - perceived impact and frequency of use of 

hardware and software; and (d) Your beliefs about teaching and learning 

mathematics with ICT - factors influencing the use of ICT. In line with the aims of 

this survey and in contrast to Hyde‘s (2004), teachers were asked separately how 

often they used software in a whole-class context (e.g. with an IWB or data 

projector) and how often they gave students direct access to the software (e.g. in a 

computer suite or with laptops). The list of software was derived from Hyde‘s list 

with the notable inclusion of the MyMaths.co.uk website since this site was known 

anecdotally to be widely used in UK schools. The MyMaths website is a subscription 

site offering teachers pre-planned lessons, on-line homework and many other 
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resources. The lessons and homework are linked to an ―Assessment Management 

system‖, allowing teachers to track individual students‘ progress. 

 

Figure 1. Screen snapshot of a MyMaths sample lesson on scatter graphs. 

Ten questionnaires were sent to 27 schools working in partnership with King‘s 

College London to offer initial teacher education in secondary mathematics, with 18 

schools agreeing to participate in the survey. A total of 89 completed questionnaires 

were returned, an average of five per school: the lowest number returned by a school 

was 2 and the highest 9. Since the survey was a pilot study, it was not necessary to 

select a representative sample of schools. Nevertheless, the participating schools 

cover a range of characteristics including a wide range of attainment in national 

tests; some have speciality status and some do not; some are single sex and some are 

selective. The participating teachers (37 F; 50 M; 2 unspecified) had an average age 

of 37 years and an average length of service of 10 years. The low percentage of 

women (42%) is surprising since women tend to outnumber men in teaching. In 

common with Forgasz‘ (2002) findings, no obvious differences in ICT use between 

the genders was found. The majority of respondents (41) described their main 

responsibility as classroom teacher. The sample also included 10 heads of 

department, 9 deputy heads of department and 13 Key Stage coordinators. 

Comparing themselves to their colleagues, 37.1% of teachers thought they used ICT 

much more or more frequently; only 11.2% thought they use ICT less or much less 

frequently. This might suggest that the respondents are relatively well-disposed 

towards ICT or that they wish to be seen as frequent users of ICT. 

Data that could be analysed statistically were entered into PASW Statistics 18.0. This 

package was used to generate descriptive statistics (i.e. frequency distributions and 

means). Open-ended responses were analysed manually. In tables 1-3 in the results 

section below, the findings of this survey are compared with Hyde‘s to give a sense 

of changes in ICT use over time. Hyde sent one questionnaire to each of the 38 

schools working with the University of Southampton to deliver initial teacher 

education (33 returns). Her results give an overview of departmental ICT use 

whereas this survey reports individual teacher‘s responses, thus comparisons should 
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be treated with some caution. Data was unavailable from Hyde‘s survey for 

comparison in tables 4 and 5. 

RESULTS 

Access to hardware and software 

Only two schools did not have any IWBs in the mathematics department but each 

teacher in these schools had access to a data projector. Thus every teacher 

participating in the survey had access to either an IWB or a data projector. The 

apparent decline in access to data projectors from Hyde‘s (2004) survey is likely to 

be due to the rapid expansion of IWBs over the same period (see Table 1). Only 66% 

of teachers reported having access to a computer suite shared with other departments. 

This seems surprisingly low, especially when compared with the coverage of IWBs. 

In fact, in every school at least one teacher claimed to have access to a shared 

computer suite. The lack of consistency between teachers in the same school suggest 

that while some teachers are responding on the basis of the existence of hardware, 

others are responding according to their perception of availability of the hardware for 

use. Difficulties in booking computer rooms mean that, although shared computer 

suites exist, their availability is often severely restricted. The quote below is 

representative of many teachers‘ comments on hardware access and neatly 

summarises the contrast in accessibility between IWBs and computer rooms. 

―Computer room access very limited due to lack of resource in school (and monopoly on 

it by ICT dept lessons). IWBs readily available in all maths teaching rooms.‖ 

Access to hardware Bretscher Hyde 

IWB 81 64 

Data projector 63 76 

Computer suite (shared) 66 - 

Computer suite (maths only) 16 - 

Laptops 26 - 

Graphic calculators 26 94 

Table 1: Access to hardware, n = 89. Hyde‘s (2004) figures are shown for comparison. 

All figures are given in percentages. 

None of the teachers from schools with a computer suite dedicated to the 

mathematics department complained about lack of access to hardware. Although this 

seems a successful solution to the problem of computer room access, a mathematics 

only computer suite is still a rare resource (16% have access). Due to their 

portability, a class set of laptops might be seen as an alternative solution to the 

access problem. However, access to laptops is also fairly rare (26%) and comments 

by teachers suggest they may bring additional technical difficulties: 
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―The laptops are of poor quality and not enough for 1 between 2 if you have a full class: 

there are 14.‖ 

The collapse in access to graphic calculators since Hyde‘s (2004) survey is 

impressive – this may be the result of their exclusion from A-level module 

examinations, whereas previously their use had been encouraged. Again there is a 

lack of consistency over access to graphic calculators between teachers in the same 

school. In thirteen of the schools at least one teacher said they had access to graphic 

calculators. The following comment suggests that the low reported access to graphic 

calculators may reflect a lack of awareness of their existence, rather than difficulties 

in booking the resource as in the case of computer rooms: 

―We do have a department set of graphic calculators (ie. not explicitly for my classes) but 

they are rarely (if ever!) used.‖ 

Access to software was not generally seen as a problem: access to generic software 

such as word processing and presentational software is almost universal (around 

90%) and graphical software (81%) also appears to be readily available. Geometry 

software appears to have declined slightly (-13%) since Hyde‘s survey, although the 

majority of teachers (60%) say they have access. Logo has suffered a sharp decline   

(-49%). In Hyde‘s survey, 100% of teachers said websites were used in their school, 

however no further detail was given. The results from this survey suggest that access 

to the MyMaths website (91%) has risen to near ubiquity - it is possibly the dominant 

resource designed for mathematics teaching in the UK. It is unlikely that any 

textbook has such a wide coverage of schools, for example. Some teachers did 

complain about restrictions on downloading software, such as GeoGebra, and access 

to some websites being unnecessarily blocked. Although software was available, 

teachers expressed uncertainty over whether it had been installed on all computers, 

thereby adding complexity to conducting lessons in a computer suite. 

―Some ICT suites do not have all the mathematical software which can mean plans and 

resources need to be adapted. Must check prior to booking.‖ 

For many teachers, the software was readily accessible however they lacked training 

in its use.  

―Access not a problem – time to train and develop is a problem. Desperately needs a 

directory/classification system.‖ 

The time taken to develop and prepare lessons was seen as a considerable hurdle 

initially; however, once surmounted, teachers found that the resources could be re-

used, thus reducing planning time eventually. 

―Time required to prepare using ICT is a bar to entry however a number of resources I 

have spent time developing can then be reused very efficiently in other contexts.‖ 
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Access to software Bretscher Hyde 

Spreadsheet (eg Microsoft Excel) 92 97 

MyMaths.co.uk 91 - 

Word processor (eg Microsoft Word) 90 79 

PowerPoint 90 79 

Email 82 - 

Graphing software (eg Omnigraph, Autograph) 81 73 

CD-ROMs 67 85 

Other websites 67 - 

Geometry software (eg Cabri, Geometer‘s Sketchpad) 60 73 

Database (eg Microsoft Access) 37 - 

Logo 24 73 

SMILE mathematics 17 - 

Table 2: Access to software n = 89. Hyde‘s (2004) figures are shown for comparison. 

All figures are given in percentages. 

Software access may present a new issue to consider when applying for a teaching 

position in the UK. On moving to a new school, one teacher found that his pre-

planned lessons had been rendered useless since the IWB software he had used 

previously was not available. His time investment in planning these lessons had 

therefore been lost. 

―Tech support have not installed Smart Notebook on the maths dept computers, and I 

have a lot of Smart Notebook files that I made at my previous school that I can‘t use 

now.‖ 

Perceptions of the impact of ICT on learning 

Teachers were asked whether they agreed with the statement ‗ICT resources can help 

students to understand mathematics‘. In response, 97.8% agreed or strongly agreed 

with the statement. Teachers were also asked to rate hardware on the impact it has on 

student learning, using the scale in Hyde‘s survey from 1 (very little) to 4 

(substantial). The results shown in Table 3 suggest that teachers‘ perception of the 

impact of ICT on learning varies considerably depending on the hardware being 

used. IWBs had the highest mean impact score (3.21), followed by data projectors 

(2.84). These items also came top in Hyde‘s survey although IWBs scored lower 

(2.95) and data projectors slightly higher (3.04). The reversal in score is likely to be 

due to the increased availability of IWBs, since they were a relatively new 

phenomenon in 2004 and comparatively few schools were equipped with them. 

Graphic calculators suffered a decline in score of 0.33. Perhaps of most interest is 
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that a shared computer suite had the lowest impact score (2.34). A dedicated 

mathematics computer suite scored more highly (2.57), probably in part due to the 

greater ease in accessing the hardware. However the low impact score of computer 

rooms is also reflected in some teachers‘ negative comments about giving students 

direct access to the hardware:  

―ICT maths lessons always seem tedious as the students‘ development is less than in 

normal lessons. But with MyMaths, as a revision/recap lesson, there are benefits now.‖ 

―ICT is generally extremely inefficient.‖ 

Not all teachers felt this way, some were more positive although many cited 

difficulties such as those detailed in the quote below: 

―In our school it is not possible to find a venue where there is one computer per child. 

Therefore this is a very strong de-motivating factor when planning such lessons as I know 

the group-work element adds a layer of complexity. If it were guaranteed pair-work I 

might be more motivated but, for example, I recently tried a lesson like this and ended up 

with 10 computers between 31 students (the IT suite was supposed to have 16 

computers!).‖ 

Undoubtedly problems of access reduce the perceived impact of computer rooms, 

however the results from this survey suggest that teachers remain sceptical of the 

educational value of giving students direct access to ICT resources.  

Impact Bretscher Hyde 

IWB, n =78 3.21 2.95 

Data Projector, n =74 2.84 3.04 

Computer suite shared, n =73 2.34 - 

Computer suite maths, n =51 2.57 - 

Laptops, n =57 2.40 - 

Graphic calculators, n =59 2.46 2.79 

Table 3. Mean impact scores for hardware based on a scale where 1 (very little), 2 

(some), 3 (significant) and 4 (substantial). 

Frequency of hardware and software use 

The majority of teachers use IWBs and data projectors in most lessons. The ready 

availability of IWBs and data projectors in normal classrooms makes it unsurprising 

that they are the most frequently used hardware. It is also likely that their high 

frequency of use contributes to the high impact scores noted in the previous section. 

Computer rooms shared with other departments have a much lower frequency of use, 

with 58% of teachers using them once a term or less and only 17% of teachers using 

them every week or more. As with IWBs, the frequency of use reflects both the 

accessibility and impact score of shared computer rooms. Computer suites dedicated 
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to the mathematics department appear to have much higher frequency of use than 

shared computer rooms, with 42% of teachers using them every week or more. This 

is likely to be the case (despite only n = 14) since not only is access easier than with 

a shared computer room, classes are often purposefully timetabled into mathematics 

only computer rooms to ensure the use of a relatively rare resource. 

Frequency of hardware use Never Specific 

topics 

Once a 

term 

Once a 

month 

Every 

week 

Most 

lessons 

IWB, n =70 3 1 1 1 10 83 

Data Projector, n =55 7 0 4 0 24 65 

Computer suite shared, n =55 9 20 29 25 15 2 

Computer suite maths, n =14 0 21 7 29 36 7 

Laptops, n =23 26 13 13 9 39 0 

Graphic calculators, n =22 27 41 18 0 5 9 

Table 4. Frequency of hardware use, with the modal frequency for each item 

highlighted in bold. All figures are in percentages. 

The number of teachers with access to laptops and graphic calculators is quite low (n 

= 23 and n = 22 respectively) so it is difficult to draw any firm conclusions from the 

figures presented in Table 4. However it is worth noting that despite graphic 

calculators having a higher impact score than either laptops or shared computer 

rooms, they appear to have the lowest frequency of use with 68% using them for 

specific topics only or not at all.  

Table 5 compares the mean frequency of software use in lessons with an IWB or data 

projector to lessons where students are given direct access to the software, i.e. those 

that take place in a computer room or with laptops. A score of above 2 indicates the 

software is used more than once a term. Email, databases, SMILE and Logo scored 

very low in both contexts so no satisfactory comparison can be made for these 

software packages. PowerPoint was the most frequently used piece of software (3.21) 

in conjunction with an IWB, closely followed by MyMaths (3.01). ‗Other websites‘ 

and graphing software also scored above 2 for frequency of use with an IWB.  

The frequency of use in lessons where students were given direct access to the 

software was low in comparison to lessons with an IWB: only MyMaths had a 

frequency score above 2. This is unsurprising given the frequency of hardware use in 

mathematics lessons reported above: computer rooms are used much less frequently 

than IWBs. However the decrease in use is not uniform across all types of software. 

In lessons where there is direct student access, most software packages have a 

frequency score between 0.9 and 1.1 lower than in lessons with an IWB. MyMaths 

had the smallest drop in frequency use between contexts (-0.5) and geometry 

software fell by 0.74. The frequency score of PowerPoint dropped the most (-2.51). 
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Since the main purpose of PowerPoint is for presentation, it appears well suited to 

teacher exposition in lessons with an IWB but not so relevant in lessons where 

students have direct access to the software.  

Frequency of software use IWB/Data 

projector 

Direct student 

access 

PowerPoint 3.21 0.70 

MyMaths.co.uk 3.01 2.51 

Other websites 2.83 1.82 

Graphing software (eg Omnigraph, Autograph) 2.01 1.09 

Spreadsheet (eg Microsoft Excel) 1.91 0.97 

CD-ROMs 1.84 0.74 

Word processor (eg Microsoft Word) 1.76 0.84 

Geometry software (eg Cabri, Geometer‘s Sketchpad) 1.44 0.70 

Email 0.97 0.45 

Database (eg Microsoft Access) 0.90 0.44 

SMILE mathematics 0.54 0.37 

Logo 0.22 0.25 

Table 5. Mean score for frequency of software use with an IWB or data projector 

compared to use in a computer room where students have direct access to the software. 

Based on a scale where 0 (never) to 5 (most lessons), n = 89. 

Thus not only are computer rooms and laptops used less frequently than IWBs: 

teachers appear to use a smaller range of software in lessons where students are 

given direct access to the software. MyMaths appears to dominate in both contexts, 

with the exception of PowerPoint being used more frequently with IWBs. 

CONCLUSIONS 

IWBs are the most accessible hardware and teachers rate them highest for impact on 

students‘ learning. Arguably, the introduction of IWBs has coincided with, if not 

encouraged, the apparent rise of MyMaths to near ubiquity in UK classrooms. Whilst 

positive about ICT resources in general, some teachers appear sceptical about the 

benefits of giving students direct access to software. Shared computer rooms scored 

lowest for impact and are used infrequently and although computer rooms dedicated 

to the mathematics department improve matters, they are still a rare resource. When 

students are given direct access to ICT, MyMaths is the most frequently used 

resource. The reasons for MyMaths apparent dominance requires further research. 

Research suggests that the use of IWBs coupled with PowerPoint and pre-prepared 

lessons of the sort available from the MyMaths website can lead to a reduction in the 
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quality of classroom interactions (Zevernbergen & Lerman, 2008).  The Second 

Information Technology in Education Survey concluded that, given the right 

conditions, ICT might contribute as a lever for change (Law, 2009). Although the 

findings presented in this paper should be treated with some caution, they suggest 

that, in the UK, the conditions may be right for ICT to act as a lever for change in a 

direction that should be of some concern to both researchers and policymakers.  
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GRAPHIC CALCULATOR USE IN PRIMARY SCHOOLS: AN 

EXAMPLE OF AN INSTRUMENTAL APPROACH 

Per Storfossen 

Hedmark University College, Norway 

This paper presents an empirically based case study design within a sociocultural 

theoretical framework. The research aimed to describe the implementation of a 

graphic calculator in a fifth grade primary school class when four students are 

engaged in mathematical activities performing tasks and challenges given by the 

researcher. The students‘ activities associated with the process of appropriation of a 

technological artifact played a prominent role in the data analysis. The distinction 

between artifact and instrument through the instrumental approach is in focus. Of 

special interest is the concept of protocol related to (the size of) the graphic 

calculator screen display associated with the types of tasks and challenges the 

students were given. 

Keywords: graphic calculator, protocol, instrument genesis 

INTRODUCTION 

The study of the type of use and implementation of an advanced graphic calculator in 

a fifth grade primary school class was the focus of research described herein. 

Specifically, the responses of four students to mathematical tasks and challenges 

given by researcher are documented. The researchers' intervention was limited to the 

introduction of the graphic calculator in class, where a task portfolio adapted for 

handheld calculator was designed in collaboration with the teacher. The choice of 

research strategy can be described as a case study design (see the next section). Data 

were collected in video-taped interviews with students undertaken by the researcher. 

The study is presented in a sociocultural theoretical framework. The artifact 

properties, such as the size of the screen were variables considered in this study. The 

instrument-mediated activity approach was in focus. 

Our research question is the following: In what ways the graphic calculator is 

incorporated, integrated and appropriated in the student's activities in the process of 

solving mathematical tasks and challenges? 

A CASE STUDY ON TWO LEVELS 

The framework of the study design applied to the research strategy and concerned 

the conduct of social research with the selection of methodological approaches to the 

gathering of empirical data (Bryman, 2008). The choice of research strategy in this 

study can be described as a case study design on two levels. On the first level, there 

were 23 students in a fifth grade primary school. The first level formed a backdrop 

for the next level, the selection of four students. There were two boys and two girls 

placed into two small groups one of each gender. The choice of the two boys and two 
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girls was partly based on pre-tests, achievement tests from a pilot study involving a 

representative sample of the class, but also on the students‘ motivation as two groups 

of friends wished to participate in this study that lasted over two years. We meant 

that the latter was a good argument for the participants not losing interest during the 

period of data collection. The second level of the case study consisted of the two 

respective groups, and was a continuation and an elaboration of the study where the 

entire class constituted the background. In this project, each student had two 

handheld calculators at their disposal. The four-function pocket calculator with one-

line display which the students have been using for about three years and then there 

was the sophisticated icon-driven graphic calculator Casio fx9750G PLUS 

introduced by the researcher including a 21-character x 8-line display. The former 

calculator has a solar panel as an energy source, and the latter is powered by battery. 

The data collected and analyzed in this research study was from video-taped 

interviews when each of the four students were working individually, and when they 

were collaborating in small groups engaged in mathematical activities, challenges 

and tasks provided by the researcher. The mediated artifacts, among them 

calculators, were available and were included in their mathematical activities. 

THEORETICAL FRAMEWORKS 

A sociocultural approach 

The Vygotsky-inspired sociocultural tradition constituted the theoretical framework 

of this study. The research question drew the attention to the analysis of students in a 

technical environment addressing the way mathematical activity was supported by 

material artifacts like computers, calculators, slide rules or abacus. The term artifact 

refers to an abstract (linguistic) or a material object. An artifact comprises objects, 

things or products made or modified by human beings specified for a certain purpose 

in reference to a historical and cultural setting (Säljô, 2006). The aim of utilizing an 

artifact is to sustain human activity in order to perform various types of tasks. From a 

sociocultural perspective, the artifact calculator is regarded as an external cognitive 

aid to mental processes. According to (Wertsch, 1998), we should focus on the 

process of turning an artifact into a useful mediated tool, the process of 

appropriation. In a sociocultural theoretical framework, the study has a two-sided 

perspective on focus. On the one hand, the focus is on individuals organized in pairs 

to exchange experiences and learn from each other both by applying the graphic 

calculators (tools) and doing mathematics. On the other hand, there are aspects 

concerning the individual process of appropriation of the artifact graphic calculator 

to become a mediated tool for the competent user. In the literature both the terms 

artifact and tool are used. In accordance with (Trouche, 2004, p. 282), 

"when speaking of a tool before considering its users and its uses, I will speak of an 

artifact‖. 
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The terms artifact and tool in this study are viewed inseparable and are understood as 

‗two sides of the same coin‘. When the calculator is taking part in students‘ 

mathematical activities, the calculator becomes a tool for the user. Artifacts are 

mediation means or cultural tools, devices that convey, shape, and transform physical 

processes with the purpose of mastering mental processes (Vygotsky, 1978). In a 

sociocultural perspective, the term mediation presupposes or requires the use of 

mediation means, and it is the human beings‘ utilization of cultural tools that makes 

mediation possible. It is through or via mediation means the human agent interacts 

with the outside world, and the tools exert their impact when an agent uses them. 

Mediation refers to human interaction with one other in symbiosis with external tools 

as mediators (Daniels, 2001). ―Mediation through artifacts applies equally to object 

and people‖ (Cole, 1996, p. 118), and artifacts ―have been modified by human beings 

as a means of regulating their interactions with the world and others‖ (Cole, 1999, p. 

90). According to Cole, mediation through artifacts refers to people acting with 

mediating artifacts which are emerging from historical and cultural settings. 

Throughout history human functions and competencies have been accumulated and 

transferred into external aids named artifacts. The mediated artifact graphic 

calculator was, in this study prominent, present and situated.  

The unit of analysis 

From the research perspective it is explicitly important to communicate the unit of 

analysis of the study. Data collection and data analysis are intertwined in social 

science research. It is therefore crucial for the researcher to be aware of this 

relationship and sort out the ‗what‘ and ‗whom‘ that is being studied (Lee & 

Fielding, 2004). According to (Wertsch, Rio, & Alvarez, 1995, p. 56), 

―The goal of sociocultural research is to understand the relationship between human 

mental functioning, on the one side, and the cultural, historical, and institutional setting.‖ 

The authors refer to a relationship between a sociocultural situation and mental 

processes, and 

―it is essential for the research to formulate its position vis-à-vis the individual-society 

antinomy in some way‖ (ibid., p. 59). 

Mental functioning and the sociocultural setting are understood as aspects of 

dialectically interacting moments, and the human action is the connection and is 

considered as the unit of analysis. (Vygotsky, 1978, 1986) focused on thinking, 

speech, i.e. mediated action, while (Bakhtin, 1986) maintained focus on utterances as 

a form of action. (Wertsch et al., 1995) highlighted the research of human actions as 

a ―dynamic human actions existing in real spatiotemporal and social context‖ (p. 62). 

Wertsch (1998) proposed mental functioning and sociocultural setting to be 

understood as dialectically interacting moments, aspects of a unit of analysis. In 

sociocultural research, the human actions serve as the cornerstone to be described 

and interpreted. The kinds of actions that concerned Vygostky have been termed 
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―mediated actions‖ as the unit of analysis (Wertsch et al., 1995). To provide an 

adequate foundation for an account of the action carried out, neither the mediation 

means nor the individual operates in isolation. The individual is not acting alone as 

an agent of actions. An agent refers to who is carrying out the actions, e.g. who is 

speaking. An appropriate description may be characterized by agents of actions like 

―individual-operating-with-mediation-means‖ as the unit of analysis, a framework 

grounded on actions. Mediated action can be transformed by mediation means like 

the case with the introduction of an advanced calculator. However, it is not so say 

that the mediation means, in a way, acts alone. The individual using mediated means 

has to change or adapt as well in response to new techniques and skills. In this study 

the research question draws the attention on an analysis of students in a technically 

supported environment, working in small groups engaged in mathematic activities, 

with natural verbal communication in the interaction. According to theorists like 

Vygotsky and Wertsch, the unit of analysis in this study can be modified and 

transformed to individuals-appropriate-technological-artifacts-in-cultural-practice. 

The instrumental genesis approach 

In this study, the sociocultural perspective was the theoretical framework. Mediated 

activity, transformed to individuals-appropriate-technological-artifacts-in-cultural-

practice constitutes the unit of analysis. (Vérillion & Rabardel, 1995) and (Rabardel, 

2002) drew on Wertsch‘s key construct of mediated activity (Wertsch, 1998). The 

process of appropriation of an artifact to become an instrument, a tool for the 

competent user is further elaborated by (Trouche, 2004). The instrumental approach 

with the human/computer interaction and human use of tools constitutes two main 

processes of instrumented mediated activity. The process directed from the artifact 

towards the human agent is named instrumentation. The tools convey, shape and 

transform the human agency and the subject adapts to constraints and affordances the 

tool possesses. The other process, instrumentalization, is directed from the human 

agent towards the artifact (graphic calculator) which includes stages such as 

familiarization with the instrument, mastering the instrument and adoption of the 

instrument to one‘s own personal specific needs. In this study the graphic calculator 

in becoming an instrument for the student, individual and collective activities have 

drawn on the instrumental genesis approach influenced by Rabardel (2002). 

Protocols of actions 

Dôrfler in his work (2000) emphasized reflection and attention on actions. His 

constructed protocol of action consisted of records of actions, which can contain 

manipulations and interactions with objects-like models. Oral expressions and all 

kinds of counting activities are examples of protocol of actions. 

―I use the term protocol to designate the related cognitive process of focusing attention on 

those stages, phases, results, and products of one‘s action and constructions, and of 

describing and notating them by some means‖. (ibid., p.111) 
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The protocol of action (its schematic carrier) will include a kind of notation-suitable 

system that will make it possible for the individual or agent to reconstruct his or her 

activities for which it is a protocol. The protocol, the record of action, makes 

possible replication and reconstruction of the essential phases, stages of the actions, 

and transforming the result into a suitable notation system. A counting system is an 

example of notation system, like the decimal system. For example, a student has 

counted up the number of pens lying on a table; there are 38 pens, which are grouped 

into 3 groups of 10 pens and 8 individual pens. Another example of a protocol is 

given by a transformation; the rotation of a point in a plane is uniquely determined 

by an origin, the coordinates of a point and an angle. Records of physical objects or 

figures rotated using coordinates of the vertices is further a carrier (protocol of 

action) to abstract mathematical rotations. When an agent has developed a specific 

protocol, like the protocol for rotation of a point in a plane, the agent is able to 

replicate and reconstruct the mathematical actions from the record of actions which 

constitute the protocol. The specific protocol for an agent constitutes a characteristic, 

a quality the agent possesses. On the other hand, and on another level, Dôrfler‘s 

concept of protocol of is a theoretical construct and is an analytic tool for the 

researcher to describe and to study an agent's performance in carrying out the 

mathematical activities like rotation of a point in a plane. 

THE TASK PORTFOLIO 

A task portfolio was designed in collaboration with the teacher of the class. The 

portfolio was adapted from the textbook and the curriculum for the 10-year 

compulsory mathematics education. An objective in designing the portfolio was to 

make the tasks concrete and in a context familiar to the students. The tasks were 

based on their everyday life experience, with the intention of students conceiving the 

tasks as realistic and a part of their daily life. A type of task in the portfolio was 

named exploration tasks (exploratory work) organized by mathematical topic. One of 

these topics was linear two-variable Diophantine equation that takes the form 

ax by c,  (a,b) 1. The parameters a, b and c are integers, where a and b are 

relatively prime numbers. Two examples of this type of equation with which the four 

students were challenged are outlined as follows: 

Task 1) A train is 78 meters long. There are two kinds of train carriages, carriages of 

length 7 meters and carriages of length 11 meters. How many carriages of 7 meters and 

how many carriages of 11 meters will give the length of 78 meters?  

Task 2) An ice cream costs 3 euros and a hot dog costs 5 euros. How many ice creams 

and how many hot dogs can you purchase when you have 70 euros at your disposal? 

The students were unfamiliar with a general solution for this type of equation. A 

method to find all the solutions for this kind of problems required theoretical 

knowledge and insight in mathematics at a level they did not have, but could later 

learn in an advanced course in mathematics. However, videotaped interviews show 
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that some students were able to find one or more solutions of this type of equation on 

their own, when they utilized the graphic calculator as an external cognitive aid to 

sustain mental arithmetic operations (See the example with the game ‘Dart‘ below). 

CALCULATOR DISPLAY AS A PROTOCOL 

When a student is typing in numbers, signs or characters into the calculator, the 

results of these actions will appear on the screen display. The latter is a record of the 

actions performed by the student, a mathematical text or a syntax consisting of 

keystrokes. However, the calculator can interact with the student by giving a 

spontaneous response in the form of an answer to arithmetic operations or eventually 

give a syntax error (convention error) message to incorrect typing. The screen is 

displaying a semi-permanent record of actions. An interesting aspect associated with 

the type of use of the calculator is when the calculator is displaying more than one 

line of arithmetic operations with its corresponding answers. The protocol constitutes 

the activities the students were doing, signs and symbols they typed in the calculator. 

The calculator displays a mathematical text, a notation system which gives meaning 

through conventions. They may be read off the display as a semi-permanent 

inscription. Through the example of a transcript from a video clip excerpted below, 

we will give an account on how the screen display of a graphic calculator, for a 

student, become a protocol to develop strategies to find solution(s) to a mathematical 

task or challenge (see in particular the line 106 below). Here, the concept of protocol 

is functioning as an analytical tool for the instrumental approach when the focus is 

on part of the artifact, namely the size of the screen display and the activities that 

constitute the process of instrumental genesis. 

The following excerpt is a transcript of a video clip of an interview of the two 

students Kate and Signe. The video clip is part of a comprehensive video material. 

101 Interviewer: Can you say something about what you appreciate when using the 
graphic calculator? 

102 Kate: It is pretty nice actually. It has a large screen and you can have several 
calculations simultaneously.  

103 Interviewer: You said that with the graphic calculator, the screen made it possible 
to display several calculations simultaneously. But, is this possible 
with the one-line calculator? 

104 Kate: No, you can only have one calculation at a time 

105 Interviewer: What does it mean for you that it can display several calculations at a 
time? 

106 Kate: It means a lot! Because, if you are going to figure out and calculate 
something important, you need to make miscellaneous 
calculations...and to move forward and get closer and closer. And then 
it is important to see the calculations that have been done before, so 
you don‘t need to calculate them once more 

107 Interviewer: How about the one-line calculator? 
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108 Kate: With the one-line calculator, you can only come with... have one 
calculation at a time. And then it is hard to know... 

Later on in the interview the researcher asked the students about the type of task they 

preferred when using the graphic calculator. 

190 Researcher:  What type of task might suit this calculator? 

191 Kate: Maybe the one with hot dogs and ice cream 

192 Signe: Maybe the one with trains… 

In the lines 190-192, the students referred to, and considered two prototypical 

situations of the ‗class of situations‘ and tasks contained in the portfolio, two 

examples of linear two-variable Diophantine equations (see task 1 and task 2 

outlined above). The students associated the type of calculator according to the type 

of task, and they preferred the multi-line display calculator rather than the calculator 

with one-line display with the Diophantine equation challenges. However, when the 

students were challenged with simple tasks such as calculating 38 × 17 which 

required only one arithmetic operation (calculation) at a time, or when there was no 

need for investigation, they prefer the simpler calculator. This may be the reason why 

Kate, in the line 108, says: ―with the one-line calculator, you can only have one 

calculation at a time‖. She is aware that the one-line display will be definitely 

sufficient when working with simple tasks or when there is no need to develop a 

strategy to solve an arithmetic problem. Otherwise, when handling complex tasks 

like the Diophantine equation problems (task 1 and 2), she will choose the calculator 

with the multi-line display. This process, instrumental genesis, of awareness of the 

type of task that can or cannot be solved with a particular type of calculator is a 

process of an artifact becoming part of an instrument in the hands of a student. 

Develop a strategy by use of a protocol 

11 points

7 points  

Figure 1: Display as a protocol for Signe                            Figure 2: Game ‗Dart‘    

One of the tasks in the portfolio concerned the game ‗Dart‘ (see fig. 1 and fig. 2). A 

hit with an arrow within the inner circle gives 11 points, while a hit with an arrow 

within the outer circle gives 7 points. The task was: How many arrows of 7 points 

and how many arrows of 11 points will give a total of 310 points? This is another 

example of a Diophantine equation. The description and analyses of the screen 

display above are based on the same interview with the other student Signe. The 

screen display shows part of Signe‘s solution strategy which addresses how she 

managed to solve the problem using the calculator. Signe came up with one of the 

four solutions, here the solution 38 × 7 + 4 × 11 = 310 or {38, 4}. The screen 

functioned as a protocol for her. Signe divided 310 by 7 to investigate the number of 
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7-arrows there would be. The result of the previous calculations 119 (17 × 7) she 

added to 77, yielding 196. The number 119 was previously calculated and is from a 

previous screen display. She then added 70 and calculated 266 (38 × 7) points. 

Finally, she went back to the first line in the display. Typed 44 (4 × 11) and added 

266. The calculator gave her the answer 310. The calculator functioned as an 

external support for her mental arithmetic. 

The result of Signe‘s activities consisting of keystrokes entering numbers, 

arithmetical operations, signs or other characters into the calculator and displayed on 

the screen are examples of an inscription. The semiotic display on the calculator 

screen is regarded as an inscription composed of a mathematical notation system. A 

student using the calculator dynamically and interactively is able to construct a 

system out of screen display lines showing arithmetic calculations within a single 

arithmetic problem, applying to the screen display a protocol of actions (Dôrfler, 

2000). A calculator screen displaying one or more lines of an arithmetic calculation 

is not a protocol for each and everyone. It depends on the person's internal processes, 

on how an individual reasons something out and the cognitive processes. For 

example, a student who performs isolated single calculations does not necessarily 

use the calculator screen as a protocol. Others may focus on the entire process to 

which they relate by using the calculator. For them it is not just a simple calculation 

they are dealing with, but they focus on the entire process of calculations when 

utilizing a calculator. Students who are working with the aim of developing a 

solution process without "going blind," may have found an overall strategy. It is 

therefore important to achieve a good interplay between the internal cognitive 

processes and the external artifacts. By having access to a larger screen with the 

ability to display multiple-lines of arithmetic calculations and corresponding answers 

simultaneously, Signe could read off the display, control and compare the results of 

several mathematical expressions she has typed in, keystroke by keystroke. A larger 

screen and use of protocol makes it possible for her to jump forwards or backwards 

between the calculations. For each calculation, Signe gets a quick response and she 

can immediately check the results. She can also return to the previous calculations 

and then continue where she was. In this way the mathematical process continues in 

a search for solution(s). As Kate describes in text line 106, and as Signe 

demonstrated in the game ‘Dart‘, mathematical activities using the artifact can be 

described as an interactive process like the text in web pages on the internet. 

Searching in such text or amongst lines of arithmetic calculations is not a linear 

process because the student can move one or more steps backwards or forwards from 

where she was in the mathematical text. The availability of a larger screen display, 

listing up to 8 lines, opens up new opportunities because the user gets an overview of 

more information at once compared with one-line calculators. The graphic calculator 

gives her an advantage; the size of the screen display allows her to see several lines 

of arithmetic operations and opens up for articulation, reasoning and problem solving 

processes. "So you don‘t need to do the calculations once more" as she expressed in 
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the line 106. The interpretation is that the part of the artifact, the screen display can 

take part in her mathematical activities via the lenses of the protocol. In the ‗Dart‘ 

example, the screen is a protocol for Signe and made it possible for her to reconstruct 

and replicate the arithmetic calculations on the screen display. The calculator 

becomes an external cognitive aid for the competent user to find solution(s) to a 

mathematical problem. The dynamic and creative aspects by utilizing the screen 

display in this manner can be described as instrument-mediated, appropriating the 

artifact as an instrument, turning the artifact into an instrument in the hands of a 

student. The interpretation is that the screen display has become a protocol for Signe. 

The concrete protocol is a property, a stage in a development in and is a quality she 

possesses. The protocol says something about how Signe relates to the part of the 

calculator that is the screen display, and how she is able to utilize the constraints and 

affordances, the potential of the screen. The concept of protocol is an analytical tool 

for the researcher to describe and to study how far the student has come in the 

process of instrumental genesis by studying their ‗protocol scheme‘ through the 

student's use of the screen according to type of task. 

CONCLUSION 

The development of mathematics has always been dependent on the material and 

symbolic tools available for mathematical calculations (Artigue, 2002). A 

sociocultural tradition can shed light on how students can master and appropriate the 

graphic calculator in their mathematical activity and to make the artifact an 

instrument for the competent user. This is an individual process. The graphic 

calculator can be effective in helping students sustain their mathematical activities in 

the process of instrumental genesis. The process of instrumental genesis is suitable to 

analyze the processes of appropriation, the transformation of an artifact to become an 

instrument in the hands of a student. This study illustrates the influence the type of 

tasks and challenges given by researcher can have on student‘s instrument-mediated 

activity. The concept of protocol is used as an analytical tool to study student 

appropriation of the part of the artifact calculator, the screen display. The construct 

of protocol can thus give substance to instrument genesis by studying the constraints 

and affordances, through the student's use of the artifact screen display. There is a 

further need for empirical resources to develop theories that elucidate complex 

human-machine relationships and to better understand how they may function in 

different educational settings. 
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The paper reports on a study of students working with an online archery game. We 

invited 318 students from grades 4, 5 and 6 to use the game at home to solve a series of 

contextual problems addressing covariating quantities. In particular, the study 

investigated how the students utilized the computer environment and the strategies they 

applied. The analysis revealed that the online working was positively related to success 

in a written posttest on early algebra problems. The learning environment stimulated the 

application of various strategies and the exploration of relations and structure. 

Keywords: Early algebra, online game, problem solving strategies 

INTRODUCTION 

In primary school mathematics the focus is mainly on developing numeracy and 

calculation skills. However, several researchers (Goldenberg, Shteingold, & Feurzeig 

2003; Harel, 2008) have pointed out that mathematics also involves ways of thinking 

or mathematical habits of mind, including seeking and exploring patterns, making 

conjectures and performing experiments, and applying heuristics to solve nonstandard 

problems. These ways of thinking should also be a vital part of mathematical 

instruction at primary school level. Along these lines, primary school students can be 

engaged in algebraic activities that provide them with the opportunity to practice both 

basic and more sophisticated thinking skills such as generalization (Kaput, Carraher, & 

Blanton, 2007). The integration of algebra in the primary grades is essential for adding 

coherence, depth, and power to school mathematics and can prepare students for the 

learning of algebra in the later grades (Kaput, 2007). 

However, the inclusion of algebra in primary school does not imply adding traditional 

algebra to the primary school curriculum; rather, it means providing entry points for 

algebra through treating existing topics in a deeper and more connected way (Kaput et 

al., 2007). For example, patterning activities can help students move towards 

understanding functional relations (NCTM, 2000). Rich problem contexts can play an 

indispensable role herein, as experience and reasoning in particular situations may 

support students in generating abstract knowledge (Carraher & Schliemann, 2007). 

Although tables (Schliemann, Carraher, & Brizuela, 2001) and function machines 

(Warren, Cooper, & Lamb, 2006) have been employed for studying functional 

relations at primary school level, new technologies might bring further improvements 

herein. Computers can perform calculations and diminish the routine workload so that 
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students can focus more on exploring relationships. Furthermore, computer tools can 

surpass the constraints of paper-and-pencil methods by providing dynamically linked 

notations and instant feedback (Roschelle, Pea, Hoadley, Gordin, & Means, 2000). 

In this study we offered primary school students an online environment including a 

dynamic game with which they could solve problems with covariating values (which we 

call early algebra problems). In particular, we sought to answer the research questions: 

How do fourth to sixth graders utilize an interactive online environment including a 

dynamic game to solve early algebra problems? 

Is students‘ working in this environment related to their performance in a written test 

on early algebra problem solving? 

THEORETICAL UNDERPINNINGS 

Algebra in primary school 

Kieran (2004) argued that algebraic thinking in primary school entails mathematical 

activities such as problem solving, generalizing, analyzing relationships, and studying 

change; these are general activities for which algebra is used as a tool, but which are 

not exclusive to algebra. Van Amerom (2003) argued that students can acquire 

algebraic concepts before studying formal algebra through solving nonstandard 

problems. Their informal approaches can be seen as ways in which they try to deal 

with algebraic situations without having to rely on formal algebra (Johanning, 2004). 

Variation theory 

According to variation theory, for learning to occur, the learner should be able to 

experience and discern critical aspects of variation in the phenomenon under study 

(Runesson, 2006) and become simultaneously aware of the possible values that these 

aspects can take (Marton & Tsui, 2004). Although experiencing patterns of variation is 

significant for learning mathematics in general, it might be especially relevant to the 

teaching and learning of algebra, since the ability to generalize from particular instances 

implies that one can distinguish between what varies and what remains invariant. 

Variation theory can be used for designing learning situations by creating patterns of 

variation and invariance in relation to critical aspects of that learning (Runesson, 2006). 

According to Watson and Mason (2006), in comparison to unstructured sets of tasks, 

tasks that display constrained variation are likely to result in progress. 

The role of computers in the teaching and learning of mathematics 

Technology influences not only how mathematics is taught and learned but also what 

is taught and when it is taught; technological tools afford access to powerful visual 

models and enable the quick and accurate execution of routine procedures, which 

allows more time for conceptualizing and modelling (NCTM, 2000). Particularly, in 

simulations students are engaged in active exploration and discovery learning (Lou, 

Abrami, & d‘Apollonia, 2001) and they are challenged to formulate strategies to deal 

with complex mathematical systems (Crown, 2003). Dynamic computer 
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environments offering animation-based feedback (Nathan, 1998) might be especially 

suitable for comprehending how quantities relate to each other, thus supporting 

algebra problem solving. Likewise, the use of spreadsheets can assist students in 

understanding the concept of variable as a varying quantity and in generalizing 

problem situations (Lannin, 2005). However, more research into the use of 

technology in the early grades is needed (Kilpatrick, Swafford, & Findell, 2001). 

SET UP OF THE STUDY 

Procedure 

A pretest-posttest experiment was set up to investigate the influence of a computer-

based intervention, including an online game, on students‘ early algebra performance. 

For working in the online environment each student received a login account and eight 

problems split in three sets. The students were requested to solve the problems in the 

online environment at home and write down their answers on a worksheet. This online 

activity was not compulsory. The students had approximately a week at their disposal 

to work on each set of problems. At the end of the week the students presented their 

answers in short follow-up discussions in class. The purpose of these discussions was 

not to teach students how to solve the problems, but to provide them with feedback on 

their answers and sustain their participation. Before and after the intervention a written 

test on algebraic problem solving was administered at school. 

Participants 

In total 318 students from grade 4, 5 and 6 from five schools in a major Dutch city 

were invited to participate in the study. These schools are situated in five city 

districts that cover a wide socio-economic range of student population. 

Pretest and posttest on algebraic problem solving 

The written test on algebraic problem solving that served as pretest and posttest 

included seven contextual problems, such as the following: 

Quiz: In a quiz you get 2 points for each correct answer. If a question is not answered or the 

answer is wrong, 1 point is subtracted from your score. The quiz contains 10 questions. 

Tina received 8 points in total. How many questions did Tina answer correctly? 

The problems of our study can be solved by a formal algebraic approach that is 

setting up and solving a system of two linear equations with two unknowns, or by an 

arithmetic method in which students have to reason informally about the 

relationships between the quantities. Since formal algebra is introduced in the 

Netherlands in the first year of the secondary school, we expected that the primary 

school students in our study had only arithmetic approaches at their disposal.  

The online environment 

The environment developed to offer students experience in dealing with interrelated 

variables includes a dynamic game called Hit the target [1] (see Figure 1a/b), which 
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is a simulation of an archery game. In this game the students can set the shooting 

mode (user or computer shooting) and the game rule mode (user or computer 

defined). The features of the game are dynamically linked. In the course of the game 

the values on the scoreboard update rapidly to provide information about the total 

score. In this way, students may become aware of the fact that the arrows, the score, 

and the game rule are related to each other so that a modification in the value of one 

of these variables has a direct effect on the other variables. Moreover, the game 

offers instant visual feedback by displaying the consequences of students‘ actions. 

  

Figure 1a: Screen view of game in the 

computer shooting-mode 

Figure 1b: Screen view of game in the user 

shooting-mode 

The problems that the students had to solve in this environment varied from finding 

the number of hits and the number of misses that produce a particular score, to 

generating a general solution by systematizing all possible answers. In general, two 

types of problems were included: problems that can be translated into a linear equation 

with two unknowns and problems that can be translated into a system of two linear 

equations with two unknowns. This series of problems aimed to support students in 

detecting patterns and generalizing, and confront them with situations in which 

multiple conditions should be taken into account simultaneously. Variation in the 

numbers among the problems was intended to help students grasp the invariant 

structure of a problem, despite the fact that the particular numbers can vary. 

Furthermore, the variables that were allowed to vary and the variables that were kept 

invariant differed between the problems. A selection of the problems is the following: 

Problem 3: What is the game rule to get 15 points in total with 15 hits and 15 misses?  

Are there other game rules to get 15 hits, 15 misses, and 15 points? 

Problem 4: What is the game rule to get 16 points in total with 16 hits and 16 misses? 

Are there other game rules to get 16 hits, 16 misses, and 16 points? 

Problem 5: What is the game rule to get 100 points in total with 100 hits and 100 

misses? Are there other game rules to get 100 hits, 100 misses, and 100 points?  

Can you explain your answer? 



Working Group 15 

CERME 7 (2011) 2252 

 

Problem 8: For every hit you gain 2 points and for every miss 1 point is taken away 

from your score. You have 10 arrows in total. How many hits and misses do you have 

to shoot to get 5 points in total? Are there any other solutions possible? 

The online environment offered students the opportunity to solve these problems by 

testing their ideas and receiving instant feedback. Moreover, the students‘ online activity 

was captured by special software, the so-called Digital Mathematics Environment 

(DME) [2]. The log data used in this study consisted of a list of the actions carried out by 

the students in the online environment classified into events (i.e., shooting actions) and 

sessions (i.e., series of events that students perform each time they are logged in)  

(Figure 3). A coding scheme for analyzing students‘ log files was developed in several 

rounds. Its final version consisted of 12 strategies. The interrater reliability was 

determined by calculating Cohen‘s kappa, which was considered to be sufficient (.84). 

RESULTS 

In total, 253 students logged in at least once. The frequencies of the logged-in 

students from grades 4, 5, and 6 were 74%, 88%, and 78% respectively. The students 

who did not log in had the same pretest performance as the students who logged in 

(t(309) = −1.72, p >.05). Table 1 gives an overview of the means and standard 

deviations of the pre and posttest performance, the login time, the number of events, 

the number of focused events (i.e., events related to answering the online problems), 

the percentage of focused events (ratio focused events to total events) and the 

number of problems students worked on per grade. 

 Grade 4  

(N=75) 

Grade 5  

(N=73) 

Grade 6  

(N=84) 

 M SD M SD M SD 

Pretest (proportion correct answers) .06 .14 .23 .26 .38 .30 

Posttest (proportion correct answers) .11 .20 .30 .33 .48 .36 

Login time (minutes) 35.70 41.63 25.75 18.69 32.22 54.46 

N of events 17.04 14.77 17.81 13.34 13.34 9.90 

N of focused events 5.68 7.61 9.60 8.15 7.48 8.07 

% of focused events 26.7 26.9 50.6 31.1 46.2 33.7 

N of worked problems 3.10 3.82 4.92 3.71 4.46 3.91 

Table 1: Pre and posttest performance and characteristics of students‘ online working 

The gain score calculated by the difference of the score in the items in the post and 

pretest was significant across all grades with moderate effect sizes (grade 4: t(74) = 2.46, 

p < .05, d = .16, grade 5: t(72) = 2.93, p < .01, d = .24, grade 6: t(83) = 5.19, p < .001, d 

= .43.). The standard deviations show considerable variation in the way students utilized 
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the online environment. The fifth graders exhibited the highest number of events, 

focused events and worked problems and the highest percentage of focused events. 

The partial correlations (Table 2) between the characteristics of the online working 

and the posttest performance controlling for the pretest performance reveal 

significant relationships between the posttest performance and the percentage of 

focused events and the number of worked problems for the students of grade 4 and 6. 

 Posttest 

 Grade 4 Grade 5  Grade 6 

Login time (minutes) −.03 .03 −.03 

N of events .03 .07 .03 

N of focused events .17 .06 .07 

% of focused events .30
**

 .11 .21
*
 

N of worked problems .36
**

 .16 .22
*
 

** p < .01, * p < .05 (one-tailed)    

Table 2: Partial correlations between students‘ online working and posttest 

performance 

Students applied various strategies to solve the problems (Figure 2). The mostly used 

strategy was trial-and-error (TE) (49%–64% of the students). Systematic trials (Sys) 

were, however, performed by only a few students. A high percentage of students 

(43%–58%) applied the Extreme strategy, which is a way of reducing the complexity 

of a problem by putting one variable to zero so that another variable in the linear 

relationship gets the maximum possible value. 
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Figure 2: Relative frequencies of strategy use in grades 4, 5, and 6. 

The Analogous strategy (e.g., in Problem 5: shooting 10 hits and 10 misses), the 

Splitting strategy (e.g., in Problem 5: first shooting 100 hits and 0 misses, then 0 hits 
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and 100 misses, and adding the partial scores to calculate the total score) and the 

Transposing strategy (i.e., the values of the arrows and the values of the game rule are 

exchanged) were less frequently applied. These strategies were particularly evoked 

when students tried to solve Problem 5. Since the maximum number of arrows to be 

shot at once in the game is restricted to 150, the students cannot shoot 100 hits and 100 

misses at once, but should come up with other approaches to solve this problem. 

Strategies like Altering (adapting part of the problem information), Extreme, 

Repeating (replicating a correct solution), and trial-and-error imply a focus on 

providing the (correct) answer. In contrast, the use of more sophisticated strategies is 

an indication that students explored relations and structure. Such strategies are 

Analogous, Cancelout (i.e., the total of hit-points cancels out the total of miss-

points), General (looking for a general rule), Erroneous (i.e., applying an erroneously 

derived rule to produce additional solutions to a problem), Reverse (i.e., reversing a 

rule to produce additional solutions), Splitting, systematic trials, and Transposing. 

Moreover, we could identify three levels of online working: free playing, (just) 

looking for answers, and exploring relations and structure. Level 1 includes the 

students who put little or no effort in answering the given problems, in particular, the 

students who performed less than three focused events or tried to answer less than 

three problems. Level 2 includes the students who mainly (just) tried to answer the 

problems. These students exhibited an activity which was equal to or beyond the 

threshold of minimum effort, but their main concern was to provide correct solutions 

as indicated by the use of less sophisticated strategies. Level 3 includes the students 

who also exceeded that minimum amount of effort and used sophisticated strategies, 

which indicates that the students explored relations and structure. 

 Grade 4 Grade 5 Grade 6 Total 

Free playing (Level 1) 60.8 29.5 39.6 43.1 

(Just) looking for answers (Level 2) 12.7 41.0 28.1 27.3 

Exploring relations and structure (Level 3) 26.6 29.5 32.3 29.6 

Table 3: Percentages of students who applied a particular level of online working per 

grade 

The percentage of students who performed free playing was the highest in grade 4, 

while the majority of the students in grade 5 were categorized at the level of just 

looking for answers. In grade 6 free playing was again the most prevailing activity. 

Nevertheless, the percentage of students who explored relations and structure 

increased slightly from grade 4 to grades 5 and 6. 

Figure 3 shows the log file of a sixth-grade student‘s problem solving process that 

eventually led to the discovery of the general rule. In Problem 3 the student found one 

solution by trial-and-error. In Problem 4 she came to a general rule (i.e., the points per 

hit and the points per miss should add up to 1), which she also applied in Problem 5. 
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Problem 3

Problem 4

Problem 5

session:  1    date:  2008/11/17 04:13:58    duration:  00:05:59    total events:  2 

event:  1 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  2 (hits:  2 misses:  1) 

game rule:  student    hit:  4  added    miss:  2  less 

event:  2 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  0 

game rule:  student    hit:  1 added    miss:  1  added 

session:  2    date:  2008/11/17 04:20:43    duration:  00:02:52    total events:  1 

event:  1 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  0 

game rule:  student    hit:  5 added    miss:  4  less 

session:  3    data:  2008/11/25 04:02:24    duration:  00:36:03    total events:  6 

event:  1 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  0 

game rule:  student    hit:  2 added    miss:  1  less 

event:  2 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  0 

game rule:  student    hit:  3 added    miss:  2  less 

event:  3 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  32  

(hits:  16  misses:  16) 

game rule:  student    hit:  100 added    miss:  99  less 

event:  4 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  2 added    miss:  1  less 

event:  5 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  1000 added    miss:  999  less 

event:  6 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  50 added    miss:  49  less 

Problem 3

Problem 4

Problem 5

session:  1    date:  2008/11/17 04:13:58    duration:  00:05:59    total events:  2 

event:  1 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  2 (hits:  2 misses:  1) 

game rule:  student    hit:  4  added    miss:  2  less 

event:  2 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  0 

game rule:  student    hit:  1 added    miss:  1  added 

session:  2    date:  2008/11/17 04:20:43    duration:  00:02:52    total events:  1 

event:  1 

who shoots:  computer    hits:  15    misses:  15    at-random:  0    removed:  0 

game rule:  student    hit:  5 added    miss:  4  less 

session:  3    data:  2008/11/25 04:02:24    duration:  00:36:03    total events:  6 

event:  1 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  0 

game rule:  student    hit:  2 added    miss:  1  less 

event:  2 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  0 

game rule:  student    hit:  3 added    miss:  2  less 

event:  3 

who shoots:  computer    hits:  16    misses:  16    at-random:  0    removed:  32  

(hits:  16  misses:  16) 

game rule:  student    hit:  100 added    miss:  99  less 

event:  4 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  2 added    miss:  1  less 

event:  5 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  1000 added    miss:  999  less 

event:  6 

who shoots:  computer    hits:  10    misses:  10    at-random:  0    removed:  0 

game rule:  student    hit:  50 added    miss:  49  less 
 

Figure 3: Log file of online student working. 

DISCUSSION 

This study looked at how an online learning environment with a game and a series of 

problems can contribute to students‘ ability to solve problems with interrelated 

values. The analysis revealed that the ability to solve the problems increased over the 

grades with the highest gain in the grade 6. Despite the short duration of the 

intervention, the online working was positively related with success in the posttest 

for grades 4 and 6. Furthermore, the environment brought about various types of 

strategies. The dynamic character of the game offered students the opportunity to 

apply sophisticated strategies to explore relations and structure. In addition, the 

problems sequence turned out to be important as well. The log files revealed that by 

working on the series of problems, the students could experience how the values 

covariate, which prompted the discovery of the general relation between the values.  

However, some limitations should be kept in mind. To begin with, our conclusions 

are based on the log files of the students‘ online activity, which might not entirely 

capture their cognitive processes such as the mental calculations. Nevertheless, the 
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collected data provided a step-by-step account of students‘ interaction with the 

computer environment. Furthermore, because the changes in the levels of online 

working across the grades followed an irregular pattern, the question is raised 

whether the students who participated in the study are typical. Due to cluster 

sampling, there is a higher probability of getting a non-representative sample. 

Moreover, we could not control whether the students worked on the online problems on 

their own or with the help of a peer or family member. However, because the activity 

was voluntary and low-stakes, it is likely that the students did not feel the need for 

assistance. In addition, the diversity in the students‘ engagement in the online activity is 

an indication that the students worked on their own; had parents been involved, it would 

have been more likely for the students to try to solve all the presented problems. 

However, in general, our results suggest that algebraic reasoning in the primary 

grades could be stimulated through computer environments. Furthermore, home 

computing may create an effective learning environment supporting and extending 

school learning. Yet further investigations are needed, in particular to examine the 

influence of the game when introduced as a compulsory activity in the classroom. 

NOTES 

1. The game ‗Hit the target‘ is developed by the first author and programmed by our colleague Huub Nilwik. 

2. The Digital Mathematics Environment (DME) is developed by our colleague Peter Boon. 
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We outline problem-solving episodes dealing with mathematical tasks in which the 

use of the tools becomes relevant. The episodes involve the use of an inquiring 

process to approach problem statements or comprehend mathematical concepts. 

Questioning becomes a form or way of making sense of situations and of 

representing them in terms of using the tools‘ affordances. The episodes characterize 

a framework that teachers can use to structure and reflect on ways to use 

computational tools to foster their students‘ development of mathematical thinking. 

INTRODUCTION 

It is widely recognized that the use of computational technology could offer students 

and teachers various ways to represent and explore mathematical problems or 

concepts. There is also evidence that different tools might offer learners different 

opportunities to think of problems in order to represent, explore, and solve them. 

Recently, different research programs have analyzed and documented the role played 

by the use of diverse digital tools in the students‘ development of mathematical 

knowledge (Hoyles & Lagrange, 2010). For example, the use of dynamic software 

offers advantages to construct models of situations or problems in which the model 

components can be displaced within the representation to identify and explore 

mathematical relations, while the use of calculators offers advantages to represent 

and deal with problems algebraically. In general, research results indicate that it is 

important for teachers to incorporate in their teaching scenarios a systematic use of 

several computational tools to help students develop mathematical comprehension 

and problem solving proficiency. To this end, several recent curriculum proposals 

recommend that students use computational tools in their learning activities.  

What type of tools should students use and how should they use them to enhance 

their problem solving approaches? What types of tasks should students work and 

discuss in order to transform technological artefacts into effective problem solving 

tools? What types of mathematical reasoning do students develop as a result of using 

a particular tool in problem solving activities? The discussion of these and similar 

questions is relevant to orient or guide teachers during the design and 

implementation of activities and tasks fostering the use of computational tools. The 

aim of this article is to identify dimensions and processes that characterize students‘ 

problem solving approaches fostering the use of several computational tools. In this 

context, we identify and discuss common math features that distinguish students‘ use 

of computational tools to solve problems. In order to do this, we focus mainly on 

problems where students use the tools to construct a dynamic model of the problems. 
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The model is then used as a departure point to look for mathematical relationships 

that become important to solve and extend the problem. It is important to investigate 

the extent to which the use of particular tools helps students develop knowledge and 

ways of thinking that are consistent with mathematical practice. In particular, we 

argue that teachers need to reflect on key issues and concepts concerning the process 

involved in using the tools in their problem solving approaches.   

ON THE STUDENTS‘ PROCESS OF APPROPIATION OF THE TOOLS 

How should teachers decide what computational tools to use in their practices? What 

type of tasks and instructional strategies should they consider to use the tools in 

problem solving approaches? And what types of reasoning do students construct as a 

result of using certain tools in their learning experiences? Kaput (1992) stated that 

―[m]ajor limitations of computer use in the coming decades are likely to be less a 

result of technological limitations than a result of limited human imagination and the 

constraints of old habits and social structures‖ (p. 515). Nowadays, after almost two 

decades since Kaput‘s statement, the math education community faces a challenge 

not only to clearly incorporate a systematic use of computational tools in curriculum 

proposals, but also to characterize learning scenarios in which students can 

efficiently use tools to learn and develop math knowledge. In other words, the use of 

the tools requires not only the transformation of classroom settings, but also the 

validation of emerging explorations including visual, empirical and formal 

reasoning. It is also important to recognize that the tool itself does not provide the 

media or ways needed for students to efficiently use it in problem solving activities; 

it involves an appropriation process in which the students transform an artefact into 

an instrument. This appropriation depends on cognitive schemata that students 

develop while using the tool to represent and explore the problem. Trouche (2004) 

stated that ―an instrument can be considered an extension of the body, a functional 

organ made up of an artifact component (an artifact, or the part of an artifact 

mobilized in the activity) and a psychological component‖ (p. 285). The artefact 

characteristics (ergonomics and constraints) and the schemata developed by the 

students during the activities are important for them to transform the artefact into a 

problem-solving instrument. In this respect, Trouche (2004) related the students‘ 

psychological component to the construction of a scheme with three functions: ―a 

pragmatic function (it allows the agent to do something), a heuristic function (it 

allows the agent to anticipate and plan actions), and an epistemic function (it allows 

the agent to understand what he is doing)‖ (p. 286). Indeed, these three functions 

become essential to construct dynamic models of problems. The use of dynamic 

software plays an important role in constructing models of situations and tasks where 

the movement of particular elements can be examined and explained in terms of 

math relationships (Santos-Trigo, 2008). Models might involve configurations made 

of simple math objects (points, segments, lines, triangles, squares etc.) in which some 

elements of the models can be moved within the configuration in order to identify 
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and explore math relationships. These relationships and conjectures become a source 

that engages students in math inquiry and reflection. As a consequence, the process 

of model construction and exploration also incorporates a variety of ways to 

represent, formulate, and examine math relationships. For instance, with the use of 

the tool, the situations or problems are now analyzed in terms of the facilities and 

affordances offered by the tool such as dragging particular components, finding loci 

of points or lines, quantifying certain relations, using a Cartesian system to model the 

problem algebraically (Santos-Trigo, 2008). Indeed, the use of the dynamic software 

seems to offer problem solvers the opportunity to explore diverse routes to develop 

or reconstruct and examine basic mathematical results. In particular, the visual 

approach becomes relevant to identify mathematical relationships that later can be 

analyzed in terms of numerical and graphical approaches (Santos-Trigo, 2010). 

BACKGROUND AND GENERAL CONTEXT 

This study is part of an ongoing project whose general goal is to foster service and 

pre-service high school teacher use of computational technology as part of their 

regular practices. These teachers participate in regular problem solving sessions 

where they have the opportunity to use diverse computational tools to work on math 

tasks. The tasks include dealing with situations where the participants construct 

dynamic models or geometric configurations (formed by simple objects such as  

segments, points, lines, circles, etc.) that lead them to identify math relationships by 

moving elements within the model (Santos-Trigo & Espinosa-Pérez, 2010). In this 

type of task, there is no initial well-defined problem statement, and the problem 

solver formulates and pursues questions as a result of observing the behaviour of the 

involved objects. Other types of tasks include those that appear in regular textbooks, 

where the idea is to use tools to represent, explore and look for different ways to 

approach the tasks.  

In this paper, we discuss math thinking features we have identified during the 

implementation of problem solving approaches in teaching scenarios where teachers 

systematically use diverse computational tools. Our synthesis is based on discussing 

with teachers and colleagues problem solving behaviour that our research group 

initially identified as being consistent while the project participants used the tools. 

This involves a retrospective account of what we observed in problem solving 

sessions that promoted the use of technology. Thus, by observing and analyzing 

teachers‘ and students‘ use of the tools in problem solving activities, we aim to 

identify common math behaviour that characterizes their approaches to the tasks 

(Santos-Trigo & Camacho-Machín, 2009). Our method of inquiry relies on observing 

teacher‘s behaviour when using computational tools in problem solving sessions. 

Thus, in order to introduce and discuss elements of the framework, we chose a task 

to illustrate different approaches to think of the task in terms of using a dynamic 

geometry software (DGS). The task is representative of a series of problems in which 

students deal with phenomena that involve parameter variations to determine 
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minimum or maximum values of a certain parameter (area, perimeter, length, etc). 

The task discussion leads us to identify components of a framework that teachers can 

use to structure and guide their students‘ use of several tools in problem solving 

approaches (Schoenfeld, 2010). The framework is presented in terms of episodes that 

extend the phases used by Polya (1945) to explain problem solving behaviour. 

A PROBLEM-SOLVING FRAMEWORK TO DEAL WITH PHENOMENA 

OF VARIATION 

An example is used to illustrate elements of a framework to organize and guide 

students‘ use of computational tools to represent and explore the area variation of an 

inscribed parallelogram. Another example of a task analysed in terms of the 

framework appear in the appendix. In particular, we distinguish episodes that show 

the relevance that it has for students to comprehend and think of the problem 

statement in terms of math resources. This initial comprehension of the task becomes 

crucial to construct a dynamic representation of the problem that can help them 

visualize parameter behaviour. The NCTM (2009) identifies both sense making and 

reasoning as crucial processes that students need to develop in their problem solving 

approaches. The exploration of dynamic models of the task provides useful 

information for students to think of the problem in terms of analytical and geometric 

knowledge and to reflect on the concepts and processes that appear throughout all 

the episodes.  

The task: In a given triangle ABC, inscribe a parallelogram by selecting a point P on one of 

the sides of the given triangle. Then from point P draw a parallel line to one of the sides of 

the triangle. This line intersects one side of the given triangle at point Q. From Q draw a 

parallel line to side AB of the triangle. This line intersects side AC at R. Draw the 

parallelogram PQRA (Figure 1). What happens to the area of thee inscribed parallelogram 

APQR when point P is moved along side AB? Is there a position for point P where the area 

of APQR reaches a maximum value? (Justify). 

A B

C

P

Q
R

  
Figure 1: Drawing

 
a parallelogram

 
inscribed in a given triangle

 

Comprehension Episode. Polya (1945) identifies the process of understanding the 

statement of a problem as a crucial step for thinking of possible ways of solving it. 

Understanding means being able to make sense of the given information, identify 

relevant concepts, and think of possible representations to explore the problem 

mathematically. If students are to comprehend and make sense of the problem, they 

need to problematize the problem statement. They need to think of the problem in 

terms of questions to be explored and discussed with other students and the teacher. 

For example, in this problem, the comprehension stage involves discussing questions 



Working Group 15 

CERME 7 (2011) 2262 

 

such as: What does it mean for any given triangle? What information does one need 

to draw any triangle? Are there different ways to inscribe a parallelogram into a 

given triangle? For example, in Figure 1, one can draw from P a parallel line to CB 

(instead of AC) and this line intersects side AC and from that point of intersection, 

one can draw a parallel line to AB that intersects BC, thus, the two intersection 

points and point P and B form an inscribed parallelogram, the problem solver can 

ask: how is the former parallelogram related to the one that appears in Figure 1? Do 

they have the same area? How can I recognize that for different positions of point P 

the area of the parallelogram changes? This problem comprehension phase is 

important not only to think of the task in terms of using the software commands, but 

also to identify and later examine possible variations of the task.  

A Problem Exploration Episode. The comprehension phase provides useful 

information to identify ways of representing and exploring the problem. The use of a 

DGS, becomes a powerful means to represent and construct a dynamic model of the 

problem. To begin with, students can draw a triangle by selecting three non-collinear 

points. Thus, they can discuss the conditions needed to draw a triangle. In addition, 

the use of DGS allows them to move any vertex to generate a family of triangles. In 

this case, they can select a point P on side AB to draw the corresponding parallel 

lines to inscribe the parallelogram. With the help of the software it is possible to 

calculate the area of the parallelogram and observe area value changes when point P 

is moved along side AB. Thus, it makes sense to ask whether there is a position of P 

in which the area of the inscribed parallelogram reaches either its maximum or 

minimum values. By setting a Cartesian system with the software, it is possible to 

construct a function that associates the length of segment AB with the area value of 

the corresponding parallelogram. Figure 2 shows the graphical representation of that 

function. That is, the domain of the function is the set of values that represents the 

lengths of AP when point P is moved along side AB. The range of that function is 

the corresponding area values of the parallelogram associated with the length AP. 

With the software, this graphical representation can be obtained by asking for the 

locus of point S (the coordinates of point S are length of AP and area of APQR) 

when point P moves along the segment. Here, it is important to observe that the 

graphical representation can be obtained without explicitly defining the algebraic 

model of the area change of the parallelogram. 

1
x

1

y

Area of APQR = 8.58 cm
2

d(A, P) = 3.30 cm

d(A, B)  = 6.60 cm

A
B

C

P

QR

S

 

Figure 2: Representation and visual 

exploration of the problem 
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This graphical approach to solve the problem provides an empirical solution since it 

is visually and numerically possible to observe that in the given triangle the 

maximum area of the inscribed parallelogram is obtained when P is situated at 2.30 

cm from point A. Here the area of the parallelogram is 8.56 cm
2
. Indeed, a conjecture 

emerges based on this information: When P is the midpoint of segment AB, then the 

corresponding inscribed parallelogram will reach the maximum area value.  

The Searching for Multiple Approaches Episode. We argue that for students to 

develop a conceptual understanding of mathematical ideas and problem solving 

proficiency (Kilpatrick, Swafford, & Findell, 2001), they need to think of different 

ways to solve a problem or examine a mathematical concept. To develop this 

understanding, students should have the opportunity of using different concepts and 

resources to represent, explore and solve problems. In this context, the visual and 

empirical approach used previously to explore the problem provides the basis to 

introduce other approaches. For example, in the next two approaches the goal is to 

construct an algebraic model to represent the variation phenomenon. The first one 

relies on introducing the Cartesian system to represent and operate the main objects 

associated with the problem, while the second approach is based on the use of 

geometric properties (similar triangles) to represent relationships among objects.  

Thus, these two ways of thinking about the problem represent an opportunity for the 

problem solver to reflect on strengths and limitations associated with the use of 

different concepts and resources to solve the task. 

1. Analytical approach. In this approach, the students‘ initial goal is to represent 

and examine the problem in terms of algebraic means. The use of the Cartesian 

system becomes important to represent the objects algebraically. The use of the 

software also directly provides the equations associated with the lines that are needed 

to determine the expression of the parallelogram area. The problem can be thought of 

in general terms as is shown below.   

1
x

1

y

y = m 1x

y = m 1(x - x1)

y = m 3(x - x2)

A
B(x2, 0)

C

P(x1, 0)

QR

 

Without losing any generality, we can always situate the Cartesian System in such a 

way that one side of the given triangle can be on the x-axis and the other side on line 

y m1x (Figure 4). Point P will be located on side AB and its coordinates will be 

P(x
1
,0). Point B(x

2
,0) is vertex B of the given triangle (Figure 3). Based on this 

Figure 3: Using a Cartesian system to 

construct an algebraic model of the 

problem 
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information, the equation of line that goes through P and Q is )( 21 xxmy  and the 

equation of line BC is y m
3
(x x

2
). Solving the system of equations leads to 

x
m

1
x

1
m

3
x

2

m
1

m
3

, then, substituting this value in )( 11 xxmy  we obtain the y-

coordinate of point Q, That is, y
m

1
m

3
x

1
x

2

m
1

m
3

  (this value corresponds to the height 

of parallelogram APQR). Then, the function area will be A(x
1
)

m
1
m

3
x

1

2 x
2
x

1

m
1

m
3

 

(quadratic function whose roots are 0 and x2). This function also has a maximum 

value if and only if 
m

1
m

3

m
1

m
3

0. We are assuming that m
1

0. The assumption on the 

triangle location guarantees that m
3
 and m

1
m

3
 have opposite signs. Using a 

symmetric argument, A(x
1
) reaches its maximum at the midpoint of the interval 

0, x
2

, that is, at x
1

x
2

2
.  To determine the maximum value of this expression by 

using calculus concepts, we have that: A' (x
1
)

m
1
m

3
(2x

1
x

2
)

m
1

m
3

, now, the critical 

points are obtained when A'(x
1
) 0, x

1

x
2

2
 which is the solution of the equation, 

then the function A(x
1
) will reach its maximum value at

2

2
1

x
x  

).0)(''(
31

31
1

mm

mm
xA Thus, this result supports the conjecture formulated previously in 

the graphical approach.  

2. A Geometric approach. The focus here is to use geometric properties embedded 

in the problem representation to construct an algebraic model of the problem. 

h

h1

x a - x

AP = x

AB = a

 R  R

A
B

C

P

Q
R

M N

 

For example, in Figure 4, it can be seen that triangle ABC  is similar to 

triangle PBQ , this is because angle PQB is congruent to angle ACB (they are 

corresponding angles) and angle ABC is the same as angle PBQ. Therefore, we have 

it that 
CM

QN

AB

PB
, that is, if xAP and aAB , then 

h

h

a

xa 1 . Based on the former 

relationship, 
a

xah
h

)(
1 , area of APQR can then be expressed as 1xhA , this latter 

Figure 4: Relying on geometric properties to construct an 

algebraic model 
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expression can be written as 
a

hx
xhxA

2

)( . This expression represents a parabola. 

a

hx
hxA

2
)(' , now if A' h 2hx

a
0, then x a /2 . Now, we observe that 0''A  for 

any point on the domain defined for A(x), therefore, there is a local maximum for that 

function.  

An Integration Episode. It is important and convenient to reflect on the process 

involved in the distinct phases that characterize an approach to solving mathematical 

problems that fosters the use of computational technology. Initially, the 

comprehension of the problem statements or concepts involves the use of an 

inquiring approach to make sense of relevant information embedded in those 

concepts or statements. This enquiry process provides the basis to relate the use of 

the tools with ways of dynamically representing the problem or situation. Thus, a 

dynamic model becomes a source by which the behaviour of parameters is explored 

visually and numerically, as a result of displacing certain elements within the 

problem representation. In particular, it might be possible to construct a functional 

relationship between a variable, for example the variation of the side AP of the 

parallelogram and its corresponding area.  

An interesting feature of this functional approach is that the model can be 

represented geometrically without having expressed it algebraically. The graphical 

representation of the task provides an opportunity for the problem solver to 

understand and discuss the domain of the function and the behaviour of the 

parameters from a visual approach. For example, by moving point P along side AB, 

one can observe that there will be two different positions for point P in which the 

corresponding areas of the inscribed parallelogram will be the same except when the 

point is located at the midpoint of the side AB. Graphically, this means that a parallel 

line to the x-axis will cut the graph in two points except when the line passes across 

the maximum point. At that point, the value of the slope of the tangent line to the 

curve will be zero (Figure 5). In addition, it is noted that for any triangle with side 

AB and P situated on AB, then the maximum area for the inscribed parallelogram 

will be reached when point P is the midpoint of side AB. In general, the visual and 

numerical approaches to the problem become important to generate a series of 

conjectures or relationships that needs to be supported by formal arguments.  

1
x

1

y

Area of APQR = 8.59 cm
2

d(A, P) = 3.30 cm

d(A, B)  = 6.60 cm

A
B

C

P

QR

S

 

Thus, the idea at this stage is to look for different arguments to formally support not 

only the visual solution to the problem, but also to justify the conjectures or 

Figure 5: Examining properties of the area variation 

graphically. 
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relationships that emerged during both the visual and numerical approaches. It is 

clear that even when the goal here is to represent the parallelogram area 

symbolically, the ways used to construct the model rely on using different concepts 

and resources. As a result, the problem solver has the opportunity to relate contents 

that are often present in different subjects studied separately. In this case, both the 

analytic and geometric approaches converge in the search for the algebraic model. 

The algebraic model represents the general case and it can be ―validated‖ by 

considering the information of the triangle used to generate the visual model.   In 

addition, it can be used to explore some of the relationships that were detected 

during the visual approach. 

In conclusion, the systematic use of computational tools in problem solving 

approaches led us to identify a pragmatic framework to structure and guide learning 

activities in such a way that can help students develop mathematical thinking. A 

distinguishing feature of this framework is that constructing a dynamic model of the 

problems provides interesting ways to deal with the problem from visual and 

empirical approaches. Later, analytical and formal methods are used to support 

conjectures and particular cases that appear in those initial approaches. Thus, the use 

of computational tools provides a basis not only to introduce and relate empirical and 

formal approaches, but also to use powerful heuristic tools such as dragging objects 

and finding loci of particular objects within the dynamic problem representation. 

Prospective and practicing teachers can use the framework to focus their attention on 

the activities involved in each episode. In particular, they need to conceive of a task 

or problem as an opportunity for their students to represent, explore and examine the 

task from diverse perspectives in order to formulate conjectures and to look for ways 

to support them.   
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APPENDIX: Another example of tasks used in the project. 
  

Three students got together to prepare their 

calculus final exam. After much hard work, 

when they were feeling hungry, they ordered a 

pizza and decided to divide it into three equal 

parts by making two vertical cuts (Figure 6). 

The pizza they ordered had a 40 cm radius. 

Where should they make the pizza-cuts so that 

each student gets the same amount of pizza? 

(Santos-Trigo & Camacho-Machín, 2009) 

 

Figure 6: Pizza cuts viewed from 

the top 
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ANALYSING TEACHERS‘ CLASSROOM PRACTICE WHEN NEW 

TECHNOLOGIES ARE IN USE  

Mary Genevieve Billington  

University of Agder  

This paper presents an analysis of teachers‘ practice in classrooms where new 

technologies are in use. An example of an analysis of data collected in mathematics 

classroom lessons in an upper secondary school is given. The analysis revealed how 

teachers structured the lessons and how the different tools were employed to achieve 

didactical and mathematical goals. The research contributed to research within the 

project ―Teaching Better Mathematics‖ at the University of Agder.   

Keywords: classroom, analysis technique, didactic process    

INTRODUCTION  

Newer technologies are increasingly used in schools. In Norway these technologies 

are termed ―digital tools‖ and their use is now compulsory in all subjects and at all 

levels of schooling. It is argued therefore that it is important to learn more about how 

teachers integrate these tools into their classroom practice.  

The classrooms studied were advanced mathematics classrooms in the second year of 

upper secondary school. In 2002 the school visited had initiated an internal ICT 

project. All students in advanced mathematics classes were issued with a laptop PC 

and classrooms were equipped with a screen and a projector. By the spring term of 

2007 when the observations took place the classrooms had evolved to paperless 

classrooms; paper textbooks and notebooks were no longer in use. In the Norwegian 

context such classrooms were special but the project school was a normal school in 

that it operated in accordance with all formal regulations and guidelines. Practices 

described in this paper had evolved in a normal school environment with inherent 

functioning forces and tensions, not influenced by any external developmental 

project in mathematics education. I claim that this was an opportunity to observe and 

learn about ordinary teachers integrating new technology into their practice from the 

teachers‘ perspective. Monaghan (2004) and others have seen a need for such 

research. This feature of the data is seen to be especially interesting given the 

generally limited success in the integration of digital tools into mathematics 

classrooms (Lagrange, Artigue, Laborde, & Trouche, 2001).  

This paper addresses the following research question: ―How do teachers structure 

mathematics lessons where newer technologies are in use and which technologies 

and tools are employed to achieve which didactical and mathematical goals‖. An 

analysis technique was developed to analyse the classroom data. A detailed 

description of the technique is given before proceeding to the results of the analyses.   
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THEORETICAL FRAMEWORK 

In the main study, the Instrumental Approach in Didactics provides the theoretical 

perspective. This approach combines elements from the Anthropological Theory of 

Didactic in mathematics education (Chevallard, 2005) and the Instrumental 

Approach from the field of cognitive ergonomy (Verillon & Rabardel, 1995). The 

approach is a middle range theory, domain specific to studying the use of newer 

technologies in mathematics education. Three main notions from the approach 

served to structure the analysis; praxeology and didactic process and instrumental 

genesis. In this brief paper praxeology and didactic process are discussed in depth.    

A praxeology is defined as the basic unit of human activity. This therefore includes 

mathematical activity and didactical activity. A praxeology is constituted of two 

inseparable parts, the praxis part and the logos part and each of these parts consists 

of two components (Chevallard, 2007, p. 133). The praxis block is formed by types 

of problems/tasks and by the techniques used to solve these tasks. The knowledge 

block, the so called discursive environment (logos) is structured in two levels: the 

technology (the discourse about the techniques used) and the theory that constitutes a 

deeper level of justification of practice (Barbé, Bosch, Espinoza, & Gascñn, 2005, 

pp. 235-238). In studying teacher action in the classroom I use the term didactical 

praxeology to refer to teacher activity directed towards promoting the students 

mathematical activity.  

The term didactic process is used to refer to the process directed towards the setting 

up of the mathematical praxeologies for the students. The process is claimed to be 

made up of six moments; the moment of first encounter, the moment of exploration, 

the technological theoretical moment, the technical moment, the institutionalisation 

moment and the evaluation moment (Barbé et al., 2005, p. 239). The analysis 

attempts to identify these moments in the classroom activity.    

Two other notions used to structure the data analysis are didactical configuration 

and didactical exploitation mode (Drijvers, Doorman, Boon, van Gisbergen & Reed,   

2009; Trouche, 2004, 2005). Drijvers et al. (2009) define these terms in the 

following way:     

A didactical configuration is an arrangement of artefacts in the environment, or, in other 

words, a configuration of the teaching setting and the artefacts involved in it. These 

artefacts can be technological tools, but the tasks students work on are important artefacts 

as well. Task design is seen as part of setting up a didactical configuration.  

An exploitation mode of a didactical configuration is the way the teacher decides to 

exploit it for the benefit of his didactical intentions. This includes decisions on the way a 

task is introduced and worked, on the possible roles of the artefacts to be played, and on 

the schemes and techniques to be developed and established by the students (ibid., p. 2).  
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METHODOLOGY  

Data collection 

Data was collected over a two week period, alternating between two parallel classes.  

Two researchers were present at each observation allowing for one researcher to 

video-record the lesson and the other to take comprehensive field notes.  

The Analysis Technique  

The complexity of analysing classroom activity has been widely recognised 

(Abboud-Blanchard, 2008; Barbé et al., 2005; Monaghan, 2004; Robert & Rogalski, 

2005). In line with Robert and Rogalski (2005) my analysis focuses on teacher action 

rather than modelling the global system in the classroom.  

The analysis technique involves four elements; organisation of space and time; the 

mathematical content; didactic episodes; and instances of instrumented activity. 

These elements are explained here.  

1. Organisation of space and time. In this part of the analysis a detailed description 

of the physical environment and how this is organised is given. In addition, an 

overview of the time disposition in the lesson sequences is presented in table form.  

2. The mathematical activity. In this part of the analysis the mathematical content of 

the lesson sequence is described by firstly presenting the relevant goals in the official 

syllabus and secondly identifying the four elements of the mathematical 

praxeologies; the tasks, techniques, discourse and theory. The mathematical problem 

and the techniques suggested by the teacher to solve the problem are identified and 

discussed. The main notions, concepts and mathematical notation employed in the 

lesson are presented.  (Barbé et al., 2005, pp. 236-238)     

3. Detailed analysis of didactic episodes with focus on tool use. In reviewing the data 

material it was noted that each lesson sequence was clearly divided into time periods 

signalled by the teacher comments, such as: ― But now we are going to do something 

fun and this is something you have not done before‖  (My translation)  

I decided to use these teacher made divisions in the analysis. I therefore define a 

didactic episode as a part of the lesson where the class engages in one primary 

activity as signalled by the teacher. For example: the first didactic episode in a lesson 

maybe an episode with recap of theory from the previous lesson; the second, 

correction of homework; the third, introducing new theory and so on. For each lesson 

sequence observed in the reported study a table, as shown below, was completed.   

Episode 

Time 

min. 

Teacher‘s  

goal –  

Moment of   

didactic 

process 

Mathematical 

organisation 

Didactical configuration Didactical exploitation mode 

Work mode Tools used 

by teacher 

Tool use - 

Didactical 

goal 

Tool use - 

Mathematical 

goal 

Table 1: Didactic episodes 
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The episodes are numbered and the time used on each episode is given. The 

teacher‘s goal is the goal perceived by the observer to be the goal of the episode, for 

example; a recap of theory. This goal is interpreted in relation to the moments of the 

didactic process. In the third column the parts of the mathematical praxeology 

presented in the didactic episode are identified as: task, technique, discourse, theory. 

Under the heading Didactical configuration, two sub-headings are included: 

Working mode and Tools in use. Working mode describes how and when the teacher 

devolves the mathematical task to the students. Four physical/material tool sets were 

observed to be in use by the teacher: the blackboard, a digital textbook, PC+ program 

Derive, body gestures. Each of these was used in conjunction with the voice and 

assumingly schemas (cognitive apparatus). The column Didactical exploitation mode 

has two sub-headings: Tool use - didactical goal and Tool use- mathematical goal 

included to describe how the teacher exploits the tools and with which didactical and 

mathematical intentions. The tools were sometimes used together. Instances when 

the teacher appeared to favour one tool over another or moved between the available 

didactical tools are identified. This practice of moving between tools within a 

didactic episode is termed weaving (Billington, 2009).  

4. Analysis of instrumented activity in relation to mathematical tasks   

In this part of the analysis focus is on instances of instrumented activity in the lesson 

sequences (Guin & Trouche, 1999, p. 201; Verillon & Rabardel, 1995). In each 

lesson sequence a few exemplary episodes are chosen for presentation and the 

manner in which the teacher uses the digital tools to solve the didactical task and the 

associated mathematical task/s is described. The instrumented technique/s used or 

advocated is/are identified and discussed.   

APPLICATION OF ANALYSIS TECHNIQUE 

This section contains an illustration of the application of the analysis technique. This 

is done by presenting two elements of a particular lesson sequence with Teacher1: 

organisation of space and time and didactic episodes.  

Illustration starts  

Organisation of space and time 

A large blackboard covered almost the entire front wall of the classroom. A screen 

was positioned on the right hand side in front of the blackboard covering part of the 

blackboard. A laser pointer was available. The teacher‘s portable PC was placed on 

the large raised desk directly in front of the blackboard and screen. Students had only 

their portable PC on the desk and perhaps a backpack on the floor. The class came 

quickly to order. Students were not observed to use pencil and paper. A picture of the 

classroom and a diagram of the student seating arrangement are shown here.  
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Figure 1: Picture of classroom                Figure 2: Student seating   

Time disposition was analysed as Table 2. In the fourth column the activity is 

interpreted in terms of the didactic process (Barbé et al., 2005).  

Time (m.) Time %  Activity Moment of didactic  process  

14 18 Recap of theory and homework  Institutionalisation moment  

14 18 Introducing new task Moment of first encounter + exploratory 

moment   

11 14 Students draw graph  (Derive)  Technical moment  

6 8 Trying  example together Technological-theoretical+technical 

moment 

34 43 Students work with problems: 

teacher goes around  
Institutionalisation moment  

Tot. 79    

Table 2: Time/activity analysis  

Didactic episodes  

A table showing the analysis into didactic episodes was completed. A section of the 

table is given in appendix 1. The completed table showed that there were fourteen 

shifts in activity ranging from one to seventeen minutes in the duration of the lesson 

sequence. The lesson sequence could be divided into three main parts. In the first 

part: introduction with homework correction and recap of previous work (episodes 1-

4: 15 min.) the digital textbook was the main or preferred tool used by the teacher. 

These episodes are interpreted as representing the institutionalisation moment of the 

mathematical organisation from the previous lesson. In part two, the new 

mathematical problem and the new techniques to solve the problem (episodes 5-9: 26 

min.) were introduced using both the program Derive and the blackboard. The 

phenomenon of weaving was observed in episode 9. Episode 5 of 5 minutes duration 

encapsulated both the moment of first encounter and the exploratory moment. The 

technical-theoretical moment and the technical moment were contained in episodes 6 

to 9. In final part of the lesson sequence, students worked individually or in small 

groups with the teacher assisting individual students in applying the new techniques 
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(episodes 10-14: 29 min.). These episodes are interpreted as the institutionalisation 

moment of the didactic process.   

In seven of the fourteen episodes the teacher used the digital textbook. It was used as 

a pre-written blackboard to display the formal mathematical theory and completed 

and uncompleted exercises. The data indicates that the tool occupies a strategic place 

in the classroom praxeologies of this teacher. The digital textbook provided support 

with exercises and formal presentation of the mathematical theory.   

The work mode descriptions indicate that the teacher clearly steered the lesson,   

presenting and explaining the mathematical concepts, tasks and techniques carefully 

without posing many questions to students. Questions posed required short answers. 

Student work was not displayed to the whole class. Students engaged actively in the 

discussion when the mathematical problem was posed in contextual terms. The 

mathematical tasks were only devolved to the students in the final part of the lesson 

which involved working on problems.   

Conclusion of illustration  

DISCUSSION OF RESULTS   

All observed lesson sequences were analysed in the manner as described above and 

then compared. In this section I will discuss some of the results of the full analysis 

with respect to the research question presented earlier: ―How do teachers structure 

mathematics lessons where newer technologies are in use and which technologies 

and tools are employed to achieve which didactical and mathematical goals‖. The 

full analysis revealed that the teachers had actively taken in use the new technologies 

and had developed similar patterns of practice and usage in the classroom.  

The physical environment and time allocation  

The physical classrooms in use were traditional in design except for the rather 

haphazard installation of a projector, a screen and a large number of electrical 

contact points. Individual teachers may not have much say in such issues but the 

seating arrangement could be altered easily by the teacher. The seating allocation 

observed and described above lends itself to an expository mode of teaching as all 

desks were directed towards the teacher. The arrangement also made discussion 

between students difficult. The screen was visible to all students and this allowed the 

teachers to demonstrate techniques instrumented on the PC. This was observed 

constantly. It was also possible for students to present their work to the rest of the 

class by coming forward connecting their PC to the screen. This was not observed.  

A comparison of the time allocation tables revealed an apparent lesson script of: 

teacher review; teacher leads to formula/technique; practice. This script is 

documented in research as a standard lesson script (Jacobs & Morita, 2002).  The 

introduction of the new technologies had seemingly not altered the traditional lesson 

script. The further division of the lessons into didactic episodes showed that there 
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were a large number of teacher initiated shifts, varying from eight to fourteen shifts, 

in activity in the observed lessons. The effect of so many changes in activity on 

student learning may warrant further investigation. Further analysis is also required 

to ascertain if these shifts were caused or stimulated by the availability of the digital 

tools. 

The didactic process 

The moments of the didactic process were identified within each didactic episode. 

The analysis revealed that generally only a few minutes in each lesson sequence were 

given to the moment of first encounter, that is introducing the mathematical tasks and 

that the blackboard was the preferred tool when introducing the mathematical 

problem.  In some of the documented lessons the students indicated that they did not 

really understand the problem with such comments as: ―What is it actually that we 

calculate, because I don‘t understand?‖  

The exploratory moment was allocated more time but the teacher always led the 

explorations with demonstrations. These demonstrations were enriched by the 

facility of the digital tools to reify the mathematical objects and relations. The 

technological-theoretical moment, that is the moment where the techniques are 

justified in reference to theory, tended to merge with the technical moment where 

techniques are practiced.  These two moments together were given the largest time 

allocation in the public part of the lesson sequences. All techniques were 

instrumented through the digital tools. The largest relative percentage of time in 

lessons was given to the students solving exercises. Both the institutionalisation 

moment and the evaluation moments were realised through short public summaries 

by the teachers and through the longer periods of students working alone or 

individually on exercises. The analysis showed that teachers favoured an expository 

teaching mode; giving explanations, demonstrating, with elicitation of answers from 

students followed by students working alone.  

Teacher tool use 

The blackboard appeared to be the preferred tool when the teachers presented the 

mathematical task, gave an overview, illustrated notation; presented and/or discussed 

contextual examples and gave responses to spontaneous questions. A subjective 

observation was that the teachers were livelier when using the blackboard: moving 

around, using arm movements, tracing over important features of a curve with the 

chalk and so on. In contrast to its use in classrooms without PC and screen, the 

blackboard was used in a rough way for sketching out problems and solutions. The 

blackboard seemed to acquire the status of conceptual sketch pad.  

The formal mathematical knowledge; both theory and the argumentation in worked 

exercises was presented pre-prepared through the digital textbook. This practice 

required extensive planning and preparation. The students thus did observe the 

teacher mathematician actually conducting, carrying through a mathematical 
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argumentation. The teachers clearly appreciated the word processing facilities 

offered by the digital tools as expressed in the following quotation.   

Teacher1: Now everyone has the possibility to work down, now it is the mathematical, it 

is the logic that causes a stop; it is not all the writing that causes problems. (My 

translation from SM_ 070212) 

The CAS program was employed in exploring the properties of mathematical objects 

in the exploratory moment and to demonstrate and justify techniques to solve the 

mathematical problems in the technological-theoretical and technical moments. 

Teachers planned for the technological- theoretical moment with the production and 

preparation of the interactive illustrations and demonstrations. All problems were 

solved with techniques instrumented through the CAS program although some of 

these techniques represented simulations of paper and pencil techniques.  

A phenomenon, which I term weaving, was often observed whereby the teacher 

moved between the available tools of the blackboard and the digital toolkit when 

holding public discourse.  

CONCLUSIONS AND FURTHER RESEARCH  

It could appear that the new technology was used to strengthen rather than alter 

existing practice as has been found in other research (Cuban, Kirkpatrick, & Peck, 

2001). The lesson observations were discussed with teachers informally and in a 

more formal meeting and these discussions provided insight into the logos behind 

some of seemingly unchanged practices.  

Regarding the analysis technique, one strength of the technique, as I see it, is that it 

divides the lessons according to the teacher determined shifts in activity. The 

imposition of the theoretical notions on the data may perhaps restrict the 

interpretation. I would like to further develop and adapt the analysis technique to 

analyse lessons other than mathematics lessons with a goal to identify commonalities 

and differences in practice. 
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E

p. 

(m

in) 

Teacher‘s 

goal – 

Moment of 

did. 

process 

Mathematical 

Organisation   

MO 

Didactical configuration Didactical exploitation 

mode 

Work mode Tools in use 

by teacher 

Tool use - 

Didactical 

goal 

Tool use – 

Mathematic

al goal 

 1 

(5

) 

Introd. 

researchers, 

prepares for 

lesson  

 Whole class 

lecture  

Digital 

textbook: 

theory page + 

examp. 

Pre-written 

blackboard/pu

blic textbook  

Presents 

formal math. 

knowledge  

 2 

(3

) 

Recap of 

concepts 

from 

previous 

lesson  

 

Instit. 

moment M5 

MO Finding rate of 

growth linear function.  

y f (x x) f (x)

x x

 

Use of f(x) instead of 

y, focus on ―rate of 

growth‖& new 

notation  

Whole class 

lecture: no 

questions to/or 

response from 

students  

Digital 

textbook:  

theory page  

Laser pointer 

+ hands: 

gesticulate 

―how fast‖ 

 

Pre-written 

blackboard/pu

blic textbook 

 

Presents 

formal 

mathematical 

knowledge. 

Mathematical 

notation. 

 3 

(5

) 

Correct 

homework:  

testing 

application 

of 

knowledge  

Tech. 

moment M4 

Tech: using formula to 

calculate rate of 

change of linear 

function. Tech: 

fractions and sign 

change with arith. 

operations involving 

negative numbers T2 

Whole class 

lecture:  short 

questions and 

response to 

individual 

students  

Digital 

textbook:   

worked 

examples 

Pre-written 

blackboard/pu

blic textbook 

 

Presents 

formal 

mathematical 

argumentatio

n + 

mathematical 

notation.  

  

4 

 

(2

) 

Recap/ 

application 

prior know.    

Instit. 

moment M5  

Tech. Rate of growth 

linear func.  

y f (x x) f (x)

x x

, 

Practical ex., 

Discourse: math. 

terminology, rate of 

change T2 +T3 

Whole class 

lecture: 

question from 

one student  

 

Digital 

textbook:   

Uses hand and 

laser pointer 

to graph 

screen.  

 

Pre-written 

blackboard/pu

blic textbook. 

Presents 

formal 

mathematical 

argumentatio

n + 

mathematical 

notation. 

Table 3. Didactic episode extract  
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IMPLEMENTATION OF A MULTI-TOUCH ENVIRONMENT 

SUPPORTING FINGER SYMBOL SETS 
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Basic concepts of numbers and operations are fundamental for mathematical 

learning. Suitable materials for developing such basic concepts are hands and 

fingers. Among other things, this is because of their natural structure of 5 and 10. To 

support the development of concepts and the process of internalization a linking 

between different forms of representations by the computer can be helpful. To benefit 

of both, the advantages of the hands and fingers and the automatically linking, we 

suggest using multi-touch technology, i.e. computer input devices that are able to 

recognize several touch gestures at the same time. Here, children can present 

numbers with their fingers that produce virtual objects. These objects can be 

automatically linked with the symbolic form of representation.  

Keywords: number concepts, finger symbol sets, multi-touch, early math, Cinderella 

THE ORDINAL AND CARDINAL CONCEPT OF NUMBERS AND 

OPERATIONS 

―How many things are there?‖ – For parents as well as for mathematicians, this is a 

common question to pose, if a child already has knowledge about numbers. For the 

child, this question is almost always the initiation to start counting verbally by saying 

the number words in a row (Fuson, 1988). The fundamental principles needed for 

answering the question are a) the one-one principle that relates every single object to 

exactly one numeral (Gelmann & Gallistel, 1978), b) the stable-order principle 

prescribing the correct order of numbers (Fig. 1, left), and c) the last-word rule that 

assigns the last said numeral not to the last counted object, but to the quantity as a 

whole (Fig. 1, right). 

 

Figure 1: Ordinal (left) and cardinal (right) concept of numbers 

Here, the change from the ordinal concept of numbers, where the numeral is part of 

the numeral row, to the cardinal concept of numbers, where the numeral identifies a 

quantity, is necessary. It is not necessary to count a quantity in order to know it, that 

is, the ordinal concept is not a necessity for the cardinal concept. Resnick, Bill, 

Lesgold and Leer (1991) distinguish the development of mathematical knowledge by 

two components that are developed independently: protoquantitative schemata and 

the mental number line. To build up a well-developed concept of numbers, these two 
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threads of development have to be linked. For many children this is a critical 

problem (Fuson, 1992, p. 63).  

Children who do not have a proper linking between the two concepts can 

misinterpret addition and subtraction as a demand to count forwards or backwards. 

As long as the children calculate with numbers smaller than 20 they can apply this 

strategy successfully. But, for instance, when they want to add 55 to 27 and begin to 

count „28, 29, 30, 31...―, there is no chance to come easily and quickly to the correct 

result. 

„The protoquantitative part-whole schema is the foundation for later understanding of 

binary addition and subtraction and for several fundamental mathematical principles, such 

as the commutativity and associativity of addition and the complementarity of addition 

and subtraction. It also provides the framework for a concept of additive composition of 

number that underlies the place value system.― (Resnick et al., 1991, p. 32). 

For example when you want to add 6 and 8 with the use of the part-whole schema 

you can split and add in lots of ways (e.g. Fig. 2).  

 

Figure 2: Different ways to add with the part-whole schema  

FINGER SYMBOL SETS 

Calculating with fingers has a very bad reputation in mathematics lessons, as it is 

usually seen as an indicator for counting. Most children do as they have learned from 

young days on and count objects by „Counting-Word Tagging to Number― 

(Brissiaud, 1992). According to the ordinal concept of numbers each finger is related 

to exactly one numeral. To illustrate this we ask what happens if the sixth finger is 

buckled? The „name― of the last finger, that indicated the quantity, was „10― before, 

but now the finger has to be renamed into „9― (Fig. 3). 

 

Figure 3: Order-irrelevance principle  
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The child has to know that it is irrelevant which fingers it uses to present a quantity. 

To present „3―, the thumb, the index finger and the middle finger can be used as well 

as the little finger, the middle finger and the thumb, or any other combination of 

three fingers. As we point out below, the cognitive process behind this fact can be 

experienced and thus supported by the use of multi-touch technology. 

Amongst others, the advantages of fingers and hands are their permanent availability 

and their natural structure in 10 fingers per child with 5 fingers per hand. The 10 

fingers qualify the hands to work out questions about the decimal number system, 

e.g. „How many children do we need to see 30 fingers all at once?― The „power of 

five― (Krauthausen, 1995) is due to the ability to instantaneously recognize quantities 

(subitizing) up to 4. Applying this to the hands, the shown quantity of the fingers of 

one hand can be conceived simultaneously and hence the fingers of both hands can 

be conceived quasi-simultaneously. Furthermore, one hand gets a special status 

because children tend to present numbers greater than five sequentially (Brissiaud, 

1992, p. 61). For example, to present „7―, they tend to use one full hand and then add 

two fingers of the other hand. In this way the decomposition of the numbers from 1 

to 10 with the power of five can be worked out. But not only these, also all other 

decompositions are possible (Fig. 4) and can be conceived quasi-simultaneously.  

 

Figure 4: Decomposition of numbers with finger symbol sets 

If the fingers are used like this, in sense of the part-whole schema, they are a 

qualified working material for a well-developed concept of numbers and operations 

(Steinweg, 2009). Brissiaud (1992, p. 56) coined the notion „From Finger Symbol 

Sets to Number―: 

„Certain children who were not exposed early to the use of finger symbol sets may 

become counters, whereas children who were encouraged to use finger symbol sets may 

preferentially choose finger strategies―.  

If children have a part-whole schema of numbers the transition to addition and 

subtraction is easy. It is just another way of nonverbal symbolic representation of the 

fact that „two parts make a whole―. 

Further strategies like variation in the opposite or in the same direction can than be 

worked out easily: If one finger is buckled, than another finger must be stretched to 

keep the same quantity. To get the difference of two quantities, e.g. of 9 and 7, you 

can vary the numbers in the same direction. For example, a whole hand can be 
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omitted, which corresponds to subtracting five from each quantity. It is evident that 

the difference of 9 and 7 is the same as the difference between 4 and 2. Based on 

such strategies the decadic analogy can be build up. 

It is important to pay attention to the fact that the children stretch their fingers 

simultaneously to represent quantities with them. If they show them one-by-one the 

positive effects of these strategies are lost and the children will still use counting for 

addition and subtraction. 

This introduction can only serve as a small insight into the possible representations 

of numbers and operations by hands and fingers and their usage in early arithmetic. It 

is the process of internalization that is of essential importance: How can the children 

benefit from the mathematical content of these representations and actions and use 

them in their mental processes?  

THE PROCESS OF INTERNALIZATION SUPPORTED BY THE USE OF 

MULTI-TOUCH-TECHNOLOGY 

The process of early mathematical learning follows four stages, independent of the 

arithmetical subject (Aebli, 1987, Grissemann & Weber, 2000). Coming from 

concrete manipulations with different objects (stage 1), the children have to abstract 

these manipulations and operations to pictorial representations (stage 2). 

Subsequently they pass over to symbols (stage 3) with the aim to automate their 

actions (stage 4). For us, stage 2 is of special importance, because there the process 

of internalization takes place. The child has to comprehend the manipulation of 

concrete objects as a representation of a quantitative structure and it has to capture 

the structure and the relations of the concrete manipulation in an intellectual activity 

(Gerster & Schultz, 2004, p. 47). Lorenz calls this process „focus of attention―. To 

facilitate this process of focus and abstraction and to develop it, a dialog is essential 

(Lorenz, 1997, p.93):  

„In talking about the working material and the relations between numbers and operations 

that it represents, the concepts in development of the learner are going to be clarified by 

verbalisation.―  

In this sense, Aebli (1987) suggests that the children should review their concrete 

manipulations and make forecasts about further actions. Doing this, they comment 

their own manipulations by iconic illustrations till they are able to reproduce the 

structures and relations of the manipulations in conceptions. To support this process 

Aebli (1987, p. 238) established the following rule:  

„Every new, more symbolic representation of the operation must be linked as closely as 

possible with the precedent one.―  

The enactive form of representation with finger symbol sets should be related to the 

nonverbal symbolical form of representation (MER [1]) (Ainsworth, 1995; Mayer, 

2005). But as studies show some of the children even don‘t link the different forms 
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of representations when they are designed in form of MERs (Clements, 2002). For 

them, an automatic linking designed with the computer (MELRs [2]) can help them 

to experience the relations (Thompson, 1992; Clements, 2002; Ladel, 2009). This 

experience should be as natural and direct as possible. In this article we suggest to 

use multi-touch technology for this experience, where the children can manipulate 

with their hands and fingers and an automatic linking with all other forms of 

representation can take place. In the remainder of this article we assume the 

availability of a multi-touch-enabled table. Such a table consists of a display surface 

connected to a computer and some tracking hardware that can recognize several 

touches on the display simultaneously and report them to the computer software. 

Similar technology with a different form factor is available in desktop monitors, 

tablet computers and devices like the Apple iPad, or mobile phones. With the 

availability of hardware as already imagined by Kay (1972) we now have to answer 

the question of the educational implications more than ever.  

The basic underlying idea for all the activities sketched only briefly in the following 

is that the computer can track the children‘s actions on the table and give nonverbal 

symbolic representations of either the current situation or the action that lead to it in 

form of a written protocol. 

In a first scenario, the children represent numbers with their hands and fingers as 

described before. This enactive form of representation shall produce an iconic one on 

the display. The computer creates quadratic pads on the surface of the multi-touch 

table. Through the contact of the fingers with the multi-touch interface there is not 

only a link between the enactive form of representation with other forms of 

representation but also between the tactile and the visual sense. While representing 

numbers enactively and thus iconically, there is an automatic link to a nonverbal 

symbolic form of representation. This representation can be imagined like a paper 

tape or sales slip and serves as a kind of protocol for the manipulations the children 

do. Such a protocol can support the focus of attention and the numerical aspects of a 

task (Dôrfler, 1986). 

In this activity it is possible for children to experience that it is of no particular 

importance which fingers they use to present quantities. At a table, it is also possible 

that the children work in teams: Two children can ―share the work‖ to present two 

fingers if each touches the table with one finger. While this sounds funny for the 

number two, it is of great importance for partitions of larger numbers. Two partners 

can try to find all ways to partition numbers up to 20 into two numbers up to 10. 

Working in teams or groups the children are also able to present numbers greater 

than 10, emphasizing the social aspects of learning. Because the protocol 

immediately reflects the actions of the children their focus of attention is on the 

mathematical content of their actions automatically, guiding them to abstraction. 
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It is also possible to support the four basic arithmetic operations and their basic 

concepts in such an environment. Regarding addition, students can develop the basic 

concept of a union by manipulating the virtual objects (pads) and arrange them close 

to each other. For example, if the child merges a group of 3 pads and a group of 5 

pads the protocol will show the symbolic representation of this action as „3 + 5 = 8―. 

Here the focus of attention lies on the fact that this action constitutes a basic concept 

of addition, together with its nonverbal symbolic form of representation. In multi-

touch technology there is also the possibility to draw a circle around some pads with 

the effect that these pads are bundled (a so-called lasso-gesture). This again is a 

manipulation based on the basic concept of union. Another task in the realm of 

addition and subtraction may be that 3 pads are shown and the child should create so 

many pads that in the end there are 7 (3 + _ = 7). 

The basic concept of balance can be represented as well. Children can create 

quantities, remove from them, manipulate them with their fingers, and see the 

consequences of the manipulation at the same time in the nonverbal symbolic 

protocol. Likewise it is possible to give instructions in the nonverbal symbolic form 

and to see the output in the iconic forms with the pads. 

It is rather easy to imagine that addition and subtraction can be done in such an 

environment, and we have shown some ways how the action or the state can be 

linked to a nonverbal symbolic representation. For multiplication and division it is 

advisable to take advantage of the time as another dimension. The temporal-

successive idea of multiplication that can be traced back to a repeated addition is 

mapped to a repeated touch action of the same quantity of fingers several times. The 

protocol may then show, for four touches with five fingers, ―5 + 5 + 5 + 5 = 20― as 

well as ―4 • 5 = 20―. Thus the children can see that there are different ways to 

protocol their manipulation. If several children are working together they can take 

advantage of the spatial-simultaneous idea of multiplication, creating the same 

quantity by several children at the same time. For division, one example activity 

would be to move pads and build piles of the same amount to divide a given number 

of pads.  

TECHNOLOGICAL IMPLEMENTATION 

In order to implement prototypical environments and for recording experimental data 

of children‘s interaction with a multi-touch-enabled screen we used the interactive 

geometry software (IGS) Cinderella (Richter-Gebert & Kortenkamp, 2006), which 

acts as a standard tool for rapid prototyping of learning environments. The 

customization of the learning environments is done via the integrated scripting 

language CindyScript (Richter-Gebert & Kortenkamp, 2010). CindyScript is a 

functional programming language that was designed to match standard mathematical 

expressions as closely as possible, while still providing all the structural elements of 

imperative programming. 
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As CindyScript can be triggered by user actions (like pressing the mouse or a key, 

moving the mouse, or starting a simulation) it is possible to change the standard 

behaviour of an IGS into the required interaction for an experiment. 

A striking example for such a change in user interface behaviour is the method of 

adding points in the DOPPELMOPPEL learning environment (Ladel & Kortenkamp, 

2009). Here, instead of having a dedicated mode to create points, points can be 

created in drag mode by pulling them from a never-ending stock onto a virtual table, 

and they can be deleted by just moving them off the table. For finger symbol sets we 

adapt this technique: Pads can be created without referring to a stock pile, but just by 

placing fingers in an area next to the table. This allows for multiple pads to be 

created simultaneously, as is necessary for quasi-simultaneous representations of 

numbers. 

This modeless operation of the learning environment (see Raskin (2000) for a 

discussion of modal operations in software) is necessary for any multi-touch 

environment: As one of the goals is the collaboration of several children, and the 

actions of the children cannot be differentiated, i.e., the computer cannot know 

which child is associated to which touch event, any mode would have to globally 

valid for all children at the same time. Switching to another mode (for example, 

switching between dragging pads and creating pads) would have to be announced 

and negotiated. Such negotiation would introduce too many obstacles in the user 

interaction and counters the collaborative advantages of multi-touch. 

The latest version of Cinderella offers multi-touch support by adding the TUIO 

protocol for input events (Kortenkamp & Dohrmann, 2009). Currently, this support 

is restricted to allowing several elements to be dragged at the same time. Other 

modes, like the add-point mode or the add-line mode, are not multi-touch enabled. 

For the modeless operation, as pointed out above, we are using a helpful extension of 

the scripting facilities of Cinderella: Touch events (finger detected, finger moved, 

finger released) are translated into mouse events (mouse down, mouse move, mouse 

up). Using CindyScript, custom actions can be added to these touch events as it is 

possible with mouse events. 

It is not straightforward to adapt a scripted interface to the fact that several press-

drag-release sequences can happen simultaneously. It is customary to program user 

interfaces under the assumption that mouse events are exclusively delivered in the 

prescribed order of press, drag (possibly repeated), and release. This is relevant for 

example if a program assumes a ―currently moved element‖, like a currently moving 

point in an IGS. Designing software without that general assumption is much more 

difficult as it involves keeping track of all the current objects and states and their 

association to the touching fingers. CindyScript facilitates this design process by 

offering touch-local variables: Declaring a variable to be touch-local using the 

mtlocal()-function assures the availability of a different instance of that variable 

for each press-drag-release sequence of a finger. This is very similar to the concept 
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of switching contexts in recursive programs. 

As an example, consider a program that will record the current mouse position in the 

mouse down event and then connect that position with the current mouse position in 

the drag event. A simple CindyScript implementation would be to place 

start=mouse().xy; in the mouse down event and draw(start,mouse().xy); in 

the drag event. Without declaring the start variable touch-local this would fail with 

multi-touch events, with the declaration mtlocal(start); it will work flawlessly 

with any number of simultaneous touches by recording the start position of each 

finger separately. 

The exchange of global information (like the number of total touches) is easily 

possible by not declaring variables touch-local. Placing the commands 

count=count+1; and count=count-1; into the mouse down resp. mouse up events 

will keep track of the current number of fingers touching the surface. 

We found the prototyping facilities of CindyScript with the touch extension to be 

very appropriate for our needs. The final behaviour of the learning environment is 

not yet determined and should be easily adaptable to empirical findings during the 

process of interface design. Also, any professional software programming services 

would need a full specification and, besides being too expensive in this early 

research stage, could not reflect the didactic considerations as described above. 

FORECAST 

We are currently working on implementing the above scenarios using a multi-touch 

table built at CERMAT. A first study that examines the critical point in translating 

numbers and operations from and in different forms of representation has taken place 

in October 2010. At the same time we conducted a pre-study about the way children 

touch with their fingers and present quantities on a table. The data analysis is in 

progress. 

Finally, we aim to answer the research question about the impact of the availability 

of such multi-touch learning environments regarding the diagnosis and the support of 

acquiring basic concepts of numbers and operations. 

NOTES 

1. MER: multiple external representations (Ainsworth, 1999) 

2. MELRs: multiple equivalent linked representations (Harrop, 1999) 
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Twenty-five final-year undergraduate primary education students, who were 

attending a six month course on mathematics education, participated in a research 

project during the 2009 spring semester. The course, based on the Technological, 

Pedagogical and Content Knowledge framework and design experiment procedure, 

was organised so as to incorporate educational software and educational 

mathematical scenarios in teaching approaches created by undergraduate students. 

This article presents the course design, the research procedure and some research 

results concerning the integration of educational software and mathematical 

scenario in students‘ teaching approaches. 

Keywords: Mathematics, TPACK, Undergraduate Primary Education students 

INTRODUCTION 

Over the past few decades, one of the most important issues related to educational 

change and educational innovation is the integration of Information and 

Communication Technologies (ICT) (Hoyles, Noss, & Kent, 2004). ICT constitute 

an essential tool for teachers, since it can be used as: a) an educational method to 

support student learning; b) as a personal tool to prepare material for his/her lessons, 

to manage a variety of projects electronically and to search for information; c) as a 

tool to collaborate with other teachers or colleagues (Da Ponte, Oliveira, & 

Varandas, 2002). The 2003 reformed Greek National Curriculum in Mathematics has 

been implemented in the nine-year compulsory education since 2006, as ‗Cross 

Curricular/Thematic Framework (CCTF)‘. One of its general principles is ―to 

prepare pupils to explore new information and communication technologies (ICT)‖ 

(Official Government Gazette, 2003, p.1). The Pedagogical Institute (Ministry of 

Education) has developed a compulsory national mathematics textbook for each 

school year, which is accompanied by national educational software. This is the case 

for all teaching subjects in the nine-year compulsory education. Despite significant 

political will and spending by governments on technical equipment and teacher 

training, ICT integration in schools is often low (Jimoyiannis & Komis, 2007). 

Therefore, from a constructivist viewpoint (von Glasersfeld, 1995; Cobb, Stephan, 

McClain, & Gravemeijer, 2001), integration of educational software into 

undergraduate students‘ teaching practice is a crucial factor for teachers‘ future 

‗establishment‘ and improvement in classroom practices. During the 2008-2009 

spring semester, a six-month course on primary maths teaching during practicum 

(school attachment) was organised by the researchers with the aim of integrating ICT 
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and especially-designed mathematical scenarios (Kynigos, 2006) in students‘ 

teaching approaches. 

LITERATURE REVIEW 

Cobb et al. (2001) explain - according to a constructivism theory - how learners 

make sense of their environments and experiences to create their own knowledge, 

while Schoenfeld (1998) argues that whenever the student is actively involved in an 

activity then s/he is more likely to learn its content. However, this process requires 

teachers to pose meaningful and worthwhile tasks to facilitate students‘ learning. 

Nowadays, research in educational technology suggests the need for Technological 

Pedagogical Content Knowledge (TPCK or TPACK) so as to incorporate technology 

in pedagogy (Mishra & Koehler, 2006; Angeli & Valanides, 2009). TPACK is based 

on Shulman‘s (1986) idea of ‗pedagogical content knowledge‘, which is related with 

the Knowledge Quarter (Rowland, Turner, Thwaites, & Huckstep, 2009). This 

interconnectedness among content, pedagogy and technology has important effects 

on learning as well as on professional development. 

Mishra and Koehler (2006, p. 1020) suggest that  

―…a curricular system that would honour the complex, multi-dimensional relationships 

by treating all three components in an epistemologically and conceptually integrated 

manner‖ 

and they propose an approach which is called ‗learning technology by design‘. 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram representing the overlapping components of technological 

pedagogical content knowledge (Source: Mishra & Koehler, 2006, p. 1025) 

They propose a model suggesting three unitary components of knowledge (content, 

pedagogy and technology), three dyadic components of knowledge (pedagogical 

content, technological content, technological pedagogical) and one overarching triad 

of knowledge (technological pedagogical content). Therefore, Pedagogical Content 
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Knowledge (PCK) is the knowledge of pedagogy that is applicable to the teaching of 

a specific content (Mathematics). Technological Content Knowledge (TCK) is the 

understanding of how technology and content both aid and limit each other. 

Technological Pedagogical Knowledge (TPK) is the understanding of how teaching 

and learning changes when particular technologies are used. The authors have 

represented TPACK through the use of a Venn diagram (Fig. 1), where the 

individual circles represent the knowledge components of content (C), pedagogy (P), 

and technology (T) and the overlapping area of all three circles represents TPACK. 

During the last two decades many research projects have made significant 

contributions to the teaching and learning mathematics. For example, researchers 

claim that when students are working with ICT, they are more able to focus on 

patterns, connections between multiple representations etc. (Laborde, 2002), but the 

integration of ICT progresses slowly in everyday school practices (Artigue, 1998; 

Laborde, 2002). In Greece, where technological tools are used, they are often used by 

teachers in whole class teaching rather than by the students themselves (Jimoyiannis 

& Komis, 2007). 

Concerning TPACK in mathematics classrooms, research projects have already been 

done, exploring a) teachers‘ development model on TPACK (Niess, 2005), b) pre-

service teachers‘ TPACK development (Cavin, 2007) and c) the use of TPACK to 

teach probability topics and data analysis (Lee & Hollebrands, 2008). 

RESEARCH METHODS  

In order to explore the development of TPACK, we have employed design 

experiments which constitute an effective methodology for studying teacher 

development in the setting of an education university department (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003). The researchers have taken a triangulation 

multiple-method approach (qualitative and quantitative) to ensure greater validity 

and reliability. 

The participants were 25 final-year undergraduate primary teachers (16 females and 

9 males) in the Department of Primary Education at the University of the Aegean, 

who were attending the compulsory course ‗Teaching Mathematics - Practicum 

Phase‘ during the 2008-2009 spring semester. The first two authors used to have a 

three-hour meeting with the participants in mathematics lab, twice a week. The lab 

held twelve PCs, with Windows XP, MS Office 2003, internet access, mathematical 

software (Educational Software of Pedagogical Institute for Mathematics (ESPIM), 

Geometer‘s Sketchpad) and presentation tools. The need for a technologically 

elaborate working environment that would encourage students to use technology led 

the research team to use many technological tools (the author‘s website, the course‘s 

electronic mail, Moodle as the course and learning management system, a forum, a 

blog and mobile SMS). 

The research work was developed into five stages: 
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1. During the first stage and before the beginning of the first lesson, quantitative data 

regarding undergraduate primary teachers a) background (studies etc.); b) individual 

learning style according to index of learning styles instrument (Felder & Silverman, 

1988); c) attitudes towards ICT, based on Greek computer attitudes scale (GCAS) 

(Roussos, 2007); d) self-efficacy in ICT according to Greek computer self-efficacy 

scale (GCSES) (Kassotaki & Roussos, 2006); e) attitudes towards ES - for this 

purpose, we have designed an educational software attitudes scale (ESAS) based on 

Roussos‘ GCAS; f) self-efficacy in mathematics according to the content principles 

of the CCTF were gathered (GMSES). The same data were gathered from the 

participants at two more instances (after three months and at the end of the semester), 

in order to measure possible quantitative differences. 

2. Cobb et al. (2003) experiment design procedure constituted the second stage. In 

particular: a) The participants were given a suitable student‘s worksheet and they 

worked on geometry tasks about square, rectangle, polygons, cube and parallelepiped 

(area, perimeter, volume, edge etc). b) After or before their paper and pencil work, 

they tried to work the same tasks by using the national ESPIM. Each lesson consisted 

in the teaching of those strategies that incorporate the usage of ICT, so as to involve 

undergraduate primary teachers in the investigation of geometrical shapes and forms. 

Teaching was limited to the investigation of geometry problems so that when the 

teachers come up with their own teaching scenarios (Kynigos, 2006) they will be 

able to use suitable technological tools that are both efficient and investigatory. The 

microworlds used were: geo-board, 3D solid manipulation (solid-board), calculator 

and table tracking from the ESPIM. c) In each lesson, researchers used technological 

tools while the teachers participated as students taking a lesson in class. d) At the 

end of each lesson, the teachers were asked to fill out an electronic feedback form, 

contributing thus further to a discussion of the three-hour lesson that had just 

finished. The form focused on the development of TPACK in mathematics, with 

questions on technological tools, teaching strategies and benefits gained from the 

lesson. This procedure was repeated eight times during the spring semester 

2008/2009. For example, one of the worksheets proposed the following task to the 

students:  

―An a-edge cube is transformed to another one with n-times the edge. What happens with 

the volume of the new cube?‖  

While the students worked on this worksheet it turned out that some of them had 

misunderstood the concept of the volume, so according to Cobb et al. (2003) 

procedure, an alternative design worksheet was given to the students to work on it 

and overcome this misunderstanding. A circled procedure like the latter one was 

followed by the researchers when it emerged from students needs. 

3. The teachers had to write a first assignment that consisted in the search for all 

geometry problems, activities and exercises involving geometrical shapes and solids 

in the national math textbooks for the grades 5 and 6, as well as the grades 7, 8 and 
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9. They also had to work on two activities, two exercises and two problems of their 

choice (from the above units) using ESPIM. Furthermore, they were asked to create a 

lesson plan spontaneously for teaching the "area of a parallelogram‖ chapter or ―the 

volume of a parallelepiped‖ for grade 6 mathematics. 

4. The teachers had to be taught the notion of the ‗educational scenario (ES)‘ so they 

were asked to participate and act as students in an educational scenario created by 

the research group for the purposes of the lesson. The title of the scenario was 

‗Creating Mobile Phone Networks‘ and it constituted a holistic picture of a learning 

environment, without limitations but with the ability to focus on those aspects that 

the educator judged to be of importance (Kynigos, 2006). Then the teachers were 

asked to create their own ES, to be used with the chapter of the lesson plan they had 

already created. Therefore, with the theoretical and practical knowledge and the 

experience gained, the teachers produced their own ES over the following two 

weeks. Each ES was presented to their peers, who acted as students of a class. The 

latter provided feedback and assessed the ES on an especially designed form by the 

researchers. After that, the teacher, creator of the ES, having taken his/her peers‘ 

comments into consideration, returned two weeks later and presented his/her 

improved ES version. Security and originality were safeguarded as all ESs had been 

posted before the beginning of the presentations. ES presentations were audio 

recorded on a digital camera so they could be further analysed. Finally, the teachers 

were self-assessed and gave feedback on their own ES. In their fourth assignment 

(assessment) students had to create an ES to be used with the chapter of the lesson 

plan they had already created for grade 8 students. 

5. During the above process, semi-structured interviews were conducted very 

frequently. The initial students‘ interview took place after the submission of the first 

assignment and the final interview was conducted after the completion of the second 

presentation of the ES. The purpose of these interviews was twofold; on the one 

hand, to investigate procedures followed by the teachers during the writing up of 

their first assignment and their ES, their perceptions of TPACK in math and the 

reasons for their inclusion or non-inclusion of ICT in the lesson plan. On the other 

hand, the purpose of the interview was to determine whether or not this constructivist 

design experiment procedure was personally suitable for them. Interviews were 

recorded for further analysis. 

6. During the last meeting, the teachers were asked to anonymously complete a 

questionnaire regarding their satisfaction with the course. Twenty-four completed 

questionnaires were returned out of the twenty-five that were handed out. 

7. Finally, we evaluated the teachers in ―paper and pencil‖ and ESPIM work. 

During the next school year (2009-2010), 11 out of 25 participants were hired as 

primary education teachers. Having completed their first year of teaching, we asked 
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them to fill out an online questionnaire to investigate if and how they integrate 

ESPIM and ES in their teaching. 

In the next section, the results from a) the analysis of quantitative data on students‘ 

computer attitudes, self-efficacy in ICT, attitudes toward educational software, and 

self-efficacy in math, and b) the analysis of quantitative data on course satisfaction 

of participants will be presented. 

SOME RESEARCH FINDINGS 

In order to analyse the quantitative data gathered about course satisfaction of 

participants we applied a set of powerful ordinal regression methods. The most 

important results focus on the determination of the course weak and strong points, 

according to the MUSA methodology (Grigoroudis, & Siskos, 2002). The teachers‘ 

global satisfaction with the course was characterized as extremely high. The mean 

satisfaction value, as measured by the method, reached 98%, while it is of great 

importance to note that all comments were positive. The teachers also appeared 

satisfied in the partial (per criterion) satisfaction survey (Table 1), where negative 

comments were sparse. 

Criteria Satisfaction 

Educational Program 90.02 

Professor 97.10 

PhD Researcher 92.05 

Mathematics Lab 97.00 

Educational Material 97.09 

Table 1: Satisfaction per criterion 

The research results from the study of the teachers‘: a) attitudes towards ICT 

(GCAS), b) self-efficacy towards ICT (GCSES), and c) self-efficacy towards 

mathematics (MSES) are the following: 

a) The 30 items of GCAS (Roussos, 2007) were summed to provide a total score 

(from 30 to 150) representing the participants‘ overall attitude toward computers. 

Descriptive statistics of the first and last GCAS scores are reported in Table 2. The 

results show an improvement of teachers‘ attitudes toward ICT, which was not 

statistically significant [F(1.4, 32.28)=2.28, p=.13]. 

b) The GCSES (Kassotaki & Roussos, 2006) scores represent the participants‘ self-

efficacy toward ICT (scores ranged from 29 to 145). The results (Table 2) again a 

statistically non-significant improvement [F(1.57, 36.26)=1.43, p=.25]. 

c) Finally, in order to explore the teachers‘ self-efficacy toward math (GMSES), we 

used the 7 content principles of the CCTF (problem solving, numbers and operations, 

measurement and geometry, gathering and processing data, statistics, ratios and 
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proportions and equations). The GMSES provided a total score representing the 

participants‘ self-efficacy toward math (scores ranged from 7 to 35). The results 

(Table 2) show that the teachers‘ self-efficacy towards math improved significantly 

during the semester [F(1.58, 36.44)=3.98, p=.036]. Post hoc comparisons using t-

tests with Bonferroni correction demonstrated a statistically significant difference 

between the first and the second measurement stages (p=.021). 

GCAS Measurement Stages Mean SD N 

 1 103,08 20,61 24 

 3 109,25 18,60 24 

GCSES  Mean SD N 

 1 109,17 24,12 24 

 3 113,46 20,74 24 

GMSES  Mean SD N 

 1 22,58 5,70 24 

 3 24,21 5,32 24 

Table 2: Means and standard deviations of the four scales for the two measurement 

stages (beginning and end of semester) 

DISCUSSION AND CONCLUSIONS 

Regarding to our final-year undergraduate primary education students‘ attitudes and 

self-efficacy towards ICT, it seems that the participants had already acquired the 

necessary knowledge of ICT usage before entering university or during their 

university studies and they were comfortable with its use, as the GCAS and GCSES 

means from the research were consistent with Roussos (2007) and Kassotaki & 

Roussos (2006) research findings. Additionally, these findings were consistent with 

the Bahr, Shaha, Farnsworth, Lewis, and Benson (2004) results, who reported that 

pre-service teachers had positive attitudes towards technology and technology 

integration. Moreover, it seems that the participants of the present study had already 

reached high level knowledge of technology (TK). These findings are also consistent 

with the Wentworth, Earle, and Connell (2004) results. The positive attitudes 

towards ICT and ES had a positive impact on the university faculty who organise 

educational technology courses (Jimoyiannis & Komis, 2007). Moreover, it seems 

that the course experiment design and the involvement of undergraduate primary 

teachers with educational software for math improved their self-efficacy towards 

math. Also, undergraduate primary teachers improved their mathematical content 

knowledge. It seems, therefore, that the teachers‘ attitudes and self-efficacy 

constitute a force that needs strengthening if ICT is to be incorporated into their 

teaching practices. 
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The extremely high results on students‘ satisfaction lead us to posing of new research 

questions. The high satisfaction level might be attributed to: a) The small number of 

undergraduate primary teachers-participants (Krentler & Grudnitski, 2004); b) The 

support the teachers received during the entire course via blog, forum, website and e-

mail services. It is worth mentioning that the professor and the PhD researcher gave 

responses at the latest within the next day to the 400 e-mails received during the 

course. Furthermore, the forum received 140 messages (not counting those sent by 

the professor and the PhD researcher); c) The everyday communication between the 

teachers and two individuals (the professor and the PhD researcher); d) The 

possibility of ‗self-defensiveness‘ on the part of the participants might have resulted 

in inaccurate responses since this was their first time to participate in a satisfaction 

research study. 

It is our belief, therefore, that undergraduate primary teachers‘ satisfaction in a 

learning environment that combines teaching in the university classroom and support 

via an appropriate learning environment plays a crucial role in the sustenance of 

programmes that incorporate ICT in teaching and learning. Additionally, the 

correlation between satisfaction and undergraduate primary teachers‘ characteristics 

(learning style, attitude towards ICT and self-efficacy in the use of ICT) constitutes a 

crucial parameter in the improvement of the education provided. On the other hand, 

teachers‘ characteristics, their method of making undergraduate primary teacher 

contact and their teaching style seem to affect the teachers‘ satisfaction. The above 

mentioned findings reveal that each new educational establishment needs to adopt an 

evaluation programme for its provided services, in order to obtain, amongst others, 

the necessary data on undergraduate primary teachers‘ satisfaction about the course 

services (Elliott & Shin, 2002) so that a circled process will take place for the new 

course improvement. 

In addition, it seemed that the crucial factors for the integration of educational 

software and scenarios into the teaching of mathematics are the students‘ positive 

attitudes towards ICT and educational software and the self-efficacy in technological 

tools and math. Further analysis of qualitative data (interviews, narrative 

observations and essays) concerning these quantitative research findings and also the 

students‘ scenarios structures, is currently under way so that these triangulation 

research methods will deeper our understanding of primary teacher training on 

Technological, Pedagogical and Content Knowledge in Mathematics education. 
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Spreadsheet is not given as didactical tool to serve mathematics education. It may 

progressively become such an instrument along a professional genesis of use on 

teachers‘ side. Using both the notions of distance and double genesis, the case study 

described in this paper illustrates the beginning of such a genesis and the complexity 

that comes along with it. 

Keywords: ICT, instrumentation, double (professional / personnal) genesis, 

instrumental distance. 

INTRODUCTION AND DATA PRESENTATION 

For several years now, research communities have paid an increasing attention to 

technology use in math education (see Drijvers et al., 2010 for a historical overview). 

Theoretical frames as the instrumental approach (Artigue, 2002; Guin, Ruthven & 

Trouche 2004) have been developed around the concept of instrumental genesis 

focusing on ICT impact on pupils‘ work. This paper moves from this focus towards 

the impact of technology on teachers‘ practices. It focuses on the case of the 

spreadsheet which is not given as a didactical professionnal tool but that may 

progressively become such a didactical instrument through a professional genesis on 

teachers‘ side. In order to study these geneses, I introduced two theoretical constructs 

within the frame of Instrumental Approach. The paper illustrates a case study on how 

these two concepts are useful in analyzing the teacher‘s geneses with the spreadsheet 

and in describing the complexity of these geneses. The data on which we are 

illustrating the concepts are based on observations (on two consecutive years) of an 

experienced teacher, named Dan in the following, integrating spreadsheet for the first 

time in her classroom. The observation of Dan‘s spreadsheet integration shows some 

evolutions from a year to the next. 

Few words about Dan 

Dan is an ordinary teacher, having more than 10 years of experience, also involved in 

teacher training and having integrated dynamic geometry software, but spreadsheet is 

a new tool for her. During the first year, Dan was motivated by her participation in a 

research project focusing on spreadsheet use for algebra learning (Haspekian, 

2005a). At the end of the research, an interview collected her thoughts and feelings 

about this experience. The following year, she used the spreadsheet by her own 

choice, without any research protocol. On that occasion, we recorded her first 

spreadsheet session and the following session in a paper-pencil environment. Some 

phenomena during this observation and the way Dan evolved in her practice with 
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spreadsheet as a didactical tool provide interesting data. Let us first present the 

evolutions at stake and then describe the theoretical frames to analyse these data. 

Dan, year 2, or ―the second trial of using spreadsheet in mathematics lessons‖ 

During the second year, Dan introduced spreadsheet not with algebra but with 

statistics (headcounts, frequencies and cumulative frequencies after having seen 

these notions in paper-pencil). In this context, some of the observed elements are 

surprising: the lesson, showing very little statistics, is mostly centred on the tool use 

and functionalities, and reveals unexpected mathematics (notions of variable, 

formula, distinction between ―numeric/algebraic‖ function...). The latter reflect the 

influence of the year 1 experience, centred on algebra, but this does not explain 

completely the evolution year 2 (variations and regularities) summarized in Table 1: 

Use of spreadsheet Year 1 Year 2 
VARIATIONS 

Class level 7
th

 Grade (12 year old) 8
th

 Grade (13 year old) 

Old/new content New Old 

Mathematical Domain Algebra Statistics 

Spreadsheet location Limited to computer lab Computer lab +ordinary classroom 

Synthesis No Yes 

Interactions Teacher-

Students 
Mostly individual Individual and collective 

Use of the video and 

collective presentation 

Piloted by teacher, 

limited role 
Teacher and student. Important role 

Students Configuration Work by pairs 
Work by pairs + collective work: one 

student at the board 

REGULARITES 

Maths objectives, teacher aims Algebra 

Additional material Worksheet for pupils and pre-organised spreadsheet file  

Institutionalisation In an ulterior lesson, in ordinary classroom 

Table 1: Comparison Year 1- Year 2 

How can we explain these observations, the variations and the emerging regularities? 

THEORETICAL FRAMES TO UNDERSTAND THE OBSERVATIONS 

To understand teacher‘s practices, the ―didactic and ergonomic approach‖ developed 

by Robert and Rogalski (2002) describes teacher‘s activity through 5 components: 

personal, mediative and cognitive dimensions, as well as institutional and social 

constraints. The cognitive and mediative components relate to the choices made by 

the teacher in the spatial, temporal and mathematical organisation of the lessons. For 

Robert and Rogalski (2002) teachers are not totally free in these choices; they are 

more or less constrained by personal, institutional and social dimensions: the 

personal component relates to the teacher as a singular subject, with his own history, 

practices, vision of mathematics learning. The institutional and social dimensions 

relate to curricula, lessons duration, school social habits, math teachers habits etc. 
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This first frame is used at a global level. In the case of ICT practices, instrumental 

aspects seem to interfere with each of these components. This leads to the use of the 

instrumental approach in order to analyse at a more local level some of the 

phenomena observed during the year 2. 

What are Dan‘s evolutions through these 5 components? 

Table 1 shows an evolution of the mediative and cognitive components (math 

domain chosen, way of introducing spreadsheet, class level, etc.). This indicates (and 

it is confirmed by the phenomena observed during the lesson) that Dan‘s personal 

component evolved too. How can we explain this evolution? Our analyses lead us to 

consider two main results: first, a phenomenon of double instrumental genesis takes 

place in the evolution of Dan‘s personal component, and second, all changes 

operated by Dan in her mediative and cognitive choices go towards a reduction of 

the instrumental distance. Let us precise more these theoretical issues. 

The idea of distance has been introduced (Haspekian, 2005a) to take into account, 

beyond the ―computer transposition‖ (Balacheff, 1994), the set of changes (cultural, 

epistemological, institutional) introduced by the use of a specific tool in math 

―praxis‖. For a given tool, a too big distance to the ―current school habits‖ is a 

constraint on its integration (Haspekian, 2005b). On the other hand, didactical 

potentialities of technology rely on the distance it introduces as regards to paper-

pencil (providing new representations, new problems...). In (Haspekian, 2005a) we 

have brought out 4 types of elements that can generate some distance. Some are 

directly linked to the computer transposition, as the representations and the 

associated symbolism. They can also be of an institutional nature [1], didactical 

nature (vocabulary, field of problems they allow to solve…), or epistemological one 

(what gives the tool an epistemological legitimacy). This is linked to teacher‘s 

personal component (her representations of math, of math teaching, of the role this 

tool plays in the development of math). 

Then, the way teachers orchestrate and support pupils‘ instrumental geneses evolves 

year after year. Considering spreadsheet as an instrument for the teacher, allowing 

her to achieve some teaching goals, we consider a process of instrumental genesis on 

teacher‘s side. The same artefact, the spreadsheet, becomes an instrument for pupils‘ 

mathematical activity and an (other) instrument for teacher‘s didactical activity.  

In Dan‘s case, this process is even more complicated since it is split in two. There is 

a double instrumental genesis because Dan is not developing one but two 

instruments from the artefact spreadsheet. The personal instrumental genesis leads to 

the construction and appropriation of a tool into an instrument for math work, which 

differs from the professional instrumental genesis that leads to the construction and 

the appropriation of the previous instrument into a didactical instrument for math 

teaching. The didactical functionalities of this tool are not pre-defined, the teacher 

must develop and integrate them in her usual teaching practices and habits. My 
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hypothesis is that these two processes are not independent for Dan as they happened 

simultaneously in her case. Neither are they independent of pupils‘ geneses as we 

will see. Let us first describe more precisely the professional genesis: 

Applying the instrumental approach to the spreadsheet seen as a teaching instrument 

that the teacher builds along a professional genesis, we can bring out two processes: 

- An instrumentalization process: the tool is instrumentalized by the teacher in 

order to serve her didactic objectives. It is distorted from its initial functions and 

its didactical potentialities are progressively created (or ―discovered‖ and 

appropriated in the case of an educational tool); 

- An instrumentation process: a teacher will have to incorporate in her teaching 

schemes that were relatively stable some new ones integrating the tool use. She 

will progressively specify spreadsheet use to a particular class of situations (as 

―take advantage of spreadsheet for algebra learning‖) and organise her activity in 

a way that will become progressively invariant for this class of situation (the 

Dan‘s case already shows some regularities from year 1 to year 2). 

Dan builds up schemes of instrumented action [2]
 
aiming at using spreadsheet to 

teach algebraic concepts (e.g., variables, formulae through the use of the copy, or by 

taking benefits of the numerical feedback to infer the equivalence of two formulae). 

This brings into play some usage schemes concerning material aspects, as the tool 

integration in a larger set of instruments (with the video projector), the organisation 

of the lessons, that are schemes that will undertake the modes of exploitation and the 

orchestrations, for instance, using a video projector at the beginning of the session 

for collective explanations, making pupils communicate and work by pairs, giving a 

sheet of instructions and a pre-built computer file to gain time, but also regularly 

―clicking on cell to check whether the pupils have edited a formula or numerical 

operation, or even directly the numerical result…).  

I said this professional genesis was not independent of Dan‘s personal genesis, but 

interfered one on the other [3]. I also said that the professional genesis is made more 

complex by the fact that Dan wants her pupils to manipulate spreadsheet too (one 

could imagine a spreadsheet usage only under the teacher‘s control) and learn math 

through this activity. Thus pupils‘ instrumental geneses are part of the teacher‘s 

instrumental genesis. Here again, the two phenomena are imbricate and interfering. 

Some of our teacher‘s activity observations during the year 2 result from these 

interferences. We will show an example in the next section. 

TEACHER‘S DOUBLE GENESIS INTERFERING WITH PUPILS‘ 

INSTRUMENTAL GENESES 

As we mentioned, Dan has inscribed the introduction of spreadsheet in her class 

within the domain of statistics. Fig.1 is an excerpt of a pupil‘s exercise that shows 

the corresponding spreadsheet file with the pre-edited formula built by Dan: 
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Step 2 : usage of formulae et the «handle of recopy». 

distance (km) 0<d ≤5 5<d ≤10 10<d ≤15 15<d ≤20 total 

headcounts 16 14 12 8 50 

frequencies (%) 32       100 

1) a) What is the total number of items? _______ 

   Where is this number located? What is the formula to calculate it? _____ 

b) If one changes the headcounts for 0<d ≤5, does the frequency change? 
 

 

Figure 1: Dan‘s final version of formulae 

It is interesting to notice that this file has been modified three times by Dan. In its 

first version, the formula calculating the frequency (in B7) was: =B6*100/50. This 

formula, if copied along line 7, calculates the correct frequencies for the 

corresponding data of line 6. But it is not adequate regarding the question b) [4]. 

The day before the lesson, Dan realised the mistake and changed the formula into: 

=B6/F6*100. She confided she did not feel yet totally comfortable with spreadsheets. 

If her own instrumental genesis with spreadsheet as a mathematical instrument 

probably plays a role here, we also see that the key point of the problem comes from 

the spreadsheet as a didactic-oriented instrument. From the spreadsheet as a 

―calculus-oriented instrument‖ point of view, the formula was adequate. It is the 

didactical aim (showing the mathematical dependency between the number and the 

frequency) that leads Dan to ask the question b), which turns the formula wrong. Dan 

did not realise this when she built first her formula. At that moment, the personal 

instrument stands at the front of the scene, and covers up the professional instrument 

and its didactical aims (the question b). 

Interference between the personal and the professional instrument can be seen again 

in the continuation of the story. The new formula, ―=B6/F6*100‖, is now adequate 

for question b, but it is still not convenient if we consider the next question (Fig. 2) 

for inverted reasons! Dan wants pupils to copy the formula in order to fill line 7 and 

meet this functionality and the automatic incrementation of cell references (B6 

becomes B7...). This time, this is part of her goals for students‘ instrumental geneses. 

3) Complete the table using the formula in B7: 

Recopy the formula on the right. (see instructions below for the ―cell recopy‖). 

What is the formula contained in C7?  D7? E7? 

Figure 2: The continuation of the task 
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But the formula above, if copied on line 7, does not fit anymore, as the cell referring 

to the total, F6, will be changed into F7, F8... along the copy. A solution to this 

problem is to fix the cell F6 in the recopy by using the ―$‖ functionality. But Dan did 

not want this functionality to appear in the first spreadsheet session. It was over the 

level of instrumentation she wanted for her pupils at this moment. When she built her 

new formula for question b, the $ was not in her mind and she did not put it, 

forgetting that it will create false results at question 3. The day before the session, 

after discussing over a phone call she realised the mistake and integrated finally the $ 

in a last-minute decision!  

This time the formula was wrong regarding an instrumental goal: the $ symbol was 

over Dan‘s instrumental objectives and she did not keep it in mind. It is neither easy 

nor trivial to bend to all the constraints, all the more that she had already changed her 

very first version of formula for a mathematical aim, now she had to change it again 

for an instrumental aim... This time, it is the professional-oriented instrument that 

overrode on the personal one, by taking into account pupils‘ geneses and the level of 

instrumentation that she wanted them to reach. 

These successive formulae somehow disrupted the session: Dan put the $ sign in the 

formula and wanted to avoid speaking about it with pupils, but it has been of course 

highlighted during the session! Facing pupils‘ questions, she was compelled to 

explain but she just said that it is not important to write it in paper-pencil 

environment. Then, when a pupil came to the board to write the spreadsheet formula, 

he forgot the $, the ―division by zero Error‖ appeared after copy and Dan said ―now 

you happy?‖ but did not explain the message nor the division by zero![5]. 

Interpretation: the complex and ―split in two‖ geneses on teacher‘s side 

This example shows how the double genesis on the teacher‘s side may interfere with 

pupils‘ geneses: spreadsheet constraints interact with the teacher‘s goal and 

didactical expectations (she wanted to introduce only a basic level of spreadsheet 

functionalities). She has not yet turned her personal instrument into a math teaching 

one. This process is made more complex by the different geneses at stake. As we saw 

in the example, it is constrained by: 

- The mathematical learning the teacher aims at (statistics and algebra), 

- Pupils‘ instrumentation, that is how to make them work math through spreadsheet 

(as the mathematical headcount-frequency dependence through the change of the 

frequency cell after changing the value of the headcount cell), 

- Pupils‘ instrumentalization, that is which functionalities are aimed at, which 

schemes of use do we want them to build - here: relative references and 

automated incrementation of cell references with the copy, but not yet the 

absolute references, the $ sign and its different behaviour in the copy. 

Managing all these constraints at once is not easy: spreadsheet is not given as a 
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didactical instrument, the case of Dan shows that such an instrument is only 

progressively built along a complex professional-oriented genesis. 

Understand the global coherence in the evolution of the teacher‘s pratices  

As a synthesis, we can say that institutional and social components, together with 

Dan‘s own reflection on her practices, lead her to evolve in her conception of the 

spreadsheet use. Here are the observed evolutions: 

1. Higher level of class : she uses spreadsheet with 8
th

 graders instead of 7
th

 graders 

2. Lower quantity of « new » concepts: avoid mixing the introduction of the 

spreadsheet with the introduction of new math notions 

3. Domain change: introduce the tool with statistics which seemed to Dan more 

appropriate than algebra  

4. Contents shifted towards the instrument but conditioned by the level of 

instrumentation fixed by Dan (she did not want to stress the $) 

5. Deeper articulation between social and individual schemes, the importance of 

the articulation in instrumental geneses has been mentioned by Trouche (2005). In 

the interview, Dan says she did not organise moments of mutualisation enough 

and she explicitly wished to take care of this point the 2
nd

 year.  

Observing deeper these evolutions, they all appear to converge in the direction of 

reducing the instrumental distance. The next section develops this point. 

REDUCTION OF THE INSTRUMENTAL DISTANCE ALONG TEACHER‘S 

PROFESSIONNAL GENESIS 

At different levels, Dan‘s modifications year 2 tend to decrease a too big 

instrumental distance of the spreadsheet. 

1. Changing the class level: Higher level of class 

This modification comes with the change of the domain (point 3): in French 

curricula, spreadsheet is explicitly mentioned with statistics for 8th Grade pupils. In 

the 7th Grade curriculum, spreadsheet appears in a more general and vague way. It 

requires from teachers a deeper work and thought to define its potentialities for 

learning math notions, these latter appear more distant from spreadsheet math than in 

the 8
th

 Grade, where spreadsheet appears clearly in relation with precise notions of 

the curriculum. Thus, choosing this level allows Dan to reduce the distance and 

match more easily with the official prescriptions. Besides, year 1, Dan found pupils‘ 

instrumentalisation not easy in 7th Grade (difficulty to use the ―recopy‖, select a 

single cell, edit a formula). Older pupils seem to be more skilful and problems linked 

to instrumentalisation should be less interfering with the math work. With 7 graders, 

manipulations of the tool seemed more difficult and the tool appeared less 

transparent. 
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2. The ―old/new‖ game in the mathematical and in the instrumental contents  

Year 1, Dan introduced a new instrument when she introduced new math contents 

(algebraic notions). The ratio old/new is different in year 2 and also goes in a 

direction of reducing the distance by reducing the part of ―new‖: all the math notions 

at stake in the spreadsheet session (headcounts, frequency, cumulative frequency) 

had already been seen previously in paper-pencil. This work (new environment with 

―already-seen‖ concepts) will then serve Dan as a basis to work later algebraic 

notions (new concepts in an ―already-seen‖ instrument).  

3. Domain changing 

The math domain chosen by Dan in year 2 also reduces the distance as regards to 

algebra, for at least three reasons. The domain of statistics is usually seen to be more 

in conformity with the representations of a spreadsheet work than algebra. 

Furthermore institutional pressure is less important in statistics than algebra, a more 

classical and traditional domain strongly linked to paper-pencil math. On the 

contrary, statistics are nowadays seen as more fitted to technologies. At last, in the 

spreadsheet language, one can find more common terms with statistics whereas the 

distance to the traditional algebraic vocabulary is important (Haspekian, 2005b). 

4. A deeper care to instrumental aspects 

Distinguish the instrumental genesis on pupils‘ side and the dual genesis on teacher‘s 

side allowed us to understand better the teacher‘s activity and the phenomenon 

observed during the session. Dan‘s didactical instrument is improving along the 

experiences and the examples above (click on the cell to see if pupils edited a 

formula, use the recopy, introduce the relative references but not the absolute ones, 

not to introduce the logical functions…) show that spreadsheet sessions require 

careful consideration of all these instrumental aspects. But this is not evident and the 

first section illustrates difficulties and interferences between these three geneses. 

Dan‘s evolution shows a deeper care of the instrumental aspects with the pre-

determination of a level of instrumentation for pupils, well defined, not too high and 

not too far from usual (not using the $, not introducing the ‖IF‖ function etc.). 

5. Moments of mutualisation and articulation with paper-pencil mathematics 

Dan introduced year 2 some moments of mutualisation in spreadsheet sessions. In the 

interview, she affirmed her will to increase the similarity with the traditional 

sessions. She said having the feeling that it is necessary to multiply the links with the 

paper-pencil math (e.g., she started the sequence by a paper-pencil session, then 

worked the same notions in a spreadsheet session, then she came back on the work 

done with spreadsheet in a paper-pencil session, etc.). All these actions contribute to 

reduce the distance with paper-pencil, to mix these two environments in a greater 

proximity. This is a key point to integrate spreadsheet: in (Haspekian, 2005a), 

teachers who used to integrate spreadsheet had these characteristics. It is thus 
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interesting to notice that Dan‘s professional genesis follows the same line. The 

―old/new‖ game mentioned above is another characteristic found in expert practices. 

CONCLUSION AND PERSPECTIVES 

Many reports deplore the poor integration of ICT in math teaching and researchers 

stress a phenomenon of ―disappointment‖ after an enthusiastic period where pioneers 

claimed ICT benefits to learn math. One of the reasons is the ―teacher barrier‖ (see 

Ruthven, 2007 or Balanskat, Blamire & Kefala 2006) and particularly the importance 

of teachers‘ practices, which is seen as a key issue in ICT integration. This is why it 

seems crucial to progress in understanding of practices and instrumental geneses. In 

this understanding, the previous study appears to shed light on two elements. 

The notion of distance to the referential environment plays a role in technological 

integration. As we saw, it explains some of Dan‘s evolutions in terms of a reduction 

of the distance (either by making this distance more explicit or by multiplying 

moments that alternate work in the two environments enriching both of them). This 

constitutes a significant creative task for teachers as the tool is not given with any 

didactical functionalities, it requires a professional instrumental genesis on teacher‘s 

side different from the personal genesis and also different from that on pupils‘ side.  

Thus the dual genesis on teachers‘ side is another interesting element to consider in 

order to study both local phenomena that can be observed in a session, and the more 

global evolution of practices, year after year. Dan‘s emerging practice with the tool is 

understood better in this frame of double geneses. 

Several questions remain, as delimiting more precisely different criteria that create 

some distance. To understand practices, it is also necessary to determine which 

elements may counterbalance the distance and play in favor of the tool integration 

(such as institutional injunctions, or tool epistemic value, didactical design...). We 

also have to characterise better geneses on teacher‘s side compared to pupils‘ one.  

NOTES 

1. Beyond the computer transposition that modifies math objects, the modification, from an institutional point of view, 

concerns the whole ecology of these objects (tasks, techniques, theories). The idea of ―distance‖ reflects the gap between 

praxeologies associated to two different environments (paper-pencil being a peculiar environment of the math work). 

2. Rabardel (2002) distinguishes two types of schemes: usage schemes (related to the material dimension of the tool) 

and the schemes of instrumented action (related to the global achievement of the task, with goals and intentions). 

3. It may not be the case for all teachers: unlike Dan‘s case, the first instrument can already be constituted in a more 

advanced way, long before trying to make it a didactical instrument. . 

4. The formula refers to the value 50 for the total. If one changes the value of any headcount, then the total will change 

and the formula becomes wrong. 

5. Increment of references after copying make the formula refer to empty cells, by default, empty cell are treated  in 

formulas as if they contain the value 0, this is an option that can be changed. 
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This paper is based on an experience of a small scale community around Casyopée, 

innovative software produced in the ReMath project. A first assumption was that 

dissemination of research outcomes is possible through the development of 

communities involving researchers and teachers.  Another assumption was that all 

teachers are not to be considered at the same level. ―First-adopters‖ are teachers 

that chose to be associated with the project development from the beginning. ―Mid-

adopters‖ are teachers that can be interested by using innovative software in the 

classroom, but will choose to do it only when it brings a real added value. All other 

teachers potentially users of Casyopée make a third layer. This paper is a first step 

in the study of communication and collaboration in a ―multi-layer‖ community.  

Keywords: teachers, innovative software, collaboration, community, dissemination 

INTRODUCTION 

Relatively to the integration of digital environments in mathematics teaching and 

learning, the gap between researchers‘ expectations and the reality of classroom uses 

is often stressed. In my view, this gap is not merely quantitative. In a country like the 

United Kingdom, where uses by teachers are quantitatively high, researchers have 

concerns relatively to the quality of uses: Miller and Glover (to appear) regret that  

―many teachers make progress using the presentational capability of interactive 

whiteboards but that failure to use associated digital technologies and to make a 

significant pedagogic change will (…) lead to wasted opportunities‖.  

Among the opportunities wasted, I count the difficult dissemination among teachers 

of innovative software designed by research. Soon after the computer appeared and 

was regarded as useful in the classroom, researchers in mathematics education 

thought than designing digital learning environments was part of their work, 

considering that design principles and decisions are of didactic nature and have a 

deep effect on classroom use of technology. This ‗tool design‘ dimension was 

important in the European project ReMath (IST4-26751). The development of six 

‗Dynamic Digital Artefacts‘ (DDAs) that is to say innovative software for 

mathematics teaching and learning, was central in this project. Bridging the gap with 

classroom and teachers was also an objective of the project, that was aimed (1) 

through the elaboration of an integrated theoretical framework that should help to 

communicate between researchers and also between researchers and teachers (2) the 

elaboration of scenarios of use of the DDAs with a special version for teachers 

written after experimenting in the reality of actual classrooms (3) the publication of 

all this material on a communication platform. 
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While these outcomes of Remath are significant, it would have been very naïve to 

consider that, by them, they allow teachers to appropriate DDAs and associated 

educational strategies. A more reasonable assumption is that this appropriation is 

possible through the development of communities involving researchers and 

teachers. The aim of this paper is then to discuss an experience of development of a 

small scale community around one of the ReMath DDAs: Casyopée. The creation of 

communities of teachers working to produce varied resources associated to the use of 

technology has been studied by authors like Guin & Trouche (2008). On the one 

hand, the problematics of the work presented in this paper is convergent with these 

studies, in the sense that the goal is also to develop the use of a given technology by 

way of collective work of teachers. On the other hand, the issue here is dissemination 

of research production and the real question is then the process of collaboration 

between actors in different positions towards research, rather than the internal 

functioning of a teacher community. In this process, the outcomes of Remath could 

act as ―boundary objects‖, a notion introduced by Fuglestad, Healy, Kynigos and 

Monaghan (2009) to make sense of the collaboration between researchers and 

teachers in the integration of technology. 

CASYOPÉE: EPISTEMOLOGICAL CHOICES AND CONSTRAINTS 

Casyopée has been developed for ten years in a project involving researchers from 

the Didirem team and teachers after they experimented with ‗standard‘ Computer 

Algebra Systems (CAS) (Lagrange, 2010). The aim was to take up the challenge of 

teaching about functions at upper secondary level. The team was concerned that 

while technology is able to offer multi-representational and symbolic manipulative 

capabilities very effective for solving problems and learning about functions, no tool 

really adapted presently exists for students‘ use. CAS are designed for more 

advanced users. Dynamic Geometry (DG) offers means for constructing operational 

figures and exploring co-variations and dependencies in these figures, but 

exploration is limited to numerical values. Students are neither encouraged nor 

helped to use algebraic notation and to work on algebraic models. The focus of 

ReMath was upon computer representations of mathematical objects. Thus it was an 

opportunity to extend Casyopée representational capabilities, in order to consider 

functions as models of non-algebraic dependencies. The choice has been to consider 

2D geometry and magnitudes as a field of experience. The result is that Casyopée has 

now two main windows. In the symbolic window the fundamental objects are 

functions, defined by their expressions and domain of definition. Other objects are 

parameters and values of the variable. Casyopée allows students to work with the 

usual operations on functions like: algebraic manipulations; analytic calculations; 

graphical representations; support for proof… A new window offers usual DG 

capabilities and also distinctive features: geometrical objects can depend on 

algebraic objects and it is possible to export geometrical dependencies into the 

symbolic window in order to build algebraic models.  
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On the one hand, these epistemological choices are consistent with the notion of 

function as considered at secondary level and thus they should facilitate Casyopée 

integration. On the other hand these choices introduce non trivial constraints and 

differences with software tools generally proposed for classroom use at this level. 

First, offering symbolic calculation has been decided in order to help students to 

identify the different stages in a solution of a problem; this decision also implies that 

Casyopée relies on computer algebra algorithms which are not always deterministic: 

for instance, it happens that two expressions are mathematically equivalent but also 

that none of the algorithms implemented in the computer algebra kernel can 

recognize the equivalence. More generally, Elbaz-Vincent (2005) points out the 

―decidability limitation‖ inherent to computer algebra, and concludes that an 

‗intelligent usage‘ of CAS in mathematical courses is not obvious. Second, DG in 

Casyopée is designed to help students in modelling algebraically geometrical 

dependencies. This implies to carefully distinguish between ―variable objects‖ 

involved in the dependency and ―generic objects‖ that have to be handled as 

parameters of the problem. For instance in the following problem: ABC a 

triangle,[CH] an altitude of this triangle, find a rectangle MNPQ with M on [HA], N 

on [AB], P on [BC], Q on [HC] and with the maximum area, in DG environments, 

numerical exploration of the dependency between point M and the area of the 

rectangle is possible with A, B and C defined as free points. With Casyopée, this 

exploration is possible, but, to model the dependency as an algebraic function of one 

variable, which is Casyopée‘s potential, the area has to depend univocally of one 

point. Then, in situations proposed by the Casyopée team, a ―generic object‖ (here 

the triangle) is defined by way of parameters and a ―variable object‖ (here the 

rectangle) is defined by way of a free point. 

COMMUNITIES AROUND CASYOPÉE; GOAL AND HYPOTHESES  

Before and during the ReMath project, Casyopée was mainly a research tool. During 

ReMath, Casyopée like the other DDAs has nevertheless been a ‗boundary object‘ 

for small communities especially through the methodology of cross-experimentation: 

Casyopée has been ―cross experimented‖ by an Italian team and our French team 

(Maracci, Cazes, Vandebrouck, & Mariotti 2009). Only by the end of the project, the 

development of a ―real world‖ community around Casyopée could be considered. It 

was based on the assumption developed in the introduction that researchers have to 

consider the dissemination of their production as a research work in itself. The issue 

of collaboration also raised in the introduction implied that all teachers are not to be 

considered at the same level in this process of collaboration. Teachers that have been 

associated with the project development can be considered as ―first-adopters‖, or 

―experts‖. I consider also ―mid-adopters‖, that is to say teachers that can be 

interested by using innovative software in the classroom, but will choose to do it 

only when they will be convinced that it brings a real added value to their teaching 

strategies. All other teachers potentially users of Casyopée (that is to say, every 
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mathematics teacher at upper secondary level) would make a third layer. The idea 

was then to use classroom scenarios as means for communicating between layers: the 

elaboration and experimentation of scenarios by mid-adopters would be first a way 

of collaborating between experts and mid-adopters: mid-adopters would propose 

uses corresponding to their needs and ask the experts for their advice and support. 

The scenarios would be built in order to be proposed to all teachers and thus 

designed as a way to communicate between the second and third layer. The goal of 

the research was then to investigate what particular approaches those ―mid adopters‖ 

take when working at these interfaces with the first and the third layer. A first 

hypothesis was that, like in the collaboration between the French and Italian team, 

the design of scenarios with the help of experts would help the understanding of 

Casyopée‘s potential and constraints. The second hypothesis was that like in the case 

of Italian teachers, the mid adopters would adapt the use of the software to their 

needs and sensibility. I expected that these teachers would be primarily interested in 

easy-to-achieve and close-to-curriculum applications of Casyopée, and sensible to 

problems and constraints related with the time required by implementing 

technologies in their classes, with curriculum requirements, with training needs, etc. 

Thus their production would provide useful material for an easy integration by 

teachers in the third layer.  

METHODOLOGY 

Expert teachers: the first-adopters or ―experts‖ were two teachers that had been 

involved in the cyclical process of specifying functionalities for Casyopée, 

contributing to the software development, and experimenting with their classes. 

Crucial steps in the project were undertaken as a consequence of dissatisfactions they 

expressed after classroom experimentations. The decision to develop a software 

environment around a symbolic kernel for classroom use of symbolic computation 

derived from the difficulty they felt when using standard CAS. The decision to 

append a DG window was taken after a long term experiment of Casyopée in their 

tenth grade classes. Modelling geometrical dependencies was a central problem in 

the series of lessons on which the experiment was based. Students had to explore a 

dependency between magnitudes using a DG package. Then the modelling process 

implied to choose a variable and calculate an algebraic formula representing the 

dependency before students could study algebraically this dependency with 

Casyopée. Because of the lack of links between the DG package and Casyopée, this 

crucial step had to be done in paper pencil. It was quite difficult for students and it 

had to be managed with a too strong mediation of the teacher. 

Mid adopters: in the same region of Brittany where the experts teach, a group of six 

teachers had been constituted in the IREM (Institute for Research in Mathematics 

Teaching) to experiment the use of the Interactive White Board (IWB). During two 

years they used software packages (DG and CAS) on the IWB and they were keen to 

enter a new project. For me they were good candidates to be ―mid adopters‖: they 
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were convinced that technology can support mathematical teaching and learning, 

they were relatively experienced in the classroom use of technology but were not 

involved in Casyopée history. I refer to these teachers as ―group members‖. 

The third layer: the region of Brittany was developing its professional platform for 

teachers, students and families. The group could use this platform for its internal 

communication, but also for communicating with all mathematics teachers in the 

Brittany region. It was judged better to address a specific group of teachers via their 

professional platform rather than to disseminate through an open website. The third 

layer was then mathematics teachers at upper secondary level in the Brittany region, 

a group of around 500 teachers. 

Data: the group met 12 times along two years in 3 hour sessions gathering 

researchers, the two experts and the six group members. Six experimentations of 

scenarios were done in common, one group member offering his class and the rest of 

the group acting as observers. Communication between the sessions was done via the 

professional digital platform using a virtual group feature. The data consists in the 

video recording of the sessions and experimentations, the messages and files 

exchanged on the platform and the scenarios proposed and experimented by the 

group as published on the professional digital platform. 

PRELIMINARY FINDINGS 

The data exploitation is still in progress. In this paper I report on features that I found 

relevant or surprising in the meetings and in the productions relatively to the above 

hypothesis and illustrate by outlining the evolution of two group members, Chris and 

Rose. The next step in the research will be the systematic exploitation of the data in 

order to strengthen the findings. The main features in the first year were: 

1. The group members engaged in scenario design slower than expected. The reason 

is that it took time for them to understand the potential of Casyopée. An expectation 

was that modelling geometrical dependencies for optimisation problems would be an 

attractive perspective and that they would work from situations they experimented 

before using standard dynamic geometry software, adapting these situations to take 

advantage of Casyopées‘ symbolic features. Actually, the teachers were keen to 

exploit Casyopée‘s potential to go beyond numerical exploration, but they could not 

achieve this goal. For instance, in the second meeting Rose protested that she could 

not implement Casyopée for an optimisation problem she used to propose her 

students (figure 1). She considered two free points in the plane A and B and a free 

point M on the segment [AB]. The exploration was done numerically like in other DG 

systems. After that, Rose wanted to take advantage of Casyopée for exporting the 

dependency into the algebraic window in order to solve the problem algebraically. 

She chose AM as the independent variable and the calculation  as 

dependent variable. But Casyopée replied that the calculation depended of more than 
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a free point and the exportation was unsuccessful. Rose expected a function like 

but in Casyopée, functions cannot depend on geometrical objects. 

The approach is to define the two points A and B as coordinated points, possibly 

depending on a parameter representing the distance AB. For instance A might be at 

the origin and B might be (0; a). With these settings, Casyopée exports the 

dependency as . In contrast to Rose, the expert teachers understood 

the constraint of a distinction between ―variable objects‖ involved in a dependency 

and ―generic objects‖ and conceived adapted scenarios. 

2. Group members also thought that a symbolic system like Casyopée would be 

particularly useful for problems with complicated algebraic calculations. That is why 

they proposed scenarios with situations resulting in very complex expressions that 

the symbolic kernel and other modules of Casyopée had difficulties to handle. It took 

time for these teachers to realise how the limitations of the symbolic kernel stressed 

above influence Casyopée‘s operation. For instance in the third meeting, Chris 

expressed her concern that, for two functions with equivalent expressions, Casyopée 

was not directly able to recognize their equality, and that only one of the symbolic 

calculations provided by Casyopée returned zero for the difference. This is different 

of expert teachers, who saw the potential of Casyopée in the security and easiness 

that symbolic calculation provides in ‗ordinary‘ calculation.  

3. Many scenarios proposed by the group members in the first meetings could not be 

directly implemented because of limitations of Casyopée. Some of these limitations 

were inherent to fundamental epistemological choices like those raised above, and 

some other to the current state of the software. Casyopée is an evolving project and 

although many efforts had been devoted to software development in ReMath, it 

could not be considered as an achieved stable environment. This character had not 

been an obstacle when working with expert teachers who understood well the 

difference between fundamental choices and minor defects and adapted the scenarios 

accordingly. Also expert teachers were used to ask for corrections of minor defects 

before using in the classroom. In contrast, the group members claimed that they 

could not update the software in the school computer rooms under short notice. The 

experts tried to propose alternative feasible scenarios and procedures for updating 

without success. A consequence is that a good part of the discussions in the meetings 

was devoted to the software itself. These discussions and the pressure that group 

members put through the scenarios they wanted to implement implied more work on 

the software than expected. A part of this work was devoted to adapt Casyopée for 

the intended scenarios and was achieved during the year. Roughly, the scenarios 

developed and experimented in the first year were of two types: (a) scenarios at tenth 

grade about linear functions and product of these, taking advantage of the symbolic 

window only, and of specific features like the display of a table with signs of 
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functions, in close connection with rules and ways of proving that the teachers want 

students to discover and remember (b) scenarios at twelve grade involving advanced 

functions (logarithms) and curves of these. In these scenarios, the teachers seek to 

take advantage of representing and symbolic computing facilities of Casyopée. 

Considering curves as geometrical objects and treating symbolically its elements was 

seen as an attractive capability. 

Figure 1  

M is a free point on segment [AB]. 

APM and MQB are two right-

angled isosceles triangles. Is there 

a position of M where the sum of 

the areas is minimal? 

These scenarios are more sophisticated than what was expected. Note also that 

during the first year, in spite of the expectations, there was no outside 

communication towards the third layer of teachers. The group members were 

reluctant to publish material not really achieved. They insisted on publishing reports 

on successful sessions with a deep didactical analysis, rather than ―raw scenarios‖.  

In the second year a significant part of the meetings was again devoted to comments 

and discussion by group members about the software in parallel with the preparation 

and exploitation of classroom experiments. After adaptation by the designers, the 

features in development were tested in the experts‘ classes, group members feeling 

they could not deal with provisional versions. Like in the first year, more efforts than 

expected had to be devoted to software development. After the experimentation of 

scenarios these efforts could be directed towards curricular conformity and students‘ 

understanding of commands as well as towards the general ergonomics. The 

appropriation of Casyopée by the group members progressed notably especially with 

regard to the relationship between the algebraic and the geometric windows. This 

appropriation was done through the preparation and experimentation of scenarios but 

also seems inseparable from the discussion on the software itself. Why is it designed 

like that? Could other options be decided? In the discussion, reference was often 

made to other CAS or DG.  

The communication through the professional platform was organised around eight 

mathematical themes. Two of these themes are related to the experiments in the first 

year, two derive from the scenario experimented in ReMath, one was imagined by 

the experts and myself as a way to introduce 10
th

 grade students to modelling. It was 

consistent with an evolution of the curriculum at this grade, but considered too 

difficult to handle by group members. Three others illustrate an evolution of the 

group members and two will be detailed in the next section. Communication itself 

was done through eight high quality ―mini web sites‖ [1]. Group members insisted 

on publishing detailed scenarios with precise objectives and account of the 
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advantages brought by Casyopée. The group members‘ concern for a strong 

didactical added value clearly appears in these productions. It implied deep reflection 

after the experiments and could be achieved only by the end of the year. 

TWO EXAMPLES 

Optimizing pipes (11th grade, non scientific students) 

This problem was originally proposed for 12th grade, non scientific students. The 

context is drain pipes on a rectangular wall, and the optimal point is the Torricelli 

point in an isosceles triangle. As said above, Chris, the teacher who initiated this 

theme and experimented the associated scenario expressed often her concern for 

―how Casyopée does symbolic computation‖. Her work in the mini site, as well as 

her declarations in the meetings, helps to understand that this concern was linked 

with her ambition to offer non scientific students realistic optimisation problems and 

her view that Casyopée should be used to scaffold these students‘ weakness in 

algebraic computation. In 12
th

 grade, studying the Torricelli point generally involves 

a variable angle. But this has not been implemented in Casyopée and 11th grade non 

scientific students do not know about oriented angles and trigonometry. Chris 

realised that on the one hand, Casyopée allows an easy modelling using a variable 

length with two possible choices, an interesting feature for her students. The 

resulting algebraic forms can be handled by Casyopée, especially Casyopée 

calculates different expressions of the derivatives, a task that these students could not 

tackle alone. On the other hand, she was worried that Casyopée could not calculate 

the zero of the derivatives because it is the difference of two square roots. Then she 

adapted her scenario in order that the students realize that the equality of two square 

roots implies the equality of the expressions and then a polynomial equation that 

Casyopée could solve. This work on modelling and on symbolic expressions is very 

unusual in non scientific classes because these students are generally scared of 

algebra. Through this experience Chris realized the actual potential of symbolic 

computation in Casyopée: it does not everything by miracle, but it can help when one 

understands its limits and considers relevant ―techniques of uses‖ (Lagrange, 2000). 

Towards the quadrature of the parabola (12
th

 grade) 

Rose saw the potential of Casyopée for ―advanced topics‖. Her previous experience 

was using separately DG to make students express conjectures and CAS to help for 

an algebraic proof. Considering geometric properties of curves was for her an 

appealing field for using Casyopée because it involves geometry and calculus. She 

chose a task based on a result by Archimedes: the area enclosed by a parabola and a 

cord AB is 4⁄3 times the area the triangle ABC, C being the point where the tangent is 

parallel to the cord. She considered the exploration of the figure and the discovery of 

the linear relationship between the two areas as very important and then she 

complained that Casyopée did not offer the means for exploration that she was used 

to. She met also the same issue as in the problem of figure 1 a year before: the figure 
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depends on the two points A and B that she wanted to define as two free points on the 

parabola, but, as explained above, a function cannot be exported from a calculation 

depending on two free points! The experts and I explained that the two points could 

be defined as coordinated points depending on parameters, but Rose wanted that 

students explore by way of free points and not parameters. We also suggested a 

simpler definition for C, because the calculations were heavy with the definition 

above. There was a long discussion and finally Rose accepted the suggestion. She 

maintained a free point for B and chose to define A as a fixed point. With these 

changes, the scenario was feasible. 

This is how Rose describes the use of Casyopée in the mini site. ―The steps of the 

proof derive from those highlighted by the exploration. Throughout the exploration, 

students have to identify these steps and propose calculations. To achieve the 

algebraic proof they have to establish different expressions. The software provides 

several aids: it exports geometric calculations into formulas for the areas. The 

student can either prove them or admit them temporarily and continue, it helps for 

different forms of expressions (development, factoring) or controls the expressions 

obtained by the student.‖ This helps to understand Rose‘s position towards 

Casyopée. She really wanted to take advantage of aids provided by the software for 

proving, but she also wished that students base their proof on a thoughtful 

exploration and she found hard to implement this exploration with Casyopée. While 

the experts and I tended to consider that adapting to Casyopée constraints could be 

done without much loss, Rose saw this as a dilemma. Many changes in the recent 

development of Casyopée result from discussions we had on this point. 

CONCLUSION 

This experience of a small scale community around Casyopée was surprising by 

many aspects. It was expected that the collaboration would be around scenarios as it 

was the case in the ReMath Franco-Italian experiment, rather than on the software 

itself. Actually, the ―mid adopters‖ had to reflect deeply on their expectations with 

regard to the software and often to reconsider what they saw as Casyopée potential. 

As stressed above, it implied also reconsideration for the experts and I, and more 

work on the software than expected. Kynigos (2007) conceptualised the work 

between researchers and teachers on software, using the term of ―half baked‖ 

microworld. Casyopée was not conceived as a ―half baked‖ microworld, but certainly 

one has to think of innovative software as a never finished product, evolving trough 

communities. The communication with the third layer consisted in the publication of 

the mini-web sites. It seems that ―mid adopters‖ privilege a communication with 

their colleagues based on high didactical quality production. This is also different of 

what was expected. As said in the introduction, I am interested in the gap between 

expectations and the reality of classroom use of technology. I have the feeling that 

this experience can help to identify reasons for this gap, because it shows what 

obstacles ―mid-adopters‖ positively oriented towards innovative software can meet. 
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More work has to be done in order to capture its specificity. At a practical level, the 

exploitation of the data has to be completed and at the theoretical level an ―activity 

theory‖ framework has to be built in order to conceptualize a ―multi-layer‖ 

community around innovative software. 

NOTES 

1. These web sites are internal to the Brittany professional platform, but can be accessed publicly via 

http://code.google.com/p/casyopee/wiki/Activites 
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EXTENDING THE TECHNOLOGY ACCEPTANCE MODEL TO 

ASSESS SECONDARY SCHOOL TEACHERS‘ INTENTION TO 

USE CABRI IN GEOMETRY TEACHING  

Marios Pittalis & Constantinos Christou 

University of Cyprus 

The purpose of this study was to modify and extend Technology Acceptance Model to 

assess secondary school teachers‘ intention to use Cabri in geometry teaching. We 

developed a measurement-structural model and enriched TAM by integrating in the 

model a new significant parameter, ―perceived pedagogical-learning fit‖, which 

refers to evaluating the pedagogical-learning appropriateness of teaching geometry 

with Cabri based on a cognitive-learning model. One hundred and five pre and in-

service secondary school mathematics teachers answered a questionnaire that was 

developed based on related research studies. The results of the study proved that 

perceived pedagogical-learning fit and attitude towards the use of Cabri are key 

determinants of teachers‘ behavioural intention to use Cabri in geometry teaching. 

Keywords: technology acceptance model, Cabri, task technology fit, teachers‘ view 

INTRODUCTION 

The technology acceptance model (TAM) is well known and widely accepted in the 

study of specific behaviours to understand how users‘ beliefs and attitudes affect 

their technology usage behaviour (Teo, Lee, Chai & Wong, 2009; Venkatesh & 

Davis, 2000). TAM has been used widely in different domains and cultures to test 

models in technology acceptance (Dishaw &, String, 1999; Lee, Yoon & Lee, 2009) 

and has received extensive empirical support. TAM applications are mostly related in 

the outcome chain on intention to use or actual use by taking into consideration as 

fundamental determinants of user acceptance the variables perceived usefulness and 

perceived ease of use (Davis, 1989). Having in mind the business and commercial 

origins of TAM, not surprisingly, it has had limited applications in education. Recent 

research studies of TAM in education have explored students‘ or teachers‘ 

acceptance towards new technologies such as online learning, and technology in 

education (Lee, Yoon, & Lee, 2009; Stols, 2007).  

Dishaw and Strong (1999) support that a weakness of TAM is its lack of task focus 

and extended the model to integrate task-technology fit (TTF), which refers to 

matching the capabilities of the technology to the demands of the task. In the present 

study, we integrate TAM and TTF theoretical considerations to extend and propose a 

structural and measurement technology acceptance model that assesses the intention 

of pre and in-service secondary school teachers to use Cabri, a dynamic geometry 

software, in geometry teaching. To evaluate the intention of use of Cabri based on a 

theoretical geometry learning model, we modified TAM by adding in the model 
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teachers‘ perceived learning fit of Cabri on a task-technology fit theoretical 

assumption.  

THEORETICAL CONSIDERATIONS 

Technology Acceptance Model 

TAM is based on the Theory of Reasoned Action (Ajzen & Fishbein, 1980) and 

explains how users‘ beliefs and attitudes affect their intention to use a specific 

technological device. TAM explains the interactions among attitudes, beliefs and 

intention to use technology. The two belief variables refer to perceived usefulness 

and perceived ease of use (Teo et al., 2009). Perceived usefulness refers to the 

subjective belief that the use of the new technology will improve job performance 

and productivity. Perceived ease of use refers to the subjective belief that the use of 

the new technology does not demand considerable time and effort. Recent studies 

have shown that the above variables affect users‘ intention to use and their attitude 

towards technology use (Cheung & Huang, 2002; Raaij & Schepers, 2008). Attitude 

has been doubtfully hypothesized to influence the behavioural intention to use the 

technology and was therefore not considered in later assessments (Venkatesh & 

Davis, 2000).  

Although TAM‘S perceived usefulness concept implicitly includes task, the model 

has been criticized for the lack of task focus and its application revealed mixed 

results in information technology evaluations (Dishaw & Strong, 1999). In contrast 

to TAM, the theoretical foundation of the task-technology fit model (TTF) lies in the 

assumption that technology will be used if, and only if, the functions available to the 

user fit the activities and needs of the user. Thus, TTF explicitly includes task 

characteristics and tests for direct effects of task and technology characteristics on 

utilisation.   

Mathematics Teachers‘ views about using DGS 

Dynamic geometry software (DGS) has been considered as an effective tool in the 

teaching and learning of geometry and proved to have the potential to regenerate 

geometry in schools (Hollebrands, Laborde, & Straesser, 2008). DGS have become 

beneficial tools in geometry teaching, because they support students‘ visualization of 

the features of geometric shapes and facilitate the interaction of geometrical objects. 

However, research studies have shown that DGS classroom use has remained limited 

(Ofsted, 2004). Researchers noted that a significant parameter of the problem is the 

absence of teachers‘ contribution (Lagrange, 2008). Jones (2002) asserted that, in the 

DGS field, there is a need for research on teachers‘ input and impact. Therefore, the 

success of a DGS geometry teaching program depends on the extent to which 

educational decision makers take into consideration teachers‘ needs and beliefs and 

educational objectives. Thus, the development of an appropriate DGS teaching 

program is a complicated task and requires a multidisciplinary approach. Teachers‘ 
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evaluation of the DGS and their beliefs and attitude towards the DGS should be a 

fundamental pillar of the initiative. 

Cabri is one of the dominant software in the domain of dynamic geometry for 

dynamically creating, exploring, elaborating, analysing and synthesizing geometrical 

concepts (Laborde, 2001; Laborde & Laborde, 2008). It could facilitate the process 

of discovering geometrical concepts by first visualizing, analyzing and then making 

conjectures. Several research studies have shown that geometry teaching and 

learning in Cabri could promote and enhance students‘ visualization, reasoning and 

construction processes (Olivero, & Robutti, 2007). 

Despite the potential of Cabri as a tool to enhance students‘ geometric thinking and 

improve their geometry performance, its value will not be realized if teachers do not 

accept it as an effective learning tool. TAM has been utilized and extended for 

research purposes in education to assess pre or in service teachers‘ acceptance of 

other information technology innovations, such as e-learning (Lee et al., 2009) and 

virtual-learning (Raaij & Schepers, 2008). Results showed that perceived usefulness 

and perceived ease of use proved to be critical parameters of the acceptance and 

usage of the innovation as an effective and efficient learning technology.  

THE PRESENT STUDY 

There is a research need to establish an empirical link between TAM and specific 

mathematics geometry software. Thus, the main purpose of the study is to extend 

TAM and propose a structural and measurement technology acceptance model that 

could be used to evaluate the intention of teachers to use Cabri in geometry teaching. 

The present study adds to the research literature on TAM and DGS in a number of 

ways. First, it integrates TAM and TTF theoretical considerations by proposing a 

model that evaluates the task-technology fit of Cabri based on teachers‘ perceived 

pedagogical-learning fit of the software. By the term ―perceived pedagogical-

learning fit‖ we refer to teachers‘ perception about the quality of teaching and 

learning of geometry with Cabri and whether the specific software could meet the 

learning needs of students in geometry. To do so, the study proposes a model that 

evaluates Cabri‘s perceived pedagogical-learning fit based on Duval‘s cognitive 

geometry reasoning model (Duval, 1998). Second, the study may provide a 

worthwhile starting point in mathematics educational technology field in developing 

appropriate evaluation models that could be used to evaluate the pedagogical value 

of DGS. 

Aims of the study and the proposed model 

The purpose of the present study is to propose a model that extends TAM to assess 

teachers‘ intention to use Cabri in geometry teaching based on teachers‘ perceived 

pedagogical fit of the software. Specifically, the aims of the study were to (a) to 

validate the measurement model that describes teachers‘ perceived pedagogical fit of 
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Cabri based on Duval‘s geometry reasoning model and (b) to extend and modify 

TAM so it could potentially be used to assess, on a task-technology fit basis, the 

intention to use Cabri by integrating in the model, as a task-technology fit parameter, 

the effect of teachers‘ perceived pedagogical fit.  

In this paper, as it is highlighted in Figure 1, we hypothesized that an additional 

parameter, ―perceived pedagogical-learning fit‖, influences teachers‘ intention to use 

Cabri in geometry teaching. Specifically, based on the literature we assumed that a 

theoretical construct ―perceived pedagogical-learning fit‖ describes teachers‘ 

perceived pedagogical and learning appropriateness of geometry teaching with Cabri 

to develop students‘ visualisation, reasoning and construction processes. Based on 

Duval‘s model (1998), geometrical reasoning involves three kinds of cognitive 

processes which fulfil specific cognitive processes; (a) visualization processes that 

refer to the visual representation of a geometrical concept, (b) construction processes 

that can be developed in Cabri by appropriate tools and (c) reasoning processes that 

are necessary for the extension of knowledge, for explanation and proof. Thus, the 

latent construct ―perceived pedagogical-learning fit‖ consists of three first-order 

latent factors that refer to teachers‘ perceived visualization, construction and 

reasoning processes fit of teaching with Cabri. In addition, based on TAM theory 

(Dishaw & Strong, 1999), we hypothesized that teachers‘ intention to use Cabri in 

geometry teaching is influenced by teachers‘ (a) perceived usefulness of Cabri and 

(b) their attitude towards the use of Cabri. Perceived usefulness was also 

hypothesized to be influenced by perceived ease of use and attitude towards the use 

of Cabri was assumed to be predicted by the factors perceived ease of use and 

perceived usefulness. 

 

 

 

 

 

 

 

 

 

Figure 1: The hypothesized model 
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Subjects 

The sample of this study consisted of 105 pre and in-service secondary school 

mathematics teachers; 45 pre-service and 60 in-service teachers. Forty two teachers 

were males and 63 females. All the subjects attended a compulsory 9-hours module 

regarding Cabri and its pedagogical applications during their teacher training 

program in the University of Cyprus during spring 2010. The questionnaire was 

administered after the completion of the Cabri module. None of the subjects had 

previous experience with Cabri. 

Instrument construction 

A questionnaire instrument was developed for this study. TAM scale items were 

adopted from previous studies (Dishaw & Strong, 1999; Lee et al., 2009; Teo et al., 

2009) and were modified to meet the needs of the present study. Our research TAM 

model consists of 12 items (see Table 1) that measured ―perceived ease of use‖ (3 

items), ―perceived usefulness‖ (3 items), ―attitude towards use of Cabri‖ (3 items) 

and ―use intention‖ (3 items). In addition, based on the existing literature on 

geometry reasoning discussed in the previous sections, we developed 10 items that 

measured teachers‘ perceived pedagogical-learning fit. For example (see Table 2), 

the item ―Teaching geometry with Cabri helps in visualizing geometrical concepts‖ 

was used to measure ―visualization processes‖ fit, the item ―Cabri‘s measurement 

and dragging tools help students making generalisations‖ was used to examine the 

―reasoning processes‖ fit and the item ―Cabri‘s tools make easy the construction of 

complex geometrical constructions, such as locus‖ was developed to examine the 

―construction processes‖ fit. We developed multi-item Likert scales which have been 

widely used in the questionnaire-based perception studies, using the seven-point 

Likert scale, with 7 being ―Totally Agree‖ and 1 being ―Totally Disagree‖. 

Factor Items 

Perceived 

usefulness 

Q1. Using Cabri in geometry teaching will enable me to accomplish my tasks 

more quickly. 

Q2. Using Cabri in geometry teaching will enable me to enhance my 

effectiveness in teaching. 

Q3. Using Cabri in geometry teaching will enable me to increase my 

productivity in teaching. 

Perceived 

ease of 

use 

Q4. My interaction with Cabri tools will be clear and understandable. 

Q5. I will find the Cabri tools to be flexible to interact with. 

Q6. I will find the Cabri tools easy to use. 

Attitude 

towards 

Q7. I think it would be very good to use Cabri in geometry teaching rather than 

traditional methods. 
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Use Q8. In my opinion it would be very desirable to use Cabri in geometry teaching 

rather than traditional methods. 

Q9. Teaching geometry with Cabri makes the lesson more interesting.  

Use 

intention 

Q10. I will use Cabri in geometry teaching rather than traditional methods of 

teaching geometry. 

Q11. My intention is to use Cabri in geometry teaching rather than traditional 

teaching methods. 

Q12. In geometry teaching, I would rather use Cabri than traditional methods. 

Table 1: TAM items 

Data Analysis 

The goal of the analysis was to estimate the relative strength of the proposed models. 

Because we proposed a theoretically driven model about the components of 

―perceived pedagogical-learning fit‖, our first interest was in the assessment of fit of 

the hypothesized a priori measurement model to the data. Then, we examined the 

validity of the hypothesized structural model. One of the most widely used structural 

equation modelling computer programs, MPLUS, was used to test for model fitting 

(Muthen & Muthen, 2007) and three fit indices were computed: The chi-square to its 

degrees of freedom ratio (x
2
/df), the comparative fit index (CFI), and the root mean-

square error of approximation (RMSEA). The observed values for χ
2
/df should be 

less than 2, the values for CFI should be higher than .9, and the RMSEA values 

should be lower than .08 to support model fit (Marcoulides & Schumacker, 1996). 

Factor Items 

Visualization 

processes 

Q13. Teaching geometry with Cabri helps in visualizing geometrical 

concepts. 

Q14. Cabri facilitates the dynamic visualization and understanding of 

geometric theorems. 

Q15. Cabri‘s functions (i.e. dragging) help students to ―see‖ the properties 

and characteristics of geometric shapes. 

Q16. Cabri offers dynamic images that promote dynamic visualisation of 

geometrical concepts. 

Reasoning 

processes 

Q17. Teaching geometry with Cabri helps in developing students‘ reasoning 

and conjecturing thinking. 

Q18. Manipulating shapes in Cabri contributes in understanding geometric 

shapes‘ relations. 

Q19. Cabri‘s measurement and dragging tools help students making 

generalisations. 

Construction 

processes 

Q20. Cabri‘s tools make possible the construction of geometric shapes based 

on their properties. 
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Q21. Cabri‘s tools make easy the construction of complex geometrical 

constructions, such as locus. 

Q22. Constructing geometric shapes in Cabri is not a mechanical process, 

but it develops students‘ construction abilities. 

Table 2: Perceived Pedagogical-Learning Fit items 

RESULTS 

In this section, we refer to the results of the analysis, establishing the validity of the 

latent factors and the viability of the structure of the hypothesized latent factors. In 

this study, we posited an a-priori measurement model and tested the ability of a 

solution based on this structure to fit the data and then conducted a structural 

analysis to examine the relation between the factors of the modified TAM. 

To examine the first aim of the study, we conducted a confirmatory factor analysis 

(CFA) to validate a measurement which should have been able to model teachers‘ 

perceived pedagogical-learning fit of Cabri. The descriptive-fit measures indicated 

support for the hypothesized measurement model (CFI=.94, χ
2
/df=1.32, p>0.05, 

RMSEA=.06). The parameter estimates were reasonable in that all factor loadings 

were statistically significant and most of them were rather large. The analysis 

showed that each of the 10 perceived learning fit items employed in the present study 

loaded adequately only on one of the three geometry processes fit factors, giving 

support to the assumption that the three first-order factors could represent three 

distinct dimensions of teachers‘ perceived learning fit. Moreover, the factor loadings 

of the first-order factors (visualization, reasoning, and construction processes 

learning fit) that corresponded to teachers‘ perceived pedagogical-learning fit were 

extremely high (.90, .99 and .99 respectively), claiming that a general type of belief 

that refers to teachers‘ perceived pedagogical-learning fit could explain very 

accurately teachers‘ variances in evaluating Cabri. 

To examine the second aim of the study, we tested the validity of the hypothesized 

structural model, which claimed that the intention to use Cabri is influenced by the 

factors ―perceived usefulness‖, ―attitude towards use of Cabri‖ and ―perceived 

learning fit‖.  The descriptive-fit measures did not support the hypothesized 

structural model (CFI=.86, χ
2
/df=1.56, p<0.05, RMSEA=.09). Thus, we examined 

the validity of alternative structural models to trace the relations between the factors 

of the model. Figure 2 presents the modified model that best fitted the empirical data 

(CFI=.92, χ
2
/df=1.34, p<0.05, RMSEA=.07). As it is highlighted in Figure 2, the 

results of the study revealed that the factor ―perceived pedagogical-learning fit‖ is a 

strong predictive factor of teachers‘ intention to use Cabri (r=.69, z=4.02, p<0.05). In 

addition, teachers‘ perceived pedagogical-learning fit predicts (a) teachers‘ attitude 

towards the use of Cabri (r=.66, z=3.44, p<0.05), (b) teachers‘ perceived ease of use 

(r=.56, z=3.09, p<0.05) and (c) teachers‘ perceived usefulness (r=.96, z=4.02, 
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p<0.05). It could be concluded that teachers‘ perceived usefulness is strongly 

affected by their perceived pedagogical-learning fit. The structure of the modified 

model showed that attitude towards the use of Cabri is also predicted by teachers‘ 

perceived ease of use (r=.47, z=3.71, p<0.05) and attitude towards the use affects 

directly teachers‘ intention to use Cabri (r=.36, z=1.97, p<0.05). Further, the solution 

of the modified model did not validate the direct effect of the factor ―perceived 

usefulness‖ on other variables. On the contrary, it was deduced that teachers‘ 

perceived usefulness does not influence neither their attitude towards the use of 

Cabri, nor their intention to use it.  

 

Figure 2: Modified Technology Acceptance Model 
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DISCUSSION 

This study attempts to modify and extend TAM by integrating in the model a new 

significant parameter, ―perceived pedagogical-learning fit‖, which refers to assessing 

the pedagogical-learning appropriateness of teaching geometry with Cabri based on a 

cognitive-learning model. In examining the relations among the constructs in the 

modified TAM, this study found that perceived pedagogical-learning fit and attitude 

towards the use of Cabri were key determinants of teachers‘ behavioural intention to 

use Cabri in geometry teaching. Attitude towards the software proved also to be 

significant predictor in other research studies that examined users‘ intention to use 

computers in education (Teo et al., 2009; Venkatech, Morris, Davis & Davis, 2003). 

It is important to note that adopting non-educational derived behavioural intention 

models to assess teachers‘ intention to use software in teaching might give 

misleading information. Our results yielded that an important parameter that should 

be examined is teachers‘ perceived evaluation of the pedagogical learning fit of the 

software. The results of this study suggest that teachers‘ perceived ease of use, their 

attitude towards the use and especially their perceived usefulness are significantly 

influenced by their pedagogical-learning evaluation of the software. For teachers 

what matters to use the software is the additive, learning value of the software. Thus, 

although for the past two decades, numerous studies using the TAM as a research 

framework have been conducted, there is a need for future research in mathematics 

education domain that modifies TAM according to the learning needs that the 

innovative technology should meet, based on well established learning and cognitive 

models. 
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During more than two decades Norwegian educational authorities have promoted 

the use of computers, calculators, and more recently, digital tools in teaching in 

general in various school subjects. This paper reviews efforts to use digital tools in 

teachers‘ and pupils‘ work and problem solving in mathematics within the frame of 

two research and development projects in six lower secondary schools in Norway. 

The analysis sets out to characterise and contribute to a deeper understanding of the 

challenges teachers face with inquiry approach to mathematics.  

Keywords: digital tools, TPCK, teachers‘ role, teachers‘ competence, development 

BACKGROUND AND RESEARCH QUESTION 

A brief history of ICT in Norwegian schools  

Since 1984 educational authorities in Norway have promoted the use of Information 

and Communication Technology (ICT) such as computers and calculators in schools. 

Some teachers and schools introduced computers on a trial basis in the 70‘s, but the 

major effort from educational authorities came with the Stortingsmelding 39, 1983-

84 (KUF, 1984) which included a four-year plan of action to implement computer 

technology in some selected trial schools, starting in 1984. The aim of introducing 

computers was to learn about computer technology in society and to use computers 

as a teaching aid, particular attention was directed to vocational education and pupils 

with special needs. A goal was to avoid introduction of new reasons to create 

differences between pupils. Emphasis was placed on introducing computers with 

software that represent new opportunities to support learning which other material or 

teaching aids cannot provide. A number of schools became experiment schools and 

were provided with equipment. Furthermore an office for coordinating and leading 

the effort was established on national basis. This happened at a time (1984) when 

micro computers were fairly new and with limited graphics, memory and processing 

capacity. To educate teachers for use of ICT a course of 40 hours was offered and 

half year courses (30 ECTS) were developed for teacher education. The content was 

dominated by programming, use of databases, and limited education about teaching 

with ICT. The implementation of ICT as a teaching aid was not clear and purposeful. 

―Let a thousand flowers bloom...‖ and find out what works seemed to be the idea. 

The first plan of action was later followed by new strategic plans for ICT in schools, 

and computer technology was built into national curriculum guidelines (UFD, 2004; 

Krumsvik, 2007). Despite the official policy and initiatives the introduction of ICT 

in education has been slow in particular related to specific subjects (ITU, 2009).  
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In the most recent curriculum guidelines, the ―Knowledge promotion‖ from 2006, 

facility with digital tools [1] was made compulsory as one of five basic competencies 

and to be utilised in all school subjects. Furthermore, it is implied that use of digital 

tools will be accessible in examinations with the requirement that some test items 

have to be solved with computers.  

Access to and use of digital tools 

Recent surveys show that computers are now widely accessible in Norwegian 

schools and many pupils have their own portable computer, either private or 

provided by the local school authorities. On average there are 4.7 pupils per 

computer in primary and lower secondary schools, and 1.8 pupils per computer upper 

secondary schools. Internet is accessible from 90% and 98% of the computers 

respectively. Until recently use of digital tools, except calculators, has been limited 

in school subjects, and notably less in mathematics than in Norwegian, English and 

Social studies. This is documented in biannual reviews of technology use in schools 

(ITU, 2010; Arnseth, Hatlevik, Kløvstad, Kristiansen & Ottestad, 2007). 

Furthermore, teachers seem to be happy with learning digital competence through 

trying out themselves and getting guidance from colleagues.  

In mathematics a spreadsheet like Excel is the most commonly used software. 

Dynamic geometry like Cabri, and more recently Geogebra has become popular. 

Internet is used like in several subjects to search for information and numerical data, 

e.g from Statistics Norway, (http://www.ssb.no). Drill and practice software is used 

to develop skills with numbers, perhaps most common with younger children. 

Recently computers have been introduced in the final examinations in mathematics 

in lower secondary schools, so far this is mainly the use of spreadsheets, and this 

raises the demands to use digital tools in teaching.  

So, the problems related to lack of equipment are mainly solved in Norwegian 

schools, and suitable software is available. The limited use of digital tools for 

mathematics teaching and learning indicates there is a challenge related to 

understanding and appropriate use of digital tools for teaching and learning 

mathematics. Related to this some questions arise: What is the role of ICT in 

learning mathematics? What is the nature of digital tools and how can they be 

utilised? This leads to the following research question related to teaching 

mathematics:  

Research question 

What challenges do teachers meet in teaching mathematics supported by digital tools 

and to provide learning experiences with an inquiry approach for their pupils to 

develop mathematical understanding and skills? Digital tools here are computers 

with open software. 
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The question can be divided into several sub questions related to understanding of 

the role of digital tools in work and learning of mathematics, challenges related to 

the digital tools per se or related to organising computer use integrated in the 

mathematics classroom. In the following I will focus on the subject oriented use of 

computers with an inquiry approach to mathematics. The research question will be 

investigated by reanalysing/ review cases from two projects on ICT in mathematics 

with regard to teachers‘ understanding of technology, mathematical representations 

and teaching approach.  

THEORETICAL BACKGROUND 

Teaching in general and with digital tools particularly is a complex activity for the 

teachers; it involves deep insight in the subject, knowledge of the digital tools, and 

understanding of pupils‘ thinking. Furthermore, it involves pedagogical approaches 

and relating these to the curriculum plans and policy involved and so on, all in a 

dynamic changing environment. Shulman (1986) introduced the term pedagogical 

content knowledge, PCK, to denote the intersection of pedagogical and content 

knowledge in order to consider the complex interaction between pedagogy and 

subject content. The mathematical content and pedagogy, including the teaching 

approach or considerations related to teaching a specific content or subject, cannot 

and should not be separated. For mathematics it involves for example how to 

approach particular mathematical ideas and processes and make the subject 

accessible for pupils, to understand common errors and various ways pupils think 

about the subject. Ball, Thames & Phelps (2008) study teaching practice to 

understand what they call mathematical knowledge for teaching and found this 

knowledge is highly specialised for mathematics. The teacher needs to know more 

than to find a solution; they need to know various approaches and to be able to 

follow up pupils thinking. Mishra and Koehler (2006) extended Shulmans‘ model for 

teacher knowledge to include technology and introduced the term technology 

pedagogical content knowledge, TPCK, later recast as TPACK (Koehler & Mishra, 

2009). Figure 1 (from http://tpack.org/) indicates several areas of knowledge. In 

particular there is a need to understand and develop the knowledge related to 

technology and content TCK, technology and pedagogy TPK – or how technology 

affords new approaches to teaching. In the centre is the integration and dynamic 

interplay of content, i.e. mathematics, with technology and pedagogy (Niess, Ronau, 

Shafer, Driskell, Harper, Johnston, Browning, Özgun-Koca, & Kersaint, 2009). 

Introduction of technology or more specific, digital technology, in teaching implies 

not just learning to handle the computers with software and other digital tools, but 

relating the technology to the other knowledge areas, pedagogy and mathematical 

content knowledge. General knowledge of computer software, i.e, TK, like handling 

menus and keyboard commands, handling file system and even perform operations 

specific to the software is not sufficient. In order to develop TCK for mathematics it 

is necessary to understand how mathematical concepts and relations are, or can be 

http://tpack.org/
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represented within the software. Furthermore, insight is needed to realise how the 

software bring in new affordances and constraints related to investigation and 

solving mathematical problems. An example is spreadsheets where it is possible 

dynamically to manipulate and experiment with a whole table generated by formulae, 

and illustrate the distribution of values with a diagram based on the table. 

Spreadsheets have common mathematical and statistical functions built in and 

provide search and sorting facilities. However, as pointed at by Dettori, Garuti, 

Lemut & Netchitailova (1995), spreadsheets have limitations with lack of symbolic 

manipulation and are numerical, not algebraic in nature in spite of the use of 

formulae for calculations. Another example of mathematical software is dynamic 

geometry like Cabri, Geogebra and others. After constructing a figure using built in 

features in dynamic geometry, part of the figure can be dragged to test if the 

construction is robust, i.e. not falling apart when dragging one part of the figure. A 

constructed figure in Cabri is not the same as a drawing which can be represented 

with various constructed figures in Cabri with different properties (Laborde, 1995). 

The order of the single constructions for composing a figure make the figure specific 

and different from the same shape constructed in another way.  

The development of deep knowledge TCK can be expressed with terms from the 

instrumental approach as turning the artefact into an instrument for the user 

(Trouche, 2005). For a specific artefact this implies to develop utilisation schemes, 

knowledge on the level of simple usage schemes and more elaborated instrumented 

Figure 1: TPCK - Technological Pedagogical Content Knowledge 
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action schemes. Without going in detail I find the terms helpful to indicate the depth 

and complexity of knowledge involved.  

Mishra and Koehler (2006) point to how the TPCK framework can be used both as 

an analytic tool and as a tool for designing curriculum development. In particular 

they point to learning by the design based on principles of learning by doing and 

with less emphasis on overt lecturing and traditional teaching.  

RESEARCH AND DEVELOPMENT WITH ICT IN MATHEMATICS 

During the last decade ICT in mathematics has been studied in several 

developmental research projects at the University of Agder (UiA) with close 

collaboration between teachers and didacticians. During the years 2001 - 2004 the 

ICT competence project in mathematics in lower secondary schools [2] was set out 

develop pupils‘ competence with ICT tools so they could judge and choose for 

themselves which tools to use for a mathematical task, just pencil and paper or 

computer. Software in use was a spreadsheet, dynamic geometry and a graph plotter, 

intending to stimulate an investigative approach to teaching and learning.  

ICT and mathematics learning (ICTML)[3] ran through 2004 – 2007 in parallel with 

the project Learning Communities in mathematics (LCM), both with emphasis on 

developing a learning community with teachers and didacticians, with inquiry into 

mathematics and mathematics teaching as fundamental basis for the projects  

(Jaworski, Fuglestad, Bjuland, Breiteig, Goodchild & Grevholm, 2007). The projects 

employed a socio cultural view of learning. The pedagogical (or didactical) content 

of the projects emphasised pupils and teachers inquiry, to wonder and ask questions, 

investigate and explore and develop an inquiry attitude to teaching and learning.  

ICT has also been an interest in the most recent project, Teaching Better 

Mathematics (TBM) (2007-2010) which build on the same fundamental principles 

and extend the work on ICT to upper secondary school. The projects have been 

concerned with how ICT can provide learning experiences for pupils through an 

inquiry approach to teaching and learning. Work with teachers in workshops and 

school team meetings to stimulate the development have been central for the 

development and research carried out on all areas of the work. The research 

methodology was developmental research (Gravemeijer, 1994) with strong 

interaction and integration of development and research. In all the projects 

mentioned a qualitative research approach was employed utilising field notes, pupils‘ 

computer files, video and audio recording of meetings, workshops and interviews. 

All kinds of events were recorded and additional information in e-mails and pupils 

work on paper or computer files were collected  

SMALL CASES FROM PROJECTS 

In this paragraph I will not provide the full background of the projects, but will 

present some episodes that can illuminate challenges teachers face as they use digital 
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tools in their classrooms. The teachers all had some background with ICT, mainly on 

spreadsheets, but had hardly any experience from using ICT for mathematics 

teaching (Teaching here includes providing learning experiences for pupils). 

Case 1: The teacher solved the task  

In a working period over a couple of weeks to summarise and evaluate the effects of 

the ICT competence project, the pupils were given a booklet of 10 tasks from which 

they could choose which tasks to work on, and whether they would like to use just 

pencil and paper or computers. Most pupils worked in pairs or small groups.  

Some pupils in one class worked on the stamps task: to combine some stamps of two 

kinds worth 2.50 NOK [4] and 1.80 NOK to get the value 20.40 NOK for sending a 

small parcel (Fuglestad, 2007). Several pupils worked on simple tables in a 

spreadsheet to combine some of each kind of stamps adding up to 20.40 NOK. They 

experimented with swapping the values and how many stamps they needed. 

However, I observed one group of three pupils preparing a large table in Excel to 

make all possible combinations of number of stamps, to be sure to get all the 

different solutions. When I asked them to tell about their work, the pupils described 

their table and how they could find all the solutions. Then they commented they 

really did not understand, but when they asked for help the teacher, Ivar, instructed 

them how to make this table. Later I learned from Ivar that he made this table for 

himself the evening before as a preparation, and he interpreted the task to find all 

possible, not just one solution. The task invites to trial and error more than setting up 

an algorithm, and asks only for a combination of stamps, not all possible. In fact 

there is just one solution, but several with slight misreading of the numbers given, 

and so the teacher moved on to find a more general solution. Ivar seemed to think, he 

had to be able to present a complete solution, and when pupils asked he showed his 

solution.  

Through his thorough preparation the teacher tells that he feels responsible to have a 

solution ready. When the pupils asked perhaps he 

too quickly provided a solution, and did not urge 

the pupils to investigate with sufficient time for 

their own solution. There is also the pressure from 

pupils to give help, and difficulty to know how to 

help except give a solution. The situation indicates 

the teacher put a lot of effort to solve the task, but 

perhaps used less time thinking of how to tackle 

the pedagogical task. 

Case 2: Exploring Snow man in Cabri 

Trude, a teacher at Fjellet School taking part in 

ICTML, decided to implement Cabri with her class 

of grade 8 pupils over some weeks (Fuglestad, 

1) Snow man with a stick, 

hanging together 

2) Make a figure by reflection 

  a) Reflection in a line 

  b) Reflection on a point 

3) ∆ ABC     AB = 5 cm 

   BC = 4.5 cm 

AC = 2.5 cm 

4) Make the circumscribed circle 

for a triangle 

Figure 2: Task on flipover 
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2010). She did not use any prewritten material but wrote the task on a flip-chart 

(translated in Figure 2), planned for pupils inquiry into Cabri. She gave only a short 

introduction to the tasks and encouraged the pupils to investigate and find out how to 

solve it. The pupils were asked to experiment and find out about facilities in Cabri, 

including meaning and effect of some menu items and in this way build usage 

schemes, the simple one step operations. The pupils worked together in small groups 

or alone, and had opportunity to discuss their solutions with peers or the teacher. 

Trude wandered around and supported the pupils with questions or hints and in this 

way supported their further development of Cabri as an instrument, developing their 

instrumented actions schemes by combining several operations. In particular she 

emphasised the feature of dragging objects to test if the figure ―hangs‖ together, in 

particular relevant for the Snow-man task. 

Trude later presented her work in a workshop in the ICTML-project. She did not 

know Cabri before but was first introduced to it through the project, and worked a lot 

on her own to prepare before using Cabri with her pupils. She emphasised the need 

to learn Cabri before she ―dared to use Cabri in the class‖. Trude became stressed by 

preparing for the Cabri sessions, but also expressed great enjoyment arising from her 

work on Cabri with her pupils. Also on other occasions she talked about excitement 

over how pupils‘ became engaged with investigations. Trude‘s own development 

during the work seems related both to the technology and the pedagogy component 

of TPCK. The technological mathematical knowledge or more precisely TCK is also 

affected in this as it is necessary to know the way mathematical relations are 

represented in Cabri. 

Case 3: Cabri and classical constructions  

At another ICTML school, Austpark, the teacher team talked about introducing 

Cabri, but had experienced problems to get started due to several practical obstacles. 

Two factors seemed to encourage their decision to implement Cabri in their classes. 

A course day for preparation was provided from the ICTML-project at their school 

and a new teacher, Jacob, started working at the school. Jacob had experience with 

ICT and dynamic geometry. All teachers at grade eight and two on grade nine started 

to use Cabri. The teachers choose to use some worksheets that were introduced by 

Jacob and they regarded this material to be suitable as they found it covers a 

substantial part of the syllabus and it was close to their own way of working (Erfjord, 

2008). The material consisted of seven two-page worksheets and was structured with 

explanations and step by step instructions of how to carry out constructions in Cabri. 

The approach characterised as direct instruction with supportive comments was also 

observed in the teaching of classes at Austpark (Erfjord, 2008). The teachers 

implemented constructions using Cabri in parallel with use of compass and ruler 

which is the traditional way in plane geometry in schools. In addition to this 

convenient approach, they also argued that they expected the classical constructions 

to be necessary for the coming final examination for pupils. They seem not to 
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consider other more investigative material that had been presented in a workshop in 

the project.  

In conversations with a didactician the teachers claimed they found it difficult to be 

more innovative and make their own tasks. It seems difficult to both change style of 

teaching into an inquiry approach and introduce digital tools at the same time. 

Erfjord (2008) characterised this as a double innovation embedded in the project goal 

of ICTML. The teachers developed their competence with Cabri for mathematics, the 

TCK, but preferred to develop their TPK close to their tradition. The reasons are 

understandable and reflect the pressure for curriculum, coming examination and time 

constraints, but also their reluctance to engage deeply to change teaching style.  

Case 4: Develop material for investigation using Excel  

Three teachers at Dalen school set their goal for their participation in the ICTML-

project to develop their own library of Excel-tasks to complement the textbook they 

used (Fuglestad, 2010). The tasks would support pupils to investigate mathematical 

connections and properties of percentages, fractions and decimal fractions, area and 

volume of specific object and the like. The Excel-tasks were to support pupil‘ inquiry 

and experiments, and follow on with support for pupils own work to prepare new 

spreadsheets for other tasks. During the work, tasks were tried out in the class with 

one or two didacticians observing together with colleagues, and later follow up with 

discussing experiences and further or new development in the school team which met 

regularly every second week. Development of the tasks challenged the teachers both 

on technology and on pedagogical approaches. For example with a task to investigate 

equal-valued fractions and display several of the same value, it was necessary to 

develop complicated formulae with nested if-sentences. This was solved by 

discussing ideas and consulting another colleague who had long experience with 

Excel. Pedagogical challenges like judging how complicated a comparison would 

look for pupils, came up after observations in discussions. The interaction between 

didacticians and teachers was seen useful for both parts in the collaboration and also 

for stimulating the further development.  

Several spreadsheet tasks were made in a similar way, with setting up an 

environment for the pupils to explore, to insert numbers and observe the results, 

discuss and experiment to find relations. The tasks may seem fairly directive, setting 

limits for investigations, directed to certain relations planned for inquiry in a limited 

knowledge area. However, there were also more open tasks, and tasks to develop 

their own set up or models on a spreadsheet after using the pre-made tasks for 

investigations.  
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DISCUSSION AND CONCLUSION 

Although the cases presented are all different they show some similarities. Some key 

words are: preparation, confidence and control. Furthermore: limitations in 

understanding of the TPCK as integrated knowledge. 

The teachers feel the responsibility to have solutions to the tasks they present for the 

class. Both Trude and Ivar put a lot of work into their preparation, solved the tasks 

for themselves and worked on learning the software. This is probably reflecting their 

wish to feel confident and in control over what will happen or feeling the 

responsibility for having a solution at the end of the lesson. Trude expressed this as 

she needed to learn Cabri for herself to dare to use it in class. The pedagogical/ 

didactical challenges related to implementing an inquiry approach with use of ICT 

seemed to put extra pressure on the need to prepare to feel confident.  

Some teachers were reluctant to change teaching approach and therefore tried to 

implement ICT alongside traditional methods, to avoid large changes. Even if the 

teachers want to use digital tools with the resulting changes, there seems to be some 

deep seated traditions and external pressure that make changes difficult. At Austpart 

this was expressed and commented on when they choose the teaching material that 

was close to their tradition, and wanted to be sure pupils also could handle ruler and 

compass for construction.  

Also the teachers at Dalen invested a lot of time and effort to learn to use the tool, 

Excel, and to develop their own teaching material on file, prepare the lessons and 

discuss experiences and development. Reflecting on issues of control and inquiry, 

they seemed to find a way between the two sides, and planned for inquiry into a 

limited mathematical topic. On the other hand, the teachers seemed open and 

confident to use an inquiry approach in their classes.  

As noted in the introduction of this article the process of implementing ICT tools in 

mathematics teaching has been slow and is still limited. Experiences in general, and 

from the projects point to hindrances and resistances experienced even when teachers 

wish to use ICT tools. Perhaps this is due to lack of understanding of what is 

involved in developing the technological pedagogical content knowledge, the TPCK 

for mathematics. Affordances and constraints are related to the various areas of 

knowledge as shown in Figure 1, in particular how mathematics is represented, how 

the pedagogy if inquiry approach can be implemented with ICT and so on. I think a 

study of the various knowledge areas and combination of partly and full integration 

of mathematical content, inquiry approach, affordances and constraints of relevant 

technology would prove useful to guide further developmental research in the area.  

NOTES 

1
. ICT and digital tools will be used interchangeably 
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2
.The ICT competence project was supported by a grant from the Department of Education to 

stimulate ICT in schools 

3
. LCM and ICTML were supported by The Research Council of Norway (RCN), TBM was 

supported by RCN and The Competence Development Fund of Southern Norway.  

4
. NOK is Norwegian crown, the Norwegian currency 
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In this paper we describe the effort of the Support Centre for Visually Impaired 

Students in Bratislava to design an effective and helpful digital tool for learning and 

teaching mathematics to visually impaired students. In the first phase of our 

research methodology, which follows the design-based approach, we focus on 

mapping of the actual situation of teaching math to those students at each level of 

education in Slovakia. The emphasis is placed on tools and technologies these 

students use, as well as on problems that occur when using these tools. Later on we 

focus on LAMBDA editor, which seems appropriate for learning and teaching math 

to those students. Its adaptation to local conditions, which consisted of several 

iterative cycles of analysis, development, evaluation and revision, is reported in the 

second part of the paper. 

Keywords: visually impaired students, digital tools for teaching mathematics, 

LAMBDA editor 

INTRODUCTION 

The changes in society, brought up by an inflow of liberty and humanism, have led to 

the integration of handicapped people in Slovakia in 1993, and it has become an 

actual problem. Besides new social relations and situations it was also important to 

pay more attention to collective education of sighted and non-sighted students, which 

is particularly difficult when teaching mathematics. It is obvious that reading and 

writing standard text is completely different than reading and writing mathematics. 

One can consider mathematics even as a language on its own relying on different 

types of representations. This raises a question: how can we teach math to a student 

who is visually impaired? Practice shows that it requires using various tools that can 

give to the visually impaired students new view on mathematical objects, in order to 

support their imagination and simplify their manipulations with these objects. 

General approaches to the teaching math to visually impaired students in the world 

use tactile representations, audio aids, tonal representations, haptic devices and 

integrated approaches. The study of the actual Slovak situation, reported in the next 

section, points out the most serious problem, which is the absence of a uniform 

linearized notation. We thus focus on looking for a digital tool that could enable 

visually impaired students to write mathematical texts and perform calculations.  
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Overview of the actual situation 

Primary school 

Most of the Slovak visually impaired children (blind and partially sighted) attend 

special primary schools (in Slovakia, primary school lasts 9 years). During 

mathematics lessons, students use Braille books with tactile pictures, electronic 

notebooks to take notes and mechanical typewriters for calculations. The 

disadvantage of a typewriter is, first, that the way to get a result of a calculation takes 

too long, the pupils thus try to calculate in their minds and, second, the notation of 

the calculations is too verbiage, so after a while the pupil is lost. Teaching 

mathematics at the primary level means first of all helping children to use and 

organize their experiences, which they gain from actions and interactions with the 

world around them. Some authors claim that the main goal of mathematics education 

is to develop an awareness of numbers and coping with different relations and 

dimensions (Csocsan, Klingenberg, Koskinen and Sjostadt, 2002). The most frequent 

difficulties blind pupils encounter in mathematics are the following: 

 generalizing – finding similarities in different activities in everyday life, 

 translating activities and actions into a mathematical language, 

 lacking flexibility in problem solving and in calculations, 

 translating and transferring three-dimensional objects into two-dimensional 

iconic forms.  

Secondary school 

There are special secondary schools for visually impaired students in Slovakia, 

which are mostly oriented on music or some handicrafts (they usually last 3-4 years). 

If a student wants to come into contact with mathematics then s/he needs to attend a 

"normal" secondary school, which usually lasts 4-5 years. As we know, mathematics 

is a subject which is important for studying not only natural sciences such as physics, 

chemistry, computer science or biology, but it also begins to be popular in human 

sciences such as psychology, philology, sociology, etc. The direct consequence of 

this mathematical requirement almost everywhere is that also more and more visually 

impaired students today start their education in mainstream schools, which is the 

place where they can study math. Since the teachers in these schools are not specially 

educated in this field, they often have to use a ‖trial and error‖ method to find out the 

best way of teaching their blind students who are integrated among sighted students. 

Visually impaired students also face a lack of textbooks and study material, as well 

as a limited Braille math notation. On the other hand, most of visually impaired 

students at this level of education do not have difficulties to work with laptops with 

integrated screen reader and in this way to perform calculations; they already know 

all basic mathematical operations. However, the complexity of mathematical 

knowledge increases here very quickly in all fields: algebra, analysis, and geometry. 
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Hence, the students will have to overcome a lot of other new challenges, especially 

with the Braille notation of all new symbols. After having studied systems of Braille 

notation (Kohanová, 2003) in several European countries, we can state that more or 

less each of the mentioned norms suffers from a lack of rules for the notation of 

mathematical text. Therefore, the major part of visually impaired students creates 

their own particular mathematical language that is adapted to their conditions and 

requirements and the notation of these languages has a linearized form. But this 

raises new difficulties, because these ―languages‖ are not necessarily comprehensible 

for people who the visually impaired students communicate with. 

Communication with visually impaired students 

The integration of visually impaired students among sighted ones in the common 

schools creates new relations in the classroom. One has to distinguish three types of 

communication within these special conditions: communication between teacher and 

sighted students, communication between teacher and non-sighted students, and 

communication between non-sighted and sighted students. The first case is dominant 

and it can have various forms. Oral communication is essential in education; 

however, this fact is not valid in mathematics. In addition, mathematics requires 

exactness, definiteness, totality and comprehensibility of presentation. Teaching and 

learning mathematics is very arduous only by oral communication (e.g., when 

modifying expressions or making geometric constructions) and it is therefore 

supported by a graphical way - text or picture. It is very common that some students 

rather prefer notation or picture to talking/argumentation; in the case of visually 

impaired students it is practically essential. If we talk about graphical communication 

in the frame of communication between teacher and non-sighted students, we mean 

communication supported by typhlographic pictures and planes [1] or space models 

(construction kit, cubes, skewers, paper). Another form is communication supported 

by laptop; a non-sighted student takes notes or performs computations in the 

electronic form, mainly linearized. Data from interviews with visually impaired 

students and their teachers show that it happens quite often that two visually 

impaired students, who are in the same classroom, use different notations when 

working with mathematical text (Kohanová, 2003). This phenomenon complicates 

markedly the communication not only between the student and the teacher, but also 

between students. Another issue is the question of educational goals. Since in 

Slovakia there are no standards for teaching mathematics to integrated visually 

impaired students at the secondary level, the teacher thus has to determine 

requirements for these students on her/his own, on her/his subjective opinion.  

University level 

Comparing to the secondary education, there is quite a different situation for blind 

students at the university in math. The students are supposed to have skills necessary 

for studying - take notes during lectures, read scientific texts, perform complex 

calculations, communicate with teachers and other students in written form, etc. 
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Much more autonomous work is required. If the student graduated at a special 

school/class and used only the Braille notation and spoken language for the before 

mentioned purposes, s/he will have to overcome a lot of new challenges. There are 

very limited sources of scientific literature accessible to a blind student. Therefore 

s/he should be able to read different mathematical notations. Another way of 

delivering mathematical expressions in an accessible written form is the electronic 

text document on a personal/portable computer or a special note taker for the blind 

users. This sort of document usually contains a linear mathematical notation with 

expressions built up of ASCII characters. A blind student can access this type of 

notation in two ways. S/he can either use the refreshable Braille display and read line 

by line the corresponding Braille cells (groups of 6 or 8 raised dots) by touch, or s/he 

can listen to a synthetic voice, which reads each written ASCII symbol for him/her. 

The second method is more difficult for reading complex mathematical expressions, 

however it could be quicker for longer text with simple mathematical expressions. 

The ideal is a combination of both methods, when student can choose the appropriate 

method depending on the current situation (what s/he is reading, writing or 

calculating). Some solutions, originally dedicated to electronic publishing of 

scientific text documents (TeX, LaTeX, AmSTeX, HrTeX, MathML), could be red 

and written by a blind student. 

Computer Algebra Systems (CAS), such as Derive, MuPAD, MAPLE, MathCad or 

Mathematica, are dedicated at the first place to algebraic calculations, e.g., 

differentiation, integration or solving equations. They are also able to perform 

numerical calculations and to visualize graphs of functions, curves and 3-

dimensional objects. They contain as well a lot of functionalities for analysis, linear 

algebra, statistics, numerical analysis, number theory, etc. These systems are also 

useful for visually impaired students, especially the calculation functionalities. It 

makes no sense to urge visually impaired students to perform calculations that are 

often just very tedious and mechanical. That is why CAS are helpful. If the 

commands entered into the command-line are linear, it means that they are fully 

textual and therefore suitable for visually impaired students. Another advantage of 

CAS is that the screen-reader does not have any problem to read linear text on the 

screen; it is thus accessible to the student. Therefore, blind students in Computer 

Science use CAS for example for calculations during Algebra seminars. It is a useful 

tool for calculations with matrices, which are time consuming and quite complicated. 

If they understand the principle, such a tool can save time and a lot of manual work.  

ITERATIVE DEVELOPMENT OF LAMBDA SYSTEM 

As we mentioned above, the information and communication technologies (ICT) 

might be very helpful for visually impaired students studying mathematics, since 

they have largely improved educational opportunities. ICT have begun to be a very 

important part of the material milieu of didactic situations. The most important 

requirement for secondary school students is to handle mathematical expressions as 



Working Group 15 

CERME 7 (2011) 2343 

 

quickly and efficiently as their sighted classmates. Teachers who do not have any 

knowledge of Braille (usually those in integrated schools) ask for most suitable tools 

to facilitate the communication with visually impaired students. Later on, at the 

university, it is important to have a mathematical writing system that is powerful, 

flexible, and compatible with most common format standards, to enable independent 

scientific and mathematical work to be distributed digitally. The fact that has to be 

considered is accessibility. Recently, LAMBDA - Linear Access to Mathematics for 

Braille Device and Audio-synthesis appeared to supply all needed requirements. The 

LAMBDA project makes the provision for an integrated system based on a linear 

code and a software management system (the editor). The editor allows writing and 

manipulating of mathematical expressions in a linear way. A few facts about Lambda 

(according to Fogarolo, 2006): 

 LAMBDA is intended to be used mostly by young people who learn 

mathematics, especially visually impaired students.   

 LAMBDA is above all, even if not only, a didactical tool. It is the functional 

component which implements strategies devised in order to make text and 

mathematical expressions easy to read, write and manipulate by means of vocal 

output and Braille display, in an educational setting. 

 It is important to define didactical requirements needed for a software writing 

system compared with Braille traditional ones. The change towards mechanic 

writing systems (such as typewriter and PC) requires skills relative to the 

management of textual documents using PC. If they are missing, traditional 

tools are preferable and the passage to new technologies has probably to be put 

off.  

Methodology – Setting of the research 

We have first got in contact with LAMBDA system in December 2005 at the 

international conference in Rome: „I don‘t see the problem: new prospects to access 

Mathematics and Scientific studies for Blind students―, where the software was 

presented by its authors and by Italian visually impaired pupils who used and tested 

it. Later on, on the initiative of the Support Centre for Visually Impaired Students, 

Comenius University in Bratislava, we decided to investigate whether the LAMBDA 

system could be used as an educational tool to teach mathematics to visually 

impaired pupils in Slovakia. In the case that LAMBDA would prove to be a 

significant tool, the Support Centre planed to find ways of its practical application in 

Slovak schools. The methodology adopted in this research follows the design-based 

research approach. According to Plomp (2010), this methodology might be realized 

in a number of the following phases: preliminary research, prototyping phase and 

assessment phase. Our preliminary research consisted in mapping the actual situation 

in Slovakia with focus on tools and technologies used in math education of visually 

impaired students (see above). The prototyping phase is composed of four iterative 
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cycles of analysis, development, evaluation and revision of LAMBDA system used 

in Slovakia. All four iterations had a form of a course for visually impaired students 

or teachers, who were observed and interviewed in order to get feedback on the 

actual LAMBDA prototype. The assessment phase should give us an answer on the 

above-mentioned research question concerning LAMBDA as an educational tool.     

Process of iterations  

The first iteration of the prototyping phase was conducted in spring 2006 in one of 

the two schools for visually impaired pupils in Slovakia. We organized together 5 

lessons where the LAMBDA system (English version) was introduced. The study 

group was formed of 5 pupils of 9
th

 grade (4 boys and 1 girl). The pupils were chosen 

by using a purposeful sampling method (interest in studying mathematics at upper 

secondary school; basic English and basic computer skills were required). Two of the 

pupils were short sighted, two virtually non-sighted and one non-sighted. The data 

for the next iteration were collected from observations during the lessons and from a 

semi-structured interview after the course. 

During the course the participants became familiar with the working environment 

and the following important and useful features of the software (as advised in 

Bernareggi, 2006): 

 Various possibilities to input characters and mathematical symbols. 

 In many situations, it is important to perceive global information, related to the 

structure or the relation, to define every single time the most suitable paths and 

methods to face different issues. For example, given the following expression: 

 

Its linear representation in LAMBDA is:  

 

 

It is evident 

that in reading the linear representation it is more difficult to find specific parts 

and to quickly understand the relations among the structures making the 

expression, which is an immediate operation for sighted people who use global 

and bidimensional exploration. Therefore, we presented effective exploration 

strategies to the students. LAMBDA offers exploration through movement 

operations, in the sense that one can move to the next numerator, denominator 

or corresponding separator or tag. The second possibility is a tag structure of an 

expression that enables to understand the overall structure of the expression and 

to find its specific parts. The most compressed structure of the above-mentioned 

expression is: 
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Figure 1: Graphical visualization of the calculation 

Another depth level looks as follows:   

 

This visualization modality that hides the content of the block by maintaining 

blank spaces is useful as well to get some information about the size of the 

hidden blocks. 

 Even the linear notation in LAMBDA is more or less intuitive; the graphical 

visualization (Fig. 1) might be helpful for the teachers, parents or sighted 

schoolmates in order to be able to help the visually impaired student or correct 

his/her productions by doing calculations.  

  

 

 

 

 

 

 

 

 

 

 Another beneficial tool that was introduced is a scientific calculator that is able 

to calculate numerical expressions and paste the result.    

 LAMBDA enables automatic double copy of a selected row, we thus get 

―checking‖ and ―working‖ lines. Here we have the possibility of checking the 

steps against a previous, unchanged ―checking‖ line.  

Two open-ended and two closed-ended questions were asked to the pupils during the 

interview after the course: 

―Tell me about your experiences with LAMBDA during the lessons.‖ 

―In your opinion, what advantages and what disadvantages LAMBDA has?‖ 

―Do you think you have learnt how to work with LAMBDA?‖ 

―Can you imagine working with LAMBDA when studying mathematics at school or 

at home?‖ 

The data obtained from observations and interviews confirmed that all 5 pupils had 

learnt how to work with LAMBDA. Pupils considered LAMBDA as user friendly, 

more effective and also as a useful tool to do mathematics in comparison with the 

mechanical typewriter they used before the course. They appreciated the LAMBDA 

feature of ―working‖ and ―checking‖ lines, as well as the possibility to see what 



Working Group 15 

CERME 7 (2011) 2346 

 

structure they are working with. As expected, all pupils considered the English 

language as the biggest disadvantage; they would prefer to work with Slovak 

version.  

The second iteration focused on the translation of the LAMBDA menu into Slovak 

(September 2006 – August 2007). During the academic year 2007/2008, we 

continued with courses, whose primary aim was to test the prototype of LAMBDA in 

the Slovak language and the secondary aim was to get another feedback from pupils 

on LAMBDA as a tool for studying mathematics. In September 2007, we realized a 

one-day intensive course for three students who were integrated in a ―normal‖ 

classroom of an upper secondary school (at that time). All three of them participated 

in the previous course. This course helped us to discover several errors 

(terminological and semantic) and imperfections, their corrections were afterwards 

implemented into LAMBDA system.  

The third iteration was realized in December 2007, when 7 students coming from 

primary or secondary schools in Slovakia attended the third course. This course 

focused on a revised Slovak version of the software and on the appropriation of some 

new functionalities of LAMBDA added by the authors. Four participants already 

knew LAMBDA from the previous courses (2 of them worked with the English 

version, 2 with the Slovak version) and for the others LAMBDA was new. The latter 

were observed during the course and asked the same questions as in the first research 

phase. The data obtained from these interviews showed again that pupils are able to 

learn how to work with LAMBDA, perform various mathematical calculations and 

they consider it as an effective tool for doing mathematics. Students who already 

worked with LAMBDA were interviewed once again. We were interested in what 

problems and complications they encountered when learning mathematics with 

LAMBDA at school or at home, that means, in situations when they had to 

communicate with their sighted schoolmates, teachers or parents, who are not used to 

a linearized form of mathematical calculations. This was our input data for a 

forthcoming seminar on how to use LAMBDA organized for mathematics teachers 

of visually impaired students. After the course, all students were asked to write us 

feedback on LAMBDA (regarding understanding, complexity, heavy operations, 

etc.) on the basis of their experiences during the summer term 2008. All highlighted 

defects were again corrected in the new version of the Slovak editor.   

As it was already mentioned, the next iteration focused on teachers at primary and 

secondary schools who teach mathematics to visually impaired students, because 

they are also important in the process of studying mathematics. In February 2008, the 

Support Centre prepared a course for teachers in order to introduce them to 

LAMBDA as the educational tool. 23 teachers from various parts of Slovakia 

attended it. They got familiarized with principles of text linearization, LAMBDA 

basic functionalities, they learnt how to work with it and what are its advantages in 

comparison with other systems. They could observe one non-sighted student working 
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with LAMBDA, who demonstrated how quickly and effectively he is able to write 

dictated mathematical text and, later on, to edit (calculate) it. At the end of the 

seminar, the teachers expressed their willingness to use LAMBDA in their 

classrooms, when communicating with their visually impaired students.  

In March 2008, we have created a web-forum for students and teachers who work 

with LAMBDA in order to help them with any problem that could arise. One of the 

outputs of the realized courses was also a methodical guide of using LAMBDA 

intended for teachers and parents of visually impaired students, which was 

distributed to them.  

DISCUSSION AND CONCLUSION 

In the last years, the solution of the problem of accessibility to mathematics visually 

impaired students face seems to have an electronic form, which was studied by 

several authors (Kobolková & Lecký, 2002; Miesenberger, Klaus and Zagler, 2002). 

There exist systems that are blind friendly so that visually impaired students can do 

(calculate, read, write) mathematics in the way that is also accessible for their sighted 

schoolmates and teachers. In Slovakia, we have started to use the LAMBDA system 

and adapt it to the local conditions in several steps/iterations in accordance with the 

design-based research methodology. Thus, during the years 2006-2008, we realized 

several courses for visually impaired students and their teachers in order to find out 

whether LAMBDA system could be used as an educational tool for visually impaired 

pupils studying mathematics in Slovakia. Data obtained from observations and 

interviews first showed the need of LAMBDA localization into the Slovak language. 

Later on, when LAMBDA was used in math education by a few students, other 

problems arose. We tried to solve those problems and implement their solutions into 

the subsequent versions of LAMBDA. Through active web-forum, we got, during the 

years 2008-2009, a request from students and teachers for further development of the 

software, which appeared as not usable and quite demanding, since meanwhile 

LAMBDA became a commercial tool. These facts make it impossible to use 

LAMBDA as a norm in Slovakia. That is why we decided to develop a new tool for 

visually impaired users for working with mathematics in the electronic form. It 

should comply with the following features:   

 open-source application, platform independent and providing support for free 

screen readers;  

 usage of standardized formats (XML) to store the results; 

 easy language localization and easy extension of new symbols and 

functionalities; 

 standard graphical visualization of the notation for sighted users; 

 easy program control not only for visually impaired users, but also for sighted 

users. 
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These features should reduce almost all problems that caused the impossibility to 

adapt LAMBDA software to Slovak conditions. Further research will show whether 

the new developed tool will prove as effective and helpful tool for learning and 

teaching mathematics at Slovak primary and secondary schools and universities. In 

addition, further research should also study teacher‘s instrumental orchestration 

(Trouche, 2004) in such specific conditions, where visually impaired students are 

integrated into a common classroom with sighted students. 

NOTES 

1. Typhlographic pictures and planes enable visually impaired people to explore things that are usually not accessible to 

them. They can touch objects that are distant (sun, moon, clouds), too big (castle, train) or too small (butterfly, ladybird) 

and they can thus feel their shapes, develop imagination or orient themselves in space.    
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This paper provides an analysis of mathematics teachers‘ use of curriculum 

materials. 13 elementary mathematics teachers participated in the interviews for 

how they used the curriculum materials, specifically textbooks. The purpose of this 

study is to examine what mathematics teachers do with curriculum materials and 

how they use them for mathematics. The results of the interviews indicated that 

mathematics teachers used different textbooks to make instructional decisions, and 

they mostly adapted problems and examples in a constructive way. 

Keywords: mathematics teachers‘ use of curriculum materials, mathematics 

textbooks, and teachers‘ instructional decisions 

INTRODUCTION  

One crucial role teachers play in the school context is to transform and implement 

curricular ideas in classrooms. In their implementation processes, they often benefit 

from different types of curriculum materials, including textbook and other written 

resources. Curriculum material is an integral part of teachers‘ daily work and offer 

ongoing support for pedagogy and subject matter content throughout an entire school 

year (Collopy, 2003). They provide ideas and practices which frame classroom 

activity via text and diagrammatic representations and help teachers in achieving 

goals that they presumably could not or would not accomplish on their own (Brown, 

2009). Certainly, written curriculum materials such as the textbook, worksheet, and 

teachers‘ guide are mostly used curriculum materials in the school context. 

Particularly, textbooks are among the most widely used and trusted curriculum 

materials that are directly related to teacher‘s teaching and student‘s learning 

(Beaton, Mullis, Martin, Gonzalez, Kelly, & Smith, 1996). Although the term 

‗curriculum materials‘ has a general meaning involving a variety of resources, the 

current study focuses on mathematics textbooks and accompanying student 

workbooks, teacher guidebooks, and other written resources that are available to 

teachers.  

In general, mathematics curriculum materials such as textbooks, texts, computer 

software, and geoboards are integrated into mathematical and instructional intentions 

and possibilities for school mathematics (Adler, 2000). Mathematics curriculum 

materials have been viewed as critical resources for students‘ learning of 

mathematical content and teachers‘ mathematical instructional decisions; and 

teachers are accustomed to using them to guide instruction (Stein & Kim, 2009). In 

this sense, mathematics textbooks are used ―as source[s] of problem and exercises, as 

reference book, and as a teacher in themselves‖ (Howson, 1995, p.25) because 
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teachers often rely heavily on textbooks for many decisions such as what to teach, 

how to teach it, what kinds of tasks and exercises to assign to their students 

(Robitaille & Travers, 1992). Therefore, it is reasonable to argue that the 

mathematics textbook is an important part of mathematics learning and teaching 

context in which students and teachers work. 

Studies covering period of 25 years on characterizing and studying how the 

curriculum is actualized in schools addressed teachers‘ interactions with curriculum 

materials and the role of the curriculum materials implementation. The critical point 

for understanding the curriculum use depends on the process of understanding what 

teachers do with mathematics curriculum materials and why as well as how their 

choices influence classroom environment (Remillard, 2009). Their value is likely to 

depend on the ways they are used (Cohen, Raudenbush, & Ball, 2003). In this sense, 

understanding the use of textbooks and other relevant written resources by teachers 

plays an important role in exploring the pedagogical approaches used in the 

classroom.  

Research has shown that when teachers interact with curriculum materials, they do so 

in dynamic and constructive ways rather than a straightforward process (Brown, 

2002; Davis & Krajcik, 2005; Remillard, 2005). Teachers frequently make changes 

in the curriculum intentions and modify them according to the structure and the 

purpose of lessons. In doing so, the availability, quality, and flexibility of the 

curriculum materials play a critical role in teachers‘ decisions. In general, teachers 

transform the curriculum ideas, lesson plans, and mathematical tasks into real 

classroom activities (Remillard, 2005). Therefore, understanding the teachers‘ 

interactions with curriculum materials requires an integrated analysis of their uses in 

the classroom teaching and learning context. For example, Brown (2009) has 

revealed a kind of interaction between teacher and curriculum materials which 

involves multiple steps. According to this interaction, teachers first select materials; 

however, the options offered to the teachers are often restricted by higher organs in 

the educational hierarchy. Second, they interpret these materials in planning and 

during instruction with regard to their perception of materials. Third, they reconcile 

their perceptions of the intended plan with their own goals and with the limitations of 

the setting. Fourth, they accommodate the students‘ interests, experiences, and 

limitations. Finally, they modify the setting according to their own decisions and to 

their students‘ capacities. In fact, these steps proposed by Brown partly reflect the 

dynamic and constructive relationship between teachers and textbooks.  

In sum, understanding teachers‘ use of textbooks and other relevant curriculum 

materials provides insight into the contribution of such materials to classroom 

learning. In this context, the purpose of this study is to reveal what curriculum 

materials-specifically the textbooks- are crucial to mathematics teachers, and how 

they utilize them for mathematics. The specific research problems addressed in this 

study are the following:  
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 What are the uses of written curriculum materials (mathematics textbooks and 

accompanying student workbooks, teacher guidebooks, and other written 

resources) in classroom mathematics for the middle grades mathematics 

teachers? 

 For what reasons and purposes do mathematics teachers select and utilize the 

written curriculum materials? 

METHOD 

TEXTBOOKS IN TURKISH SCHOOLS 

Any textbook to be used in Turkish elementary schools needs to be officially 

approved by the Turkish Ministry of Education. The state publishes textbooks for 

each subject matter included in the curriculum. In addition, private publishers may 

also publish textbooks for schools. Among the approved textbooks, the ministry of 

education decides which textbook can be used by which schools, and distributes 

them free of charge to students and teachers. Typically, a set of mathematics 

textbooks includes a student course book and student workbook, as well as a teacher 

guidebook. 

PARTICIPANTS 

In this study, the data were collected through interviews. For the interviews, all 

middle grades mathematics teachers working in 11 different schools selected from a 

district of the western Turkish town İzmir were invited to participate in this study.  

Among them, 4 male and 9 female mathematics teachers were invited to participate 

in the study. A purposeful sampling method was used to ensure that a variety of 

teachers with different teaching experience were questioned. The interview 

participants had a minimum of 5 years of experience in mathematics teaching. In 

particular, 7 teachers had taught for over 10 years, and 2 teachers had taught for 25 

years or more at the elementary school level. At the time of the data collection, the 

teachers were working at sixth through eighth grade levels. Furthermore, they were 

using the same mathematics textbooks. 

DATA COLLECTION 

During the fall semester of 2009, 13 mathematics teachers were interviewed about 

how they used mathematics textbooks, and what other resources they used to plan 

and implement the mathematics lessons. The interviews were conducted for the 

purpose of obtaining data about how teachers used mathematics textbooks for 

planning, implementing, evaluating the lesson in the context of the Turkish school 

culture, as well as their perceptions of the textbook. Interviews were conducted in 

teachers‘ schools and took about 40 to 60 minutes with each teacher. Teachers were 

asked semi-structured questions, and the interviews were tape recorded and 

transcribed verbatim for the data analysis. 
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DATA ANALYSIS 

The researchers drew on the interview data to identify the use of textbooks by 

mathematics teachers. In analyzing the interviews, teachers‘ utilization of student 

course book, student workbook, teacher guidebook, and other resource books were 

analyzed in light of the research questions. Particularly, the researchers analyzed 

their use in the process of planning, preparing, enactment, and assessment of 

mathematics instruction.  

RESULTS AND DISCUSSION 

Results of the analysis indicated that mathematics teachers were using student course 

book (CB), workbook (WB), teacher‘s guidebook (TG), and other resource books 

(OB). The reports of teachers showed that teachers generally utilized the TG and CB 

in preparing the mathematics lesson. Moreover, they looked at the TG to make 

possible a connection between the curriculum intentions and classroom activities. 

They stated that their first resources for making decisions which topics to teach and 

how to present them were the TG and CB. As Ms. Aksu stated:  

I use the guidebook very frequently because I think that the guidebook gives useful 

information. For example, it provides information about how I can teach the lesson. 

In this case Ms. Aksu uses the teachers‘ guidebook to make decisions about how to 

teach the topic. Similarly, Mr. Æelik stated that he uses the TG to determine content 

boundary in his classes. He stated:  

I look at how the subject is covered [in the textbook], how it is explained, what the levels 

of the examples are, what kind exercises there are? [I use the course book] to get an idea 

about where the unit starts and ends, I mean, in order to determine a framework [for the 

class].  

Mr. Æelik‘s use of the TG was limited to determine the level and depth of the topic to 

be taught. Other participants also made use of the TG or CB in order to review the 

lesson objectives. Mr. Salih, on the other hand, focused more on the CB. He stated 

that he usually searches for engaging and sense-making activities from the CB.  

I try to start my instruction with activities and real life connections as this makes it easier 

to reach my students. I use the textbook for trying to reach ideas for this.  

Similar to Mr. Salih, other participants preferred to situate the problems in a real-life 

context from the CB. Particularly, one of the most important uses of the TG and CB 

were about the selection of in-class questions and exercises to be studied. For 

instance, Mr. Emre stated:  

We first solve the examples, questions in the course book together with students, and then 

after teaching the topic, I definitely make my students solve the ―your turn‖ part in the 

book. For the higher-level students, I solve problems from the test books after covering 

the rules from the course book.  
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In this case, Mr. Emre used the CB as the main source for examples and problems 

and looked at the OB to find different and upper level problems. Mr. Hüseyin also 

mentioned that the teaching experience he had was very crucial in adapting the 

problems and examples for the level of students in his classroom. He stated that: 

The level of the students is important for sure. I select more advanced books if the level is 

high, and easier books if the level is low… I arrange it by myself, actually based on my 

experiences. For example, sometimes I change a question while I am writing it. I change 

the questions considering the level (of the students) because I feel, I can see where a 

student can get it and where s/he cannot.  

In this case, Mr. Hüseyin, who had nearly 25 years of experience in mathematics 

teaching, expressed that he makes use of his teaching experience in selecting the 

problems and modifying the setting according to his own decisions and students‘ 

capacities. Similarly, the other participants reported that they created problems and 

questions using those textbooks, and adapted to problems and questions in the CB, 

WB, and OB.  As Mr. Sinan expressed, he focuses more on the WB and creates his 

own problems by the help of questions in the textbook. He stated: 

I change the form of the questions in the course book, or I write sub-questions for the 

questions in the book and pose them to students.  

Moreover, the participants expressed strong messages about the importance of 

addressing students‘ needs for preparing high stake national exams-namely SBS in 

Turkey. They adapted and supplemented the questions in the course book to be in 

line with the national examinations in order to help students achieve better test 

scores. As Ms. Mine stated:  

I always make my students solve the problems at the end of each unit in the course book. 

I make use of the book, because it is based on the curriculum and because I do not want 

my students miss any questions in SBS 

In addition, Ms. Tülin stated:  

In my classroom exams I ask similar questions to the national test.  

Similar to those cases, the participants aimed not only the preparation for high stake 

tests, but also for in-class examinations. Generally, the participants utilized the CB, 

WB, and OB to select problems and applications for in-class assessment. They 

generally used these materials to give homework and prepare the exam questions. As 

Mrs. Akif stated:  

I generally use the workbook to assign homework. Most of the questions (in the 

workbook) are not like the traditional ones such as ‗what is x?‘, but there are figures and 

tables in them. The questions in the course book and the student workbook are similar, so 

I assign the workbook to the students.  

Similar to Mrs. Akif, the other participants used the WB in their classrooms to ask 

similar problems in the CB and they gave the problems in the WB as homework.   
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CONCLUSIONS  

According to Remillard (1999), when teachers read the textbook, they attend to some 

parts of text and dismiss others. They bring their interpretation to what they read. 

This is because reading text involves ―a series of tacit decisions about what to attend 

to and how to interpret it‖ (Remillard, 1999, p. 324). In this current study, the 

mathematics teachers focused on the mathematics textbooks and accompanying 

student workbooks, teacher guidebooks, and other written resources in order to make 

particular decisions about the instruction. For example, they selected the real-life 

examples from student course book and decided on the problems from student 

workbook or other source book. Therefore, the use of textbooks by mathematics 

teachers was based on their interpretations of textbooks in this study. 

The results of the study indicate that teachers mostly relied on the official course 

books and accompanying teacher guidebooks for planning and preparing 

mathematics instruction. They were generally helpful for teachers about what topics 

to teach and how to make connections with real life and the other lessons. During the 

instruction, the teachers preferred to use again the course books for more process 

oriented activities such explaining topics, focusing on concepts, and assigning 

projects. For evaluating mathematics instruction, teachers preferred to utilize the 

course books, workbooks, and the other resource books in order to evaluate students 

and give homework. The data indicate that the most of the teachers stated that they 

followed the mathematical content and sequence presented in the CB by a little 

change. The teachers reported that they adapted the tasks from the CB and OB to 

give examples, exercises, and problems. For example, according to teachers, they felt 

that they had to review problems and examples in all resources because the 

classroom settings (e.g. the level of the students or time) always restricted the 

teachers. Most of the teachers also stated that they looked at the OB considering that 

they could not find challenging problems in the CB. Therefore, they stated that they 

used the OB when they preferred to solve different kinds of problems. Particularly, 

the teachers mostly adapted problems and examples when they were enacting in 

classroom and evaluating students. This would eventually indicate that teachers 

interacted with textbooks in a constructive way rather than a straightforward process. 

Furthermore, the teachers used the CB, WB, and OB to select problems and 

applications for assessment and evaluation. For instance, they stated that they 

generally utilized them to give homework and prepare the exam questions. Most of 

the teachers reported that they created problems and questions using those textbooks, 

and others made few or no adaptations to problems and questions in the textbooks.  

A general conclusion in this study is that the teachers mostly rely on the course book 

and the other resource books for selecting problems to work in class or use in 

examinations. These resources are mostly the self-study books that aim to prepare 

students to high stake exams. The scope of such books is usually focused on the 

preparation for the tests and the problems are usually in multiple choice format.  
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This paper focuses on the documentation work in the mathematics teaching. We 

show up the individual and collective components of this documentation. We present 

a new theoretical framework, the documentational approach, which seems adapted 

for studying this issue. We applied it on a particular project of the French teachers 

association Sésamath: the collective design of an online mathematics textbook. We 

present a methodology for observing both this collective project and the case of 

Anaïs, a teacher involved in this project. We study her professional interest in 

Sésamath, her didactical interactions with the other project members, and their 

effects on her professional knowledge. 

Keywords: documentation work, professional knowledge, resources, community of 

practice. 

INTRODUCTION 

Digitalization deeply changes conditions of thinking and sharing knowledge at each 

level of the society (Pédauque, 2006). Its visible manifestations, in mathematics 

teaching (Hoyles & Lagrange, 2010), are both the profusion of resources available 

via Internet and the diversification of technologies that could be used by teachers 

(USB keys, interactive whiteboard, calculators, software). These evolutions 

dramatically modify the conditions of professional practice (for preparing as well as 

for doing the teaching). They prompt new collective forms of teachers work: on the 

one hand, digitalization makes potentially easier sharing and exchange of resources 

between teachers, on the other hand, its complexity (dispersion of resources, rapid 

technological evolutions) makes necessary for teachers to help each other. These 

new forms of collective work among mathematics teachers change the conditions for 

their professional growth: teams, networks and communities appear as new 

opportunities for teachers to learn (Krainer & Woods, 2008). 

The most significant phenomenon of this trend, in France, is, for us, the appearing of 

Sésamath [1], a French online association of mathematics teachers, aiming to provide 

mathematics teachers with free online resources. For achieving this goal, Sésamath 

develops collaborative work of teachers, around common projects (Sabra, 2009). We 

address, in this article, two questions: why do teachers engage in Sésamath? How do 

they articulate their work on resources for individual purpose and for Sésamath 

purpose? 
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We first introduce a new theoretical approach, which seems necessary for addressing 

these issues. Then, we present our experimental field, specify our questions and set 

out our methodology. Finally, we display some preliminary results and propose some 

new questions that this research raises.  

THEORETICAL FRAMEWORK 

Our research relies on a new approach to teachers‘ work with resources and 

professional development, already presented in CERME 6 (Gueudet & Trouche, 

2009) and developed further (Gueudet, Pepin & Trouche, to appear): the 

documentational approach of didactics. 

It is built on a distinction between resources and documents, extending the one 

introduced by the instrumental approach (Rabardel, 1995) between artefact and 

instrument. The choice of the word ―resource‖, instead of artefact, aims at catching a 

great variety of things intervening in teachers‘ work: textbook, piece of software, 

student‘s worksheet, Internet resource, discussion with a colleague, etc. We call 

documentation work what a teacher needs to do for designing her teaching: looking 

for resources, integrating them in her personal resource system, implementing it in 

practice, sharing it with colleagues, renewing it taking into account various feedback, 

etc.  

A teacher draws on resource sets for her documentation work. A process of genesis 

(Fig. 1) takes place, producing a document [2], made of resources and a scheme (i.e., 

an invariant organization of the activity to perform a type of task - here a task of 

preparing and performing a given teaching). Each scheme encapsulates professional 

knowledge, both shaping teacher‘s activity and permanently reshaped by this 

activity. Shulman (1986) proposed a categorization of teacher‘s professional 

knowledge. We are particularly interested in Pedagogical Content Knowledge (PCK) 

that a teacher develops to help her students in their learning (Grossman, 1990). 

 
Figure 1. Schematic representation of a documentational genesis 

The documentational genesis combines two interrelated processes: the 

instrumentalization (the teacher acting on resources), and the instrumentation process 

(resources supporting teacher‘s activity). 

Considering teachers‘ collective work leads us to articulate the documentational 

approach to the frame of communities of practice (Wenger, 1998). A community of 



Working Group 15 

CERME 7 (2011) 2358 

 

practice (CoP) is a human group presenting three main features: mutual engagement 

of its members, active participation to a joint enterprise, and reification of elements 

of practice (i.e., production of things, results of the common practice, and recognized 

as a common wealth). This frame appears relevant for studying interplay between a 

group of teachers and sets of resources they are working on/with. Instead of 

reification (referring to congealed entities), we coin the expression community 

documentational genesis to describe the process of gathering, creating and sharing 

resources to achieve the community teaching goals. The result of this process, the 

community documentation, is composed of the shared resource repertoire and shared 

associated knowledge (learnt from conceiving, implementing, discussing resources). 

OUR EXPERIMENTAL FIELD 

Sésamath is a math teachers association founded in 2001. Its kernel is constituted of 

about 100 subscribers (math teachers), sharing a set of principles inscribed in a 

charter [3]: common philosophy of public service, ―math for everybody‖… Elected 

by this kernel, the Sésamath board regularly launches new project groups for 

designing resources on a given theme corresponding to teachers‘ special needs and 

interests (new curriculum subject, new textbook… Fig. 3). These groups gather 

about 5000 teachers (a number of teachers belonging to several groups at the same 

time), working mainly at distance, via a platform and mailing lists. The group 

members can benefit from the assistance of employees and computer developers 

hired by the association (Fig. 3). All these groups present the CoP features, at 

different levels of development: the project groups appear, at the beginning, as 

potential CoP (Wenger et al., 2002), while Sésamath kernel appears as a maturing 

one (ibid.). Sésamath, beyond its regular members, thus constitutes a constellation of 

CoP (ibid.), each of them sharing a same commitment for the association principles. 

A questionnaire (Sabra, 2009), proposed in 2008 to 36 members of the Sésamath 

kernel [4], gave some answers to our first question: why do teachers engage in 

Sésamath?  

What are, for your teaching, your sources of 

documentation? 

Online resources (33/36); Resources that you 

have developed in previous years (35/36) 

What are your professional reasons for 

engaging in Sésamath? 

Training (16/36); Exchange of experience 

(23/36); Exchange of resources (13/36). 

Table 1. Questionnaire to Sésamath, two questions (among 39) and their answers 

The first item (Table 1) confirms the Sésamath members‘ interest for online 

resources and evidences the place, for them, of resources reuse (revealing the 

importance, for Sésamath work, of exchanging, combining, modifying his/her own 

existing resources). The question item reveals that the main motivation, for joining 

Sésamath, is the exchange of experience, which evidences Sésamath role for its 

members‘ professional development. 
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Going further in our research required to monitor the documentation work of one 

Sésamath project group on the field. We have chosen the group (named DT10), 

created in 2009, aiming to design a digital textbook for the beginning of the French 

high school (grade 10). This choice was motivated by two reasons: 1) after having 

designed textbooks for the French college (grades 7 to 9), Sésamath thus addresses, 

for the first time, the more complex, grade 10 math; 2) after having designed 

―classical‖ textbooks (pdf, OpenOffice files teachers can download and modify) with 

complements (spreadsheets and interactive applications), Sésamath aimed to create a 

new type of digital textbook, that a teacher can appropriate and adapt to her own 

needs. We hypothesised that these new challenges (mathematical and technical) 

could enrich the documentation work of this group, and thus make it more interesting 

for our research.  

Answering our initial questions needed also monitoring the complete documentation 

work (both for Sésamath and for their own classes) of some DT10 members. For this 

article, we have chosen to present Anaïs‘ case. Anaïs is particularly engaged in 

DT10. She is 57 years old. After 15 years of various occupations (including a few 

years as a member of a commune in the countryside), she came back to the 

university, achieved her math studies and got a position as a math teacher. She has 

now 18 years of teaching experience (15 years for grade 10). Why does Anaïs engage 

in the DT10 project? How does her professional knowledge interact with individual 

and community documentation? 

METHODOLOGY 

Observing the individual and collective documentation is a complex task. It requires 

taking into account several conditions: long time observing to highlight regularities; 

individual and collective observing; observing in and out of classroom; following 

both teachers‘ activities and resources. In some methodology of CoP observation, the 

researcher is engaged in practices (Jaworski, 2009). In our case, we have just 

observed the practice as an outsider. 

The reflexive investigation for observing individual documentation  

To observe Anaïs‘ documentation, we adopted a methodology designed by Gueudet 

& Trouche (2010): reflexive investigation considering the teacher as an essential 

actor in data gathering. Among its methodological tools: interview at home, ‗guided 

tour‘ (the teacher being the guide) and schematic representation of her resource 

system (SRRS); questionnaire about her vision of math and of math teaching; follow-

up during several weeks including a logbook fulfilled by the teacher, collection of 

the resources, classroom observations. Anaïs became sick at the beginning of the 

follow-up, thus a direct classroom observation was impossible. We have adapted the 

methodology, by observing (and videotaping) Irvin, Anaïs‘ substitute in class, who 

actually used Anaïs‘ resources, and discussing afterwards with Anaïs on Irvin uses of 

her resources. In this paper, we only exploit data from the Anaïs‘ interview at home, 
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from her comments on Irvin‘s video, from her SRRS and from a set of resources she 

designed for the teaching of functions (according to the discussion in DT10).  

Designing a methodology for observing community documentation 

Extending this methodology relying on individual reflexive investigation, new 

methodological tools have been designed for fostering teachers‘ reflection on their 

collective practice. Among them, an agenda, fulfilled by some members of the CoP, 

chosen for the role that they had in the project (e.g., Adam was selected for its role 

identified in the mailing list as an effective coordinator of DT10). These agenda aim 

to identify and analyze, from different points of view of different actors, the effects 

of the incidents (something unexpected needing to reformulate the common goal or 

to reorganize the community documentation) occurring throughout the common 

project. We have also asked DT10 members a schematic representation of collective 

interactions (SRCI) in the case of Sésamath, and collect the mathematical resources 

that they designed. 

The methodology takes also advantage of natural data which offers the experimental 

field. We thus exploit the Anaïs‘ online notebook, the DT10 mailing list offering  

discussions about project organisation, as well about mathematical, didactical and 

epistemological aspect of the community documentation work. During our follow-up 

period (11 months), 627 messages have been exchanged via the mailing list, 

involving 27 members (including Adam, Anaïs, John, Ben, Pierre and Henry). Anaïs 

has authored 111 messages out of the 627. We particularly exploit the DT10 thread 

of discussions concerning the ―math functions‖ linked to an incident: a curriculum 

change occurring in the midst of DT10 work and provoking a more intensive 

discussion. 

DATA ANALYSIS AND DISCUSSION 

We first analyze Sésamath and Anaïs‘ documentation, and then present the didactical 

interactions between Anaïs and DT10.  

Documentation work: DT10 and Anaïs 

Most of Anaïs‘ resources (courses, exercises, homework) are digital, stored in an 

external hard disc. This digital form facilitates the sharing with other teachers via 

USB key or Internet. The Anaïs‘ resource system is strongly articulated with 

Sésamath resources (see Anaïs SRRS, Fig. 2): emails, students‘ sheets and other 

resources exchanged with Sésamath seem to have a major role in her documentation. 

This osmosis between Anaïs and Sésamath resources facilitates Anaïs‘ participation 

in DT10 work. 

Anaïs‘s documentation is conditioned by three factors: ―curriculum changing, 

institutional recommendations and classroom general level‖ (Anaïs' interview). For 

example, her teaching of ―function‖ is strongly related to curriculum change. She 

said that she lived ―two different spirits" of teaching functions: ―it was, before, more 
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guided and now the curriculum recommends open questions... so that students have 

more initiative‖ (Anaïs' interview). She seems very sensitive to the students‘ level: 

this year, I had a low level class. I will modify [the documents of the previous year] 

by adapting them to the level of my class. But maybe, the next year I will have good 

students; I will reuse the document in the present form‖ (Anaïs' interview). 

 

Figure 2. Anaïs‘ SRRS, our translation and schema as close as possible of the original 

DT10 documentation is also sensitive to curriculum changes and keeps Sésamath 

resources as a general background support (particularly when an incident occurs), as 

it appears in the following excerpt of the DT10 mailing list: 

John: The curriculum has profoundly changed and we must rebuild the chaptering. This 

chaptering is very important because it is common to several Sésamath projects that 

involve the grade 10. Thus, I propose to do a general RESET.  

Henry: We will create a general mailing list for all Sésamath projects linked to the 

secondary level as there issues intersect. We will thus share resources and general links 

that might be useful to all.  

John: This list must first allow everyone to have a clear idea of what is done in different 

projects. 

DT10 and Anaïs‘ documentation do not answer to the same constraints: DT10 has to 

move forward systematically with other high school projects, while Anaïs is attracted 

by her pupils‘ level, particularly in the new curriculum spirit. But both 

documentations are conditioned by the institutional recommendations, which 

constitute the joint constraint for designing the resources. 
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Anaïs‘ interactions with DT10 are linked to her general interest for collective 

matters, and particularly in this project. Anaïs underlines, in her SRCI for Sésamath 

(Fig. 3), that each project is constituted by teachers who are interested the project 

topic. More precisely, her participation resulted from a professional interest: 

participating in DT10, constitutes, for her, an occasion for searching ideas for her 

own classroom course. She confirms this idea in the interview, illustrating the 

productive aspects of instrumentalisation process: ―for example, for the chapter 

―Variations and Extrema of functions‖ [named 2N2], I don‘t have constructed the 

lesson yet. In fact, I will transform it [the lesson designed in DT10] and I will reuse it 

for my classroom. I will adapt it for my classroom‖.  

 

Figure 3. Anaïs‘s SRCI, our translation (see comments on project groups §3) 

We analyze in the following section the didactical aspects of the interactions 

between Anaïs and DT10 members. 

The didactical interaction between Anaïs and DT10 members 

The didactical interactions between Anaïs and other DT10 members take place 

mainly through the project mailing list. Most of the didactical discussion, in the 

thread ―Create textbook chapters‖, concerns the theme ―mathematics functions‖. This 

discussion came under the PCK category ―instructional strategies for teaching the 

functions‖, as it appears in the following extract of DT10 mailing list about the 2N2 

chapter (evidencing Adam‘s role as coordinator):  

Ben: We need to cut up 2N2 chapter. What are your proposals? 

Pierre: … How far will we go with the concept of variations? My proposal: 1) the notion 

of functions variation (from a curve); 2) Maximum and minimum of a function, 3) graph 

and table of variation; 4) comparison of numbers. 
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Anaïs: My proposals: 1) functions variations and graphical reading... 2) variations and 

calculations: square function ...inverse and linear functions, 3) Maximum and minimum 

of a function, 4) table of variation. 

Adam: I have a slight preference for Pierre‘s proposal ... because I think that the table of 

variation is simpler to understand than computations for comparing numbers ... I think 

that slowly increasing the difficulty is a good strategy. 

Anaïs‘s chapter happens following another structure. She first introduces the concept 

from what she calls a ―start-up activity‖, with the aim of presenting the semantic 

values of the ―mathematics functions‖ terminology; then, ―the course‖ where she 

presents the main definitions (and related examples); at the end, the ―series of 

exercises‖, and ―homework and assessment‖. This structure appears in her online 

notebook (table 2).  

Monday 21/09/2009 Constructing, from a sheet of paper, a box whose volume is the 

biggest one 

Friday 25/09/2009 Definitions: set of a function definition, variable, image, and 

antecedent. Table of values and graph using a calculator. 

Monday 28/09/2009 Area of a rectangle with a given perimeter. Table of values and 

graph of reference functions (that are inverse function, square 

function, square root function…) 

Thursday 1/10/2009 Different ways of saying that f (a) = b 

Friday 2/10/2009 Exercises on image of an interval; first assessment. 

Table 2. An extract of the Anaïs‘ online notebook 

In the thread of discussion ―Extremum 2N2‖, that concerns designing an exercise for 

2N2, Anaïs initiates didactical discussions about the terminology: 

Anaïs: f(x) is smaller than (or the image f(x) is smaller than?). It seems... 

John: For M being a maximum, it must be both an upper bound and an image by f. That 

is to say, for all x belonging to a given interval I, f(x) ≤4.5, then 4.5 is an upper bound. 

And it is a maximum if it is also an image of some x belonging to I. 

Adam: I propose this formulation: for every real x belonging to I, f(x) is smaller than, or 

equal to, f(3), which equals 4.5. 

Anaïs: Either like this: for every x in the interval I, f(x) ≤4.5 with 4.5=f(3).  

Also, when she discovered Irvin‘s video, she has particularly commented the 

language used by the teacher:  

Anaïs: the expressions ... he says ―the straight line 3x +1‖, or the straight line Y. What 

does that mean? He should say the line whose equation is y = 3x+1.  

Me: why does it bother you? How this is a problem? 
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Anaïs: I think we should be highly accurate, even when we talk. Being vague or loosely 

makes fuzzy pupils‘ mind, especially when introducing new concepts... 

We remark a difference between DT10 (more precisely DT10 members taking in 

charge this question) and Anaïs in the instructional strategies for teaching function. 

DT10 constructs a ―function‖ concept from very simple tools (reading of curves and 

table of values), then it moves to more complex tools like calculation and articulation 

between different types of representation (algebraic, graphical). Anaïs takes care, in 

her documentation, of the terminology of mathematical concept and its use. This gap 

is an opportunity for Anaïs to discuss her view with other DT10 members.  

On another subject, the design of a problem-situation reveals a convergence between 

Anaïs‘ and other DT10 members‘ documentation: Anaïs fosters the place of 

conjecture and experimentation. She presents thus a resource (interview): 

Anaïs: I like to ask them first to experiment with a calculator... try first with the 

calculator, guess the number of solutions ... for example f (x) = 0 they speculate with the 

calculator and ... Once they guess, after they do the proof by calculation. But I think it is 

important to first think about from free explorations. 

The thread of discussion ―test_2N2‖ reveals, within DT10, a shared point of view on 

problem-situation. The problems designed consist in modelling geometrical 

situations with a function, graphing this function with a calculator and elaborating 

conjectures before computing and searching for evidence.  

CONCLUSION  

We have presented in this paper a theoretical approach and a methodology aiming to 

analyze the didactical interactions at stake within a community documentation work. 

We have carried out this approach and this methodology in the case of a 

documentation project, DT10, of an online teachers association, focusing on Anaïs, a 

member of this association.  

Anaïs and DT10 have a common interest in collaborating for designing resources 

and collectively facing incidents (like changes in the curriculum). Anaïs has also an 

individual interest linked to her documentation needs: discussing the mathematics 

terminology and language, and its values in the documentation work. When Anaïs 

perceives that didactical discussions are part of her interest, she participates strongly 

in the community documentation.  

Three factors seem to stimulate the active participation of a teacher in the community 

documentation: osmosis between her resource system and the CoP resources; a gap 

between the teacher and the CoP in the strategies for teaching a subject; a shared 

interest in the subject of discussion that is the origin of gap. Following an episode of 

Anaïs‘s active participation in the community documentation, we identified an aspect 

of her professional knowledge: the introduction of a concept has to be based on a 

precise introduction of terminology and language associated, and its uses. 
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This study revealed a question that deserves more deepening: how identifying the 

effects of the community documentation on the teacher professional knowledge in 

the case of convergence between the individual and community documentation?  

NOTES 

1. http://www.Sesamath.net/ 

2. The choice of vocabulary intended to match the terminology of document management research. According to 

Pédauque (2006), ―A document is not anything, but anything can become a document, as soon as it supplies information, 

evidence, in short, as soon as it is authoritative.‖ (p. 12, our translation). 

3. See: http://www.Sésamath.net/association.php?page=asso_charte. 

4. See: http://www.Sésamath.net/association.php?page=asso_charte. 
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DEVELOPING A COMPETENCE MODEL FOR WORKING WITH 

SYMBOLIC CALCULATORS  

Hans-Georg Weigand 

University of Wuerzburg (Germany) 

There is a worldwide claim that the actual use of Information and Communication 

Technology (ICT) is only partially integrated into mathematics learning and 

teaching. Reasons concerning this issue are fairly diverse. One argument might be 

the complexity of the integration process in the actual teaching. In the M
3
-project 

(Model-project with new Media in Mathematics lessons) in Germany, students‘ 

knowledge and abilities are evaluated in the frame of a ―competence model‖ while 

working with a Symbolic Calculator (SC) within the context of the concept of 

functions. This article demonstrates the way of constructing the (theoretical) 

competence model while working on different levels of SC-use and while working on 

different levels of the understanding of functions. It also discusses the results of a 

first experimental evaluation of this model.   

Keywords: Competence model, functions, symbolic calculator, experimental 

evaluation 

There are many suggestions, lesson plans and empirical investigations concerning 

the use of ICT in mathematical learning and teaching. But despite of the positive 

results of many of these empirical investigations ―the actual use of ICT in real school 

environments is still having a limited impact‖ (Bottino & Cerulli, p. 1). This is also 

noticed quite often in the actual ICMI study 17 (Hoyles & Lagrange, 2010), e. g. 

―technology still plays a marginal role in mathematics classrooms‖ (p. 312) or ―the 

impact of this technology (CAS) on most curricula is weak today‖ (p. 426) and 

especially in the closing address Michèle Artigue, the president of the ICMI, points 

out:  

―The situation is not so brilliant and no one would claim that the expectations expressed 

at the time of the first study have been fulfilled‖ (p. 464).  

The complex area of integrating new technology into common school lessons has 

been underestimated by teachers and researchers (Trouche, 2005).  

―Increased technological power, nevertheless, generally goes along with increased 

complexity and distance from usual teaching and learning environments‖ (Artigue & 

Bardini, 2010, p. 1). 

We know, especially from the results of the theory of instrumentation and 

instrumental genesis (Guin et al., 2005), that only local strategies for learning and 

teaching, for example in the frame of lesson units, will not give successful results. It 

is necessary to have a global view of the entire learning and teaching process, which 

includes the teacher, the learner, the content and the learning environment.  
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In the following, we develop a competence model, which shows on the one hand 

goals of teaching with ICT in the frame of a special content – we have chosen the 

function concept as one of the most important concepts in the mathematics 

curriculum. On the other hand, it allows the evaluation, classification or 

categorization of students‘ competencies in the use of the digital tool. 

FOUNDATIONS OF A COMPETENCE MODEL  

The concepts of competence and competence (level) models have aroused interest in 

mathematics education in the past years. Starting with the NCTM Standards (1989) 

and especially the PISA studies, competence and competencies are expressions, often 

used in the context of standards, goals envisaged, knowledge and abilities in 

mathematics education (OECD, 1999; Niss, 2004). 

Concerning our competence model, we decided to concentrate on the concept of 

functions, as it is a central concept in mathematics and in mathematics education. 

Moreover, it plays a crucial role in our M
3
-project. These content competencies 

become apparent in understanding functions (UF) and in relation to tool 

competencies (TC) while using the SC.  

DEVELOPMENT OF THE COMPETENCE MODEL 

Understanding of functions (UF) 

Concerning the understanding of functions, we use a four level model developed by 

Vollrath (1993), as these levels are already expressed in special competencies 

(knowledge, abilities) which students are expected to have at each level: 

Level 1: Intuitive Understanding  

Level 2: Conceptual Understanding 

Level 3: Relational Understanding  

Level 4: Structural Understanding 

The model includes the dual nature of mathematical concepts: processes and objects 

(Sfard, 1991) and the instrumental and relational understanding of Skemp (1976) [1]. 

Compared to the models of Sfard and Skemp, it explicitly describes the competencies 

a learner should have related to the understanding of functions. For detailed 

information concerning this model see Weigand & Bichler (2010). 

Tool competencies (TC) 

The ability or the competencies to use SCs adequately requires technical knowledge 

about the handling of SCs. Moreover, it requires the knowledge of when to use 

which features and for which problems it might be helpful. In the following, the use 

of SC is classified concerning the way representations are used. We distinguish three 

levels, which might also be categorized by using SCs as a (simple) function plotter, 

as a tool for creating dynamic animations and as a multi-representational tool: 
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Level 1: Using the SC as a tool, which produces static representations. We speak of a 

Static Mode (StaticMode). 

Level 2: Creating dynamic representations. We speak of a Dynamic Mode (DynaMode).  

Level 3: Using the SC as a multiple representational tool.  We speak of a Multiple Mode 

(MultiMode).  

The UF-TC relationship 

 

 

          

 

 

 

 

 

Figure 1: UF-TC-relationship 

The relationship UF-TC is established by special problems or tasks, showing on the 

one hand the level of understanding and on the other hand the way a student uses the 

symbolic calculator. In Weigand & Bichler (2010), an example for every single cell 

of the matrix is given.  

THE EMPIRICAL EVALUATION OF THE COMPETENCE 

MODEL 

Concerning the empirical justification of the theoretical model and including the aim 

of constructing an empirical competence model, some questions are to be answered. 

 The validity of the model: Do the solutions of the problems constructed for each 

cell of the UF-TC matrix require the competencies the cell stands for? To answer 

this question, problems dealing with the competencies of each cell will be 

developed.  

 From a qualitative to a quantitative model: The PISA studies use a model which is 

based on the relative frequency with which students are able to solve a problem. 

The problem that has been solved successfully is taken as a measure of the 

difficulty of the exercise. The scale is standardized on a mean value 500 with a 
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standard deviation of 100 (OECD, 1999; 2003). This might also be an aim in the 

context of this competence model. 

PILOT INVESTIGATION - TEST QUESTIONS 

In a first step, we considered the two-dimensional matrix UF-TC (Fig. 1) and created 

problems concerning the cells of the matrix. The second step – which is still in 

progress – will be the development of problems on different levels of ―cognitive 

activation‖ for each cell of the UF-TC-matrix. In July 2010, nearly 700 students of 

grade 10 had to solve the following problems. We classified these problems 

concerning the UF-TC-relationship. This relationship is not unique and depends on 

the solution strategy of the student. We also classified the problems concerning the 

representations which might be used – in our opinion – in the problem solving 

process: numerical (N), graphical (G), and symbolic (S) representations.  

Problem A1. Solve the equation   = 0. Give the solution up to two post 

decimal positions. Explain!    

Intuit.U Concept.U Relat.U. Struc.U  Static M. Dynamic M. Multiple M. 

 N G S N G S N G S 

Functional Understanding  Tool Competencies 

Problem A2. Solve the equation   = 0 graphically! Give the solution up 

to two post decimal positions. Explain! 

  Intuit.U Concept.U Relat.U. Struc.U  Static M. Dynamic M. Multiple M. 

 N G S N G S N G S 

Functional Understanding  Tool Competencies 

Problem A3.  Draw some graphs of the family of functions fa with fa(x) = a·x
2
 – 4·a 

+ 1, a  IR. Are there any points which are common to all graphs? What are the 

coordinates of these points? Give reasons! 

Intuit.U Concept.U Relat.U. Struc.U  Static M. Dynamic M. Multiple M. 

 N G S N G S N G S 

Functional Understanding  Tool Competencies 

Problem A4. Given is the function fc with fc(x) =   , c  IR. For which 

values of c does fc have exactly one zero? Give reasons! 

Intuit.U Concept.U Relat.U. Struc.U  Static M. Dynamic M. Multiple M. 

 N G S N G S N G S 

Functional Understanding  Tool Competencies 
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Problem A5. Are there any x-values, which fulfill the equation sin
2
(x) + sin(x) = 3,  

x  IR? Give reasons! 

Intuit.U Concept.U Relat.U. Struc.U  Static M. Dynamic M. Multiple M. 

 N G S N G S N G S 

Functional Understanding  Tool Competencies 

The participants of this test used the symbolic calculator for one year in the 

classroom, for their homework and also in tests and examinations. Polynomial and 

trigonometric functions are regular content in class 10 in German high schools 

(Gymnasium).  

THE STUDENTS‘ QUESTIONNAIRE 

In order to establish how the calculators were used, we applied a new investigation 

method: the students completed a questionnaire on the SC-use immediately after the 

test, giving details of whether and how they used the calculator. This test was 

intended to answer the following questions: 

 How do students use the calculator? 

 In which phases of a problem-solving process do the students use the calculator? 

 Which functionalities (symbolical, graphical or numerical) do the students use? 

This research method gives insight into the working style of all students participating 

in the test. Evidently, it only reproduces the subjective descriptions given by the 

students. A comparison of the answers of the students and the test results show large 

conformity and lead us to the conviction that students answered quite seriously. We 

posed the following general questions: 

a) Did you find the symbolic calculator was helpful when completing the tasks? 

b) Did you experience any difficulties when recording the use of the symbolic 

calculator in your solution in written form? 

c) Did you have any difficulties operating the symbolic calculator? 

d) Would you agree with the statement that the symbolic calculator gave you a 

feeling of security when completing the tasks? 

e) If you reflect your so far experienced lessons with the symbolic calculator, did you 

find them interesting? 

THE TEACHERS‘ QUESTIONNAIRE 

Before each test was carried out, the teachers provided an estimation of the extent to 

which students would solve the problems and how they would answer the general 

questions a) – e) (see above).  
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RESULTS 

Fig. 2 shows the percentage of students‘ correct answers to the problems A1–A5 (y-

axis: 1  100 %). The decreasing percentage of correct answers from problem A1 to 

A4 confirms our assumption – and so the constructed competence model – 

concerning the increasing difficulty from static over dynamic to multiple tool 

competencies. Problem A5 plays a special role (it was labeled as an ―additional 

problem‖ in the test). 

  

Figure 2: Percentage of students‘ correct 

answers 

Figure 3: The symbolic SC-solution of  

fc(x) = 0 (problem A4) 

Problem A4 reveals some problems while working with the SC. To find the value for 

c (fc(x) = ) for which fc does have exactly one zero, you can try to find a 

symbolic solution with the SC (Fig. 3). But this solution cannot be interpreted by the 

students yet and means nothing to them. 

Another possibility in order to get the solution is the dynamic representation, where 

students change c with a slider. Fig. 4 shows the graphs of fc for c = 8 and c = 8.1. 

(For c < –8 and c > 8 fc does have only one zero.) 

  

Figure 4: The graphs of fc for c = 8 and c = 8.1 
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We have got the following incorrect students‘ answers:  

 ―For all values from 8 the function has one zero.‖ 

 ―Slider c = 8,1. From c = 8,1 (and more) the function fc(x) has only one zero.‖  

 ―c > 8,1 the function has one zero.‖ 

 ―c  8,1‖ 

This shows students‘ missing ability to think in continuous intervals.  

Moreover, is it quite difficult – the students did not know calculus – to give reasons 

for the correct answers. You have to know that for c = –8 the graph has (–2; 0) as a 

maximum and for c = 8 it has (2; 0) as a minimum. This gives you the basis for the 

argumentation.   

Fig. 5 shows the percentage of students‘ answers and the teachers‘ prediction to the 

general questions of the questionnaire. It shows especially that the teachers‘ 

predictions correlate with the students‘ answers. This means that the teachers know 

students‘ abilities and difficulties quite well. They also notice that solutions and 

concepts are required to overcome students‘ obstacles.  

  

Figure 5: Percentage of students‘ answers 

(dark bars) and teachers‘ prediction (light 

bars) 

Figure 6: Students‘ answers to the 

questions how they worked during the 

problem solving process 

Moreover, for each problem, the students had to answer the following multiple-

choice questions: 

A: When did you use the SC during the problem solving process?  

a) At the beginning              b) During the process             c) At the end 

B: If you used the SC. What have you done with it? 

a) I calculated numerically    b) I solved equations    c) I drew graphs 

C: Which difficulties did you have with the use of the SC?  

a) I have had no idea how to use it 
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b) I have had problems with the numerical commands 

c) I didn‘t know how to draw the family of graphs 

Fig. 6 shows the percentage of students marking the according answer. The 

percentage of students who still have had problems with the use of the symbolic 

calculator after one year of practice is surprisingly high.  

FUTURE DEVELOPMENTS  

As a diagnostic goal, the competence model has the description of the anticipated 

aim in the context of the project, but also the detection of the abilities missing whilst 

students are working with symbolic calculators. But the evaluation or the diagnosis 

is only the very first step. The second step is to think about consequences based on 

the evaluation. How can the student be supported to progress to higher levels of 

understanding and higher competence levels while working with the symbolic 

calculator? 

NOTES 

1. Skemp uses the expression ―instrumental‖ in the sense of ―rules without reasons‖ and in a different sense than it is 

used e. g. in the theory of instrumentation while working with new technologies. He also uses the expression ―relational‖ 

in a quite open meaning (―Pupils knowing both what to do and why‖), whereas in our model it is limited to relations 

between objects like functions or relations between properties of functions. 

2. http://www.pisa.oecd.org/document/58/0,2340,en_32252351_32236159_33688954_1_1_1_1,00.html 

3. http://www.pisa.oecd.org/document/29/0,3343,en_32252351_32236173_33694301_1_1_1_1,00.html  

REFERENCES 

Artigue, M, Bardini C. (2010). New didactical phenomena prompted by TI_Nspire 

specificities – The mathematical component of the instrumentation process. In: V. 

Durand-Guerrier et al. (Eds.). Proceedings of CERME 6 (pp. 1171-1180), Jan. 

28th-Feb. 1st 2009, Lyon France, INRP. Retrieved from http://www.inrp.fr/ 

publications/edition-electronique/cerme6/wg7-13-artigue-bardini.pdf   

Bottino, R. M., Cerulli,  M. (2010). Methods and tools to face research fragmentation 

in technology enhanced mathematics education. In V. Durand-Guerrier et al. 

(Eds.). Proceedings of CERME 6 (pp. 1379-1388), Jan. 28th-Feb. 1st 2009, Lyon 

France, INRP. Retrieved from http://www.inrp.fr/publications/edition-

electronique/cerme6/wg7-34-bottino-cerulli.pdf. 

Guin, D., Ruthven, K. and Trouche L. (Eds.) (2005). The didactical challenge of 

symbolic calculators. New York: Springer. 

Hoyles, C. & J.-B. Lagrange (Eds.) (2010). Mathematics Education and Technology 

– Rethinking the Terrain. The 17
th

 ICMI Study. New York a. o.: Springer. 

http://www.pisa.oecd.org/document/58/0,2340,en_32252351_32236159_33688954_1_1_1_1,00.html
http://www.pisa.oecd.org/document/29/0,3343,en_32252351_32236173_33694301_1_1_1_1,00.html
http://www.inrp.fr/%20publications/edition-electronique/cerme6/wg7-13-artigue-bardini.pdf
http://www.inrp.fr/%20publications/edition-electronique/cerme6/wg7-13-artigue-bardini.pdf
http://www.inrp.fr/publications/edition-electronique/cerme6/wg7-34-bottino-cerulli.pdf
http://www.inrp.fr/publications/edition-electronique/cerme6/wg7-34-bottino-cerulli.pdf


Working Group 15 

CERME 7 (2011) 2375 

 

Niss, M. (2004). Mathematical competencies and the learning of mathematics. The 

Danish KOM project. In A. Gagtsis, S. Papastavridis (Eds.). 3
rd

 Mediterranean 

Conference on mathematical education (pp. 115–124), 3–5 January 2003. Athens, 

Greece. Athens: The Hellenic mathematical society. Retrieved from 

http://www7.nationalacademies.org/mseb/mathematical_competencies_and_the_le

arning_of_mathematics.pdf  

OECD: Organisation for Economic Co-operation and Development (Ed.) (1999). 

Measuring student knowledge and skills. A new framework for assessment. Paris: 

OECD Publication Service [2]. Retrieved from http://www.pisa.oecd.org  

OECD: Organisation for Economic Co-operation and Development (Ed.) (2003). The 

PISA 2003 Assessment Framework: Mathematics, reading, science and problem 

solving knowledge and skills. Paris: OECD Publication Service [3]. Retrieved 

from http://www.pisa.oecd.org 

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on 

processes and objects as different sides of the same coin. Educational Studies in 

Mathematics, 22(1), 1–36. 

Skemp, R. (1976). Relational understanding and instrumental understanding. 

Mathematics Teaching, 77, 20–26. 

Trouche, L. (2005). Calculators in Mathematics Education: A rapid Evolution of 

Tools, with differential Effects. In D. Guin, K. Ruthven and L. Trouche (Eds). The 

Didactical Challenge of Symbolic Calculators (pp. 9-39). New York: Springer. 

Vollrath, H.-J. (1993). Reflections on mathematical concepts as starting points for 

mathematical thinking. In R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann 

(Eds.). Didactics of mathematics as a scientific discipline (pp. 61–72). Dordrecht, 

Boston, London: Kluwer. 

Weigand, H.-G., Bichler, E. (2010). Towards a competence model for the use of 

symbolic calculators in mathematics lessons – The case of functions. ZDM - The 

International Journal on Mathematics Education, 42(6), 697–713. 

http://www7.nationalacademies.org/mseb/mathematical_competencies_and_the_learning_of_mathematics.pdf
http://www7.nationalacademies.org/mseb/mathematical_competencies_and_the_learning_of_mathematics.pdf
http://www.pisa.oecd.org/
http://www.pisa.oecd.org/


  

CERME 7 (2011) 

INTRODUCTION TO THE PAPERS OF WG 16: 

DIFFERENT THEORETICAL PERSPECTIVES AND 

APPROACHESIN RESEARCH IN MATHEMATICS EDUCATION 

Introduction to the Papers of Working group 16 

Ivy Kidron
a
, Angelika Bikner-Ahsbahs

b
, John Monaghan

c
,Luis Radford

d
,Gérard 

Sensevy
e
 

a
Jerusalem College of Technology (Israel), 

b 
Universität Bremen (Germany), 

c
University of Leeds, 

(United Kingdom),
 d

UniversitéLaurentienne, (Canada), 
e 
INRP Rennes (France) 

The diversity of different theoretical perspectives in mathematics education research 

can be seen as a problem or as a benefit to the advancement of the field. This 

Working Group, which was established at CERME 4 (2005), seeks to: explore ways 

of handling the diversity of theories in order to better grasp the complexity of 

learning and teaching processes; and understand how theories can be connected or 

not in a manner that respects their underlying assumptions.The central term that 

emerged from the CERME 4 working group was networking. In order to promote the 

networking of theories it was suggested: to make explicit the level at which a theory 

operates; to increase our awareness of the underlying assumptions of each theory. 

Both of these aspects were revisited in CERME 7 where the question of underlying 

assumptions also concerned questioning the nature of mathematical objects. 

After a two stage peer review process, 15 papers were accepted for discussion in the 

Working Group. We revisit the 15 papers to raise themes that emerged from the 

conference discussion. The first is strategies for networking which includes the 

dialectical development/transformation of theory(s) and theorist(s) (see Monaghan, 

2011) and the semiosphere (see Radford, 2008). We then discuss the 15 papers with 

respect to the spectrum of networking strategies developed by Prediger, Bikner-

Ahsbahs & Arzarello (2008) represented by the diagram below. Then we devote a 

subsection on the nature of mathematical objects as discussed in the working group. 

 

Figure 1: Networking strategies 
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STRATEGIES FOR NETWORKING 

Towards a ―theory of networking theories‖ 

A central term that emerged from the working group was transformation: after 

networking researchers are often transformed and are able to see things which 

theycould not see before; negotiating meanings as a sub-issue hereconcerns the 

conditions which permit fruitful dialogue; and methodsfor networking theories can 

be intentional or implicit. Papers considered under this theme are those of: Artigue, 

Bosch & Gascñn; Mason; Monaghan; and Radford (2008).Although the latter isnot a 

CERME paper,it was repeatedly raised in relation to its idea of semiosphere, i.e., a 

multi-cultural space of meaning-making processes and understandings generated by 

theories as they come to know and interact with each other. In the semiosphere, a 

theoryis considered as a dynamic interrelated triplet(P, M, Q) formed of theoretical 

principles (P), methodologies (M), and research questions (Q). Strategies for 

networkingdepend to an important extent on how ―close‖ or ―far‖ the networked 

theories are located in the semiosphere. Mason‘s paperis couched in his discourse of 

‗shifts of attention‘ (Mason, 2003). He suggests that ―theories in mathematics 

education consist of collections of frame(work)s, which themselves consist of labels 

for distinctions … [with] assumptions and values which, when combined with the 

distinctions, suggest actions that might be taken‖. A theory allows one to discern 

detail through making distinctions. He is critical of the semiosphere as a means to 

compare theories without attending to ―the intentions or uses of those theories and to 

reach mutual clarification of the worlds of experience they occasion, including the 

phenomena they recognise and at what grain size, and the sorts of conclusions, 

explanations etc. they afford.‖ It was argued, however, thatthe intentional aspect of a 

theory is already captured in its research question component, Q; in a similar manner, 

the assumptions and values are embedded in the theoretical principles, P. 

Artigue, Bosch & Gascñn consider the potential offered by the Anthropological 

Theory Didactics (ATD) for addressing issues of networking between theories, 

which they term ‗research praxeologies‘. Although ATD developed as a theory 

within mathematics education, it is sufficiently general to be applied to other spheres 

of human activity. Praxeologies consist of two blocks each with two elements: (i) 

practice of research (types of problemsand techniquesused in these problems); (ii) the 

technological-theoretical discourse used to describe, justify and interpret both the 

research practice and the results obtained. An important adjunct is the construct of 

‗didactic phenomena‘. Some phenomena ―enrich the initial theoretical framework to 

produce new interpretations and techniques or research methodologies, while others 

remain at the level of ‗results obtained‘ and are reinvested to formulate new 

problems or to propose new diagnostic and practice-development tools‖.  

Monaghan explores the ‗theoretical genesis‘ of an informal meta-theory presented in 

Ruthven, Laborde, Leach, & Tiberghien (2009), a construct coined in analogy with 

‗instrumental genesis‘. The analogy has some cogency, both concern an agent 
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appropriating an artefact for a purpose over time and a dialectic between agent and 

artefact/theory exists, but Monaghan also explores the limits of the analogy. Factors 

involved in the theoretical genesis include writing, learning, engagement with 

research and other voices; making ones theoretical stance explicit to intended journal 

article readers from a different research culture appeared particularly important. It 

was recognised, during the working group discussion, that much in Monaghan‘s 

paper could be rewritten in terms of research praxeologies.  

Some efforts were made to find links between these four approaches to researcher 

networking; an effort of networking ―approaches for networking theories‖. Initial 

considerations focused on the possible use of these four approaches in the concrete 

examples of networking in the papers in the working group, but at this point in time 

we are not in a position to present an overall schema for how they interrelate (or not) 

nor to matters which they, collectively, do not address.  

DISCUSSION OF THE PAPERS WITH RESPECT TO THE SPECTRUM OF 

NETWORKING STRATEGIES 

Understanding/making understandable 

Craig offers a way of exploring patterns of research collaboration within the 

mathematics education research field. Kaenders, Kvasz& Weiss-Pidstrygach present 

categories of mathematical awareness (an anlytical tool) connected to activity theory.  

Comparing/contrasting 

LaCroix compares two activity theoretical perspectives with resemblance in their 

sources:Cultural Historical Activity Theory –Engestrôm‗sinterpretation and  

Radford‘s theory of knowledge objectification.  It is argued that the unit of analysis 

in 3rd generation activity theory is too big to understand micro-genetic development.  

Sollervall deals with semiotic representations to negotiate disciplinary and individual 

perspectives on the notion of meaning in mathematics. He uses Peirce‘s semiotic 

triangle and Duval‘s theory of registers. Pierce‘s theory is used to develop a unified 

model of theoretical constructs to account for the role of external representations as 

mediators of individual meanings in mathematics classrooms.   

Combining/coordinating 

Douek coordinates socio-cultural theories to answer the question of how to deal with 

the learning difficulties of poor learners. Goodchild coordinates two socio-cultural 

perspectives with fundamental differences: the theoretical basis of the Communities 

of Practice approach is distinct from that of Cultural Historical Activity Theory. The 

aim is to develop a community of inquiry. Both are (separately) useful for research 

taking into account two kinds of development: extrapolation and expansion. 

Ligozat, Wickman&Hamza and Tabach&Nachlieliusenetworking theories to analyze 

mathematical classroom discourses. Ligozat et al.look at classroom activities from 
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different perspectives: the institutional and the participant and combine two theories 

with focus on social aspects.Tabach&Nachlieli offer an example of networking two 

theories with focus on socio-cultural and linguistic approaches. 

In Santi‘s paper two semiotic approaches are coordinated which provide (rather like 

Goodchild‘s) complementary views of Duval‘s and Radford‘s theories which can 

only be linkedin a diachronic way due to strong differences in theoretical principles. 

Integrating/synthesizing 

Jay‘s paper deals with difficulties of networking the cognitivist and socio-culturalist 

perspectives. The reconciliation of perspectives is permitted by a semiotic approach 

which appears to offer a neutral arena for negotiation of definitions of crucial terms 

like concept, understanding, learning.  

The paper by Kidron, Bikner-Ahsbahs & Dreyfusdeals with a second iteration of 

networking between two theoretical frames. Their first iteration networking focused 

on two theoretical concepts: the need for a new construct, and interest. A benefit of 

this previous networking was the insight that besides interest and the need for a new 

construct, a more general epistemic need (GEN) can drive students‘ progress in 

learning processes according to the challenge they meet within a situation. The 

second iteration concernsthe different roles of the GEN from each perspective.  

Font, Malaspina, Giménez&Wilhelmi ask ―What is the nature of the mathematical 

objects?‖ They explore this question by the use of a synthesis between the onto-

semiotic approach (OSA), APOS theory and the cognitive science of mathematics 

(CSM) as regards their use of the concept ‗mathematical object‘. APOS theory and 

CSM highlight partial aspects of the complex process through which, according to 

OSA, mathematical objects emerge. OSA extends APOS theory by addressing the 

role of semiotic representations; it improves the genetic decomposition by 

incorporating ideas of semiotic complexity, networks of semiotic functions and 

semiotic conflicts; it offers a refined analysis due to the way in which it considers the 

nature of such objects and their emergence out of mathematical practices. 

THEMES FOR FURTHER CONSIDERATION 

Further to issues already raised we find, in comparingexamples of specific 

networking strategies, that approachescan be very different concerning the function 

of empirical content.LaCroix is concerned with the phenomena of learning whereas 

Sollervall seeks to develop a tool for the analysis of empirical phenomena. A similar 

situation holds with regard to Jay‘s and Kidron et al.‘s papers. Although both papers 

aim to connect individual and social learning, Jay aims to offer an integrated tool to 

analyse empirical phenomena whereas Kidron et al. start with the empirical situation 

building up to a point of integration. At CERME6, a distinction between top-down 

networking, bottom-up networking and a kind of mix between both was discussed. 

Our knowledge is stillat a level of craft knowledge, but we have experienced 
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progress in that examples show the potential of networking for improving the quality 

of research practices gaining linked results. We hope this work towards a theory of 

networking theoretical approaches helps the community develop in the direction of 

scientifically based multi-theoretical empirical research.  
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Abstract: In this contribution, we consider the potential offered by the 

anthropological theory of the didactic (ATD) for addressing the issue of networking 

between theories through the extension of the notion of praxeology, which is at the 

core of ATD to research praxeologies. After introducing such an extension, we 

discuss its implications in terms of networking, giving a crucial role to the notion of 

didactic phenomena. We then use this language for reflecting on two networking 

experiences in which we have been involved.  

INTRODUCTION 

In accordance with the work done by the ‗theories group‘ in the last two CERMEs, 

this contribution joins the efforts made to support a productive cooperation in 

European mathematics education research, in order to overcome the framework 

compartmentalization that could hinder the capitalisation of knowledge and its 

practical exploitation. These efforts have shown that the interaction between 

researchers working with different approaches has to go further than the 

‗communication paradigm‘ that dominates exchange activities in most international 

conferences. It needs real ‗teaching and learning‘ activities to explain what one does 

and to understand what the others do. Experiences in ‗networking theories‘, carried 

out in this sense
80

, have shown that their productive development also requires the 

consideration of a shared epistemological model, that is, a common way of thinking 

and talking about what scientific work is and how it evolves. In fact any research 

activity supposes a particular implicit way of interpreting the nature of problems that 

are approached, the empirical field to consider, the kind of methodologies that can be 

used and, more generally, what research is and what it is for. When the exchange 

between researchers attains the level of the theoretical bases – as is the case in the 

‗networking theories‘ activities –, then it becomes necessary to question the implicit 

epistemological model of each approach, looking for a common language to express 

and discuss the respective epistemologies. In this sense, the Anthropological Theory 

of the Didactic (ATD) that we use in our research and, more concretely, its central 

notion of ‗praxeology‘ has progressively appeared to us as a useful tool to develop 

such a common ‗language‘ or epistemological model. Here we present the recent 

work we have undertaken in this direction.   

                                           

80
 We refer more especially to the so-called ‗Networking group‘ led by Angelika Bikner-Ahsbahs that emerged from 

CERME4 and to the work carried out by the first author in European projects like TELMA and ReMath. 
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‗THEORIES‘ OR RESEARCH PRAXEOLOGIES? 

If, according to ATD, we assume the general anthropological postulate that all 

human activities can be described in terms of ‗praxeologies‘ (Chevallard, 1999, 

2006), this must be also the case for research activities. Any kind of research, 

including ‗networking‘ projects, should thus be subsumed under the notion of 

research praxeologies. In this perspective, talking about ‗theories‘ (as in the 

expression of ‗networking theories‘) is the result of a metonymy used to point to the 

whole – research praxeologies – by only indicating one part, the theoretical block of 

praxeologies. As any other praxeology, research praxeologies are indeed composed 

of an amalgam of pieces that can be described by a set of four elements [T/ / / ]. 

The pair [T/ ] corresponds to the ‗practice‘ (or know-how) of research, with the types 

of problems T that are approached and the techniques  used to approach the 

problems. The block [ / ] forms the technological-theoretical discourse used to 

describe, justify and interpret both the research practice and the results obtained. 

This theoretical block corresponds to research ‗knowledge‘ and is often considered 

as the representative of the whole praxeology, with the limitations and biases that 

this reduction can generate in the approach to and treatment of ‗networking‘ issues. 

We postulate that the notion of praxeology can help overcome these limitations and 

that it can also be useful to retrospectively reflect on networking efforts. We also 

find it important to stress that research praxeologies, as any other praxeological 

form, are ‗alive‘ entities that evolve and change, which affects at the same time their 

four components [T/ / / ] and the interaction of these. The evolution of the 

practical block [T/ ] produces new theoretical needs that make the theoretical block 

[ / ] progress and, reciprocally, the evolution of concepts, interpretations or ways of 

thinking and the emergence of new results lead to the construction of new techniques 

and the formulation of new problems. Research praxeologies can appear as different 

kinds of amalgams, more or less organised depending on the maturity of the field. It 

is the historical development of the field that helps structure these praxeological 

amalgams, making them more coherent and easier to disseminate according to 

different didactic and institutional transposition processes. Beyond the static 

description of research praxeologies in terms of their practical and theoretical blocks, 

processes piloting their dynamics are still to be analysed in depth. Our contribution 

consists in considering the notion of ‗phenomenon‘ and relating it with the 

‗technological‘ element of praxeologies, which will highlight its crucial role in the 

dynamics of praxeologies.  

‗PHENOMENA‘ AND THE DYNAMICS OF RESEARCH PRAXEOLOGIES 

The notion of ‗didactic phenomenon‘. Today the notion of ‗phenomenon‘ does not 

happen to have a central function in many didactic approaches. It did however play a 

crucial role in the emergence of the theory of didactic situations (TDS) and its vision 

of didactics as a scientific discipline. In the first developments of TDS in the 1980s, 
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and through several different formulations, Guy Brousseau (1997) defined didactics 

of mathematics as the science the essential aim of which is the knowledge of didactic 

phenomena, that is, phenomena appearing in the teaching, learning or, more 

generally, diffusing of mathematical knowledge in social institutions (including 

school ones). Hence, didactic phenomena have to be considered both as a 

construction and as an object of study of didactics, in the same way that physics 

studies the specific construction ‗physical phenomena‘, or sociology studies and also 

defines social phenomena, etc. –including all the historical controversies about 

phenomena delimitation in nature and social sciences.  

What is the role played by phenomena in relation to research praxeologies and their 

evolution? In a first approach, we can characterise didactic phenomena as empirical 

facts, regularities that arise through the study of research problems. Some of these 

phenomena enrich the initial theoretical framework to produce new interpretations 

and techniques or research methodologies, while others remain at the level of ‗results 

obtained‘ and are reinvested to formulate new problems or to propose new diagnostic 

and practice-development tools. In order to clarify the relation between the notion of 

phenomenon and the four components of a praxeology, let us start from a very 

simple example of mathematical praxeology. Let us consider Pythagoras‘ theorem or, 

to be more precise, the phenomenon underlying this theorem, that is, a certain 

regularity between the measures of the sides of right triangles. At the beginning we 

can consider a type of mathematical problem that could be formulated as the problem 

of the characterisation of a right triangle or the graphical representation of a right 

angle. The answer to this problem appears as a technological element (the 

description of a property of a given set of figures) within the mathematical 

praxeology that emerges around this type of problems. This technological element is 

not only the description of a regular fact: it also produces new mathematical 

techniques, helps formulate new problems and discover new regularities, thus 

producing more technological results. In the long run, if the initial regularity appears 

to be strong enough, then it comes to integrate the theory of the praxeology as a basic 

principle of certain kind of geometries (those with a Euclidian metric).  

It is thus an entire mathematical praxeology, with its types of problems, its 

techniques and its technological-theoretical discourses that the expression 

‗Pythagoras theorem‘ refers metonymically to. Behind a technological ingredient 

such as a theorem – or any other description of a regular fact or phenomenon – we 

can find a whole set of praxeological ingredients (problems, techniques, etc.), which 

this technological ingredient contributes to structure. Taking all necessary 

precautions, we will briefly establish a parallelism between this example and 

research praxeologies in didactics. We will use a concrete example, the phenomenon 
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of didactic transposition, to illustrate our proposal
81

 which is to see the role played 

by phenomena in the ‗structuring‘ of praxeologies, that is to say in their dynamics. 

Phenomena and type of problems. As any scientific discipline, didactics of 

mathematics aims at identifying and studying a specific kind of phenomena (didactic 

ones) in order to attain a greater capacity of action and comprehension. Any research 

question or problem thus has to be related – even if this relation is mostly done a 

posteriori – to the highlighting of a phenomenon, its delimitation, the conditions 

needed for its existence and evolution, etc. Even if research takes as a starting point a 

problem emerging from a very concrete teaching or learning practice (as it often 

does), an effort is always made to formulate the problem in a more general way, 

implicitly considering it as a specimen of a given ‗type of problem‘. This is a first 

step in the work that follows: looking for regularities related to the practical issue 

approached, trying to characterise them and, to some extent, ‗understand‘ or ‗act 

upon‘ them. Let us consider, for instance, the phenomenon of didactic transposition 

as it was characterised by Yves Chevallard (1985). Several new problems have been 

raised and studied that could not even have been formulated before the identification 

of the phenomenon (see Bosch & Gascon, 2006 for a recent review).  

Phenomena and technological components In research processes, the results 

obtained as an answer to the raised problems generally contribute to enrich the initial 

research technology by integrating new characteristics of the studied phenomena or 

even new derived phenomena. There always exists a double-direction effect between 

the results obtained and the evolution of the technology of research praxeologies, 

which can be considered at the core of progress of scientific research.
82

 For instance, 

the study of transpositive processes in different mathematical domains has 

highlighted various phenomena that, in turn, have been used as a starting point to 

formulate new problems and draw attention to new regularities. A good example is 

the phenomenon of the ‗algebraisation‘ of Calculus at upper secondary school level 

(Artigue, 1995), a result that has then been used to analyse the teaching of limits of 

functions (Barbé et al., 2005). Other examples coming from the didactic 

transposition processes are the derived phenomenon of the ‗stoppage‘ of didactic 

transposition (Assude, 1993) or of ‗detransposition‘ (Antibi & Brousseau, 2000).  

Phenomena and technical components The study of phenomena not only generates 

the description of regularities, restrictions or ‗paradoxes‘ (like those of the ‗didactic 

                                           
81

 We are perfectly conscious of the distance between mathematics and didactics as fields of research. However, 

commonalities can be established and can be productive in both senses: sometimes the maturity of mathematics hides 

some evolution phenomena that are more visible in the recent and less developed dynamics of didactics.  

82
 This is less true when the theoretical block of the research praxeology comes from a different discipline. We then 

obtain a single-direction effect which ‗breaks down‘ the dynamics of scientific research: for instance, when a given 

notion of cognitive psychology is used to analyse some facts related to the learning of mathematics, because the 

‗external‘ character of the results obtained, they will have no effect on the development of the initial psychology 

notional frame. 
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contract‘, for example). It also leads to new ways of doing research, that is, new 

techniques and new methodologies. In the case of transpositive phenomena, the 

highlighting of relations and differences, both chronological and diachronic, between 

the ‗scholarly knowledge‘, the ‗knowledge to be taught‘ and the ‗(actually) taught 

knowledge‘ has now become a technique of didactic analysis by itself. Almost any 

problem studied within the ATD or the TDS includes, to some extent, a questioning 

about which is the knowledge at stake, where does it come from, what ‗scholarly 

knowledge‘ legitimises its teaching, what changes have been operated on it, what 

‗noospherian‘ discourses support or hinder its teaching, etc. The notion of didactic 

transposition has represented an important enlargement of the field of study of 

didactics because it has pointed out the need to also consider the mathematical 

activities that exists outside the school (Bosch and Gascñn, 2006). 

Phenomena and theoretical components. In a praxeology, the ‗theory‘ component 

includes the set of notions and relations that are used to apprehend phenomena 

(describe them, formulate questions about them, etc.), to develop them and to 

identify new regularities. The ‗theory‘ appears as the second level of validation of 

the activity, as an explanation and justification of the ‗technology‘. It contains the 

assumptions taken, that is, the technological elements that come up being taken for 

granted because of their solidity and persistence. At this level we find questions such 

as: What phenomena are studied? What is a problem in didactics? Why can this or 

that result be assumed as such? The empirical enlargements mentioned before are 

also integrated at this level as far as they become basic and implicit assumptions. At 

the same time, the unit of analysis that is assumed determines the kind of phenomena 

that can be considered and the kind of data that are being collected to bring evidence 

to the study. For instance, the existence of transpositive processes between 

institutions is a theoretical assumption that is not questioned, nor questionable, in 

ATD. The ‗kind‘ of transpositive processes that are taking place, their main 

characteristics and the conditions and restrictions they create on teaching institutions 

are, on the contrary, some of the main problems considered by this approach.  

The praxeological dynamics we just described may help understand the processes 

through which the studied phenomena produce new technological results that 

partially become new theoretical tools and produce in turn new research techniques 

allowing the identification or construction of new phenomena. It is this praxeological 

dynamics that we propose to consider here in order to analyse – and guide –two 

networking experiences between European research teams.  

THE EXPERIENCE OF THE GROUP « NETWORKING THEORIES IN 

MATHEMATICS EDUCATION » 

The working group on ‗networking theories‘ was created in 2005. It includes 12 

researchers from six different countries and its work aims at the exchange, 

comparison, and connection between theoretical frameworks. Results obtained have 
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been presented in previous CERMEs and more recently in a research forum at the 

last PME conference (Bikner-Ahsbahs et al., 2010). In this section, we analyse an 

episode of its work, already evoked at CERME6 (Artigue, Bosch, Gascon & Lenfant, 

2010), with the aim of showing how research questions and theoretical components 

of praxeologies influence research methodologies (technical components), the units 

of analysis considered pertinent, and the didactic phenomena identified.  

The initial work of the group was based on a video realized in a grade 10 Italian 

classroom and additional material considered necessary for its analysis by our Italian 

colleagues. Each team was asked to analyze the video from its own theoretical 

perspective but the data provided was judged insufficient by each except the Italian 

team. The video showed two students working in a pair, with little intervention of the 

teacher. Additional information provided on the session itself and its context was 

quite limited, making an analysis supported by TDS very hypothetical and an 

analysis supported by ATD nearly impossible. A questionnaire was then addressed to 

the teacher in charge of the classroom, asking for additional information to allow the 

different teams to complement the partial analyses already carried out. In the 

teacher‘s answers, the attention of several members of the group was especially 

attracted by the following excerpt: 

I try to work in a zone of proximal development. The analysis of video and the attention we 

paid to gestures bring me to become aware of the so called ‗semiotic game‘ that consists in 

using the same gestures of students but accompanying them with a more specific and 

precise language in a relation to the language used by students. Semiotic game, if it is used 

with awareness, may be a very good tool to introduce students to institutional knowledge.  

This convergence of interests led the group to develop a new strategy for progressing 

in the collaborative work undertaken: The TDS team should associate a question 

articulated in the TDS framework to this excerpt, and then each of the other teams 

should rephrase this question according to its own perspective. We reproduce below 

the text introducing the TDS question, which in fact also uses some ATD constructs.  

The connection between the mathematics produced by students in what we would label, 

using the TDS frame, an adidactic situation through interaction with the adidactic milieu 

of this situation on the one hand, and the institutional knowledge aimed at on the other 

hand, generally requires at least changes in the ways the mathematics at stake is expressed 

in order to progressively tune these it conventional forms of expression. The teacher 

considers that he has a specific mediating role to play for making this connection possible 

and uses semiotic games as a tool for that. In other terms, semiotic games can be 

considered as components of the praxeology (or more certainly one of the praxeologies) 

that he has developed in order to solve this didactic task. 

The expression ―semiotic game‖ thus denotes what can be seen as a technique, a 

component of a teaching praxeology, resulting from the identification of some 

particular phenomena of semiotic mediation. Interpreted that way, it shows how a 

theoretical focus (in this case a semiotic focus) can lead to the identification of 
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specific phenomena, and from that to theoretical constructs or to didactic techniques, 

considered as tools for improving the efficiency of learning and teaching processes. 

A TDS perspective leads to question the efficiency of such a didactic praxeology for 

two reasons at least. The first one is that very often interactions with the adidactic 

« milieu » do not guarantee the possibility of establishing a direct connection with 

the institutional knowledge aimed at. These limitations are the source of different 

didactic phenomena identified as paradoxes of the didactic contract: Topaze effect, 

Jourdain effect, meta-cognitive slide. The second reason is that the adidactic 

situations most often observed in classrooms are situations of action, not situations 

of formulation. In such situations, some linguistic activity generally takes place but it 

is not taken in charge in the piloting of the situation through didactic variables.  

From this perspective, the video analysis leads to the postulate that, in this particular 

context, the distance between what the students have autonomously produced and the 

forms of knowledge aimed at by the teacher, as expressed in his answers to the 

questionnaire, makes problematic the productive character of such a semiotic game. 

Thus the question proposed to the group:  

Do the episodes at our disposal allow us to identify characteristics of the semiotic game 

technique that would help us to understand their potential for compensating the possible 

limits of the interaction with the adidactic milieu for achieving the expected mathematical 

goals, and linguistic evolution linked to the needs of institutionalization processes? 

In the networking group, each team has rephrased this question from its specific 

theoretical perspective. This episode shows how the consideration of a new 

theoretical framework, here TSD, can lead to question a didactic praxeology, 

legitimately considered as a research result in another didactic culture. For 

addressing this question, a new research praxeology has been developed, a research 

praxeology which had no reason to emerge in either of these didactic cultures and 

only exists because a specific networking activity has been undertaken. In the limited 

space of this contribution, we cannot present the results produced by this research 

praxeology, nor their elaboration into didactic phenomena. We nevertheless hope to 

have shown up to what point the relationships existing between the different 

components of research praxeologies and the didactic praxeologies emerging from 

research results, deserve our attention. We also hope to have shown that an approach 

in terms of praxeologies can be helpful for addressing networking issues.  

THE EXPERIENCE OF THE EUROPEAN PROJECT REMATH 

The experience of the European project ReMath (http://remath.cti.gr) offers 

complementary insights for putting to the test an approach of networking theories in 

terms of research praxeologies. An essential goal of this project was to support the 

capitalization of research on digital technologies in mathematics education, through 

the development of an integrated theoretical framework, with a focus on the 

affordances of digital technologies for mathematics learning in terms of 

http://remath.cti.gr/
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representations, and more globally of semiotic activities. Six European teams worked 

on this project during four years, relying on the previous experience of the European 

research team TELMA (Artigue, 2009). A sophisticated methodology was developed 

for this project. It relied on a meta-language created in TELMA and a system of 

cross-experiments using the same digital technology in different didactical cultures, 

whose negotiation, implementation and analysis was taken itself as an object of 

research. This project also allowed the researchers involved to insert the networking 

activity into a permanent dialogue between the design of digital artefacts and the 

design of scenarios for their educational use in different educational contexts.  

Looking back at this project through the lens of research praxeologies, it looks clear 

that the methodology used allowed the ReMath teams to organize their work around 

the collective study of their respective research praxeologies. These research 

praxeologies were made explicit enough in their different components for ensuring 

the productivity of comparative analyses, and particularly that of the cross-case 

studies of the different experimentations carried out with the same digital artefact. 

The articulation of common research questions to be addressed by the different 

cross-experiments and then the addition by each team of questions reflecting its 

specific concerns, the strict organization of interactions between teams all along the 

process, from the design of artefacts to the a posteriori analysis of cross-

experimentations, the meta-language of concerns, played an essential role. The 

design of artefacts and the cross-experimentations contributed ipso facto to two 

different types of research praxeologies: on the one hand, praxeologies inserted in 

the didactic culture proper to each team and, on the other hand, a ―networking 

praxeology‖ still in development. The problem addressed by the first ones was the 

identification of the learning affordances of the systems of representations of 

mathematical objects implemented in the six digital artefacts, and of the conditions 

for a possible ecology of these in realistic contexts. The problem addressed by the 

second one was networking between theories. It situated at a meta-level with respect 

to the first ones, and the results it produced have a different nature. Some are 

methodological and a priori regard more the practical block of this networking 

praxeology, for instance those concerning the technique of cross-experimentation, an 

essential ingredient of the networking praxis progressively refined. Some are more 

likely to contribute to its theoretical block. This is the case for the boundary objects 

identified for facilitating the communication between the theoretical frameworks at 

stake and for the STF (Shared Theoretical Frame). Some results show the possibility 

of connections and even offer partial integration of theoretical frameworks while 

some others identify limits to such ambitions, but it is worth noticing that, at this 

stage, none of these results has been given a clear status of phenomenon. Due to 

these characteristics, there is no doubt for us that a systematic a posteriori analysis of 

the ReMath project using the notion of research praxeology should be helpful  
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CONCLUDING REMARKS 

The retrospective analysis of the two research projects outlined above seems to 

confirm our initial postulate that networking between theoretical frameworks must be 

situated in a wider perspective than that consisting of the search for connections 

between the objects and relationships structuring these. From this point of view, our 

approach is fully coherent with that developed by Radford (2008) who, defining a 

theory as a triplet made of a system of principles, a methodology and a template of 

research questions, insists on the necessity of considering these three components in 

networking activity. Space limits do not allow us to enter into a comparison of our 

approach with that presented by Radford conceiving a network of theories as a 

semiosphere, but we hope that the discussions in the CERME Working Group will 

contribute to clarify similarities and differences. In our approach for instance, the 

notion of phenomenon appears as a crucial notion for understanding the dynamics of 

research praxeologies and the evolutionary links between their different components, 

while the word phenomenon is absent from Radford‘s text. This is an intriguing 

difference which certainly needs to be collectively analysed and discussed.  

Our reflection tends to show that an approach in terms of research praxeologies can 

be productive for networking between theories, especially because it helps address 

the essential issue of the functionality of theoretical frameworks, by inserting these 

in systems of practices. Networking between theoretical frameworks, if considered as 

a task to be solved, requires nevertheless the development of specific praxeological 

elements that cannot be separated from research praxeologies. The European projects 

evoked above attest the existence of such elements, with emerging techniques and 

embryonic technologies made of classifications, structured landscapes, meta-

languages. The model of praxeologies could thus help us compare the different 

existing efforts of networking and develop more productive ones. This is 

nevertheless only a hypothesis which has not yet been seriously worked out. Finally, 

we would like to stress that when adopting such a perspective, one must remain 

sensitive to the fact that this approach, as any other one, can also introduce some 

limitations. Considering them is indeed part of the epistemological vigilance 

required in any research process.  
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This paper reports on a study which uses techniques from social network analysis to 

explore patterns of research collaboration within the mathematics education 

research field, focusing on English language publications. The results suggest that 

the perceived theoretical or methodological fragmentation in mathematics education 

does not translate in a straightforward way into a fragmentation between 

researchers. This result is used to argue for a method for connecting research 

practices complementary to some of those discussed in previous papers in the 

CERME working group. Namely, that existing collaborations could be used to 

promote increased theoretical or methodological coherence across the research 

field when combined with the strategies already developed by the group.  

INTRODUCTION 

One of the reasons often given for addressing the multiplicity of theoretical 

perspectives and approaches in mathematics education and for attempting to connect 

them has been to reduce the perceived fragmentation and diversity in the field 

(Prediger, Bikner-Ahsbahs, & Arzarello, 2008; Prediger, Bosch, Kidron, Monaghan, 

& Sensevy, 2009). The field has been criticised (from within and without) for lack of 

coherence, for failing to build on previous results and for susceptibility to fashion 

and cyclically reinventing old ideas (see for example references in English, 2002; 

Maasz & Schloeglmann, 2008; Sierpinska, 2003). The fragmentation and diversity is 

not just a result of lack of agreement about the theoretical framework we should 

work in, or even about whether we should work in one, or what role it ought to play. 

It can also be understood as a result of the social organisation of research and the 

conditions under which it is carried out, in particular, its openness as a field to 

political and other external influences, the different national contexts (intellectual, 

social, political) in which it is carried out, and the diverse educational and training 

backgrounds of those carrying out research. 

Any programme for managing the fragmentation and diversity of the field needs to 

draw on an understanding of the state of the field and the mechanisms which have 

led to and perpetuate the current fragmented state. Based on such an exploration we 

can recognise and develop possible mechanisms for change and ask questions about 

the social conditions necessary for change. Additionally, the social conditions of 

research place constraints on the goals which are possible in addressing the 

theoretical and methodological diversity of maths education research. An awareness 

of this adds an important dimension to discussions of what mathematics education 

research as a field should aim to be, or how it ought to develop. 
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Discussions in the papers of the CERME working group on theoretical diversity in 

the European mathematics education research community and ZDM special issue 

40(2) have made a move from the abstract discussion of principles etc. to more 

concrete attempts to connect theories and this move has been accompanied by 

questioning of the different ways in which theory can be defined, and (to a lesser 

degree) the nature of theory and theory/practice relationships. In particular, the idea 

of theory has been developed and expanded by a number of authors beyond 

assumptions, principles and concepts, to include methodologies, research questions 

and even ‗ways of seeing‘. This is a change of focus from theories themselves to 

theories-in-use in research and through that to research practice more generally (see, 

for example, the final remarks in Prediger et al., 2009), where this practice can be 

seen as a theoretically guided activity. This move from connecting theories to 

connecting research, or research practices, or even to connecting researchers and the 

accompanying changing goals, suggests that there may be some value in revisiting 

the initial assumptions about the theoretical fragmentation and diversity of 

approaches in mathematics education and to ask what these mean in terms of 

research practices and researchers. Although we can sketch an a priori argument for 

the possible value of revisiting these assumptions, and that of exploration of the 

social conditions of research in mathematics education more generally, any particular 

implications, for understanding and managing diversity, must be demonstrated 

empirically.  

In the study reported here I use techniques from social network analysis in order to 

examine evidence of fragmentation or diversity through existing collaborative 

research links between mathematics education researchers. We might expect that the 

theoretical and methodological divides would be seen in patterns of collaboration, 

since we would expect individuals using the same theories or working within the 

same perspectives to be more likely to collaborate with one another than with those 

working with different theories. This would then be evident in collaboration patterns 

with more densely connected groups loosely connected to other groups.  

In looking at collaborations using social network analysis we create only one of 

many possible views of relations in mathematics education research, but an 

important one. Collaboration which results in a research publication implies a strong 

connection and investment of time. We might assume that even outside of the 

connecting theories endeavour, research collaborations are places where ideas meet, 

are elaborated and negotiated, both in the research process and in order to create a 

joint production which all parties are happy to put their name to. As such, evidence 

of connectedness across the field at the level of research collaborations would raise 

questions about assumptions of fragmentation of theoretical frameworks and 

research approaches, leading us to question the nature of this fragmentation. 

This research is part of a larger project looking at the mathematics education 

research community in England and so focuses on collaborative links both within the 
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group of researchers based in England and between these researchers and the broader 

mathematics education community. My analysis suggests that these mathematics 

education researchers as a group are less fragmented in terms of their research 

collaborations than perceptions of theoretical and methodological fragmentation in 

the field, and in particular of mathematics research in England, might suggest.  

METHODOLOGY 

The study reported here using techniques from social network analysis to explore 

patterns of collaboration within the mathematics education research community 

using data collected from a large number of co-authored research papers. 

The data used consisted of all research papers published in nine, largely English-

language, international mathematics education journals between 2000 and 2009. 

Short editorials, book reviews, and announcements were excluded. Five journals 

were more general: For the Learning of Mathematics, Educational Studies in 

Mathematics, Research in Mathematics Education, the Journal for Research in 

Mathematics Education and ZDM-International Journal on Mathematics Education, 

along with four more specialised journals: The International Journal for Technology 

in Mathematics Education, the International Journal of Computers for Mathematical 

Learning, Teaching Mathematics and its Applications and the Journal of 

Mathematics Teacher Education. Journals in which English authors more commonly 

publish were preferentially selected, as the broader study, of which the reported 

research is a part, focuses on England. The final data set included 2264 papers in 

total, of which 1098 had more than one author. 

In social network analysis (Hanneman & Riddle, 2005; Scott, 2000) individuals and 

the relations between them are modelled as the nodes and edges of graphs or 

networks. Tools from graph theory, along with some developed for use in the social 

sciences, are then employed to analyse and visualise these networks in order to 

explore or answer particular questions about their structure. In this study, researchers 

were represented by nodes and two researchers were linked by an edge if they had 

co-authored at least one paper in the data-set. Exploratory analysis of the resulting 

network focused on the number and sizes of connected sub-graphs (or components), 

how centralised the network was, whether there were relatively isolated sections, and 

how dense the connections were. Some of these measures are based on the distances 

between nodes within connected components of the network: the degree of 

separation of a node is its average distance from all other (connected) nodes and the 

average degree of separation for the component is calculated by taking the average 

of this value across all the nodes in the component. This type of measure can be used 

to make comparisons with other networks.  Cut-points are nodes or edges which 

would disconnect sections of the network if they were removed. These can be used to 

explore how robust the features of the structure are, and as a measure of 

‗connectedness‘ by asking how hard it is to disconnect groups of nodes. 
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RESULTS & DISCUSSION 

The list of 2264 research papers was used to generate a list of authors publishing in 

the journals and to identify who they had written papers with. Overall 2199 unique 

authors were identified, 1737 of whom had written a multiple authored paper in at 

least one of these journals within the ten year period specified. A further 462 authors 

only produced individually authored papers, i.e. they had not collaborated on any 

papers in the dataset. Most of the authors (66%) published only one paper within 

these nine journals, with 17% publishing two papers, 12% between three and five 

papers and only 3% of the authors publishing more than five.  

 

Figure 1: Visualisation of the collaboration network of links between authors, 

generated using the freeware package Pajek (http://pajek.imfm.si/doku.php) 

Figure 1 shows the visualised network of collaborations produced from this data. In 

the figure, researchers are represented by nodes and two researchers are joined by an 

edge if they have published a joint paper (authors who did not collaborate at all are 

excluded to save space but could be represented as 462 additional isolated points). 

The most striking feature of the network is that it has a single ‗giant‘ connected 

component, seen here at the top left, containing 28% (or 612) of the authors. The 

remaining authors are all connected through collaboration to smaller groups of at 

most 27 authors. This pattern of one giant component and a number of much smaller 

connected components is characteristic of scientific collaboration networks 

(Newman, 2001, 2003) and is a pattern which proved to be robust to the addition and 

removal of particular journals (although the percentage coverage of the giant 

component varies). 

I will use two particular results from my early descriptive analysis to address the 

question of the fragmentation of the field at the level of researchers. The first result 

http://pajek.imfm.si/doku.php
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is that theoretical divides or other fragmenting factors discussed in the literature 

aren‘t seen at the level of patterns of collaboration. Of course within small research 

groups this is the case, with many joint papers turning into a dense cluster in the 

network. However, looking for larger groups we see little evidence of clustering.  

Analysis of the structure of the giant component to identify subgroups of more 

densely connected researchers reveals a ‗small worlds‘ structure (Newman, 2001). 

This is as expected; small world structures arise naturally in many diverse systems. 

The average degree of separation of two nodes within the giant component is 7.6 i.e. 

researchers are connected to one another by on average a chain of only six or seven 

intermediate collaborators, with a maximum distance of 18. Overall the giant 

component is characterised by small distances between researchers and few 

(significant) cut points meaning that the structure is quite robust to the removal of 

ties or individuals.  

This can be contrasted with patterns of collaboration in the hard sciences which are 

traditionally considered to be much less fragmented and more theoretically and 

methodologically coherent than mathematics education research. The measures of 

distance within the giant component are comparable (although his study used a much 

larger data set) with measures from Mark Newman‘s study of collaboration patterns 

in the hard sciences (Newman, 2001).
 
In fact, Newman‘s study showed average 

distances of between 4 and 7 in six databases drawing on different areas of research 

and of 9.7 in a computer science database. In other words, there is a subset of 

mathematics education researchers with mutual patterns of collaboration which are 

not obviously more dispersed than those found among scientists in the hard sciences, 

particularly when compared to the sciences with lower average numbers of authors 

per paper. Unfortunately there are few similar studies of other social sciences with 

which to compare. 

The second result from the network analysis relates to the proportion of the authors 

found within the giant component, in other words the proportion of authors 

connected to a significant number of other mathematics education researchers by 

collaborative links. Only 28% of all the authors publishing in the nine journals over 

the ten year period were connected in this way (or 35% of those who had published 

collaboratively). This is a low proportion compared with that found in studies of the 

hard sciences, which was over 50% in all subject areas examined and closer to 80 or 

90% in many (Newman, 2001). The low proportion in the data is relatively robust to 

the removal, interchange or addition of journals (any 8 of the 9 producing a giant 

component covering 20-30% of the authors). This suggests that the low proportion is 

not just an artefact of the particular publications selected, nor a result of the 

relatively small number of publications being considered. Of the 1587 authors 

outside the giant component it is useful to separate them into two groups: around 

70% of these have collaborated, but their collaboration still leaves them relatively 

isolated. Most are connected through collaboration (meaning that we consider their 
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collaborators and their collaborators‘ collaborators and so on until there are no more 

connections to exploit) to only a small number of other researchers (on average to 

4.4 others outside the giant component). The other 30% of authors outside the giant 

component have not collaborated on any papers within the data set. This significant 

proportion of authors who have not collaborated in the data set (21% of the total 

authors), along with the large number of papers in the original data with only one 

author (52%), is another point where the results differ sharply from patterns of 

collaboration familiar from the sciences. Even within subjects like mathematics, 

where working alone has traditionally been seen as the norm, there has been a trend 

of increased collaboration (Burton 1999 cited in Burton & Morgan, 2000). It would 

make an interesting further study to look at whether trends in mathematics education 

tend towards more or less collaborative research. 

Interpreting this result requires more information and further research. We might ask 

what it means in practice to be inside or outside of the giant component in this maths 

education collaboration network. A researcher may tend to work alone but be 

actively involved with the community in other ways, or they may work alone as a 

result of geographic or institutional isolation; they may largely collaborate outside 

mathematics education, straddling several fields, or they may have published only 

one or two papers as part of a doctorate before leaving academia; they may publish 

occasionally but see the bulk of their work as lying outside research, in teaching, 

policy-making or administration for example. Clearly there are many different 

research profiles compatible with a position in the relatively unconnected sections of 

the network diagram, and so any single account will fail to capture this diversity of 

experience. Within the UK, education academics work in widely differing 

institutional contexts, with different patterns of research funding and different 

balances between their research and teaching functions (Lawn & Furlong, 2007; 

Oancea, 2005); additionally the career backgrounds of academics differ with many 

second-career researchers with varied experiences of research training (Mills et al., 

2006). It may be that the giant component can be interpreted as representing a core of 

research-focused academics who focus on mathematics education and that the 

fragmentation of mathematics education can be partly understood through the 

relatively small size of this core with respect to the overall number of people 

publishing in the area. 

FOCUS ON COLLABORATION IN CONNECTING THEORIES RESEARCH 

Debate about the strengths and weaknesses and mutual compatibility of particular 

theories has a long history (Bikner-Ahsbahs & Prediger, 2006; Cobb, 2007; 

Sierpinska & Kilpatrick, 1998; Sriraman & English, 2005) and more recently this 

tradition of abstract discussion has been joined by moves (within the working group 

on theory at CERME 4, 5 and 6 and associated special issues of ZDM) to take a more 

practical approach to the problem by exploring strategies to connect theories in the 

context of empirical research.  
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One consequence of the move from debate about theories to practical strategies to 

connect theories is that it seems to have necessitated a different sort of engagement 

with the idea of theory. Discussions of the different ways in which theory can be 

defined for the purposes of connecting theories (Bikner-Ahsbahs & Prediger, 2006; 

Radford, 2008) or thought about in relation to empirical research (Cerulli, Trgalova, 

Maracci, Psycharis, & Georget, 2008; Prediger, 2008) can be seen as grappling with 

the difficulty in separating theory from theory-in-use. The use of ‗static‘ definitions 

of theory has been challenged, introducing the idea that theories are tied up in the 

work of those who use and write about them and hence that a more fluid or 

‗dynamic‘ idea of theory is needed for a discussion of connecting theories through 

research (Prediger et al., 2008). In particular a possible change of emphasis has been 

suggested from networking theories to ‗the networking of research practices‘ 

(Prediger et al., 2009, p. 1534, emphasis in original). 

These changes of focus have brought with them the need to reconsider what might be 

the possible aims or goals for explorations of diversity and attempts to connect 

theories (ReMath first deliverable quoted in Artigue et al., 2009; Prediger et al., 

2009). Across the papers of the CERME working group and the ReMath project 

there are discussions of important outcomes in terms of the ways researchers see 

their own work differently as a result of working with others who use different 

theoretical ideas (e.g. Trgalova, 2008). These experiences are described as a valuable 

part of the work by many, yet it seems clear from the discussion that it is an 

individually experienced result of the actual process of engaging with others in 

theory-focused research collaboration, rather than an insight which can be shared in a 

straightforward way with others or which might be seen as a tangible result of the 

research. Given the experiences reported, a valuable additional way of looking at the 

research of the CERME working group on theoretical and methodological diversity, 

and of thinking about the ways in which it could contribute to reducing the 

fragmentation of the field, might be to think of it as an exploration of the potential of 

collaboration, where that collaboration focuses on connecting theories and 

approaches to research, to act as a mechanism for change in dealing with 

fragmentation in mathematics education research. This move is consistent with the 

change of focus from connecting theories to connecting research practices.  

CONCLUSION 

I argue that the significance for mathematics education of the relative ‗closeness‘ of 

researchers working with very different approaches and from different theoretical 

perspectives within the field of English-language publications is in the potential it 

suggests for using these collaborations to develop a greater sense of coherence in the 

field. Strategies developed from the connecting theories literature could play a role in 

developing the potential of existing collaborations. To explore this potential further 

suggests the need for work on the nature of existing collaborations and the extent to 

which researchers bring different theoretical perspectives into focus and debate when 



Working Group 16 

CERME 7 (2011) 2398 

 

collaborating, and whether this process could come to be seen as part of what is 

worth reporting about the research process. In doing this it would be important to 

recognise different ways of collaborating and working. The pattern of working 

illustrated in the data here suggests that in order to use collaboration as a mechanism 

to increase the coherence of mathematics education what may be needed is not 

necessarily more collaborations between researchers working within different 

theoretical traditions or with different approaches, but the exploitation of existing 

collaboration and the creation of new collaborative links to researchers without 

existing links. 

The exploration of collaboration patterns in mathematics education research reported 

above raises some interesting questions about the assumption of fragmentation in the 

field based on theoretical or methodological divisions. Much fragmentation 

undoubtedly exists at the level of researchers collaborating, with high proportions of 

papers single-authored and a large proportion of the researchers publishing in 

mathematics education relatively isolated within the field in terms of collaborations. 

However there exists a smaller core of researchers who, despite differences of 

approach and theoretical perspective, remain quite closely connected through a 

relatively robust network of collaborative links.  

The original study reported here was not designed to explore collaborative research 

connection across the whole mathematics education research community but instead 

to explore those of researchers working in England, and consequently it focused on 

research published in English. The result is that while we can draw conclusions 

about patterns of collaboration within the English-language literature, researchers 

who do not publish exclusively in English are systematically excluded or 

misrepresented, and so we need to take care in drawing conclusions about the whole 

field of mathematics education research. We might ask what degree of clustering a 

broader dataset would reveal, in particular around language groups. Education 

research generally differs from the sciences studied by Newman, in that English is 

not the only international publishing language although it remains dominant. Despite 

this limitation I would argue that the lack of evidence of strong disconnection among 

researchers‘ collaborations warrants further exploration. 

An issue in using network analysis and visualisations of collaborations in this 

research has been the ease with which one can move between the language of 

network analysis and the use of overlapping language employed generally within 

mathematics education research to discuss the state of the field in terms of 

methodological and theoretical diversity, and more specifically to the language of 

connecting theories and practices used by some in the CERME working group. The 

ideas of fragmentation and of connections or connectivity are particularly 

problematic here and care must be taken to trace differences of meaning between 

these terms as they are used in different contexts. Also the application of these terms 

in turn to theory, research, research practices, approaches and researchers can 



Working Group 16 

CERME 7 (2011) 2399 

 

unintentionally blur arguments and ideas which are specific to one into the others. A 

question raised here is what it might mean, and whether it is reasonable, to talk about 

the community of researchers in mathematics education as fragmented, and how this 

fragmentation might relate to theoretical or methodological fragmentation. 

I see the use of network analysis techniques to explore collaboration patterns as just 

one of many possibilities for exploring the social context of research with a view to 

inform discussions about possibilities for reducing the fragmentation evident in 

mathematics education research. This could be an important complement to concrete 

attempts to connect theories and more abstract debates about the role of theory in 

research, the range of theories and the different approaches to research found in 

maths education and their implications for the knowledge production of the field. 

The social as well as epistemological, ontological or conceptual causes of theoretical 

fragmentation mean that even if we were to satisfy ourselves about the connectivity 

or otherwise of theories in mathematics education research, we would still find that 

fragmentation and diversity remained. The exploration of theories as theories (on an 

abstract level and through concrete attempts to connect theories and research), and 

the exploration of theoretical diversity as it has arisen from the social conditions of 

research, are both necessary in order to address the broader fragmentation of the 

field.  
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COMPLEMENTING AND INTEGRATING THEORETICAL 

TOOLS: A CASE STUDY CONCERNING POOR LEARNERS  

Nadia Douek 

IUFM C. Freinet Université de Nice, UMR ADEF Université de Provence  

This paper contributes to the debate about comparing and using different theoretical 

constructs in Mathematics Education through a case study concerning two poor 

learners. Complementing and integrating theoretical constructs of different sources 

resulted in an operational tool to benefit from the resource of a specialised teacher 

and allow poor learners' to be productive participants to whole class activity. 

Key words: theoretical tools; poor learners; problem solving; mathematical concepts 

INTRODUCTION 

In the last two decades of the 20th century the discussion about the nature of 

Mathematics Education as a scientific domain and its relationships with other 

disciplines (psychology, epistemology, sociology of education, etc.) developed 

together with an increase of knowledge and theories in the field. Different positions 

emerged. According to H. G. Steiner (Steiner, 1985) and others in more recent years 

(Arzarello & Carolina Bussi, 1998), the development of the field requires theoretical 

constructs borrowed from different disciplines; and its autonomy as a field of 

research consists in the appropriate choice and adaptation of those constructs and in 

the construction of new theoretical tools needed to deal with specific teaching and 

learning problems. Without denying the importance of borrowed tools, researchers 

like G. Brousseau and Y. Chevallard engaged in constructing autonomous, specific 

theories for Mathematics Education. The volume ―Mathematics Education as a 

Research Domain: A Search for Identity‖ edited by J. Kilpatrick and A. Sierpinska  

and published in 1998 by Kluwer represents the debate at that moment. Recently, 

interest shifted towards how to exploit and deal with the numerous theories and tools 

elaborated within mathematics education or adapted from other disciplines. L. 

Radford‘s (2008) construct of semiosphere frames theory connections at the levels of 

their system of principles, their methodologies and their template of research 

questions.  

I will use the semiosphere framing to underline the connections between theoretical 

constructs that I used to design specific tools to analyse the learning difficulties of 

―poor learners‖ and to organise the teaching sequences in order to help them 

contributing to the whole class activity, thanks to the mediation of a specialised 

teacher. So, this paper aims at contributing to the present debate by providing an 

example (the object of our case study) in which theoretical constructs are adapted 

and implemented  by complementing each other or by integrating them according to 

specific needs, and by discussing the level of their connections. By 

―complementing‖ we mean using different constructs to deal with different aspects 
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of a given problem, by ―integrating‖ we mean grafting elements of a construct on 

another, to elaborate a more powerful and comprehensive analytical tool to deal with 

a problem.  

POOR LEARNERS: A CHALLENGE FOR MATHEMATICS EDUCATION 

Following literature, poor learners (Shuell, 1983) are those with no neurological or 

physical impairment, but considered as having difficulties with learning. They often 

have difficulties in being inserted in the class community, suffer from unfavourable 

environmental or family conditions and represent a heavy load for the class teacher. 

In France poor learners of a classroom are supported by an auxiliary ―specialised 

teacher‖, who usually tries to achieve learning goals through small group extra-class 

work concerning easy fundamental notions and techniques of the curriculum, but 

seldom allowing students' to productively participate in ordinary classroom work. 

The result is often an exclusion both from practice of high-level mental processes 

(like arguing, or producing, contrasting and validating hypotheses), and from culture 

in a long-term perspective (especially when family cannot provide general 

enculturation). Also, social insertion in the classroom community may be 

problematic. 

In spite of different orientations (see Dunn, 2004; Perrin-Glorian, 1993), current 

literature on poor learners in mathematics agrees on some means favouring progress 

in learning mathematics and inclusion like : engaging them in small group activities 

supported by the teacher and concerning ordinary classroom tasks; teaching 

mathematics in context; and promoting awareness of the ways of solving problems. 

Further work is needed concerning planning, monitoring and adjusting mathematics 

teaching to their needs when a specialised teacher works with them. 

The case study presented in this paper explores the potential of complementing and 

integrating different theoretical tools, chosen as appropriate to deal with the problem 

of teaching and learning mathematics to poor learners in primary school. They were 

used to plan, manage and analyse a sequence of activities performed by a specialised 

teacher and aimed at developing students' mathematical knowledge and favouring 

their productive participation in classroom activities.  

CHOICE AND ADAPTATION OF THEORETICAL TOOLS 

Socio-cultural theories offer suitable general perspectives to tackle the problem of 

mathematical enculturation of poor learners: in particular, the Vygotskian 

elaboration about teachers' mediation in student's zone of proximal development 

(ZPD) engages identifying and exploiting their learning potential. The Vygotskian 

elaboration about ―scientific concepts‖ (SC) and ―everyday concepts‖ (EDC) 

dialectic offers a complementary tool to model the enculturation problem of a subject 

as a long term development within tensions between different socio-cultural webs 

he/she is inserted in. This model favours exploiting what poor learners (like all 
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students) bring to the classroom from their everyday experience as a resource to be 

developed in a dialectic relationship with the culture brought (and mediated) by the 

teacher. Vygotsky's description of SC offers useful criteria to describe some 

requirements typical for school culture (development of systemic links, conscious 

and voluntary use, etc...) 

These contributions of Vygotsky have been integrated by the Genoa research team 

according to specific mathematics education needs (for all students in general and 

poor learners in particular) by developing two original interrelated constructs: 

―experience field‖ (Boero, 1989; Dapueto & Parenti, 1999; Douek, 2003) and 

―experience fields didactics‖ (Boero & Douek, 2008). ―Experience field‖ construct 

frames the identification of human culture areas, rich in opportunities for developing 

mathematical knowledge and skills (like money use in first grades), immediately or 

potentially accessible to all students. An experience field consists of three 

components (teacher's internal context, student's internal context and the external 

context - signs, objects, physical or social constraints) mobilised and evolving during 

classroom activities led by the teacher. Experience fields didactics consists in the 

long term organisation of teacher's activity exploiting resources of a given 

experience field to engage in a dialectic relationship between SC and students' EDC. 

A crucial element is the sequencing of cycles: given a problem contextualised in the 

experience field, students produce (individually, and/or with teacher's help) written 

solutions; a few solutions selected by the teacher are discussed under his/her guide 

and mediation; then a written synthesis is produced (individually and/or with 

teacher's help). Writing and discussing are also framed in a Vygotskian perspective: 

see Boero, Douek & Ferrari (2008); Bartolini Bussi (1996) and Boero & Douek 

(2008). 

In the experience field didactics, Vygotsky's EDC-SC dialectics offers a cultural 

model for conceptualising and guiding the elaboration of the teacher's mediation 

within the student's ZPD. Further specific epistemological and cognitive analytical 

tools for the process of mathematical conceptualisation are provided by integrating 

Vergnaud's construct of concept (Vergnaud, 1990) within Vygotsky's SC-EDC 

dialectics (see Douek, 2003). Vergnaud defines a concept through its three 

components: its reference situations; its operational invariants (theorems and 

concepts in action); and its semiotic representations.  

Our integration allows a finer analysis of these components: we consider that they 

reflect and depend on the subject's activity as inserted in a socio-cultural web and we 

can point to their possible different cultural roots. We study concepts from a plural 

point of view and follow the subjects' school activity as in tension within different 

socio-cultural webs. The resulting analysis tool allows identifying elements of 

conceptualisation in what students already know and are able to do, and in what the 

teacher brings through interaction. In more detail, it allows to analyse the evolution 

of: systemic links between reference situations and semiotic representations of a 
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concept or of different ones; operational invariants and schemes relying on them; 

conscious and voluntary mastery of concepts. Such analysis is applied to student's 

production (verbal or more general activity) and used to organise teaching sequences 

and particularly teacher/ students interaction.  

THE ANALYSIS TOOL AT WORK: KEN AND MELVIN'S CASES 

Ken and Melvin were two ―poor learners‖ in a third grade class of 22 students of a 

school in a ―priority education zone‖ of France (a zone with social problems). Both 

the classroom teacher and the specialised teacher had taken part in an in-service 

teacher education activity; they volunteered to adopt the experience field didactics 

methods and connect the specialised teacher's action to the whole class activity, so 

that Ken and Melvin may take part in the class activity of solving the (relatively) 

difficult problems posed to the whole class, as protagonists, overcoming their usual 

marginal position. Adjustments of the planned teaching were made according to the 

analysis of students' behaviours, using our tool resulting from integration.  

In the reported initial activity (a third of the whole activities planned with the 

teachers) the mathematical problem was contextualised in gardening. The class 

regularly practiced it, we can consider it a meaningful experience field. Students had 

some knowledge about it and about related practical problems, and the two boys 

were well concerned with it. They were offered interaction with the specialised 

teacher for a longer period of time than was offered to the whole class. Then they 

participated in the subsequent collective activities. For all the students, working pace 

was much slower than usual; contextualised complex problem solving was new, and 

so was the equilibrium between oral and written verbal activities (they were not 

accustomed to write down in words their problem solving reasoning). 

The class teacher, though interested in the proposed activities, in this phase missed 

several crucial indications proper to the experience fields didactics. He preferred a 

traditional exposure of the problem with its stereotyped linguistic form and all the 

necessary data (whereas we wished that the problem was posed in a familiar way and 

that students gather data from their everyday practice within the familiar context). He 

chose light interactions with students. He felt uneasy with ZPD-related practices and 

feared excessive influence on student's activity. On the contrary the proposition was 

close enough to the specialised teacher practices and she easily adapted her methods. 

However the classroom teacher adopted the proposed methodology in a more and 

more coherent way during the subsequent activities (not reported in this paper). 

The teaching experiment 

During the first session the problem was presented to the whole class. Then the 

specialised teacher took Melvin and Ken to another room to solve it, while the rest of 

the students worked individually in the main classroom. Two additional sessions 

with the specialised teacher allowed Melvin and Ken to conclude their work. Then a 
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second whole class session was dedicated to discuss the solutions and a third to 

individual synthesis (the boys were attended by the specialised teacher in the main 

classroom), according to the cyclic structure of the experience fields didactics.  

The collected data were: all the students' individual productions; the specialised 

teacher field notes about her interactions with the students (including utterances, 

gestures) and remarks about their behaviour (like impatience, enthusiasm, difficulties 

of expression), and elements of on the spot interpretation that helped us to build the 

consecutive sessions; videotapes of the collective debates. The methodology used to 

analyse data and the evolution of students' skills is the interpretation of their oral and 

written productions and gestures through the cognitive and epistemological 

components of our integrated theoretical framework concerning conceptualisation: 

the evolution of Vergnaud's concept components according to a SC-EDC dialectic.  

First whole class problem solving session 

The problem was presented to the whole class through the following text: 

We need to know the dimensions of the parcels of the garden in which we will be 

planting flowers. We have a 2m60 by 2m80 rectangular parcel in which we want to 

delimitate 4 identical parcels with two paths crossing between them. 

He presented a rectangular schema with the four parcels, and specified that the paths 

had to be 40 cm wide. He encouraged interactions and noted on the blackboard:  

Ingi:   130+130=260. We make the middle to trace the pathway, 130 and 130 to 

have identical parcels 

Antoine:  there are two pathways to trace  

Emir:  yes 130 and 130 and the pathway ? 

Victor:  130+130+40= 300 impossible... we have 260 

The problem's difficulty was implicitly visible by the students' remarks in the 

discussion: the pathways width must be considered in the calculations. After the 

discussion, the classroom teacher asks the students to solve the problem individually, 

and to write explanations and justifications. Explanation and justification tasks are 

essential in experience field didactics and are generally supported by the teacher's 

mediation, but they are unusual in this class' didactical contract. Insufficient 

mediation made the task difficult. Meanwhile, Melvin and Ken followed the 

specialised teacher into another classroom. 

First interaction session with Ken and Melvin: 

The specialised teacher encouraged the students to recall the task and the data and to 

try to find a way to solve the problem. She used the schema, accompanied her verbal 

interaction with gesture and tried to stimulate the students‘ ideas and verbal 

expressions. At the beginning they just repeated the statement of the task. 
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Interactions revealed important aspects of the students‘ conceptualisation, and 

allowed the teacher to adapt her activity to their ZPD. For instance:  

Teacher:   the pathway must be right in the middle of the parcel. What to do to place it 

at the right place? (gestures close to the schema) 

M:   we could try to find where is the middle of this side (showing the longer 

side) ..... 

Teacher:  what to do to find the middle? 

K:   we measure with the ruler 

The boys searched middle points by trials, Ken measured to verify and got upset: 

lengths are not equal. The teacher noticed that they don't use numerical data to find 

the length of half a side. So, she suggested a numerical procedure reciprocal to 

their's, based on their gestures and verification efforts. 

Analysis: Ken related ―middle‖ and ―measurement with a ruler‖. The students‘ 

systemic links between the concepts of ―middle‖ and of ―measure‖, with procedures 

were weak and not used intentionally with a precise goal. A theorem in action 

(Vergnaud, 1990) seems to guide Ken's action of placing middles and verifying them 

by measuring. This theorem could be expressed as: the measures of the segments at 

each side of the mid-point must be equal. Ken also used semiotic representations of 

the middle of a segment. Links between spatial midpoint and numerical half were 

missing.  

Using our integrated analysis tool, we estimated Ken's conceptualisation related to 

this situation (with these theorem in action and semiotic representation) as his EDC 

concerning middle point, half and measure and we conceived their potential 

development in relation to the teacher's references and goals. This guided the design 

of the next sessions according to the aim that students develop a more scientific 

conceptualisation: Stabilise semiotic representations (geometric representation, 

gesture, verbal expression, numerical symbols and schematisation) concerning 

length, measure, middle, half (they will need them to act upon this situation); direct 

students to relate explicitly and functionally geometric middle point with measure 

and numerical half, to favour systemic links typical for a ―scientific‖ 

conceptualisation of these notions and to approach a numerical procedure; make 

Ken's theorem in action explicit, linked with useful semiotic representations and with 

the procedures to be built, and using it for verification; engage in the EDC/SC 

dialectics. We also had to help students expressing the purposes of the activity, in 

order to maintain control on meaning. The teacher's explicit use of elements 

reflecting student's actual conceptualisation engaged them in the activity and 

reassured them. They could see their activity as constructive and acknowledged.  

Second interaction session with Ken and Melvin 

A third student, Grace, joined the group. The boys explained their work. 
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K:  ... to find the middle of 280 

Teacher:  what does it mean the middle of 280? 

M:  for example, we draw a line of 30 and the half is 15 because 15 and 15 

makes 30. 

Analysis of evolution towards SC: Melvin became able to explain a numerical 

calculation to find the middle point of a segment. His explanation had a character of 

generality. The link between measuring procedure and numerical calculation was 

interiorised and the student could call it up intentionally for a purpose that was clear 

to him (generality and intentional mobilisation belong to the scientific level of 

conceptualisation). And a spatial reference situation for calculation became 

available. 

Third interaction session with Ken and Melvin 

Using the schema and strips of paper representing the pathways, the students 

concluded the problem solving through interaction, and dictated a synthesis:   

Melvin proposed to find the middle of 280 to put the pathway right in the middle. We 

prepared a strip of paper.  

It was difficult, so he proposed to split 28 into halves. Together with Ken he found that it 

was 14, because 14+14 makes 28. 

Ken said we must add the 0 of 280. So we also added 0 to 14 and the half of 280 is 140, 

because 140 and 140 makes 280. 

Grace showed on the backboard that the pathway had to be moved apart 20 and 20 

because it makes 40.  

Analysis of evolution: This text reveals important progress in understanding the 

problem, the relation between half and mid-point, the problem solving steps, the 

calculation and the final purpose. The students' improved mastering semiotic tools 

that helped them dealing with the situation. Using the word ―écarter‖ (move apart) 

they imagined how to pose the pathway on the ground (the French expression is not 

appropriate, but is meaningful: it was related to the gesture of joined hands put in the 

middle and parted to form the pathway).  

The problem solving context allowed the students to preserve the goal and a coherent 

relation between the different working stages. Text production reinforced this. Note 

that these students had tremendous difficulties to mobilise their mathematical 

knowledge and often lost the goal of their activity. Written text production has a 

crucial role in experience field didactics: it dialectically favours and requires 

reasoning to be organised (see Vygotsky, 1985, Ch. VI), thus scientifically 

conceptualised. The students were not able to produce the written text on their own, 

but they had to take the responsibility of producing the text orally and organising it. 
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Second whole class session: mathematical discussion 

The students who stayed in class worked individually in a rather autonomous way. 

Our analysis of their production revealed that: The majority did not appropriate the 

schema drawn on the blackboard. Their expression was reduced to calculations; most 

students who elaborated a correct problem solving procedure were those who offered 

ideas during the preliminary discussion. Martine is the only student who produced a 

text explaining a procedure. It was poorly structured, short with a correct schema. 

Most written productions show limited evolution of ideas when compared with the 

blackboard's ones. Middle level students did not grasp the problem nor did they 

engage in the resolution. On the contrary, Melvin and Ken's ideas evolved greatly. 

We distributed an excerpt of Martine's text and one of the boys: 

Martine:  I make 280 : 2 = 140 to find the middle and I looked for half of the 

pathway. Half of 30 and 30=20           140-20 = 120 

Melvin and Ken: Melvin proposed to look for the middle of 280 to put the pathway right 

in the middle. We prepared two strips of paper. Grace showed on the backboard that the 

pathway had to be moved apart 20 and 20 because it makes 40 

We asked the students to compare their own ideas with this document, to compare 

the two texts, then to interpret Martine's calculation. Her mistake favoured 

interpretation efforts and allowed to identify the role of the data; it also favoured 

personal positioning. Melvin and Ken's word ―move apart‖ helped interpreting her 

text and the reason why 20 was a half. Afterwards we asked Melvin and Ken to 

explain their text in order to involve them (they did it with some difficulties), then 

we asked Martine. The aim was to stabilise the boys‘ expression and understanding, 

and asserting their role in the collective construction.  

Analysis: Discussing procedures and reconstituting reasoning relying on collective 

interpretations of the texts favoured the enrichment of reference situations and 

schemes for middle level students concerning parting procedures, and allowed 

conscious mobilisation of systemic links. Students were encouraged to refer to a well 

known reality. Acknowledgement of the two texts' contributions and debate were 

essential ingredients to realise the Vygotskian EDC-SC dialectics and, on the other 

side, the productive participation of Melvin and Ken.  

Collective resolution ended with the first pathway situated and drawn on the schema. 

Third whole class session: individual production of synthesis 

We asked the students to solve again the problem, individually, drawing the schema 

on a squared paper and giving explanations. Most students (13) solved the problem 

and drew the schema correctly. The boys worked individually like their classmates, 

they drew the pathways and solved the problem only for the first pathway (like it was 

done collectively). Producing explanations was difficult for all. 
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DISCUSSION 

Complementing and integrating suitable theoretical tools borrowed from other 

disciplines (Vygotsky's elaboration about ZPD and SC-EDC dialectics, Vergnaud's 

definition of concept) together with mathematics education tools (experience field 

and experience field didactics constructs) resulted in a toolkit that enabled us to plan, 

manage and analyse activities aimed at developing the two poor learners‘ 

mathematical competencies in relation to a complex third grade problem situation 

and to allow them to take part as protagonists in the subsequent discussion.  

Our integrated theoretical tool allowed to frame the specialised teacher practice, and 

probably to improve her decision making in relation to the students' activity. She was 

already well aware of the importance of combining different semiotic means, and of 

referring to student's surrounding reality. She was able to calm their anxiety about 

failure; the familiar context of gardening experience field was a favourable condition 

for that. She offered verbal expressions to meet students' utterances and gestures, and 

legitimate them. Their legitimacy depends on our capacity for analysis: we ―saw‖ in 

these concept components signs of an EDC related to the aimed conceptualisation. 

The teacher arranged them and inserted them into a more scientific discourse; she 

recycled the students' explanations into more complete ones, favouring systemic 

links between the SC in construction and their own conceptualisation. Local 

syntheses insisting on semiotic means helped stabilising the new developments on 

different levels, and keeping control on activity.  The specialised teacher engaged in 

activities and decision making coherent with the theoretical perspective proposed by 

the researcher; while the classroom teacher only accepted the idea of working on a 

common task with her. This particular situation allowed comparing the development 

of problem solving and related conceptualisation processes in different educational 

settings, showing the potential of intentional, coherent mediation of conceptual 

elements and levels in students' ZPD on the basis of our theoretical frame of 

conceptualisation. Getting back to Radford's semiosphere: Experience fields 

didactics is based on Vygotskian principles; Vergnaud's definition is integrated into 

the SC/EDC dialectics on the method level, it does not contradict the Vygotskian 

principles. The question (including poor learners to class complex problem solving) 

emanates from the observation of a ―phenomenon‖ (see Artigues & Bosch, 2011) 

through the lenses of experience fields didactics: ordinary class mathematical 

situations seldom rely on culturally meaningful context. In such cases poor learners 

are forbidden to do collective meaning making: minimal common meaning due to 

common cultural background is not available. Whereas experience fields perspective 

is to engage students in mathematical activity within a culturally meaningful context, 

and to insure a collectively shared sensitivity to the context and constructive activity. 

This phenomenon and this question modified the integrated theoretical frame of 

conceptualisation: it favoured the interpretation and instrumentalisation of the 

EDC/SC dialectics as a tension between socio-cultural webs of knowledge (see 
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Douek, 2011) that Vergnaud's component allowed to capture at various levels of 

evolution.  
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In this paper we establish a link between the onto-semiotic approach (OSA) to 

mathematics cognition and instruction, APOS theory and the cognitive science of 

mathematics (CSM) as regards their use of the concept ‗mathematical object‘. It is 

argued that the notion of object used in the OSA does not contradict that employed 

by APOS theory or the CSM, since what the latter two theories do is highlight partial 

aspects of the complex process through which, according to the OSA, mathematical 

objects emerge out from mathematical practices. 

INTRODUCTION 

One characteristic of the research community in mathematics education is its 

diversity of different theoretical perspectives, and hence there is a need for strategies 

that connect theories. Each theoretical perspective tends to privilege certain 

dimensions of reality over others. Thus, it is not always easy to identify links 

between research questions, descriptions, methodologies and conclusions that are 

elaborated within different paradigms. In this paper we establish a link between the 

OSA, APOS theory and the CSM as regards their use of the concept ‗mathematical 

object‘.  

We begin by arguing that the notion of ‗object‘ used in APOS theory is the result of a 

cognitive process referred to as ‗encapsulation‘, which, in our opinion, is no different 

from the process of reification. Hence, this is a cognitive view of mathematical 

objects. We then argue that in the CSM the notion of object emerges through the 

metaphorical projection of a series of image schemas, and especially that it is the 

result of the object metaphor. Finally, it is argued that the notion of object in the 

OSA is broader than that used by the other two theories, although it does not 

contradict them. This is because what both APOS theory and the CSM do is 

highlight partial aspects of the complex process through which, according to the 

OSA, mathematical objects emerge out of mathematical practices. 

THREE DIFFERENT THEORETICAL PERSPECTIVES 

The OSA 

Figure 1 (Font, & Contreras, 2008, p. 35) shows some of the theoretical notions 

contained in the onto-semiotic approach to mathematics cognition and instruction 

(Godino, Batanero, & Font, 2007). Here mathematical activity plays a central role 

and is modeled in terms of systems of operative and discursive practices. From these 
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practices the different types of related primary objects (language, arguments, 

concepts, propositions, procedures and problems) emerge, building epistemic or 

cognitive (depending on whether the adopted point of view is institutional or 

personal) configurations among one another (see hexagon in Figure 1).  

 

Figure 1: An onto-semiotic representation of mathematical knowledge 

Problem-situations promote and contextualize the activity, languages (symbols, 

notations, graphs) represent the other entities and serve as tools for action, and 

arguments justify the procedures and propositions that relate the concepts. Lastly, the 

mathematical objects that emerge from the mathematical practices depend on the 

―language game‖(Wittgenstein, 1953) in which they participate, and might be 

considered from the five facets of dual dimensions (decagon in Figure 1): 

personal/institutional, unitary/systemic, expression/content, ostensive/non-ostensive 

and extensive/intensive. Both the dualities and objects can be analyzed from a 

process-product perspective, a kind of analysis that leads us to the processes shown 

in Figure 1. Instead of giving a general definition of process the OSA opts to select a 

list of processes that are considered important in mathematical activity (those of 

Figure 1), without claiming that this list includes all the processes implicit in 

mathematical activity; this is because, among other reasons, some of the most 

important of them (for example, the solving of problems or modeling) are more than 

just processes and should be considered as hyper- or mega-processes. 

The APOS theory 

APOS (Asiala et al., 1996; Dubinsky, & McDonald, 2001) is an acronym that stands 

for the types of mental structures (Action, Process, Object, and Schema) which 

students build in their attempts to understand mathematical concepts. A learner, to 
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whom we usually refer as a student, uses certain mental mechanisms called 

interiorization, coordination, and encapsulation to construct these structures. 

According to APOS theory, the formation of a mathematical concept involves 

applying a transformation to existing objects to obtain new objects. An action is any 

transformation of objects according to an explicit algorithm in order to obtain other 

objects, and is seen as being at least somewhat externally driven.  

As an action is repeated and the individual reflects upon it, it may be interiorized into 

a mental process. An important characteristic of a process is that the individual is 

able to describe, or reflect upon, the steps of the transformation wholly in her/his 

mind without actually performing those steps. Additionally, once a mental process 

exists, it is possible for an individual to think of it in reverse and possibly construct a 

new process (a reversal of the original process).  

When an individual becomes aware of the process as a totality and is able to 

transform it by some action, it is said that the process has been encapsulated as an 

object. When necessary, an individual may de-encapsulate an object back to its 

underlying process. In other situations, the individual may think of the 

transformation in terms of actions.  

A schema for a certain mathematical concept is an individual‘s collection of actions, 

processes, objects and other schemas linked consciously or unconsciously in a 

coherent framework in the individual‘s mind.  

The research method or investigative approach of this framework consists of three-

step cycles. The first step is a theoretical analysis of the actions, processes, objects, 

and schemas that a learner may construct in order to learn a given/specific 

mathematical concept. The resulting description is called a genetic decomposition of 

the concept. This is used to design and implement the second step, the instructional 

treatment. The third step is the collection and analysis of both quantitative and 

qualitative data.  

Cognitive Science of Mathematics 

In this paper we are interested particularly in Lakoff and Nunez‘s account. This is a 

very particular and, may be, controversial interpretation of ―cognitive science of 

mathematics‖. Lakoff and Nöðez (2000) state that the mathematical structures people 

build have to be looked for in daily cognitive processes, such as image schemas and 

metaphorical thinking. These processes allow us to explain how the construction of 

mathematical objects is supported by the way in which our body interacts with the 

objects of everyday life. To achieve abstract thinking we need to use basic schemas 

derived from the immediate experience of our bodies. We use these basic schemas, 

called image schemas, to make sense of our experiences in abstract domains through 

metaphorical mappings. Lakoff and Nöðez (2000) claim that metaphors create a 

conceptual relationship between the source domain and the target domain. They 

distinguish between two types of conceptual metaphors in relation to mathematics: a) 
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grounding metaphors that relate a source domain outside of mathematics with a 

target domain inside mathematics; and b) linking metaphors that have their source 

and target domains within mathematics. 

THE LINK BETWEEN THESE FRAMEWORKS 

The emergence of objects in the OSA 

The OSA considers that the process through which mathematical objects emerge out 

from mathematical practices is a complex one and that at least two levels need to be 

distinguished. The first level corresponds to the emergence of representations, 

definitions, propositions, procedures, problems and arguments (primary objects). As 

regards the nature of these objects, the OSA, in line with the philosophy of 

Wittgenstein, considers that the type of existence which can be ascribed to the 

concepts/definitions, the propositions and the procedures is that of conventional 

rules. From this point of view, mathematical statements are rules (of a grammatical 

kind) for using certain types of signs, because in fact they are used as rules. They do 

not describe properties of mathematical objects that exist independently of the people 

who wish to know about them or of the language used to know them, even though it 

may appear that this is the case.  

Although the OSA adopts a conventionalist point of view on the nature of 

mathematical objects, it is acknowledged that a descriptive/realist view of 

mathematics is implicitly suggested in teaching processes. In order to explain how 

this vision is generated it is necessary to consider a second level in the emergence of 

mathematical objects; an example might be the object ‗function‘, which is considered 

as an object that is represented by different representations that may have several 

equivalent definitions, which have properties, etc.  

In order to explain how primary objects emerge, the metaphor of ‗climbing stairs‘ 

proves highly useful. When we climb stairs we have to stand on one foot as we 

move, but that foot then moves progressively to a higher stair. Mathematical practice 

can be considered as ‗climbing stairs‘. The stair on which we stand in order to carry 

out the practice is an already-known configuration of primary objects, whereas the 

higher stair which we then reach, as a consequence of the practice carried out, is a 

new configuration of objects, one (or more) of which was previously unknown. The 

new primary objects appear as a result of this mathematical practice and become 

institutional primary objects due, among other processes considered in Figure 1 

(including reification and idealization), to processes of institutionalization that form 

part of the teaching-learning process being studied.  

The second level of emergence is the result of several factors, the main ones being as 

follows: 1) mathematical discourse, explicitly or otherwise, gives students the 

message that mathematics is a ‗certain‘, ‗true‘ or ‗objective‘ science; 2) the 

predictive success of the sciences that make use of mathematics is used, explicitly or 
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otherwise, to argue in favor of the existence of mathematical objects; 3) the 

simplicity that derives from postulating the existence of mathematical objects. Their 

postulation is justified on the basis of the practical benefits, especially as regards 

simplifying the mathematical theory which is being studied. Indeed, it is highly 

convenient to consider that there exists a mathematical object that is represented by 

different representations, which can be defined by various equivalent definitions, or 

which has properties, etc. 4) The object metaphor is always present in teachers‘ 

discourse because here the mathematical entities are presented as ―objects with 

properties‖. It is common in mathematics discourse to use certain metaphorical 

expressions which suggest that mathematical objects are not constructed but, rather, 

are discovered as pre-existing objects; for example, words such as ‗describe‘ or 

‗find‘, etc. 5). As discussed in Font, Godino, Planas and Acevedo (2010) it is 

possible in mathematics discourse (a) to talk about ostensive objects representing 

non-ostensive objects that do not exist (for example, we can say that f‘(a) does not 

exist because the graph of f(x) has a pointed form in x = a), and (b) to differentiate 

the mathematical object from one of its representations. Both aspects lead students to 

interpret mathematical objects as being different from their ostensive representations.  

These five factors generate, implicitly or explicitly, a descriptive/realist view of 

mathematics which considers (1) that mathematical propositions describe properties 

of mathematical objects, and (2) that these objects have a certain kind of existence 

that is independent of the people who encounter them and the language through 

which they are known. This view is hard to avoid since the reasons why it is adopted 

are always operating, albeit subtly. More than a consciously assumed philosophical 

position we are dealing here with an implicit way of understanding mathematical 

objects. 

Objects in APOS theory 

In APOS theory (Asiala et al., 1996) encapsulation and de-encapsulation play an 

important role. APOS theory begins with actions and moves through processes to 

objects. These are then integrated into schemas which can themselves become 

objects. The ideas arise from attempts to extend the work of Jean Piaget on reflective 

abstraction in children‘s learning to the level of collegiate mathematics.  

In the paper titled ―Reification as the Birth of Metaphor,‖ Sfard (1994) reports on the 

interviews she conducted with three renowned mathematicians. In these interviews 

the three mathematicians talk about the mathematical concepts that they study as if 

they were concrete in some way. The term that Sfard uses for this cognitive 

phenomenon is reification, which is similar to Dubinsky‘s construct of 

encapsulation.  

Reification is a term used in philosophy that means, etymologically, ―to treat 

something like a thing.‖ In the processes of mathematical reification, abstract notions 

are conceived like objects. To reify (or encapsulate) is to regard or treat an 
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abstraction as if it had a concrete or material existence. One example of reification is 

when we assume — or state linguistically — that there is an object with various 

properties or various representations. 

The link between the OSA and APOS theory 

In accordance with the onto-semiotic approach (see section 3.1) we consider that 

reification (encapsulation) is very important in terms of explaining the emergence of 

mathematical objects, but that it is insufficient to describe adequately this emergence 

and the nature of mathematical objects. Furthermore, we believe that APOS theory 

has a number of limitations, two of which we regard as especially important: 1) in 

APOS theory the construct ‗object‘ is considered as the product of the encapsulation 

(reification) process. However, with this characterization, which basically comes 

from psychology, it is not clear how to address some  issues related to mathematical 

objects, such as the nature of mathematical objects, their various types, the way in 

which they are formed and how they participate in mathematical activity. 

In order to overcome this limitation it is helpful to consider the proposal of semiotic 

perspectives, especially the OSA, which regard mathematical objects as emerging out 

from mathematical practices. 2) The construct of ‗semiotic medium‘ is not explicitly 

addressed by APOS theory, which does not specifically address the role of semiotic 

representations.  

Recent research that has extended APOS theory through the incorporation of 

semiotic perspectives turns either to Duval‘s theory of semiotic registers (Trigueros, 

& Martínez-Planell, 2010) or to the OSA (Badillo, Azcárate, & Font, 2010; Font, 

Montiel, Wilhelmi, & Vidakovic, 2010). In line with Badillo, Azcárate and Font 

(2010), we consider that the OSA complements APOS theory as follows: 1) it 

extends APOS theory by specifically addressing the role of semiotic representations; 

2) it improves the genetic decomposition by incorporating the ideas of semiotic 

complexity, network of semiotic functions, and semiotic conflicts; and 3) it offers a 

more detailed notion of mathematical objects due to the way in which it considers the 

nature of such objects and their emergence out of mathematical practices. 

Objects in the CSM 

The group of grounding metaphors includes the ontological type, where we find the 

object metaphor. The object metaphor is a conceptual metaphor that has its origins in 

our experiences with physical objects and enables the interpretation of events, 

activities, emotions and ideas, etc. as if they were real entities with properties. This 

type of metaphor is combined with other ontological, classical metaphors such as 

that of the ―container‖ and that of the ―part-whole‖. The combination of these types 

leads to the interpretation of ideas and concepts, etc., as entities that are part of other 

entities and which are constituted by them.  
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Ontological metaphors are considered as a group of metaphors that result from the 

projection of image schemas (container, whole-part, object, etc.) which, in our view, 

share a ‗common territory‘; therefore, there may be a certain hierarchy among them. 

One question that remains open (Santibáðez, 2000) concerns the relationship 

between these image schemas. For example, one could consider that the object image 

schema is the fundamental schema and that the others are derived from it, or 

alternatively, that there is some other schema from which all (or some) of those 

mentioned are derived, for instance, the entity schema (Quinn, 1991) or the notion of 

thing (Langacker, 1998).    

The link between the OSA and the CSM 

In line with the onto-semiotic approach we consider that the process through which 

mathematical objects emerge from mathematical practices is highly complex (see 

section 3.1). Therefore, we believe that Lakoff and Nuðez‘s methodology of 

―mathematical idea analysis‖ is very important in terms of explaining the emergence 

of mathematical objects, but that it is insufficient to describe adequately this 

emergence and the nature of mathematical objects. This limitation was pointed out 

by various authors in the discussions that followed the publication of Lakoff and 

Nöðez‘s book (e.g. Sinclair, & Schiralli, 2003).  

The way in which the OSA explains the emergence of mathematical objects not only 

extends and improves upon the explanation offered by the CSM, but also provides 

clarification of one of the central processes considered by the latter, namely 

metaphorical processes (Acevedo, 2008; Malaspina & Font, 2010; Font, Montiel, 

Wilhelmi, & Vidakovic, 2010). The reasons for this are set out below. 

Here we are interested in observing metaphorical processes from the 

‗unitary/systemic‘ duality proposed in the OSA, since the reification/decomposing 

processes in the OSA are associated with this unitary/systemic facet or dimension. 

When a mathematical abstraction is treated as an object, this is equivalent to 

adopting a unitary point of view on this object. On the other hand, the mathematical 

object can be treated from a systemic viewpoint, considering the actions that a 

subject can make on it and on the other objects, parts or processes that compose it. In 

the work of Lakoff and Nöðez (2000), the unitary/systemic duality has a central role. 

On the one hand, the metaphor is elementary (A is B). However, the metaphor allows 

us to generate a new system of practices (systemic perspective) as a result of our 

understanding of the target domain in terms of the source domain. The CSM 

develops the elementary/systemic duality for different metaphors, a good example of 

which is the object metaphor (Font, Bolite, & Acevedo, 2010, p. 139): Unitary:  

―Mathematical objects are physical objects.‖ Systemic:  ―Table 1. Metaphor 

projection.‖ In fact, most research on metaphors has been mainly targeted at studying 

such a duality. In other words, given a metaphor, the source and target domains are 

decomposed to determine what concepts, properties, relationships, etc. from the 

source domain are transferred to the target domain. The systemic vision of a 
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metaphor leads us to understand it as a generator of new practices. The OSA 

considers that in order to carry out a mathematical practice the agent must have the 

basic knowledge required to do so. If we consider the components of the knowledge 

that the agent must have in order to develop and evaluate the practice that enables a 

problem to be solved (e.g., propose and solve a system of two equations with two 

unknowns), we can see that certain verbal (e.g., solution) and symbolic (e.g., x) 

language must be used. 

Source domain: Object image schema Target domain: Mathematics 

Physical object Mathematical object 

Physical objects are manipulated, found, 

discovered, etc. 

Mathematical objects are manipulated, 

found, discovered, etc. 

Physical objects are different from their 

material representations (i.e., a clock is 

different from the drawing of a clock) 

Mathematical representations are 

different from the mathematical objects 

they represent 

Properties of the physical object Properties of the mathematical object 

Physical objects exist Mathematical objects exist 

Table 1: ―Mathematical objects are physical objects‖ 

This language is the ostensive part of a series of concepts (e.g., equation), 

propositions (e.g., if the same term is added to the two sides of an equation, an 

equivalent equation is obtained) and procedures (e.g., solution by substitution) that 

will be used in making arguments so as to decide if the simple actions that make up 

the practice (where this is understood to be a compound action) are satisfactory. 

Hence when an agent carries out and evaluates a mathematical practice, it is 

necessary that it activates some (or all) of the elements mentioned above: situation-

problems, language, concepts, propositions, procedures and arguments. By 

articulating these types of objects we obtain the configuration (hexagon in Figure 1). 

If, in addition to the ―structure‖, it is necessary to analyze the genesis and 

functioning of the mathematical activity, other tools are necessary, especially some 

of the processes shown in Figure 1, as well as the metacognitive processes. The 

epistemic configuration tool allows us to see the structure of those objects that make 

mathematical practice possible and which regulate it within a specific institutional 

framework. Because the OSA considers that, among other aspects, an 

epistemic/cognitive configuration (depending on whether the adopted point of view 

is institutional or personal) has to be activated in order to perform mathematical 

practices, and that the systemic vision of the metaphor leads us to understand it as a 

generator of new practices, it is natural to ask ourselves the following question: How 

is the metaphor related to the building components of epistemic/cognitive 

configurations? The conclusion drawn by Acevedo (2008) on linking metaphors, 

after he had studied in detail the linking metaphor used by Descartes when solving 

the problem of Pappus within the framework of analytic geometry, is that a linking 

metaphor projects an epistemic/cognitive configuration onto another one. 
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The epistemic/cognitive configuration construct allows us to explain and make 

precise the structure that is projected onto the linking metaphors. There is a source 

domain that has the structure of an epistemic/cognitive configuration (whether the 

adopted point of view is institutional or personal) and which projects itself onto a 

target domain that also has the structure of an epistemic/cognitive configuration. 

This way of understanding the preservation of the metaphoric projection improves 

upon the explanation of such a preservation given by Lakoff and Nöðez (2000), who 

simply give a two-column table in which properties and concepts are mixed. The 

reader can intuit that the properties are projected onto properties and the concepts 

onto concepts. The question which remains to be resolved is: what structure is 

projected in the case of a grounding metaphor? We believe that unlike in the case of 

linking metaphors, only some parts of the epistemic/cognitive configuration are 

projected. The specific study of each grounding metaphor will allow the 

identification of these parts. 

FINAL CONSIDERATIONS 

A sound theoretical understanding of mathematical objects must be a key part of any 

research on mathematics learning. The way in which the OSA understands the 

emergence of mathematical objects enables us to explain: (1) how primary 

mathematical objects emerge from mathematical practices and they construct among 

one another cognitive or epistemic configurations; and (2) why a descriptive/realist 

view of mathematics is usually presented in mathematics classrooms. This account 

goes beyond the explanations offered by APOS theory and the CSM regarding the 

emergence of mathematical objects, and shows that what the latter two approaches 

do is highlight partial aspects of the complex process through which such objects 

emerge out of mathematical practices.  
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USING DIFFERENT SOCIOCULTURAL PERSPECTIVES IN 

MATHEMATICS TEACHING DEVELOPMENTAL RESEARCH 

Simon Goodchild 

University of Agder, Norway 

Communities of practice theory and cultural historical activity theory are considered 
alongside each other and argued to be incompatible on the grounds of their 
treatment of human agency. It is then demonstrated that it is of value to use both 
perspectives in the context of mathematics teaching developmental research. The 
introduction of inquiry into community of practice theory, it is asserted, creates a 

different type of community, a community of inquiry, and from this perspective 
developmental research is argued to be consistent with the critical research 
paradigm. The combination of theories is shown to be useful as theoretically 
heuristic, and each has a value as teaching is studied at different stages in the 
developmental process. 

INTRODUCTION 

At CERME5 in 2007 Barbara Jaworski and I presented papers within the ―theories‖ 

group. In these we discussed theoretical issues relating to a mathematics teaching 

development project in which we were both engaged. Barbara‘s paper (Jaworski, 

2007) took a social practice perspective, taking Community of Practice Theory 

(CPT) as a starting point. My paper (Goodchild, 2007) was from the perspective of 

Cultural Historical Activity Theory (CHAT). It was our deliberate decision that we 

should adopt different perspectives in our papers. However, in our collaboration we 

share both perspectives, and Barbara, at that time and subsequently, has published 

from both. Barbara concluded her CERME5 paper with the following observation: 

We recognize also that employing a multiplicity of theoretical perspectives begs some 

overall theoretical rationalization – not a unification, but a clarity on how the theoretical 

perspectives we are using are juxtaposed and what issues of commensurability arise from 

juxtapositioning. Space here has limited further discussion of such issues. (Jaworski 

2007, p. 1696). 

The purpose of this present paper is to take up this discussion and consider some of 

the issues that arise when using these two theories alongside each other.  

I use the rather unusual approach here and refer to Barbara Jaworski‘s contribution 

reported in her CERME5 paper (Jaworski, 2007), using her first name only. My 

purpose is to reflect the fact that within the projects we are close colleagues, 

developing ideas (with others in our research group) in critical collaboration. 

However, it should be recognised that Barbara is the principal architect of the ideas 

she expresses. I will revert to the more conventional form of citation when I refer to 

her other published work. Barbara has read a draft version of this paper and is largely 

in agreement with the content but we have not had the opportunity to discuss details. 
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At the time Barbara and I presented the papers at CERME5 we were coming to the 

close of the project Learning Communities in Mathematics (LCM, 2004-2007), and it 

was on this project that our reports were based. Concurrent with LCM ran another 

mathematics teaching developmental research project ICT and Mathematics Learning 

(ICTML). Subsequent to LCM and ICTML a follow-on binary project Teaching 

Better Mathematics / Learning Better Mathematics (TBM/LBM, 2007-2010) 

continued with a majority of the schools and teachers participating throughout both 

project periods. LCM, ICTML and TBM were supported by the Research Council of 

Norway. Further support for TBM and support for LBM came from the Competence 

Development Fund of Southern Norway. All projects were based on the principle of 

developing communities of inquiry (CoI) comprising teams of teachers in schools 

and a team of about 10 didacticians at the university. There were eight schools 

participating in LCM, four of these also in ICTML; nine schools and four 

kindergartens, and the leaders of three school authorities participated in LBM/TBM. 

Details about the methodology and implementation of the projects will emerge in the 

discussion that follows. This paper draws on experience from all the aforementioned. 

The paper continues with a brief outline of CPT and CHAT, and goes on to expose 

fundamental differences between them. The second (smaller) part of the paper sets 

out some of the ways the projects are better served by taking more than one 

perspective; this is illuminated using an illustration from the projects. 

A VERY BRIEF INTRODUCTION TO CPT AND CHAT 

To fulfil the purpose of this paper it is necessary to provide a brief introduction to the 

two theoretical perspectives and draw attention to their fundamental differences. This 

is problematic for several reasons. First the theories are complex and some of their 

key ideas are subtle and need to be interpreted with care. Moreover, key words are 

used with different meanings or nuances, for example words such as practice, 

community, activity and action; a word ascribed a special meaning in one theory may 

be used in an everyday sense in the other, and as Radford observes (in Bikner-

Ahsbahs et al., 2010) ―the semantic value of a theoretical term … in a theory results 

from its position in the main web of dynamic interconnections that characterize the 

theory as a whole‖ (p. 169). Second, much has been published on both theories; brief 

summaries will inevitably be incomplete and therefore liable to mislead. Third, there 

are differences and developments within the theories themselves. For example, 

Kanes and Lerman (2008) expose differences within CPT, in particular, between 

Wenger‘s (1998) ‗Communities of Practice‘ and Lave and Wenger‘s (1991) ‗Situated 

Learning‘. I believe Lave‘s (1988) ‗Cognition in Practice‘ introduces a third variety 

or nuance within CPT. Similarly CHAT is traced through three ‗generations‘ of 

development through the works of (amongst many others) Vygotsky, Leont‘ev, and 

Engestrôm whose names I use here as representatives of successive generations. In 

the following I combine sources to articulate one version of CPT, and one version of 

CHAT. This may be unsatisfactory in regards to exploring the theories themselves 

but I believe there is sufficient internal consistency to enable a discussion of 
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differences between CPT and CHAT. 

First, one must consider whether there is any a priori basis to suppose that there are 

fundamental differences between CPT and CHAT; they are both considered to be 

within the family of sociocultural theories, and exponents of both refer to Vygotsky‘s 

contribution. I begin, therefore, by attending to what key protagonists of each have to 

say. In a substantial review of CHAT, Roth and Lee (2007) explicitly exclude works 

from a CPT perspective because despite ‗strong family resemblances‘ they claim 

CHAT and CPT to be ‗distinct‘. Roth and Lee do not, however, go into detail about 

the distinguishing features. Wenger (1998) claims there are ontological differences 

between CPT and CHAT. However, in my opinion, his argument is based on an 

interpretation of ‗mediated action‘ that is not consistent with CHAT, as developed, 

for example, by Wertsch (1994). Nardi (1996) compares and contrasts CPT (situated 

action), CHAT, and distributed cognition perspectives, and finds differences between 

them. Nardi points to the treatment of goals as a distinguishing feature: ―Attention to 

the shaping force of goals in activity theory … contrasts with the contingent, 

responsive, improvisatory emphasis of situated action‖ (p. 79). I argue below that 

this, in the context of mathematics teaching developmental research, is the kernel of 

an essential incompatibility between the theories. Further, Kanes and Lerman (2008), 

in their discussion of differences within CPT note their opinion that both 

articulations of CPT lack a theory of mediation. This lacking feature emerges in our 

theorising of the projects as Barbara explains in her CERME5 paper (Jaworski, 

2007) as she extends CPT using principles of mediation based on CHAT. 

In CHAT, activity, Leont‘ev (1979) asserts, is ―the nonadditive, molar unit of life … 

a system with its own structure, its own internal transformations, and its own 

development‖ (p. 46), and later he asserts, ―there can be no activity without a 

motive‖ (p. 59). Activity is thus the unit of analysis. I will illuminate Leont‘ev‘s 

definition by developing an illustration used by Vygotsky (1986). If the object of 

study is water, the unit of analysis must be water – one could have more or less 

water, but it is nonadditive in the sense that more does not make it more waterish. 

Water is a compound comprising elements of hydrogen and oxygen, but if the object 

of study is water, little from the perspective of (classical) chemistry or physics will 

be learned by studying the elements, water is the ‗molar unit‘. Activity, Leont‘ev 

(1979) explains is comprised of (conscious) goal directed actions, and actions are 

comprised of (sub-conscious) operations within constraints or conditions. Actions 

are conscious and mostly observable (maybe mental actions are not observable but 

then their effect may be), but an action needs to be analysed in the context of the 

activity-motive in which it arises. Water also has properties (density, transparency, 

etc.) that distinguish it from other liquids; similarly, one might describe as properties 

of activity that distinguish one activity system from another, these are: the person or 

group, and the object of their activity, cultural artefacts or tools that mediate actions, 

community, and the rules and division of labour within the community. Engestrôm 

(1993) refers to these as ‗components‘ or ‗elements‘, which relate dialectically to 

each other within an ‗activity system‘, and he draws attention to the historical nature 
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of activity by observing ―An activity system … is composed of a multitude of often 

disparate elements … This multiplicity can be understood in terms of historical 

modes, as well as buds or shoots of its possible future‖ (1993, p. 68). Thus, whereas 

actions occur in time, activity endures (and changes or develops) over time. 

In CPT, Wenger (1998) argues that ―community of practice constitutes a level of 

analysis‖ (p. 122, my emphasis). Lave (1988) however, identifies three levels of 

analysis – ―semiotic systems with their structural entailments, … relations among 

person-acting, setting and activity, … (and) dialectical relations between an 

experienced world and its constitutive order‖ (p. 179). A ‗community of practice‘ 

might also be explained as a characteristically distinct compound of elements, 

Wenger (1998) describes three ‗dimensions of practice‘ which he explains are ‗the 

property of a community‘ these are ‗joint enterprise‘, ‘mutual engagement‘ and 

‗shared repertoire‘ (p. 73). Practice, Wenger (1998) explains ―is doing in a historical 

and social context that gives structure and meaning to what we do‖ (p. 47). At this 

point one might be tempted to question whether there is any substantive difference 

between practice in CPT and activity in CHAT. A definition of practice offered by 

Scribner and Cole (1981) provides a clue to what might fundamentally distinguish 

the theories. They explain, practice is ―a recurrent, goal-directed sequence of 

activities … (it) consists of three components: technology, knowledge and skills … 

Practice always refers to socially developed patterned ways of using technology and 

knowledge to accomplish tasks‖ (p. 236). The point that I draw attention to in 

Scribner and Cole‘s definition is that it is ‗practice‘ that is goal directed, rather than 

the participating person. This is emphasised by Lave (1988) ―motivation is neither 

merely internal to the person nor to be found exclusively in the environment … goals 

… are not prefabricated by the person-acting or some other goal-giver as a 

precondition for action‖ (p. 184, emphasis added). As Nardi (1996) observes, in 

explaining the entailments of CPT based on Lave (1988), in CPT ―goals are our 

musings out loud about why we did something after we have done it‖ (p.79). 

In CHAT actions are goal directed, whereas in CPT actions emerge dialectically 

between the person and the environment, this is a difference that reveals CPT and 

CHAT to be incompatible – in other words, they cannot co-exist peacefully. The 

impossibility of peaceful co-existence is evident in Engestrôm‘s observation 

―Activity theory contends that … a notion of context beyond our influence is a 

fiction, a fetish … human agency is necessarily realized in the form of (goal directed) 

actions‖ (1993, p. 66). I inserted ‗goal directed‘ in the above quotation to act as a 

reminder and emphasise that in CHAT actions are ‗goal directed‘. As Roth observes, 

―Fundamental to CHAT is the human ability to act or agency‖ (2006, ―Power to act, 

agency‖ Para. 1). Wenger (1998) is clear that his work does not focus on agency; 

thus giving the impression that the concept is not so important in his articulation of 

CPT. I assert that the introduction of ‗inquiry‘ to CPT entails a shift into the critical 

paradigm; because it is in the critical paradigm that the goal is to empower actors to 

exert their agency and transform their practice. Thus, I conclude that CPT and CHAT 

are incommensurable. Moreover, CHAT offers a model, in the form of expansive 
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learning that fits the critical paradigm. The adoption of different theoretical 

perspectives has been discussed by, for example, Cobb (2007) who proposes that 

different perspectives can be ―sources of ideas that we can appropriate and modify 

for our purposes as mathematics educators‖ (p. 29). From outside mathematics 

education Guba and Lincoln (2005) defend ―borrowing‖ from different theoretical 

perspectives where it ―seems useful, richness enhancing, or theoretically heuristic‖ 

(p. 197). In the next section I demonstrate how reference to both CPT and CHAT is 

useful in the theoretically heuristic sense within our mathematics teaching 

developmental research. 

DIFFERENT PERSPECTIVES ARE ―THEORETICALLY HEURISTIC‖ 

A model of development is explicitly articulated within CHAT by Engestrôm (1987, 

2001), and, I believe, a theory of development is implicit in Wenger‘s (1998) 

articulation of CPT. In CHAT, Engestrôm (2001) explains development in terms of 

expansive cycles through which activity systems pass as groups (of participants) 

address the tensions and contradictions (double binds) of their activity system. 

Double binds might be thought of as ‗lose-lose‘ situations, such as faced by teachers 

with a demanding curriculum and high-stakes examination AND pressure from their 

professional subject milieu to teach for ‗understanding‘. Attending to the demand of 

one side appears to threaten losing out on the other. Briefly, expansive cycles take 

the form of successive phases of internalisation and externalisation. First persons 

engage in activity and appropriate (internalise) the routines and practices of the 

activity. As they continue in the activity they become increasingly aware of the 

double binds and embark on a search for solutions to resolve the tensions and 

contradictions. Initially solutions are found in the form of creative innovations 

external to the activity system (externalisation), and the activity system then 

‗expands‘ to accommodate the innovations. Within the projects, inquiry, 

operationalised as an inquiry cycle, is argued to be a purposeful realisation of 

expansion. Within CHAT, inquiry can be conceptualised as both action, and a tool 

mediating action. 

To build a theory of development from Wenger‘s (1998) CPT, I start with the ‗modes 

of belonging‘ that Wenger describes in the context of an individual‘s identity. 

Identity occupies an important position in CPT because, as Wenger explains, the 

discussion of identity ―narrows the focus onto the person … from a social 

perspective‖ (1998, p. 145). Wenger argues further: ―To make sense of … processes 

of identity formation and learning, it is useful to consider three distinct modes of 

belonging: … engagement … imagination … alignment‖ (pp. 173-174). Imagination 

enables a person to extrapolate from his/her own experience, or that shared by others 

to expand oneself and ‗transcend engagement‘ (p. 177). 

It is through imagination that we see our own practices as continuing histories that reach 

far into the past, and it is through imagination that we conceive of new developments, 

explore alternatives, and envision possible futures. … By taking us into the past and 

carrying us into the future, it can recast the present and show it as holding unsuspected 
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possibilities. (Wenger, 1998, p. 178) 

However, Wenger also draws attention to possible ―trade-offs of imagination‖ in 

particular of the ―risk of losing touch with the sense of social efficacy by which our 

experience of the world can be interpreted as competence‖ (1998, p. 178). This 

resonates strongly with our observations in the projects when experienced teachers 

have been encouraged to try out some innovation (which inevitably entails risk 

because it is a departure from the known) and the outcome has disturbed the 

teacher‘s experience of competence (Jaworski, Goodchild, Daland, & Eriksen, in 

press).  

I find it difficult to perceive of the extrapolation of practice, and possible trade-offs, 

in the absence of an individual‘s intentionality and agency. If it were possible to 

leave out the issue of agency a synthesis of ‗extrapolation‘ and ‗expansion‘ might be 

possible. And such synthesis provides a useful tool for analysing development. 

CPT does not explicitly include a consideration of inquiry, thus one is challenged to 

explore how a theory of inquiry can be integrated with CPT, or indeed how a 

community of inquiry (CoI) can be expressed in terms of CPT. Here the notion of 

alignment is valuable in terms of being ‗theoretically heuristic‘ as Barbara 

demonstrated in her CERME paper. Barbara starts from Wenger‘s explanation: 

alignment is about participation and engagement and doing ―what it takes to play our 

part‖ (1998, p. 179) in the practice. It can be noted that here again, Wenger identifies 

‗trade-offs‘ in particular that alignment ‗can … be blind and disempowering‘. 

Barbara continues by explaining how the introduction of inquiry transforms 

‗alignment‘ into ‗critical alignment‘, ―inquiry brings with it a critically questioning 

attitude towards practice and knowledge in practice that allows critical reflection on 

the practice of teaching and hence can lead to development of teaching‖ (Jaworski, 

2007, p. 1693). The introduction creates a ‗community of inquiry‘ which Barbara 

describes as ―extending Wenger‘s exposition of community of practice‖ (p. 1693). 

I believe that the combination of inquiry and communities of practice is not just an 

extension of CPT but that it constitutes a paradigm shift. In Goodchild (2008) I 

attempt to produce a mapping between critical alignment and Freire‘s (1972) 

articulation of ‗conscientization‘. The point is that critical alignment enables teachers 

and didacticians to become aware of the oppressive force of the double binds that 

constrain mathematics teaching practice and development, and inquiry is a means of 

liberation. Furthermore, the inquiry cycle, plan-act-observe-reflect-feedback 

(Jaworski, 2007, p. 1694) is closely related to the action research cycle, thus I see 

CoI as a developmental methodology within a critical research paradigm. It was 

Barbara‘s articulation of CPT, inquiry and critical alignment that resonated with 

Freire‘s work. 

THE VALUE OF USING DIFFERENT THEORETICAL PERSPECTIVES 

The projects in which Barbara and I have collaborated have been built on theoretical 

constructs of CPT, inquiry and community; it is on the latter of these that I now 
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focus. It has been a condition of joining in the projects that there are at least three 

participating teachers in each school and that the project has the support of the 

school principal. The school ‗project‘ community is important as a source of mutual 

support and encouragement, ideas and critically reflective thinking, opportunities for 

joint activity, observation, and joint reflection. The school community is also 

intended to provide a critical mass that will facilitate teaching development beyond 

the life of the projects. A wider project community is envisioned comprising all 

participating teachers together with the team of didacticians at the university. The 

project community comes together for workshops three times each semester. 

Workshop activity comprises presentations by didacticians and participating 

teachers, and group discussion activities that focus on mathematical problems and 

approaches to teaching mathematics. As Barbara illustrates (Jaworski, 2007), a 

mathematical problem is introduced in a workshop plenary session, and then worked 

on in small groups. When the teachers return to their school they (as a school team) 

prepare the mathematical problem to present as a class task, the task is implemented 

with subsequent reflection in the school team and the cycle returns to the point where 

teachers report their experience in a subsequent workshop, and possibly initiate a 

further cycle. 

There is a further methodological concept that is central in the implementation of the 

projects: the relationship between teachers and didacticians is based on a ‗co-

learning agreement‘ (Wagner, 1997). This emerges from ethical and practical 

principles; it respects teachers‘ expertise in their practice and casts the research 

enterprise as something in which all contribute and from which all can learn in 

relation to their own interests and concerns. Further, it recognises that substantive 

changes in teaching will only be achieved by teachers in their own classes. In effect 

it means that didacticians do not presume to tell about or demonstrate better methods 

of teaching. The intention is to stimulate discussion and inquiry about mathematics 

and teaching mathematics, mediated by tasks that are designed to stimulate 

mathematical inquiry, and critical reflection on teaching mathematics. Thus, the 

projects are not based on notions of novice and master/expert in the sense that Lave 

and Wenger (1991) use in their description of learning in practice as ‗legitimate 

peripheral participation‘. With this in mind I return to the notion of development as 

‗extrapolation‘. 

It is possible that development is restricted to a modest ‗tinkering‘ with practice 

rather than fundamental changes; this could happen if no-one comes with experience 

of teaching practice that transcends what ‗normally‘ occurs. This can be illustrated 

by a case study within the projects that focused on teaching developments in three 

project schools, specifically with reference to ICT use, and the introduction of 

dynamic geometry software (DGS) (Erfjord, 2009). A little over a year after the 

projects began there appeared to be only limited signs of development at one of the 

schools, which prompted the project directors to visit the school to see if further 

support were necessary, and ‗encourage‘ project related activity. One outcome was 

an arrangement in which an experienced teacher and specialist in using digital 
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technology with his classes in another project school was asked to lead some school 

based workshops. In this, one might see an ‗outsider‘ providing additional 

experience from which the teachers could develop their imagination and extrapolate 

practice. However, it was the appointment of a novice teacher some months later that 

was decisive. He introduced some teaching resources for using DGS. These 

resources were closely aligned to the teachers‘ existing practice and led the 

introduction of DGS at the school. The point is, there need to be opportunities to 

extend participants‘ experience in practice. Perhaps a fundamentalist attitude to the 

co-learning agreement in the context of CPT could hinder this if the principle of ‗co-

learning‘ were to prevent the purposeful introduction of ‗outsiders‘ to offer support 

and new ideas. However, the project ideal was co-learning within a community of 

inquiry. Erfjord‘s case study of the school, in which the teachers remained aligned to 

their regular practice, might be interpreted as providing evidence that a CoI had not 

yet been established. In this instance, CPT provides the analytic categories to make 

sense of the observations: the development is characteristic of extrapolation. 

DISCUSSION 

Evidence from some of the case studies in the projects, such as discussed above, 

combined with other discussions of teaching development (e.g. Cuban, 2001) 

suggests that teachers will adapt a new technology (such as ICT, or ‗inquiry tasks‘) 

to their existing practice before they see new technology as an opportunity for 

creative development within their practice. This supports a conception of 

development as extrapolation and possibly reveals the strength of alignment to 

existing practice. In this regard CPT can be seen as providing a useful model, and 

explanatory tools for the stable situations in which incremental development is 

observed, as in the example provided. This is consistent with teachers incorporating 

research into their practice which Jaworski (1998) describes as ‗evolutionary‘. 

However, the goal is to create a CoI and thereby the development of practice that is 

better characterised as expansion. 

‗Inquiry‘ transforms alignment into critical alignment. The intention is that inquiry 

will heighten awareness of the apparent constraints that limit teaching and learning, 

and provide the means of addressing those constraints. One teacher, for example, 

after six years of participating in the projects claimed that ‗inquiry‘ based teaching 

and learning offers an approach to practice in mixed attainment classes (grouping 

students by attainment is illegal in Norway). Inquiry empowers, it also destabilises 

practice by bringing constraints into view, and provides a means to achieve new 

forms of stability through creative innovation. CPT provided a model for initiating 

the projects in which inquiry was seen as an important element of practice, CHAT 

was introduced later as an analytical tool. The combination of CPT and inquiry to 

theorise the envisioned communities of inquiry is ‗theoretically heuristic‘. 

Consideration of ‗alignment‘ from CPT and ‗critical alignment‘ developed from the 

theorisation process resulted in the realisation that the transformation from CPT to 

CoI is more than a development of CPT, it constitutes a paradigm shift. CPT, and 
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CoI analysed within CHAT, provide alternative lenses that can explain different 

forms of development. Thus, the combination of CPT and CHAT, argued here to be 

both incompatible and incommensurable, is theoretically heuristic because they draw 

attention to qualitatively different forms of development of teaching practice. CHAT 

also offers a tool for conceptualising and analysing development, as expansive 

cycles, which follow creative innovation in response to constraints and tensions 

experienced in activity. 
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The difficulty in reconciling the differing commitments – ontological, 

epistemological and methodological – of the various perspectives on research on 

mathematics learning is well established. As an example of this difficulty, there will 

be some discussion of cognitivist (e.g. Anderson, Reder & Simon, 1996, 1997) versus 

socioculturalist (e.g. Greeno, 1997) perspectives on mathematics learning. The 

claim will be made that problems of language, pace Wittgenstein (1953) and Derrida 

(1997), are at the heart of the apparent irreconcilability of these two and other 

perspectives, and that this apparent irreconcilability can be at least partly remedied 

through a post-structuralist, semiotic, approach. Some practical examples of the 

problem and some advantages of this approach are described and discussed. 

PERSPECTIVES AND METAPHORS 

My introduction, as many others‘, to some of the knotty theoretical problems faced 

by mathematics learning researchers, was through the papers of Anderson, Reder and 

Simon (1996, 1997) and Greeno (1997). Anderson et al. (1996) sets out a set of 4 

purported claims of situated learning researchers; that ―action is grounded in the 

concrete situation in which it occurs‖ (p.6), that ―knowledge does not transfer 

between tasks‖ (p.6), that training by abstraction is of little use (p.8) and that 

instruction needs to be done in complex social environments (p.9). Each of these 

claims is dismissed in turn, the authors referring principally to cognitive psychology 

literature in their critique. The point of view expressed by Anderson et al. is that 

learning is fundamentally an individual process. They claim that whilst they 

unreservedly recognise the ―profoundly social nature of the human species‖ (p.20), 

this social nature is best researched by analysing the ―complex social situation into 

relations among a number of individuals and study the mind of each individual and 

how it contributes to the interaction‖ (p.21).   

The response from Greeno (1997) consists in an attack, not on the evidence for the 

critique, but on the status of the four claims themselves. Greeno argues that the four 

claims set out by Anderson et al. demonstrate a misunderstanding of ―the important 

differences between cognitive and situative perspectives‖ (p.5), and constitute 

something of a straw man for the cognitivists to attack. The substance of Greeno‘s 

response is that cognitivist and situative researchers differ primarily in terms of their 

‗primary focus of analysis‘. The primary focus of analysis for the cognitivist is the 

set of processes and structures that exist within the individual mind, whilst the 

primary focus of analysis for the situativist is ―at the level of interactive systems that 
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include individuals as participants, interacting with each other and with material and 

representational systems‖ (p.7).  

Recently, two books have been published, Anderson (2007) and Sfard (2007), that 

set out updated theoretical frameworks from the two perspectives. There is still a 

very clear division between the two. Anderson (2007) involves the development of 

the ACT-R (Adaptive Control of Thought - Rational) architecture for creating 

models of human thinking, using data from human participants solving problems 

together with fMRI scans of brain activity in order to provide evidence for the 

validity of those models. The models created in ACT-R are capable of learning from 

instruction, but not spontaneous learning, or learning from peers. So whilst 

Anderson‘s perspective has expanded in order to incorporate some neuroscientific 

thought and method, there has been no incursion into sociocultural thought. Sfard 

(2007) develops a theoretical framework centred on ‗commognition‘, emphasising 

the fact that cognition is communication. However, the model is firmly sociocultural, 

and Sfard is explicit about the fact that she is concerned with thought that is 

exclusively human; that involves language. This approach precludes the researcher 

from incorporating aspects of cognitivist method into the study of learning.   

THE LANGUAGE PROBLEM 

This paper focuses on language in the reconciliation of perspectives. In fact, rather 

than treating this exercise as a reconciliation this paper, as is suggested in the title, 

takes the position that a more fruitful approach may be to abandon perspectives in 

favour of an aperspectival approach; binding the researcher to as few ontological and 

epistemological commitments as possible. This paper has already highlighted 

language as a key factor maintaining the dichotomy of perspectives. Researchers on 

both sides claim that their point of view has been misunderstood or misinterpreted by 

the other side. The problem to solve is that of dealing with a dichotomy that is 

obstructive and misleading. The solution we want to achieve is a theoretical 

framework that allows us to talk about individual cognition and learning, about 

sociocultural objects and processes and learning, and about interactions between 

these. Two approaches suggest themselves. The first is Derrida's (1997) 

deconstruction. Deconstruction feeds on dichotomy, subsuming the two sides of a 

dichotomy within a more comprehensive account. The second is Wittgenstein‘s 

(1953) philosophy of language. Wittgenstein's later period involved a rejection of 

philosophical problems, and a claim that what appeared to be philosophical problems 

were in fact linguistic puzzles.  

These two approaches, the deconstruction of the cognitivist/socioculturalist 

dichotomy, and the reconstitution of problems of ontology as problems of language, 

appear entirely compatible. In fact, it seems that to apply one approach is to apply the 

other. A demonstration that what appears to be a dichotomy is in fact an 

incompatibility of two language games appears to be an instantiation of 
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deconstruction. A deconstruction of a dichotomy appears to be equivalent to the 

founding of a language game in which that dichotomy dissolves. So we aim to solve 

the problem of this obstructive dichotomy then, by applying an analysis informed by 

Derrida and Wittgenstein. The primary resources for the framework are the 

constitution of the research process as a set of language games and the use of a 

semiotic account in order to construct the framework. Some previous literature has 

considered a possible role for this form of analysis in mathematics learning research, 

although the focus has generally been on the use of post-structuralist, semiotic 

analysis as a means of describing classroom activity (e.g. Brown, 1997; Evans & 

Tsatsaroni, 1996); and as such these have taken a sociocultural perspective on 

mathematics learning. In this paper, we are working at a different level, addressing 

questions of mathematics learning more generally. 

THE PROBLEM: A RESEARCH EXAMPLE 

This section presents an example of research in mathematics learning, addresses the 

issue of what exactly is the problem with the existing dichotomy of perspectives, and 

introduces questions that are difficult to engage with within this dichotomy.  

Jay (2009) makes use of priming protocols, employed within experimental method, 

to demonstrate a relationship between number knowledge and strategy use in young 

children. The study focused on children‘s use of the ‗tie‘ strategy, for solving near-

double single-digit addition problems with solutions greater than 10. For example, 

the problem ‗7+8‘ could be solved by solving ‗7+7+1‘, making use of the ‗doubling 

fact‘ ‗7+7=14‘. In this study, children between 7 and 9 years of age took part in two 

activities; a) solving a set of single-digit problems with solutions greater than 10, 

reporting the strategy used following each problem (children had a free choice 

regarding strategy), and b) completing a set of priming trials designed to test for the 

automaticity of activation of doubles in response to single-digit stimuli (testing 

whether ‗7‘ activates ‗14‘, for example). The priming trials were based on previous 

research demonstrating automatic processing of numerals and relations amongst 

numerical information by, for example, Garcia-Orza, Damas-Lopez, Matas and 

Rodriguez (2009) and Reynvoet and Brysbaert (2004). The sample of children was 

divided into two groups, one group consisting of all of the children who used the tie 

strategy at least once whilst working through the set of addition problems, and a 

second group consisting of all those who did not. The two groups were then 

compared with reference to data from the priming trials. This analysis showed that 

only the children using the tie strategy showed evidence of automatic activation of 

doubles. This in turn suggests that automatic activation of doubles is a key resource 

in children‘s development of the tie strategy.  

Up to this point in the description, Jay (2009) will appear to be situated firmly within 

the cognitivist perspective, utilising experimental psychology methods. However, 

this study is best seen as situated within the primary school classrooms in which the 
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research took place. Conversations with the children forming the sample for the 

study (5 classes in 2 schools took part), and with their teachers and the mathematics 

coordinators for the schools, made clear a number of points with a bearing on the 

interpretation of the findings. Firstly, all of the children involved in the study knew 

about doubles, and were able to give the double of a single-digit number with only a 

short delay. Secondly, classroom mathematics instruction had involved making 

children aware of the variety of strategies for solving simple addition problems, and 

encouraging children to make of use these strategies in order to increase the 

efficiency of children‘s problem solving, since at least Year 1 (the children in the 

study were in Years 3-5). Mathematics lessons took place for one hour every day for 

all children in both schools.         

Within the wider context of the classes and the schools in which the children‘s 

mathematics education is taking place, the results of Jay (2009) raise some 

interesting questions. Firstly, why do some children have automatic activation while 

others do not? A second question is; what can we do in order to help children 

develop and use the tie strategy and other efficient strategies for solving arithmetic 

problems? This is not just a developmental issue; some children in each year group 

from year 3 to 5 (age 7-9) did not automatically activate doubles in response to 

single-digit stimuli. It is not just a matter of having had experience of doubling; all 

children could calculate a double without difficulty and all had significant 

experience of having been taught about doubles and their relevance for calculation in 

the classroom. Now, the question I would like to pose next is: within which 

perspective ought we to proceed? The problem faced at this point is that neither the 

cognitivist nor the socioculturalist perspective offers an appropriate language for 

asking the kinds of questions we are going to want to ask. This research situation is a 

clear example of one in which we will need to ask not about individual thought and 

learning processes, not about social or group cognition, and not about broader 

sociocultural process, at least not in isolation from one another. What is needed in 

order to really address the problem are questions that focus on the interactions 

between these processes. As long as the cognitivist and socioculturalist perspectives 

are considered separate and mutually exclusive, it is very difficult to ask question 

that address interactions between biology, cognition, classroom interactions and 

wider sociocultural objects and processes.    

A POST-STRUCTURALIST ANALYSIS 

The purpose of this treatment is to reject the dichotomy between accounts of the 

individual and accounts of the group. This leads us towards a distributed, situated 

account of thought and learning. It also leads us to deconstruction. A first principle 

of this approach is to say that all we can talk about are signifiers and relationships 

amongst signifiers. All thought consists of signifiers and relationships amongst 

signifiers. This is very much related to Derrida's suggestion that there is 'nothing 

outside the text' (e.g. Derrida, 1997) – there is nothing we can say about thought that 
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is outside what we can say about signifiers. If we want to talk about learning, then 

we consider all aspects of learning part of the one single-order text, whether 

biological, cognitive, sociocultural or otherwise.   

So, what do we have to do in order to demonstrate that a semiotic account functions 

as a framework for theoretical discussion of learning? What affordances must such a 

framework have? I want to claim that there are just two criteria for a theoretical 

framework to meet; we want to be able to demonstrate the fact that we can ask the 

questions that we want to ask about learning and we want to be able to demonstrate 

the fact that those questions are answerable. Of course, we will have to be able to say 

what is meant by conventional uses of terms such as 'knowledge', 'concepts', 

'learning', 'mind', or at least construct meaningful and useful definitions of these 

terms within the framework, but that is just one example of a criterion that is 

necessary for the two principle criteria to be met. 

The purpose for rejecting the dichotomy between individual and social accounts of 

learning is that it is becoming increasingly clear that any genuine, meaningful, 

account of learning is going to depend on being able to describe the interplay 

between individual and social factors. So, the kinds of questions that we want our 

theoretical framework to help us ask and answer include all those asked by 

cognitivists (lots of 'what' questions), all those asked by socioculturalists (lots of 

'why' questions) and those addressing the interaction between the two.  

APPLICATION TO EARLY NUMBER 

How is the semiotic framework going to work? What is it going to look like? This 

section presents an example involving a child's developing understanding of number, 

taking the number 4 as an example. A child, during the course of their first few years 

of life, will come to recognise and use several signifiers related to the number 4. 

Some examples: the Arabic digit '4'; the written English word 'four'; the spoken 

English word 'four'; the four fingers (without the thumb) of one hand; and the 

arrangement of 4 dots on one side of a 6-sided die. There are likely to be many other 

signifiers directly related to the number 4. For example, my son, at the time of 

writing is three years old. He identifies very strongly with the number 3. If he sees 

the digit '3', he will often say something like, ―I'm that number‖. I imagine he will 

continue to say something like that when he is four years old, although I expect it 

will be interesting to observe how this kind of statement will develop as he comes to 

adjust his differentiation of his use of number-signifiers for their various purposes. 

Now, we have said above that these are examples of signifiers related to the number 

4. We might want to ask, what then is the signified? Is it '4'? This is a very important 

step in the development of our account. We cannot talk about a signified, only about 

other signifiers and relationships amongst signifiers. If we can't talk about signifieds 

then how do we deal with questions of meaning? We might normally want to talk 

about the meaning of a particular signifier associated with a signified. It might still 
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be useful to think in this way, but we also need to remember that we have no way, 

within the language system available to us, to talk about signifieds. So we try to 

describe signifieds – by instantiating new signifiers and new relationships amongst 

signifiers, in an attempt to, little by little, close the gap between signifier and 

signified. The gap can never be completely closed, because we are using a language 

system to describe and define something outside of that language system. In Lacan's 

(e.g. 2001) framework, we are trying to bridge the gap between the Symbolic order 

and the order of the Real, the unbridgeable gap referred to as the 'lack'.  

So what is the meaning of the Arabic symbol '4'? Its meaning consists in the 

relationships that it has with other signifiers. '4' has a relationship with the other 

signifiers given in the list above. It has a relationship with the signifier for 'a sense of 

four-ness'. It has relationships with signifiers of '3' and '5', because we are habituated 

to seeing and thinking about '4' in its place in the sequence of natural numbers, or 

integers. An important point must be made here regarding this account of meaning. 

The statements above could be read in a relatively simplistic way, if one assumed 

that relations amongst signifiers are constrained by the bounds of an individual brain 

or mind. However, once we reject this boundary it is clear that the simplistic reading 

needs further development. Here again there is correspondence with Wittgenstein's 

(1953) account of language. 'Meaning is use' and the Private Language argument tell 

us that no analysis of meaning can take place entirely within the bounds of an 

individual brain/mind. Meaning of language (consisting of signifiers) consists in the 

role that language (that set of signifiers) plays in acts of communication amongst 

brains and minds. So, the analysis of the meaning of ‗4‘ can be developed as follows: 

The meaning of the signifier '4' consists in the role that '4' plays in acts of 

communication both intra- and inter-personally. This is close to the position taken by 

Sfard (2008), although Sfard appears to take a position restricting analysis of 

cognition to exclusively human modes of thought. It is clear from the cognition 

literature that the deliberative portion of human thought is largely dependent on 

automatic, uncontrolled processes (see for example, reviews of the Stroop effect 

[MacLeod, 1991] and of priming studies [e.g. Kinoshita & Lupker, 2003]). Our 

response to the signifier '4' is largely involuntary, at least in the first few 

milliseconds after perceiving it. However, involuntary or not, there is no reason for 

doubting that the meaning of a signifier consists in its role in an act of 

communication – after all, involuntary responses to a signifier are not limited to 

intra-personal communication. Involuntary responses are also clearly apparent in 

inter-personal communication (see again priming studies). This is not to say that 

these data regarding automatic responses contradict Sfard‘s theory, but rather to say 

that Sfard‘s theory does not encompass these aspects of what we know to be a 

fundamental aspect of thinking and learning.  
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Defining key terms 

We are in a position now where we need to define some key terms. If we want to be 

able to talk individual and social learning, subsuming cognitivist and socioculturalist 

perspectives, then we are going to need to know what we want to mean by terms 

such as 'concept', 'knowledge', 'learning', 'understanding', 'mind', and so on. These 

terms themselves have potential to act as barriers to interdisciplinarity, due to 

substantial differences in their definition and interpretation by researchers operating 

from different perspectives. Each term is a reification, brought into being by the 

researcher/observer. A 'concept' is nothing but an observer's definition. So the 

substantially different definitions of 'concept' by, for example, cognitivist and 

socioculturalist researchers, constitute a significant barrier to communication. It is 

important that such terms ('concept', 'knowledge', 'understanding' and so on) are 

recognised as reifications, in order to provide a means and an arena for the 

negotiation of their meaning. Some initial sketches of meaning might be as follows: 

Signifier: A signifier is a unit of meaning. It might be a word, symbol, image or 

object. It might have a physical instantiation (ink on paper, physical object, 

photograph, audible sound and so on). The meaning of a signifier consists in its 

relation to other signifiers. 

Concept: The network of signifiers and relationships among them, that relate to a 

given signifier. So the concept 'addition' consists in the set of signifiers that relate to 

the signifier 'addition', plus the relationships amongst them. Such related signifiers 

might include words like 'sum', 'add', 'plus', the symbol '+' and addition facts such as 

'2+2=4'. Also strategies or algorithms for solving particular addition problems (we 

might, as researchers/observers, refer to these as 'count-on', 'min' and so on – others 

will not use these names, however the algorithm itself constitutes a signifier). It is 

clear that any concept is a dynamic entity. Concepts change as the focal signifier is 

associated with new signifiers, or relationships amongst a set of signifiers alter. 

Mind: The set of signifiers, and relationships amongst those signifiers, for some 

definable set of individuals. We can talk about the mind of an individual – that is the 

set of signifiers for that individual (the external physical objects that have meaning 

for that individual, plus the neurologically instantiated signifiers for that individual, 

plus the relationships amongst these signifiers). 

Understanding: This seems to be a term that refers to the intersubjective aspects of 

'concept'. One might be said to have understood a concept when one has developed a 

signification network that is sufficiently similar to that of a community with which 

one wants to engage with reference to that concept. 

Two important points should be made apparent at this time. One is that it is clearly 

possible to define these and other terms within the proposed semiotic framework. 

That is to say that the framework appears sufficient for the discussions that we want 

to have about learning. The second point is that the framework makes clear the fact 
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that each term is a reification that, if it is to be used in any meaningful way, must be 

defined within a shared framework. The proposed semiotic framework appears to 

offer a sufficiently neutral arena for negotiation of such definitions amongst 

researchers from traditionally disparate or dichotomous perspectives.  

RETURN TO THE RESEARCH PROBLEM 

As a conclusion to this paper, we return to the discussion above regarding Jay 

(2009). What can be done to address the research problem; why do some children not 

automatically activate doubles, and what can be done to help them? What kind of 

research questions arise from the kind of analysis described above? At the heart of 

the proposed framework is an imperative to focus on the interactions amongst 

cognitive and sociocultural objects and processes. To address these interactions, we 

describe the situation in terms of signifiers and relationships amongst signifiers. Let 

us begin with a description of the research situation within the individual child. 

Firstly, we are interested in why it is that some children automatically activate 

doubles in response to single-digit numbers. This is to say that we are interested in 

why some children exhibit a very strong connection between the signifier ‗6‘ and the 

signifier ‗12‘, between ‗7‘ and ‗14‘ and so on. We are also interested in the role that 

this set of activations plays in the use of the tie strategy.  

On the sociocultural side we are again interested in how number signifiers and 

relationships amongst them are used, but this time we are interested at the level of 

interaction amongst actors in the classroom. Stahl‘s (2005) ‗group cognition‘ might 

be a useful way to think about some of the processes that might be involved in this 

activity, as long as we remember that within social processes we are dealing with 

exactly the same kinds of signifiers and relationships amongst signifiers that we deal 

with within the individual.  

The first thing to realise is that this approach allows now to hold some apparently 

contradictory things to be true. So within any given individual in the classroom, the 

meaning of ‗7‘ consists in the relationships that ‗7‘ has to other signifiers. So one 

particular child might relate ‗7‘ to ‗seven‘, ‗holding up 7 fingers‘, ‗my age‘, ‗6‘ and 

‗8‘ (due to proximity on the number line). Other children might relate it to ‗prime‘, 

some others to ‗14‘ (double 7). So, from the cognitivist perspective, we talk about an 

individual child that doesn‘t exist; we talk about a generalised, average, child. In 

fact, just looking at the meaning of ‗7‘, it is likely that, firstly, different children will 

relate different signifiers to ‗7‘, and secondly, the strengths of these relationships 

will be different. So ‗7‘ has a different (even if only subtly) meaning for each person 

in a classroom. Aside from all of the individually constituted meanings, there is also 

a socially negotiated meaning of ‗7‘ for the classroom. This is formed through 

interactions amongst members of the group. The negotiation of meaning of signifiers 

in the classroom is dynamic; there will be a constant dynamic interaction between 

socially constituted meaning of signifiers and meanings of those same signifiers held 
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by individuals. In turn, meaning for the classroom, is tempered by, and interacts 

with, meanings of wider and external communities and groups. So, for example, each 

child brings with them aspects of meaning from their own families. In the context of 

the research situation, this opens us up to dealing with some new questions, focusing 

on interactions between meanings constituted by individuals, and meanings 

constituted, or negotiated, by the group. In general, we can ask questions about how 

children‘s knowledge, accessible to cognitive and neuroscientific methods, interacts 

with (influences and is influenced by) classroom activity. Specifically with regard to 

Jay (2009), it would be informative to ask what differences there are in terms of 

engagement in classroom interaction between those children who exhibit a priming 

effect for doubles and those who do not. It might also be possible to investigate how 

knowledge such as this spreads through a classroom, through group interaction. 

CONCLUSION 

This paper has argued for a post-structural, semiotic, treatment of research on 

mathematics learning in order to reconcile traditional perspectives and allow the 

possibility of asking questions about interactions between individual/cognitive and 

group/sociocultural, aspects of learning. These kinds of questions offer an 

opportunity to engage with research on learning with greater depth than is possible 

with more restrictive, traditional, perspectives on mathematics learning research. 

There is much more to do in the development of this approach. Existing research 

conducted from multiple perspectives can be interpreted within this framework in 

order to understand points of conflict and potential interactions more clearly. It will 

be important to thoroughly test the claim made here that this framework offers the 

potential to fairly represent existing perspectives on mathematics learning. 

The poststructuralist approach provides a means of being explicit about what aspects 

of what questions of learning we are interested in, without excluding other aspects 

from the arena. We can be free to talk about what meanings are common amongst a 

particular population of children in a particular domain of mathematics, including  

trajectories of individual development, relationships between knowledge and 

understanding, knowing-that and knowing-how, as well as talking about individual 

differences within that population. We can also talk about classroom activity and the 

development of socially negotiated meaning through classroom interaction. As a 

result of using the same language, of signifiers and relations amongst signifiers, in 

discussions of individual and social thought and learning, some barriers to 

discussions of interactions between individual and social are removed.    
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How are we to understand and distinguish qualities of mathematical acquirement? 

The authors show with help of a school relevant example how mathematical 

awareness can be classified. The classification uses linguistic methods to identify 

factors important for conceptual understanding of mathematics. The analysis relates 

historical to activity theoretical aspects. 

INTRODUCTION 

Usually mathematical awareness of a student puts itself into effect in his approach to 

problems, a mathematical topic, in the way the student conceptualizes a 

mathematical object and uses it as tool. We use this aspect of student`s cognition in 

order to relate two models describing the quality of mathematical acquirement from 

different perspectives both by linguistic means. 

The first model takes an activity-theory approach (Weiss-Pidstrygach, 2011). 

Symbols, definitions, formulas, skills and approaches are linked to object-oriented 

activities, externalisation and internalisation. The second model uses different 

qualities of mathematical awareness (Kaenders & Kvasz, 2011, 2010) to describe 

mathematical aptitude. The classification is given by the three dimensions (content, 

skill and thinking activity) and by the quality these dimensions are linked together. 

The classification by different qualities of awareness is based on historical 

considerations and patterns of change in the development of mathematical language 

(Kvasz, 2008). 

This approach is based on three basic convictions: 

 Mathematical awareness is a holistic concept that unites such qualities like 

number sense in arithmetic, symbol sense in algebra and geometrical 

awareness in geometry.  

 It is topically neutral, i.e. awareness acquired in one area can be transferred to 

another. 

 It has different degrees that are closely related to different degrees of rigor. 

In order to motivate a discussion about possible combining frames of these two 

models, their further differentiation, their relevance for mathematics education we 

explain our approaches with the help of an example from the school curriculum. 
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VARIABLE SUBSTITUTION AT SCHOOL 

How do we have to modify the graph of f  in order to find the graph of the function 

g  which is given by )+f(x=g(x) 3 ?  

The problem is standard and appears first for a quadratic function f  in Grade 8 and 

in the above general phrasing in the context of modeling and preparation of the 

―small chain rule‖ in Grade 10. (German curriculum) 

Understanding of the mathematical question takes for granted some experience with 

the mathematical objects involved in the formulation of the problem as well as their 

relations and role in a wider context. Examples of prerequisite mathematical objects 

in the German curriculum are coordinate system, units, correspondence, linear 

functions, different representations of functional dependencies with and without 

calculator (value table, graph, term, text), standard functions, such as rational, 

trigonometric, exponential functions. The understanding and handling of these 

objects by students depends a lot on the attitude of the teacher and ranges from 

recalling definitions or knowing the calculator commands up to their conceptual use 

as a tool.  

In the last decade, the theoretical approach to functional dependencies in textbooks 

became extremely pictorial, bounded to CAS supported graphs and concrete 

functions. On the other hand, later on, in the context of modeling, maximum and 

minimum value problems and integration problems are often formulated in algebraic 

notations (e.g. b)+(ax=f(x) sin ). 

The existing teaching and textbook culture defines a certain linguistic frame for the 

determination of the graph in question. 

The Graph of )+f(x=g(x) 3  can be found by various thinking activities, using various 

skills, solving problems formulated in various contexts and answering differently 

interpreted questions, following instructions or working in a group, trying to solve a 

problem or to teach the rules to somebody else...  

The solution itself tells little about the mathematical acquaintance of the student, it 

could e.g. be an imitation learned by rote. His mathematical awareness manifests 

itself in the way the student talks about his solution, his first intuition, the 

appearance and development of his assumptions, doubts he has, thought experiments 

he went through. Thereby his possibilities to couch generalizations, analogies, 

counter examples etc. will depend on the language of the mathematical concepts of 

which the objects involved make a part. 

In different concepts the denotation given to the objects can coincide: the (pointwise 

defined) polynomial function is also the polynomial function defined by its 

coefficients and is also the polynomial function as an element of the set of all 

continuous functions.  
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The meaning of the mathematical object as a concept itself is constituted by different 

contexts the object can be embedded into (part of existing mathematical theories), as 

well as by the problems which can be solved by using it as a tool. The tool-object-

duality was explicitly introduced by R. Douady and used in the context of didactical 

engineering for concept development (e.g. Douady, 1997). We interpret this principle 

in an activity frame in order to change the constructivist perspective by a social-

historical one.  

Speaking in the terminology of activity theory: 

the mathematical concept ―substitution of 

variables‖ can in the model of an action appear in 

two positions: as an object and as a mediating 

tool. The general model used in activity theory 

can be represented by the diagram on the right. 

This general scheme can be applied to a concrete 

mathematical problem in two different ways (see fig. 1). 

 

Figure 1: Substitution of variables as an object and as a mediating tool. 

We can for instance consider variable substitution as a special case of a considerable 

more general method (concept): structure preserving transformations. Typical 

problems, which are solved by using structure preserving transformations are: 

finding a representative with the same structure but easier to handle (e.g. nicer 

coordinates) or transforming a given object in order to get a whole class with the 

same properties (possible solutions of an equation). We can also look at variable 

substitution as special case of the method of introducing coordinates, i.e. 

coordinatization. Typical problems handled by this method are finding explicit 

solutions in local coordinates (Taylor expansions, equations on manifolds…) 

In other words the given mathematical object can be conceptualized in different 

ways, creating different methods for problem solving. Also the mathematical object 

on its own can be defined in different ways using different mathematical languages – 

and therefore predetermining different conceptual developments.  
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In the following we sketch different approaches to find the graph of )+f(x=g(x) 3  

and indicate the concept it belongs to. To this end we represent the respective 

correspondence given by value table, graph or term. The students are used to 

situations in arithmetic where ‗+3‘ indicates ‗3 to the right‘ or ‗3 upwards‘. For the 

graph of 3+f(x)=g(x)  this rule of thumb seems to be consistent. Finding the graph of 

)+f(x=g(x) 3 therefore causes for many students an intuitive conflict. 

POSSIBLE APPROACHES TO FINDING THE GRAPH OF )+f(x 3  

The problem of finding the graph of )+f(x=g(x) 3  has a rich mathematical and 

didactic structure. There are many different approaches which the teacher can adopt. 

We would like to mention ten examples: 

54 Given a function f by f(x)x , take the definition of g and evaluate for any x  

the function f  at x+3. Draw the graph of g from the table of values.  

55 Insert the term of a special function f  in a graphical calculator, compute and 

plot the associated value table of the function )+f(x=g(x) 3 . 

56 We can use path-time diagrams as a metaphor for a general function. For 

instance think of two motorcyclists driving exactly the same way. The path-

time diagram of one of them is given by the graph of  f  i.e. at time x she is at 

distance f(x).  Her colleague however has started already 3 minutes earlier and 

has at time x already reached f(x + 3). Of course, the path-time diagram of the 

early rider has to be drawn three units to the left from the one who departs on 

time.  

57 We can also interpret the formula )+f(x=g(x) 3  as recipe for picking up values 

of g (see Fig. 2). If we want to determine the height of the graph of g at the 

value x  we go 3 units to the right and pick up the value of f . When we proceed 

like this several times it becomes apparent that the graph of f will be shifted 3 

units to the left.                                                  

58 Another way to look at this particular shift to the left is to use nomograms for 

the composition with the linear function 3+x  and to combine it with the graph 

of f (see Fig.2). 

Substitution of the variable using the set-theoretic definition of the graph: We can 

consider the graph of a function h  as consisting of points with coordinates of the 

form h(x))(x, . When we move the points f(x))(x, of the graph of f with 3 units to the 

left, then a point f(x))(x,  is moved to f(x))(x 3, . Now we look for a function g such 

that f(x))(x 3, is a point ))g(x'(x ,' on the graph of g . Hence 3x=x' and )f(x'+=)g(x' 3 . 

These approaches consider the graph of a function as a pointwise defined object.   
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We can also let f  be the graph of a function, perceived as a curve, drawn or plotted 

in a coordinate system, representing a function as an entire object. 

 

 

 

 

 

 

Figure 2: ‗Picking up‘ values of g and combination of g with a nomogram. 

In this situation, examples to find the graph of )+f(x=g(x) 3  are the following. 

59 Using a DGS device for shifting the curve around (e.g. GeoGebra or 

appropriate applets). Insert the term of a special function f  and plot the 

corresponding graph. Shifting the graph changes the term and vice versa. It 

turns out that a movement to the left corresponds to adding a positive constant 

to the argument x of the function f .  

60 By variation of the graph by e.g. dynamical geometry, using a parameter a one 

can see how the graph of a function a)+f(x=g(x)  behaves. This general 

observation can be confined to a = 3. 

61 The shift 3+xx  can be seen as a shift of the coordinate system where the 

origin is moved 3 units to the right. The graph of the function f remains 

unchanged in the plane and hence moves – seen from the coordinate system – 

to the left. 

62 Any function depending on a variable x can be developed around 30 =x . That 

is to find a function )g(x' with )f(x'+x=)g(x' 0 . The approved way to do this is 

to substitute x by 0x'+x or to write )x+)xf((x=f(x) 00 . 

The described interrelation between definition, embedding, conceptualization and 

operationalization of mathematical structures shows that parts of the zone of 

proximal development for a mathematical activity are defined and can be understood 

in linguistic terms. The language in which the relevant mathematical objects are 

named and presented provides a presetting for the local scaffolding, in particular the 

language for diagnostics of the zone of actual development and variations of the task. 

The compatibility and transferability as a tool for problem solving depends on the 

grammar of the concept (relations, hierarchy, dependencies between objects inside 

the local theory) and possible changes of perspective for the speaker (existence of a 
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paradigm). It seems to us that these linguistic data structure the zone of proximal 

development in the way in which speech and motivation are interacting with 

thinking.  

LINGUISTIC ANALYSIS OF THE EXAMPLE )+f(x 3  

For the conceptual framework of mathematical awareness we distinguish three 

aspects contents, thinking and skills as three main dimensions in which mathematical 

aptitude can be positioned. The basic idea is: the quality of the respective 

mathematical awareness is not an additional dimension in this diagram but it 

qualifies the way in which the contents, skills, and thinking are connected, thus it 

qualifies the way in which for example someone argues in arithmetic by visualizing 

or someone proves in calculus by algebraizing.  

On the level of contents we distinguish arithmetic, synthetic geometry, algebra, 

analytic geometry, calculus, logic, set theory, probability. 

Introduction of other subjects would be possible. The ordering of the topics follows 

roughly the order of historical development of mathematics, and also the growing 

complexity of the mathematical language (cf. Kvasz, 2008). 

The dimension of skills is separated from the dimension of the thinking activities. 

We address the following skills: to count, to calculate, to draw, to construct, to 

symbolize, to algorithmize, to visualize, to recognize patterns, to establish 

dependencies, to use limit transitions and to employ language. Particular skills are 

best acquired in corresponding contents, as for instance counting in arithmetic, 

drawing in synthetic geometry, etc. Nevertheless, one of the reasons for separating 

skills from contents is to emphasize the possibility (and actually the necessity) of 

transference of skills from one content to another. Thus we usually apply addition to 

numbers, but we can add intervals, polynomials, vectors, functions, etc. So 

mathematical awareness is the awareness of the transferability of skills from one 

content to another. It is precisely the failure of many forms of mathematical 

instruction that particular skills are strictly tight to their corresponding content. 

Competence models, on the other hand, are tight to certain practical requests. Their 

solution requires different skills but remains on a certain level of thinking. In our 

model the relations between contents, skills and thinking allow a great variety of 

combinations. 

We distinguish the following possibly not exhaustive list of thinking activities: to 

observe, to formulate, to argue, to explain, to verbalize, to classify,  to define, to 

prove, to confine, to generalize, to vary, to concretize, to analogize, to structure. As 

in the previous case, also in the case of thinking, the role of an independent 

dimension emphasizes the manifold relations of thinking activities with the various 

topics and with the different skills. The student needs to master sufficiently a 

particular skill in order to be able to explain, define, or generalize a mathematical 
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phenomenon. One of the important aspects of the mathematical awareness is the 

awareness of the adequate degree of rigor and justification that is sufficient for a 

particular calculation or construction.  

Mathematical awareness then is a quality, how our knowledge of some mathematics 

contents, skills and thinking are linked together. It is not an extensive notion but 

describes intensity of the amalgam, which links these three aspects with each other. 

It is rather a color or a taste than a position of some mathematical ability. The list of 

the different qualities is possibly not exhaustive:  

 social awareness  

 imitative awareness  

 manipulative awareness  

 instrumental awareness  

 diagrammatic awareness 

 intuitive awareness  

 experimental awareness  

 strategic awareness  

           contextual awareness  

           argumentative awareness 

           logical awareness 

 theoretical awareness 

Here we want to discuss the possible different linguistic indications to varying 

qualities of mathematical awareness that we can think of when we consider the 

different ways to find the graph of )+f(x=g(x) 3 . 

i. Social awareness  

This is the first possible level of awareness and it might be that many people stay on 

that level all their life. A solution to the above problem is that ‗+3‘ in )+f(x 3 has to 

be interpreted as ‗3 units to the left‘ since the teacher did so in class. Moreover, also 

the fellow students do it that way.  

 Imitative awareness 

The above insight can also be explained by the teacher step for step. It is possible to 

reproduce each step of the argumentation without understanding its complete strand. 

And, look, it works. Also this very classical type of awareness is of great importance 

for the understanding of mathematics. To any student this approach gives a 

possibility to betake oneself in the middle of the subject guided by the authority of 

the teacher.  

 Manipulative awareness 

If we look at the substitution of the variable using the set-theoretic definition of the 

graph in example 6 and the development of the function around 30 =x  in approach 

i), then we see that still an insight in the manipulations with variables is necessary. 

The procedure can be understood just from the manipulations with 0x'+x=x  and 

)x+)xf((x=f(x) 00 . In particular with polynomials we can use long division. The 
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solution is obtained by applying these two mechanical rules in the algebraic 

expressions.  

 Instrumental awareness  

Plotting of a value table or using a DGS device for shifting the curve around yields 

instrumental awareness. It is true, that the students know the result only thanks to the 

use of the instrument, but the teacher would compromise his credibility if he would 

insist that they don‘t know the solution yet. Of most things in life we neither have a 

better knowledge nor a higher form of awareness. The instrumental awareness is 

what the CAS–system or likewise a graphical device tells us: the result is correct – it 

came out from the computer and I do not know how – not more but also not less. 

 Diagrammatic awareness 

Using )+f(x=g(x) 3  as recipe for picking up values in example d) or the interpretation 

by a nomogram in example e) as well as the shift 3+xx  of the coordinate system 

in example i) are ways to come to a diagrammatic awareness. In any branch of 

mathematics pictures, graphs and diagrams play a central role. We can represent for 

example, arithmetic relations by dot pictures, functions by graphs or nomograms, 

polynomials by Newton diagrams. It is possible to argue, to define and to perform 

most thinking activities in a diagrammatic way. Diagrammatic awareness is 

indispensible for understanding mathematics, although there is always a risk by 

stopping at the level of diagrammatic awareness to prevent further growth to logical 

and theoretical awareness.  

 Intuitive awareness  

The expectation, based on experiences in arithmetic, that ‗+3‘ indicates ‗3 to the 

right‘ or ‗3 upwards‘ is an example of a wrong intuitive awareness. The shift of the 

coordinate system to the right in example i) or the adoption of a nomogram in 

example e) on the other hand are able to foster a better intuitive awareness. In some 

cases there exists a feeling, which leads to a hypothesis. That is different from 

experimental awareness since there we only find an assertion to be true in the case of 

some cases.  

  Experimental awareness 

The calculating and plotting of a value table in example a) and b) and the shifting of 

the graph in a DGS device in example g) founds an experimental awareness. It is 

nothing but: I tried it, and it worked out this way. Mathematicians know also the 

converse experience: Even if one has proven something in a general setting, a 

concrete calculation with the predicted result is not necessarily superfluous and can 

very well be an enhancement of one‘s awareness. More generally, experimental 

awareness can be the study of particular cases for a more general situation without 

worrying about the legitimacy of the particular steps supplemented by heuristic 

arguments.  
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 Strategic awareness  

Also to find the graph of the function )+f(x=g(x) 3 needs an appropriate strategy 

depending on the context. In trigonometry other ways seem appropriate than by the 

idea of moving the coordinate system. Especially for problem solving, at least since 

Poincaré, Hadamard, Polya and Schoenfeld, mathematicians are conscious of the fact 

that one needs more than just factual knowledge and skills. What is needed is the 

knowledge and the experience of steps one can take even if one does not finally 

know how to proceed successfully. Polya introduced for this the term heuristics. On 

the highest level, also building of a theory requires strategic knowledge: which facts 

will be put into axioms and which can better be proved. We see that strategic 

awareness goes beyond problem solving in the narrow sense. 

 Contextual awareness 

The metaphor of the two motorcyclists in example 3 provides us with a context that 

allows getting insight into the relation between the two graphs. However, not every 

graph of a function may be interpreted as path-time diagram of a motorcycle. In 

general we can speak of contextual awareness when we attribute semantics to a 

mathematical topic. As well for mathematics teaching as also for professional 

mathematicians this type of awareness is of crucial importance. Contectual 

awareness constitutes mental objects (Freudenthal, 1991, p.19). In order to build 

such mental objects Freudenthal formulated the principle of rich contexts (p. 73).  

 Argumentative awareness 

Before proving an assertion within a theory we can argue independently of the 

particular theoretical framework that it must hold. For instance when we argue that it 

is the coordinate system that is shifted instead of the graph or when we speak of 

picking up the values of  f , we give an argument which is not a logical one. 

However it serves for our argumentation. We argue by means of actions, heuristics, 

algorithms, and estimations etc. that help us to trust our result. We can also argue by 

thought experiments and or by applying metaphorical arguments. 

  Logical awareness 

Logical awareness is the awareness that ensures us of mathematical proofs and 

arguments. It enables us to check proofs and to distinguish heuristic arguments from 

logically necessary ones. But without all the other types of awareness we can hardly 

think logically. For example the substitution of the variable using the set-theoretic 

definition of the graph is a logical argument within a theoretical framework. 

 Theoretical awareness 

By theoretical awareness we understand the ability to see mathematical propositions 

as relative to particular theoretical frameworks, the ability to relate proposition to 

different frameworks and to relate frameworks to each other. Although theoretical 
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awareness may in some sense be considered as the highest form of mathematical 

awareness, it becomes a kind of fata morgana without grounding on other types of 

mathematical awareness. In our example one could realize that the set-theoretical 

construction of graph is a very general construction which is used in topology or 

algebraic geometry to equip the graph of a function with topological or algebraic 

structure. 

DISCUSSION 

The work in our group was most inspiring. Discussions and demonstrations of 

various ways to link and join theories (cherry picking, organized networking, applied 

networking theories…) encouraged us to more problem and attention oriented 

developments of our approach. We are grateful for directing our attention to Regine 

Douady‘s model and realizations of the tool-object-duality and to John Mason‘s 

complex and multi-purpose work on the development and education of awareness. 

The latter helped us in particular to place our approach and to structure what is to be 

done next. 
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Abstract: Two students were asked to carry out an activity about continued fractions 

in the presence of an interviewer. We present two separate analyses of a central 

episode from two theoretical perspectives focussing on what drives the students‘ 

progress of coming to know. Making intensive use of the notion of general epistemic 

need, we show how such needs arise and are expressed, and how they lead to the 

need for a specific new construct. The paper concludes with reflections on the 

networking process, highlighting conditions that have supported the process and 

hence emergence of a more integrated view of the episode. 

INTRODUCTION 

Networking of theories has recently become an important endeavour of mathematics 

education (Bikner-Ahsbahs et al., 2010). We present a facet of an ongoing research 

project that investigates effective knowledge construction in interest-dense 

situations
1
. We found it useful to proceed by networking two theoretical approaches, 

the perspective of abstraction in context (AiC) and that of interest-dense situations 

(IDS) with particular focus on two theoretical concepts: the need for a new construct, 

and interest. In both perspectives epistemic processes play a central role.  

AiC focuses on the construction of knowledge by individuals or small groups, using 

a model based on three epistemic actions: recognizing constructs known from 

previous activity, building-with these recognized constructs, for example to solve a 

problem, and constructing new knowledge while building-with recognized previous 

constructs. While the model serves to analyse the central stage of the emergence of a 

new (to the learners) construct, the researchers postulated that a necessary condition 

for such emergence is that the learners experience a need for the new construct (see 

Schwarz, Dreyfus, & Hershkowitz, 2009, for a detailed description of AiC). 

Interest-dense situations (IDS) focus on the epistemic processes within social 

interactions. These are situations that are constituted by students who are collectively 

deeply involved in a mathematical problem, constructing mathematical knowledge in 

a deep way and highly valuing the mathematics they consider. This approach uses an 

epistemic actions model that comprises three collective epistemic actions: gathering 

and connecting mathematical meanings and seeing mathematical structures. Any IDS 

lead to structure seeing, and students who are engaged in an IDS show situational 
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interest. Situational interest holds when an individual experiences involvement and 

meaningfulness of a topic (see Bikner-Ahsbahs, 2005, for a detailed description). 

In a previous paper (Kidron, Bikner-Ahsbahs, Cramer, Dreyfus, & Gilboa, 2010), we 

exhibited the methodology of networking the two approaches on the basis of 

common analyses of interview protocols from both perspectives. One benefits of 

networking was the insight that besides interest (IDS) and the need for a new 

construct (AiC), a more general epistemic need (GEN) can be the driving force that 

makes students to progress in learning processes according to the challenge they 

meet within a situation, individually and socially. The GEN is the need to develop an 

initially vague idea further, leading to a more definite one, in accord with Davydov‘s 

(1972/1990) view of abstraction. The GEN is experienced according to the demands 

of the situation and hence becomes specific, for example as a need to be more precise 

that is shown by student actions and can be observed.  

In the present paper, we continue the previous research using a different set of data. 

We carried out a networked analysis of an epistemic situation from the two 

perspectives concerning the roles of the GEN for constructing knowledge. The 

general result of the analysis is a holistic view of the learning process integrating 

both perspectives. An important specific result is that the GEN develops, at least in 

this case, into a need for a specific new construct as postulated by AiC. 

SETTING AND TASK 

Two grade 10 students work on a task about the continued fraction 1
2

1
2

1
2

1 ...  

in 

an interview situation. The main role of the interviewer is to support these students 

with hints (beginning with very weak hints) when they fail to progress. The students 

were asked to calculate the first seven fractions, expressing them as simple fractions; 

it was suggested to denote the x
th

 fraction by f(x), beginning with f(0)=1. The 

students were then asked to represent the first 20 fractions as decimal numbers, to 

look for patterns, make conjectures, and explain why these conjectures are true.  

The students discovered that the decimal numbers in even places (x even) begin with 

a 1, the decimal point being followed by a number of nines, and the ones in odd 

places begin with a 2, the decimal point being followed by a number of zeros. They 

also noticed that the number of nines, respectively zeros grows as more fractions are 

computed. 

The students later observed the following rule: when the x-value passes a perfect 

square, the numbers of nines (zeros) increases by 1 and becomes equal to the root of 

that perfect square. When formulating this rule, they were talking in terms of a 

―space of places‖ (places referring to decimal places). They also noticed that this rule 

was valid only approximately. The rule may appear as an expression of a polynomial 
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growth law to the expert, but at least at this stage, the students considered it only 

locally, for fixed x. 

THE ROLE OF THE GEN FOR ABSTRACTION IN CONTEXT 

The GEN and the seeds for a constructing action 

In the transcript (available from the researchers) we observe some phenomenological 

identification of patterns (in utterances 719-1353), which we may consider as seeds 

for constructing actions that take place later. By phenomenological, we refer to the 

fact that the elements of the sequence are considered as strings of digits rather than 

as numbers. The expression ―space of places‖ (which we will abbreviate henceforth 

as SP) appears in 818 and there is some indication for an epistemic need in the 

efforts of the students to clarify this notion and to assign it a name. We submit that 

when somebody expresses the same phenomenon in different ways in an attempt to 

associate meaning with it, we have an indication for a GEN. This was the case in 

relation to the expression ―space of places‖. In addition to the different ways the 

students expressed the SP, we also discern a double interpretation of the SP: (i) SP as 

an interval on the x-axis, which numbers the elements, specifically the interval in 

which the number of nines/zeros remains the same; and (ii) SP as a part of the 

decimal expansion of f(x), specifically the part containing the nines (or zeros). This 

double interpretation reinforces our interpretation of the SP as a seed for later 

constructing, as something that is not precise and needs to be elaborated.  

The Role of the GEN in constructing actions  

We first relate to one specific aspect of the GEN, namely the need to understand the 

present situation in terms of the previous knowledge or previous experience, to 

engage with the challenges offered by the task. Then, we note how this need and the 

limitations of the previous knowledge [specifically that the previous knowledge was 

adequate to empirical computations while the strings of digits were explicitly written 

and observed] lead to other specific aspects of the GEN, namely the need to be more 

general and the need to clarify. Finally, we will observe how these specific aspects of 

the GEN lead to the emergence of the need for a new construct as postulated by AiC. 

After the phase described above as phenomenological, we observe a striking change 

in the students‘ attitude and way of thinking: They start giving reasons rather than 

only phenomenological descriptions. We interpret this as a consequence of the 

interviewer‘s initiative to ask questions concerning the SP for f(1‘000) (in 1354) and 

for f(1‘000‘000) (in 1397). The students express their need to understand the new 

situation in terms of their previous empirical experience, and express their thinking 

that they need to do all 1000 computations by recursion (in 1359-1362). The 

limitation that results (―we cannot do all the 1000 computations‖) leads to the need 

to be more general and to apply their ―theory‖ that the length of the SP 

approximately equals the square root of x more generally (1382). 
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The next initiative of the interviewer, the question ―How would it work then?‖ (in 

1424) - again causes the students to experience a limitation of their previous 

experience and it leads them to the need to think in a more general way.  This need 

directed the students towards the beginning of a constructing phase in which infinity 

plays a role. We note the important role of the interviewer but at the same time also 

the fact that the notion of infinity was expressed on the students‘ initiative. The 

students express a need to understand the meaning of ―infinite[ly many] zeros‖ (in 

1429), and ‖infinite[ly many] nines‖ (in 1431) as well as the meaning of a sequence 

approaching a number: ―it keeps on leaning closer to zero-, closer to two, both 

numbers‖ (1427). Hence, we observe constructing actions that relate to convergence 

and accompany the students‘ extension of the growth pattern of the SP from the 

initial 20 elements to 1‘000, 1‘000‘000 and beyond, to what the students call infinity. 

A first constructing action that we denote C0, Convergence as coming very close to 

.., appears in 1418 and more clearly in 1427. Then, we observe C1, the Potential 

Infinite process view in 1427 (see above) but also, for example, ―If one looks at it 

precisely, it never reaches two, even if there are infinite nines, after it there always 

comes seven three two whatever, can be anything the following numbers, we have 

not even looked at them yet, could be that they have a pattern too, but I don‘t, 

personally I don‘t see anything there (M laughs)‖ (in 1473). C1 is accompanied by 

C2, Infinite as a façon de parler: very, very large but finite, as well as C3, the strange 

infinite object is legitimate only in the mathematical world, for example in 1356: 

1354. T: Because one, one nine ninth is namely one point nine nine nine nine nine 

nine nine nine, a-nd two, because one plus nine ninth is definitely two but 

nine, one ninth, is zero point one one one one one 

1355. M: Yes but then, if you want to make nine ninth, then it would be two 

1356. T: Theoretically (M laughs) 

C3 is similarly expressed in ―If, if you insert infinity it theoretically equals two‖ (in 

1437), which somewhat later leads them to write ―f(∞)=2‖ on their worksheet. 

Another aspect of C3 is the transition from infinite as a façon de parler to infinite as a 

legitimate object in the mathematical world. 

C1, C2, and C3 develop in parallel:  At the same time that the potential infinite 

process view is developed, the students also begin manipulating the infinite as a 

legitimate mathematical object as they have done previously for large but finite 

numbers. The occurrence of so different (and somewhat contradictory) constructing 

actions in parallel places heavy demands on the students. This leads to a feeling of 

unease, of confusion, which is expressed in 1473 (cited above) and causes the 

expression of a need for a new construct in 1478: ―The best would be of course if we 

had a functional equation right? Thus if one could say exactly, f of x equals (...)‖. We 

can see this need as a consequence of the limitations of the students‘ previous 

experience: In the present situation, they are not able any more to use what they 
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know from the finite case. Therefore, a need for a new view is expressed. This need 

leads to the construction C4, transition from a numerical way of thinking (with 

empirical results calculated by the students) to a more general way of thinking 

(which does not depend on specific cases). A new construct is needed to permit this 

transition. The need for this new construct is explicitly expressed in 1478. During 

this search, the students continue giving reasons rather than only describing 

phenomena. This new approach in which the students explain their way of thinking 

provides evidence for the passage from the seeds of constructing to the beginning of 

the constructing process. The seeds of constructing also influenced later 

constructions. This appears, for example, when the students express the distance of 

f(x) from 2 by means of their idea of SP (in 1534) and point out that the SP is the 

base 10 logarithm of the distance. 

THE ROLE OF GEN IN INTEREST-DENSE SITUATIONS 

The social interactions in IDSs can be regarded from a mathematical point of view as 

a flow of mathematical ideas that produces mathematical knowledge in an effective 

way by the epistemic actions of gathering, and connecting mathematical meanings, 

which lead to structure seeing. Figure 1 shows pictograms of the six phases of the 

analyzed episode. All are initiated by the interviewer (see the arrows). Phase I mainly 

consists of gathering, in phases II, III and VI gathering and connecting are merged. 

In phases IV and V, the students reach structure seeing including validating 

structures.   

 

Figure 1: Phase diagram of the analyzed episode (1333-1512), phase I: 1333-1353, II: 

1354-1401, III: 1402-1423, IV: 1424-1454, V: 1455-1466, VI: 1468-1512 

Epistemic actions serve to describe the flow of ideas and to investigate what drives 

the epistemic process in the flow and where it leads. A flow of ideas is a horizontal 

scanning of the mathematical aspects of a problem expressed in the utterances 

towards oneself and the other in order to describe, concretize, understand, progress, 

…, but also to inform the other, to take up her idea and develop it further, negotiate, 

explain, … It is an evolution of ideas associated with a given mathematical problem, 

building on previous experiences. Within a constructing process driven by a GEN the 

flow of ideas may lead to: recognizing an idea as fruitful, which may lead to further 

developing it; connecting the aspects together, which may lead to building-with a 
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comprehensive view; seeing a structure or constructing something new; checking, 

understanding, making concrete and justifying the structure or the construct. 

For example in phase III (1397-1423), the flow of ideas refers to how the digits of 

f(x) for x=1‘000‘000 may look like. The status of the power law for the length of SP 

had been made clear before as a conjecture that leads to estimations about it. The 

focus now is on how the decimal numbers look as compared to 2. f(1‘000‘000) 

cannot be computed explicitly. Therefore, the question how f(x) looks for 

x=1‘000‘000, turns the argumentation into a hypothetical direction, connecting it to 

the SP and to how the sequence might go on: 

1413. /M: But what we do know in any case is that eeh there is a one before the 

decimal point, well not for one thousand and one, for thou- for one- 

1414. /T: No, for one thousand and one there is a one in front of the decimal point, 

well no wait yes a two 

1415. /M: That‘s an odd number, yes 

1416. T: Two point zero zero zero zero zero  

1417. /M: Yes because its an odd eeh place 

1418. T: Yes, so its very close to two already 

1419. M: Yes 

1420. T: Those are then about a hundred zero or so (laughs), and then comes 

some different number 

In the end the last idea is confirmed (1422, 1423). This flow of ideas describes 

horizontally how the decimal number f(1‘000‘000) might look without going a step 

further. However, this horizontal scanning process implicitly produces the aspect of 

approximation to 2 that is recognized as fruitful for answering the interviewer‘s 

question ―and how would it work then?‖ (1424). It is further developed in the next 

flow of ideas as a process leading to structure seeing: ―it keeps on going‖ (1425) 

(seed for infinite as a process), ―an infinite number‖ (1426) (length of the decimal 

number), ―leaning closer to zero, closer to two, both numbers‖ (1427), (structure 

seeing because of the leaning-key-idea of approximation, grasping the convergence 

to 2, and referring to both numbers, meaning converging from both sides), ―but no 

never becomes 2‖ (sequential process of potential infinity), ―there are always infinite 

zeros‖ (1429) (here the value of the digits connected to the process directs the view 

to the actual infinite), ―it‘s infinite that‘s just it‖ (1430) (the length of the decimal 

number), ―at the end there are infinite zeros or infinite nines, and there is something‖ 

(1432) (the image of the infinite length is rooted in the experience of the finite).  

Here again an aspect is further developed that has been prepared by enlarging the 

size of x-values from 1‘000 to 1‘000‘000. Before, the flow of ideas was concerned 

with the infinite length of the decimal numbers, whereas now the students take 

infinite as an actual value of x, which they consider substituting in a functional term: 



Working Group 16 

CERME 7 (2011) 2457 

 

actual infinity is reached (1434), structure seeing took place. This kind of 

substitution changes the view from function values to the variable x. Based on that, 

the students several times use an if-then consideration and a flow of ideas about the 

conclusion arises: if ‖we insert infinity‖ (1435), ―will always be the same‖ (1436), 

―if you insert infinity, it theoretically equals two‖ (1437), ―then it would be two‖ 

(1438). ―One point nine period‖ (1440), ―equals two then‖ (1442), ―equals about 

two‖ 1443), ―equals two‖ (1444), ―so close, ah ok‖ (1445).  

The students agree about the if-then-argumentation and the data but not about the 

conclusion. Here we have a flow of ideas leading to dispersing views. T is bound to 

the view of potential infinity (1437, 1443, 1445) whereas M reaches actual infinity 

(―we can insert infinity‖ 1434, see also 1442, 1444). The difference between these 

views is not overcome because of their incompatibility. This is an experience of 

limitation and brings about a need for certitude referring to and repeating what the 

teacher has said. M recognizes an argument of their teacher as fruitful and together 

they reconstruct it: manipulations leading to 1.9999… =2 as learnt in school. 

In addition, the flow of ideas can lead to the experience of limitations such as not 

being able to continue solving the problem. This can happen when the students do 

not have access to tools that would help them progress, but it can also happen when 

they have a different understanding of an aspect that cannot be overcome in this 

moment. However, limitations do not necessarily have to lead students to give up; 

they can be overcome in different directions. They may lead to changing the 

conditions, going back to a clearer situation, taking a more general view; they may 

also lead to the need for a new construct (NNC). We now discuss some of these 

possibilities. 

1. Giving up  

In this case the students are not driven by a GEN nor do they find an adequate 

expression of it (no GEN); for example in phase I they are ready to give up since the 

flow of ideas dries out because they have experienced that the power law is not 

always valid: ―we could probably work on this all day long‖ (1340) and ―yes but I 

think it‘s enough‖ (1341). 

2. Changing the conditions  

Changing the conditions with a potential for progress involves a mixture of a need 

for clarification and a need to progress: The demand to use the function value of 

1000 that seems too big to compute, and the attempt to use the power law that cannot 

be applied directly, make them change the conditions. Instead of 1000 they take 100 

first and then 1024, since these are numbers with well known square roots (1370). 

3. Going back to a clear situation  

This reaction is concerned with a need for certitude: the demand to look at 1‗000‘000 

makes them change the conditions first and then a need for certitude leads them to 
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say what ―but what we do know in any case is that eeh there is a one before the 

decimal point, well not for one thousand and one, for thou- for one-― (1413), which 

is confirmed by T in 1414, and again in 1477. 

4. Taking a more general view  

This may be connected to a need to be more general: the demand of the interviewer 

to look at 1000 or 1001 led to a limitation ―one can‘t say anything else‖ (in 1359). 

This caused a need for being more general ―wait, we have our theory‖ (1360) that 

they applied afterwards.   

5. Expressing the need for a new construct 

This need arises when the students describe what they would need in order to 

continue and why they do not have it yet: In 1473, T experiences a deep personal 

limitation,  ―personally, I don‘t see anything there‖ (see above for the full citation) 

although there is a specific epistemic need to be general. T tries to transfer his 

images of finite numbers to the infinite ones but this is not observable. Therefore he 

experiences a lack of tools to continue and that confuses him. The GEN is expressed 

by a need for a new construct in 1478 (see citation above). 

Situational interest empowers the students to act epistemically 

In 1467, the students turn to the task of justifying their conjecture, which makes them 

laugh. As before, the students do not take the demand to justify seriously. However, 

they value this task now as being more difficult. In 1469, the interviewer 

acknowledges ―I find your last aspect just now most interesting‖. This changes the 

situation completely. M confirms: ―Yes that‘s really is interesting how― (1470), 

without laughing. T describes what is really interesting: ―yes, so theoretically it 

keeps on leaning closer to two‖ (1471). Both students take the aspect of 

approximation as what is most interesting. The number 2 is understood as the leaning 

point including the experience they have made (1471): theoretically, by hypothetical 

thinking, approximation to 2 is understood as leaning to 2 (from potential infinity in 

the direction of actual infinity). The term leaning (anlehnen) is non-conventional in 

this context also in German, the language of the students. Explaining why causes 

confusion, a deep personal limitation. The interviewer‘s repeated demand to explain 

why, makes M express the GEN as the need for certitude ―let‘s look at the beginning 

again here‖ (1477) while T expresses a need for a new construct ―it would be best if 

we had a function equation…‖ (1478), valuing highly the construct he looks for, 

compared with the less valuable representation they have ―we only have a functional 

equation just dependent on the variable before‖ (1480). Directly after that, the 

students refer to the need for a new construct expressing their willingness: ‖right, 

shall we try to discover something like that ‗cause that would be‖ (1485),  ―on that 

depends on x right?― (1486), ―Yes, so f of― (1487).  
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The above shows the students‘ deep involvement accompanied by meaningfulness, 

ending up with valuing highly what they do not yet have, expressing a need for a 

new construct (NNC) by situational interest. This scene also shows how the students‘ 

interest is caught: The interviewer values aspects as being most interesting. This 

empowers the students to act: they immediately deepen their involvement, express 

their personal experience of limitation, which caused their need for a new construct, 

which in turn empowered their willingness to construct it.  Thus, interest is held, 

since the NNC and situational interest are mutually reinforcing the students‘ 

progress. 

REFLECTING ON THE NETWORKING PROCESS 

AiC postulates that without a need for a new construct (Hershkowitz, Schwarz, & 

Dreyfus, 2001) the process of constructing such a new construct will not be initiated. 

When trying to identify such a need for a new construct in data sets, we discovered 

that it was not always clearly identifiable. However, IDS showed that the learning 

process was driven in such cases by far more general epistemic needs such as 

described in this paper as GEN. The previous research also showed that the GEN 

was closely linked to seeds for later constructing actions. The main contribution of 

the present paper is to show that a GEN cannot only drive the epistemic process but 

may lead to a need for a specific new construct.  

Another important result is an integrated view of how the individual and social 

construction of knowledge promote and call for each other. The flow of ideas as a 

social flow describes the process as an evolution of ideas in the community. This can 

happen by gathering and connecting pieces of knowledge that may bring to the fore 

an aspect that can be recognized as fruitful to be further developed, driven by a GEN 

or even a specific need for a new construct. This may lead to limitations that again 

may reinforce the expression of a GEN meeting the situational challenge. Hence, 

GEN and experiencing limitation fruitfully interact.  

We conclude this paper with a reflection on the networking process and on 

conditions that influenced it positively and negatively. The networking process 

concerned the different roles of the GEN as seen from each perspective. For AiC, the 

role of the GEN is its relationship to the seeds of constructing and to the emergence 

of the need for a specific new construct that marks the beginning of the construction 

process. In IDS, on the other hand, the role of the GEN is related to situational 

interest, empowering the students to progress in the construction of knowledge. The 

GEN is transformed into actions progressing within the flow of mathematical ideas. 

The networking process was basically enabled by the following features, in which 

there was a synergy between the two research teams, already at the outset: 

a. The research questions asked by the two teams are rather closely related and 

refer to how knowledge is constructed by means of epistemic processes and what 

factors influence processes of constructing knowledge. 
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b. The theoretical frameworks used by the both teams are based on epistemic 

actions; while these are not identical, they are complementary. 

c. The methodologies used by both teams include fine-grained microanalyses of 

interview protocols. This afforded us the opportunity to consider a single data set 

at a similar level of depth from different points of view: We used a three stage 

cross-analysis methodology that helped overcome some of the difficulties listed 

below: (i) separate analyses by each team; (ii) re-analysis by each team, in view 

of the other team‘s analysis; (iii) common analysis by both teams in meeting. 

d. The notion of GEN that emerged from a first stage of networking (the previous 

study) has become an integral part of both perspectives and hence a catalyst for 

further stages of networking (the current study). Hence, the role of the GEN has 

turned from that of a research result into that of a base for further research using 

both theoretical frameworks in unison.  

On the other hand, some differences between the approaches of the two teams caused 

difficulties that turned out to be fruitful for challenging our cross-analyses: 

a. The AiC approach puts the cognitive aspects in the centre, considering social 

aspects as important but secondary, whereas the IDS approach considers the 

social aspects to be of primary importance in constructing knowledge. 

b. Therefore, there are differences between the natures of the sets of epistemic 

actions, which turned out to provide complementary insights. 

c. The two approaches espouse somewhat different views of what constitutes 

construction of knowledge, in particular what kinds of knowledge can be the 

object of a constructing process and how it could be fostered.  

Since the two research teams have already been working together for more than two 

years, we have reached a state of profound mutual understanding. Hence, each 

perspective contributes to deepen the insight of the other one into the development of 

the students‘ process of constructing knowledge. 

1 Project supported by the German-Israeli Foundation for Scientific Research and Development 

(GIF) under grant number 946-357.4/2006. 
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This paper draws upon analysis of an adult student as he learns to read fractions-of-

an-inch on a measuring tape with the researcher as tutor. This provides a basis for 

comparing two activity-theoretical perspectives: cultural historical activity theory as 

developed by YrjôEngestrôm and his collaborators and Luis Radford‘s recent 

elaboration of activity theory, the theory of knowledge objectification. The former 

perspective provides a general framework for analyzing activity as a whole, whereas 

the later draws attention to particular genetic aspects of the mathematics learning 

and thinking of individuals. Insights gleaned through the use of each theory in 

analysis of this activity are summarized in-turn and contrasted for the purpose of 

showing the utility of each approach for the analysis of mathematics learning. 

INTRODUCTION AND THEORETICAL FRAMEWORKS 

Activity theory is a cross-disciplinary framework for examining how humans 

purposefully transform natural and social reality, including themselves, as a 

culturally and historically situated, materially and socially mediated process. 

Originating in the dialectical socio-cultural psychology of Vygotsky, this work was 

subsequently developed into a theory of activity by his student and colleague, A. N. 

Leont‘ev (cf., 1978) and others. Today in the west this perspective is often associated 

with the work of Engestrôm and his collaborators and is referred to as cultural 

historical activity theory or the acronym CHAT, emphasizing the essential situated 

nature of activity. It continues to develop in different ways, highlighting both its 

complexity and the fact that CHAT remains, in many ways, a work in progress. 

The impromptu tutoring session involving a pre-apprentice in the pipe trades and the 

researcher that formed the basis of this analysis focused on learning to read fractions-

of-an-inch to sixteenths-of-an-inch; an essential skill in this training program and the 

workplace. The present paper uses an analysis of this workplace training course as a 

whole as well as an in-depth analysis of the targeted tutoring session using two 

complementary perspectives, Engestrôm‘s interpretation of CHAT and Radford‘s 

theory of knowledge objectification (TO). This, in turn, provides a basis for 

comparing and contrasting these two perspectives. This analysis is part of a larger 

study of mathematics learning within apprenticeship training conducted in a number 

of pre-apprenticeship and apprenticeship training programs in the construction 

trades. 
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A brief overview of Engeström‘s interpretation of activity theory 

Engestrôm‘s work develops the implications of Leont‘ev‘s ideas and systematizes 

them in the form of an activity system. (Because of space restrictions, a figure 

showing Engestrôm‘swell known triangular activity system model will be provided 

only in the results section.) Included as the co-mediating elements within an activity 

system are the subject, community, tools (including signs and artifacts), rules or 

norms, and division of labour; all oriented towards the object and outcome of the 

activity (cf., Engestrôm, 1987, 1993, 2001). And, for any activity system, it is the 

meeting of a human need that motivates the activity.  

Engestrôm also articulates a number of key principles of activity. The following of 

these are most pertinent to the present assessment of this perspective for the analysis 

of mathematics learning: 

• that a collective, artifact-mediated and object-oriented activity system, seen in its 

network of relations to other activity systems, is taken as the prime unit of 

analysis…;  

• [that] an activity system is always a community of multiple points of views, ... and 

interests….; 

• [that] activity systems take shape and get transformed over lengthy periods of time. 

Their problems and potentials can only be understood against their own history...; 

[and] 

• [that] contradictions [play a central role] as sources of change and development [of 

an activity], …;  (Engestrôm, 2001, pp. 136-137). 

The large scale view of activity taken by this perspective considers learning in terms 

of fundamental qualitative changes in an activity system as a whole, a process that 

Engestrôm calls expansive learning. This occurs as a result of deliberate efforts by 

participants over time to resolve conflicts and contractions that are an inherent part 

of any activity system. Engestrôm‘s theorization provides little, if any, explicit 

direction for understanding the place of mathematics within activity nor provides 

details relating to the learning processes of individuals within activity systems. 

Hedoes, however, acknowledge the need for context-specific concepts and methods 

to be created and employed when applying CHAT to particular empirical cases 

(Engestrôm, 1999,2008).  

A brief overview of Radford‘s theory of knowledge objectification 

Based on his reading of Vygotsky‘s semiotics, Leont‘ev‘s activity theory, and the 

more recent work of Felix Mikhailov and EvaldIlyenkov, Radford has developed the 

TO specifically for unpacking nuances and processes of the mathematics activity and 

learning of individuals from a cultural-semiotic activity perspective (cf., Radford, 

2006, 2007, 2008b). In contrast to Engestrôm, Radford‘s work focuses on specific 

aspects of the consciousness, learning, and being of individuals as well as the 
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semiotic and social dimensions of mathematics activity from an activity perspective. 

Foremost in Radford‘s theorization are emphases on:  

1) the intimate and dialectical relationship between human thinking—including 

mathematical thinking—and the material and cultural world,  

2) the central role of semiotic resources used within culturally and historically 

situated practices and social interaction in mathematical activity and learning, and 

3) the twin dialectical processes of subjectification—the process of becoming, and 

objectification—the process of making sense of and becoming critically conversant 

with the cultural-historical logic with which systems of thought, such as 

mathematics, have been endowed (see also Radford, 2008a, 2009);  

In the TO, learning is conceptualized as an interactive and creative acquisition of 

historically constituted forms of thinking. Such an acquisition is thematized as a 

process of objectification; that is, as a process of making sense of and becoming 

critically conversant with the cultural-historical logic with which systems of thought, 

such as mathematics, have been endowed (see also Radford, 2008a, 2009). Radford‘s 

concept of objectification is a refinement of Vygotsky‘s notion of internalization in 

that it emphasizes the dialectical relationship between the subject and the cultural 

object being attended to. Semiotic means of objectification (SMO) is the empirical 

reflection of this process. This refers to the use of semiotic means to draw and 

sustain the attention of others and one‘s own attention to particular aspects of 

mathematical objects in an effort to achieve stable forms of awareness, to make 

apparent one‘s intentions, and/or to carry out actions to attain the goal of one‘s 

activity. Radford identifies the following three processes as forms of SMO from his 

empirical research of collaborative mathematical problem solving and learning:  

1) Iconicity—the process of noticing and re-enacting or re-voicing significant parts 

of previous semiotic activity for the purpose of orienting one‘s actions and 

deepening one‘s own objectification (Radford, personal communication, September 

29, 2008), 

2) Semiotic nodes—places in mathematical activity where multiple semiotic 

resources are used together and in a coordinated manner to achieve knowledge 

objectification. ―Since knowledge objectification is a process of becoming aware of 

certain conceptual states of affairs, [changes in] semiotic nodes are associated with 

the progressive course of becoming conscious of something. They are associated 

with layers of objectification‖ (Radford, 2005), and 

3) Semiotic contraction—the process of coming to recognize and attend to the 

essential elements within an evolving mathematical experience; and making one‘s 

semiotic actions compact, simplified, and routine as a result of this acquaintance 

with conceptual traits of the objects under objectification and their stabilization in 

consciousness (Radford, 2008a).  
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It should be noted that the process of mathematics learning or objectification can be 

accounted for readily within the theory of knowledge objectification through analysis 

of social interactions and the use of semiotic means of objectification within 

mathematics learning activity (Radford, 2008b). 

METHOD 

Data collection 

The empirical data that provides the basis for the present analysis was collected in a 

pre-apprenticeship training class for the pipe-trades conducted at trade union run 

school in British Columbia, Canada. This program involved classroom work as well 

as practical work in the shop. The course content was selected to give the pre-

apprentices a head start with important skills that would be addressed subsequently 

in the early years of their formal apprenticeship training in a number of different 

pipe-trades. 

The researcher visited the class extensively over its eight-week duration and served 

as a math tutor for any pre-apprentices who asked for his help. The researcher also 

observed pre-apprentices and engaged them in discussion about their mathematics 

related coursework as they were working on it. The mathematics related activity of 

individual and groups of pre-apprentices, working either on their own or with the 

researcher, was documented using a video camera and field notes, and copies of the 

course print materials and the pre-apprentices‘ written work were retained for 

analysis. The researcher also conducted ongoing formal and inform discussions with 

the course instructor and administrator of the program, as well as many students and 

kept field notes of these encounters. The data used in the present analysis was drawn 

from this collection of data. This particular 33-minute tutoring session was selected 

for fine-grained analysis from the approximately 35 hours of video data from this 

pre-apprenticeship class on the basis that it was, by far, the longest episode of a 

student focused on a particular mathematical object(here the pattern of binary 

fractions-of-an-inch used in linear measure) that was central to this vocational 

training. This, in turn, provided a unique opportunity to examine ways in which a 

pre-apprentice‘s thinking developed in relation to this mathematical object and was 

reflected both in his actions and in his interactions with the researcher-as-tutor.  

Prior to the data analysis (as part of the larger research study involving multiple 

workplace training sites) the researcher made extensive visits to an earlier session of 

this same pre-apprenticeship course as well as a fourth-year plumbing apprenticeship 

program at a local technical college. Extensive visits were also made to all three 

levels of an iron-working apprenticeship program also at the local technical college 

and short visits spanning one to a few days were made to a variety of other 

apprenticeship programs for a variety of construction trades. In all cases the focus 

was on observing and documenting the mathematics related parts of these programs. 
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This experience served to inform the researcher‘s analysis of the activity within the 

target pre-apprenticeship program.  

Data analysis 

The multi-semiotic analysis of this activity takes place on two levels, reflecting the 

breadth of foci of the two theoretical perspectives used. The various elements of the 

activity system of the pipe-tradestraining program, for example, werediscerned from 

the entire corpus of related data identified above. At another level the multi-semiotic 

analysis of the pre-apprentice‘s and the researcher-as-tutor‘s joint activity during the 

tutoring session began with the construction of a verbatim transcript of the entire 

tutoring session from the video recording. This included the construction of a 

detailed account of significant actions includingthe use of various semiotic 

resources, gestures, body position, and artifacts. Episodes in the data were then 

coded, first to identify the various aspects of reading the fraction-of-an-inch pattern 

being attended to, and then to identify actions related to both the pre-apprentice (who 

will henceforth be referred to as ―C‖) and the researcher-as-tutor‘s (who will 

henceforth be referred to as L) objectification of the pattern of fractions of an inch on 

the measuring tape and subjectification as participants within this activity. At times 

this process required slow motion and frame-by-frame analysis of videotape to assess 

the role and co-ordination of spoken language with the use of artifacts and gestures.  

RESULTS AND DISCUSSION [2] 

A summary analysis using Engeström‘s interpretation of activity theory 

A detailed analysis of the elements of the tutoring session activity system is provided 

using a triangular activity system model in Figure 1. The lines between the nodes or 

elements of the activity are intended to draw attention to the mediating relationships 

amongst them—an essential feature of such a system. While it is not possible to 

determine the precise mediating roles of each of these elements throughout the 

activity, there is evidence of each playing a dynamic role in shaping the course of 

events. The various semiotic resources employed in the discourse, for example, serve 

to draw C‘s attention to particular aspects of the object of the activity and to deepen 

his understanding. The design of the particular measuring tape used (marked in 

thirty-seconds-of-an-inch up to twelve inches and in sixteenths thereafter) 

necessitated that this difference be attended to explicitly and negotiated during the 

activity. And, the conventional design of the measuring tape with the endpoints of 

subintervals of the inch indicated by a system of signs necessitated that C attend to 

the intervals between these divisions rather than the division markings themselves in 

the process of learning to measure. 

A number of contradictions in the form of breakdowns, misunderstandings, and 

complications exist on different levels within this activity. These levels include 

complications within individual elements of the activity such as the object of the 
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activity itself—the system of multiple binary fractions-of-an-inch represented by a 

single inscription pattern on the measuring tape—and with L given his dual roles as 

tutor and researcher. Between different elements of the activity there are a number of 

othermisunderstandings and breakdowns.  

 

Figure 1. Activity system of the pre-apprentice learning to read the measuring tape 
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These includeC‘s unfamiliarity with the imperial system of linear measure that he is 

required to use in his practical work, his limited understanding of the meaning of the 

denominator of a fraction represented in digit form at the start of the session, 

communication difficulties between C and L, and L‘s initial approach to identifying 

various fraction-of-an-inch intervals on the measuring tape with C. Considerable 

effort is made by both participants throughout the tutoring session to attend to and 

resolve these contradictions as they arise within the activity. 

A summary analysis using the theory of knowledge objectification 

A number of processes that are parts of the mathematics learning process identified 

by the TO figure prominently within C and L‘s discourse. For example, C repeats 

what L says or re-enacts his actions relating to the task at hand on 60 separate 

occasions during the 33 minute tutoring session. These actions reflect an effort to 

deepen his sense of—literally, to deepen his sensory experience of—these statements 

or actions using the same means of semiotic expression used by L or other semiotic 

means. On one occasion C re-enacts a unique form of interval gesture that he had just 

used himself and on another occasion L creates a zone of proximal development for 

C to help bring coherence to his understanding of the division pattern on the 

measuring tape by inviting C to explain what he (L) had said earlier while providing 

him with verbal prompts to help him along. And, this is not a one-sided affair. On a 

few occasions L also re-enacts or repeats what C had done or said earlier. These 

examples of repeating or re-enacting what another has said correspond to the process 

of iconicity, identified by Radford as a significant part of the process of attaining a 

cultural logic of thinking or knowledge objectification. [3] 

The ways that L and C use multiple semiotic resources together (semiotic nodes) 

throughout the tutoring session and, in C‘s case, the further enactment of semiotic 

contractions, reflect their understandings of the object of the activity. L‘s frequent 

use of various combinations of words, pointing and sweeping gestures, fractions 

written using digits and words, the fractions-of-an-inch division pattern on the 

measuring tape and transparency rulers, along with other semiotic resources in a 

coordinated manner draws and maintains C‘s attention to/on various aspects of the 

system of binary fractions-of-an-inch on the measuring tape. And, given L‘s 

extensive experience working with the system of binary fractions-of-an-inch 

extending back to his own elementary school days, it is not surprising that his use of 

various semiotic resources remains relatively consistent during his explanations to C 

throughout the tutoring session, reflecting little or no change in his understanding in 

the process.  

In contrast, there is a marked shift over the 33 minutes of the tutoring session in the 

way that C expresses his understanding using various combinations of semiotic 

resources as he communicates with L and works to bring clarity to his own thinking. 

Early on, when C responds to L‘s request for him to explain what difference he 

notices in the patterns of divisions below and above twelve inches on the measuring 
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tape, C‘s response is predominantly gestural, accompanied by only a single sentence 

and two sentence fragments. As the tutoring session progresses, C‘s means of 

expressing himself shifts completely, at times, to the clear and succinct use of words 

alone—an ultimate form of semiotic contraction. 

The last process from the TO to be summarized here is that of C and L‘s 

subjectification. C becomes more active in the way in which he participates in the 

activityover the duration of the tutoring session. This is evidenced by the collective 

changes in the patterns of his gaze and attentiveness, his role in the dialogue, his 

affective responses, and his own expressions of agency and self-reliance regarding 

his use of the measuring tape. C also nods his head or says ―okay‖ or ―yeah‖ on 

numerous occasions throughout the session acknowledging to L that he is following 

what he is saying. This also reflects part of C‘s process of subjectivity within the 

activity. L changes during the tutoring session as well, but in a less obvious way. 

Specifically, L changes in his approach to teaching C how to read the measuring tape 

from a more general approach (intended for use with a measuring tape or ruler 

marked to any one of a number of subdivisions of the inch, e.g. sixteenths, thirty-

seconds, or sixty-fourths)that is typical of school mathematics teaching, to a much 

more practical one tailored specifically to workplace demands within the pipe trades 

where lengths are taken only to the nearest sixteenth-of-an-inch. 

Comparing these two activity-theoretical perspectives 

Engestrôm‘s activity-theoretical perspective focuses on activity systems as a whole, 

includingrelationships and contradictions at various levels of activity and theongoing 

transformation of activity over long periods of time. His more recent work (e.g. 

Engestrôm, 2008) continues at the activity system level focus by addressing 

interactions between multiple activity systems.Theses dynamics of activity, while 

useful for research in many contexts, do not addressin a direct way mathematics 

educators‘ practical interests in teaching and learning activity, that is, individual 

students‘ mathematical enculturation on a day-to-day, if not minute-to- minute basis. 

Furthermore, Engestrôm‘s work does not make clear a means to talk about, nor 

situate mathematics within activity.  

Radford's theory of knowledge objectification, in comparison, focuses on the 

microgenesis of the mathematics thinking and learning of individuals. It provides a 

way of defining and positioning mathematics as acultural practice within particular 

forms of activity, articulates a clear view of mathematics learning and thinking, and 

unpacks the dialectical relationship between the subject of activity and the object of 

activity through the theorization of objectification and subjectification thus revealing 

an important but often tacit dimension of mathematics learning. (For a detailed 

discussion refer to Radford, 2008b.) In stark contrast to Engestrôm who theorizes 

learning within activity theory as change in an activity itself, Radford focuses on the 

learning of individuals as they become participants within existing historical-cultural 

activity. 
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CONCLUDING REMARKS 

The analysis of a one-on-one tutoring session with a pre-apprentice learning to read a 

measuring tape summarized here using both Engestrôm‘s perspective on CHAT and 

Radford‘s theory of knowledge objectification illustrates differences between these 

two approachesfor the analysis of mathematics learning. Clearly both of these 

complementary activity-theoretical perspectives have contributed and will continue 

to contribute to mathematics educators‘ understanding of mathematics activity and 

learning. But given the objects for which each was developed, on the one hand 

Engestrôm‘s theorization for activity in general and, on the other, Radford‘s 

theorization for mathematics learning activities in particular, it should come as no 

surprise that Radford‘s theory of knowledge objectification provides a more 

powerful and directly applicable tool for investigating and understanding 

mathematics learning at the level of the individual. In pragmatic terms, before 

embarking on any activity-theoretical analysis in mathematics education, it is 

advisable for researchers to consider and draw from a range of activity- theoretical 

perspectives given that this field is evolving in a variety of different ways.  

NOTES 

1. This paper is the result of a research program funded by The Social Sciences and Humanities 

Research Council of Canada / Le Conseil de recherches en sciences humaines du Canada 

(SSHRC/CRCH). 

2. Given the focus of this paper on comparing different activity-theoretical perspectives and space 

limitations, only a summary can be provided of the analysis done using each perspective.  

3. A detailed analysis of the different forms of iconicity evident within a single 21 second clip from 

this tutoring session was the focus of a paper presented at CERME-6 (see LaCroix, 2010). 
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This paper aims at characterizing the teaching actions that are used in a primary 

school mathematics lesson, and their consequences for the learning progression. To 

proceed, we explore the analytical outcomes of combining two analytical 

frameworks, namely the Practical Epistemology Analysis of classroom discourse 

(Wickman & Östman, 2002; Wickman, 2004; 2006) and the triple [Meso; Topo; 

Chrono]-Geneses featuring didactical transactions in the Theory of Joint Action in 

Didactics (Sensevy, Mercier, Schubauer-Leoni, Ligozat & Perrot 2005; Ligozat & 

Schubauer-Leoni, 2010; Sensevy 2010). The analytic approach is exhibited through 

an empirical sample of a mathematical lesson about the learning of surface area 

with 4th grade students. Analyses are guided by two questions: 1) testing the PEA 

for identifying the content learnt in transactions in the case of mathematics; 2) 

examining how PEA may augment the MTC-Geneses description to characterize the 

learning progression over time within the teacher‘s and students‘ joint actions. This 

later question is crucial to understand the generalization of the students' experience 

against the teaching process unfolded by the teacher.  

THEORETICAL BACKGROUND  

Practical Epistemology Analysis (PEA)  

In the Swedish pragmatist approach to science learning, the PEA framework was 

developed as an analytical tool for characterizing the meaning-making process in 

science-classroom discourse. This approach features learning as the unfolding of 

purposeful action and change of habits for coping with reality (Rorty 1991). Cultural 

practices entail epistemologies, as implicit rules for acting adequately in social 

groups. In designing and carrying out classroom work, the teacher makes explicit and 

implicit decisions about the situations that the students will experience. Wickman 

(2004) suggests that as the curriculum unfolds in the teacher's and the students' 

actions and discourse, a practical epistemology is shaped. Hence, from the student 

point of view, learning content is dependent on the epistemologies developed in the 

classroom, as a set of epistemic and social norms that guide the selection of relevant 

actions to achieve a purpose. Of course, such norms are tied to the socio-historical 

traditions embedded in curricula. We do not aim at describing such rules and power 

relations per se but we seek for the connection between how classroom participants 

produce meaning and what meaning is produced in a specific practice.  

The model of Practical Epistemology Analysis developed by P.-O. Wickman and 

collaborators relies upon L. Wittgenstein's notion of language-game (Wittgenstein 
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1967) and J. Dewey's theory of continuity in experience transformation (Dewey 

1938/1997). For the former, meaning is a given in the socially shared rules supported 

by a language proper to a context. Learning is then mastering a language-game, i.e. 

the grammar of actions featuring a practice. For the latter, experience is continually 

transformed by the transactions taking place between an individual and his 

environment. Subjects build continuity between past and present experiences so that 

experience earned in a given situation becomes an instrument for understanding and 

dealing with the situations which follow (Dewey 1938/1997, p44). PEA is grounded 

on four categories for analyzing discourse as a transformation of experience within a 

language game (Wickman & Östman 2002; Wickman 2004; Wickman 2006).  

(i) Encounter: an encounter delineates a specific situation in terms of what can be 

seen to meet or interact in actions and discourse. This involves human beings as the 

participants of the situation and the "things" that become part of the experience in 

this situation. These may include physical objects, signs, words, utterances, 

phenomena like natural facts and events as well as recalled experiences.  

(ii) Stand fast: in an encounter, certain objects are manipulated without any questions 

arising about their use. Such objects and words stand fast in the encounter. What 

stand fast in one situation may later be questioned in another situation. Neither does 

stand fast necessarily imply a correct use from the observer's perspective. It simply 

implies that the meaning of certain words in discourse is self-evident for the 

participants with respect to this specific situation.  

(iii) Gaps and relations: in an encounter participants notice gaps. They then establish 

difference and similarity relations to what stand fast. If participants succeed in filling 

a gap with relations they build continuity between past and present experience. If 

they fail, the gap lingers and the course of action may change direction toward 

another purpose. 

It is important to notice that the four concepts of PEA enable a first analysis of 

meaning-making from the interlocutors‘ perspective. From the observer's perspective 

(the researcher in this paper), "something" is learnt when the activity moves on, that 

is when there is evidence that the participants can proceed towards a purpose. 

Learning proceeds when people notice gaps and fill them with relations to what stand 

fast in encounters. This inclusive account of learning focuses on what works in the 

situation in order to overcome it and not solely what is right or wrong with respect to 

conceptual knowledge. Questioning truth is central in scientific reasoning but it is 

only one of several ways to proceed in everyday life practices (Habermas, 

1984/1990). PEA accounts for the meanings being construed in action without 

prioritizing what is true / not true and what should be said or done in order to acquire 

the expected knowledge. This may also be understood as a methodological caution 

aiming at minimizing the risk of overlooking certain forms of learning just because 

they were not included in the definition from the outset. 
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The triple [Meso; Topo; &Chrono]-Geneses  

The Joint Action Theory in Didactics (JATD) envisions the teaching and learning 

practices as a didactical game in which the teacher achieves his/her goal - making 

the students learn knowledge content- only if the students get involved and act in a 

certain way (Sensevy, 2010). The expected way of acting defines the rules of the 

learning progression. For the student to learn, the teacher has to design a set of 

conditions made of material and symbolic objects bound to a question, task or 

inquiry to be attended and featuring the students‘ ends in view. This set of conditions 

is viewed as the "primitive" milieu (or a teaching design) from which certain 

meanings are construed in action. The teacher and the student(s) cannot achieve their 

respective purposes without paying attention to the action of the other and moreover 

to the object of the other's action. An "object" is anything that can be the target of 

attention of an individual and that can be designated by him. The meaning of an 

object is given to an individual by the way in which the others are prepared to act 

toward it (Mead 1934/1992). The teacher's action and the student's action are joint 

actions in which each participant adjusts his action to the other's line of action 

(Blumer 2004). In the framework of the JATD the triple [Meso; Topo; Chrono]-

Geneses models the construction of a common ground of meanings in the joint 

actions that are performed by the teacher and the student(s). 

(i) Mesogenesis - The fitting of lines of actions of the teachers and the students (or 

within a student group) to achieve their respective purposes generates new meanings 

through the relations that participants establish to the objects of their environment. In 

adopting this point of view, the milieu in which actions unfold, is not just the set of 

conditions defined in the teaching design, regulated by the teacher over time, and 

against which the student would play a game (i.e. the milieu in TSDM; Brousseau 

1997, p55-58). It is a constant build up of relationships to objects in discourse and 

actions, i.e. a mesogenesis in Chevallard's words (1992). Mesogenesis takes up both 

the students' elaboration of meanings and the teacher's elaboration of meanings on 

the basis of what the students produce.  

(ii) Topogenesis – Each category of participants (teacher versus student) lives in 

distinctive epistemological positions within the classroom collective. They do not 

share the same perspective on the task at the same time. These positions are movable 

but they never merge. The moves in the epistemological positions (either towards a 

reduction of the gap or towards its deepening) feature the topogenesis. Topogenetic 

moves result from the division of the activity between the teacher and the students, 

but also among students themselves according to their potentialities in a specific 

situation.  

(iii) Chronogenesis - The teacher knows the overall direction that learning should 

take on the knowledge timeline. The learning content expected by the teacher in the 

first place corresponds to an institutional purpose in terms of contents and values to 

be conveyed to the students. Such a purpose is described as pieces of knowledge to 
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be learnt, attitudes to be adopted, competencies to develop…etc. in curriculum texts 

that reconfigure outer-school socio-cultural knowledge historically construed in the 

human activities. The overall direction that the learning progression takes in the 

classroom is described by the chronogenesis. Chronogenetic moves result from the 

legitimating process of certain meanings made by the students in the collective and 

/or the introduction of new relations directly made by the teacher.  

The primitive milieu designed by the teacher is continuously augmented over time by 

the meanings arising in the participants' fitting lines of action. Meanings are 

epistemologically distributed across the classroom collective between the students' 

position(s) and the teacher's position. Certain meanings construed at a time in the 

mesogenesis may be judged relevant or not by the participants with respect to 1) their 

potential to support the ends-in-view structured by the task (epistemic relevance); 2) 

the expected learning content that is the overarching goal of the teacher (didactical 

relevance). The outcome of the collective analysis of situated actions is the departure 

point for the participants to further their activities. We contend that the meanings 

built in the mesogenesis undergo a selective process to become part of a "supposed-

to-be-shared" common ground in the classroom collective (Ligozat & Leutenegger 

2008). The ongoing construction of this reference is an institutionalizing process of 

meanings construed in the situated actions towards a collective objectivation of 

knowledge in discourse.  

EMPIRICAL FINDINGS  

In the following, we attempt to use PEA for describing meanings made in the 

contingencies of mathematical activities with primary school students. In particular, 

we try the analytical categories of the PEA approach (encounter, stand fast, gaps and 

relations) for describing the dynamics of purposes in the joint action and the content 

of the mesogenesis. The chronogenetic and topogenetic moves feature how the 

teacher directs the students‘ attention towards certain relevant objects and 

correlations in the setting in order to achieve a mathematical task. We merely use a 

short excerpt of classroom discourse to highlight the analytical potentialities of 

combining both PEA and MTC-Geneses frameworks. The students are working in 

small groups, with a set of 13 geometrical shapes and with a worksheet bearing the 

instructions i) "rank the shapes from the smallest to the largest according to their 

area"; ii) "justify your ranking"). They first make conjectures about the use of the 

objects provided [Gap 1: what should we do?]. When the teacher comes nearby, the 

students call upon her for helping. The teacher tells the students to read the 

instruction and asks them about the meaning of the word "area". A new gap is 

noticed [Gap 2: what is area?]. The students suggest that "it is the shapes", i.e. a 

word that stand fast to them in this situation. From the teacher's perspective, the 

students do not manage to construe any relevant relations to the word "area" 

(something like "it is the surface of the shapes" or "the space lying inside the borders 
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of the shape" may be expected). At min 3:29, the teacher goes back to the instruction 

in the following way:   

43. TEACHER : […] it is written / rank from the smallest to the largest 

/// actually from the largest to the smallest- 

 

 

 

 

 
PICT 2 

 

PICT 3 

 

PICT 4 

 

PICT 5 

44. KAM : well / first we know that this one is the smallest (takes 

triangle H out of the set ) 

45. TEACHER : how do you know that it is the smallest / how can you 

prove that it is the smallest+  

46. MAR : (puts square C close to triangle H [PICT2]) because this one 

is smaller  

47. DIA : it is half of it- 

48. MAR : (murmuring) but we can't prove it- 

49. TEACHER : (looking at Mark) OK but… / this is your feelings 

OK+ / but how can you prove it+ // because here 

(points at the corner of triangle H – PICT 3) / one 

may say / it sticks out a little bit- / so how can you 

prove that it is really the smallest+  

50. DIA : (getting excited) I know I know+ 

51. MAR : oh like this / according to their area / we've got to set in line 

(sets the base of triangle H on the same line as 

square C [PICT4]) 

52. DIA : no look + / I disagree / this is smaller because this (picks up 

triangle H) is half of the square (puts H onto C 

[PICT5]) 

53. TEACHER : ah+ / do you think this could be a proof+  

54. [silence 5 sec] 

55. KAM : this / that's two / mmh / the whole square that's twice this 

one (points at H) 

56. TEACHER : how did Dina do to prove you this+ 

57. KAM : she puts it over (points at H again) 

58. TEACHER : yeah / she puts it over the square / she superimposed 

the shapes // now / you have some transparent paper / 

some square grid paper // and by using Dina's 

technique / you've got to find some tricks / that to 

prove that / a shape is larger or smaller than another 

one  

Our 1
st
 analytic focus looks at encounters, stand fast words and gaps to describe the 

dynamical structure of the joint action. The encounters delineate the relationships 

developed on a small portion of time by the participants with respect to certain 

objects (words, things, signs) that become parts of their environment. A new 

encounter opens up when we identify some changes in the participants' purposes 

during the course of action.  
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- Encounter 1 (line 43-45)  Mark, Dina, Kamer and Teacher take into account 

shape H and shape C (among all the set), smallest (a word from the instruction 

sentence)  

- Encounter 2 (line 46 – 57) Mark, Dina, Kamer andTeacher take into account 

shape H and shape C (among all the set), know, prove, proof, stick out, set in line, 

half, twice, put over. 

- Encounter 3 (line 58)  Mark, Dina, Kamer and Teacher take into account shape H 

and C (among all the set), put over, superimpose, transparent paper, square grid 

paper, Dina's technique, tricks, prove, larger, smaller. 

In this case, changes in purposes and so the openings of new encounters are 

prompted on the basis of gaps indicated by the teacher. As such, they coincide with 

some chronogenetical moves (CM) and topogenetical moves (TM). Encounter 2 

corresponds to an expansion of teaching time to attend the need to "prove" (CM); the 

teacher adopts a feigned "low" position supposed to give some responsibilities to the 

students in finding "proof" arguments (this TM analysis will be nuanced in our 2
nd

 

focus of analysis). Encounter 3 corresponds to a contraction of the teaching time 

with the acknowledgement of the superposition technique as a to-be-shared reference 

(CM); the teacher uses her institutional power to prompt a new purpose in the joint 

action (TM). Through the dynamics of encounters 1, 2 and 3, we get an insight of the 

nature of the expectations upon the student's actions: i) sum up what is known from 

the reading of the instruction, ii) how we get to know it, and iii) extend the use of the 

"put over" technique. Changes in purposes may also originate in the students' course 

of action when a gap cannot be filled. For instance, at the very beginning of the 

group work session, when the students cut off the shapes from the cardboard, one of 

them tried isolating the smallest shape, another tried to order the shapes according to 

their alphabetical letters, then they tried ordering 4 shapes on a same line. At some 

point, the students stopped manipulating the shapes because they could not find a 

way to determine what to do, or more exactly, what they are expected to do in this 

situation. Gap 1 [what should we do?] lingers, resulting in a change of purpose from 

trying to do something with the shapes to getting an explication from the teacher. 

Hence, encounters, stand fast words and gaps reflect the evolution of the reciprocal 

expectations in the teacher and students' joint action.  

Our 2
nd

 analytic focus is put on gaps and relations to describe the epistemic content 

built up in the mesogenesis. In bold characters, are the teacher participations; in italic 

characters are the students' participations.  
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Table 2: Gaps and epistemic relations developing in the mesogenesis 

line GAPS RELATIONS 

infra G1: what should we do? => 

linger 

 

infra G2: What is area? => linger  

44  Rel-a : know- smallest- (triangle H) 

45-49 G3 : How do we 

know/prove [Rel-a]? => 

filled by Mark and Dina  

Rel b : knowing –need to prove => implicit 

Rel-c : (triangle H) – half – (square C) 

Rel-d : [Rel-a] – can't prove 

49-52 G4 : Could C be the 

smallest? => filled by Dina 

Rel-e : (triangle H) – sticks out – (square C) – 

(parallel bases) 

Rel-f : area – (aligned bases) 

Rel-g : [Rel-a] –because- [Rel-c] – (triangle H 

over square C) 

53-56 G5 : is [Rel-g] a proof`? => 

filled by Teacher 

Rel-h : whole square – twice (triangle H) 

Rel-i: [Rel-g] – a proof 

56-58 G6 : how did Dina proved 

[Rel-f]? => filled by Kamer   

Rel-j : prove- put over 

Rel-k : prove – superimpose the shapes => 

implicit 

58 G7 ( Gap1) : what should 

we do? => (implicit); 

partially filled by Teacher 

Rel-l : transparent paper – square grid paper- 

Dina's technique – tricks – prove – smaller 

/larger shapes  

 (i) Gap 4 is a challenge to Mark's belief that we can't prove that H is smaller than C 

(line 48; Rel-d). Mark attempts to fill Gap 4 in establishing some conditions for 

triangle H to be smaller than C (line 48, Rel-f). He tries an inferential relation 

between the word "area" for the first time at this point and "set in line". The 

inference is: if the criteria "according to area" (that does not stand fast) was to mean 

"set in line" (that stand fast in actions), then the conditions for H to be smaller than C 

would be warranted. Unfortunately for Mark, this inference cannot be sustained in 

the common ground of meanings privileged by the teacher because this is not 

compliant with the mathematical culture. The teacher opposes Mark‘s relation with 

another relation (line 46; Rel-e) stemming from a change in the relative positions of 

the two shapes. The consequence is that in this position, triangle H may not be 

smaller than square C. Indeed, the order relation between H and C depends on the 

geometrical objects considered: side length of square C is smaller than base length of 

triangle H but side length of square C longer than the height of triangle H. These 

order relations on length are more or less salient depending on the relative position 

of the shapes in space (parallel bases VS aligned bases of the shape). The teacher 

uses spatial contingency to increase uncertainty and make the students noticing Gap 

4 [Could C be the smallest?]. We have an example of a topogenetical move toward 

more responsibilities to the students in assessing a relation being made with respect 
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to the geometrical relationships among the shapes in the primitive milieu managed 

by the teacher (moving the shapes).  

(ii) To fill Gap 4, Dina brings in a new relation that aggregates previous ones into a 

causal pattern (line 52; Rel-g). This relation ties in discourse the order relation [H is 

smaller than C] and a new pattern of the relative positions of shapes H and C in 

space [H over C]. From the researcher's perspective, the statement [H is half of C] is 

a quantification of the magnitude of the surface area of triangle H with respect to 

square C as a standard unit. It is an argument to prove that the surface area of H is 

smaller than the surface area of C. But what is the significance of Rel-g for the 

students? The mere thing we can do is to track any correlated relations unfolding in 

the participants' action and check whether these relations stand fast in furthering the 

activity. In eliciting Gap 5 [is Dina's utterance a proof?], the teacher tries to empower 

the group with the task to assess Dina's relation with respect to Gap 3 and gap 4. But 

the word "proof" does not stand fast to the students and Gap 5 cannot be filled by the 

students themselves. In noticing Gap 6, the teacher introduces a relation (Rel- i; line 

56) that implicitly fills Gap 5. The responsibility given to the students is too high 

about a task (identifying a proof) that is out of reach of the students. The teacher 

subtly moves back toward high position, to manage the answers and reduce 

uncertainty. In this topogenetical move, the focus on "what" is proved is drifted 

towards "how" it is proved.  

The mesogenesis is a series of ephemeral and situated encounters which are co-

elaborated by the participants. Certain words and actions stand fast in these 

encounters. We contend that the student's experience in which epistemic relations is 

made is an individuated experience stemming from a collective experience made of 

joint actions and shared meanings. "Smallest", "largest", "set on a line" are 

recognized with respect to the collective experience shared in the group about 

ranking objects activities like sticks, blocks, etc. What stand fast describes the 

reference from the participants perspective. But what stand fast hic et nunc in an 

encounter may also remain contingent for the students. Indeed, observing the 

students' action in the subsequent encounters of this lesson show that the students go 

on with making superimpositions of shapes but they hardly draw conclusions from 

them, in terms of larger/smaller shapes. From this, we understand that "Dina's 

technique" does not make sense in the collective experience as a generalized content 

(or knowledge) which in turn, could be a resource for each student in further activity. 

Furthermore, since the word "area" was not related to this rule, the concept of surface 

area does not earn significance in action. From the succession of gaps highlighted by 

the teacher and featuring a fine-grained chronogenesis, we understand that the 

knowledge of the mathematical concepts (what is surface area?) and practices 

(knowing in mathematics is proof-based) is prioritized over the relations effectively 

made by the students in the encounter (ordering the shapes by sight estimation, 

comparing side lengths, finding a numerical ratio between the shapes). Of course, the 
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teacher takes up these relations (cf- Gap 6), but these relations construed in situated 

action remain contingent from the student's perspective. Each time that a gap is 

filled, it is replaced by a new one prompted by the teacher without enabling the 

students to proceed with the new relations made.  

CONCLUDING REMARKS  

We now discuss the implications of our analysis for the (re)conceptualization of PEA 

tools in the JATD. PEA empowered us with high resolution tools to analyse the 

content being learnt in classroom joint action from the participants‘ perspective. 

From this analysis it can be seen that the basic concepts of the lesson (proof and 

area) do not make sense to the students as part of the purpose of ordering according 

to size, without being reformulated as different kinds of doings (putting side by side, 

superimpose). This demonstrates that the teacher, in joint action with the students, 

would need to construe relations between those terms which the students are 

supposed to learn (proof, area) and those that stand fast (putting side by side, 

superimpose). Here there is no evidence of this in action, and so there is no evidence 

to the teacher that students have learnt what proof and area means in terms of 

habitual ways of talking and acting mathematics. [MTC]-geneses augment the 

analysis in directing analysis on the overall joint action about how the relations sum 

up (mesogenesis), the role of the student vis-à-vis the teacher (topogenesis), and how 

the learning progresses over time (chronogenesis). The MTC-analysis offers a means 

to analyse the social control on the meanings to be learnt from an institutional 

perspective. Thus, the power of this combined analysis lies in its ability to elucidate 

the meaning-making process from the participants‘ perspective (PEA-analysis), and 

combine this with an analysis of the consequences of the teacher managing the 

learning progression in certain, specified ways (MTC-genesis analysis). If teaching is 

organizing "signs" (words, symbols, constellation of artefacts) to make someone 

learn a content, learning involves making sense of such signs and forms in order to 

act adequately with respect to the sign-maker/organizer's purposes. But learning 

cannot be unilaterally controlled by the organization of signs in a teaching design, 

however genuine it may be. Learning is contingent on the experience of the learner 

and on the haphazard sequence of events developing in the joint action of the 

classroom (Hamza, 2010). Meanings arising in encounters are not "controlled" at 

their source (in the mind of the students) by the teacher but they are shaped in 

discourse according to a collective process of selection, aggregation and social 

validation and so needs close empirical examination. 
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DISCERNING IN AND BETWEEN THEORIES  

IN MATHEMATICS EDUCATION 

John Mason 

University of Oxford & Open University 

Abstract: the conjecture is put forward that the most important feature of theories in 

mathematics education are the frame(work)s, which consist of labels for distinctions. 

These determine what can be attended to, and what therefore is not attended to. 

These distinctions incorporate assumptions and values which together suggest 

actions that might be taken. The  discourse of ‗shifts of attention‘ is used to structure 

an analysis of what theories might and might not be able to contribute to the 

improvement of teaching and learning, drawing on a background theory called 

‗Systematics‘. My conclusion is that to compare or conjoin theories requires a 

generally accepted way of agreeing meaning of technical terms so that mis-

understanding and mis-appreciation of distinctions is minimised. 

INTRODUCTION: THEORIZING AS A WHOLE 

The plethora of research papers in mathematics education, and the considerable 

degree of overlap between issues and phenomena studied, using a wide range of 

theoretical constructs, distinctions and methods is fostering concern about how 

theories might be integrated, compared and conjoined (Sriraman& English 2010, 

PME34 research forum, CERME Working Group 2008). 

At ICME-2 in Exeter, René Thom put forward a typically Continental position, that 

―In fact, whether one wishes it or not, all mathematical pedagogy, even if scarcely 

coherent, rests on a philosophy of mathematics‖.In other words, ‗every pedagogical 

choice rests on a theory about effective teaching and learning‘, just as ‗every 

research choice depends on a theory about enquiry‘. An implied concomitant 

sentiment is that until the theory is articulated, action ought to be delayed. The action 

is two-way however, for although theories are how we make sense of experience, 

experience is possible only through actions involving theory. 

Having been bothered for some time by the demands of journal editors to situate 

studies within acknowledged and named theories, it seems appropriate as a 

contribution to this working group to reflect on the nature of theories in mathematics 

education so as to clarify my own actions and choices. While well aware that there 

have been several similar discussions based on other approaches using semiotics 

(Radford 2008), and collections of essays (Sriramanet al.op. cit.), I choose a 

structural approach, using constructs elaborated by Bennett (1993) under the heading 

of Systematics,which hasitsroots in ancient psychology in drawing on qualities of 

numbers and which focuses on details overlooked in other expositions. 
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The overall structure of this paper self-referentlyfollows the discourse of the 

structure of attention (Mason 1996), since theories direct attention, and the direction, 

focus and nature of attention can be said to constitute one‘s theory.Useful 

distinctions within the discourse surrounding shifts of attention are the states of 

holding wholes (gazing), discerning details, recognizing relationshipsamongst what 

is discerned in the specific situation, perceiving properties as instantiated in the 

particular, and reasoning on the basis of agreed properties. Although closely aligned 

with generalized van Hiele levels (van Hiele 1986), the major difference is that rather 

than defining ‗levels‘, shifts are likely to take place moment by moment, back and 

forth in no particular order. The alert reader will discern that ‗holding wholes‘ was 

the orientation and role of this introduction. 

THEORISING THEORIES 

What do theories consist of, what are they useful for, and at the core, what really is a 

theory? Following the structure of attention, andhaving considered briefly the whole, 

I consider distinctions, relationships, properties, and potentialities in turn. 

Theory as Discerning Details through Making Distinctions 

To discern detail is to distinguish some ‗thing‘ from ‗something else‘. The root 

meaning of ‗theory‘ lies in the Greek theorein meaning ‗to see‘ and hence, through 

extension, ‗to perceive‘. Thus at its core a theory enables the discerningof detail, and 

it does this through providing labels for distinctions considered worthwhile, and 

embedding these in a larger discourse. For example Bruner (1966) distinguished 

three modes or worlds of experience, enactive, iconic and symbolic which provide 

distinctions between how thoughts or awarenesses are (re)presented, while 

scaffolding (Bruner 1966) and scaffolding&fading, (Brown, Collins &Duguid1989) 

label ways of choosing between teacher actions in relation to learners.  

That ―observation is theory laden‖ (Hanson 1958) has been noted many times. 

IndeedGoodman (1978) suggested that ―we want our theories to be as fact laden as 

our facts are theory laden‖. In other words, the theoretical constructs proposed need 

to be observable and present in relevant situations to the same extent that the 

distinctions made arise from and are based in an articulation of the theoretical stance.  

There are severe ontological consequences of the hyparchic act of labelling a 

distinction. Labelling a situation or action tends to reinforce its existence. For 

example, distinctions between conceptual and procedural,or between instrumental 

and relational understandingbegin by being helpful, but then mislead people into 

talking, and then acting, as if the distinctionswere natural, rather than regionsina 

continuum arising from people stressing some features and downplaying others. 

Theory as Recognising Relationships and Undertaking Actions 

Developing vocabulary is only part of the sense-making process that drives 

theorizing. Once discerned, details can be related to each other. A discourse 
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develops, incorporating (literally) the labels. Collections of related distinctions form 

frames or frameworks through which or by means of which one makes sense of and 

perceives phenomena. But sense-making must involve more than the use of technical 

terms and metaphors in order to qualify as sense-making. There must be some 

consequences beyond mere description. 

Theories contribute relationships to recognise between discerned elements, 

includingrelated and relevant actions which may be informed by or be justified by 

use of the discourse. The more elaborate the discourse, the stronger the impulse to 

perceive through that discourse.Labels can be used superficially to avoid thinking, to 

bypass insight, and to masquerade as wisdom, at least as easily as they can support 

and promote insight. 

Theories have been classified by a variety of adjectives, including descriptive, 

illustrative, explanatory, informative, predictive and evaluative, but these functions 

are more usefully seen as modes of interaction between an enquirer (researcher or 

teacher) a classroom or pedagogic situation and a theory. Bennett‘s Systematics 

suggests that actions require three impulses (initiator, respondent and mediator), and 

so can take place in any of six modes derived from the six permutations of the three 

impulses. Each mode is depicted below as a triangle, with the initiator shown at the 

top, the respondent at the bottom, and the mediator in the middle. The mediator binds 

the other two together so that an action can actually take place.  The result of the 

action is an actualisation or amplification of the mediating term. These actions can be 

read from the following diagrams, though there is not space here to elaborate. 

 

This sixfold structure can be used whenever something is perceived as mediating. 

Theory as Instantiating Perceived Properties in Activity 

Activity is recognisable through discerning details and recognising relationshipsas 

they emerge dynamically, but not in isolation. There is always a history, both 

personal and socio-cultural which influences the activity. In Systematics,activity is 

seen as involving four terms based on two axes: one based on resources and tasks 

and the other on the motivational gap between present-state (as perceived) and goal-

state (as desired). If space permitted, it would be possible to look at the researcher‘s 

activity in relation to the teacher‘s or learners‘ activity. 
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For example, Gibson‘s affordances, constraints and attunements (Greeno 1994) 

relates what is available, what is (necessarily) constrained or excluded, and what is 

needed in order to make use of the affordances and the constraints. 

Sustaining and promoting effective enquiry depends on perceiving properties of 

methodologically, epistemologically and philosophically well-founded activity as 

capable ofbeing instantiated in the specific activity. As one use of this way of 

perceiving activity, the resources a researcher has to call upon include their past 

experience, their awarnesses, the situation as experienced and interpreted, the 

mathematical and research processes in which they have engaged, their socio-

cultural-historical appreciation of the context and of pedagogic strategies and 

didactic tactics, and so on. But these have to come to mind, and that happens through 

metaphoric resonance and metonymic triggering, filtered through a value system. 

What comes to mind (phrased and framed in the discourse of the theory) informs and 

dictates what is possible: what specific acts will be instituted, what tasks will be 

undertaken and so on.  Tasks need to be in balance with available resources (too rich 

or too impoverished a resource base makes choice difficult or limited), and to be 

appropriate to the desired movement in the motivational axis. Similarly the current 

and goal states need to be in relation, neither too far apart (too great a challenge) nor 

too close together (too trivial to be worth bothering about). 

Each of the triples in the tetrad can be analysed as an action with its six modes, but 

there is no room for elaboration here. Theory can be read into a situation by 

observing the teacher‘s actions, and by seeking both prospective articulation of 

choices and retrospective justification of actions. 

Theory as Providing Potential through Reasoning on the Basis of Agreed 

Properties 

Theorizing is fed by enquiry, by the wish to ‗make sense‘, by desire to repeat and 

improve actions or interactions in some situations and not to repeat others, by desire 

to develop over time, in short by questioning. At the very least, a theory provides 

distinctions to discern. According to associated epistemic and ontic commitment, a 

theory articulates what sorts of questions can be asked, what sorts of things are 

deemed to bedata (what details to discern), what form of analysis might be 

undertaken (what features to attend to), what kinds of narratives are woven around 

that analysis, and what products (findings, insights, potential actions etc.) might 

emerge. Concomitantly, theory provides a discourse through which to validate those 

products.What theories contribute to is a sense of meaning, significance, insight and 
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a format for communicating findings, as well as prospectively informing actions or 

retrospectively justifying.  

At their best, theories provide a complete weltanschauung, a way of being as an 

enquirer, whether teacher, researcher, educator or learner, and they make it possible 

to communicate effectively both with oneself and with others through negotiated 

ways of working together so that insight and creativity inform future actions. 

All this amounts to theories as, at their most comprehensive, incorporating (again, 

literally) worlds of experience. These worlds encompass epistemic and ontic-

hyparchic commitment; they generate both a system of values which justify the kinds 

of products that merge, and the forms of validation that make sense within that 

world; they entail a view of the psychological and sociological influences and how 

the environment in its broadest terms influences the actors in the enterprise of 

mathematics education. For example (Mason 2002), 

A world of external facts entails and 

requires repeatable experiments, as in 

the natural sciences;  

A world of opinion and belief entails 

and requires surveys, questionnaires, 

interviews, as in sociology; 

A world of others‘ experience entails 

and requires participant observation and 

ethnographic and anthropological 

approaches; 

A world of involvement in action 

entails and requires change, 

prediction and evaluation, as in 

action research; 

A world of personal experience entails and requires sensitising oneself to notice 

what was previously not noticed, as in phenomenological &phenomenographic 

approaches; 

These ‗worlds‘ encompass assumptions, some of which are implicit while others may 

be explicit, and values concerning various aspects including what is data, what is 

done with data and what actions are promoted or critiqued. 

STRENGTHS AND LIMITATIONS 

Theories foreground some aspects and so necessarily background others. ―To express 

is to over stress‖ (Mason 1987), which is a necessary but ultimately limiting feature 

of human sense-making.  All sense made is partial. At any moment attention may be 

dominated by one or more of the aspects displayed below. 
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Conservationists of particular theories need to guard against inappropriate 

expansion, restriction or reinterpretation of distinctions, while eclectic gathering of 

useful distinctions, actions and relationships into explanatory narratives can all too 

readily become superficial. Focussing exclusively on the left-hand three ‗directions‘ 

in the diagram can be stultifying or simply jargon-ridden; focus exclusively on the 

right-hand three can lead to unsubstantiated claims and the preference for values 

over facts. 

Problematic Aspects of Theories in Mathematics Education 

I have already raised the issue of the ontic consequences of hyparchic acts of 

distinction making and labelling. Twofurther issues of particular concern are the lack 

of any generally agreed approach to agree on the meaning and use of technical terms 

within the mathematics education community,and the paucity of conclusions drawn 

from theories: can description be a sufficient end in itself? 

How is the use of technical terms agreed? 

Developing a discourse is one thing, but getting agreement as to the meaningful use 

of that discourse is quite another. To ‗use a theory‘ is,at the most basic level, to make 

distinctions which others who use the same theory would also make. This is a matter 

of some significance, on a par with the notion of robustness of social-science 

research instruments. It deserves far more attention than it gets. What mathematics 

education as a domain of enquiry notably lacks is an explicit and generally accepted 

methodfor how meaning is to be agreed or enriched. Curiously, there seem to be 

widely shared practices involving pre- and in-service teachers working on tasks 

through which they are likely to gain direct experience of what is being discerned 

and labelled (Watson & Mason 2007). 

A mathematical approach was adopted by the Open University in its many courses 

for teachers of mathematics over 30 years. We employed a parallel between the 

mathematical practice of offering examples and discussing explicitlyin what way the 

example actually exemplified the construct, with constructs from mathematics 

education having origins in different disciplines (Mason & de Geest 2010).   

Is theory being illustrated, tested, or used to some other end? 

When data is collected, distinctions made, phenomena identified and labelled, there 

is a pressing question: are the technical terms from the theory being exemplified and 

illustrated, are they being validated in some way, are they simply being used as 

descriptors to classify observed actions, or is the theory being used to draw 

conclusions? Sometimes it is difficult to work out which if any of these are intended. 

This applies especially to papers introducing a new or refined distinction, or drawing 

attention to a previously overlooked relationship that might, if accepted and 

acknowledged, constitute a phenomenon, a property perceivable as being 

instantiated. Typically papers do this in the early stages of the growth of a complex 
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of distinctions, relationships and properties in an effort to persuade others that the 

theory is pertinent, plausible, or useful.Unfortunately once absorbed into a complex 

theory distinctions and relationships become less attractive. Can it ever be sufficient 

to claim simply that distinctions can be made? Does it confirm a theory if the 

distinctions it comprises are ‗shown‘ to be discernible? In what way is a researcher‘s 

perspective transformed simply by using a richly technical language for describing 

observation? 

One weakness of current theories in mathematics education is a lack of definite 

conclusions, as well as an incomplete set of necessary conditions. But what 

conclusions might be possible? A plausible conjecture is that there is an often 

unstated assumption or hypothesis when theories are called upon: if the conditions of 

the theoretical constructs are met (if the labels really do apply), then learning will 

take (or have taken) place. However, to make such a conclusion possible it would be 

necessary to articulate a large number of conditions concerning the psyche of the 

learner(s) and teacher, their current states, and the many forces acting upon the 

situation from institutional pressures of all kinds.   

Variation theory (Marton2006)provides a notable exception, because it attempts to 

articulate certain conditions that are necessary for something to be learned; if those 

conditions are absent, learning will be at best fragmented and partial.  

COMING TO APPRECIATE A THEORY OR PARTIAL THEORY 

In order to use and appreciate what a particular theory offers, it is necessary to locate 

what is discerned and discernible, what relationships are afforded or highlighted, 

what properties are consequences, and what grain size the theory addresses. This in 

turn requires perceiving theoretical properties or constructs as instantiated in the 

particular or specific situation.  

Bricolage 

If while reading a paper or attending a session a distinction offered that makes 

immediate sense of past experience or current enquiries, it maybe adopted and 

adapted for use. This can be called cherry-picking (after the expression in English 

which summons up an image of picking the best fruit but leaving the rest of the tree 

and its life-cycle alone), but more positively, it contributes to bricolage (the use of 

found objects and available resources to create works of art or to make repairs). 

Reading around the distinction, finding examples of its use, perhaps becoming 

informed about its origins and where it arises in the overall thinking of the originator 

can be thought of as movement along a spectrum of involvement towards immersion. 
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Immersion 

To immerse yourself in a theory is to engage with all of its constructs, and, strictly 

speaking, not to stray outside of those boundaries, at least until it is completely 

familiar. Acceptance is achieved when papers are published in journals refereed by 

other experts who are also immersed in the same theory. 

Along a Spectrum 

Complete immersion is relatively rare. Most researchers depend upon the 

elaborations of a few scholars who devote considerable time and attention to 

immersion.  A common pattern is for an idea (a distinction, a construct) to be 

introduced into mathematics education (cherry-picking/bricolage) and when it is 

picked up and used by a few researchers, people begin to probe its origins, moving 

along a spectrum of increasing immersion in the setting and the background. 

It seems that adopting a distinction is relatively easy to do, especially where it makes 

sense of past or current experience and where it informs future actions. However it is 

all too easy to misinterpret or mis-appreciate the core meaning and use of a 

distinction, and then to use it in ways unintended by the originators. The 

ZPDprovides an excellent example: misunderstood through a single example, it 

became a metaphor for almost any teacher initiated action. Picking up a framework 

of distinctions is slightly more complex but can be assisted by relating the 

distinctions to personal experience (Mason 1999, Mason &deGeest 2010). 

Absorbing a complex of frameworks and a theoretical perspective that generates or 

encompasses them is much more difficult, and much less congenial for people who 

want to get on and act in the world rather than becoming scholars of someone else‘s 

ways of thinking, expressing and acting. 

DISCERNING BETWEEN THEORIES 

In order to distinguish between theories it is necessary to appreciate both, and to 

work at agreeing the meanings of technical terms (distinctions) to see whether there 

is overlap or significant difference. What the theory foregrounds, and what therefore 

it backgrounds, are critical. To do this effectively requires a commonlyaccepted 

approach to agreeing meaning through usage.  

When searching for a ‗suitable theory‘ on which to base an enquiry, what is really 

being sought is resonance with underlying assumptions and approach, with 

distinctions being made as being pertinent to the enquiry and as being likely to be 

observable, and with the sorts of conclusions, explanations, valuations etc. likely to 

arise. Too often the search ends when something doable has been located. 

CONDITIONS FOR CONJOINING THEORIES 

Radford (2008) has coined the notion of a semiosphere as a semiotic domain in 

which different theories might be conjoined, amalgamated or at least compared and 
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contrasted, through considering the principles, methods and questions associated 

with them.I propose that in order to compare, conjoin or even confirm theories 

successfully it is necessary to be clear on the intentions or uses of those theories and 

to reach mutual clarification of the worlds of experience they occasion, including the 

phenomena they recognise and at what grain size, and the sorts of conclusions, 

explanations etc. they afford: in short, what they foreground as worthy of attention. 

More specifically, this means the details discerned, the relationships recognised, the 

properties perceived as instantiated, and any consequences. 

For me the only underlying problem about conjoining theories (apart from intense 

investment in and identification with a particular discourse)arises from 

participants‘relation to complexity (Davis, Summara&Simmt2006). Consistency and 

compatibility can be valued, but so cancontrast/contradiction in a multiplicity of 

perspectives corresponding to the perceived complexity of the domain. The former 

stresses orthodoxy, the latter is flexibility.  

What blocks the comparison of theories is commitment to and investment in the 

exclusivity, the universality of different perspectives by different people. Underlying 

perspectives may differ, and there may be variation in what is considered worth 

attending to and for what purpose, but no theory can expect to be universal. The 

ancient teaching-story of the blind men and the elephant (Shah 1970 p119) comes to 

mind (an example of a situation resonating and-or triggering connections). Multiple 

theories applied to the same situation are likely to reach multiple conclusions, to 

characterise situations in different and even apparently incompatible ways. 

The real difficulty in conjoining theories is in finding a language which accepts that 

the situation being analysed, like the elephant, is always greater and more complex 

than the sum of the component observations.  One aim ofSystematicsis the eventual 

abandoning or fusing of insights gained through discerning various ‗systems‘, in 

order to return to a richer in-dwelling of the complexity of the experience. 

Complexity theory (Davis et al. op. cit.) appears to attempt something similar. 

Whether other theories aspire to their own transcendence is not so clear. 

One of the unfortunate features of theories is that the use of assertions such as ‗… is 

…‘ implies exclusiveness. Thus ‗mathematics is social‘or ‗mathematics is 

communication‘ can be taken to imply that other ways of perceiving are invalid, that 

mathematics is ‗nothing but‘ social or communication. Replacing ‗is‘ by ‗can be seen 

as‘ is one way to gain flexibility, acknowledge complexity, enrich analysis and be 

open to insights from other perspectives. To express is, again, to over-stress. 

CONCLUSION 

My analysis of theories has used the first five terms of a structural approach based on 

qualities of numbers known as Systematics (Bennett 1993). My discourse is centred 

on the structure of attention, suggesting that each individual or group of researchers 

accumulates a collection of distinctions, relationships, properties, significances and 
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values, and a discourse of technical terms for these.  These then form the discourse in 

which actions and activity are described, actions planned, observations and 

experience analysed, salient results reported, and claims validated. Most importantly, 

developing a common approach to agreeing meaning of technical terms takes place 

through discerning situations or incidents, recognising relationships, proposing these 

as instantiations of phenomena (perceived as having properties), and seeking 

agreement with colleagues about the relevance of the labelled distinctions, 

relationships and phenomena. 
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This paper explores the development of ideas in a recent journal paper that connects 

theoretical approaches in mathematics and science education. It re-constructs the 

development of the ideas presented in the journal paper through data obtained from 

interviews with the authors. This paper considers writing, engagement with research 

and other voices when people connect theoretical approaches. 

INTRODUCTION 

At CERME 6 Michèle Artigue (verbally in the theoretical perspectives working 

group) and I (Monaghan, 2010) raised a possible analogy between ‗instrumental 

genesis‘ (Guin & Trouche, 1999) and the development of researchers‘ theoretical 

ideas; we referred to this as ‗theoretical genesis‘. In this paper I explore the genesis 

of an informal meta-theory presented in Ruthven, Laborde, Leach, & Tiberghien) 

2009). With regard to the CERME 7, Working Group 16 ‗call for papers‘, the current 

paper touches upon issues in the 3
rd

, 4
th

, 5
th

 and 8
th

 bullet points – strategies, limits, 

conditions and outside (of mathematics education) influences in connecting theories. 

This paper is structured as follows. The first two sections explore the construct 

‗theoretical genesis‘ and then outlines the Ruthven et al. (2009) paper. The next 

section outlines my methodology, and the coding, for exploring the theoretical 

genesis of these four researchers. I then present a ‗story‘ of the development of ideas 

in the course of writing Ruthven et al. (2009). This is followed by a discussion of 

issues raised by the story. I end with issues for further consideration. 

THEORETICAL GENESIS 

As the term ‗theoretical genesis‘ was coined by analogy to ‗instrumental genesis‘ I 

begin with a summary of the latter term. The root word ‗instrument‘ pays homage to 

Vérillon & Rabardel‘s (1995) distinction between a tool, as a material object, and an 

instrument as a psychological construct – a tool is just an artefact until someone 

appropriates it and integrates it into activity. Tool and person are interrelated: the 

tool shapes the actions of the person, instrumentation; the person uses the tool in 

specific ways, instrumentalisation. The process of making a tool an instrument is 

called ‗instrumental genesis‘. This basic account, constructed to analyse students, 

and later teachers, use of technological tools in mathematical activity, is, to me, 

important, suasive and open to analogies of taking theories as tools which are 

appropriated by researchers in mathematics education activity. Subsequent 
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development of instrumentation theory, in which the psychological component, 

gestures and instrumental genesis are explained by way of the Piagetian notion of a 

scheme, are, I believe, a little problematic in themselves (see Monaghan, 2007) and 

not particularly useful for the analogy considered in this paper. 

Monaghan (2010) was a reaction to Bikner-Ahsbahs (2010) which addressed 

‗networking theories‘. An important part of this reaction was that theories cannot be 

separated from the people theorising. I stated that researchers come to theories with 

past experiences and ideas. They interact with theories in the light of these past 

experiences and ideas and, if the theory, or rather, a part of it, is convincing for the 

researcher, then the researcher develops and a variant theory, adapted to the past 

experiences, ideas and needs of the researcher, emerges. This is what I referred to as 

theoretical genesis. On reading Ruthven et al. (2009) the idea of interviewing these 

authors about their theoretical genesis arose. 

Although the term ‗theoretical genesis‘ is new, it relates to the history of ideas. In the 

history of mathematics Lakatos (1976) challenged then dominant ideas on the 

development of proofs and the importance of counterexamples. A forerunner in the 

sociology of scientific knowledge is Kuhn (1970) who characterised the history of 

science into periods of normal science punctuated by periods of radical 

reconceptualisation. Further developments, including actor network theory accounts 

of scientific advance, reconceptualised the nature and importance of agency in the 

development of ideas/knowledge (see Pickering, 1995). There is not space to do 

more than acknowledge this field here but I briefly return to this matter in closing. 

RUTHVEN, LABORDE, LEACH, & TIBERGHIEN (2009) 

Ruthven et al. (2009) is an important paper which advances the literature on 

connecting theories. I summarise it for the sake of completeness but this summary 

does not do justice to the rich details and arguments. I recommend the reader reads it. 

The paper frames it focus in terms of recent interest in design research, e.g. Kelly 

(2003), and the contribution of European didactical research in the design of 

teaching sequences that pay high regard to content knowledge. The authors comment 

that didactical design may be informed by tacit professional knowledge and/or 

‗grand theory‘. They note a move to develop ―specific frameworks, intermediary 

between grand theory and the process of design‖ (Ruthven at al., 2009, p.330) and 

attempt to ―develop more overarching ideas about the relations between grand 

theories, intermediate frameworks, and design tools‖ (ibid.); in the words of one 

author, after the paper appeared, they developed ―a kind of informal meta-theory of 

design tools, intermediate theories, grand theories‖. Their first example concerns 

Brousseau‘s Theory of Didactical Situations (TDS) as an approach to the design of 

teaching sequences in mathematics. Grand theories used come from Piaget and 

Bachelard; TDS is the intermediate theoretical framework; design tools are 

adidactical situations and didactical variables. They then present and contrast two 

design approaches in science education in which design tools are informed by grand 
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theories and intermediate theoretical frameworks. Terms and theorists aside there are 

commonalities in these science education design research approaches though 

―different cultural emphases and values can act against synthesis of intermediate 

frameworks and promote a proliferation of design tools‖ (p.341). Intermediate 

frameworks and design tools are viewed as ‗instruments‘ to guide theoretically 

informed decisions about the design of teaching sequences. TDS is sufficiently 

developed and recognised that reference to grand theories behind it are rare; ―the 

final teaching process results from … what is usually an iterative process of 

development‖ (p.332). The science education intermediate frameworks, like TDS, 

relate epistemology, learning and teaching. They mainly draw on grand theories 

about epistemology and learning rather than teaching; teaching activity is developed 

from professional knowledge. The paper notes: not all design tools are strongly 

theorised; it is important to raise awareness of design tools available; the importance 

of differences in the grain size of teaching sequences; the value of dialogue between 

different traditions of design research to develop a more comprehensive perspective. 

METHODOLOGY   

I approached the four authors (referred to as AT, CL, JL & KR) about interviewing 

them regarding their theoretical development in the course of writing this paper. Two 

group interviews were conducted by skype
TM

, the first with AT and CL, the second 

with AT, JL and KR. Both interviews lasted about 45 minutes. Each interview had 

three questions: how did this paper begin; what did you learn in the process; how 

does the paper advance knowledge. I viewed the first question as crucial as it related 

to theoretical genesis. In both interviews about 2/3 of the time was spent discussing 

the first question. The interviews were semi-structured in as much as I asked sub-

questions to follow up themes the authors introduced. The authors spoke freely and 

most of the interview transcripts consisted of interviewee text. 

The purpose of the interviews was to get an account of the development of ideas, a 

story of theoretical genesis; there is a sense in which research is story-telling which 

aspires to objectivity. The story, in my plan for the paper, would be the basis for my 

discussion of theoretical genesis. A problem (of sorts) was that the interviews 

provided two (interrelated) stories. I subjected the transcripts to open coding (á là 

Strauss and Corbin, 1998) but did not follow a grounded theory approach further 

than this as I had a theoretical framework, instrumentation theory. I marked extracts 

of transcribed text and gave them names (codes) which resulted in a lot of codes. I 

then merged codes where possible to produce a manageable number. An example of 

a merged code is ‗people‘ and the following extracts were all ‗people‘ codes: I asked 

several people to help me; AT had been working with several colleagues; JL 

contacted KR. There was no opportunity for a second person to code the transcripts, 

so my codes are open to criticism with regard to reliability. The codes were: 

Communication, e.g. ―to speak with the audience‖ 

Communities of practice (CoP), e.g. ―in the European academic community‖ 
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Design, e.g. ―thinking that would be the design of teaching‖ 

Learn, ―it helped me to see what a future agenda for work is‖ 

Meet, e.g. ―I popped in to see KR at Cambridge‖ 

People , see above 

Purpose, e.g. ―trying to put together academic perspectives‖ 

Subject (mathematics/physics), e.g. ―I‘m on the side of mathematics‖ 

Theory, e.g. ―we don‘t have the same theoretical framework‖ 

Write, e.g. ―we would like to publish this work in English‖ 

There was overlap between the codes, e.g.[our problem] ―how to report about 

research done in very different theoretical frameworks‖ was coded ‗theory‘ and 

‗write‘. The codes, however, were simply a means towards producing a story. After 

coding I produced a narrative from each interview, a summary using the 

interviewees‘ own words, paraphrases and my codes. I then merged the two 

narratives to construct the ‗story‘ presented in the next section. 

A STORY 

The following is based on the interviews and narratives. It uses the participants‘ own 

words and my codes wherever possible. 

AT, CL, JL & KR are senior academics and, as such, write and attend conferences 

(meet people). AT knows CL through French didactics CoPs, and knows JL through 

science education CoPs. CL knows KR through mathematics education CoPs. JL 

knows KR through British education CoPs. About six years ago AT was asked, by a 

research council, to write a review on naïve knowledge on the design of teaching 

sequences. She collaborated with others and decided the review should have four 

chapters. Towards this she worked with CL on one chapter and asked JL to give a 

keynote speech at a conference in Paris. JL‘s work was also focused on the design of 

teaching sequences. AT and CL worked on their chapter for one year and wanted to 

write a paper in English. Simultaneous with this AT met JL at several European 

conferences and they also exchanged ideas via e-mail. Both AT and JL place 

considerable value on subject knowledge in teaching and learning and felt that they 

has important things to say on the design of teaching sequences that would advance 

research but a stumbling block was differences in theoretical perspectives, basically 

that Francophone researchers embraced theory in a way that Anglophone researchers, 

in general, did not; communicating nuances of French didactical theory in English 

was not going to be easy. They needed a person who could help them to disseminate 

their ideas and KR, as a bi-lingual British researcher with a good knowledge of 

French didactics, was approached. It was decided that rather than writing a book 

integrating big strands of the literature, the publication should ‗scale down‘ to an 

aspect that was central to everyone‘s interest, the design of teaching sequences.  

Thus the group of four was formed: AT and JL as members whose past research 

formed the basis for an intended journal publication; KR and CL as members who 
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would find a position from which to reflect on this research, and its theoretical bases, 

to facilitate effective dissemination across different academic CoPs and their 

practices in academic discourse, as well as bringing a mathematics education 

perspective to the intended publication. There were two meetings of this group of 

four with the single focus of writing a journal paper, one in 2006 and one in 2007, 

but there were also a number of sub-meetings of two members before, between and 

after these whole group meetings, as well as e-mail exchanges. 

A key event in the 2006 meeting was collective reading of a special issue of 

Educational Researcher
1
 on design experiments Cobb et al. (2003) in particular. The 

group worked intensively on those texts and AT/CL brought perspectives from 

Francophone didactics literature/theory. They attempted to locate perspectives 

against and alongside each other (rather than making links between theoretical 

perspectives) in order to make decisions about which aspects to address in their 

journal paper
2
. At this time the construct ‗intermediate framework‘ was not explicit; 

both science educators had, with colleagues, published papers on design tools and 

their relation to grand theories but without mentioning intermediate frameworks. It 

was on the second day of the 2006 group meeting that the construct ‗intermediate 

framework‘ was formed because of a realisation that ―we were mainly speaking 

about tools without really distinguishing them‖ (AT). JL likened intermediate 

frameworks to Cobb‘s (2007) phrase ―make the theory do the work‖. 

The writing of the original paper was shared out, by sections, between the four 

members. This was a learning experience for all in terms of learning about each 

others research, constructs and theoretical orientations and also in terms of learning 

more about familiar theories and the new theoretical development. CL‘s work 

illustrates learning through writing. CL was assigned the section on TDS in the 

original paper. CL knew this theory well. It was not her intention to summarise the 

entire theory, only aspects relevant to the paper. CL became aware, through writing, 

that TDS was, in her words, an epistemological obstacle to her as, at the beginning of 

the collaboration ―it was very clear that when we did a design we had to use this 

theory‖ but by the end of the collaboration, with the grand theory-theoretical 

framework-design tools development, ―I could see the TDS within a range of 

different theories, I could structure more a range of theories through the tools we 

were proposing, through the intermediate theory, through the design tools‖ (CL). 

Further to this, the adidactical situation tool of the Ruthven et al. (2009) paper was 

not present in the original draft of the paper (more on this below). 

The paper was submitted in June 2008 and revised in December 2008. Writing the 

original submitted and the revised versions of the paper brought in two other groups 

of people the audience (Educational Researcher readers) and the reviewers.  

… we needed to think about … who is the audience for the work that we want to write, 

where are they coming from, what are their understanding, what are the ideas that they 

already know … [and to show] the design research community that has its base in the US 

… what the distinctive contribution might be of the European approaches to that North 
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American audience, so I think a lot of writing …  [was to bridge ideas] between the 

European tradition, primarily a didactical tradition, and a North American learning 

sciences tradition. 

The reviewers gave extensive and, to the authors, useful feedback which provided an 

occasion to develop the ideas further. Commenting on this feedback an author stated: 

the notion of design tools was well developed in the science education [work] … and [in] 

the version of the article that was originally submitted … [this idea] was more tied to the 

science education work … [in response to reviewer] comment on the fact that this just 

wasn‘t just developed in relation to Brousseau‘s TDS … [in the process of rewriting] we 

talk about the a-didactical situation tool. The didactics variables tool was already there 

and was kind of recognised as a tool even if it hadn‘t directly been given that name but 

one of the main aspects of the rewriting was to formulate this notion of the a-didactical 

situation tool. As the article points out, this is not that way that Brousseau himself … 

would talk about it … so it‘s a good example of … a process of writing for an audience 

and then getting feedback from reviewers, can …[shift]… the model that you build in 

writing a paper so that it develops greater coherence and communicates more effectively. 

The development of this ‗grand theory-theoretical framework-design tools‘ meta-

theory, then, can partially be ascribed to the need to communicate in writing for a 

specific journal and these other voices. Indeed, all of the authors repeatedly and 

positively mentioned personal development through the need to be explicit in the 

writing, as AT noted: 

… in France we are very theoretically orientated and it is not easy to disseminate, to make 

clear our theoretical orientations … [so collaboration] is very, very fruitful for us because 

it make explicit our own approach and it is a shared experience. 

DISCUSSION 

I raise four interrelated themes from the above story which I consider important to 

the development of theories before revisiting the construct ‗theoretical genesis‘. The 

four themes are writing, learning, engagement with research and other voices.  

Writing is a recurring thread in the above story: the paper started when AT was 

asked to write a review; AT worked on a draft chapter with CL which they wanted to 

write in English; when the team of four was composed, they decided to write a 

journal paper and targeted a specific journal; decisions of what to include were 

partially determined by the constraints of writing journal length papers; the writing 

was shared out; the submitted paper was rewritten. Whilst this is hardly surprising, as 

writing is a part of the job of academics, writing as a goal of joint activity of 

researchers networking theories is not something which I am aware has been raised 

in the literature on networking mathematical education theories. Writing to these 

authors was theory directed action and the need to be explicit in their writing acts 

was a part of their theoretical development, as the AT quote above demonstrates. 
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The need to be explicit shows that researcher learning in networking and developing 

theory is linked to writing (for other academics). I am sure that this will resonate 

with the experiences of most readers as they recall times where they have spent hours 

trying to get the words in the paragraph they are writing to express the thoughts in 

their mind. It is evident in the story that each of these four researchers learnt about 

the research and theoretical constructs of the other three researchers but they also 

learnt about their own theoretical stances. Networking theories usually involves 

networking with people and communicating ones own understandings, and 

sometimes we realise aspects of our own understandings in communicating that were 

hitherto implicit and we develop theoretically in the communication process. This 

happened in the case of CL in the section of the story which refers to epistemological 

obstacles. Brousseau‘s (1997) writings have popularised this construct amongst 

mathematics educators but Brousseau adapted the construct from the French 

philosopher Bachelard who applied it more widely than to just mathematics. An 

epistemological obstacle is any piece of knowledge that is relevant to a particular 

stage of a person‘s knowledge development but becomes an obstacle for further 

knowledge development. In the act of writing CL realised ―when we did a design we 

had to use this theory‖ but networking theories enabled her to not only view learning 

design anew but to see TDS as an epistemological obstacle for her. 

Networking theories in mathematics education is a process and a moment in the 

trajectory of theory development which interrelates with at least two other 

trajectories, networking researchers‘ own research and the research of others. In this 

paragraph I dwell on the research of others but first note that the advancement of and 

the networking of AT and JL‘s own research was clearly a catalyst for Ruthven at al. 

(2009) and the development of the informal meta-theory. The collective reading of 

the special issue of Educational Researcher and the paper of Cobb et al. (2003) was 

clearly an important event: ―this was a kind of source of inspiration for us‖, AT/CL 

interview; ―one of the key events was actually when we started reading and taking 

seriously the articles in the special issue of Educational Researcher‖, AT/JL/KR 

interview. Whilst the special issue and the Cobb et al. paper were valued by the 

authors, they also felt that related design research had been going on in Europe for 

some time and that there were differences in what the research communities either 

side of the Atlantic did, in particular that European researchers, in general, take 

subject content (mathematics & science) more seriously than North American (NA) 

researchers. So an emergent issue, reactions to the special issue, was transformed 

into a goal of Ruthven et al. (2009): to communicate European design research to a 

NA audience, which leads to the next theme of this discussion, other voices. 

In academic writing other voices (Wertsch, 1993) enter our writing: research 

collaborators, authors of research papers that have influenced us, the audience (for 

the journal we have selected) and, later, reviewers. These other voices were 

explicitly mentioned in the interviews, as interview extracts in the story above show. 

More controversially I hold that the audience and the reviewers‘ voices actually 

contributed to the networking and the theory development. Educational Researcher 
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is a respected NA-based journal. In order to communicate with its NA readers it was 

important, as an interview quote in the story makes clear, to mediate or bridge, i.e. to 

network, ideas from a European didactical approach and a NA learning sciences 

approach. In the case of the reviewers, they commented that the notion of design 

tools was not well developed in relation to Brousseau‘s TDS which led to the 

inclusion of the a-didactical situation tool in the revised paper.  

I now consider the term ‗theoretical genesis‘, its validity and whether it is 

appropriate to describe the four authors‘ development in the writing of Ruthven et al. 

(2009). I start by noting that the term is just two words and we can describe the 

process without the use of these two words. Nevertheless, constructs as terms, can be 

useful to encapsulate a set of ideas, though it is wise to avoid an unnecessarily large 

number of pseudo-scientific terms. Theoretical genesis, as noted above, was coined 

by analogy to the term ‗instrumental genesis‘ and I look at it via the main features of 

instrumental genesis, which I consider to be: it concerns an agent (or agents together) 

appropriating an artefact for a purpose; it is a process over time (though the duration 

is not important); there is two way interaction (instrumentation and 

instrumentalisation) between agent(s) and artefact; the agent(s) recognise and utilise 

affordances and constraints of the artefact. These features, I argue, were present in 

the development of Ruthven et al. (2009). A theory is an artefact and just an artefact 

until a person appropriates it and integrates it into academic activity; the team of four 

appropriated various (bits of) theory for a purpose (writing the paper). Ruthven et al. 

(2009) was a process that went through several stages: AT‘s initial discussions and 

writing with CL and JL; the recruitment of a ‗go between‘ (KR); meetings and sub-

meetings to clarify ideas; reconceiving ideas; various writing and rewriting actions. 

There was a two way interaction between authors and the theories, the authors 

shaped (bits of) theory for their purposes and theory advanced their thinking of 

design issues. The authors learnt many things in the process and this included the 

affordances and constraints of theories with regard to their goal of understanding the 

role of theories in the design of teaching sequences, e.g. CL‘s epistemological 

obstacle regarding TDS. But there are limits to the analogy, at least with regard to 

Guin & Trouche‘s (1999) technological instrument focus, because a theory, unlike a 

calculator, does not require physical manipulation and personal agency is greater 

with a theory than with a calculator, i.e. I am free to regard Brousseau as a 

constructivist or whatever but I am not free to do something on a calculator that it is 

not wired or programmed to do what I want it to do. Further to this, but neutral with 

regard to the analogy, instrumentation and instrumentalisation appear more 

pronounced with a theory-person dyad than with a calculator-person dyad: a theory, 

even a misunderstood theory, will shape my data analysis and hence my 

interpretation of data and I will adjust, consciously or not, the theory to my perceived 

needs. The term ‗theoretical genesis‘ does, to me, appear to be a valid term to apply 

to appropriation of theory in the course of writing Ruthven et al. (1990). This writing 

of this paper, however, generated a new theory (artefact), albeit an informal meta-

theory, which is not something expected in instrumental genesis. 
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Regarding the development of the four authors in this theoretical genesis I turn to 

what they claimed to have learnt. AT, CL and JL learnt about the work (including the 

theoretical stance) of the others and about their own work, which may be taken as 

learning about positioning their own work in relation to the work of others (CL ―I 

could see TDS within a range of different theories‖). Theoretical genesis appears, for 

these researchers, to include making connections between theoretical stances. KR‘s 

theoretical genesis also concerned such connections but as an ‗outsider‘ ―trying to 

find some position from which to reflect on these theories‖. Further learning in this 

theoretical genesis included using the theory. AT learnt ―how to manage, how to 

construct these intermediate theories‖. CL learnt that ―didactic variables could be 

used not only in mathematics‖. JL learnt that ―you can actually strip away the theory 

now and use them [design tools] as tools‖ [in the design of teaching sequences]. The 

use KR mentioned is encapsulated in the title, a way of talking about mathematics 

and science education and to connect bodies of literature. 

ISSUES FOR FURTHER CONSIDERATION 

Space is limited but I briefly raise issues for further consideration concerning this 

study, the sociology of scientific knowledge and research praxeologies. 

The networking and generation of theories/theory explored in this paper is only one 

example of theoretical genesis and is, I suspect, quite an atypical example. As 

evidence for this consider Radford (2008), cited by many papers in the theoretical 

perspectives section of the CERME 6 proceedings. Radford states that ―a theory can 

be seen as a way of producing understandings and ways of actions based on‖ (p.320) 

a system of basic principles, a methodology and a set of paradigmatic research 

questions. I think that this statement holds for much theory-informed empirical 

research but not for Ruthven et al. (2009) as it does not include a set of research 

questions. In this respect, then, it is atypical. It would be interesting to research 

theoretical genesis in research conforming to Radford‘s statement but there would be 

considerable difficulties in conducting such research. More realistic research could 

monitor theoretical development/genesis in post graduate student research. 

At the beginning of this paper I raised links between the focus of this paper and work 

in the sociology of scientific knowledge. It is interesting that there are few references 

in the mathematics education networking theories literature, including CERME 

proceedings, to this field of study. Study of generating and networking theories in 

mathematics education in the wider setting of the sociology of scientific knowledge 

would, undoubtedly, be useful. As a small step towards this CL‘s epistemological 

obstacle, considered above, might be seen as a ‗local‘ (21
st
 C France) instance of 

Kuhn‘s (1970) hold of ‗normal science‘, and one researcher‘s realisation of this 

During CERME 7 WG 16 Artigue, Bosch and Gascñn (this volume) was discussed 

and it was clear that much that I report on here could be recast in terms of research 

praxeologies but there is, unfortunately, no space left for me to do this. 
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NOTE 
1Educational Researcher, 32(1), 2003. 
2
Not all aspects were included in Ruthven at al. (2009) due to length considerations and the 

refinement of ideas, e.g. in 2006 the paper had a semiotic dimension that was not in the final paper. 
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MEANING OF MATHEMATICAL OBJECTS: A COMPARISON 

BETWEEN SEMIOTIC PERSPECTIVES 

Giorgio Santi 
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In this paper we present a networking of semiotic perspectives to frame the issue of 

meaning of mathematical objects. We will connect Duval‘s structural approach and 

Radford‘s cultural semiotic approach to analyse students‘ difficulties with the 

meaning of mathematical objects when exposed to semiotic transformations.  

Keywords: semiotics, transformations, networking theories, objectification, meaning 

INTRODUCTION 

D‘Amore (2006) shows that, at all school levels, students encounter difficulties in 

coping with the meaning of mathematical objects in relation to their semiotic 

representations. These results question Duval‘s claim that conversion (transformation 

that involves 2 semiotic systems) is the key cognitive function that guarantees a 

differentiation between mathematical objects and their representations, and that 

conversion is the cognitive threshold the student has to overcome in order to reach a 

correct conceptualization. Furthermore, Duval considers conversion the main source 

of difficulties when learning mathematics since it clashes with the cognitive paradox 

that leads to identify the mathematical object with its semiotic representation. 

D‘Amore‘s results show that at all school levels students find severe difficulties also 

when they are exposed to treatments (transformation within the same semiotic 

system). We have singled out 2 episodes taken from primary school and university.  

Primary school students working on probability recognise that 3/6, 1/2, 50/100, 50% 

represent the probability of rolling an even number, when throwing a 6 face die, after 

performing both treatment and conversion transformations. But after a treatment 

transformation from 1/2 to 4/8 students and teacher don‘t recognise in 4/8 the same 

probability. It is interesting that the teacher declares that «4/8 cannot represent that 

event because the die has 6 faces. Dice don‘t have only 6 faces, there are also dice 

with 8 faces; in that case yes, the fraction 4/8 represents the probability of rolling an 

even number». 

The research problem has been framed within Duval‘s structural and functional 

semiotic approach that considers meaning as a relation between the signifier and the 

signified, i.e. between the representation and the entity the representation refers to. 

Since a mathematical object has more semiotic representations there are more 

signifiers for the same signified, that are equisignificant. D‘Amore termed the 

phenomenon we described above as a change of meaning due to treatment 

transformations, to express the idea that students break the equisignificant relation 
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that binds the different representations through the common mathematical object 

they denote.  

The intrinsic inaccessibility of mathematical objects makes changes of meaning an 

expected phenomenon in conversion transformations since the passage from one 

representation to the other is not sustained by the direct reference to the common 

object nor by transformation rules that bind the two semiotic systems. It is an 

unexpected phenomenon in treatment transformations since the passage from one 

representation to the other is sustained by the specific transformation rules of the 

semiotic system involved.  

This paper addresses the issue of changes of meaning by networking Duval‘s and 

Radford‘s semiotic approaches.  Using suitable networking strategies, our aim is to 

provide a conceptual framework to scrutinize the issue of ―changes of meaning‖. The 

networking process we propose leads to the broadening both of the notion of sign 

and the notion of meaning, by integrating  different ontological and epistemological 

standpoints. In the next section we provide basic theoretical tools regarding the 

connection of theories in Mathematics Education. Then we construct a conceptual 

framework that we will use to analyse a protocol taken from an experimentation with 

primary school students. In the last section we propose some concluding remarks.    

NETWORKING THEORIES 

Connecting theories is important to reduce the inflation of theoretical perspectives 

thereby bestowing mathematics education a global coherence, theoretical and 

methodological unity, effective research design. It also enhances a spin off in 

education to improve teaching and learning. We introduce some basic conceptual 

tools that play an important role in the networking of theories.  

Radford (2008a) develops his analysis of theories within a social-cultural space that 

he calls the semiosphere, a space that fosters interaction and dialogue between 

different cultural identities. In a networking perspective, the semiosphere blends two 

important plots, integration of its entities in view of a synthesizing objective and 

differentiation that fosters identity and self-knowledge.  

In a networking perspective it is useful to give an effective characterization of 

theories in mathematics education. For our purposes we focus on Radford (2008a) 

who identifies a theory T in mathematics education as a triplet T(P,M,Q), a dynamic 

structure consisting of  a system of principles, a methodology and a template of 

research questions. The system of principles defines the nature of the theory. It is 

important to note, especially when connecting theories, that the principles of a theory 

are not a juxtaposition of claims but they belong to a structured system. We must 

take into account not only the principles themselves but also their hierarchical 

position in the system. One or more principles can be common to more than one 

theory but this doesn‘t imply that such theories are equivalent, if such principles 

have a different position and relationship in the hierarchy. The system of principles 
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is very effective to outline the boundaries (Radford, 2008a) of a theory. The 

boundary of a theory is a threshold that cannot be overcome without loss of identity. 

The boundary sets the limit of discourse of a theory, beyond such limit the theory 

contradicts its systems of principles. 

Networking of theories in the meta-theoretical space of the semiosphere, requires to 

blend integration and identity/differentiation plots. There are two possible extreme 

behaviours. On the one hand, if we overweigh the plot of identity, the risk is to have 

a set of disarticulated theories that ignore themselves on the other hand if we 

overweigh the plot of integration we end up with ―a theory of everything‖ that is 

unable to frame the complexity and variety of teaching-learning processes. 

Prediger, Bikner-Ahsbahs, & Arzarello (2008) propose a ―landscape‖ of possible 

connecting strategies that, within the space of the semiosphere, balance identity and 

integration. The following schema taken from the aforementioned article shows the 

networking strategies ordered according to their degree of integration: 

 

Fig. 1: Degrees of integration in networking strategies.  

In this paper we will apply coordinating as networking strategy. Coordinating is a 

strategy that connects two or more theories in view of describing an empirical 

phenomenon or tackling a particular research issue. The outcome of this connecting 

strategy is not a coherent complete theory, but rather a conceptual framework that 

allows to coordinate different theoretical tools for the sake of a specific objective. 

Coordinating is a viable strategy when it connects theories that share a high level of 

complementarity and coherence. 

A CONCEPTUAL FRAMEWORK FOR CHANGES OF MEANING  

Before connecting the two semiotic perspectives we briefly recall Duval‘s and 

Raford‘s system of principles, focussing in particular on how the two perspectives 

frame the meaning of mathematical objects. 

 Duval‘s Structural and Functional Approach 

Duval‘s (1995) approach stems from a realistic view point that considers 

mathematical objects a priori inaccessible ideal objects. Since mathematical objects 

are inaccessible entities, the theory pivots around the notion of semiotic systems and 
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the coordination of semiotic systems through treatment and conversion 

transformations. A semiotic system is characterized by a set of elementary signs, a 

set of rules for the production and the transformation of signs and an underlying 

meaning structure deriving from the relationship between the signs within the 

system.  

Mathematical objects, that  cannot be referred to directly, are recognised as invariant 

entities that bind different semiotic representations as treatment and conversion 

transformations are performed. Duval identifies the specific cognitive functioning to 

mathematics with the coordination of a variety of semiotic systems. Both the 

development of mathematics as a field of knowledge and its learning are 

accomplished through such specific cognitive functioning.  

Duval develops Frege‘s classical semiotic triangle (sinn-bedeutung-zeichen) and 

identifies meaning with the couple (sign-object), i.e. a relationship between a sign 

and the object it represents. The sign becomes a rich structure that condenses both 

the semiotic representation (zeichen) and the way the semiotic expression offers the 

object in relation to the underlying meaning of the semiotic structure sinn. Meaning 

therefore has a twofold dimension: sinn, the way a semiotic representation offers the 

object; bedeutung the reference to the inaccessible mathematical object. Meaning 

making processes and learning require to handle different sinns networked through 

semiotic transformations without losing the bedeutung to the invariant mathematical 

object.   

The following schema represents  the construction of meaning when several semiotic 

systems are coordinated to conceptualize a mathematical object. 

 

Fig. 2 Meaning and changes of meaning in Duval‘s approach 

In this framework, the research question is: how can students recognize the common 

bedeutung as the sinn changes through semiotic transformations? What we have 

above termed a ―change of meaning‖, is a change of bedeutung as the sinn changes. 

Radford‘s Cultural-semiotic approach.   

Within a socio-cultural and phenomenological standpoint, Radford‘s (2008) 

approach ascribes reflexive mediated activity, a central role both in cognition and in 
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the emergence of mathematical objects. The reflexive activity entangles 

mathematical objects, semiotic resources, individuals‘ consciousness and intentional 

acts, within social practice and a cultural and historical dimension.  

Mathematical objects are fixed patterns that emerge from the reflexive mediated 

activity. Mathematical objects lose any ideal and a priori existence but they are 

ontologically intertwined with the mediated activity from which they emerge. 

Nevertheless, mathematical objects acquire a form of ideality and existence in the 

culture that encompasses the reflexive activity.  

Learning is considered an objectification process accomplished through a reflexive 

activity, a meaning making process that allows to become aware of the mathematical 

object that exists in the culture, but the student doesn‘t recognize. The complexity of 

the objectification process requires to broaden the notion of sign and go beyond its 

representational role, since signs culturally mediate activity and direct the 

individual‘s intention towards the mathematical object. Signs are termed as semiotic 

means of objectification and they include, artefacts, gestures, language, rhythm. 

Semiotic means of objectification stratify the mathematical object into levels of 

generality according the reflexive activity they mediate. 

 

Fig. 3 Meaning and changes of meaning in Radford‘s perspectives 

Meaning is no longer a mere relation sign-object, but is deeply interwoven with the 

reflexive activity, with intentional acts culturally mediated by semiotic means of 

objectification. Meaning is a double sided construct with a personal and a cultural 

dimension. The personal dimension refers to the individual‘s intentional acts directed 

towards a cultural unitary object. The cultural dimension refers to cultural and 

historical features that are condensed in the general and interpersonal mathematical 

object brought to the individual by teaching activities. The expected outcome of 
learning as an objectification process, is the alignment of the personal 
meaning with the cultural meaning.  

Boundaries 

Although both the theories we analysed are semiotic perspectives - if we look at the 

relationship with cognition - semiotics has a different hierarchical position in the 

respective system of principles. Therefore, the two theories have strong boundaries 



Working Group 16 

CERME 7 (2011) 2508 

 

that separate them. This brings along also differences regarding the nature of 

mathematical objects and processes. In Duval‘s approach semiotics plays a 

representational role and it is the very substance of cognition that is identified with 

the coordination of semiotic systems. In Radford‘s perspective cognition is 

considered a process of objectification in which signs mediate a reflexive activity. 

Furthermore, the way signs are used is very different. In Duval‘s perspective, 

semiotic representations are used diachronically through treatment and conversion 

transformations. Whereas in Radford‘s perspective, a wide range of semiotic means 

of objectification are used synchronically organized around a particular mediator that 

changes as the level of generality changes. The different hierarchical position of 

semiotics allows Radford to broaden the notion of sign to include gestures, artefacts, 

rhythm, kinaesthetic activity etc. that Duval would never consider semiotic.  

The different hierarchical position of semiotics stems from the different ontologies 

behind the two theories. The structural and functional approach has a realistic view 

of mathematical objects that ascribes to semiotics a representational role and to 

meaning a relation sign-object. The theory of objectification has a pragmatic stand 

towards mathematical objects that ascribes to semiotics the role of mediating a 

reflexive activity, the ―substance‖ of ontology, meaning and cognition. Mathematical 

process are also differently positioned in the system of principles. Duval identifies 

the mathematical activity with the transformation of signs, subsumed in the robust 

structure of the semiotic systems that accomplish discursive and meta-discursive 

functions. Radford considers activity a form of reflection that involves the individual 

as a whole – his consciousness, feelings, perception, sensorimotor activity etc- 

immersed in a system of cultural signification that orients his intentional acts.  

Networking by ―Coordinating‖ strategy 

At a more profound level, any attempt to enlarge one of the theories subsuming 

elements of the other conflicts with its epistemological foundations. Nevertheless, 

the boundaries that separate the two theories do not imply an opposition between the 

two perspectives. Ullmann (1962) highlights two complementary features that 

characterise the development of mathematical objects: the operational phase and the 

referential phase. On the one hand mathematical objects and their meaning emerge 

from and are objectified by a reflexive activity, on the other hand it is necessary to 

linguistically refer to the entities that emerge from such practices. The dual nature of 

mathematical objects – as patterns of activity and as ―existing‖ ideal entities in the 

culture – implies that also meaning and semiotics have a dual nature. In the 

connecting theories terminology, the strong differences result in a high level of 

complementarity that accounts for networking by coordinating the two perspectives, 

respecting their identity. Coordinating Duval‘s and Radford‘s theories allows to 

encompass the double-sided nature of objects, meaning and representations. 

The emergence of a mathematical object and its objectification is described by the 

cultural semiotic perspective whereas the reference to the object is accounted for by 



Working Group 16 

CERME 7 (2011) 2509 

 

the structural and functional approach. Meaning as a sense making process of the 

individual and as the activity culturally condensed in the institutional object are 

described by Radford‘s approach; meaning as the interplay between sinn and an 

bedeutung is framed by Duval‘s approach. The coordination of the two theories is in 

turn achieved by the dual nature of semiotics. On the one hand signs mediate 

reflexive activity on the other hand they represent objects and broaden our cognitive 

possibilities through semiotic transformations. Our general conjecture is that a 

successful outcome of mathematical learning processes rests on the dual nature of 

semiotic resources, i.e. as semiotic registers and semiotic means of objectification; as  

a semiotic mean of objectification a sign -synchronically interwoven with a rich 

arsenal of mediators – supports the reflexive activity; a sign belonging to a semiotic 

system can be diachronically transformed into another to connote and denote 

mathematical objects. They are two complementary and interwoven aspects of the 

same phenomenon. 

 

Fig. 4  The complementary roles of Duval‘s and Radford‘s approaches in framing the 

meaning of mathematical objects. 

If we disregard signs as semiotic means of objectification, learning is an empty and 

meaningless manipulation of signs, if we disregard signs as belonging also to 

semiotic systems, mathematical objects wouldn‘t have developed into the form of 

rationality we know today and their conceptual acquisition would be impossible. The 

changes of meaning can be traced back to semiotic transformations that are not 

sustained by a mediated reflexive activity that guarantees the relation to the common 

cultural meaning of the mathematical object. The technology of the semiotic system 

allows the transformations of signs, but meaning in its cultural and personal sense 

evaporates, thereby losing also the correct interplay between sinn and bedeutung. 
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ANALYSIS OF A PROTOCOL  

Methodology 

The experimentation was carried out with grade 5 students (10 years old) of a 

primary school in Bologna. The class (20 students) worked according the following 

schema: presentation of the activity by the teacher and the researcher; students work 

in small groups with the help of the teacher; general discussion with the whole class. 

Students worked on sequences represented in a figural register; they were exposed to 

3 figural representations of the same sequence. We will analyse the sequence 

an=n
2
+2n focussing only on two different figural representations that are reported 

below.  

 

 

 

Students were asked to find the general schema to determine the number of elements 

for any number of the figure. Then they were asked if the different figural 

representations referred to the same sequence.  

Results 

Most of the groups that were able to determine the general schema, also recognized 

the same sequence as the figural representation changed. Without any explicit 

request, some students even attempted a first algebraic symbolism to express the 

general rule Video tapes testify also students‘ rich sensory-motor activity, conveyed 

mainly by gestures, that I cannot relate here but it is clearly condensed in the 

explanation of the two schemas where the generality of the rule is expressed with 

spatial-geometrical properties as base, height, inside, outside. Below the protocol of 

group 5 with the general schema to determine the number of elements of any figure 

of the sequence. 
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We multiplied the number of the 

figure for the base and the number 

of the figure +2 as the height. 

We added the square of the number 

of the figure for inside and the 

number of the figure x 2 for outside. 



Working Group 16 

CERME 7 (2011) 2511 

 

Interpretation 

The pupils were successful in finding the schema for the general term of the 

sequence
83

 and they didn‘t change meaning when exposed to treatment 

transformation in the figural register. To understand how students accomplish this 

result we have to use the conceptual framework we constructed above. Using 

semiotic resources both as semiotic means of objectification and semiotic registers, 

pupils grasp the dual nature of mathematical objects and their meaning.  

Cultural-semiotic interpretation: Students objectify the mathematical sequence 

within the sociocultural space of the classroom. The use of semiotic means of 

objectification pivots around the figural representation that allows also the 

synchronic use of gestures and the sensorimotor activity. The activity was extremely 

meaningful to the students because it was intimately connected to their embodied 

experience. As the students are more and more involved in the reflexive activity 

there is an increasing agreement between the personal meaning and the cultural 

meaning of the mathematical object, thereby accessing  higher levels of generality. 

This accounts for both the recognition of the same sequence, as the figural 

representation changes, and the spontaneous attempt to introduce a syncopated 

algebraic notation for the general term of the sequence.  

Structural and functional interpretation: Students carry out a complicated network 

of semiotic transformations that involve both treatment and conversion. The task 

proposed to students, requires to connect three semiotic systems: the figural register, 

natural language and the arithmetical register. First of all, a very difficult conversion 

is necessary to construct the function that associates the number of elements in the 

figure to the number of the figure. Also to recognize the general schema of the 

sequence, students perform a conversion that involves the above registers; they first 

find the number of elements for a small number then they generalize the schema to a 

big number, thereby arriving to the general term of the sequence. The conversions 

are carried out passing the following order: figural register-arithmetical register (to 

calculate the number of elements in the figure)-natural language (to represent the 

general term). The outcome of the coordination of such semiotic systems is that 

students  recognize the common reference (bedeutung) as the figural representations 

(sinn) changes.  

Our contention is that students are able to handle meaning correctly at the referential 

level because the semiotic transformation is supported, at the operational level, by a 

                                           

83
 Without an algebraic expression the sequence could not be univocally determined but the figural 

representation somehow fixes the general schema. Furthermore, the search for a general schema in 

this type of task is a social practice recognized by students, that allows to objectify the cultural 

object ―numerical sequence‖ at a lower level of generality. 
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strong embodied reflexive activity that involves the students consciousness within a 

sociocultural space of signification.  

CONCLUSIONS 

This paper shows the effectiveness of coordinating two complementary semiotic 

perspectives to understand a specific didactical phenomenon. The analysis of the 

protocol shows that complementarity entails a diachronic use of the two 

perspectives.  The systems of principles of the two perspectives fix and determine the 

phenomena we are looking at and the questions we are addressing. The cultural 

semiotic approach allows to investigate, from a sociocultural viewpoint, 

objectification processes whereas the structural approach, from a realistic standpoint, 

allows to analyse the coordination of semiotic systems. The boundaries between the 

systems of principles require a diachronic shift from one analysis to the other and we 

cannot merge the two theories into a synchronic analysis.  

On the one hand networking at the level of coordination fosters the plot of identity 

without reaching a more encompassing new theory, rather a new conceptual 

framework. On the other hand the lower degree of integration allows to tackle a 

specific empirical phenomenon that allows a transformation both of our discipline 

and researchers. The plot of identity enhances a negotiation between theories and 

researchers in a process that  Radford (2008a) calls togethering. Something I 

personally experienced in my doctoral research from which this paper stems.  
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As mental constructs, mathematical objects are of abstract nature and have no 

references in the physical world. The mathematical objects are experienced and 

processed through various external representations. We propose astructural model 

that accounts for external representations as mediators of meanings in the 

mathematics classroom. During construction of the model, we particularly pay 

attention to negotiating disciplinary and individual perspectives regarding structure 

and specific constructs, with the objective to support understanding of the role of 

external representationsthat are used and processed in the mathematics classroom. 

INTRODUCTION 

It may be argued that the development of cognitive capabilities is inseparable from 

the sociocultural practices that constitute the context of their development (Cobb, 

2006). On the other hand, we may argue that somestructural features of cognitive 

development are independent of context, for example connecting modes of 

interaction in the physical world with modes of thought that we acquire through 

processing of impressions and experiences from this interaction (Bruner, 1966).  

The philosopherCharles Sanders Peirce proposed in the late 19
th

 century a theory of 

signs that accounts for human understanding of impressions and experiences based 

on interpretation of physical entities (Houser & Kloesel, 1992). Peirce‘s theory of 

signs is structural and general in character, makes no paradigmatic assumptions 

about learning, and therefore appears to be consistent with any learning theory. 

There are several instances of important theoretical constructs in mathematics 

education that may be interpreted within Peirce‘s theory of signs, for example 

procept as the amalgam of process and concept (Tall et al., 2001) and  registers of 

representations that allow mathematical processing (Duval, 2006).We will propose a 

unifying structural model, based on Peirce‘s theory, as a structural foundation for 

understanding the role of representations in the mathematics classroom.  

We will consider mathematics classroom practice from a pragmatic viewpoint, as a 

practice within which mathematics teachers teach the subject and also teach to their 

students. The disciplinary learning objectives, as expressed in steering documents 

and interpreted by the teacher, relate to features of mathematics as a school 

subjectand do not explicitly account for individual variation in knowledge between 

students. With regard to teaching mathematics, such a disciplinary perspective 

reasonably has to be combined with an individual perspective which considers each 

individual student as a learner in the classroom. The two perspectives relate to the 

dichotomy between mathematics as a body of knowledge and as a social domain of 
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enquiry (Ernest, 2004). In the current study, disciplinary and individual perspectives 

are readily combined as they are considered from a pragmatic viewpoint, simply as 

two perspectives that have to be accounted for and negotiated with respect to 

teaching and learning in the mathematics classroom. 

RESEARCH OBJECTIVE 

We aim to develop a unifying model of theoretical constructs and theories to account 

for the role of external representations as mediators of individual meanings in the 

mathematics classroom.The model will attempt to account for learning mathematics 

as a negotiation of individual and disciplinary meanings.  

Although such a model puts focus on individual cognition, our ambition is to avoid 

making paradigmatic choices regarding learning theories, so that the model may be 

interpreted as a local but universal complement to understanding individual 

cognitive development in the context of mathematical classroom practice.   

THE ESSENTIAL ROLE OF REPRESENTATIONS IN MATHEMATICS 

From an epistemological perspective, mathematical objects have a very specific 

status compared with objects in many other domains of scientific knowledge as the 

mathematical objects are never accessible by perception or by instruments (Duval, 

2006, p. 107). We gain access to the mathematical objects through their 

representations. For example, the number ―five‖ cannot be experienced in the 

physical world, in contrast with the physical object ―tree‖ which we can access 

directly through our senses. We can understand quite a lot about a tree through our 

senses and without representing it, for example by taking a picture of the tree, talking 

about the tree, or by recalling its name and associating the name to known facts 

about that particular kind of tree. The figures below, following Duval (2006, p. 114), 

summarize the differences between representations of mathematical and physical 

objects. In these figures, ―content‖ should be understood as a mental construct or 

internal representation, while ―representation‖ refers to the external representation 

which is accessible for inspection. Furthermore, ―object‖ should in both cases be 

regarded as a mental construct, while the notion ―physical object‖ refers to physical 

(external) instances of the object. 

 

Figure 1: Mathematical (mental) objects Figure 2: Physical objects 

OBJECT CONTENT 

REPRESENTATION 

OBJECT CONTENT 

REPRESENTATION 
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In Fig. 2, there is an obvious causality in that the physical object is a natural 

reference for the representation. The representation of a physical object may be 

regarded as a consequence of the object, while the representation of a mental object 

(Fig. 1) evokes a content which is required to experience the object. A mathematical 

object such as five cannot be experienced directly through our senses but must be 

understood in terms of its representations, neither of which should be confused with 

the mathematical object. To avoid the mistake of confusing the mathematical object 

with any of its representations, several representations of the same object should be 

experienced and contrasted by the learner. The mathematical object may be regarded 

as the invariant of the representations.     

When the learner becomes acquainted with a mathematical object through its 

representations, it is reasonable to claim a direct connection also between object and 

representation. The two models above may then be merged into one model, where 

the objects are allowed to be either of mental or physical nature. This unifying model 

is often referred to as Ogden‘s semiotic triangle, although there are several similar 

versions in the literature (Fig. 3, following Ogden & Richards, 1923, p. 11). The 

symbols stand in direct relation to thoughts (content) and only indirectly to things 

(objects) in that the symbols direct and organize thoughts, record and communicate 

thoughts (ibid, p. 9). With regard to mathematical objects, we find it more fruitful to 

draw on the model in Fig. 1 and the corresponding ―mature‖ model in Fig. 4, which 

may involve not only one but several representations of the same object.  

Figure 3: Ogden’s semiotic triangle  Figure 4: Physical or mental objects 

Each representation enriches the content and may both strengthen and extend our 

understanding of the object, which in turn may influence new representations which 

add to the content in a cyclic process. Especially with regard to problem solving, it is 

important to note that a specific aspect of the content may not be supported by an 

arbitrary representation. For example, it is not possible to make sense of addition of 

positive whole numbers by representing them as points on a number line. However, 

addition may be understood on the number line if numbers are represented 

dynamically as repeated one-step jumps or by number arrows (vectors).   

When the student processes a new representation, preliminary content and a 

preliminary object (Fig. 5) are attributed to the representation. The student may 

spontaneously construct thematized objects of thought (Piaget;in Tall, 1999) by 

making connections between preliminary objects (Fig. 6). The process of thematizing 

may for example be supported by baptizing objects (Sfard, 2000) or by supplying 

OBJECT CONTENT 

REPRESENTATIONS 

REFERENT 
THOUGHT OR 

REFERENCE 

SYMBOL 
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concept definitions (Tall & Vinner, 1981). For example, baptizing five apples as 

―five‖ and baptizing further representations (such as five fingers, the symbol 5, five 

marks on a paper) using the same name, may support students‘ associative processes 

towards perceiving ―five‖ as a thematized object. Another approach to supporting 

association of representations would be to define the concept ―five‖ as referring to a 

certain number of objects, for example ―as many as the fingers on one hand‖.   

 

Figure 5: Preliminary objects Figure 6: Thematized object 

NEGOTIATING DISCIPLINARY AND INDIVIDUAL PERSPECTIVES 

What is a mental object? According to the model in the previous section, the object 

emerges as a consequence of thinking about an external representation. Obviously, 

different individuals may think about the same representation in different ways. 

Nevertheless, the notion of object is often used from an objectivist perspective, 

where a pre-defined content is assigned to objects based on (some) disciplinary 

understanding of mathematics. Such a definition rules out the possibility of relating 

to students‘ preliminary objects as individual mental constructs associated with one 

or several representations. With regard to our research objective of negotiating the 

notion of meaning in the mathematics classroom, it is necessary to acknowledge 

individual differences while still accounting formeanings that may be attributed to 

mathematics as a discipline. However, we find it neither necessary nor fruitful to 

defineone notion of content and object. Rather, we will propose two separate 

definitions, one from an individual perspective and one from a disciplinary perspec-

tive. But first, we would like to discuss two examples which highlight the problems 

with a one-sided objectivist perspective on the notion of content and object.    

Our first example is attributed to Husserl (quoted in Ogden & Richards, p. 271) who 

claims that equiangular triangles and equilateral triangles ―name the same object‖.  
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R3 
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Figure 7: An equiangular triangle Figure 8: An equilateral triangle 

Husserl acknowledges that the two entities have different ontological status in that 

he states that there are two distinct meanings related to each name. Nevertheless, the 

claim is that the two expressions name the same object. Certainly, it is well known 

within the discipline of mathematics that equiangular triangles and equilateral 

triangles name the same class of mathematical objects. As mental objects (of 

thought) we argue that the individual student may not conceive these as the same 

object, since that conclusion requires that the individual acknowledges the 

identification at a cognitive level. This identification may be considered a 

mathematical learning objective in itself, and will therefore be accounted for in the 

constructs that we propose in the current work.  

We will elaborate briefly on how to model the process of identification in this case. 

Initially, the two classes  and  are 

defined in the mathematics classroom. The classes are defined according to different 

criteria and hence have different ontological status. So far we agree with Husserl. 

But we find it unreasonable to claim that the individual student, who has not yet 

connected the two classes in his or her mind, may consider these as the same object. 

However, when the student has made this connection, the (common) class may be 

interpretedas a thematized object , which 

inherits all established properties of the two previous classes. We consider this to be 

an important structural feature of mathematics teaching and learning that we would 

like to account for in our proposed model. 

Our second example concerns a different domain of mathematics, namely fractions: 

―The symbols ―2/3‖ and ―12/18‖ mean the same because they refer to the same 

number‖ (Sfard, 2000, p. 37). As Sfard argues, an indirect procedure is required to 

prove the equivalence of the two expressions. From a disciplinary perspective, it is 

well known that the two symbols 2/3 and 12/18 represent the same number. But 

fractions are not only numbers. They may, for example, be thought of as ordered 

pairs of numbers. Proving equivalence of fractions rests upon defining an 

equivalence relation on the set of fractions. This equivalence relation may be defined 

in terms of comparing fractions as numbers, but the equivalence relation may also be 

defined algebraically based on interpreting the fraction as an ordered pair of 

numbers. We claim that both understanding the principles of identification (no 

matter how they are defined) and applying these principles to the specific fractions 

are learning objectives for each individual student. The two fractions 2/3 and 12/18 

can not ―mean the same‖ to the individual student until the student has noted that 
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they are (mathematically) equivalent. Furthermore, the example may be viewed as 

trouble-some not only from an individual but also from a disciplinary perspective, 

since the conclusion (that the two fractions ―mean the same‖) rests on the implicit 

assumption that the fraction as an object is determined based solely on its 

interpretation as a number. For comparison, Davis (2010) argues in a similar 

direction regarding justification of 3 × (– 4) = –12, noting that the diversity of 

implicit assumptions is as important to attend to as the diversity of explicit 

representations of multiplication.  

We note that justifications of2/3 = 12/18 and 3 × ( – 4) = –12 may rest on different 

assumptions in different classrooms. Therefore, it is not apparent how a disciplinary 

perspective on content and object should be defined.      

TWO PERSPECTIVES ON REPRESENTATION – CONTENT – OBJECT 

With regard to our research objectives, we would like to connect disciplinary and 

individual perspectives on representations, content, and object, in such a way that the 

reader (and the teacher) has freedom of interpretation to balance these perspectives 

according to her own preferences. Our strategy to achieve this connection is to relate 

to the semiotic triangle from both perspectives. The representation, as an external 

construct, is independent of the choice of perspective. On the other hand, the choice 

of perspective affects the interpretation of content and object as mental constructs. 

The individual content and object relate to constructs of the individual student, while 

the disciplinary content and object are not well-defined constructs (as noted in the 

previous section). As our ambition is to account for learning mathematics as a 

negotiation of individual and disciplinary meanings, we regard disciplinary content 

and object as learning objectives. As learning objectives, disciplinary content and 

object may still be defined inseveral different ways. We invite the reader to interpret 

learning objectives (for example) eitherfrom a student perspective, from a teacher 

perspective in terms of notionsthat the teacher aims at establishing with respect to 

the students, from a community perspective as a joint learning objective for teacher 

and students, or from an institutional perspective according to steering documents. 

Independent of choice of perspective, the disciplinary content and object are learning 

objectives that someone is pursuing, or would like to be pursued, in a general or 

specific mathematics classroom. 

 

Figure 9: A model that connects disciplinary and individual perspectives 

REPRESENTATION 

Individual CONTENT 

 

Disciplinary CONTENT 

 

Individual OBJECT 

 

Disciplinary OBJECT 
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The arrows in Fig. 9 indicate a negotiation between individual and disciplinary 

learning objectives that we do not elaborate on in this short paper. An obvious 

shortcoming of this model is that it only describes a state and only implicitly implies 

what is expected to happen in the mathematics classroom. This leads us to consider 

how content and object may emerge in the classroom. While linguistic interpretations 

depend on the syntactical embedding of each word, mathematical interpretations 

depend essentially on processing of representations (Duval, 2006).Manipulation and 

processing of mathematical objects may be interpreted from either an external or 

internal (cognitive) perspective. The notion of representation is relevant to discuss 

from either perspective, and it is well known that there is a close correlation between 

external and internal representations (Baddeley, 2007). In this paper, we consider 

representations only as external constructs.   

MATHEMATICAL PROCESSES 

We will use theories of semiotics as a point of departure for modeling processing of 

representations. As a point of departure, we briefly relate to the works of the Swiss 

linguist Ferdinand de Saussure (1857-1913) who defines a sign in terms of two 

components, the signifier (signifiant, the form, pattern of the sign) and the signified 

(signifié, the content, thought of the sign). The sign itself is formed by the 

associative link between the signifier and the signified and gets its meaning in 

relation to or in contrast with other signs of the same nature (Engström, 2002). The 

American philosopher, logician, and mathematician Charles S. Peirce (1839-1914) 

defines the notion of sign in a way that explicitly accounts for relations with other 

signs, in a way that (not surprisingly) seems to fit mathematical structures 

particularly well. Our interpretation of Peirce, in comparison with Saussure, is that 

he includes two dimensions in the thought of the sign. He names these dimensions 

object and interpretant, where the latter ―fulfils the office of an interpreter‖(Houser 

& Kloesel, 1992, p. 5) and hence involves translation of the sign. The object relates 

to how the specific sign is understood, as a concept, while the interpretant concerns 

translations, applications and consequences of the sign, including processes. The 

dimension of the interpretant is particularly important in mathematics, as argued by 

Duval (2006, p. 106): ―… the leading role of signs is not to stand for mathematical 

objects, but to provide the capacity of substituting some signs for others.‖ Peirce‘s 

third notion representamencorresponds to Saussure‘s signifier, that is, the pattern of 

the sign. The two models are summarized in the figures below(Engström, 2002).  

 

representamen 

object interpretant 

signified 

signifier 
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Figure 10: Saussure’s model of the sign Figure 11: Peirce’s model of the sign 

Peirce introduces many other notions of seemingly abstract philosophical nature. 

One such notion is the distinction between firstness, secondness, and thirdness, 

which he refers to ―as modes or tones of thought‖ (Houser & Kloesel, 1992, p. 247).  

Firstness concerns the representamen, which is always present. Secondness requires 

that the interpreter associates either object or interpretant with the representamen. 

Thirdness is the desired state of the sign and requires that both object and 

interpretant are associated with the representamen. Peirce discusses the notion of 

degenerated secondness, where either the object or the interpretant may be weak. An 

example of degenerated secondness is when a learner is able solve linear equations 

by following formal rules, but having a weak understanding of what an equation is. 

In this case, thelearner can solve the equations by manipulating symbols but can not 

interpret the equations, which indicates a strong interpretant but a weak object. 

Another learner may be able to interpret an equation but not know how to solve it, 

thus having a weak interpretant but a strong object.  

Raymond Duval (2006) highlights several characteristics regarding forms of 

representations that have important didactical implications. First, he provides a 

qualitative classification of semiotic representation systems in terms of registers, 

which by definition have (potential) thirdness. Second, he puts focus on two different 

types of transformations: treatment within a specific system (such as 34+25=50+9) 

and conversion between different systems (for example, pictures to symbols) as two 

distinct types of processes that describe how learners engage in mathematical 

activities and specifically when solving mathematical problems. From a disciplinary 

objectivist perspective, Duval classifies registers according to their degree of pre-

defined regulation of treatment. However, from an individual perspective any 

representation has potential thirdness depending on how an individual interprets and 

interacts with the representation. For our purposes, we choose to interpret Duval‘s 

notion of register as a relational rather than a pre-defined disciplinary construct.   

CONNECTING PEIRCE, OGDEN & RICHARDS, AND DUVAL 

There are no apparent inconsistencies between Peirce‘s sign (Fig. 11), the semiotic 

triangle (Fig. 1, Fig. 3), and Duval‘s theory of registers. This is not at all surprising, 

since the latter authors explicitly draw on Peircean semiotics but with focus on 

different relations, respectively representamen-object (Fig. 12) and representamen-

interpretant (Fig. 13). Specifically, Duval (2006) puts focus on the processes of 

treatment and conversion which both refer to the interpretant dimension of Peirce. 
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Figure 12:Fig. 1 in Peirce‘s sign Figure 13: Processes in Peirce‘s sign 

While Duval (2006) explicitly discusses the object dimension, he puts focus on the 

interpretant in terms of treatment and conversion. In Ogden & Richards‘ semiotic 

triangle (Fig. 3) we may interpret the referent as including both object and 

interpretant, but with a clear emphasis on the object dimension. As mathematicians, 

both Peirce and Duval recognize the importance of processing signs in order to 

create mathematical meaning, while authors such as Saussure, and Ogden and 

Richards, whose main interest is natural language, do not explicitly consider the 

notion of processing. However, the models of the latter authors do not exclude 

including an explicit dimension related to processing. To account for both a 

disciplinary and an individual perspective on content and object, we may readily 

connect the previous models, particularly those represented in Fig. 13, Fig. 11, and 

Fig. 9, keeping in mind that (the external) representation is common for the 

perspectives, as are (the resulting external representations of) conversion and 

treatment, while content and object(as mental constructs) depend on choice of 

perspective. Furthermore, we choose to highlight conversion and treatment as two 

separate processes by splitting the interpretant in two separate legs. The resulting 

model is shown in Fig. 14.  

 
Figure 14: Integrated model coordinating disciplinary and individual perspectives 

As noted earlier, the semiotic triangle (Fig. 1)with vertices representation – content – 

object, appears in two versions to the left in Fig. 14. For comparison, Saussure‘s 

model may also be interpreted in Fig. 14 with representation as the signifier and 

object together with treatment and conversion (as processes) as elements within the 

signified. While the semiotic triangle and Saussure‘s sign are redundant in Fig. 14, 

they provide support for our model as a globally unifying construct, in the sense of 

Prediger, Bikner-Ahsbahs & Arzarello (2008).  
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CONCLUDING REMARKS 

The investigations that resulted in the current paper originated as a survey of 

research concerning semiotic representations, particularly stimulated by Duval‘s 

notions of registers, and the processes of treatment and conversion. As our work 

progressed, Peirce‘s theory of signs emerged as a unifying theory. The final model 

(Fig. 14)may be interpretedmainly as accounting for underlying theoretical structures 

rather than innovative networking of theories, in the sense of Prediger et al. (2008). 

Our contribution to the model is the refinement of the interpretant and coordination 

of individual and disciplinary perspectives. Peirce‘s theory of signs seems to have 

served as a natural foundation for research focusing on structural aspects of semiotic 

representations. Some authors, such as Ogden & Richards, explicitly refer to Peirce, 

while others, such as Tall et al., do not.We feel that interpreting specific theoretical 

constructs within the model provides a context that 

may guide interpretation of these constructs. For 

example, the reader may interpret the following 

visual model of Tall et al. (2001) with respect to 

Fig. 14 by visually rotating either model. While these visual models do not have any 

inherent meaning, they may still serve to guidea reader‘s understanding of 

underlying theoretical constructs.   
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This paper focuses on learning processes of prospective elementary school 

mathematics teachers who are studying a course on functions and graphs. 

Specifically, we address the questions – "What were the modifications in students' 

ways of mathematizing about functions?" and "How did the teacher's and students' 

actions enable and promote modifications in the students' ways of mathematizing?". 

For this purpose, we analyze the mathematics classroom discourse that developed in 

class by combining two theories – systemic functional linguistics and the 

commognitive framework. In this paper we present the method that we have 

developed and exemplify its use and advantages by analyzing an episode of a 

mathematics classroom. By doing so, we provide a lens to think about and capture 

complexities of instruction. 

INTRODUCTION 

It is widely accepted today to focus research on learning processes in classrooms, 

rather than just on the outcomes of learning. This raises substantial theoretical and 

methodological issues. In this paper we suggest a method for analyzing classroom 

discourse to learn about instructional processes, and specifically, to address 

questions such as What were the modifications in students' ways of mathematizing
1
 

about functions? and How did the teacher's and students' actions enable and 

promote modifications in the students' ways of mathematizing? Specifically, how did 

the teacher and students organize the mathematical discourse so that peripheral 

participants (Lave and Wenger, 1991) could become more active participants of the 

canonical mathematical discourse? For this purpose we draw on two theories that 

each seems to have the potential to address different, yet complimentary, aspects of 

those questions - Systemic Functional Linguistic, (SFL, Halliday, 1978; Halliday & 

Matthiessen, 2004) and the commognitive framework (Sfard, 2008). This 

combination enabled us to develop a new perspective with which to investigate 

classroom learning. The data used to exemplify the suggested tool is taken from a 

study
2
 that aims at identifying instructional processes of prospective teachers, 

attending a functions and graphs course. In the following sections we outline the 

basic principles of SFL (Halliday, 1978), followed by basic tenets of commognitive 

framework (Sfard, 2008). Then we describe and exemplify how we use the suggested 

method.  
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THEORETICAL BACKGROUND 

Systemic Functional Linguistics 

According to SFL (Halliday, 1978; Halliday & Matthiessen, 2004), language is a 

resource for making meaning through choice. This approach is concerned with the 

analysis of how language is used to achieve certain discursive goals and the analysis 

of the choices that have been made in any instance of language use (O'Halloran, 

2005:61). The sets of possible choices were clustered by Halliday in terms of the 

functions that they serve (and therefore are called metafunctions): (1) the ideational 

– the content function of language, what is talked about. This metafunction  

expresses those things in language such as the objects, actions, and relations, of the 

world and of our own consciousness; (2) the interpersonal – the participatory 

function of language, through which "the speaker introduces himself into the context 

of situation, both expressing his own attitudes and judgments and seeking to 

influence the attitudes and behaviour of others." (Halliday, 1978:112); and (3) the 

textual – the organization of the text. This is the metafunction that "makes language 

relevant. … it expresses the relation of the language to its environment, including 

both the verbal environment – what has been said or written before – and the non 

verbal, situational environment." (Halliday, 1978:112-113). 

That is, any language use, serves three functions simultaneously, constructing some 

aspect of experience, negotiating relationship and organizing the language in a way 

that it realizes a satisfactory message (Christie, 2002).   

The commognitive approach to study learning  

The commognitive framework (Sfard, 2007; 2008) is a socio-cultural approach. 

Within this framework thinking is defined as an individualization of interpersonal 

communication, although not necessarily verbal
3
. Discourse is considered a special 

type of communication, made distinct by its repertoire of admissible actions and the 

way these actions are paired with re-actions. To emphasize the unity of cognitive 

processes and communication, the word commognition, a combination of the two, is 

used to name the framework.  

Mathematics, as any academic discipline, may be considered a form of discourse 

made distinct by four characteristics: words and their uses, visual mediators, routines 

and endorsed narratives, as detailed below. 

Words and their uses.  Any professional discourse has a unique vocabulary. Some of 

the words may be used in other discourses, either in the same way or according to a 

different definition. Words and their uses are central to a discourse as often they 

determine what one can say about the world. With regard to the area of functions and 

graphs, we find words such as slope and function with unique uses in the 

mathematical discourse. 
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Visual mediators. Those are the objects acted upon as a part of the communication. 

While colloquial discourse is mediated mainly by images of concrete objects that 

exist independently of the specific discourse, in mathematics, most symbols and 

other mediators were created mainly for the purpose of communication. Visual 

mediators of the mathematics discourse include algebraic symbols that mediate ideas 

such as written numbers and graphs, or other symbols like those that represent 

variables, coefficients and equality. The mediators used in the communication often 

influence what one can say about the idea discussed. To illustrate, while solving 

equations in algebra, students often participate in a different discourse if they use 

graphs as their visual mediators, or if they refer to the algebraic symbolic equation as 

their discursive objects.  

Routines. A routine is a set of meta-rules defining a discursive pattern that is 

repeated in similar types of situations. Those rules are the observer's construct as 

they describe past actions that were noticed by the observer. Although they describe 

past actions, routines are helpful in learning a new discourse as our ability to act in 

new situations often depends on recalling one's or others' past experiences. An 

example for a routine often practiced in mathematics regards finding the slope of a 

given linear function. The specific mediator chosen for a function (e.g. graphs or 

algebraic symbols) often dictates the routine chosen for that purpose.  

Endorsed narratives. Endorsed narratives are any text that can be accepted as true by 

the relevant community. Specifically, in mathematics, the endorsed narratives are 

those narratives that become "mathematical facts". Narratives such as axioms, 

definitions and theorems are all endorsed narratives, with each of them being derived 

differently. 

Combining the theories 

Our focus is on instructional processes – on the processes by which learning is 

enabled and enacted. For this we seek a theory that views language as a set of 

choices. Moreover, the unit of analysis relevant for our suggested studies is the 

discourse itself (or parts of it). These two requirements are met by both theories. In 

Gellert's (2009) words, the underlying principles of the two theories are 'near 

enough'. However, whereas SFL focuses on language, that is, on the verbal aspects 

of discourse, commognition holds a wider view and considers also non-verbal 

aspects of the discourse (e.g. routines and visual mediators.) In addition, while SFL 

explicitly distinguishes between the content function, the participatory function and 

the organization of the text, studies conducted under the commognitive framework 

focus on making explicit routines, endorsed narratives, words and visual mediators 

of the discourse. While commognition is a socio-cultural approach that aims at 

providing a lens to study learning processes, SFL is a linguistic approach may help 

researchers focus on specific choices of participants' language use that may be 

overlooked. 
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For our purposes, each theory has an added, complementary, value – we wish to 

distinguish between the three metafunctions, as is called for by SFL, and we wish to 

identify the various discourse characteristics, as is called for by commognition. We 

believe that this dual analysis would allow noticing aspects of classroom discourse 

that were not identified thus far.   

THE METHOD 

In the following sections we present the data to be analyzed, the unique method that 

we developed to analyze classroom discourse and an example of using this method to 

analyze classroom discourse. We begin by specifying our research questions in light 

of the theoretical frameworks that we adopt.  

Research questions 

What were the modifications in students' ways of mathematizing about functions? 

Specifically, what are the modifications and changes in students' use of words, visual 

mediators, routines, and endorsed narratives, while they participate in a mathematics 

discourse? The focus of attention here is Halliday's ideational metafunction. We 

broaden this metafunction to refer not only to what is being said, but also to the 

actions performed as a part of instruction (e.g. calculations in writing and drawing.)  

How did the teacher's and students' actions enable and promote modifications in the 

students' ways of mathematizing? Specifically, what are the actions that the teacher 

and students perform to organize the mathematics discourse so that peripheral 

participants could become more active participants, with regard to the ways by which 

they use words, visual mediators, routines, and endorsed narratives? How do the 

teacher and students develop social relationships and how do the participants orient 

themselves to the learning of mathematics and to others? Here the focus is dual – 

first, the textual metafunction, that makes language relevant (Halliday, 1978:  112-

113). We use this category to refer to what it is that one (usually the teacher) assumes 

others (usually the students) already know and what it is that is assumed new, and 

therefore – how the teacher organizes the discourse so that students, as novice 

participants, could participate. The second focus is the interpersonal metafunction, 

which regards the ways by which the teacher and her students develop social 

relationships and by which they orient themselves to each other and to the 

mathematics.  

Data collection and documentation.  The following transcript
4
 is an example of the 

type of data to be analyzed, and of our method of presenting transcriptions. It was 

taken during a whole class discussion in a 1
st
 year course for prospective elementary 

school teachers in a college of education in Israel. All 14 lessons were video and 

audio taped and are used in a larger study that focuses on learning about functions. In 

the following task, the students were asked to compare the steepness of five 

segments (see Figure1). Noam suggested that AB was the steepest, and was asked to 

explain why: 
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Figure1: The graph presented to the students 

49. Noam I, like, used a silly method.  

50. Teacher What method?  

51. Noam I said that, like, in one x, like, the segment AB, then in one x it went 
up a lot.  

52. Teacher Wait, wait, wait. I want you all to listen to Noam. Noam is trying to 
explain why, what was the segment that you said is steepest?  

53. Noam  AB  

54. Teacher Come, show it on the graph. Come, come, come. Noam wants to 
explain something, and, a method she worked according to. Come, 
stand where I stand, and with the pen you can show here on the, … 
you see, the segment AB is here… come, show them.  

55. Noam  [walks to the overhead. She points with her pen towards segment AB.] 

56. Noam Segment AB went up by, like, only, eee… only in this x [moves her 
hand parallel to the x axis along one unit] it went up a lot [moves her 
hand parallel to the y axis along three units.] see Figure1 

57. Teacher That means, what are you saying, that you moved from A, from point 
A towards the positive direction of the x axis in one unit [moves her 
hand parallel to the x axis along one unit].  

58. Noam Yes  

59. Teacher What did you see, that it went up by how much?  

60. Noam Three y [the teacher moves her hand parallel to the y axis along three 
units.]  

61. Teacher That is, y changed by three [the teacher moves her hand along segment 
AB]  

62. Noam Yes  

63. Teacher When x changed by one, y changed by three.  

64. Teacher As opposed to the other segments… what is it?  

65. Noam Let's say, in OA and in BC  

66. Teacher OA, look, in OA, what happens in OA?  

67. Noam It is equal because there is the same increment, two x, two x. Points at 
segments OA and BC] 

68. Teacher That is, what is there in OA? When x went up by… when x increased 
by 1, by how much did y change?  



Working Group 16 

CERME 7 (2011) 2529 

 

69. Student By one  

70. Teacher Thank you.  

Method of analysis and examples of findings. We use the lens of SFL in general, and 

specifically, that of the ideational, interpersonal and the textual metafunctions to 

differentiate between the three discourses that are a part of the mathematical 

classroom discourse – the mathematical
5
, the social and the organizational. For that 

purpose, we broaden each of the metafunctions to refer not only to what is being 

said, but also to the actions performed as a part of instruction (e.g. calculations in 

writing and drawing). Specifically, we use the textual meta-function to refer to what 

it is that one (usually the teacher) assumes others (usually the students) already know 

and what it is that is assumed new, and therefore – how the teacher organizes the 

discourse so that students, as novice participants, could participate. 

For each metafunction, we refer to the words and visual mediators that participants 

use, the routines that could be identified and the narratives endorsed.  

We summarize and exemplify our method in the table below, with regard to the 

given transcript. We realize that our sayings are limited due to the shortness of the 

analyzed excerpt. 

Discourse 

characteristics 

Metafunction 

 

Words and visual 

mediators 

 

Routines
6
 

 

Endorsed narratives
7
 

The ideational  

 

 

The words and visual 

mediators used in class 

that relate to the 

mathematics. 

Examples:  

Student: "Three y" (60) 

Teacher: "That is, y 

changed by three" [the 

teacher moves her hand 

along segment AB] (61) 

Student: "in one x, it 

went up a lot." (51) 

Teacher: "when x 

changed by one, y 

changed by three" (63) 

The routines observed 

in class that relate to the 

mathematics.  

Examples:  

The student refers to a 

routine by which she 

decides which segment 

is steepest. She calls it 

"a method" (49). She 

compares the graphs 

qualitatively (and not 

quantitatively.) (turns: 

49, 51)  The teacher 

compares the steepness 

of graphs by referring to 

their slopes (63). 

The narratives that are discussed 

in this learning community that 

relate to the mathematics. 

Examples: 

at this time there is no evidence 

that the students and teacher 

endorse the same narrative. There 

is evidence regarding the 

narratives that some of them 

endorsed:   

Student: "in one x, it went up a 

lot." (51) 

Teacher: "when x changed by 

one, y changed by …" (63) 

The inter-

personal  

The words and visual 

mediators by which 

people orient to the 

mathematics, to 

themselves or to others, 

and by which they 

develop social 

relationships and a 

learning community.  

Discursive routines that 

relate to the ways by 

which people orient to 

the mathematics, to 

themselves or to others, 

and by which they 

develop social 

relationships and a 

learning community. 

Endorsed narratives that relate to 

the ways by which people orient 

to the mathematics, to themselves 

or to others, and by which they 

develop social relationships and a 

learning community. 

Examples: (our examples are 

from the rest of the lesson.) 

"This is great." (487) 
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Examples: 

- The student evaluates a 

method that she chose to 

use to solve a problem: 

"I use a silly method" 

(49) 

- The teacher marks 

Noam's method as 

important for the entire 

class: 

"Wait, wait. I want you 

all to listen to Noam." 

(52) 

Examples: 

The teacher empowers 

students by inviting 

them to stand in front of 

the class and tell their 

ideas in their own 

words. (e.g. 52, 54) 

"You are doing a wonderful job" 

"Do you understand why?" the 

teacher's disposition towards 

learning and knowing: – to know 

includes explaining why. The 

students' answers repeatedly 

included explanations or saying 

of the type: "I know that this is so, 

I do not know why" even when 

were not asked to explain 

explicitly.  

Another disposition: "you should 

work in small groups" 

The textual  The words and visual 

mediators that relate to 

the ways by which the 

participants organize the 

mathematics discourse so 

that peripheral 

participants could 

become more active 

participants. 

Examples:  

- Choosing the task: 

comparing steepness of 

graphs, before actually 

talking about the slope of 

a graph. 

"that means, what you 

are saying…" (57)  

Discursive routines that 

relate to the ways by 

which the participants 

organize the 

mathematics discourse 

so that peripheral 

participants could 

become more active 

participants. 

Examples: 

- Repeating her way of 

comparing steepness of 

graphs.  

- Revoicing. (e.g. "that 

means, what you are 

saying…", (57) 

- Realizing the need for 

a publicly seen mediator 

to communicate ideas 

(graphs on overhead.) 

The narratives that are endorsed 

by this specific group that help 

organize and enable the 

communication between 

peripheral and expert participants. 

Examples: 

"you should work in small 

groups" 

"that means, what you are 

saying…", (57) 

 

Table2: A method to analyze classroom discourse 

FINDINGS 

Mathematics classroom discourse interweaves several discourses – the mathematical, 

social and pedagogical. We identify the mathematical discourse with the ideational 

metafunction
8
, the social with the interpersonal metafunction and the pedagogical

9
 

with the textual. That is, for those discourses we focus on each of the table's rows 

separately. For each discourse, we consider each of its characteristics separately, by 

considering the table's columns.  

The following findings are restricted to the given episode, and are therefore limited 

in their scope. 
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Mathematical discourse. This focus exposes differences in the teacher's and students' 

ways of mathematizing – their use of words, visual mediators, routines and 

narratives. The student's word use is more colloquial ("it went up a lot") and the 

ideas expressed are imprecise. In the context of comparing slopes, while the teacher 

compares slopes by referring to it quantitatively, the students compare them visually.   

Social Discourse. The teacher empowers students by allocating time and place for 

them to present their ideas to the other students and by evaluating their work. The 

teacher's disposition towards learning seems to be that small group discussions 

promote learning and that understanding why and being able to express that are 

crucial for learning.  

Pedagogical Discourse. The teacher performs several actions to organize the 

mathematical discourse so that the students could become less peripheral 

participants. Those actions reveal her dispositions towards learning mathematics: e.g. 

using revoice as a pedagogical strategy; this way she shows respect her students' 

ideas, yet able to use them as a springboard to present mathematically accepted ways 

of doing and saying.  

FINAL COMMENTS 

In this paper we suggested combining two theories, SL and commognition, to learn 

about instructional processes. The suggested combined method is a practical and 

coherent way of analyzing classroom discourse to study about learning processes. 

Thus it provides a conceptual framework by which various aspects of classroom 

discourse could be observed, identified and thought of. In other words, the combined 

method helped us to "direct researchers' attention to particular relationships in 

providing meaning for the phenomena being studied" (Silver and Herbst, 2007:  

373). As can be seen, it allows one to focus on each of three discourses that develop 

in class – the mathematical, the social and the pedagogical. Its importance lies at the 

underlying assumptions that to improve our understanding of mathematics learning 

and teaching, one should focus on processes rather than on end-results only, and on 

those processes that take place in classroom rather than in different "laboratory-like" 

settings.    

NOTE 

1
 Mathematize: participate in a mathematical discourse; "doing" mathematics (Sfard, 2008). 

2
  This study is supported by the Israeli Science Foundation, no. 446/10. 

3  This is coherent with Vygotsky's theory regarding the higher mental functions that appear first in the social plane and 

are only then individualized (Vygotsky, 1986). 

4
 The transcript was translated from Hebrew by the authors. 



Working Group 16 

CERME 7 (2011) 2532 

 

5
 The ideational metafunctions refers to what is talked about. For our purposes, we suggest narrowing 

the scope addressed by this metafunctions and relate only to the mathematical content discussed.   

6
 To identify a routine we would need longer stretches of text or declarations regarding how one often acts. 

As we only exemplify a short episode, the routines are generalized from analysis of a larger corpus of 

data. 

7
 While narratives may be presented in a single sentence, their endorsement by the class community may 

be identified only in longer episodes. Therefore, our examples are taken from a larger corpus of data.  

8
 We do not claim that the ideation metafunction includes only parts of the discourse that are about 

mathematics. For our purpose we choose only those parts. 

9  In the literature, the pedagogical discourse is often used to consider what we refer to as "classroom discourse" 

(e.g. Christie, 2002). We use it to refer to teacher's choices regarding the organizations of the discourse so that students, 

as novice participants, could participate. 
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INTRODUCTION TO THE PAPERS OF WG 17: 

FROM A STUDY OF TEACHING PRACTICES TO ISSUES IN 

TEACHER EDUCATION84  

Leonor Santos (Portugal), Claire Berg (Norway), Laurinda Brown (UK),  

Nicolina Malara (Italy), Despina Potari (Greece), Fay Turner (UK) 

Overview: There was recognition of the value and complementarities of different 

approaches to the professional development of teachers. However, it was also 

recognised that there are constraints and affordances for different approaches, which 

vary between cultural contexts. Working across cultures on teacher development 

projects, which employ different strategies, was considered to be a useful way of 

moving forward our understanding of different approaches. There were some 

attempts to synergise different frameworks in research and development activities 

that were reported in the papers. However, there remains considerable work to be 

done in understanding how different frameworks relate to one another and in 

supporting researchers in selecting elements of different frameworks that will enable 

them to answer specific research questions.   

Group 17 received 57 proposals (48 for papers and 9 for posters), which involved 

129 authors from 28 nationalities. Each paper was reviewed by one of the group 

leaders and two authors. For most proposals we asked for some revisions. In the 

sessions of the working group during the conference, 37 papers and 8 posters were 

presented. 

According to what had been proposed in CERME 6, the working group split into two 

subgroups (WG17 A and WG17 B). The group was all together for only the first part 

of session one and for the last session. All the papers were grouped into seven topics 

and distributed to the two subgroups. All the participants were informed in advance 

of the distribution of the papers in the two subgroups. 

All participants of WG17 were expected to have read papers previously to the 

session in which they were presented. In each session, three or four authors sketched 

the key ideas of their report (5 minutes each). One of the group leaders or 

participants then gave a prepared reaction to the set of papers (10 minutes). In most 

cases, the reactor attempted to make links between the papers and suggested 

questions arising from the papers that might form the basis for discussion.   

The organisation of the sessions was highly rated by the participants, as was the 

atmosphere. Nevertheless, at the final session, the group coordinator presented 

several possible scenarios to organize the working group for the future, given that 

                                           

84
 Alena Hošpesová (Czech Republic) contributed as a group leaders, being in charge of part of the review 

process 
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participation remains high. Although no decision has been taken, a general opinion 

was voiced against the possibility of splitting this working group into two new ones.  

Topics 

We present the issues and ideas that emerged in reference to seven central topics. 

Topic I: Mathematical content knowledge for teaching 

The categorisation of knowledge needed for the teaching of mathematics and how 

such knowledge might be identified in the practice of, or when discussing teaching 

underpinned many of the papers discussed in WG 17A. Ball et al‘s ‗egg‘ appeared to 

be generally accepted as a useful framework for categorising knowledge and 

Rowland et al‘s Knowledge Quartet was frequently used as a means for identifying 

the situations in which such knowledge was revealed in the practice of teaching. This 

common language and understanding of frameworks represented a clear progression 

from the discussion in CERME 6.   

Topic II: Professional knowledge for teaching 

The papers discussed referred to a number of different approaches to the 

development of mathematics teaching through both Initial Teacher Education (ITE) 

and Continuing Professional Development (CPD). Although supporting learning in 

knowledge about mathematics and mathematics pedagogy was seen as the 

foundation for developing mathematics teaching, it was recognised that it was 

developing the application of this knowledge in action (knowing how to) that should 

be our ultimate developmental and research concern. The balance between focusing 

on the development of knowledge about and the development of knowing how to 

was considered in relation to how this varies between ITE and CPD.  

Topic III: Reflection in mathematics teachers‘ professional development 

One approach that seemed to be effective was the use of theoretical concepts and 

frameworks by the teachers in discussing and analysing mathematics teaching. 

Although teachers‘ interpretations of these concepts and frameworks and the way 

they link them to teaching are often idiosyncratic, the studies indicate that this 

approach promotes critical reflection of teachers‘ beliefs, knowledge and practices. 

Another issue that emerged was that teachers‘ reflection on a number of 

mathematical, teaching and learning phenomena can improve both their mathematics 

and pedagogical content knowledge. Finally, mathematics educator‘s learning from 

teachers‘ reflection is also an important issue that needs further research attention.  

Topic IV: Collaboration in mathematics teachers‘ professional development 

Within teachers‘ professional development the modes of collaboration between the 

different actors are of crucial importance for achieving successful development. The 

three papers related to this topic present different models concerning the 
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collaboration between teachers and didacticians, teachers with colleagues, and 

teacher students and teacher educators. These studies share a willingness of 

considering teachers, colleagues, or teacher students as true partners in the process of 

change, and this seems to be one of the principles of professional development. 

However, issues related to sustainability of such collaborative models need to be 

critically addressed and carefully investigated in future. 

Topic V: Professional development 

A significant discussion in the working group concerned the long-term effectiveness 

of professional development programmes, in particular related to mathematics 

teacher education. It is necessary to understand, in a deep way, the characteristics of 

professional development for sustainable impact. Is it really possible to know what is 

the impact after some years? What does sustainability mean in a society where 

people change profession? 

The working group also discussed whether there are different issues concerning pre-

service and in-service teachers education programmes.  

Topic VI: Conceptions and practices 

The papers presented in this session concern mainly the study of particular aspects of 

teachers‘ practice, highlighting the relationships between teachers‘ beliefs, 

knowledge, didactical and methodological choices and students‘ learning. 

Two studies are devoted to the analysis of teachers‘ work in their daily practice, with 

the aim of collecting data useful to find ways to improve teacher training and show 

the incidence of the teacher‘s beliefs in management of their class work. Another 

paper focused on collaborative curriculum management in the context of a school 

mathematics department focusing on sustainability of the culture. This contrasted 

with a study involving prospective teachers, evidencing trainees' difficulties in 

theoretical and methodological analysis, given their lack of teaching experiences and 

the short length of their course. The personal dimension seems to have a real 

influence, including negatively, documented by a study involving teachers who, 

convinced that metacognitive activities can be practised exclusively with more gifted 

students, were negatively influenced in their teaching by this belief. 

Topic VII: Interaction in the classroom  

The four papers were in the frame of teachers‘ educational projects centered on 

laboratories devoted to classroom practice either in pre-service or in service 

education. In general terms, these projects are aimed at developing the teachers‘ 

ability to enact generative teaching, to refine their communicative practices (posing 

questions, listening and answering) to control the cognitive implications of their 

behaviors and to assess the students‘ mathematical learning. Even if framed in 

different theoretical studies, all the research projects are realized over the long term 

(at least one year), through collaborative work between teachers and 
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mentors/researchers.  

PAPERS 

WG17A 

Topic I: Mathematical content knowledge for teaching 

Bednarz, N. & Proulx, J. An attempt at defining teachers‘ mathematics through 

research on mathematics at work. 

Davis, S. The Impact of teaching mental calculation strategies to primary PGCE 

students. 

Fernández, S.; Figueiras, L.; Deulofeu, J. & Martínez, M. Re-defining HCK to 

approach transition.  

Ineson, G. The use of the empty number line to develop a programme of mental 

mathematics for primary trainee teachers. 

Kaldrimidou, M.; Haralambos, S. & Tzekaki, M. Readings of the mathematical 

meaning shaped in the classroom: exploiting socio-cultural and instructional 

lenses. 

Kleve, B. Literacy in mathematics – a challenge for teachers in their work with 

pupils. 

Ribeiro, C. M. & Carrillo, J. Knowing mathematics as a teacher. 

Tichá, M. & Hošpesová, A. Teacher competences prerequisite to natural 

differentiation. 

Tutak, F. Pre-service elementary teachers‘ Geometry content knowledge ın methods 

course. 

Topic II: Professional knowledge for teaching 

Kilic, H. The nature of preservice teachers' pedagogical content knowledge. 

Kuntze et al. Professional knowledge related to Big Ideas in Mathematics – an 

empirical study with pre-service teachers. 

Rowland, T.; Jared, L. & Thwaites, A. Secondary mathematics teachers‘ content 

knowledge: the case of Heidi. 

Turner, F. Differences in the Propositional knowledge and the knowledge in 

practice of beginning primary school teachers. 

Topic III: Approaching reflection in mathematics teachers‘ professional 

development 

Liston, M. & Gill, O. The role of video-based experiences in the teacher education 

of pre-service mathematics teachers.  

Potari et al. Prospective mathematics teachers‘ noticing of classroom practice 
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through critical events. 

Sánchez, M. Concepts from mathematics education research as a trigger for 

mathematics teachers‘ reflections. 

Topic IV: Approaching collaboration in mathematics teachers‘ professional 

development 

Berg, C. Adopting an Inquiry approach to teaching practice: the case of a primary 

school teacher. 

Gunnarsdñttir, G. & Pálsdñttir, G. Lesson study in Teacher Education: a tool to 

establish a learning community. 

Mgombelo, J. & Jamani-Jaipal, K. Mathematics problem solving professional 

learning through collaborative action research. 

 

WG17B 

Topic V: Professional development 

Asami-Johansson, Y. A study of problem solving oriented lesson structure in 

mathematics in Japan.  

Back, J. & Joubert, M. Lesson study as a process for professional development: 

working with teachers to effect significant and sustained changes in practice. 

Canavarro, A. P. & Patrício, M. Mathematical investigations in the classroom: a 

context for the development of professional knowledge of mathematics teachers. 

Corcoran, D. The need to make "boundary objects' meaningful: a learning outcome 

from lesson study research. 

Koleza, E.; Markpopolous, C. & Nika, S. Helping in-service teachers analyze and 

construct mathematical tasks according to their cognitive demand. 

Matins, C. & Santos, L. Planning teaching activity within a continuous training 

program.  

Regecová, M. & Slavíčková, M. Curricular changes in preparation of future 

teachers – financial mathematics course. 

Rubio et al. Preservice teachers learning to assess mathematical competencies. 

Zehetmeier, S. & Kraine, K. Effective ways of promoting in-service mathematics 

teachers‘ professional development. 

Topic VI: Conceptions and practices 

Arditi, S. Primary school ordinary teachers using a same manual written by 

didactician practices‘ variability.  

Choquet, C. Why do some french teachers propose to their pupils «problèmes 
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ouverts» in mathematics in primary school? 

Cusi, A. & Malara, N. Analysis of the teacher‘s role in an approach to algebra as a 

tool for thinking: problems pointed out during laboratorial activities with 

perspective teachers. 

Nowińska, E. A study concerning the differences between the surface and deep 

structure of Math lessons. 

Nunes, C. & Ponte, J. Teachers managing the curriculum in the context of the 

mathematics´subject group. 

Topic VII: Interaction in the classroom  

Guerreiro, A. & Serrazina, L. Conceptions and practices of mathematical 

communication.  

Malara, N. & Navarra, G. Multicommented transcripts methodology as an 

educational tool for teachers involved in constructive didactical projects in 

early Algebra.  

Martignone, F. Laboratory activities in teacher training. 

Tomás Ferreira, R. Moving beyond an evaluative teaching mode: the case of Diana. 

POSTERS 

Bommel, J. How to teach mathematical knowledge for teaching. 

Ceia, M. Analysing exams mathematical questions. 

Fransman, J., Mgombelo, J. & Van der Walt, M. The practices of prospective 

teachers in South African and Canadian mathematical literacy teacher education 

programs: What works and what does not? 

Rocha, H. Teachers‘ use of graphing calculators in high school mathematics 

classroom - the influence of teachers‘ professional knowledge. 

Spencer, P. & Edwards, J. Deeper mathematical understanding through teacher and 

teaching assistant collaboration.  

Vanegas, Y., Gimenéz, J. & Font, V. Didactical analysis and citizenship with 

prospective mathematics teachers.  
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PRIMARY SCHOOL TEACHERS‘ PRACTICES USING A SAME 

MANUAL WRITTEN BY DIDACTICIAN  

Sara Arditi 

University of Paris VII Denis Diderot 

Our thesis work reviews teachers‘ practices when using the same manual written by 
didacticians. The study aims to analyse variability in specific teachers‘ practices 
when they use different types of problems from the same manual written by 
didacticians and also to analyse several teachers‘ practices when they use the same 

problem written by didacticians. This paper reports the comparative analysis of 
ways teachers carry out a problem about fractions proposed in the manual 
Euromaths with children aged 9 or 10 years. This comparative analysis raises 
questions about the reproducibility of situations written by didacticians. This study 
could contribute to a characterisation of didacticians‘ intervention latitude. It could 
also contribute to find ways to improve teacher training. 

Keywords : practices, conceptions, manual, transmission, reproducibility 

INTRODUCTION, THEORITICAL FRAMEWORK AND METHODOLOGY 

The question of how problems written by didacticians are transmitted is often raised 

by the didactician community. According to Artigue (Artigue, 1989) questions about 

transmissibility of such problems lead to questions about their reproducibility. 

Manuals are written by didacticians to transmit problems contingent on recent 

research results. But, the confines of a manual forces the author to transpose the 

problem and its analysis which may make the transmission more difficult. It is 

especially difficult for the ―a priori‖ analysis to be entirely written in the teachers‘ 

book. My thesis work aimed to analyse the way in which problems and teaching 

sequences written by didacticians are transmitted to practitioners through teaching 

manuals. So, it reviews the practices of teachers using the same manual written by 

didacticians. The meaning of ―practices‖ according to Robert & Rogalski  (2002) is 

what the teacher does before, during and after class, encouraging the practices into 

the class.  

In this paper the analysis of teachers‘ practices using a problem written by 

didacticians are focused on. The aim of this study is to determine, at least partially, 

the spectrum of ways teachers carry out the same problem written by didacticians. 

The spectrum extent will suggest how effectively the chosen problem has been 

transmitted and if it can be reproducible. A problem will be reproducible if it has the 

ability to create necessary conditions (expected by the didacticians who wrote it) for 

the students to learn. But, to talk about reproducibility doesn‘t really fit the situation 

of ordinary primary school teachers. So, in order to determine the spectrum we chose 

to study teachers‘ appropriations of a Euromath‘s problem. The term appropriation 

seems to better  describe how teachers understand a problem written by didacticians 
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and how they make it their own (Bolon, 1996).To determine those appropriations, 

the distance between  tasks proposed by the manual to the teachers and tasks 

proposed and carried out in the classroom has been examined.  

I use the theoretical framework ―double approche‖, developed by Robert (Robert, 

2001). It says that ―teachers‘ practices in class are the result of their work - though 

partly implicit - which has its own consistency and may not be reduced to a mere 

analysis of students‘ potential learning‖. The analysis only of what students learn is 

not enough to understand teachers‘ practices. My teachers‘ practices study will then 

include two points of view: the student‘s learning for one part and the teachers‘ work 

for another part. So I analyse expected scenario, mathematics‘ tasks proposed to the 

students and teachers‘ speech in order to have an access to students learning 

possibilities. Then, I adopt the second point of view about teachers‘ work to 

understand teachers‘ choices and their consistency. They develop some personal 

strategies according to goals and pressure of their work. Those depend on several 

factors such as their beliefs about mathematics, their beliefs about how to learn, their 

knowledge of the mathematics content of schools curriculum but also their 

experiences as a teacher or a student (Robert, 2004; Perrin-Glorian, 1995).  

The research was carried out with five teachers in CM2 (children aged 9 or 10) or 

CM1/CM2 (children aged 8, 9 or 10) grades. All the teachers chose to use Euromaths 

in their class. They had different professional backgrounds, some of them had 

scientific or didactical background (3 of the 5 teachers). They were different ages, 

they were both male and female and they had been teaching for more or less time. In 

order to read the paper more easily, I call the teacher A, B, C, D and E according to 

the distance between the tasks they carry out and the manual tasks a posteriori. In 

the following table I present some of teachers‘ personal data we used to understand 

the practices. According to Shulman (1986), mathematics knowledge, pedagogical 

mathematics knowledge and curricular knowledge are three points to look at to 

understand if a teacher may be able to teach in a certain way. That‘s why I focus on 

the teachers‘ scientific background, didactical background and teaching experience 

with or without Euromaths. 

Teachers Grade Scientific 

backgroud  

Didactical 

background  

Teaching years  Euromaths 

manual used 

years 

A CM1/CM2 Yes Yes 3 2 

B CM2 No Yes 10 2 

C CM2 Yes No 10 1 

D CM2 No No 25 3 

E CM2 No No 30 1 

Table 1: Teachers‘ personal data 

I went into each teacher‘s class to observe and tape all the work on fractions (5 to 20 

session per teacher). I interviewed the teachers before the beginning of this work and 
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after it ended. The lessons and interviews were transcribed. According to Robert 

(2004) even if teachers‘ espoused practice might indicate that their conceptions are 

close to the authors‘ conceptions, their actual practices may be really different. For 

this reason, in order to analyse teachers‘ practices (and conceptions) I used the 

lessons transcription rather than interviews. I cut the transcriptions into different 

episodes like ―proposition of the task by the teacher‖, ―students‘ research‖, 

―collective work‖ etc. and I analysed each episode.  

To determine the spectrum of teachers practices when they use a problem from the 

manual, I identified for each teacher the distance between tasks proposed by the 

manual and tasks proposed and carried out in the classroom. The M-tasks I consider 

are the tasks written in the textbook but also the different ways they can be carried 

out according to the authors‘ conceptions. Both texts (the problem text in the 

textbook and the guideline in the teacher book) have been analysed to understand 

what could happen in the class. According to those analyses we determined the 

knowledge contained in the tasks, the possible ways to carry the tasks out and I 

defined the points on which we will especially focus. 

The indicators we used to understand teachers‘ practices are the tasks proposed by 

the teacher to his student (T-tasks) and the tasks actually carried out in the classroom 

(Co-Task) which includes the way teachers share responsibilities with their students.  

 

 

 

 

 

Table 2: Distance between M-task, T-task and Co-Task 

The T-tasks are the tasks the teacher propose to his students for their individual or 

group work. To understand what those T-tasks were I analysed the teachers‘ work 

episodes happening before the students‘ work episode. I analysed how the teacher 

changes the problem text if he does, what kind of help he gave the children before 

their individual work, of what he reminds his students if he does remind something, 

etc. Then I did an ―a priori‖ analysis of the T-tasks proposed to the students. Indeed, 

according to Leplat (Leplat, 1997) the Co-tasks actually carried out in the classroom 

have to be analysed according to the new tasks logic i.e. to the T-tasks logic. The ―a 

priori‖ analysis of the T-tasks also allow us to measure the distance between the T-

tasks and the M-tasks. The T-tasks proposed by the teacher to his students for their 

individual or group work may not match with the M-tasks. Those ―new‖ tasks (T-

tasks) will depend on the teachers‘ representation of the M-tasks which depends on 

their conceptions of mathematics, of teaching and of their students, etc. So, the 

M-task  

proposed by 

the manual to 

the teacher 

T-task 

Proposed by 

the teacher to 

the students 

Co-Task 

Task actually 

carried out 

Teacher‘s conceptions 

(M-Task representation) 

 

 

M-task modifications 

 

Teacher‘s conceptions 

+Students‘ responsibilities 

 

 

  T-task realisation 
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differences between the manual‘s tasks and the tasks proposed by the teacher to his 

students gave us some first elements to understand teachers‘ conceptions and the way 

they ―read‖ the situation. By ―reading‖ the situation I mean what the teachers think 

they have to do, what they think the students have to do and the knowledge they 

think is contained in the problem before carrying it out. 

To measure the distance between Co-tasks and M-tasks I therefore analysed the 

realisation of the T-tasks according to the T-tasks logic but also to the M-tasks logic. 

To understand how the T-tasks were carried out I especially looked at the students 

responsibilities for the construction of knowledge. The responsibilities given to 

children were identified in relation to their individual or group work time, what they 

are asked for (about tasks they worked on, about questions they had to answer in 

collective work, about the way the teacher listened to what they say and adapt the 

work…) and the way they are asked (open or closed questions, often or not and 

which students are asked).  I also looked at how the teacher helps the students and 

how he or she uses what they do or say. 

THE PROBLEM 

The Euromaths‘ problem I chose is about fractions in the measures framework. It is a 

transposition of a didactical engineering built by Perrin-Glorian and Douady (1986). 

This problem‘s transposition is the following. 

To measure a segment length, Leïla used the u-segment as unit. 

(The segment is drawn in a corner, just below a character who is often used in the manual says : To have 1/3 of 

the unit, I bend in three like an accordion the unit strip.)  

She transfers one time the unit u, then the half of u, and finally the third of u.  

She wrote : 1 u + ´ u + 1/3 u.  

Question 1 : Reproduce the unit strip u. Using this strip find which segment Leïla has measured. (Five segments 

are drawn which measures are : AB = 1 u + ´ u ; CD = 1 u + 2/3 u ; EF =  1 u + ´ u + 1/3 u ; GH = 1 u + ´ u + 

1/4 u ; IJ = 2 u.) 

Question 2 : Find the measures of other segments‘ length, using the unit u. 

Question 3 : Leïla says that the segment [GH] measure 7/4, is she right? 

Table 1: Euromaths‘ tasks 

The aim of first question is for the children to build a technique to measure segments. 

The way the question is asked might encourage them into the ―complex writing‖ of 

measurements (a sum of an integer which here will be 1 and of one or several 

fractions which are less than one). The aim of second question is to practice this 

technique and to arrive at the complex writing measurement for the [GH] segment. 

The real aim of the problem is in the third question. The children will have to point 

out that Leïla‘s segment measure matches to the measure they obtain in a complex 
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writing form. They can check that the complex writing measure they obtain is equal 

to Leïla‘s measure, i.e. that 1 + ´ + µ = 7/4 or 1 + ¶ = 7/4. The aspects of 

knowledge contained in this problem are the meaning of a half, a third or a quarter 

according to the split of the unit but also the use of complex writing and the equality 

seen in the second and third questions (for example : 1 + ´ + µ = 7/4). 

The tasks of this problem are open. Students can find several techniques to answer 

the questions and can find several ways of writing the measures for the segments. 

The two first questions cannot be validated by the student themselves. The validation 

episode might be too complex if teachers don‘t want to give children the answer and 

if they want to keep the problem open for everyone. Concerning the last question it 

can be validated by the children themselves.  

The different ways to carry out the two first questions depend especially on the way 

responsibility is shared for the individual work on the questions and on the collective 

summarizing work. The third question also depends on the sharing of responsibility 

but also on the framework used to answer the question. It can be the measure‘s 

framework, the numerical framework or both. 

RESULTS 

In order to understand the analyses results we present what are the T-tasks, Co-tasks, 

student‘s responsibilities, teachers‘ help and responsibilities in the following table. 

Teachers T-tasks Student‘s 

responsibilities 

Teachers‘ help Teachers‘ 

responsibilities 

Co-tasks 

A M-tasks (question 1, 2, 3) All the students 

have 

responsibilities 

Individual help 

Don‘t reduce the 

tasks 

Tutor M-tasks 

B M-tasks (question 1, 2, 3) All the students 

have 

responsibilities 

Individual help 

Don‘t reduce the 

tasks 

Conductor M-tasks 

C M-tasks (question 1, 2, 3) Students with 

difficulties have 

responsibilities 

Individual help 

Don‘t reduce the 

tasks 

Tutor Reduced        

M-tasks 

D Reduced M-tasks : 

1.Find Leïla‘s segments already 

knowing the technique to 

measure 

2. Measure others segments 

None students has 

responsibilities 

Collectives help 

Reduces the tasks 

 

Knowledge‘s 

owner 

T-task 

(question 1) 

M-tasks 

(question 2) 

E Radically different from the M-

tasks : 

Measure all the segments  

Very good 

students have 

responsibilities 

Collectives help 

Reduces the tasks 

 

Knowledge‘s 

owner 

Reduced       

T-task  

Table 4: Teachers‘ practices when using the Euromaths problem results 
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The first result according to the distance between the manual‘s tasks and the tasks 

carried out in the classroom is that teachers A, B and C share the author‘s 

conceptions. On the contrary, teachers D and E do not. They are the knowledge 

owners and the student‘s work in their classes seems to be reduced to reproductions 

of exercises the teacher showed at first. The second result is that the spectrum extent 

of ways teachers carry out the problem is very large. In each class the students work 

on different tasks and the knowledge pointed out by the teacher is also different.  

Teachers proposing the manual‘s problem to their students 

Three of the teachers (teachers A, B and C) propose tasks which match to the  

problem in the manual. It means that when they give time to the children to work, it 

is on the M-tasks. All the questions are proposed like they are written in the manual 

and the different tasks are not reduced. The meaning of reducing a task is to give 

students more elements to solve the tasks than are contained in the manual which 

will make the problem easier. Moreover, for those three teachers the knowledge they 

want to teach is the same as in the manual. 

Teacher proposing a reduced problem to her students 

One of the teachers (teacher D) reduced the problem according to the style of her 

practice. She gave children lots of elements which made the tasks easier, less 

problematic and no more related to the other tasks. She didn‘t radically change the 

problem but she changed the meaning of it. Children simply had to measure the 

segment and not to think about how to measure it. Moreover the teacher didn‘t 

propose the last question which is the real issue of this problem. The problem is 

reduced to an application exercise which the teacher has shown at first, i.e. 

measuring segments using a unit strip. Thus, the knowledge contained in the tasks 

proposed by the teacher is about knowing how to measure segments using a unit 

strip.  

Teacher proposing a tasks radically different from the manual to her students 

The last teacher (teacher E) radically changed the manual tasks. Firstly, like teacher 

D she reduced the problem giving the students the way to measure the segments. 

Secondly, teacher E changed the problem text. She didn‘t give students some of the 

information given in the manual (she didn‘t tell them to read the text and she didn‘t 

read it to them, and most of the students didn‘t think to read it). So, they missed 

Leïla‘s segment‘s measure and the way she measured it as well as the way to bend 

the unit in three equal parts. Then, the teacher changed the questions and asked the 

children to measure all the segments. This task is radically different from the 

manual‘s problem. Notably, children had to measure the segment [EF] (Leïla‘s 

segment which has not to be measure according to the manual but found in the 

complex writing form : 1 u + ´ u + 1/3 u) . It is a new didactical variable. They can 

find Leïla‘s measure or the measure 1 u + 5/6 u. To validate the equality of these two 

measures might be difficult. Either students could check if the measure is right but 
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they will have to bend the strip in six parts which is quite difficult at their age, or 

they have to understand the equality ´ + 1/3 = 5/6 in the numeric framework which 

may be more difficult. Moreover, the knowledge contain in the T-tasks according to 

the teacher is about a fraction more than one whose numerator is bigger than the 

denominator. This knowledge is quite different to the knowledge contained in the 

manual‘s tasks according to the ―a priori‖ analysis. 

First conclusion about the tasks proposed to the students in the different classes 

The spectrum of tasks‘ proposed by the teachers to the students seems to be large. 

Three of the teachers propose the manual‘s tasks without changing it. They are the 

three teachers with scientific and/or mathematical background. The two other 

teachers who do not have this background propose a reduced or radically different 

problem. Their representations therefore seem to suggest conceptions different from 

the authors‘ conception.  

Teacher carrying out the tasks they wanted to carry out 

Teachers A and B, in different ways (being a tutor or a conductor) give students the 

responsibility for the knowledge construction. Children have a lot of time for 

individual or group work and they can validate their results themselves. The tasks 

carried out by the teachers A and B match to the problem they propose and to the 

authors‘ conception. On the contrary teacher D doesn‘t give any responsibility to her 

students. The task she proposed to the students is reduced. Children don‘t have much 

individual work time and don‘t speak a lot, contrary to students in teachers A and B‘s 

classes. Teacher D therefore controls the realisation in the classroom and carried out 

the tasks she proposed to the children (a reduction of the manual‘s tasks).  

Teacher carrying out different tasks from what they propose at first 

Teacher C gave responsibilities to children who have big difficulties. The rhythm in 

the class is then very slow and most of the children are bored and off-task. Because 

of this very slow rhythm, the teacher has to go very fast on important phases. Thus, 

this teacher who didn‘t change the manual tasks at first, reduces it when she carried 

it out because of the way she shares responsibilities with the students. Teacher E 

appeared to be trying to match with the authors conceptions andgave responsibilities 

to students. However, she only gave responsibility to the very good students. The 

rhythm was then really fast and most of the children were lost. Moreover, according 

to what they do or say she changed her objectives and taught for example how to 

sum ´ + 1/3 which does not need to be known by children aged 9 or 10 years. 

First conclusion about the tasks carried out in the different classes 

The responsibilities sharing is really different according to the teachers‘ practices. It 

has an influence on the tasks they carry out.  The teachers who share the 

responsibilities with all the students carry out the tasks they have proposed, while the 

teachers who share the responsibilities with one only kind of students do not. 



Working Group 17 

CERME 7 (2011) 2546 

 

Moreover, when they try to fit with the author‘s conception (although their own 

conceptions are far from it) the teachers‘ practices might be problematic.  

CONSEQUENCES OF TEACHERS PROBLEM‘S APPROPRIATION 

Teachers‘ A and B carried out the manual‘s tasks without any problem. But, it seems 

that teachers C, D and E didn‘t carry out these tasks which might be problematic for 

the student‘s potential learning. We will see that the association of their practices and 

of this problem can lose the students or even make the differences between good 

students and students who have difficulties larger. But, I will also see that the use of 

the problem can change their practices. 

Practices and manual written by didacticians problematic association 

Teacher C, because of the responsibilities she gives to students with very high 

difficulties, made the rhythm really slow and lost other students attention. That might 

be a problem for students‘ potential learning.  

Teacher E proposed the students really different tasks from the manual‘s tasks which 

created difficulties, e.g. the question about 1 u + 5/6 u and 1 + ´ u + 1/3 u equality. 

This question introduced a new variable and to answer it the teacher introduced 

knowledge which children aged 9 or 10 would not be expected to have. This is really 

problematic. Moreover, in this class the students were not all working on the same 

tasks as they were not working with the same responsibilities. Firstly, some students 

work on the manual‘s problem while the others work on the radically different 

teacher‘s problem. Unlike the other students, the good students had all the necessary 

conditions, like Leïla‘s segment measure, to solve the problem. Secondly, good 

students had enough time to answer the questions the teacher asked because they 

worked very quickly while other students didn‘t have time to think of it. So, good 

students participate and can debate about their results while the others are just 

listening. I have also to point out that it‘s according to their answers that the teacher 

changes her objectives loosing the other students‘ attention. Thus, in this class, 

because of the teacher‘s practices when using this problem, the difference between 

the students levels increase which is really problematic. 

Manual problems traces on teachers‘ practices 

On the contrary, because of the responsibilities given to the children by the manual‘s 

tasks, which is not radically changed by the teacher, teacher D‘s practices seem to 

change. She gives more responsibilities to her students which might improve their 

potential learning. Thus, it seems that the manual can change the teachers‘ practices 

in the direction of the authors‘ conceptions. Indeed, we saw that for the teacher D, 

the knowledge contained in the problem was about measuring segments using 

fractions (she didn‘t propose the third question but only the first two which are about 

measuring segments). I also saw that she didn‘t share responsibilities with her 

students. But, when she proposes the second question, children proposed several 

results for each segment measure. Thus, the teacher has to give more responsibilities 
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to her students to explain their results and the knowledge about equality of a 

complex writing form and a factionary form was explored even though the teacher 

didn‘t think of it before. When she carried out the reduced tasks proposed to the 

students the teacher changed her practices and came back to the manual‘s tasks and 

to the knowledge contained in them. The problem seems to be constructed in a way 

which can change the way this teacher carried out the tasks and especially the way 

she shared responsibilities with students. This new responsibilities sharing may 

improve student‘s potential learning and because of the definition of practices which 

include the potential learning, I may say that the use of this problem might improve 

teachers‘ practices. 

POSSIBLES TEACHERS‘ PRACTICES / MANUAL‘S PROBLEM 

INCOMPATIBILITY FACTORS  

Even if all the teachers say they share the author‘s conceptions (that‘s why they 

choose this manual). Teachers A, B and C are the only three who seem to really share 

their conceptions and teachers A and B are the only two who seem to manage 

carrying out the manual‘s problem. However, I saw that teacher D changed her 

practices according to the authors‘ conceptions. According to the practice‘s analyses, 

I point out several things which might be the reasons for an incompatibility of  the 

teachers‘ practices and the manual tasks.  

Firstly, the knowledge contained in the problem might not be understood by the 

teacher at first sight. Without an ―a priori‖ analyses or without reading the teacher‘s 

book (most of the teacher don‘t read it), teachers might not ―see‖ what knowledge is 

pointed out by the problem. Thus, I saw that two of the five teachers didn‘t point out 

this knowledge and made the students work on something else. Unlike the other 

three, these two teachers didn‘t have a scientific or didactical background. It could 

mean that these backgrounds are necessary to understand the problems‘ objectives.  

Secondly, it seems to be necessary to share responsibilities with all the students in 

order to present the problem in the way intended by the manual. This kind of 

responsibilities sharing needs the teachers to really pay attention during the 

realisation of the manual tasks and needs them to be able to adapt themselves really 

quickly. Moreover, children cannot validate the results themselves for questions one 

and two. In order to leave the problem open, teachers have to find ways which are 

not obvious. It means another occasion when they have to really pay attention and to 

adapt themselves really quickly if they didn‘t think about it earlier. 

The problem seems so to be difficult to carry out, needing teachers to have a 

mathematical or didactical background, a real attention and capacity to adapt 

themselves and needs them to give the students some responsibilities. Moreover, the 

ways teachers A and B carry out the manual‘s tasks (being a tutor or a conductor) 

according to the authors‘ conceptions are not economic which mean that they could 

be difficult to transpose to other teachers. 
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CONCLUSION AND PERSPECTIVES 

The spectrum of teachers‘ practices using the same ‗written by didacticians‘ problem 

seems to be large. Some of the teachers who share the authors‘ conceptions make 

good use of the problem. For such teachers, the manual may be helpful especially to 

gain time. I also saw that for teachers who didn‘t change the problem radically and 

who carried it out with their own conception even if they are far from the authors‘ 

conceptions, the use of the problem written by didacticians can improve their 

practices. It is a result which has to be developed analyzing more than one problem 

being carried out. But, the use of the manual can also be problematic if the teacher‘s 

conceptions are far from the author‘s conception and if the teacher tries anyway to 

carry the problem out according to the authors‘ conceptions without understanding 

them. Teachers‘ practices can then lose their consistency which is quite a problem. I 

therefore have to know if for such teachers the problematic use of the problem can be 

reduced and how this might be done.  

The analysis of only one use of problem is not enough to understand teachers‘ 

practices. I will have to analyse several problems with different characteristics to 

understand what may make the use of the manual by some teachers problematic  and 

what exactly may improve teachers‘ practices when using such manuals.  

REFERENCES 

Artigue, M. (1989). Ingénierie didactique. Recherche en didactique des mathématiques , 9 

(3). 

Bolon, J. (1996). Comment les enseignants tirent-ils parti des recherche faites en didactique 

des mathématiques? Le cas de l'enseignement des décimaux à la charnière école-collège. 

Thèse de doctorat . 

Leplat, J. (1997). Regards sur l'activité en situation de travail. Contribution à la psychologie 

ergonomoique. Paris: PUF. 

Perrin-Glorian, M.-J. (1995). actes de la VIIIème école d'été de didactique des 

mathématiques. 

Perrin-Glorian, M.-J., & Douady, R. (1986). Nombres décimaux liaison école-collège. 62. 

Robert, A. (2001). Les recherches sur les pratiques des enseignants et les contraintes du 

métier d‘enseignant. Recherches en didactique des mathématiques , 21 (1/2), pp. 57-80. 

Robert, A. (2004). Que cherchon-nous à comprendre dans les pratiques des ensiegnants? 

Quelles analyses menons-nous? In M.-L. Peltier, Dur pour les élèves, dur pour les 

enseignants, dur d'enseigner en ZEP (pp. 15-32). La pensée sauvage. 

Robert, A., & Rogalski, J. (2002). Le système complexe et cohérent des enseignants de 

mathématiques: une double approche. La revue cannadienne de l'enseignement des 

sciences des mathématiques et des technologies . 

Shulman, L. (1986). ‗Those who understand, knowledge growth in teaching‘. Educational 

Researcher, 15 (2), pp. 4-14.   



  

CERME 7 (2011) 

A STUDY OF A PROBLEM SOLVING ORIENTED LESSON 

STRUCTURE IN MATHEMATICS IN JAPAN 

Yukiko Asami-Johansson 

University of Gävle, Sweden 

This paper presents and analyses ―Mondaikaiketsu no jugyou‖ which translates to 

―the problem solving oriented – approach‖. It is a set of didactic techniques with the 

aim of motivating the students‘ positive attitude toward engaging in mathematical 

activities and fostering mathematical thinking. As an analytical tool, The 

Anthropological Theory of Didactics (ATD) will be applied.  

Keywords: Problem solving, Japanese mathematics class, ATD. 

INTRODUCTION 

Teaching methods were developed differently in Japan compared to other 

industrialized countries. Hiebert, Stigler and Manaster (1999) argue that Japanese 

teachers emphasize mathematical thinking rather than mathematical skills. This goal 

is reached by having the students discuss with the teacher and peers on the settlement 

options of problems presented to the whole class. I will call this type of didactic 

techniques, where students work on whole-class problem solving, for problem 

oriented lesson structure (POLS).  

A basic problem in mathematics education, and in the training of teachers, is to find 

ways to organise the classroom work so as to make the students active learners of 

mathematics, without losing the focus on the mathematical content. Japanese 

teaching methods, like the ones described, have attracted attention in Sweden lately 

(Dagens Nyheter, 2009), and it has been discussed as a possible model to develop in 

Swedish school system.  

Kazuhiko Souma is one of the teacher educators/researchers who has proposed, 

introduced and elaborated on POLS. He calls his method ―The problem solving 

oriented‖ approach (shortened to PSO; the author‘s translation; ―Mondaikaiketsu no 

jugyou‖, in Japanese). Like POLS in general, it aims to enhance the students‘ attitude 

towards engaging in mathematical activity in the classroom. In Japan, there is a 

tradition of publishing practical books for mathematics teachers as the target group. 

This literature aim to present ideas and concrete lesson plans, based on well-

constructed mathematical problems, according to the proposed teaching methods 

(Souma, 1995; Kunimune & Koseki, 1999; Tsubota, 2007). Souma has written and 

edited a number of such books and his method is actively and widely used by 

teachers in service. It has received little attention from the academic community, 

perhaps because of its practical attribute and the lack of clear theoretical base. The 

lack of theoretical overhead is perhaps part of the appeal, but becomes a problem 

when one is to describe and assess such approaches.  
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I conjecture that PSO (and POLS in general) could make a beneficial contribution for 

pre-service teacher education due to its distinct didactical structure, but the lack of a 

theoretical base is a hinder. The aim of my paper is therefore to present and analyse 

PSO in relation to other Japanese POLS approaches. To illustrate, I will analyse an 

episode of a practical application of PSO in a Japanese classroom.  

As an analytical tool, I will use the anthropological theory of didactics (ATD) 

developed by Y. Chevallard (2006), with the assumption that ATD has the right level 

of abstraction for the purposes of didactic planning. The focus of this paper is on 

how the proposed didactic techniques and lesson structure of PSO relates to the 

description in ATD of the didactic process. In a follow-up paper I intend to shift 

focus to the mathematical content and in particular to how Souma‘s ideas regarding 

the construction of problems can be analysed in ATD.  

BACKGROUND TO The PSo APPROACH 

The Anthropological Theory of Didactics  

The anthropological theory of didactics (ATD) approaches learning and knowledge 

as institutional issues. Mathematics learning can be modelled as the construction, 

within a context of social institutions of interlinked praxeologies of mathematical 

activity, which we also refer to as mathematical organisations (MOs) (Chevallard, 

1999 in Barbé, et al., 2005). A praxeology is described by its tasks and techniques 

(praxis), together with its technology and theory (logos). Technology constitutes the 

tools for discourse on and justification of the techniques and the theory provides 

further justification of the technology and connections to other MOs. The process, 

under which a mathematical praxeology is constructed within the educational 

institution, is called the didactic process (ibid.). Chevallard proposes to describe it as 

being organised in six ―moments‖ that can be thought of as different modes of 

activity in the study of mathematics. The moments are: (FE) the moment of first 

encounter (or re-encounter) of tasks associated to the praxeology, (EX) the 

exploratory moment of finding and elaboration of techniques suitable to the tasks, 

(T) the technical-work moment of using and improving techniques, (TT) the 

technological–theoretical moment in which possible techniques are assessed and 

technological discourse is taking place, (I) the institutionalisation moment where one 

is trying to identify and discern the elaborated MO and (EV) the evaluation moment 

which aims to examine the value of the MO. The description of mathematical 

knowledge (the MO) and learning/teaching of this (the didactic process) is referred 

to as the epistemological component of ATD.  

To organise the work of achieving an appropriate MO, the educator faces the task of 

designing and controlling the didactic process. To this end, one develops a didactical 

praxeology, or a didactical organisation (DO), consisting of didactic techniques 

together with a technology/theory to describe and justify those techniques.  
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I think it is fair to say that ATD carries both a normative and descriptive component. 

As an analytical framework, it holds that any didactic processes can be described as 

the construction, via the six moments, of a praxeology. Similarly, the didactic 

organisation can be described in terms of its praxis and logos block, independently of 

whether the studied DO‘s have ATD incorporated as an epistemological model of the 

learning object and the didactic process.  But, when used as a design tool, ATD also 

carries some normative implications, so that the resulting MOs and DOs can be 

compared with respect to how suitable, structured, and useful (or legitimate) they 

are.  A typical implication is that the local MOs should integrate with and reinforce 

larger superstructures in the form of global praxeologies and that all moments of the 

didactic process needs to be visited and such local objectives are compatible with the 

aims of Souma‘s writings. In this paper, I will attempt to use ATD to describe the 

DO proposed by Souma and also use the epistemological component of ATD to 

motivate some of Souma‘s didactic techniques. Thus, in a way, propose an extension 

of the DO proposed by Souma with a technological-theoretical block from ATD.  

The PSO lesson template 

PSO has the form of a proposed lesson structure and Souma states that it is 

instrumental that the PSO approach is applied with the same basic form regularly. 

The motivation is that familiarity with the situation makes the students feel secure in 

participating in the discourse and engaging in the didactic process.  

Souma, like most Japanese writers of this genre, often gives general didactic advices: 

to be generous with positive feedback, taking care of shy students, etc., in order to 

handle the long-term didactic goals, such as ―fostering the students to active learners 

of mathematics‖. The explicit motivations are often taken from a technological-

theoretical block, which could be referred to as Japanese ―didactical/pedagogical 

common sense‖, although, as stated below, Souma explicitly refers to the cognitive 

theories of Dewey and Polya as a motivation. The epistemological description is 

usually a concrete mathematical example and listing presupposed knowledge and 

goals for the lessons. This format is natural for this type of inspirational literature, 

but has its limitations when one wants to discuss the generalities. A central recurring 

term is that of ―mathematical activity‖, which measures the degree of interest, 

independence and motivation with which students are carrying out the mathematical 

work.  

In order to make a fair description of Souma‘s approach, it does not seem reasonable 

to eliminate all such psychological aspects. Therefore, in this description below, I 

will make qualifications when talking about the didactic process: like the degree of 

participation in the didactic process and ―invigorate the didactic process‖ to mean, 

―increasing the mathematical activity‖ of the didactic process.  

According to Souma‘s example from his book (1995), a typical POLS lesson starts 

with a teacher giving a problem, for instance, ―Show that the difference of the   
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squares of two integers that follow each other is equal to the sum of the two numbers 

(5
2 

– 4
2
 = 9 = 5 + 4, 24

2
 – 23

2 
= 24 + 23 and so on).‖ The students try to solve the 

task and some students write their solutions on the blackboard and explain their 

solution orally. Souma wonders (pp. 103-104) if the students in this situation will 

feel a ―necessity‖ to reflect upon the task. Furthermore, some students might not get 

any ideas on how to solve the problem and will therefore become alienated from the 

discourse. As an alternative, he proposes the following variation of the problem 

formulation: The teacher writes down expressions on the blackboard without any 

comments;  

5
2 
– 4

2
 = 9,  24

2
 – 23

2 
= 47,  (– 9)

2 
– (– 10)

2 
= – 19   

and asks the students what they can observe. All students are supposed to be able 

find such observations, perhaps working in groups. Students may answer, ―It 

becomes odd numbers‖, ―The differences equal the sum of the integers‖, ―The 

differences equals the first integer times two minus one‖, ―The last integer times two 

plus one‖. After the response of the students, the teacher then controls that all 

proposals are correct on the blackboard and says; ―Now we try to prove each of the 

statements‖. Ideally, the formulated problems have many possible roads to solutions: 

Several students may use the formula for expanding the square of a sum; and several 

others, using x to the first integer and y for the second integer, the rule of the 

conjugate.  

Souma proposes to use a didactic technique, which I refer to as guessing. One 

should, regularly, let all students guess an answer or formulate hypotheses about the 

phenomena. It is implied that the ―guess‖ is something that all students can 

participate in. In the example the students are not asked to simply guess an answer, 

but they are invited to, discover patterns by themselves, make hypotheses about the 

phenomena and by implication set their own tasks. By committing to make a guess or 

a hypothesis, especially in the social context of the class, the student will have a 

stronger motivation to study the task and follow it up.  

We can find explicit theoretical motivation of the DO in Souma‘s description (1997) 

where he declares that he is inspired by John Dewey‘s theory of reflective thinking. 

Dewey (1933) presents five cognitive phases of problem solving. 1. Recognize the 

problem. 2. Define the problem. 3. Generate hypotheses about the phenomena. 4. Use 

reasoning if the hypotheses are viable to solve the problem. 5. Test the most credible 

hypotheses. Dewey‘s theory has a general scope and is applicable to any problem 

context. It is also concerned with the cognitive dimensions, rather than the didactic 

process as such. Souma states that educators in mathematics may have a tendency to 

hurry up to address the later phase to ―use reasoning‖. In this way, the development 

of reflective thinking and motivation may be impeded. Souma thus feels that it is 

necessary to pay attention especially to the first three phases. He expresses that 

(1997), from Dewey‘s theory, we may infer that it is important that we should ―(a) 

have an aim for why we solve the task, (b) feel a necessity to solve the task and (c) 
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have made hypotheses before starting the reasoning process.‖ (p. 34) Souma also 

refers to Polya‘s (1957) cognitive theories on problem solving and, in particular, 

Polya‘s insistence on the importance of guessing. Polya states that our hypothesis 

may of course be wrong, but the process of examining the guess should lead to 

improved hypotheses and a deeper understanding.  

The focus on motivation on the first encounter and the exploration, together with the 

insistence on a well defined and controlled mathematical content, is perhaps the 

point that, most distinctively, sets PSO apart from other proposed DO‘s in the POLS 

tradition. Souma states that the teacher much take care to plan how the problem is 

presented and reflect on how students will to act. Souma names (1987) the type of 

tasks a teacher should aim at, as ―open-closed‖ tasks that stimulate conjecture and 

application of guessing. In ATD terms one can say the task should be ―closed‖ so as 

to give a controlled vector from the (FE), the moment of first encounter, to (EX) and 

(T), and also a (somewhat) predictable outcome during the following discourse, 

which usually would concern the establishing of the technological-theoretical 

environment (TT). The task should also be ―open‖, by giving the student a chance to 

make individual choices during the exploration (EX), and later give ample material 

for discussion, so as to invigorate the didactic process.  

Souma means that, starting from standard tasks in the ordinary textbooks of 

mathematics, the teacher can modify parts of the tasks or change the way of stating 

them as in the example we saw. If the tasks presented during a sequence of lessons, 

are carefully constructed, it lead to conjectures, new problems and methods that, in 

ATD terms, productively connects the local MO‘s covered with more global ones 

and inspire to technological and theoretical discourses on higher-level MOs. The 

insistence on open-endedness of the task is common with the ―open approach 

method‖ (Nohda, 1991), which is another proposed variant of POLS. The open 

approach method is used and analysed by Japanese educators (Hino, 2007). Open-

ended problems often take the form of formulating a mathematical model for some 

phenomenon that lead to multitude of problem formulations, techniques and 

solutions. The intent is to let students develop and express different approaches and 

let them reflect on their own ideas by seeking to grasp those of their peers 

(Miyakawa & Winsløw, 2009). Souma (Personal Communication, 2010) judges the 

open-approach method as something that cannot be used in everyday school 

mathematics. POLS lessons applying too ambitious open-ended problems might be 

isolated from ordinary lessons that, for instance, aim to train students‘ basic 

mathematical skills, but Souma (1987) acknowledge this type of projects at the end 

of a course. Nohda also notifies that ―We do the teaching with the open-approach 

once a month as a rule‖ (Nohda, 1991, p. 34). Bosch et al. (2007) have discussed the 

danger with open-ended activities, which are introduced at school without any 

connection to a specific content or discipline. They state that this type of didactic 
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technology suffers the risk of causing the construction of very punctual mathematical 

organisations, since this is what students are trained to study.  

If we return to the lesson template and the example, the teacher should let students 

who have different types of solutions present their problem in class. The teacher then 

leads the class to discuss the reason behind each method and have all students 

determine which of the techniques they have used and why. This is the didactic 

technique of whole class discussion of solutions, which PSO has in common with 

POLS in general. The discussion of alternative solutions gives an opportunity to 

introduce, establish and reinforce technological and theoretical components of the 

MO studied, like in this case, the expansion of the square, the rule of the conjugate 

and the different use of variables. The primary motivation is to steer the didactic 

process into (TT), where new methods and techniques are approved. Solutions and 

motivations given by the students are sometimes unexpected and may make more 

sense for other students. The class discussion also serves the purpose of increasing 

the participation in the didactic process.  

After this, Souma recommends that the students have an opportunity to reflect upon 

the mathematical theory. The teacher can point out what they have learned by having 

a student read out from the textbooks explanations of the theory relevant for the 

lessons. During this theoretical reflection, the teacher can steer the didactic process 

towards, say, (I) institutionalisation or (EV) evaluation. Souma states firmly (1997) 

that studies in mathematics should be organised and based on a well-written textbook 

that gives a clear explanation of the mathematical definitions and theories. The 

classroom discourse is only one form of the study process, the study of mathematics 

will always entail individual studies and individual problem solving inside and 

outside school.  Moreover, the textbook allows the students to recognize and get 

familiar with the theory, which the textbooks usually explain in more full detail. In 

other words, the textbook technology is proposed, for the purpose of further covering 

of all six moments.  

a mathematical problem oriented class in Japan 

The following episode illustrates a mathematical problem oriented lesson where the 

teacher practices the PSO approach. This study take place during a lesson study in 

grade eight at a lower secondary school affiliated to the School of Education in 

Asahikawa, Japan, 2009. The teacher is a former Masters student of Souma. The 

number of students in this class is 40. The lesson is about how to solve a system of 

linear equations and is the third lesson on this topic. The students have already 

studied the addition method by solving linear equations obtained from word 

problems with an everyday life character. The lesson plan was written and 

distributed by the teacher to us observers beforehand. Posing the mathematical tasks 

and problems presented during the lesson is common with the POLS based lesson 

plans, but distinct to PSO is, that it is always written ―students possible conjectures‖ 
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and ―students possible solutions‖, so that teachers always prepare different didactic 

responses depending on which act students take (Souma, personal communication, 

2010). 

In the guidebook of Japanese national curriculum standards ―The curriculum 

guidelines‖ (2008) for mathematics for Japanese secondary school, a system of linear 

equations with two variables is described (p. 90) as follows: ―Solving a linear 

equation with two unknowns is to make clear that this can be done by using a method 

that eliminates one of the two variables and then solve equations with one unknown, 

which is a method students already know‖. Thus, the didactic transposition of the 

praxeology ―System of linear equations‖ to the knowledge to be taught in class 

(Chevallard, 1985 in Bosch & Gascñn, 2006), focuses here on the technique of 

elimination; reducing the pair of two variables equations to one equation with one 

unknown. Techniques and technological terms present are substitution, row 

operations, isolation, coefficients, variables, etc. which are collected from the 

theoretical base of ―Elementary algebra‖. 

The lesson  

As the first step, the teacher shows the problem by verbally reading out a system of 

linear equations; {7x + 3y = 30, x – 5y = 26} and the students are asked to copy this 

in writing. He asks: ―There are two boys, Taro and Jiro, who both solved this 

problem. Taro said, ―I eliminate x‖. Jiro said, ―I eliminate x as well‖. Their answers 

were the same, but their methods of the solutions were different. Today‘s task is to 

consider how they solved the problem differently‖. The teacher does not show the 

techniques; the students must consider the possible techniques, which obviously is 

not only one.  

The teacher gives them a few minutes (―individual thinking activity‖ –according to 

the lesson plan) and encourages them to find as many solutions as possible. He states 

in lesson plan that this is especially meant for the gifted students who find solutions 

quickly. The teacher picks up two students who have obtained different techniques 

and lets those two students write their solutions on the blackboard. The teacher asks 

the class how many of them used the technique one of the two students has used. The 

students raise the hands and it is 37 of them. The teacher asks what is the name of 

this technique and gets the answer ―the addition method‖ which the class already 

learned at the previous lessons. The teacher asks the class how this technique works. 

A student answers ―Change the coefficient to the same and erase one of the 

variable‖. The student who has written the solution on the black board explain her 

reasoning how she has ―changed the coefficient‖. She says, ―x‘s coefficient must be 

changed, so I multiplied it by 7‖. The teacher responds,  –―OK, you multiplied by 7 

and got the same coefficient for all the x:s‖. He changes his voice tone a little and 

then asks ―And then, (looks around the class) what can you do with the x?‖ Several 

students respond, ―We can eliminate the x‖.  
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They later discuss the other solution technique called the ―substitution method‖, He 

inquires again how many of the students came up with an example of that technique 

(17; –many of them used both methods), and asks for the name of the technique, and 

then lets the students explain how the technique works. (Some students might 

already have learned about the technique at ―Juku‖ – a private school offering special 

classes held on weekends and after regular school hours.) The teacher later asks if 

there are any students who found variants of the addition method, with an intention 

to let the students be aware to variation of techniques of the addition method. One 

student presents his solution by multiplying with –1/7 to 7x + 3y = 30, instead of 

multiplying by –7 to x – 5y = 26. This presentation awakes a big discussion in the 

class if it is not a bit too complicated. The teacher concludes the discussion by 

encouraging the student with: ―But it worked? Didn‘t it?‖  

After the class has had this look at the two different techniques, the teacher lets one 

student read out loud a passage from the chapter in the textbook, explaining the 

substitution method. The students work out three to five textbook problems using the 

substitution method from the book. Afterwards, the teacher asks the class ―In which 

types of problem do you use the addition method and in which types do you use the 

substitution method?‖ He lets the students write down their reasoning. The students 

are then encouraged to create several examples of problems they think fit each 

technique and different proposals are then later discussed.  

ATD analysis of the lesson 

The purpose of this lesson is to introduce the substitution method and compare it 

with it to the addition method and to show that both methods reduce the system to 

the one-variable one-equation case. In his lesson plan, the teacher writes that ―The 

aim of the task‖ is to ―make the students find out that there is an another method than 

addition method through mentioning that two boys use different methods‖. He asks 

how to reconstruct the solution of two boys, instead of asking them ―Solve this 

system of linear equations using the substitution method‖. This is an instance of the 

Souma‘s guessing technique, since all students are assumed to be able to use the 

addition method and students are requested to make proposals rather than final 

answers. This is also an example of an ―open–closed‖ task; with alternative 

solutions, but a limited number of possible outcomes. As intended, the task steer the 

didactic process from (FE) to (EX) and (TT), since it is about finding a new 

technique, where (TT) is mainly covered during the whole class discussion. The task 

will also entail (T), technical work, since the students should solve the system with 

the chosen method. The teacher stimulates participation by having all students report 

which method they have followed. In the discourse, the teacher takes care to make 

the students use the correct technological terms, like ―addition method‖, 

―substitution method‖, and the use of ―eliminate‖ rather than ―erase‖. Much of the 

same holds for the final task when they are asked to construct problems that are 

suitable for each method. As proposed by Souma, reflection on theory is carried out 
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when one student reads out loud from the textbook. This steers the didactic process 

to the moment of (I), so that the class now verifies what they have done during the 

lesson. More (T) is covered when the students work on problems in the textbook. 

DISCUSSION AND CONCLUSION 

One can summarise Souma‘s approach as one firmly grounded in the POLS tradition. 

PSO, in particular, focuses on how to start up the didactic process using the guessing 

technique by adding the elements of conjecture, construction and choice from the 

start, stimulate students‘ curiosity to tackle with the mathematical tasks. Souma 

argues for the didactic techniques of presenting problems followed by whole-class 

discussion, theoretical reflection and the use of textbooks. The main difference with 

POLS in general is guessing and that Souma stress the need for open-closedness 

when it comes to task construction. Souma holds that a DO based on open-ended 

activities needs to be established as a long-term didactical contract (Brousseau, 

1998) and that it should be used as the regular lesson structure. 

In this paper I describe PSO using the analytical framework of ATD and also use 

ATD motivate the didactical techniques: By using the guessing technique, the 

teacher allows all the students in the class to participate. Open-closed tasks, textbook 

and theoretical reflection are techniques with the dual purpose of both invigorating 

and control the didactic process. Some qualitative predicates, like ―participation‖, 

―activity‖ and ―invigorate‖, regarding the didactic process were introduced to cover 

the psychological/cognitive motivations, which are implicit and explicit in PSO. 

ATD is of course a theory with a wide scope and is also a ―radical‖ theory that 

problematises the content of mathematical curricula, and, in this respect, Souma‘s 

insistence on following a textbook and the focus on closedness is perhaps a 

contradictory ―conservative‖ trait. But, on the whole, I think that most normative 

implications of ATD are in line with PSO and with POLS in general. Fundamentally, 

by attacking problems and following up by whole-class discussion, one links praxis 

with logos.  
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This paper draws on data from lesson study initiatives within the Researching 

Effective Continuing Professional Development (CPD) on Mathematics Education 

(RECME) (Joubert, Back, DeGeest, Hirst, & Sutherland, 2009) and subsequent work 

with lesson study groups through the Centre for Innovation in Mathematics 

Teaching at the University of Plymouth. We explore how teachers engage with the 

process of lesson study and to identify features of involvement which lead to 

significant changes in practice that may be sustained over the longer term. 
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INTRODUCTION 

This paper is concerned with a model of professional development known as ‗lesson 

study‘. It draws on data from lesson study initiatives within the Researching 

Effective Continuing Professional Development (CPD) on Mathematics Education 

(RECME) and subsequent work with lesson study groups through the Centre for 

Innovation in Mathematics Teaching (CIMT) at the University of Plymouth.  

Lesson study, as with other models of professional development, aims to develop 

teachers‘ professional knowledge, and hence to improve (change) teachers‘ 

classroom practice. Improved student learning is sometimes used as an indicator of 

improved classroom practice. The paper uses these indicators to explore the 

professional development of teachers involved in lesson study initiatives. The 

research questions considered are: What evidence is there of professional 

development of teachers of mathematics who engaged in lesson study? How do 

teachers engage with the process of lesson study? What features of this engagement 

may contribute to significant and sustainable changes in their professional 

knowledge as it is revealed in practice?  

BACKGROUND 

Professional development for teachers of mathematics typically aims to develop 

aspects of teachers‘ mathematical knowledge for teaching, which is generally agreed 

to include: knowledge about mathematics, knowledge about ways of teaching 

mathematics and knowledge about the ways in which learners engage with and make 

sense of mathematics (Joubert & Sutherland, 2008).  
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Lesson study, which pays attention to all these aspects of mathematical knowledge is 

a form of CPD  based on Japanese models of professional development to a greater 

or lesser extent (Lewis, 1995) (Fernandez & Yoshida, 2004) (Burghes & Robinson, 

2010), which particularly emphasises student learning. The process of lesson study 

involves a group of teachers in collaboratively planning a lesson called the ‗study 

lesson‘ or ‗research lesson‘ and one of the teachers teaches this lesson. It is videoed 

or observed by the whole team, with a particular emphasis on the student responses 

to the lesson, after which the group meet to discuss the video or observation. The 

lesson is then developed on the basis of the students‘ responses to it and re-taught to 

a different group of students. This may then be repeated or a different lesson may be 

developed. Generally speaking, lesson study groups involve up to six teachers with a 

minimum of three, but this may vary considerably. 

This constitutes the basic pattern of the approach but there are many variations on it 

both in Japan and in other contexts, which engage with the principles underpinning 

lesson study to a greater or lesser extent. Engaging with these principles is not 

straightforward or easy, and learning and change tends to be slow. As James Stigler 

says in his foreword to Fernadez and Yoshida‘s book: 

A superficial implementation of lesson study is not likely to have any positive impact on 

the learning of teachers and students and, given our impatient political climate, a lack of 

immediate results may result in lesson study being declared a failure before it is even 

understood in any deep sense.  

METHODOLOGY AND METHODS 

This study draws on our research into three lesson study initiatives from the RECME 

project (Joubert, et al., 2009) and two from CIMT. We were interested in the 

influence of the lesson study initiative on the teachers and their commitment to it. 

This suggested the need for rich and deep data, and hence a qualitative methodology 

using interviews and observations.   In all five cases we observed CPD meetings and 

observed lessons taught by the teachers involved. We also interviewed of some of 

the teachers involved. The data were collected in the form of field notes, video and 

audio recordings. To address the question of the influence of the lesson study 

initiative on the teachers, data was analysed within a framework of teacher learning 

in mathematical knowledge for teaching, changes in practice and improved student 

learning.  For the question of teachers‘ commitment to the ideas of lesson study, data 

have been analysed using an approach based on grounded theory (Sinclair & 

Coulthard, 1975). In many cases the data have been fed back to the participating 

teachers and their comments used to co-construct accounts of the professional 

development and its consequences for them professionally. Evidence for professional 

change is accepted as reported by the teachers involved although some triangulation 

was possible through observations of the study lessons and other lessons taught by 

the teachers involved.   
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FINDINGS 

This section reports first on the influence of the lesson study initiative on teachers‘ 

professional development (learning, changes in practice and improved student 

learning). It goes on to report on teachers‘ commitment to the principles of lesson 

study. 

Teacher learning 

Knowledge of mathematics: In lesson study, focusing on the details of one lesson 

and the approach to teaching a specific topic tends to lead to the group addressing 

mathematical ideas in great detail. In fact the topic for the lesson is often chosen 

because it is problematic to teach or the teachers find it hard to teach. One example 

from our studies involved a group of primary school teachers. One of the teachers 

said:   

T 1: I think also having the time to research particularly something in maths was good 

because time and time again I‘m finding I need to ask whether my subject knowledge is 

really that hot on that area of maths. So having read all the research and bringing it all 

together you get that clearer vision, don‘t you?  

She went on to say that being a participant in the lesson study group: 

T 1: raises your awareness about the importance of mathematical subject knowledge and 

relevant terminology and how much you should be using and what you should be using 

and why – it means that instead of making some glib comment about something that you 

might think is mathematically correct you would take the time to make sure  

The leader of this group expressed the view that the lesson study helped to develop a 

different approach to subject knowledge from that which he had held previously: 

T 2: it‘s sort of your mentality and your attitude to subject knowledge. It‘s not that you 

need to fill your head with vast amounts of knowledge for every subject, it‘s that your 

attitude to it is slightly different, as you work with the children in it. It‘s thinking well 

maybe we need to look into that a bit more and not seeing it as a bank of stuff that you 

have to get into children‘s heads. I think that‘s a huge shift.  

From these comments it seems that the development of teachers‘ subject knowledge 

occurs through the consideration of the mathematics that they intend to teach. We 

observed this group of teachers talking about their developing understanding of the 

concepts involved in fractions as well as the different processes which they hoped to 

tackle with their students. They talked about the distinction between continuous and 

discrete quantities and offered examples of their students‘ in a task involving finding 

fractions of quantities. It seems that this understanding was new to them and was 

gleaned from their reading of professional and research literature such as (Halletta, 

Nunes, & Bryant, 2010; Thompson, 2005; Williams & Shuard, 1970). The detailed 

attention paid to the learning opportunities to be offered to the students seemed to 

force these teachers to pay close attention to the ideas involved and we suggest that 
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this led to the development of their subject knowledge in a way that was strongly 

practical and related to their pedagogy. 

Knowledge of ways of teaching mathematics: As teachers consider the topic of the 

lesson that is their focus, they consider different approaches to teaching the topic and 

resources that they might use to support their teaching. In one secondary school 

lesson study, previous approaches to teaching had been dominated by textbooks. For 

the study lesson they developed resources based on approaches they had discovered 

through researching their topic of factorising quadratic expressions. These 

approaches were based on principles of ‗active learning‘ originating from a 

professional development course developed for college tutors (Swan, 2005) which is 

widely available to schools in England. The task that they chose to adapt for their 

lesson involved sorting and matching different quadratic expressions with their 

factors. 

One primary school group focused on finding fractions of quantities and they 

intended to give the children different experiences of finding fractions of quantities 

that were both discrete and continuous. They had long discussions about how they 

should do this and were concerned that the tasks should be creative and realistic. 

They wanted to offer the children open learning settings and they discussed the 

nature of the learning opportunities involved in the study lesson in detail:  

T 2: I think the issue of open versus closed is quite interesting as well because actually 

that was quite a closed activity. There was an outcome, they had to do the picnic. It was 

more or less set up for them. It was quite actually, quite closed. That issue of deciding 

you know how closed or open activities should be and deciding what kind of an activity it 

is because I think sometimes as teachers we think they should be exploring but if we are 

clear about what kind of activity it is then it shouldn‘t be a problem 

Knowledge of ways in which students make sense of mathematics: The detailed 

focus on the specifics of the teaching of one topic tends to lead the teachers into a lot 

of research into the topic and associated misconceptions and problems with teaching 

it. In one primary group, the articles found by their leader were used by them to 

inform the decisions they made about the content of the lesson. This led them to 

focus on the need to make sure the vocabulary they and the children were using was 

correct: 

T 3: I think what we were saying earlier about using maths vocabulary and making sure 

that children are at ease with that and they use it confidently. I think I would put more of 

an emphasis on that from having had been involved in this process I‘ve seen how 

important that is. 

Another teacher in the group was struck by the ways in which the lesson they 

developed was applied to a practical problem and made use of a range of different 

units of measure: 
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T 1: For me making sure that we had a range of … um, that we looked at grams, that we 

looked at millilitres and we looked at centimetres and so we were trying to draw lots of 

areas of maths together. ... 

T 2: It sort of fits in with the research that showed that they need lots of different 

representations and practical experiences of concepts and the language has to come out of 

the experiences rather than just being told. 

The focus on considering how students make sense of mathematics is captured in the 

following comment from one of the teachers: 

T 2: There‘s a level when I‘m reading about maths, there‘s a level at which I just don‘t 

understand it and there is a level where I think is it just me that I can‘t understand it 

because I should be able to understand it only I can‘t. Now children are getting to that 

level at almost a very basic level with even counting – they‘re the same level as me when 

I read a book that has complicated formulae umm so it‘s sort of empathising with 

anybody who doesn‘t know anything at whatever level – children are in the same position 

as us trying to teach fractions.  

This shows the teacher making connections with his own understandings of 

mathematics and the things he struggles with and seeing how his feelings of being 

out of his depth might relate to those of the children he is teaching. This empathy and 

understanding illustrates how the lesson study process has deepened his 

understanding of how his students might make sense of mathematics. 

A teacher from one secondary group found that the process of acting as the camera 

man and making the video of the study lesson enabled him to focus on the ways in 

which the students were making sense of the mathematics. He felt this was subtly 

different from other observations that he had done as the leader of the mathematics 

department in this school. We got a sense that he had an understanding of the 

potential of the students to engage in mathematical activity, as evidenced, for 

example, by the following comment: 

T 4: I think what the lesson study work has made me realise is that it is quite deep and 

impacting on a very subtle basis. Obviously it is interesting filming a lesson that you 

know you can be taking. I think with the emphasis of the lesson study being on the girls 

and filming the girls - it felt very different from being the teacher going round   

Changes in classroom practice 

Many teachers claimed that their general practice has been transformed by their 

involvement in the practice of lesson study. As one of the primary teachers said of  

the impact of lesson study on her  teaching: 

T 3: I think it definitely makes you look at other aspects of maths not just fractions and it 

has made me think every time I‘ve planned lessons since like ‗how could I do this 

differently this time?‘ And I look into different ways of exploring a lesson that I‘ve done 

before and again maybe looking in to research based on that concept.  
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This teacher‘s comments indicate that she sees research related to teaching specific 

mathematics topics as a possible source of information about how she should 

approach teaching them. The group of primary school teachers to whom this teacher 

belongs spoke about all of the aspects of professional development that have been 

identified as important (Joubert, et al., 2009): knowledge of mathematics, knowledge 

of ways of teaching it and knowledge of the ways in which students make sense of 

mathematics but it was their students‘ learning to which they paid the most attention. 

For them it was this focus on the learning of their students that was the motivating 

factor as they continued their work in their group and constituted a change in their 

focus away from their teaching and onto the learning opportunities they offered their 

students. We would suggest that this constitutes a significant change in their 

approaches to their practice. 

Similar evidence was found in the data gathered from one of the secondary groups. 

In talking about the impact of involvement in the lesson study process on his 

teaching more generally, one of the teachers commented: 

T 4: I feel more confident in the sense, not of my knowledge base, but more confident in 

front of the class, putting across more excitement and enthusiasm… I think it has 

chivvied me even further along the road of getting the girls involved more, of taking a 

slightly more background role.  

This also illustrates the focus of the lesson study on the learners and shows a teacher 

who is willing to pass over more control of the learning to his students.  

Student learning  

The observations of the study lesson by the whole group of teachers have the effect 

of focusing the observers‘ attention on the students‘ responses to the learning 

opportunities that the lesson offers. This is a development of the process of engaging 

with the ways the students make sense of the mathematics. The central thrust of a 

study lesson is often to make the students‘ learning visible to the teacher and 

observers and this is accomplished through choosing tasks that facilitate this and 

encourage students to express their mathematical ideas both orally and on paper. 

Once this has been planned the observations can focus on noting the students‘ 

learning. The teachers in the primary group were struck by how observing the 

learning in this way altered their perceptions of the lesson:  

T 1: The thing with observing which is really helpful is that you kind of put yourself in 

the position of the child whereas when you‘re teaching – yes, you‘re thinking about their 

learning but you‘ve also got to think about what you‘re doing and how you‘re sort of 

delivering it. With observing you listen to the teacher as if you were that child and so you 

really see how they are learning.  

T 2: So it‘s enabled you to draw out what‘s happened that you might not have seen as a 

teacher. Knowing that children might be having really rich discussions even though you 
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haven‘t heard them as a teacher is really useful to know. It gives you the confidence to 

think that you don‘t need to direct everything.  

The second comment draws attention to the additional information that the team of 

observers were able to gather from watching the lesson: they had been able to 

comment on all the talk of all the different working groups within the class. This 

would not be possible with one teacher in the classroom and it had shown them that 

the mathematics in the talk of all the groups was sound and that the discussion was 

about the task. 

These comments from the teachers were supported by observations of the study 

lessons that they developed as part of their work. In these lessons the students were 

actively engaged in solving mathematical problems related to the aims of the lesson 

and their conversations illustrated their thinking about the mathematics involved 

rather than echoing a procedure that their teachers had demonstrated. In this the 

study lessons did begin to make the learning of the students more visible. 

Engaging with lesson study 

We described above how lesson study is organised and emphasised that it is not 

always easy or straightforward. It involves a significant time commitment on the part 

of the teachers involved, which in turn implies that, without the support of their 

schools, they will not be able to engage fully with the process. Our sample includes 

three initiatives which demonstrate the difference this commitment seems to make. 

In the first, the teachers came from three different secondary schools and their work 

was carried out in their own time after school. They had little support or recognition 

of their efforts from senior managers in any of their schools and it was difficult for 

them to arrange time within the school day to collaborate and teach together or 

observe each others‘ classes. They planned a lesson together, but then each taught a 

part of it and none of them was able to observe students‘ responses while a colleague 

taught. Although the teachers reported that the collaborative planning of the lesson 

had been of value, we suggest that their experience could have been more valuable if 

they had had the opportunity to observe the students more closely. The point is that 

they did not seem to understand that lesson study involves more than collaborative 

planning. 

In a second example, a group of teachers working under the strong leadership of the 

head of the mathematics department has been engaged in the process of lesson study 

over a period of several academic years. The head of department was well informed 

about the Japanese lesson study model and he showed us a shelf of books about 

lesson study he referred to in discussions with us and the members of his department. 

He said that he encouraged the group to follow the model very closely and this was 

apparent in the Open House which the department put on showcasing two study 

lessons and their analysis for a large audience. Each member of the department is 

part of a lesson study group and the focus of the work for the whole department is 
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linked with a theme that applies to all those involved. Senior management including 

the head teacher support the process of lesson study and the teachers are allowed 

time to engage with the process and to observe one the study lessons. Our 

observation of one of their lesson study meetings suggests that the teachers are used 

to the idea of attending to all three aspects of mathematical knowledge for teaching 

and that they were fluent in talking about expected and actual student responses to 

the study lessons. It seems that the time these teachers put into the lesson study 

initiative, and the commitment they have to the ideas behind lesson study, have 

resulted in significant professional learning. 

In terms of changes in classroom practice, it seems that there has been significant 

and sustained change amongst the majority of members of the department. The head 

of department reported that most teachers took a more ‗open‘ approach in their 

teaching and encouraged their students to discuss their mathematical thinking more. 

One of the teachers told us that much about the way she teaches has been influenced 

by the lesson study. She said that she has learnt to let go of control and to let all the 

students have a voice.  

T1: I now let the students come up to the board and make contributions. I am much more 

aware of what I do in the classroom.  

She reported that she is also more of the possible approaches students might take, 

and she takes these into account when she is planning. Our observations of one of 

her lessons confirms that she encourages her students to discuss mathematical ideas 

and it seems that she provides an environment in which they feel able to put forward 

their ideas.  

It is not surprising, given the institutional support for the initiative, that the second of 

the examples here appears to have been more successful than the first in terms of 

teacher learning and change (it would be worrying if it had not been).  What is 

perhaps more interesting, however, is the teacher commitment to the concepts 

underpinning lesson study in the second example which emphasise paying attention 

to all three aspects of mathematical knowledge for teaching as well as planning a 

lesson collaboratively. 

A third example demonstrates an intermediate level of engagement. In this case 

Teacher 2 (T 2) was the head teacher in the school and leader of the group. He was 

an avid reader of research into education and particularly about children‘s learning. 

He had an egalitarian approach to the leadership and management of his school 

describing himself as the ‗lead learner‘ in all documentation rather than the head 

teacher. He had identified lesson study as an approach to professional development 

amongst his staff that respected their mutual need to develop practice that supported 

both their individual professional learning journeys and the learning of their 

students. He gave the rest of the team opportunities to voice their concerns and ideas 

and appeared not to dominate the group. He saw his role as a facilitator of the 
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process in that he was able to organise time for meetings and observations but he 

also expected and got from the participants considerable investment of their free time 

in the process and most meetings were held after school. This institutional support 

for the process of involvement in lesson study contributed to the engagement that the 

participants were able to make and sustain.  

CONCLUSIONS 

This paper explored teachers‘ reported learning and changes in practice during and 

after their engagement in lesson study initiatives. It provided evidence of their 

learning in terms of three aspects of mathematical knowledge for teaching. It seems 

that there was learning in all three areas, and we suggest that lesson study is 

particularly effective in encouraging learning in all three aspects. The paper 

discussed changes in classroom practice and again it seems that changes in 

classroom practice were evident and can be seen as effective because they were in 

line with the changes promoted by the initiatives of professional development. There 

was evidence of improved student learning and this suggests that the ultimate goal of 

the professional development was achieved. 

However, it seems that not all teachers had equally positive experiences. We 

examined the ways in which the lesson study initiatives were approached, and 

suggested that if the teachers‘ schools are committed to supporting the teachers in 

taking part in lesson study and if teachers are committed to the ideas underpinning 

lesson study, then it is likely that the teachers‘ learning and changes in classroom 

practice will be deeper and more sustained.  

Lesson study focuses on teachers identifying for themselves key issues and 

objectives that relate to their own context and which are important to them. As a 

group of colleagues they have an understanding of each other‘s practice and can 

move together, in directions that they feel inclined to try, to deal with their own 

problems. As one of the primary teachers observed:  

T 1: it‘s that traditional CPD you know that we go to and have some sort of, whether its in 

house or out of house, and we sit and listen and we have things thrown at us and we have 

initiative this and initiative that. And this is a much more productive form of CPD, it‘s 

much more real and it will have a greater impact on learning and teaching.  

This conveys a sense that lesson study for this teacher is a real process grounded in 

her practice as a teacher, something that she has control over and not something that 

is ‗done to her‘ by some expert outsider with questionable understanding of her 

working context. 

Lesson study is a subtle, complex and difficult process as these accounts suggest. 

However for those who engage with it at a deep level and develop an understanding 

of the process, it offers strong support for professional change and learning in all the 

key areas. Our data gathered from a number of different groups of teachers involved 
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in lesson study indicates that changes in practice which the teachers claim to be 

sustained and significant only occur once they have grasped the key focus of lesson 

study on students‘ responses. This focus shifts their reflections on their teaching to a 

consideration of the learning opportunities they are offering the students and the 

students‘ responses to those learning opportunities. It pushes them to create study 

lessons that make the learning of the students visible to the observers. This is a 

subtle and difficult concept that necessitates engagement at a deep level with the 

process of lesson study.  We suggest that it is only through sustained involvement 

that the teachers will develop a deeper understanding of these processes involved in 

this complex approach to professional development and of the way in which it has 

the potential to support and sustain their professional development. This deep 

involvement requires the participants to understand the ‗spirit‘ of lesson study rather 

than limiting their involvement to the ‗letter‘, or the superficial form, of this way of 

working. Lesson study involves more than groups of teachers planning lessons 

together and requires consideration of the mathematics that is the focus of the lesson, 

the potential ways of teaching it and the ways in which the students are likely to 

respond to those ways of teaching. Most importantly it involves paying attention to 

the learning of the students and for teachers to do this they need to create lessons in 

which that student learning can be observed. As Stigler says: ‗The devil (and God!) 

are in the detail‘(p.x) (Fernandez & Yoshida, 2004). 
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Through recognizing mathematics teachers as professionals who use mathematics in 

their workplace, this paper traces a parallel between teachers‘ professional 

mathematical and the characteristics of the mathematics used in workplaces found in 

studies of professionals. This parallel is developed through the five characteristics 

highlighted in Noss (2002). We use this parallel to help develop further on our 

conceptualisation about teachers‘ use of mathematical knowledge in their practice. 

There is general recognition in our community of the professional finality of teacher 

education. One main aim of pre-service teacher education is to develop teachers‘ 

capacity to act as professionals. This finality has consequences for all the 

components of teacher education, in particular the mathematical dimension of their 

training. It therefore leads to the question of the relevant mathematics needed for the 

professional practice of teaching mathematics in schools. Our research interest starts 

from this preoccupation of teachers‘ professional mathematics (Proulx & Bednarz, 

2009), as well as a constant questioning of the presence of a gap between the 

mathematical experiences lived by teachers through their teacher education and the 

mathematical practices teacher enact in their classroom (see our review in Proulx & 

Bednarz, 2008). This questioning led us progressively to the necessity of better 

understanding the specificity of these mathematical knowings of teachers, so as to be 

able to think of and develop teacher education approaches better aligned with this 

professional mathematics in order to prepare them for the demands of their work.  

It seemed natural, in that perspective, to be interested in the research studies 

conducted on the mathematics used in practice by different professional groups; what 

is often termed ―mathematics at work.‖ If teachers are seen as professionals, thus the 

characteristics of the mathematics used in their practice could be informed by this 

important corpus of research (see e.g. Noss & Hoyles, 1996; Pozzi, Noss & Hoyles, 

1998; Noss, 2002; Noss, Bakker, Hoyles & Kent, 2007). As we began reading this 

body of literature, we were stunned by the parallel we could trace between their 

results and analysis and our own data and theorizations on teachers‘ mathematical 

practices. We perceived this as an opportunity to continue advancing on our 

conceptualization of the nature of knowing and using mathematics in teaching (see 

e.g. Bednarz & Proulx, 2009). This paper is thus centered on exploring this parallel, 

in an attempt to define better teachers‘ professional mathematical practices through 

Noss et al. studies on ―mathematics at work.‖ In particular, we draw on Noss‘s 

(2002) conceptualization, developed as a result of studies conducted among 

professional groups in different settings (e.g., engineers, bankers, nurses). We thus 

document, for each of the 5 characteristics of this conceptualization, the parallel we 
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see with the mathematics used by teachers in practice – supported by illustrations 

from our data. 

BRIEF METHODOLOGICAL CONSIDERATIONS 

This parallel is documented through combining two sources of data. The first source 

comes from collaborative research studies in which teachers and researchers meet to 

elaborate teaching situations. These studies enable us to describe and analyze the 

knowledge teachers deploy when designing classroom situations. The second source 

comes from an in-service research project, in which 3 groups of 8-10 teachers 

participate, centered on the exploration of mathematics situations related to 

teachers‘ everyday teaching practice. The exploration of these tasks help gain access 

to the nature of the mathematical knowledge they mobilise in the action of teaching. 

DEVELOPING THE PARALLEL THROUGH NOSS‘ 5 CHARACTERISTICS  

A preliminary remark is necessary before we engage in this parallel. Teachers are a 

particular professional group, whose profession is to teach mathematics to students. 

They are in that sense different from other professional groups such as bankers, 

engineers or nurses whose profession is not directly associated to mathematics. 

Mathematics teachers are, then, doubly associated to mathematics: (1) they teach 

mathematics to students and (2) they enact a certain sort of mathematics in their 

professional practice (their profession is to teach mathematics and they have 

developed professional mathematical knowings to do so). Thus, teachers‘ 

mathematics at work (our object of analysis) must not be confused and restricted to 

the mathematics they teach (a certain content linked to the curriculum). The content 

of school mathematics is seen to act as a structuring resource, in Jean Lave‘s sense, 

of this (mathematical) practice of teachers – e.g., in the same way that a drug acts as 

a structuring resource for the nurses‘ mathematical practices (the knowledge of the 

drug structures the mathematical reasoning in the activity of drug‘s administration to 

patients) (e.g., Pozzi et al., 1998). But, even if the content teachers teach acts as a 

structuring resource, the mathematical knowledge enacted within this practice, as we 

will see in this paper, is considerably more sophisticated and different than the one 

encountered by their students (the mathematics linked to the curriculum).  

The context of teachers‘ practice is a complex one, both mathematically and socially. 

As the employees of the bank in Noss et al. study (1996) are concerned with making 

profits for the bank and benefiting for themselves, rather than learning mathematics 

for its own sake, schoolteachers are concerned with students‘ learning. They are 

concerned with their students‘ understandings of the mathematics they teach and 

with their students‘ success in this learning; teachers are not (necessarily) interested 

in their own personal learning of mathematics in itself. This finality gives a 

particular color to the mathematics at work in their practice, as we will see through 

the documentation of the five characteristics conceptualized in Noss (2002). 
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Characteristic 1. A fragmentation of the knowledge structure of the workplace 

Noss et al. (1996), in an attempt to understand the banker‘s ways of thinking about 

quantitative data, put in light the fragmented knowledge structure that characterizes 

the practice of investment banking: ―We encountered departments specializing in the 

finest detail on one financial instrument, sharing a common wall but no common 

language with another – essentially similar – department‖ (Noss, 2002, p. 51). This 

fragmentation shaped the way bankers saw graphs – conceived as a display of 

numbers and data in relation to work activities (and not, e.g., as a functional 

relationship or an indication of a trend about data that permits prediction). This 

fragmentation of the knowledge structure of the workplace characterizes also in a 

certain way the one of teachers, e.g. from one grade-level to another or from one 

order to another (primary to secondary, secondary to post-secondary). Even if 

practitioners do share a common language for speaking about their practice and 

referring to it, the knowledge structure of the workplace (by level, by order) shapes 

their mathematics in use, as we see in the following excerpt. 

This excerpt comes from our professional development project (with secondary 

teachers) and concerns an important part of mathematics-in-use in teaching, that of 

symbolic notations used in mathematics teaching. After having explored a number of 

tasks around fractions, a discussion is initiated about an assessment task recently 

given to grade-8 students where the expression (2x 1)

4
 played a role. In this 

discussion, teachers elaborate on their expectations for their students‘ answers. 

Mary (grade-8): I would like to see the division symbol ( ) because I work around the 

division of polynomial expressions by constants. Hence, I expect my 

students to do the following, using the division symbol: 
(2x 1)

4
(2x 1) 4 (2x 4) (1 4)

. [She will later say: ―I don‘t want to see x 2 

in a result, but x/2.‖ And, as a result of her interaction with other teachers 

who questioned her on this idea, she will reply: ―well, except if I have 
x

2
x

3  because for students there is the possibility of a confusion with the 

place where the division stands (e.g., 
2

3

1
4

 is 
2

3
1

4  and not 2 3 1 4)‖]. 

Clara (grade-8 and 10): I would like my students to write 
1

2 x 1
4 , because I want to 

prepare my students for the usual notation used for linear functions. 

Cathy (grade-7): I would also in that case use the division symbol (even if I don‘t teach 

algebra), because my objective is that my students work with operations on 

natural numbers and their properties like the distributive law: (2 51 1) 4. 

Sandra (grade-9): I prefer they continue simplifying this expression from 2x
4

1
4  to x

2
1

4  

because I want to make visible the rate of change in this expression. 

Jerry (grade-10 and 11): I write it 2(x 1
2) to draw out parameters and the transformations 

associated to them [Robert (grade-10 and 11) agrees]. 
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This discussion highlights the subtle ideas engaged by teachers concerning symbolic 

notations, rooted in the demands of their work activity: e.g., for preventing possible 

confusion with notation in students; for expressing the results in line with the finality 

of their work in their classroom (note that both grade-8 teachers did not share the 

same expectations); for preparing students for the upcoming years and topics. We 

can see how teachers‘ mathematical knowledge in use, here about algebraic 

notations, is finely tuned to their professional activity and its pragmatic demands: it 

is shaped by the fragmentation of the knowledge structure of the school. A certain 

rationality guides their choices, putting in evidence different meanings underlying 

this notation and a diversity of interpretations related to the level where they teach: 

division of algebraic expressions (the fraction notation has to be seen as a quotient, a 

division); general expression associated to linear function; seeing the variation rate 

through the notation; seeing the parameters through the notation and transformations 

associated. 

Characteristic 2. The role of artefacts and tools in mathematics at work 

In their ethnographic studies on nurses, Noss et al. show the central role of artefacts 

in the workplace settings. Artefacts such as notational systems, physical tools, work 

protocols, etc., act as structuring resources in an ongoing dialectic of producing and 

being produced by activity in a certain social practice.  

For example, in one study on a hospital ward, we found that a seemingly straithforward 

artefact like a fluid balance chart, contained within it the crystallized activity of the 

hospital community, shaping in complex – but unnoticed – ways the actions and discourse 

of those using it. (Noss, 2002, p. 52)  

Our data also show the importance of artefacts in the work of teachers. For example, 

symbolic notations, algorithms and modes of representation to which teachers often 

refer in their teaching illustrate how these artefacts act as structuring resources in 

their practice. If, for nurses the fluid balance chart is embedded in the routine of a 

work protocol for taking care of patients, for teachers a symbolic notation is 

embedded in their routine of teaching mathematics to students and giving meaning to 

concepts. These artefacts are so embedded in professional routines that in most cases 

their underlying structure is hidden: nurses take for granted the explanatory power of 

the chart, precisely because it is part of their routines; teachers often take for granted 

the explanatory power of representations, notations or algorithms in their teaching, 

precisely because it is part of their routine. To understand the complex, but often less 

visible parts of decision-making related to these artefacts, Pozzi et al. (1998) have 

notice that those become more visible through situations involving what they call 

―breakdowns‖ in the normal habits of practice, where these oft-hidden meanings are 

questioned by other practitioners that use or perceive the role of these artefacts in 

different ways. In that perspective, breakdown situations have a central role to help 

explicit the mathematics in use within these artefacts, where the models 

underpinning the artefacts can rise to the surface and become open for observation 
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by researchers; Pozzi et al. even suggest to provoke situations of breakdown to attain 

these goals. We can see the potential of such breakdown situations in the next 

excerpt concerning algebraic notations, where the interactions between teachers 

around routine practices at each grade level rises to the surface. The notations act 

here as what Pozzi et al. call a ―disputed territory,‖ which serves both as a 

breakdown in routines for each teacher and as an opportunity for us as researchers to 

understand the algebraic notation used. 

The symbolic notation is the focus of teachers‘ discourse about their practice in this 

excerpt coming from the professional development research project with secondary 

teachers. The discussion emerged from an exploration of different students‘ solutions to a 

problem of trigonometry (drawing a point on the trigonometric circle, finding which point 

is nearer to 
6
). The link that the grade-8 teacher wanted to do with her teaching to 

prepare the future work of students on trigonometry illustrates the way she works with the 

circle. She explains that she writes ― ‖ during the process of elaboration of the 

formula of the circumference of the circle, to help student see the origin of the formula. 

However at the end of the process, only ― 2 r‖ will be acceptable (a certain written 

notation corresponding to the convention accepted). She will do the same for 1 x , 

acceptable during the process of mathematization of an algebraic problem, but not at the 

end (the answer has to be written as x). In the work on the trigonometric circle, the grade-

11 teacher will accept a notation like ― 2n ‖ to show the repetition on the circle of  ―n 

times‖ and to help visualize the point associated. But the other teacher (grade-10) 

reformulates it in ―2  n‖ to put the constant before (like the accepted convention). This 

teacher will also point to the non coherence in the way it is written and explains that the 

algebraic expressions ― 2n ‖ means, normally, ― 2n ‖ to be coherent with the way we 

usually say and write those expressions (like with "pi r two" r2

 or ―x-two‖=x
2
). 

This discussion shows the invisible relationships buried in these artefacts (and often 

taken for granted) that a breakdown from routine practices contributed to explicit (in 

this case the need for teachers to understand the notation in use by other teachers). 

Teachers had to make sense of what they used, and why, through these discussions. 

We can also see how these artefacts are shaped by the professional context of the 

teacher (e.g., teaching at a certain level, making sense of a formula, visualizing the 

positioning of points on the trigonometric circle) within a broader social system (e.g., 

answering to certain mathematical school conventions, taking account of the 

coherence), as well as this practice shapes in return this way of working out these 

―conventions‖ by offering new ways of making sense of them and using them. 

Characteristic 3. The anchoring of mathematical meanings in practice 

The different ethnographic studies conducted by Noss and his team point to the 

situated nature of the mathematical knowledge of professionals, rooted in the 

professional activity and context of work. For example, in the case of nurses, their 

findings show that the different strategies used in relation to drug‘s administration 

would, in the literature on proportional reasoning, be described as lacking meaning. 
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However, a fine-grained analysis shows this not to be the case, as the various 

strategies ―was anchored in an intimate knowledge of the drug itself, as well as in the 

properties of familiar packaging constraints of prescribed doses. The knowledge was 

mutually constituted and expressed both mathematical relation and culturally-shared 

situational noise‖ (Noss, 2002, p. 54). The ―situational noise‖ of a situation is an 

integral part of professional knowledge at work. In a previous paper (Bednarz & 

Proulx, 2009), we have brought forth similar findings for mathematics teachers 

illustrating the anchoring of mathematical meanings in practice produced by the 

coordination of multiple dimensions (mathematical, didactical, pedagogical, 

institutional). The ―noise of the teaching situations‖ (e.g. engaging students in the 

given problem, showing the value of various solutions and not only of the answer, 

showing how students find it, reacting to some solutions, etc.) appeared to be a key 

element of teacher‘s mathematical knowledge. As a way of illustrating this situated 

nature of mathematical knowledge rooted in context, we use the following vignettes, 

taken from a collaborative research study centered on the elaboration of teaching 

situations (Saboya, 2010). We join Nadia and her students in the following two 

vignettes as they work with different expressions. 

Vignette 1: expression

 
105 108 10

102

  Vignette 2: expression 

 

104 105

102 103

 

Laura: I am not sure but what I would do … it is like 

10 to the 5, so 5 minus 2 then 8 minus 2 then 10 … 10 

to the 1 minus 2 then after that it would … then I can‘t 

put them together because these are additions, because 

the law on exponents does not work, so it will be 10 to 

the 3 plus 10 to the 6 plus 10 to the minus 1. 

Marc: Is it possible to write 10
13

? 

Students: No because it is a ―plus.‖ 

Nadia: You see there is a plus, and so we say ―there is 

a ‗plus‘ which ruins everything.‖ This ‗plus‘ stops me 

from putting everything together. 

Brad: Instead of 1/10 could we write ―-10‖? 

Mary: Does it mean that it is equal to 105

102

108

102

10

102

 

Nadia: When I have something like that (she shows the 

second part of the expression, under the line), when I 

have a sum like that it is as if I have split the fraction in 

three. So, it is the same 

principle: 105 108 10

102

105

102

108

102

10

102
 

Brad: Instead of 1/10 could we write ―-10‖?

 

 

Nadia: See, some say it‘s -10 or minus something. This 

is why I don‘t want negative exponents because you 

make errors and it doesn‘t work.

 

 
Nadia:

 

104 105

102 103

, we cannot do anything with this, we 

leave it like this. 

Joe: Why? Can‘t we separate those? 

Nadia: No we can‘t separate this. 

Joe: Why not? 

Nadia: if you separate it, it gives

 

104

102

105

103
 . It would 

mean that you add fractions. And do we have the right 

to add numerators and denominators? 

Joe: No. 

Nadia: Ok, no, but when you do as you say, this is 

what you do. 

Julie: Couldn‘t we just do 104

102
? 

Nadia: No. What do you do when you separate them 

like this 104

102

105

103
? Is that what you‘ve done? 

Julie: Yes. 

Nadia: This does not work because you are adding two 

fractions and you add numerators together and 

denominators together. You cannot do that. 

As for nurses, where strategies used to calculate drug administration to patients were 

anchored in an intimate knowledge of the drug itself and varied in relation to the type 

of drug and the packaging constraints (Pozzi et al., 1998), the previous extracts show 

similar results in relation to teachers‘ context. Strategies used in action by Nadia to 

manipulate algebraic expressions with exponents and simplify them is anchored in an 
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intimate knowledge of the expression itself and of different types of expressions in 

relation to students‘ difficulties (e.g., expressions with additions or not, additions at 

the denominator, negative exponents). This knowledge is interwoven with her 

anticipation of her students‘ difficulties, her sensibility to their errors in such 

expressions, her intention to prevent these errors, etc. The fact that she does not 

pursue the simplification in the second case ( ) – even if it is possible – is 

related to this professional mathematical knowledge intertwined in the context of 

practice (and unfolded on the spot). The way she mathematically works with the 

expressions is related to her teaching intentions (prevent errors, working on 

exponents, using exponents laws, seeing the parallel with fractions), and those shape 

the way she acts, so that the factorization of a common factor at the numerator and 

denominator will not be used by students, or that she will not encourage it.   

Characteristic 4. Qualitative restructuring of mathematical knowledge 

In their studies on nurses and on engineers, Noss and colleagues highlight that a 

transformation of mathematical knowledge happens within the professional activity 

at work. For example, a certain meaning of average and variation emerged in nurses‘ 

thinking on the ward, in the manipulation and interpretation of quantitative data and 

relationships related to patients. For a nurse, it is the variation that is crucial, and not 

the notion of average of a population; the average is considered if it is individually 

mediated (it is the individual who is the focus of her care). This restructuration and 

transformation of knowledge in practice is also true for engineers, where they have 

develop alternative ways of making sense of concepts (e.g., load path); in manners 

that differ from the ―usual‖ or ―formal‖ way of approaching this concept in 

traditional mathematics/physics. This transformation of mathematical knowledge in 

situ provides to the engineers a way of thinking more relevant to allow judgments 

about the validity of the quantitative analysis of the structure.  

The following excerpt, taken from our professional development project with 

secondary teachers, highlights similar findings. It concerns an exploration of 

different graphs and the anticipation of what their students could answer to them, as 

well as the relevance of giving these sorts of tasks. Theses tasks were given to 

teachers (taken from Shell Centre for Mathematical Education, University of 

Nottingham, 1985). 
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The debate on the value of this type of graphical representation is provoked by Mary 

(grade-8 teacher): ―What is the relevance of this type of graph if there is no relation 

between the magnitudes considered on the two axes? It goes against what we try to 

develop in students, that is, the idea of independent variable, dependant variable and 

a relation between the two.‖ Then, Mary appeared ambivalent about the relevance of 

using this type of graph: ―On one hand, I find these graphs interesting because they 

force a lecture of the axes by the students, which is one of the difficulties they have 

and that I observed when they work with graphs. They simply do not read the axes. 

But, on the other hand, I am not very comfortable with the idea of presenting a graph 

where there is no relation between the two magnitudes involved on the axes‖. This 

argumentation will be supported by other teachers, like Clara (grade-8 and 10 

teacher): ―What is the relevance of it if there is no relation between variables? A 

graph is interesting for seeing if there is a correlation between two variables (e.g., in 

statistics, to study the behavior of a series of data and its tendency, its correlation) or 

if it corresponds to a functional relationship. If there is not one and only one value 

that corresponds to another specific value of the independent variable, we do not 

have a function, so it is not interesting, since we can‘t speak of inverse or reciprocal 

functions, for example.‖ Through the discussion, it became clear that all teachers 

agreed with the fact that in these cases there was no real relevance to use a graph; 

they raised, e.g., the idea of placing the information available in a table. 

This interaction clearly shows a conceptualization of graphs transformed by the 

professional activity of the teacher, as it was the case for the bankers in the Noss and 

Hoyles‘s (1996) study. For bankers, the graphs were seen as a display of data, as a 

picture of numbers and as a quick and easy way to display data, and not as a medium 

for expressing relationships (between a certain quantity and time, e.g.). They 

regarded the shape of the graph as determined by its representational characteristics 

(number of elements to be displayed, availability of color, target of audience, 

frequency of variables, scale of axes, etc.) and not in terms of the underlying 

relationships between those data. On the opposite, for these teachers, the graph was 

Interpret the meaning of each graph. 
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not seen or accepted as being a simple display of data or of numbers. The central role 

played by functions in the curriculum they teach influenced their conceptualization 

of graphs in a very specific way. Teachers regarded graphs as necessarily 

determining relations between two variables. These two contrasted examples of 

teachers and bankers concerning the usage/utility of graphs shows how knowledge is 

transformed within the professional practice. 

Characteristic 5. The situativity of abstraction 

As we have seen, mathematical knowledge at work is situated. This situativity of 

knowledge doesn‘t mean that this knowledge in action is only local. A variety of the 

observations made on nurses in Noss et al.‘s (2002) study reveal, through the 

different strategies used by nurses to calculate some drug administration to patients, 

a kind of invariant through a nurses‘ sense of the quantity of concentration, taking 

the form of a co-variation constant between the mass and the volume in the drug 

solution; this invariant is not linked to a particular patient, nor a specific drug‘s 

administration. Thus, nurses engage in abstraction, developing abstracted knowledge 

grounded in their practice. But this abstraction remains to some extend situated in 

that it retains crucial elements of the setting in the ways it is conceptualized. The 

authors use the expression ―situated abstraction‖ to describe this kind of abstraction 

at work. It attempts to describe how a conceptualization of mathematical knowledge 

can be at the same time abstract and situated. Finely tuned to their situative 

constructive development, to their use in professional practice, mathematical 

invariants are abstracted within that community of practice. The notion of ―situated 

abstraction‖ confronts the usual way of conceiving abstraction in the mathematics 

education community, as it is normally thought of as something extracted from a set 

of situations, essentially de-contextualized. The noise of the context is then 

perceived in this conception of abstraction as an obstacle to this abstraction: there is 

a necessity to shift away from the context and from the situation where it was 

extracted from. The notion of situated abstraction questions this conception, that is, it 

questions the fact that mathematical abstractions must be separated from the context 

of their construction or application. On the contrary, situated abstraction suggests 

that what can be seen as ―noise‖ in the traditional view of abstraction is in fact 

central to it in a professional context. However, as Noss (2002) explains, this notion 

of situated abstraction needs to be additionally documented, as it is now more 

conceived as representing an hypothesis than a finding per se.  

Our observations through the various sessions with the different groups of teachers 

show that some aspects of situated abstraction are taking form in teachers‘ sense of 

mathematical concepts. For example, an aspect we have explored in depth in 

Bednarz and Proulx (2010) is the notion of referent in regard to fractions (e.g. ´ of 

something is different from ´ of another thing). In this case, a conceptualization of 

fractions in relation to a certain referent emerges within the explorations in the 

sessions, interwoven with their professional practice concerning issues like 
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considering their students‘ possible answers, the possibility to consider or not the 

relativity of this referent in their teaching, managing this idea in the daily teaching 

with 27 children, etc.). This notion of referent was also afterwards re-invested in 

other sessions on other topics (e.g. decimals numbers, area, volume, division and 

problem solving). This invariant is thus highlighted in various conceptual situations 

for various concepts, showing that teachers have abstracted within this exploration a 

specific mathematical knowledge. This abstracted knowledge remains however 

situated, embedded within teaching and learning contexts for making sense of it: it 

carries issues of classroom context, of viability of bringing about the referent, of 

difficulties for students to understand, of their easiness for managing this 

mathematical openness of the answer, of deception toward their previous teaching or 

textbooks that did not insist on this powerful idea of referent, of the potential of this 

idea for students‘ reasoning and sense making, etc. Those are all ―present‖ in the 

abstractions teachers develop about the specific notions worked on. However, in the 

same way that Noss (2002) stresses it, we still are in need of probing further on this 

issue of situated abstraction in order to get a better and more robust grasp of its 

meaning and the role it plays in teachers‘ professional mathematics. 

DISCUSSION AND CLOSING REMARKS 

This parallel made with these characteristics of teachers‘ mathematics at work 

questions and even confronts the usual mathematical preparation of teachers in 

universities, particularly in regard to the situated nature of this mathematical 

knowledge and the situated nature of abstraction.  Issues like the ―noise‖ of the 

practice situation is, as we have seen, an essential part of this mathematical 

knowledge at work for teachers, as it shapes teachers‘ knowledge as well as the 

abstractions they draw and how they ―restructure‖ their mathematical understandings 

in relation to these practices. It therefore calls for a very specific mathematical 

preparation, precisely in relation to artefacts and their often-hidden meanings in 

routines, to the de-fragmentation of the workplace, and to the central issue of 

situativity of professional knowledge – so as to better prepare teachers to act 

mathematically as professionals in their everyday practice. As Noss (2002) points, 

the lack of robust connection between both worlds of ―mathematics at work‖ and 

―mathematical preparation at university‖ appears to be a central element to take into 

account for the mathematical preparation of professionals. 

[…] the majority of structural engineers do not ―use mathematics‖ of any sophistication in 

their professional careers […]: Once you‘ve left university you don‘t use the maths you 

learnt there, ‗squared‘ or ‗cubed‘ is the most complex thing you do. For the vast majority 

of the engineers in this firm, an awful lot of the mathematics they were taught, I won‘t say 

learnt, doesn‘t surface again‖ (p. 54). 
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In that sense, this conceptualization of teachers‘ mathematical knowledge helps to 

think about the elaboration of approaches for the professional development of 

teachers, ones better aligned with the ―mathematics at work‖ of the teaching practice. 
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ADOPTING AN INQUIRY APPROACH TO TEACHING 

PRACTICE: THE CASE OF A PRIMARY SCHOOL TEACHER  

 Claire Vaugelade Berg 

University of Agder, Norway 

The research reported in this paper is situated within a developmental research 

project called Teaching Better Mathematics where the collaboration between 

teachers and researchers is based on the idea of inquiry.  The teaching practice of 

an experienced primary school teacher participating in the project is considered and 

elements of her practice are conceptualised using the theoretical construct of an 

inquiry cycle. The analysis shows that the teacher engaged with inquiry at different 

levels, into the mathematics and into her teaching practice. Possible implications for 

teacher education are suggested.   

INTRODUCTION 

The origin of inquiry (Dewey, 1905) can be traced back through the work of Polya in 

mathematics (Polya, 1945) and his ideas have been developed further during the 

1970s and 1980s with an international movement in mathematics learning and 

teaching aimed at promoting problem-solving and conjecturing in mathematics 

classrooms (Mason, Burton, & Stacey, 1982; Schoenfeld, 1985). Furthermore, during 

the last decades, research has been focused on the role played by teachers in their 

teaching practice in relation to pupils‘ learning. More specifically, it seems that there 

is a consensus concerning a possible link between development in teaching and 

improvement of pupils‘ mathematics learning in classrooms. In this research report, 

my aim is to present how professional development for in-service teachers is 

organised in a developmental research project Teaching Better Mathematics (TBM) 

at the University of Agder (UiA), where the idea of inquiry is fundamental. 

This paper addresses the link between theory and practice by referring to the 

theoretical constructs of teaching cycle, inquiry cycle and developmental research 

and by exemplifying the idea of an inquiry cycle through the analysis of a primary 

school teacher‘s teaching practice. In other words, through this paper I am in a 

position to link theory, teaching and practice and to address the following research 

question: what does it mean to follow an inquiry approach to teaching? The structure 

of this paper is as follows: First I present central aspects of the TBM project and 

emphasise the theoretical constructs of inquiry, teaching cycle and inquiry cycle, and 

developmental research. Then I turn to an example from a primary school teacher‘s 

practice and show how the theoretical constructs introduced previously are useful in 

conceptualising different aspects of the teacher‘s teaching practice. I conclude by 

discussing possible development of and implications for developmental research for 

teacher education and especially the importance of the inquiry cycle in the 

development of mathematics teaching and learning.  
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CENTRAL ASPECTS OF THE TBM PROJECT 

Co-leaning agreement with teachers 

The aims of the TBM project are as follow: first to promote better understanding and 

competency in mathematics for pupils in schools, and second to explore better 

teaching approaches. These aspects are visible in the title of the project depending on 

the emphasis - Teaching Better Mathematics or Teaching Better Mathematics. In the 

project, we collaborate with in-service teachers from 4 kindergarten, 6 primary and 

lower secondary schools and 3 upper secondary schools. Our collaboration with 

teachers is organised around workshops and school visits. In the project, we see 

teachers and didacticians as working together as co-learners (Wagner, 1997). This 

implies that both teachers and didacticians are engaged in action and reflection, and 

by working together, each have the opportunity to develop further understandings of 

the world of the other and of his/her own world. Through our collaboration with 

teachers, we, as didacticians, might learn about the teachers‘ teaching practice in 

schools and, at the same time, about our own research practice. Central to the project 

activity is the design of mathematical tasks, by the didacticians at the university, as a 

means for engaging in mathematics. This engagement takes place between teachers 

and didacticians during the workshops and between teachers and pupils in the 

classrooms. Teachers often take mathematical tasks, which were presented during the 

workshops and adapt them to their own teaching practice (Berg, 2010a, 2010b).   

Theoretical basis of the TBM project  

A fundamental aspect of the TBM project is the idea of inquiry. Inquiry is 

understood as asking questions and recognising problems, seeking for answers and 

solutions, and at the same time wondering, exploring and investigating the activity 

we are engaged in, while looking critically at what we do and what we find (Jaworski 

& Fuglestad, 2010). In our project we see inquiry at three different levels: at the first 

level, inquiry into mathematical tasks in relation to pupils‘ mathematical learning in 

classrooms; at the second level, inquiry into the developmental process of planning 

for the classroom and exploring ways of developing better learning environments for 

pupils in mathematics; and at the third level, inquiry into the research process of 

systematically exploring the developmental processes involved in the two previous 

levels (Jaworski, 2007). While the second and the third levels address the 

collaboration between teachers and didacticians/researchers, the first level addresses 

the collaboration in classrooms between a teacher and his/her pupils. Due to 

limitations of space, I focus on just one level, inquiry into the developmental process 

of planning for the classroom and exploring ways of developing better learning 

environments for pupils in mathematics. As mentioned earlier, we see our 

collaboration with teachers as co-learning and we aim at creating and developing a 

community of inquiry where inquiry is used both as a tool in all practices, the 

teachers‘ and ours, but also as a way of being, indicating a willingness to becoming 

or taking the role of an inquirer (Jaworski, 2007). The idea of community of inquiry 
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derives from Wenger‘s (1998) community of practice where the practice refers to the 

activities in which we, teachers and didacticians, are engaged, and are mainly 

learning, teaching and didacting. In a community of inquiry, we use inquiry as a tool 

in all aspects of our practice and aim at developing ―inquiry as a way of being‖ in 

practice (Jaworski, 2004).  

In order to make explicit the processes involved in inquiring into the developmental 

process of planning for the classroom and exploring ways of developing better 

learning environments for pupils in mathematics, and to conduct fine grain analysis, I 

introduce the theoretical constructs of teaching cycle and inquiry cycle (Jaworski, 

2007). A teaching cycle is an analytical tool we use to conceptualise teachers‘ 

practice: that is, how they usually plan tasks for the classroom, use the designed 

tasks in class, reflect on his/her own experiences, and then feed back into future 

planning. However, in a community of inquiry, we are not necessarily satisfied with 

the normal or usual state of teaching practice and, therefore, our aim in the project is 

to promote an inquiry cycle within which the teachers start to question their practice, 

explore possibilities and thereby adopt an inquiry approach to their own practice. An 

inquiry cycle differs from a teaching cycle since it consists of a teacher‘s planning 

and re-planning tasks for the classroom, using and observing the designed tasks in 

class, reflecting and analysing on his/her own experiences, and then feeding back 

into future planning (Figure 1). Thereby, teachers engage in the process of 

researching their own teaching practice. 

 

METHODOLOGICAL CONSIDERATIONS AND RESEARCH SETTING  

Within the TBM project we follow a developmental research approach. This implies 

that we, as didacticians, engage in studying, documenting and researching the 

development of the teachers‘ practice and, at the same time, our research activity 

contributes to its development (Goodchild, 2008). Central to developmental research 

is a research cycle and a development cycle. The research cycle refers to a cycle 

between global theories and local theories and, in the TBM project, global theory 

Plan 

Teach 

Reflect 

Feedback 

 

Plan & Re-plan 

Teach & Observe 

Reflect & Analyse 

Feedback 

 

Inquiry as a tool 

in exploring 

one‘s own 

teaching 

practice 

Teaching cycle 
Inquiry cycle 

Figure 1: From a teaching cycle to an inquiry cycle  
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Figure 2 

 

refers to community of practice (Wenger, 1998), while local theory refers to 

community of inquiry (Jaworski, 2007). Furthermore, a development cycle consists 

of a cyclical process between thought experiment and practical experiment. In other 

words, the notion of thought experiment refers to the preparation of the workshops 

where we collaborate with teachers, while practical experiment refers to the actual 

realisation of these. Feedback from participants informs the next step of thought 

experiment. Concerning the development of teachers‘ teaching practice, I consider 

that by introducing the idea of inquiry cycle, as presented above (see Figure 1), I am 

in a position to develop and elaborate on the idea of teaching cycle further since the 

dimension of inquiry implies that a teacher is not only engaged with teaching, but 

teaching and observing, and not only reflecting, but reflecting and analysing. This 

theoretical construct is exemplified in the next section.   

The research setting   

The data presented in this paper was collected during a teaching period at a primary 

school in December 2008. In addition I conducted semi-structured interviews with 

the teacher both before and after the teaching period. I was invited by the teacher to 

follow her in her classroom since she was inspired by a particular task that had been 

introduced during a workshop, which was organised a week earlier. Usually the 

workshops are organised according to the following pattern: first teachers are invited 

to present their own reflections concerning the previous workshop, the way they 

implemented tasks in their own teaching practice and thereby sharing with others 

their experiences and inviting other participants to comment on their presentations. 

Next is a plenary presentation, usually by one of the didacticians, on the chosen 

mathematical theme. After a break, all participants divide into groups, according to 

the level they teach, and engage with mathematical tasks. Finally, all participants 

meet again and each group presents the results of their investigation. The aim of the 

group activity is to offer opportunities to teachers and didacticians to work together 

and to promote further discussions concerning the use of inquiry-based tasks in 

classrooms. In addition, the teachers are encouraged to take ideas and tasks presented 

during the workshop, and to modify and adapt these for their own classes. In the next 

section, I present the way an experienced primary school teacher modified and 

adapted a task, which was presented during the workshop. In addition, it is possible 

to follow how she engaged in teaching and observing her class, and later in reflecting 

on and analysing the teaching period.       

A PRIMARY TEACHER‘S INQUIRY CYCLE 

The theme of the workshop was ―Communication in mathematics: To ask good 

questions‖. The team of didacticians at UiA had decided to present the T-shirt task as 

a means to engage and explore what communication in mathematics might mean. 

The T-shirt task was previously introduced during a seminar at UiA concerning 

theoretical perspectives in mathematics teaching and learning through an article 
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Figure 3 

concerning socio-mathematical norms (Tatsis & Koleza, 2008). The task was 

designed as an imaginary phone call where one 

person had to explain to another the design of a 

logo to be reproduced on a T-shirt (Figure 2). In 

this context the nature of the questions the other 

person may ask, as a means to reproduce the logo 

of the T-shirt in an accurate way, was important. 

Following from this workshop two experienced 

teachers contacted me, one from a primary school 

and one from a lower secondary school. Due to 

limitations of space here, I focus on just one 

implementation of the T-shirt task by the primary 

school teacher (Kari) in grade 6. I address implementation in lower secondary school 

in another article (Berg, 2010a).  

Thought experiment: Interview before the teaching period 

A week after the workshop I followed Kari in her class 

(6. grade) and could observe how she modified and 

implemented the T-shirt task. During the semi- 

structured interview before classroom observation she 

explained to me that she had modified and simplified 

the logo in order to start with an easier figure, a logo 

with only positive x-coordinates (see Figure 3). In 

addition, she explained that she introduced the x- and y-

axes as a means to facilitate the pupils‘ engagement 

with the task (originally the T-shirt logo was 

represented on a grid, without specification of the axes, 

see Figure 2). Analysis of the data presented in the next 

sections shows evidence of the teacher‘s reflections 

before teaching period, the way she taught and 

observed during the teaching period and her reflection 

and analysis immediately after the lesson. 

During the interview I also asked Kari the rationale for choosing and adapting the T-

shirt task in her class. She explained her choice as follows:  

‖Yes, it [the task] captured me, and then, when I started to think that it could be about 

coordinate system, then, then I thought that this is a task I will use…. I relate it [the task] 

to my teaching and to what I do on that grade…. Pupils will need to use their 

mathematical language, they can talk about circles, triangles, and several concepts I 

would like them to have.‖ 

My interpretation of Kari‘s explanation is that during the workshop where the T-shirt 

task was introduced (see Figure 2), she engaged in inquiry at two levels. First inquiry 
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in mathematics as she explored the mathematics task ―it [the task] captured me‖, then 

inquiry in planning for her classroom since, from her knowledge of the task, she 

could envisage how to modify and adapt the task for her pupils and how to link the 

task to her current teaching. She refers to the coordinate system and imagines how 

the T-shirt task could be modified as a means for pupils to engage further with the 

coordinate system and with mathematical language and terminology. It seems that 

her aim with this task is that pupils will have the opportunity to use the mathematical 

notions of circle, and triangle while engaging with the task. I consider that Kari‘s 

explanation illustrates the essence of the ―Plan & Re-plan‖ phase as she was in a 

position to envision how the teaching-learning process could proceed in her class.  

Practical experiment including inquiry: Teaching and observing  

The class was organised as following: small groups of two or three pupils sitting 

together and one of them having the logo on a sheet of paper in the front of them, 

holding the sheet of paper vertically and describing the logo to the others in the 

group. The dialogue between two boys (Peter and Jon) refers to the description of the 

logo as in Figure 3. The dialogue starts when Peter has finished indicating the 

coordinates of all nine points in the logo (see Figure 3). Jon has drawn all points on 

his sheet of paper and the issue at stake concerns how to join all points in order to 

have exactly the same logo as Peter.  

Peter:  and then line [he starts pointing to Jon‘s sheet of paper], down, yes, down 

[looking at Jon‘s drawing and following what his friend is doing] 

Teacher  [going around in the class and commenting on what Peter just said]: now 

you have to imagine that you are talking by phone, and then do you know 

what you are drawing down to? 

Peter  [not paying attention to what the teacher just said]: and up, yes, on the side 

[following what his friend is doing], hmm 

The teacher leaves the two boys and move to another group 

Jon:  do I need to go down to this? [pointing to the point 8, -2]  

Peter:  no, hmm, not now 

Jon:  just look at what is here [pointing to Peter‘s sheet of paper with the logo] so 

you can see how it should look like 

Peter:  no, this is wrong, hmm, go to … the right 

Teacher  [coming back to the group]: but if you are talking on the phone, can you see 

where the lines will go? Is there another way to tell? 

Peter:  yes, …, hmm, …, take a line from [the point] 8, 4 to [the point] 8, -2 

The teacher is leaving the two boys 

Jon:  yes, and … 
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Peter:  and then from 8, -2 to 5, -2 

Jon:  yes, like this 

Teacher  [talking to the whole class with a loud voice]: let me have a little time now, 

I can hear many similar cases. If you are talking on the phone can you then 

know if the line should go up, or down, forward or something else? 

One pupil:  no 

Teacher:  then how can you explain this [the logo], think about it a little, and try.  

Peter was able to indicate to his friend Jon the position of all points using correctly 

the coordinates of each point. The issue at stake, when the dialogue starts, is related 

to how to connect all these points together such as the logo on Jon‘s sheet of paper 

will be exactly the same as on Peter‘s sheet of paper. From the video-tape it is 

possible to see how Peter started to point at Jon‘s sheet of paper without finishing his 

gesture. Here it seems that the boys struggled with keeping the imagined context of 

the task, a phone call, and chose to use indexical expressions as ―down‖. Of course, 

the meaning of this adverb is clear if one knows the context, in the sense of ―down‖ 

from which point to which point. It seems that this is the reason why Peter was 

pointing to Jon‘s sheet of paper in order to indicate from which point Jon needed to 

draw a segment down to another point. Kari, who was close to Peter and Jon‘s group, 

observed and commented on Peter‘s explanation and tried to remind the boys of the 

context of the task within which it is not possible to use adverbs such as ―down‖. It 

seems that Peter did not pay attention to Kari‘s interruption as he continued to use 

adverbs as ―up‖. My interpretation of the fact that Kari left Peter and Jon‘s group is 

that she became aware of the boys‘ way of describing the logo, using indexical 

expressions, and that she wanted to observe other groups in order to see if they also 

used similar expressions. The dialogue between Peter and Jon shows that they 

continued to use pointing and indexical expressions such as ―down to this‖ and ―go 

to the right‖. It is possible to see a shift when Kari came back and, as she recalled the 

context of the task, she challenged the boys ―can you see where the lines will go?‖ 

and encouraged them to find ―another way to tell‖. Now it seems that the boys were 

in a position to follow her advice as Peter, after a pause, said to Jon ―take a line from 

[the point] 8, 4 to [the point] 8, -2‖. Compared to his previous utterances, this claim 

makes sense in a phone call situation. Then Kari chose to interrupt all groups and 

shared with the whole class her observations ―I can hear many similar cases‖ and, as 

a result, she emphasised the lack of meaning of indexical expressions in the context 

of a phone call. I understand her last utterance ―then how can you explain this [the 

logo], think about it a little, and try‖ as an invitation to inquire in the mathematics 

and the use of coordinate in order to keep the context of the task and to draw the logo 

as represented in Figure 3. This implies that, as a result of her observations in class, 

Kari decided to interrupt the different groups in class and to emphasise the context of 

the task, a phone call, as a means to avoid indexical expressions and to encourage 
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pupils to use the coordinates of the points. I consider that this episode offers 

evidence of how Kari was able to teach and observe during the teaching period.  

Inquiry cycle: Reflecting and analysing 

Immediately after the classroom observation, I had the opportunity to interview Kari. 

She started by commenting on her pupils‘ activities:  

I was very impressed by what they were doing at the beginning; I was very impressed by 

that. I think they were very clever, clever and reliable concerning coordinate system. I did 

not expect it would have gone so nice. I was afraid it would not go so easy.  

From Kari‘s utterance it is possible to follow how she was both reflecting and 

analysing after the teaching period. She started by recognising the pupils‘ ability in 

using the coordinate system. My interpretation is that she was referring to the first 

part of the drawing of the logo which consisted of placing the different points on a 

grid using the coordinates of each point. She characterised the pupils‘ activities as 

―clever‖ and ―reliable‖ and it seems that she did not expect that they would be able to 

reproduce and identify the different points so quickly. However, evidence from the 

dialogue both with Peter and Jon and with the whole class shows that, during the 

teaching period, she had to make some comments on the way the pupils engage with 

the task in order to avoid the use of indexical expressions. Kari commented on this 

aspect later during the interview: 

If I should do it [the T-shirt task] again, just the same [task], then I would have organised 

them [the pupils] in a way that they could not see each other. Because it was exactly what 

I said, what can you tell by the phone, I asked them a question about that. By the phone 

can you say that the line should go down there? Because you can‘t, and then they must 

start using the coordinates. 

Here Kari developed further both her reflections and her analysis of the teaching 

situation. She focused on the situation which appeared in class, where pupils used 

indexical expressions as a means to draw the shape of the logo. She remembered 

drawing the pupil‘s awareness on the context of the task ―because it was exactly 

what I said‖ and asking them ―what can you tell in a phone call?‖ where the ―what‖ 

was directly oriented to the kind of information and questions one can ask in the 

context of a phone call. The argument was elaborated further in the last part of her 

utterance as she emphasised that ―during a phone call, can you say that the line 

should go down there?‖ The answer to that question was that the particular context 

of the task implied that one needed to use the coordinate system, not only for 

identifying the position of the points on a grid, but also for being able to draw 

segments joining the different points accurately such that the logo will be identical to 

that in Figure 3. As a result of her reflections and analysis, Kari was in a position to 

envisage a modified teaching – learning path. She mentioned, right in the beginning 

of her utterance, that if she were to have the same activity again, she would organise 

the class differently in order to avoid the possibility that pupils could see each other 
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and thereby help each other through gestures and indexical expressions. I consider 

that these two utterances provide evidence of how Kari was able to reflect and 

analyse during the interview after the teaching period.  

DISCUSSION  

In the beginning of this article I introduced and explained the theoretical constructs 

of inquiry, teaching cycle and inquiry cycle. My aim, by presenting an example taken 

from classroom observations in a primary school, was to illustrate how these 

observations could be conceptualised using the introduced theoretical framework. In 

addition I consider that the result of data analysis emphasises an important aspect of 

developmental research which is the didacticians‘ activity as engaging in 

researching, studying and documenting the development of the teacher‘s practice, but 

also, at the same time, how our research activity contributes to its development. This 

aspect was visible since I had the opportunity to follow Kari both in her class 

observing the lesson, and to conduct interviews before and after the lesson. It is in 

the process of asking questions, trying to find justifications, and comparing learning 

outcomes together, following a co-learning agreement, that the teacher had 

opportunities for engaging in the development of her teaching practice. Furthermore 

the fundamental role of inquiry enabled her to move from a teaching cycle to an 

inquiry cycle where both observation during teaching and analysis of her own 

reflections were crucial. Through the analysis it is possible to follow how Kari 

engaged with inquiry both in the mathematics and in her teaching practice. These 

aspects were visible as she modified the original T-shirt task, introducing the axes, 

and choosing a different figure with only positive coordinates. In addition she 

observed how pupils used indexical expressions such as ―up‖, ―down‖ and ―down to 

this‖ and thereby did not engage with coordinates both as a means to identify the 

position of the point on a coordinate system and to make connection between the 

different points. Her reflections and analysis showed that a change in the 

organisation of the class is needed in order to keep the imagined context of the T-

shirt task. I argue that by following this research approach I am in a position to 

establish a link between theory, practice and teaching. This recognition begs the 

following questions: what can we learn from this research that would be relevant for 

teacher education? And how can the idea of inquiry be introduced in teacher 

education? In the TBM project teachers and researchers work together as co-learners. 

A central question would be: what kind of collaboration between teacher students 

and teacher educators could foster an inquiry approach both to mathematics and to 

the teacher students‘ future practice? I consider these issues as fundamental since, in 

my opinion, one of the aims of teacher education is to encourage teacher students to 

develop awareness of possible tensions and limitations of their future teaching 

practice and thereby to support them to look critically at their professional practice.  
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This article reports part of a study developed with the purpose of understanding 

professional  knowledge of teachers involved in the development of investigative 

tasks in the classroom. The study adopted the interpretative paradigm and 

elaborated a case study of a first-grade teacher. This teacher worked regularly in 

collaboration with one of the researchers, selecting, planning and developing 

investigative tasks with her students in the classroom, and also reflecting on her 

teaching practice with investigations. The analysis of the data allows us to identify 

several aspects in which the professional knowledge of the teacher was deepened 

and broadened. It is also possible to identify the main factors contributing to the 

development of the teacher‘s professional knowledge. 

Keywords: Professional knowledge; investigative tasks; teacher practice and refection 

PURPOSE OF THE STUDY 

Investigative tasks promote a rich mathematical experience for the students and 

provide them with a significant intellectual challenge (NCTM, 2000). These tasks 

have an open nature and can be approached in very different ways, depending on the 

work of the solver. This kind of task can contribute to providing students with the 

mathematical learning experiences recommended by curricular orientations of many 

countries. In Portugal, they are explicitly suggested in the National Curriculum of 

Mathematics and in the recent syllabus (2007) of Mathematics for Basic Education.  

However, investigative tasks can be very complex and their development in the 

classroom represents a serious challenge for many mathematics teachers (Oliveira et 

al., 1999). It is important to understand the professional knowledge of teachers 

involved in the development of investigative tasks in the classroom, namely for first- 

grade teachers, since the majority of Portuguese teachers of this grade are not 

familiar with them. This was the main purpose of the study reported in this article. 

We investigated the practice of a teacher who participated in a collaborative context 

with the researcher (second author). Our purpose was to identify the components of 

professional knowledge she applied to develop investigative tasks in the classroom, 

and also to identify the influences of that work in the development of her 

professional knowledge. 
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THEORETICAL FRAMEWORK 

Teachers have particular knowledge they apply in their day to day practices of 

teaching mathematics (Schôn, 1992; Ponte & Chapman, 2006; Sowder, 2007). This 

professional knowledge is multifaceted and can be organized into different 

components (Elbaz, 1983; Sowder, 2007). According to Ponte (1995) and Canavarro 

(2004), there are four interrelated components of professional knowledge that assists 

the teacher directly when he/she prepares and conducts mathematical lessons: 

knowledge of mathematics, knowledge of students and their learning processes, 

knowledge of curriculum and knowledge of instructional process. 

The knowledge of mathematics includes knowledge of specific topics, an overview 

of mathematics, as a science and as a school discipline, the perspective on its nature 

and its relation to reality (Ponte, 1995). This is essential knowledge for teaching. 

Having poor mathematical knowledge can inhibit the action of the teacher in the 

classroom, particularly the mathematical tasks that he/she presents to the students 

(Leikin & Levav-Waynberg, 2007). 

Knowledge of students and their learning processes consists of the knowledge of 

characteristics of the students, aspects that motivate their learning, and how they 

develop and acquire knowledge from the learning situations (Canavarro, 2004). 

Curricular knowledge includes knowledge of the purpose and guidelines of the 

curriculum, specific knowledge of the contents of the syllabus that the teacher 

teaches and of the syllabus of the years before and after, and also includes 

knowledge about the approaches, strategies and materials proposed (Ponte, 1995). 

Finally, the knowledge of instructional process refers to the knowledge directly 

related to the organization and concretization of classroom practice. It refers to the 

phases of planning, conducting and evaluating teaching and learning (Canavarro, 

2003). This knowledge has a decisive influence on the kind of teaching that the 

teacher puts into practice (Sowder, 2007). 

Research in mathematics education has been explaining how the professional 

knowledge of the teacher influences the way he/she develops investigative tasks with 

his/her students (Oliveira et al., 1999). This knowledge is reflected in two aspects of 

the teacher's work during the development of investigative tasks, which are mutually 

dependent: the mathematical aspects concerning the investigative task in question – 

when a teacher assesses the mathematical scope of the task, when he/she is involved 

in mathematical reasoning in front of the students, when he/she establishes 

connections between the knowledge present in the task and other mathematical 

concepts; and the didactical aspects that are fundamental to accomplish the 

objectives of the investigative activity. These are present when the teacher creates or 

selects the task, when he/she plans the lesson, when he/she conducts its 

development, when he/she has to handle unexpected situations of uncertainty, when 
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he/she has to understand the thought processes ofdifferent students and to promote 

collective reflection of the class (Ponte et al., 1999). 

Oliveira et al. (1999) stress that the selection and planning of investigative tasks is a 

complex activity because it requires from the teacher a broad knowledge about their 

students, their knowledge, interests and abilities. It also requires a solid knowledge 

of curriculum objectives, materials and resources they have available. The conduct of 

the class with investigative tasks is also very important, requiring many roles of the 

teacher (to challenge students, to evaluate their progress, to reason mathematically, 

to recall or provide relevant information, to support the progress of students and 

promote their reflection). In addition, the teacher should be aware of the type of 

interactions he/she has with students in order to promote an investigative ambience 

(to encourage the discussion of different opinions, the critical sense, reflection and 

debate). The teacher should also provide, and teach students how to use, 

technological tools that help them in investigative work (Oliveira et al. 1999; Ponte 

et al., 1999). 

The professional knowledge of the teacher is a dynamic knowledge, evolving from 

teaching practice and the reflection of the teacher about his/her practice. This 

reflection can be encouraged in the context of the school teacher, through 

collaborations of the teacher in complicity with colleagues. These collaborations are 

especially interesting when teachers experiment with the development of new and 

challenging tasks or new ways of working with students in the classroom (Sowder, 

2007).  

METHODOLOGY AND CONTEXT OF THE STUDY 

As previously explained, this study is intended to contribute to the understanding of 

the professional knowledge of the teachers involved in the development of 

investigative tasks in the classroom (Patrício, 2010). The researchers adopted the 

interpretative paradigm and a qualitative approach, and elaborated case studies of 

teachers. The option for this design was because the study was intended for provide a 

explanation of a well-delimited phenomena, embedded in context, for which we seek 

thick description from the standpoint of the subjects being investigated (Erickson, 

1986; Merriam, 1991). 

The researchers decided to consider a teacher of the first grade because the practice 

of these teachers is still poorly documented with regard to the development of 

investigative tasks in classroom. The teacher should be an experienced one and 

denote propensity for innovation and investment – these conditions offer some 

guarantee of considerable professional knowledge and a willingness to embark on a 

new experience. This is the case for the first-grade teacher Petra, who is the focus of 

this paper. She is a teacher of 40 years, teaching a fourth-grade class (9 year-old 

students). Petra had never developed investigative tasks in their lessons. The total 

inexperience of the teacher with these tasks recommended the collaboration with the 
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one of the researchers (the second author). That collaboration created conditions to 

operationalise this study, allowing more reliable and complete data collection, and 

representing an opportunity for professional development for the teacher. 

The collaborative work took about two months. Petra had the opportunity to know 

and solve several investigative tasks and to discuss their potential with the 

researcher. The tasks were open and they could be developed in a more or less 

complete ways by the students. In the next paragraph, we give an example of one 

investigative task that Petra selected to work on with her students: 

Dividing by 11, 111, … 

Look at the figures of the non integer part of the decimal representation of the following 

fractions: 

3/11  9/11  18/11  47/11  52/11  125/11 

Can you find any pattern in it? 

Is it possible to estimate what the figures are of the non-integer part of the decimal 

representation of any fraction with denominator 11? Please explain. 

And what happens if the denominator is 111? Write your conclusions. 

You can also investigate with 1111… 

In this collaborative work, Petra also responded to the challenge of the researcher to 

develop investigative tasks with her students in the classroom. She carried out five 

two-hour lessons with different investigative tasks, one per lesson.  

The role of the researcher was to provide a collection of investigative tasks for the 

teacher, to support her in selection and in the planning of the lessons, and to promote 

her reflection on teaching practices. This collaboration emphasized discussion of the 

plans of the lessons that the teacher elaborated to each class with investigative tasks. 

The plans were organized according to a script provided by the researcher. The script 

considers three phases to the development of the lessons: a first phase of presentation 

of the task to the students; a second phase of autonomous work by the students, 

individually or in group; and a third phase of a collective discussion of the work 

done by the students. The script also includes the provision of a list of questions to 

ask the students in order to promote their mathematical thinking while performing 

the task.  

In the classroom, when the teacher was developing the investigative tasks with her 

students, the researcher took the role of a non-participant observer and collected 

data. The teacher's classroom practice was particularly relevant for data collection, 

considering its different moments (preparation, conduction and reflection). After 

each lesson with investigative classes, the researcher and the teacher always spent 

some time reflecting on the teaching practices. They focused on mathematical 

episodes that took place during the lesson, on the mathematical learning of the 
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students, and they also tried to identify factors of influence in the way the tasks were 

developed.  

The techniques and instruments used for collecting data were those generally 

recommended (Merriam, 1991): the interviews (the researcher conducted two formal 

long interviews at the beginning and at the end of the study; five informal interviews 

during the preparation of the investigative tasks developed in classroom; five 

informal interviews at the end of the lessons with investigative tasks – all fully 

transcribed); the observation of the teacher classroom practice (the researcher 

observed five classes with the investigative tasks, all audio-recorded and fully 

transcribed); the documental analysis (the researcher analysed all the lesson plans 

elaborated by the teacher). 

THE TEACHER AND THE INVESTIGATIVE TASKS – RESULTS OF THE 

STUDY 

Petra accepted with great enthusiasm, dedication and responsibility the invitation to 

participate in the study because she anticipated that she could learn and develop 

herself professionally. She was teaching a fourth grade class (9 year-old students). 

Petra had never developed investigative tasks in her lessons, neither knew their 

characteristics. From the beginning, she revealed a great appreciation for the nature 

of the investigative tasks and the work they provide for students in the classroom. 

This is very consistent with what she valued in the teaching of mathematics: 

―Mathematics, for me, is to teach to think, is developing the reasoning, is awakening 

to the problems.‖ 

Her lesson plans were very detailed. She worked hard trying to explore all the 

mathematical possibilities she could imagine. For each task, she elaborated an 

extended list of questions she could pose to her students to help them to progress. 

She explained that she wanted to take full advantage of the potential of the tasks and 

also to reduce the degree of unpredictability of the work with the students.  

The teacher practice with investigative tasks was developed according to the three 

phases previously described. Her main purpose was to promote the development of 

students mathematical reasoning, but she tried to establish connections with the 

concepts emerging from the tasks. For example, for the task Dividing by 11, 111…, 

she wanted the students ―to develop confidence in exploring mathematics in an 

autonomous way; to explore and use patterns on division by 11; to learn about 

periodic decimal representations.‖  

In the post-lesson interviews and in the final interview of overall reflection, Petra 

identified several aspects that she considered gains in her experience with the 

investigative tasks. In the following sections, we synthesize these aspects, organized 

by the four components of professional knowledge that we adopted, despite the fact 

that some of them could be included in more then one component. 
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Mathematical knowledge  

Petra acknowledges having learned mathematical knowledge. When planning for the 

lessons, she forced herself to get into deep mathematical exploration of the tasks and 

she involved herself in investigative work.  

I spent the weekends searching… and studying for the mathematical knowledge to tackle 

the tasks… And then I interrogate myself: "what can you investigate more on this?" And I 

get deeper but I never find everything, of course! (…) 

This work revealed some ―gaps‖ in her mathematical knowledge. She consulted 

some books, colleagues and the researcher trying to overcome the difficulties: 

I learned a lot of mathematical knowledge, is true… Because I had to search for things I 

didn‘t know at all and others I was not sure… I also asked other colleagues, I asked you 

... Because sometimes I had some doubts... the investigation of the rational numbers, for 

example. I had never worked with infinite decimals, with periodic decimals, my decimals 

were always finite! And exploring their period, hum… when I was solving the task 

myself with the calculator, I was not sure about the numbers it was showing me… that‘s 

when I called you!‖  

Petra also experienced some difficulties with a task in the domain of probability. She 

considered that her knowledge was too informal to explore the task correctly. She 

had to learn how to count all the possible cases in a complex situation – for example, 

how to differentiate between 1-6 and 6-1when throwing two dice. 

Curricular knowledge 

Petra said that she has extended her repertoire of the types of tasks that she considers 

appropriate to work with students in the context of current curriculum guidelines. 

She confessed that she always liked open tasks and she was a great enthusiast of 

mathematical problems. But after this experience, she came to privilege the 

investigative tasks: 

Now I‘m a fan of investigations, seriously! I am fan! I think they have enormous 

potential... This year was the unknown, it was my first experience with this kind of task… 

I also like problems very much, but the investigative tasks are more challenging and have 

more potential for the learning of the students. 

Petra said that the investigative tasks contribute to several aspects of mathematical 

competence that students should develop: 

Because they are complex in nature, mathematical investigations provide a greater 

intellectual challenge and promote the development of more complex capacities of 

students, as mathematical reasoning, mathematical communication and critical thinking. 

Petra also stressed that the investigative tasks, instead of constituting something 

marginal to the school curriculum, helped to promote compliance with the 

mathematics syllabus in an interesting way:  
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With the investigative tasks you facilitate the achievement of the curriculum and of the 

mathematics syllabus, one thing is inseparable from the other... I think it only helps! 

You‘re not compromising anything… You are addressing mathematics in a much more 

interesting way and this is how it is expected to be addressed. 

Students and learning process knowledge 

Petra considered that investigative tasks have great potential to motivate the students 

to the learning of mathematics because they provide contexts for meaningful 

learning. The teacher also recognised that students may have an important role as 

creators of knowledge when developing investigative tasks: 

And I think the investigative tasks have great power to motivate the students to 

mathematics – they like, they get involved and the knowledge that comes from this 

involvement is great. I‘m sure they made significant learning. And they are creating 

knowledge, they are learning - and this is great!  

Instructional process knowledge 

The planning of investigative tasks allowed Petra to acquire a new vision about what 

makes a lesson plan effective: to consider other aspects besides the content, such as 

ideas of how to conduct the class or of the good mathematical questions to pose to 

the students.  Petra concluded that a careful plan is essential to explore and conduct 

the lesson in order to take full advantage of all the potential of the tasks: 

I learned so much! Look, I learned to plan properly, because I think this it the right way 

(...) It was ideal that we could always do so but it is too time consuming… When you 

have a major concern in planning – in the choice of tasks, the choice of materials, the 

good questions to make them think, the knowledge that could result from the task… – it is 

obvious that the development of the task is much better and the results can be very 

positive. 

The experience with the investigative tasks in the classroom allowed Petra to rethink 

various aspects of her practice, although the teacher was used to adopting 

methodologies that value the role of students and was familiar with students working 

in groups. The idea that it is very important to limit the support that the teacher 

provides to students while they are working on the tasks was strengthened. During 

the developmental phase of investigative tasks, Petra began to avoid giving answers 

and/or validating the assumptions of the students – otherwise she would prevent the 

development of mathematical communication and reasoning: 

But… I think I can do it better, I still have the tendency to give them the answer…I need 

to still my tongue… I can not tell them everything, I just can tell a small part of what I am 

used to… 

The ideas of Petra, related to the final lesson phase of discussion, also seem to have 

changed.  The teacher began to attribute more importance to discussion and she 

reviewed her role in its conduct. She decided to try not to summarize, during that 
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phase, as each student disclosed the work they had done. Instead, she became aware 

of the importance of promoting the discussion and reflection of all students: 

You know another thing I have come to notice? Is that when they pass to the 

communication phase, they reveal some lack of interest… this is because I validate all the 

assumptions that they ask me during the work group…  So, when they present their work 

to the class, they are already quite sure of what they say… and the others also know that 

everything is ok, so… there is no discussion among the groups! The next task, I would 

like to do something different: I will not validate anything. I will give them the task, I will 

ask them to do all the work and after that the class will validate...  or not… I want to bring 

the discussion to class. They will present and after… "So, what do others think about 

this? Is it right, is it wrong?  Why?" 

THE DEVELOPMENT OF PROFESSIONAL KNOWLEDGE – FINAL 

CONCLUSIONS 

This study shows how professional knowledge of a first-grade teacher was revealed 

in the development of investigative tasks in the classroom. It also shows the 

contributions that the teacher took through this experience to deepen and broaden her 

professional knowledge in various components. 

It is noteworthy that this experience involved the teacher in the search for a greater 

understanding and deepening of her mathematical knowledge. The exploration of the 

investigative tasks was quite demanding for the teacher, because she wanted to be 

prepared to deal with the multiple assumptions that students could propose and that 

do not always appear so obvious to the teacher. The teacher‘s mathematical 

preparation is crucial to the development of his/her teaching practices (Leikin & 

Levav-Waynberg, 2007). And, the more demanding these practices are, the more 

complete and deep the mathematical knowledge needs to be. 

This study also emphasizes that this experience provided the teacher the opportunity 

for reflection on some aspects of her knowledge of the instructional process. On the 

one hand, the teacher recognized the value of careful planning, referring to it as 

crucial when exploring open tasks and promoting the discussion of students in the 

mathematics classroom (Franke, Kazemi & Battey, 2007). On the other hand, the 

teacher acknowledged the advantage of introducing changes in the way she 

conducted the class, either at the phase of the development of the tasks by the 

students, or at the final phase of collective discussion. She considered it to be 

necessary to moderate the intervention of the groups in order to achieve more shared 

discussions and challenge the students to validate genuine conjectures and 

conclusions of other colleagues (Oliveira et al., 1999). 

Three main factors contributed to the development of teacher professional 

knowledge. One was the contact and work with challenging and powerful 

mathematical tasks with great potential for the mathematical experience of the 

teacher herself and of her students, with consequences in the way she usually 
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conducted the classroom (Stein & Smith, 1998). Another factor was the teacher‘s 

perception of the acceptance of the investigative tasks by the students, and of the 

mathematical experience and mathematical learning that they revealed – a factor of 

great influence in the professional development of teachers (Canavarro & Rocha, 

2008; Sowder, 2007). A third factor was the focus on the teacher‘s teaching practice 

provided by the opportunity of collaborative work with the researcher, who 

introduced the tasks, discussed the plans of the lessons, supported implementation in 

the classroom and encouraged reflection on practice, based on the analysis of the 

episodes from the classroom (Canavarro & Rocha, 2008; Sowder, 2007).  
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―Problèmes ouverts‖ in France (Arsac, Germain & Mante, 1988), literally ―open 

problems‖, they can be defined as non classical problems which aim is to develop 

capacities of research and argumentation. This paper analyses, using a case study, 

why Xavier, a mathematics teacher in primary school, proposes such a problem and 

how he organizes his session. It reports also a study on the knowledge which is 

approached during this session. Our results show that, even if the knowledge can be 

specified, it is still difficult to conclude on the real learning of pupils. According to 

us, these results become concrete subjects of reflection during teachers‘ training. 

Key-words : teacher‘s activity, mathematics, open problem, primary school. 

INTRODUCTION 

Some teachers in France, in primary school, choose to propose ―problèmes ouverts‖ 

(Arsac, Germain & Mante, 1988) to their pupils in their mathematics‘ teaching. 

These non classical problems would like to develop capacities of research and to 

discover proofs in mathematics. Different researchers in France have worked on this 

subject and the studies are not ended. Differences persist, concerning the knowledge 

aboarded in these problems or concerning the real utility for the pupils to learn to 

resolve them in the classroom. Arsac & al. (1988) propose a characterization of 

« problèmes ouverts » and insist on the implementation of these in the classroom. 

Glaeser (1973) proposes a classification of statements to help teachers to make the 

best choices for their class. Douaire (1999) shows that these problems could be the 

occasion to teach different forms of reasonning. Hersant (2008) proves that, when 

pupils study open problems, they work on mathematic objects but they study also 

methodologic knowledge linked to problem solving. Houdement (2009) establishes a 

classification of open problems, in order to explain that, if the teachers think about 

the choice of the problems which they propose, their pupils could develop different 

capacities of reasoning and also capacities to argue about their results. In our work, 

using a qualitative case study, we analyse the place which is reserved to these 

problems, in primary school. We search to understand how and why a teacher uses 

this type of problems and also to determine the impact of such problems on the short-

term learning of pupils. In this paper, with the analysis of one session, we show the 

choices maked by the teacher : why does he propose this problem and how does he 
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decide to organize the session ? We think also about the knowledge which is 

aboarded : what could be learnt by pupils during this session, with the chosen 

problem ? 

THEORETICAL FRAMEWORK 

To answer our questions concerning the choices that the teacher makes for his/her 

class when he/she proposes an open problem and concerning the pupil‘s learning 

during the observed session, we use elements of the theoretical framework ―double 

approach‖ (Rogalski & Robert, 2008). First, this theoretical framework suggests to 

consider the teacher in his/her class, with objectives of learning for the pupils and to 

study his/her practice in connection with the knowledge approached on the session. 

Secondly, this model considers teaching as a professional exercise, a job trying to 

reach professional purposes, with specific constraints. Like Rogalski and Robert, we 

take into account all the elements which constitute the practice of the teacher and we 

analyze these elements according to five dimensions (cognitive, mediative, social, 

personal and institutional). Both dimensions, cognitive and mediative, allow to 

characterize the practice of the teacher during his/her work of preparation before a 

session and during the effective progress of the session. The social and institutional 

dimensions allow to define the internal and external constraints of the class. With the 

personal dimension, we can obtain more precise answers concerning the teacher (for 

example, personal competencies or personal representations of mathematical notions 

and their teaching). 

METHODOLOGY 

Methodology of data collection 

Xavier is a forty-year-old teacher, he has been teaching for about fifteens years and 

this is his fifth year in the school where the observation takes place, with classes of 

9-10-year-old children (―CM2‖ in France). This class level is the last one in the 

primary school ; after this, pupils enter the secondary school (―collège‖ in France). 

We take this exemple in this paper on the one hand because Xavier has experience 

and is not a beginner in the concerned class level, because we have been observing 

him for three years (2007-2010), which allows us to have access to numerous 

information concerning him. On the other hand, we choose this school level because 

the problems which can be proposed to the pupils, seem to us to be more interesting 

for our study concerning the knowledge which may be learned. 

The observation is led in a natural way, in the sense that we do not intervene either in 

the choice of the problem, or in the preparation of the session. The session is 

observed, filmed and transcribed. The exchanges between the pupils, and between 

the pupils and the teacher in working groups are recorded, to have as much 

information as possible on these interactions. The pupil‘s written tasks (drafts, 

posters) are collected. Conversations at the beginning of our study, then before and 
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after the session are also transcribed to have the teacher‘s opinion on what the pupils 

are learning during the session. 

Methodology of data analysis  

In the following paragraph, we will present an a priori analysis of the problem 

chosen by the teacher. We check if the problem is really a ―problème ouvert‖ using 

back the characterization of Arsac, Mante & Germain (1988). We look for all the 

possible procedures to solve it and we determine which procedures can be used by 9-

10-year-old pupils. To answer the questions concerning the knowledge which the 

pupils build or will have been able to build, we determine those which can be the 

object of synthesis, the object of institutionalization 
[1]

. Concerning the practice of 

the teacher and the questions about his choices, we inform one by one the five 

dimensions to obtain more and more precise answers. 

OUR HYPOTHESES ABOUT THE TEACHER 

Why does he propose open problems ? 

First, one hypothesis is that the official instructions in France (2008) insist on the 

fact that the situations of exploration, discovery or research on problems have to 

―develop the pleasure of searching, the reasoning, the imagination, the capacities of 

abstraction, the rigor and the precision‖. Other hypotheses, according to the work 

which were already made on the subject (Douaire, 1999 ; Hersant & Thomas, 2008 ; 

Houdement, 2009), can explain the reasons for the teacher‘s choice. And with our 

analysis of different open problems, we wondered which objective of learning could 

have a teacher with this class level. It can be a question of reinvesting simple 

mathematics notions. It can be also a question of discovering and learning 

methodologic notions useful to resolve problems (Hersant & Thomas, 2008). The 

teacher can have the objective to explain pupils that they can use an experimental 

reasoning, he can also have the objective to go farther than this experimental 

reasoning, to begin to use a deductive reasoning to validate their answers (Douaire, 

1999 ; Houdement, 2009). Another objective put in evidence by Houdement (2009) 

and also by our analyses, is to teach pupils how to check their results. Finally, the 

proposition of an open problem during a session of mathematics can be the 

opportunity to develop more interdisciplinary knowledge (for example to read a 

poster and to expose results in front of the class, Douaire, 1999). 

Hypotheses on which problems are chosen, in which resources ? 

Here we do not develop the analysis made on these resources, we only specify that 

we are trying in particular to determine the legitimacy of the autors in the educational 

environment, to explain why a teacher uses such or such type of resources. 

According to our analysis, we conclude that the reasonable and available resources 

for a teacher in France are different textbooks, (Capmaths, Euromaths, Ermel ...), 
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pedagogical reviews (Grand N) but also web sites and pre-service or in-service 

teachers‘ training. 

Hypotheses on the implementation in the classroom 

In the official instructions (2008), the educational freedom of the teacher is quoted. 

Concerning a progress or concerning the number of open problems that the teachers 

have to propose along the school year, nothing is specified explicitly either in the 

official instructions, or in the various textbooks.  However, considering Xavier‘s age, 

we suppose that he worked with a document linked to the last official programs 

(2003) and we make the hypothesis that he keeps in memory the model of 

implementation which was presented in this document and that Xavier‘s choices in 

this domain are inspired by it.  

AN A PRIORI ANALYSIS OF THE PROBLEM 

To check a part of these hypotheses and to answer our questions, we have chosen to 

present the analysis of one among six sessions which Xavier proposed during the 

school year. The problem, which aim is to determine the weight of the dog, the child 

and the man, is the following one : 

 

145 kg     140 kg   35 kg 

   En utilisant les informations données par ces trois dessins, détermine combien pèsent le 
gros Dédé, le petit Francis et le chien Boudin.            

Why is this problem a real ―problème ouvert‖ ? 

According to the characterization of Arsac & al. (1988), this problem is for Xavier‘s 

pupils a open problem. The statement of the problem is short, in the form of a 

drawing and an only question using a simple vocabulary for 9-10-year-old children. 

The situation has a concrete, daily character. It can be extracted from the everyday 

life. This problem can be understood by the whoole class, every pupil can 

appropriate the situation quickly and can understand why he/she is asked to search 

from the first individual readings. Furthermore, the necessary mathematical 
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knowledge being elementary, every pupil can easily begin a research. The problem is 

neverthless substantial. The answer is not immediate and asks for a research from all 

pupils in this classroom. Cheeking the result seems also possible for the pupils 

whatever the moment of their research. As soon as a solution appears, they can 

confirm it or not. 

The different procedures 

To resolve this problem, five procedures exist. A procedure, noted A, consists in 

putting in equation the problem and in resolving a system of three simple equations 

with three unknowns. Another procedure, B, without using the algebraic domain, 

consists in adding the weight of two scales and, in subtracting the weight of the third. 

The third procedure, C, consists in calculating the sum of the weight of the three 

scales, in dividing by two then in subtracting the weight registered on one of the 

scales. A procedure, D, is based on essays and adjustments, on experimentations. The 

fifth procedure, E, takes into account a five-kilogram difference between the first two 

scales, which allow to end after some essays and adjustments. The procedures A and 

B are not possible by pupils of this class level. The procedures C, D and E are 

possible.  

Knowledge in this problem for 9-10-year-old pupils 

When we determined the knowledge which can be the object of institutionalization, 

in this school level (―CM2‖ in France), the resolution of this problem especially 

appeals to the notion of addition, subtraction or division by two. This mathematical 

knowledge is not new for these pupils, this problem can be the opportunity to reuse 

it. 

During this session, we suppose that a pupil can discover two types of reasoning : 

one is experimental (using essays and adjustments, corresponding to the procedure 

D) and the other one is deductive (a reflection on the numbers present in the 

statement helps to deduce elements allowing to end more quickly, corresponding to 

the procedures C and E). A pupil of primary school can learn also that at any time of 

his/her research, he/she is able to check his/her result by himself/herself (by some 

simple calculations and coherently with the statement‘s data), whithout the teacher‘s 

help. 

IN XAVIER‘S CLASSROOM 

Throughout the analysis of the session, we inform the five dimensions of the 

theorical framework of the ―double approach‖. The mediative and cognitive 

dimensions allow us to reconstitute the progress of the session proposed to the 

pupils. With the institutional and social dimensions, we clarify the constraints linked 

to mathematics teaching in primary school. The personal dimension completes the 

results, it allows us to answer questions concerning Xavier‘s representation of 

mathematics teaching and it can explain some of his choices. 
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Xavier‘s choices 

The analysis of this session and conversations with Xavier on this problem before 

and after the session, explain why he goes on proposing to his pupils this type of 

problems. He thus responds to the official instructions, he also convinces us that : 

―[...] to make mathematics in primary school especially then in secondary school, 

means to try to solve problems.‖. The problem presented here is an answer to his 

personal representation of mathematics and representation of mathematics teaching. 

With such problems, Xavier wants to prepare pupils for their entry to secondary 

school, by teaching them to search alone or in small groups, whithout the 

intervention of the teacher. Furthermore, with previous official instructions (2003), 

Xavier kept in mind that the problems have to allow pupils ―to take some pleasure in 

searching‖. He thus chooses this funny, atypical problem which is susceptible to 

develop the child‘s curiosity and to lead them to search. The resources which he 

uses, illustrate this aspect. Xavier does not use either textbooks or pedagogical 

reviews to find problems. He just consults Web sites (discovered with the keywords 

like ―problems to search, CM2‖ or ―mathematical problems, CM2‖) and chooses 

generally the most playfull statements. 

Implementation in the class 

To precise the analysis of the session, we share it in 3 different steps ; every step corresponds to a 

different task asked the pupils, by the teacher. 

During step 1, Xavier gives briefly some instructions (2 min). He asks the pupils to 

read the statement and to search individually for an answer. For a couple of minutes, 

the teacher pushes the resolution of the problem to become the responsability of each 

of the pupils. In this case, we observe that the process of devolution
[2]

 on the 

individual level is successful. 

During the longer step 2 (30 min), pupils search in small groups (four pupils) and 

have to draft a poster giving their answer and their explanations. The teacher is 

standing back, he does not intervene in the groups. 

Step 3 (10 min) is dedicated to the presentation of the procedures and to the 

synthesis. 

The pupil‘s activity 

We also study the pupil‘s productions to obtain elements concerning the teacher‘s 

pratice. Indeed, as C. Orange (2005) puts it, ―The productions are considered as 

revealing of the pupil‘s intellectual activity,[...] I mean ―productions‖ in the broad 

sense : diverse linguistic productions, gestures, material productions [...]‖. Their 

personal work is going to be more easily approachable through their various 

productions ; it deals for our study, with linguistic productions (the explanations for 

example within a small group), intermediate individual productions (considered here 

as drafts) and final productions (here, a poster by a group of four pupils). The fact of 

wondering about the intellectual activity of the pupils is to have informations on the 
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teacher‘s practice (Orange, 2005). It‘s possible then, to establish links between this 

practice and the pupils‘learning.  

Resuming the poster of each of five groups (numbered from 1 to 5) and the 

individual productions of each pupil, we redraw the history of these posters ; this 

gives us the most likely possible idea of the reasoning which took place in every 

group. Having to identify the procedures of resolution, we try to organize them into a 

hierarchy. We find : 

- Procedures which are partially mathematics (noted PMv) : a five-kilogram difference is 

found between the weight of the child and the dog. After chosen which one of the dog or 

the child is the heaviest, a subtraction gives the man‘s weight (groups 2 and 5). 

- Procedures which touch especially other domain of rationality, the everyday life for 

example (noted PVm) : evaluation of a weight, essays and adaptations (groups 1, 3,  4). 

A heterogeneousness of procedures appears with a majority of more or less effective 

PVm. Group 2 mobilizes a PMv. These pupils don‘t have difficulties with 

mathematics. They justify the five-kilogram difference mathematically but then, to 

justify that Francis is the heaviest, they appeal to their everyday life. Group 5 also 

uses a PMv, which is different from the previous one. They reflect on the numbers, 

the decompositions of the numbers which they find (for example, a pupil said : ―35, 

it‘s 20 and 15 or  25 and 10 [...]‖), which allows them to advance in their reasoning. 

Group 3 uses a PVm instead. Even if they find the five-kilogram difference, they do 

not justify it clearly and appeal then to the everyday life : ―Big person may be weigh 

about 100 kilograms‖. This assertion directs their essays and they find the answer 

rather quickly. Groups 1 and 4 use a more or less effective PVm. They don‘t remark 

the five kilograms difference, they try some weights for the child, the man or the dog 

inspired by their everyday life (beetwen 5 and 30 kilograms), then they just check the 

hypothesis made on Francis and the dog. For group 1, this check is enough but not 

for group 4 which does not succed in resolving the problem correctly. 

Interactions between the teacher and the pupils. 

We study how these interactions are evolving to understand better how the 

responsability of the learning during this session is distributed. 

During step 2, Xavier is standing back, the pupils can count only on their small 

group to solve the problem, to exchange on their researches and their possible 

difficulties. Nobody asks Xavier questions about the problem and he stays behind his 

desk, ―to avoid the questions‖ (he says). This attitude is commented by G. Brouseau 

(1986) who writes that the teacher ―has to, by his/her attitude, convince the children 

of his/her neutrality [...] so that they give up asking for the information and the help 

which they need, to count only on themselves‖. Xavier knows, by experience that if 

he moves in the class, he would have difficulty not to answer a pupil and that his 

answer could guide too much this pupil. 
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Xavier comes back to lead the class when step 3 begins, the step which is dedicated 

to the presentations of the results and the procedures. Every group exposes the 

answer to the class. When the answer is correct, the teacher asks the other pupils if 

they understood the procedure (it‘s resumed if needed). When the answer is 

erroneous, Xavier turns to the class to ask : ―Comments ? Is it correct ?‖. By this 

attitude and this questioning, he does not leave the pupils to have the responsability 

to validate or not the results that are proposed by the others, he is in fact just the 

person who shows what is correct or not. 

DISCUSSION AND CONCLUSION 

The analysis of this session allows us to clarify the choices maked by Xavier when 

he proposes a ―problème ouvert‖ in his class. We obtain elements to understand these 

choices but we think that there are certain points which must be still studied.  

First, we have to continue to fathom out what pupils could learn during a session like 

this one and how they can learn it. We can think that Xavier‘s synthesis is not 

complete, it does not completely return on reasoning which enables to solve a 

problem and to check the result. So, we wonder about the capacities of the pupils to 

reuse the methods which they have discovered. French researchers (Robert & 

Robinet, 1996 ; Sarrazy, 1997) show themselves the ambiguity of the situation 

because of their difference of points of view. Robert & Robinet would maybe take 

the opportunity of this problem to specify the pupils methods and tools to solve them 

better : ―It‘s on the occasion of an activity that we can hope to teach knowledge [...] 

Teacher tries to offer pupils the opportunities to build and to put on a part of this 

knowledge.‖. Hovewer, Sarrazy thinks that even if the teacher gives the pupils these 

methods, these tools to solve a problem, the pupils will not necessarily know how to 

reuse them in another situation of research. ―[...] the conditions of the use of rules 

and the field of application cannot be defined before, that‘s why it is erroneous to 

believe that the pupil can control himself/herself the relevance of the use he/she 

makes of these rules.‖. So, like Sarrazy, we can also suppose that, even if the 

synthesis is very detailed, pupils will not know necessarily how to reuse this 

knowledge to solve new open problems.  

Secondly, the model of the ―double approach‖ is an effective tool for our study, to 

describe and understand the observed phenomena. With the study of the cognitive 

and mediative dimensions but also with the institutional and social dimensions, we 

obtain answers to our questions. However, throughout our analysis, it seems that the 

personal dimension holds a particular place in this kind of activity linked to open 

problems. This last dimension gives us important elements to explain Xavier‘s 

choices. We note that the personal dimension has a real influence on the cognitive 

and mediative dimensions. Indeed, the choice of the statement, of the implementation 

in the class, the choices maked by Xavier concerning the synthesis are largely linked 

to Xavier‘s personal representation of mathematics teaching. We continue to think 
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about the influence of the personal dimension on the cognitive and mediative 

dimensions to understand better teachers‘ practices and also in the objective to 

improve teachers‘ training. 

NOTES 

1. Brousseau characterizes the process of institutionalization by the fact that ―there must be  

somebody outside (the teacher) to come and time the activities (of the pupils) and identify those who 

have an interest [...]‖, Brousseau G. (2004), Théorie des situations didactiques, La pensée sauvage, 

p.282. 

2. By the process of devolution, G. Brousseau wants to notice the fact that ―the teacher would like 

the pupil to feel like holding the answer only by himself‖, Brousseau G. (2004), Théorie des 

situations didactiques, La Pensée sauvage, p.303. 
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THE NEED TO MAKE ‗BOUNDARY OBJECTS‘ MEANINGFUL: A 

LEARNING OUTCOME FROM LESSON STUDY RESEARCH 

Dolores Corcoran 

St Patrick‘s College, Dublin City University 

In this paper I examine how three student teachers used ‗ready prepared‘ lesson 

plans as a teaching resource. These might be considered ‗boundary objects‘ since 

they were developed in one practice, for possible use in others. The paper draws on 

a yearlong study of student teachers that opted to take a course called Learning to 

Teach Mathematics Using Lesson Study. The students and myself as course tutor and 

researcher sought to develop a research-based approach to designing and 

implementing problem-based mathematics lessons. Findings were that ‗boundary 

objects‘ were not always used as intended and successful participation in the 

practice of lesson study focusing on children‘s responses to the mathematics to be 

taught depended on negotiating shared meanings for specific curricular objectives 

and teaching materials.  

Key words: boundary objects; community of practice; lesson study; student teachers 

INTRODUCTION 

As public interest in mathematics teaching and learning has increased over the past 

twenty years, so has the output of commercially produced textbooks and teaching 

resources increased. Of course, the availability of a comprehensive variety of 

research-based materials to assist in teaching mathematics is to be welcomed. 

However, the phenomenal communication explosion arising from global access to 

the internet has resulted in a proliferation of ‗off the-shelf‘ mathematics teaching 

resources, some of which deserve to be used with caution. There is a propensity - 

particularly among student and novice teachers - to seek out novel and easily 

accessible teaching aids that they proceed to use in their classrooms without 

question. This tendency has been encouraged by the electronic publication by some 

government bodies of such plans (National Numeracy Strategy, 2006).  Despite the 

perception that such materials should be ‗teacher-proof‘, their adoption by some 

teachers can be problematic.  Difficulties in implementation are sometimes attributed 

to deficits in teacher knowledge either of mathematics subject matter or of 

pedagogical content knowledge (Ball and Cohen, 1996).  The study reported here 

sought to research how third year student teachers would use off-the-shelf resources 

while engaging in lesson study. 

LESSON STUDY 

The practice of Japanese lesson study has been gaining acceptance, as a means of 

developing the teaching of mathematics, particularly in the USA (Fernandez, 2005), 

the UK and Ireland (Corcoran and Pepperell, 2011) since the practice was identified 
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by Stigler and Hiebert (1999) as a possible contributory factor in the mathematics 

achievement of Japanese students where lesson study is integral to the education 

system in primary and secondary schools and in teacher preparation (Isoda, 2007). In 

2006, Lewis, Perry and Murata appealed for further research into how the 

demonstrable improvements in instruction brought about by participation in lesson 

study might be explained. They themselves offered two conjectures. One, that 

participation in lesson study generates ―refined lesson plans‖; that is, that the 

products - the ―actionable artefacts‖ -created by the lesson study team are the most 

important contribution, and two, that participation in the process of lesson study 

enhances teachers‘ pedagogical content knowledge, teachers‘ commitment and 

community and teaching-learning resources (ibid., p. 287). These scholars appeared 

to favour conjecture two and suggested that conjecture one might be dismissed as 

‗polishing the stone‘ a fruitless exercise that did not warrant sustained pursuit. 

However, there is a resonance with conjecture one to be found in the ―teaching-

learning resources‖ element of improved pathways to mathematics teaching through 

lesson study. Further research among US teachers participating in lesson study to 

enhance the teaching of mathematics confirmed findings that conjecture two was the 

more valid raison d‘être for lesson study where the emphasis on process rather than 

product was facilitated by four major changes: (1) increased use of reflection and 

feedback loops; (2) refinement of protocols and tools; (3) increased use of external 

knowledge sources; and (4) increased focus on student thinking (Perry and Lewis, 

2009). Yet Japanese proponents of lesson study continue to publish detailed 

annotated lesson plans and regard a sustained and focused period of study of these 

and other resource materials as an essential element of lesson study (Takahasi, 

Watanabe and Yoshida, 2006). It appears from this study that sustained engagement 

in the process of collaborative negotiation of shared meanings is necessary to 

optimise use of lesson materials and resources. 

THE LESSON STUDY PROCESS  

Lesson study is a cyclical approach to improving teaching through collaborative 

planning of a ‗research lesson‘, which one person teaches, while observed by others 

who then review the lesson. It is premised on the Confucian saying that ―seeing 

something once is better than hearing about it one hundred times‖ (Yoshida, 2005). 

Its ultimate purpose is to gain new ideas about teaching and learning based on a 

better understanding of children‘s thinking so the observation of actual research 

lessons is at the core of the lesson study process. The lesson study cycle however 

encompasses much more than studying children‘s responses while observing a 

research lesson. It requires time dedicated to intensive kyozai kenkyu, - a process in 

which teachers collaboratively investigate all aspects of the content to be taught and 

instructional materials available – and to jyugyo kentuikai – the post lesson review 

session (Takahashi, Watanabe, Yoshida and Wang-Iverson, 2005).  In this paper, I 

will briefly outline the lesson study research process as practised by six student 
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teachers during two cycles. Then I will draw on data which indicate the different 

uses made of a particular ‗boundary object‘ - a unit lesson plan adapted from the 

English National Numeracy Strategy on-line resources (NNS, 2006) - by Irish 

student teachers –Treasa and Finola - in the research lesson they each taught 

concurrently during lesson study cycle one. Next, I will refer briefly to a second 

boundary object, a recommended lesson plan (Burns, 1987), which was adopted and 

taught by one of the students, Ethna, in lesson study cycle two. Ethna‘s treatment of 

this ‗ready made‘ lesson will be discussed, together with findings from another 

lesson study group of US teachers who adopted the same lesson as a ‗research 

lesson‘ (Fernandez, 2005). First, I outline what I mean by boundary objects. 

THEORETICAL PERSPECTIVE 

The term ―boundary object‖ was coined by Star and Griesemer (1989, p. 388) to 

describe:  

objects which are both plastic enough to adapt to local needs and constraints of the 

several parties employing them, yet robust enough to maintain a common identity across 

sites ...They may be abstract or concrete … The creation and management of boundary 

objects is key in developing and maintaining coherence across intersecting social worlds. 

The notion of boundary objects has found particular resonance in computer science 

where ‗‗design continues in usage‘‘ (Rabardel and Bourmaud, 2003, p. 666), and 

‗‗the conceptualisation of instruments [is] an activity distributed between designers 

and users‘‘ (Rabardel and Waern, 2003, p. 643). In such a context ―interpretative 

flexibility‖ serves a recognised and useful purpose (Ruthven, Hennessy and Deaney, 

2008). However, in mathematics education particularly, the fidelity or otherwise in 

interpretation of textbooks, designed in one community for use by another 

community has been problematised (Haggarty and Pepin; 2002). In researching 

communities of practice, Wenger (1998) uses the construct of ‗reification‘ to explain 

the collaborative process of giving ‗thingness‘ to inanimate or intangible aspects of 

practice, which imbues them with negotiable meaning within the practice and renders 

them portable. Because the products of reification within one practice may be 

transported to other practices they become ―boundary objects‖. By such a definition, 

the mathematics curriculum, mathematics textbooks and ancillary teaching resources 

all constitute boundary objects, the potential value and actual meaning of which have 

to be negotiated afresh by the community where they are being used. According to 

Wenger (ibid.) participation in the practice is synonymous with negotiating shared 

meanings for each object used within the practice. In this study, which presents an 

account of pre-service teachers engaging in lesson study, the interplay between 

participation in the practice of teaching problem-based mathematics lessons and the 

reification therein of certain understandings of mathematics and of mathematics 

teaching resulted in a growing respect for boundary objects and their potential value 

in teaching mathematics.  
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THE STUDY 

This research project – tier three of a larger study into the development of 

mathematical knowledge for teaching (Corcoran, 2008) – involved forming a 

community of practice dedicated to learning how to teach primary mathematics from 

a reform perspective. The differing ways in which a mathematics teachers‘ 

community of practice can develop has been reported at CERME 6 (Reinup, 2009) 

and the community of practice comprising six third year Bachelor of Education 

students and myself as course tutor and researcher seemed to exhibit the necessary 

qualities she outlines. We adopted Japanese lesson study as a model for teacher 

development and three cycles of lesson study were pursued over the course of one 

academic year. In each lesson study cycle, student teacher participants prepared two 

mathematics lessons collaboratively. For the research lessons the students divided 

into two groups and went to different schools. Then, one student taught a research 

lesson, observed by two other students who studied children‘s mathematical 

responses during the lesson. Each research lesson was video-recorded. I was present 

at one of the research lessons during each lesson study cycle. The research lesson 

experience was followed by a reflective meeting to analyse the lessons using the 

Knowledge Quartet (KQ) framework as a means of focusing on different dimensions 

of the mathematical content of the lesson (Rowland, Huckstep and Thwaites, 2005). 

Together with serving as an analytic framework for looking at mathematics teaching 

along its four defining dimensions of foundation, transformation connection and 

contingency, the language labels of the eighteen contributory codes for the KQ 

became part of the ―shared repertoire of ways of doing things‖ (Wenger, 1998, pp. 

82-84) within the community and helped to focus the student teachers‘ engagement 

with the problem-based mathematics teaching enterprise. The potential of lesson 

study as a means of bridging the gap between planning and pupil learning outcomes 

was discussed at the first meeting and the possibilities for developing teaching 

inherent in observing pupils‘ responses were mooted. I was party to the lesson study 

process both as researcher and as course tutor/knowledgeable other and was also 

engaged in negotiating meanings for these roles (Corcoran, 2011).  

THE RESEARCH LESSONS IN CYCLE ONE 

During the initial preparation meeting of cycle one, the students opted to teach 

lessons from the Measures strand of the Irish primary curriculum. They chose the 

strand unit weight, because they perceived the teaching of ‗weight‘ as difficult. The 

lesson study group had two three-hour meetings before this lesson was taught and 

various realistic contexts for teaching weight were discussed. The fact that 9-10 year 

old children ‗should‘ and were already likely to know something about standard 

units of measure and reference to the curriculum objectives led students to adopt a 

somewhat ambiguous goal for the lesson; ―that children would learn about the 

weight of a kilogramme‖. After much exploratory discussion a context for engaging 

children in the mathematics of weight was suggested and discussed; the directive that 
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carry-on luggage on a Ryanair flight must not exceed 10kg. Students discussed their 

goals in approaching the lessons and the learning outcomes they hoped for their 

pupils, and how these could be recognised. Much discourse focused on the logistics 

of organising a lesson - time to be spent on pair work, group work and the time and 

place for teacher talk. These might be termed generic pedagogic concerns. The 

students organised their lesson plans according to the usual recommended 

‗introduction‘, ‗development‘ and ‗closure‘ phases. In one research lesson, Treasa 

introduced a problem: ‗Would you be able to take your school bag on a Ryanair 

flight where there is a restriction of 10kg on carry-on luggage?‘ Children, in groups 

of six, were asked to compare and order their school bags by hefting them from hand 

to hand and to record their findings on a scale, - a straight line with six equally 

spaced marks - which Treasa drew on the board.  

In the other research lesson, the problem was phrased as: ‗How heavy is your 

schoolbag in relation to your body weight?‘ As a conclusion to the investigation 

Finola drew a scale, going from 0 to 3.5kg, on the board and invited children to tell 

her where to place their school bags on this scale according to their weight. As she 

talked, Finola began to draw a horizontal line across the middle of the board. This 

she calibrated with whole numbers from 0 to 3 then a mark midway between 3 and 4 

to denote 3.5 and finally 4. She knew Tom‘s bag was heaviest at 4 kg and recorded 

his name over the four. She left intervals of less than 30cm in length between the 

whole numbers. If she had planned to record the weights of schoolbags and names of 

every one in the class it might have been better to have made the intervals much 

bigger, but Finola and her lesson study colleagues had not anticipated the complexity 

of the mathematical task the lesson involved. Finola‘s hand hovered indecisively 

between 0 and 1 on the scale and she finally marked a point half way between them 

as 100g with Sean‘s name underneath. Quickly she prompted the Joe, ―... and yours 

was 500g?‖ At this stage Finola rubbed out the 100g and put in 500g, then rubbed 

out the 500g and put a child‘s name under the 1kg mark.  

Child:  One kilo.  

Child:  Mine weighed four grammes.  

Finola:  Four grammes? Really?  

Finola decided to conclude the recording of school bag weights there, by saying:  

Finola:  Ye‘re all good. You‘ve all got safe schoolbags. They‘re not going to 

damage your back at all are they? I don‘t think so. Now … 

While there were many similarities in the two research lessons, there were many 

differences in how they turned out. Some of the lesson study group‘s critical 

reflection on the two lessons focused on where each of the student teachers had 

modelled the recording of children‘s details on a scale. Treasa was confident in her 

teaching that calibrations should be equally spaced to represent the weights of the six 

school bags per group. She appeared to convey certainty and control in her handling 
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of the lesson but later expressed doubts about what she had done. In contrast to 

Treasa‘s lesson and a tighter approach to planning for teaching, Finola‘ lesson and 

approach appears loose, fluid and more dialectical. Finola also had a particular 

representation of a scale in mind and she was nonplussed when the messy, 

uncertainties of children‘s findings were presented. Obviously she was expecting 

neat, manageable round numbers of kilogrammes and half kilogrammes, instead 

children offered 900g, 500g 100g, 3g and 4g and her lesson could be challenged 

along both connection and contingency dimensions, of the KQ (Rowland, Huckstep 

and Thwaites, 2005) not because she didn‘t know the relationship of grammes to 

kilogrammes but because she couldn‘t think where they would fit on her scale.  

Recording on Scales Revisited  

During the post-lesson reflective session on Treasa‘s research lesson of comparing 

weights of school bags, the lesson study group did the activity again themselves 

using their handbags and the purpose of the calibrations on the scale immediately 

became questionable. This ordering of bags could be matched to the scale but not to 

the marks where she as teacher had proposed putting the names of children who 

owned them. As the student teachers began to realise, this was an ordinal scale only 

and they had no way of knowing at what intervals the school bags should be marked. 

It was possible that two or more bags could be mapped to the same point on the 

scale. With regard to Finola‘s scale, the group explored the possibility of extending it 

by asking the children to imagine the space between 0 and 1 to be a much longer line 

and drawing that underneath and calibrating it in hundreds of grammes. It was an 

exciting discovery for these student teachers to think that they could do exactly the 

same with space between 0 and 100g and calibrate that space in tens of grammes. 

This notion of there being no such thing as an exact measure appeared new to the 

students and they began to think in terms of the arbitrariness of units and 

instruments, and the pedagogical purpose of the recommended use of a scale for 

recording weights.  

ETHNA‘S RESEARCH LESSON IN CYCLE TWO  

In lesson study cycle two, the complexity of the boundary object was greater 

although it was a much more explicit and detailed pre-determined lesson plan that 

was used. It was the teacher of the research lesson, Ethna, who had strongly 

advocated the use of a particularly detailed lesson plan she had chosen. Ethna‘s 

lesson study group of two other students agreed an already tested lesson script 

published by Marilyn Burns (1987) and took pains to set the scene and involve the 

children in hands-on activity manipulating the fraction pieces. Ethna and her two 

colleagues brought paper cut outs of cookies and had prepared worksheets for the 

children and enlarged versions to hang on the board as she explained the tasks. 

Children were to manually divide four, then five, three and seven paper ‗cookies‘ 

among four children. The lesson concluded with Ethna simply telling children the 
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meaning of the symbols for a half and a quarter. She drew circles to represent 

‗wholes‘ on the board and shaded in the appropriate fractional pieces, finally asking 

the children to copy these representations into their copybooks.  

Burns (1987, p. 40) describes the mathematical potential in the summarizing of the 

lesson and Ethna‘s careful preparation of worksheets ensured that she too had 

provided material for mathematical discussion with each of her three groups. But at 

the end of her lesson, Ethna chose to revert to an older, more traditional form of 

teaching which involved children in copying teacher‘s work and learning 

mathematics by looking, listening and remembering. Instead of following through 

with facilitating children‘s learning about fractions by discussing their solutions to 

the activities she had so carefully prepared Ethna closed the lesson by returning to 

routines of teaching mathematics she may have experienced as a child (Cooney, 

Shaely and Arvold (1998). It may be she felt ‗safer‘ as teacher in this role or it may 

be that she felt the mathematics could be more ‗safely‘ transmitted by this mode of 

teaching. When pushed for time Ethna ‗forgot‘ to ask important connection questions 

but ‗remembered‘ to rely on routines. It appeared that Ethna had persuaded her 

colleagues that this was a suitable lesson, who had explored and resourced its use 

without question, but when engaged in the actual teaching of the lesson she ignored 

the fact that by using Burns‘ lesson she had challenged the children to reason 

mathematically about fraction pieces, a task they had completed with considerable 

success. Instead, Ethna treated the Burns‘ lesson as a boundary object with little 

meaning for her practice beyond ‗going through the paces‘.  She finished the 

research lesson with an impromptu and unplanned return to ‗teaching by telling‘. The 

pedagogical meaning of the boundary object had not yet been successfully negotiated 

nor integrated into the lesson study practice. 

DISCUSSION 

A critical approach to the sparseness of the curriculum guidelines and the class 

textbooks in terms of important mathematics emerged from lesson study cycle one, 

and coupled with detailed observation of the children‘s talk and actions began to be 

transformative of practice. The idea of the scale had been imported from the National 

Numeracy Strategy Unit Plan 4, without heeding the significance of differing 

calibrations of scales on OHT4.3 (NNS, 2006). This document represented a 

boundary object (Wenger, 1998, p. 107) for the community, and could be said to 

represent other mathematical material to which the student teachers were exposed 

but which they did not necessarily make meaningful. Lesson study advocates 

recommend that teacher participants actually do the mathematics together that they 

propose to use in the research lesson. Our lesson study community had done so but in 

a cursory manner that had not accessed mathematics involved in sufficient depth. 

The NNS unit plan suggestion remained a boundary object to these student teachers 

until they had studied its use and negotiated its meanings in relation to the two 

applications of the problem of recording weights of children‘s school bags in their 
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actual research lessons. Much of the work of the lesson study community of practice 

over the following weeks was to critically align their own experiences and beliefs 

about mathematics teaching with the skeletal list of teaching objectives in the 

primary curriculum and to flesh out the resultant lessons from available resources in 

order to maximise the children‘s learning. In the light of these two lessons, it appears 

that suggesting contexts and providing resource materials is not support enough for 

student teachers. Alignment with the aims of the enterprise of learning to teach 

mathematics requires development of a deeper understanding of the mathematics to 

be taught, which in these instances were rooted in studying the actual teaching of 

research lessons.  

The same ‗off-the-shelf‘ lesson (Burns, 1987) which Ethna‘s group chose to teach as 

a research lesson has also been used by a lesson study group in the US where that 

group‘s learning from the process has been documented and studied in relation to 

two research questions: a) what opportunities to learn about mathematics for 

teaching does lesson study offer and b) to what extent can participants take 

advantage of these opportunities when they often bring limited subject matter 

knowledge to the situation (Fernandez, 2005). Unlike Treasa, Finola and Ethna, the 

teachers in Fernandez study were practising teachers with some years experience and 

her work shows evidence of opportunities for learning pedagogical content 

knowledge afforded to them by engaging with, discussing and adapting Burns lesson 

for teaching as a research lesson. She argues that the act of sustained and focused 

engagement in studying and interrogating the pedagogical implications of the lesson 

itself, despite their limited subject matter knowledge, acted ―as a vehicle for teachers 

to learn about content in a way that directly feeds into their understanding of how 

best to teach this content and an incentive to learn more‖ (ibid., p. 282). Similarly, 

the student teachers in my study benefited from adopting, trialling, interrogating and 

adapting boundary objects and participation in this process resulted over time in 

meaningful learning of mathematics in and for teaching. 

CONCLUSION 

I have chosen the three cases of Treasa, Finola and Ethna because the manner in 

which these student teachers (and practising teachers in the US) used the boundary 

objects in the examples cited above might be attributed to their limited knowledge of 

the potential for mathematical thinking inherent in the objects, but such a conclusion 

is not helpful, nor does it tell the full story. Subsequent collaborative work  - during 

which the lesson study participants teased out the possible mathematical meanings, 

children‘s likely and actual responses to the mathematics and the teachers‘ explicit 

teaching and learning objectives - contributed in each case to increased mathematical 

subject matter knowledge, more focused and refined pedagogical content knowledge 

and a desire to go on learning through further engagement in lesson study. I conclude 

that engagement in a sustained, communal and situated, research-oriented approach 

to mathematics teaching is necessary if the uses of the many valuable resources 
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available are to be optimised. This finding has implications for the interpretation and 

implementation of curricula, of prescribed textbooks and ancillary resources and for 

the continuing professional development of teachers.  It could give rise to  

―intelligent teachers using intelligent curricula intelligently‖ (Russell, 1997). By 

recognising ‗new‘ resource materials as boundary objects, deeper understandings of 

mathematics, of curriculum and of teaching become a focus for negotiation of 

meaning as participants in lesson study engage with their initial interpretations, enact 

them, then renegotiate and refine them as ―a work in progress‖ (Wenger, 1998, 

p.158). In this manner, learning to teach mathematics from a reform perspective 

involves a state of ―constant becoming‖ (ibid, p. 154) and the practice of lesson 

study itself becomes the curriculum, where both conjectures concerning the power of 

lesson study to improve the teaching of mathematics complement each other.   
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ANALYSIS OF THE TEACHER‘S ROLE IN AN APPROACH TO 

ALGEBRA AS A TOOL FOR THINKING: PROBLEMS POINTED 

OUT DURING LABORATORIAL ACTIVITIES WITH 
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In this work we present an activity we carried out with perspective teachers (PTs) 

during a brief training course aimed at providing them with theoretical and 

methodological tools useful for the analysis of class processes concerning the 

development of reasoning through algebraic language. After an outline of the 

theoretical framework we introduced during the course, we will deal with the 

problem of the use of theory in the analysis of class processes, highlighting the 

difficulties faced by PTs. 

Keywords: teacher education; algebraic thinking; analysis of class processes; 

theoretical tools; reflection on practice. 

TEACHERS‘ PROFESSIONAL DEVELOPMENT: THE SIDE OF THE 

ACTION IN THE CLASS 

For reshaping teachers professionalism several scholars stress the importance of a 

critical reflection by teachers on their own activity in the classroom (Mason 2002; 

Jaworski 2003). Mason, in particular, claims that the skill of consciously grasping 

things comes from constant practice, going beyond what happens in the classroom, 

and recommends the creation of suitable social practices in which teachers might 

talk-about and share their experience. Also Jaworski (2004) stresses the effectiveness 

of communities of inquiry, constituted by teachers and researchers, emphasizing how 

teachers‘ participation in these groups helps them develop their individual identity 

through reflective inquiry. 

Our research model is framed in these conceptions, but it also stems from the Italian 

model of research for innovation, which units both an innovation in teaching and a 

promotion of teachers‘ professional development. According to this model the 

interaction between researchers and teachers plays an important role in the training 

processes in which teachers are involved before and during the experimentation of 

innovative didactical paths. The key-idea is that research and practice develop in a 

dialectical process: theoretical results produced by researchers are supported by 

teachers‘ practice and evolve through it (Malara&Zan 2002). 

In our work, on the side of teachers‘ professional development, we study difficulties 

and effects of practices involving collective reflection, identifying categories of 

behaviour that may be productive for students‘ conscious learning (Cusi&Malara 

2009). Our research experience with teachers made us aware of the difficulties they 
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meet in both designing and implementing socio-constructive teaching. Therefore, we 

set up and experimented instruments and methods to empower their way of managing 

whole-class discussions (Malara 2008). Our report takes place in this frame and, 

precisely, it concerns with the analysis of the role played by the teacher during 

activities aimed at a renewal in the teaching of algebra, in a perspective that will be 

outlined in the following paragraph. 

THE DIDACTIC OF ALGEBRA: OUR MODEL AND THE ROLE OF THE 

TEACHER 

Our vision of the didactic of algebra has developed in a framework in which 

algebraic language, conceived as a fundamental tool in modelling and in the 

development of reasoning, is the key-element. Many research studies support an 

approach to the teaching of algebra aimed at helping students develop an awareness 

about the role played by algebraic language and the importance of studying it (see for 

instance Arcavi 1994, Arzarello et Al. 2001, Kieran 2004). Many of them stress the 

need of devoting more time to activities for which algebra is used as an effective tool 

but which are not exclusive to algebra (global/meta-level activities according to 

Kieran‘s distinction). Referring to the problems related to this particular approach to 

algebra, Arzarello et Al. (2001) stressed that an awareness of the power of algebraic 

language can be developed only once the student has mastered the handling of some 

key-aspects that arise in the development of algebraic reasoning. In particular, the 

authors highlight the use of conceptual frames [1] and changes from a frame to 

another and from a knowledge domain to another as fundamental steps in the 

activation of interpretative processes. Moreover, Boero (2001) argues that 

anticipation [2] is a key-element in producing thought through processes of 

transformation.  

Since we agree with Wheeler‘s idea (1996) that activities of proof construction 

through algebraic language could constitute ―a counterbalance to all the automating 

and routinizing that tends to dominate the scene‖, these kind of activities play a 

central role in our approach to the teaching of algebra. Therefore we planned and 

implemented an introductory path to proof in elementary number theory, to be 

inserted, in coordination with syntactical activities, in the math curriculum of classes 

of the first biennium of secondary school (grades 9-10). In our experimentations we 

were able to highlight the difficulties faced by teachers in making their students 

develop both the fundamental competences for the constructions of proofs through 

algebraic language and an awareness of the role played by algebraic language during 

these kind of activities. Therefore we decided to focus on the crucial role played by 

the teacher during the educational process. Our hypothesis is that teacher‘s attitudes 

and behaviours in the class are decisive in fostering (or inhibiting) students‘ 

construction of the competences which are necessary for the development of 

reasoning through algebraic language. 
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Our research framework about the teaching and learning processes is based on these 

three fundamental ideas: (1) thanks to the interaction with adults or with more expert 

peers, the students can activate internal learning processes which help them achieve a 

higher level of mental development (Vygotsky 1978); (2) one of the main aims of 

teaching should be fostering, through activities performed in social contexts, a real 

awareness of the learning process, focussing on the meaning of the actions which are 

performed in the class (Leont‘ev 1977); (3) in order to foster a meaningful learning it 

is necessary to give students ―the opportunity to observe, engage in, and invent or 

discover expert strategies in context‖ (model of the cognitive apprenticeship, 

Collins, Brown and Newman, 1989). Giving this opportunity is possible if the 

teacher is able to bring cognitive and metacognitive tacit processes into the open, 

trying to make thinking visible. We were inspired by the idea of a teacher who is able 

to activate in his/her students behavioural processes which are similar to the ones 

he/she activates in order to identify effective strategies for problem solving. 

Therefore we decided to focus on one of the possible roles that a teacher could play 

in the class: the role of model, which is particularly significant especially in the 

context of activities of proof construction through algebraic language, central in our 

project. Our research studies made us develop the idea of defining the theoretical 

construct of teacher who poses him/herself as a model of aware and effective 

attitudes and behaviours for students (Cusi&Malara 2009). In order to make the 

features of this construct clearly explicit, we will analyze a class discussion, 

proposed during a laboratorial activity which will be discussed in this report. 

THE ANALYSIS OF A CLASS DISCUSSION AND THE CONSTRUCT OF 

TEACHER AS A MODEL OF AWARE AND EFFECTIVE ATTITUDES AND 

BEHAVIOURS 

The following discussion refers to the second phase of our introductory path to proof 

through algebraic language. The class (10 grade) has already faced activities of 

translation from verbal to algebraic language and vice-versa. The problem posed to 

students is the following: ―how can we justify that, if n is an odd number, n
2
 is an 

odd number too?‖. In this particular phase, the teacher aims at making students 

understand the limits of a verbal justification and at guiding them to a conscious use 

of algebraic language, showing them how to face these kind of problems. During the 

initial phase of the discussion, two students propose to formalize the hypothesis of 

this implication through the equality n=2x+1. The following excerpt refers to the 

course of the activity. 

1. T [3]: (addressing A, one of the two students who propose the formalization n=2x+1) 

How can we convince ourselves that if n=2x+1, then n
2
 is odd? 

2.  A: Because an odd number to the second power gives an odd number. 

3.  T: How can we see this?  
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4.  A: Because odd times odd is odd! 

5.  T: So here there is the concept of multiplication. (Addressing the class) They say: if I 

multiply an odd times an odd, where do I find factor 2? 

6.  B: I don‘t find it. 

7.  T: So, it is odd. 

8.    T: And you, Z, how can you see it?  

9.   Z: Squaring an even number, you get an even. Adding 1 to an even, you get an odd.  

10.  T: Hold on. Here I read n
2 
. Why are you saying ―I add 1‖? 

11.  Z: 2x+1 squared gives an odd number because: 2x squared is 4x
2
, then there is plus 1. 

12.  T: (2x)
2
 is 4x

2
. 

13.  T: You say  (2x)
2
=4x

2
. (2x+1)

2
 is 4x

2
+1 ? 

14.   Chorus : No ! 

15.  T: Let‘s get back to what Z says. I can‘t say that (2x+1)
2
 is 4x

2
+1. But if I want to 

convince you that (2x+1)
2
 is odd, what can I do? 

16.  O: Let‘s solve it!  (T writes (2x+1)
2
=4x

2
+4x+1) 

17.  T: Now there is ―+1‖ … This quantity here is the problem (points to 4x
2
+4x). 

18.  P: Let‘s make the total: we take out 4x. 

19.  T: Do we really need to take out 4x? 

20.  O: It‘s enough to take out 2. 

21.  T: Why 2?    

22.  O: Because then we can highlight an even number, plus 1.    (T writes   2(2x
2
+2x)+1) 

23.  Z: But 4x
2
+4x is the same as 2(2x

2
+2x)! 

24.  T: Yes, it‘s the same thing. 

25.  Z: Ah, I see why! Because taking out 2 you see you get an even. [4] 

Let us analyze this discussion from the point of view of both the different roles 

played by T and the students-teacher interaction, trying to highlight: (1) weaknesses 

and strengths of the discussion, with reference to the application of conceptual 
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frames and anticipating thoughts and the coordination between different frames; (2) 

the role played by the teacher as a ―stimulus‖ to foster an approach to algebra as a 

tool for thinking, and as a ―model‖ and ―guide‖ in the construction of reasoning. The 

excerpt can be broken down in three distinct moments: (1) phase of verbal 

argumentation (lines 1-7); (2) towards a formalization of the property (lines 8-14); 

(3) proof of the property and reflection upon the importance of choosing a certain 

representation (lines 15-25). 

In the first phase of the discussion A enacts the frame ―factorization of a number‖ to 

make explicit to the class the justification at the basis of her answer (line 4). Despite 

her attempt to formalise the answer, A only proposes a purely verbal argumentation. 

The teacher immediately sets herself in the same frame as the pupil and repeats the 

reasoning proposed by A to the rest of the class, pointing out the relationship 

between the fact that 2 is not in the factorisation of  n and the fact that n2 is odd 

(lines 5 and 7). Through the metaphorical question ―where do I find factor 2?‖, T 

reminds that 2 is not a factor in the multiplicative representation of an odd number. 

Though T seems to pose him/herself only on the operative level, neglecting the 

metacognitive one (there seems to be a lack of an aloud reflection), this particular 

arithmetical knowledge was already well-established in the class, therefore it can be 

an implicit assumption in the development of reasoning. T‘s third statement (line 7), 

which reinforces A‘ assertion, seems to block a discussion about the need of a formal 

proof of the property. Actually, because of the particular moment in the class activity 

(recollection of students‘ different point of views), T refrains from intervening in 

order to pose him/herself as a listener. This fact becomes clear when T invites an 

other student (Z) to express her reasoning (line 8).  

Z‘s intervention (line 9) is immediately taken by T as an opportunity to introduce the 

class to a justification of the property based on algebraic formalization. Z, in fact, 

refers to the additive representation of odd numbers to justify her answer, trying to 

co-ordinate the frames ―even/odd‖ and ―polynomials‖ while she is trying to 

‗mentally‘ manipulate the expression (2x+1)2. Although Z activates a good 

anticipating thought (she grasps the idea that the objective is to transform the 

expression until it gets to the form ―an even number plus 1‖), she faces some 

difficulties at the level of syntactical transformations, probably because she tries to 

proceed only verbally. This is a moment in which T must try to foster in students an 

harmonic balance between semantic and syntactic aspects. When Z makes an evident 

mistake in calculating the square of a binomial, the teacher poses him/herself as a 

reflective guide, echoing the student in the form of a question asked to the whole 

class (lines 12 and 13). Once he/she has amended Z‘s mistake, T underlines the 

objective of the syntactic manipulations carried out (line 15) and asks the class to 

suggest him/her how to proceed. In this case, T is playing a double role: 

investigating subject, putting to the class the question of researching a path suitable 

to reach the prearranged objectives, and activator of anticipating thoughts, clarifying 
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the aim of the activity in order to foster the activation of the ―even-odd‖ frame and 

the research of the correct syntactical treatment to be performed. 

Following O (line 16), T gets to construct the expression 4x2+4x+1. At this point, 

the teacher decides to guide the activity, playing the role of an investigating subject. 

She actually remarks that ―+1‖, Z had mentioned, is in the determined expression, 

but she points at the remaining binomial 4x2+4x as a ―problem to be solved‖ (line 

17). In this way, she lets the class guide the activity, although she remains the point 

of reference for the discussion. Through this technique, the teacher again acts as an 

activator of anticipating thoughts. After P shows he has not enacted a correct 

anticipating thought (line 18), T echoes P‘s proposal, sending it back to the class as a 

question (line 19). At this point, O enacts the correct anticipating thought, suggesting 

that 2 might be taken out (line 20). T asks her to justify her idea, so that she can 

make what she has activated explicit to the whole class. The comment by Z (line 23) 

shows that the pupil has not interpreted the objective of the manipulation within the 

frame ―even-odd‖: she actually shows she has not understood the sense of taking out 

a factor 2 from 4x2 and 4x. T decides to echo her (line 24), simply repeating that the 

pupil‘s statement (4x2+4x is the same as 2(2x2+2x) ) is right. At that moment Z 

realises that taking out 2 is a way to make explicit the fact that the expression 

4x2+4x  is even (line 25). It is important to stress that T always tries not to impose 

the moments devoted to reflection: her way of repeating students‘ assertion, also if 

they are erroneous, and of sending back students‘ question to the whole class is a 

clear methodology aimed at stimulating students‘ development of reflective attitudes 

and metacognitive acts. 

This analysis can help the reader clarify some of the definitory elements of the 

construct of teacher who poses him/herself as a model of aware and effective 

attitudes and behaviours (TMAEAB). This kind of teacher must: (a) be able to play 

the role of an investigating subject, stimulating in students an attitude of research on 

the problem being studied, and acting as an integral part of the class in the research 

work being activated; (b) be able to play the role of a practical/strategic guide, 

sharing (rather than transmitting) knowledge with students, and of a reflective guide 

in identifying effective practical/strategic models during class activities; (c) be aware 

of his/her responsibility in maintaining a harmonized balance between semantic and 

syntactic aspects during the collective construction of thought processes through 

algebraic language; (d) try to stimulate and provoke the enactment of fundamental 

skills for the development of thought processes through algebraic language, playing 

the role of both an activator of interpretative processes and an activator of 

anticipating thoughts; (e) stimulate and provoke meta-level attitudes, acting both as 

an activator of reflective attitudes and as an activator of meta-cognitive acts. 

LABORATORIAL ACTIVITIES WITH PERSPECTIVE TEACHERS 

The activities we refer to in this paper involved a group of 10 new graduates 
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particularly motivated, who still have not worked in school and, waiting for new 

rules about teacher training courses from the Ministry of Education, expressly have 

asked to the Science Faculty to organize a brief course propaedeutic to teacher 

training. As we stressed previously, the training paths for teachers that we usually 

propose are characterized by a constant dialectic between theoretical aspects and 

didactical implementation. In the moment we had to work with PTs who still have 

not had the opportunity to enter in the classes, neither as observers, we faced the 

problem of a lack in this dialectical relationship between theory and practice. 

Therefore our main aim became that of giving them theoretical and methodological 

tools to learn how to interpret their future actions in the classes. The methodology we 

adopted during this course is strictly connected with this particular situation, but it is 

in tune with the framework we outlined before. In fact, the activities we performed 

with PTs can be considered preparatory to the critical reflection they will have to do 

when, as teachers, they will have to analytically examine their actions to improve the 

effects of their practice. The course (20 hours) was subdivided into 5 sessions. The 

activities started with a session devoted to the presentation of: (1) our theoretical 

framework for the didactic of algebra; (2) the different activities about this theme we 

realized in the classes, highlighting in particular the experimental path for the 

construction of proofs through algebraic language (carried out with 9-10 grades 

students). During the following sessions PTs were involved (sometimes individually, 

sometimes in groups) in activities of reflection about class practices: we proposed 

them to analyse excerpts of both class and small groups discussions (produced 

during our experimentations). Every activity of reflection was followed by a 

collective discussion aimed both at activating a comparison between PTs and at 

introducing, not in a transmissive way, theoretical issues about methodological 

aspects of teaching-learning processes, in order to gradually outline our framework.  

In order to investigate the incidence of PTs‘ learning of theoretical aspects in their 

capability of analyzing the role of the teacher during class processes involving the 

development of reasoning through algebraic language and to highlight the 

problematical aspects connected with their use of theory in performing this kind of 

analysis, we devote the last part of this paper on a particular activity of reflection, 

individually faced by PTs, characterized by the analysis of the previous discussion 

(see paragraph 3). In  the following we will present the task proposed to PTs and our 

qualitative analysis of their answers. The aim of our analysis is to highlight the 

difficulties faced PTs: (a) in referring to the theoretical constructs to analyse T‘s 

attitudes and behaviours during the discussion and (b) in contextualizing T‘s actions 

in tune with the particular didactical moment that the class is living.  

PROBLEMATICAL ASPECTS HIGHLIGHTED IN PTS‘ REFLECTIONS 

We asked PTs to highlight: (1) weaknesses and strengths of the discussion, with 

reference to the activation of conceptual frames, coordination between different 
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frames and activation of anticipating thoughts; (2) the moments in which T plays the 

role of a TMAEAB; (3) the moments in which T‘s approach differs from the 

approach which characterizes a TMAEAB; (4) the (positive and/or negative) effects 

of T‘s work on students during the discussion. The analysis carried out by PTs are 

prevalently line-by-line. Only one PT was able to rationalize local observations in an 

objective and argued frame about T‘s attitudes and behaviours. In this paragraph we 

will focus, in particular, on the problematical aspects highlighted by our study of 

PTs‘ protocols, referring to three main aspects: (1) appropriation of the theoretical 

constructs of reference and their use in performing the analysis of the discussion; (2) 

interpretation of T‘s actions with reference to the context (didactical project, 

particular didactical moment); (3) highlighting of the interrelation between T‘s 

behaviours and students‘ behaviours. 

In regard to (1), the examined protocols can be subdivided, referring in particular to 

the TMAEAB construct, into the following four categories: (a) the PT has 

interiorized the theoretical construct and he/she is able to refer to it in a pertinent 

way; (b) the PT recognizes, within the class process, typical components of a 

TMAEAB, but he/she is not able to identify the specific actions which characterize 

the highlighted components; (c) the PT only partially recognizes the components 

which characterize a TMAEAB and he/she does not conduct a punctual analysis of 

the discussion, making sometimes improper references to theoretical constructs; (d) 

the PT proposes a naïve analysis of the class process, without referring to the 

theoretical constructs or referring to them in an improper way.  

Most of the protocols belong to the categories (b) and (c): few PTs were able to 

always correctly refer to the theoretical aspects and appropriately use the specific 

terminology. Because of space limitations, we present here only some reflections 

belonging to categories (c) and (d) because they better reveal the difficulties met by 

PTs in interiorizing the theoretical constructs. For example, many PTs did not realize 

that the rhetorical question proposed by T in line 5 is aimed at making A‘s reasoning 

(line 4) explicit in order to stimulate a moment of reflection. R, for example, 

observes: ―When T asks ‗where do I find factor 2?‘, he/she plays the role of a 

prompter, inhibiting the anticipating thoughts that could have arisen from students‘ 

reflections‖. This reflection testifies a widespread approach used by PTs. They, in 

fact, often do not analyze T‘s actions in the context, with reference to what the class 

already knows and to the particular moment in the didactical path. Their inability of 

contextualizing the discussion makes PTs interpret as a ‗didactical mistake‘ the fact 

that T considers obvious that 2 is a factor in the multiplicative representation of an 

even number. Indeed T‘s attitude is understandable: aiming at focussing students‘ 

attention on the way of developing reasoning through algebraic language, he/she 

prefers not to re-propose, as a problem, syntactic aspects that most of the students 

already control.  

A similar observation can be done referring to T‘s choice of quickly performing, 
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without involving students, the syntactic transformation in line 16. The inability of 

contextualizing this action makes, for example, M assert: ―The teacher is the one 

who correctly writes the equality (2x
2
+1)

2
= …; again he/she is does not make 

his/her students reflect on the meaning of algebraic expressions and on the 

equivalence between the expressions at the two sides of this equality‖. 

As regards to (1), other difficulties are related to a lack in recognizing, referring to 

the particular context, some typical features of a TMAEAB. Some PTs, for example, 

consider as negative T‘s approach in line 15 because they are not able to recognize 

that he/she is playing the role of investigating subject. R, for example, states: ―T‘s 

attitude of ‗I want to convince you‘ clashes against the meaning of the proving 

activity‖. An other assertion proposed by T that was not correctly interpreted by 

many PTs was the one in line 17. Instead of recognizing that T is trying to play the 

double role of investigating subject and activator of anticipating thoughts, some Pts 

declare that T is posing him/herself as a mere prompter: ―T suggests the frame to 

refer to and the quantity on which they have to operate. Therefore he/she is not 

playing the role of an activator of anticipating thoughts‖(S).  

Our study has also pointed out that PTs sometimes propose conflicting 

interpretations of some micro-actions performed by T. Referring to line 19, for 

example, we highlighted a contraposition between comments that consider T‘s 

approach positive, stressing that T aims at activating a moment of reflection on the 

meaning of the syntactic transformation to be carried out, and comments that look at 

T‘s approach as completely negative, since ―T immediately interrupts the student‘s 

proposal‖ (D). PTs who propose negative comments to line 19 do not understand 

that students‘ bewilderment can be justified because this is one of the first proving 

activities that the class is facing. 

Referring finally to (3), we can observe that only few PTs have tried to highlight the 

effects of T‘s action on his/her students. In particular, those who tried to highlight an 

interrelation between T‘s actions and students‘ actions only propose very concise 

global comments. 

BRIEF FINAL REMARKS 

The comments we presented in the previous paragraph highlight the difficulties faced 

by PTs both in using theoretical tools to analyse class processes and, in particular, in 

proposing an analysis of T‘s actions which takes the particular didactical moment 

that the class is living into account. Many PTs, in fact, showed to be non completely 

aware that conducting a balanced lesson on this topic means making students 

autonomously operate, but also guiding them toward a meaningful learning of how to 

‗reason‘ through algebraic language. We think that the limitation of the period of 

work with these PTs can justify their incomplete assimilation of the theoretical 

constructs they studied. At the same time, the complete lack of teaching experiences 

in their careers can be considered an important reason of their difficulties in correctly 
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contextualizing T‘s actions in tune with the theoretical constructs of reference. 

However we believe that ‗clashing‘ with these kind of problems could represent for 

PTs the beginning of a process which could lead to a real professional development. 

This is testified by the fact that, beyond our evaluation of their protocols, during the 

following discussions with PTs, they turned out to be very interested in these kind of 

studies and to really need to go on with the analysis of class processes. 

NOTES 

1. Conceptual frame is defined as an ―organized set of notions, which suggests how to reason, manipulate formulas, 

anticipate results while coping with a problem‖. 

2. Anticipating is defined as ―imagining the consequences of some choices operated on algebraic expressions and/or on 

the variables, and/or through the formalization process‖. 

3. Here, A, B, O, Z, P and G indicate 5 pupils involved in the discussion while T is for the teacher. Chorus means that 

the sentence was uttered by a group of pupils in the class. 

4. The discussion ends with a further moment of reflection upon the importance of choosing a representation. 
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THE IMPACT OF TEACHING MENTAL CALCULATION 

STRATEGIES TO PRIMARY PGCE STUDENTS 

Sue Davis 

University of Leicester 

Following a previous study involving five primary Post Graduate Certificate of 

Education (PGCE) students, which showed that there was short term impact 

resulting from an intervention (Davis, 2009), I revisited three of these ex-students to 

consider whether there had been any continued impact in the intervening two years. 

Using a case study approach I will show how these teachers, with very different 

experiences in school, have each built upon the skills, techniques and knowledge 

learned in the initial intervention sessions. I will also consider how this supports or 

contradicts the findings of other researchers studying the impact of Teacher 

Education. 

Key words: Impact, Mental calculation, Primary, PGCE, Teacher. 

INTRODUCTION  

One of my strongest memories from primary school is that of completing a mental 

mathematics test every Friday afternoon, in preparation for the 11+ examination 

(selection for the local grammar school) during the final year. We were taught no 

strategies, other than learning multiplication tables by rote. Questions were fired at 

us and we had to calculate the answers ‗in our heads‘ as the Dutch call this type of 

calculation (Thompson, 1999). For me, this merely meant picturing the formal 

written calculation and carrying out the formal method, working as quickly as 

possible, jotting down first the unit part of the answer, then the tens etc. It was not 

until many years later, as I trained to teach, that I realised that there was more to 

‗mental calculations‘ than this. The fact that I could choose from a range of strategies 

and use my knowledge of the number system to calculate much more efficiently was 

enlightening. Shortly after this, mental calculation became an important feature of 

the English primary mathematics curriculum when the National Numeracy Strategy 

was introduced (DfEE, 1999) and strategies were expected to be explicitly taught and 

regularly rehearsed and discussed. The recent ‗Williams Review‘ (DCSF, 2008) has 

called for a refocusing on oral and mental mathematics in order to particularly 

benefit under-attaining groups of children.  

Two years ago I conducted a study with five Initial Teacher Education (ITE) students 

(Davis, 2009) to identify what mental calculation strategies they possessed, how 

confident they were to teach mental strategies to children and whether my teaching 

of a range of strategies could increase their confidence of teaching this topic. This 

study involved an intervention which included teaching them a range of mental 

calculation strategies, offering opportunities for the students to compare these to 

their own mental methods for different calculations (e.g. 483 + 89; 58 – 34) across 
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all four operations (+, -, x, ’). This taught session was audio recorded (and later 

transcribed) and questionnaires were completed before and after. Five weeks later, 

following the students‘ final weeks of Teaching Experience, a further questionnaire 

and short intervention session (based again on activities involving discussion of 

calculation strategies) provided further data. The results showed that whilst these 

students knew only a limited range of strategies before my intervention, they became 

much more confident afterwards and for two of them there was a clear impact on 

their teaching in school. These students from my study have now successfully 

completed their first two years of teaching and three of them were willing to allow 

me to investigate whether there had been any longer term effect of my intervention.  

LITERATURE REVIEW 

I have considered the literature surrounding the impact of both ITE and Professional 

Development (PD) courses for teachers as both have the same aim: to develop the 

teaching skills of the participants and therefore to enhance the learning of their 

pupils.  

A key aspect of successful professional development is the style or nature of the 

activities. Both Darling-Hammond (1999) and Elliott et al. (2009) found that 

discussion amongst participants is central to successful PD which is, of course, the 

basis of many leading theories of education, particularly that of social 

constructionism. A successful teacher of mathematics has to develop a deep and 

flexible understanding of subject knowledge and be able to make connections with 

other aspects of the subject (Darling-Hammond, 1999). Elliott et al., (2009) develop 

the idea further by specifying that it is Specialised Content Knowledge which has a 

strong impact on teaching skills. This literature seems to suggest that my intervention 

should have had a positive impact in the classroom.  

However, Larose, Grenon, Morin and Hasni (2009) have discovered that practice 

observed by students in school often overrides the information given during the 

university part of ITE. Students have also been found to lose their enthusiasm for 

their own learning during their Newly Qualified Teacher (NQT) year and tend to 

focus on behaviour management rather than subject knowledge (Haggarty, 

Postlethwaite, Diment, Ellins, 2009). Students in their first year of teaching do not 

appear to gain from the type of PD experiences that Darling-Hammond and Elliott et 

al. advocate. 

The other consideration for my research is whether mental calculation strategies 

should be taught at all. Thompson (1999; 2000) advocates the teaching of some 

frequently used strategies for addition and subtraction so that children can develop 

flexible methods of calculation. Murphy, however, found that explicitly teaching an 

addition strategy did not mean that the children used this when faced with 

calculations that would benefit from its use (2004). Torbeyns, De Smedt, Stassens, 

Ghesquière and Verschaffel‘s research supports these findings (2009). They found 
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that there appears to be no difference in whether a particular subtraction strategy is 

used, whether or not children have been taught it. Threlfal goes a step further, by 

arguing that there is no need to teach particular strategies, but instead it is essential 

to develop a stronger understanding of the number system (2002). If we are to enable 

children to use flexibility in their approach to mental calculation I do not see these as 

mutually exclusive. Teaching some strategies may indeed support the understanding 

of the number system, and vice versa.  

METHODOLOGY 

The main question I wished to answer was: Is there any evidence of long term impact 

of the teaching of mental calculation strategies to primary Post Graduate Certificate 

of Education (PGCE) students? These are students who train to teach on a one year 

programme having already completed an undergraduate degree in any discipline, so 

may not have received any mathematics teaching for at least five years. 

In addition, there were also a number of subsidiary questions which would support 

me in answering the main question: Did the students teach any mental calculation 

strategies during their NQT year? Did the students only teach mental calculation 

strategies when it was already on their school‘s planning? Is there any evidence that 

the children are using the strategies taught? Has the confidence of the students been 

affected by their teaching of mental strategies? 

Each teacher held a particular interest for me and I wished to gain a ‗rich picture with 

‗thick description‘‘ (Thomas 2009, p.116) of them. Therefore the flexibility of a case 

study approach enabled me to study all three teachers in detail. I wished to develop a 

detailed ‗holistic understanding‘ (Baxter & Jack 2008, p.554) of these new teachers‘ 

experiences throughout their first years of teaching.  I had no hypothesis at this stage 

of what the results of gathering this data would show, which also fits in with the idea 

of a case study approach.  

As with any case study, there is no possibility of drawing any generalisations from 

this research. This does not mean, though, that I cannot use any information that I 

gather to improve my own practice. As Baxter and Jack report, a case study ‗can 

inform professional practice‘ (2008, p.544). A particular strength of this research 

was to build upon the close collaboration and relationship that exists between me as 

the researcher and the teachers I was researching. In some methodologies this 

relationship might be seen as a disadvantage, and might be considered a barrier to the 

authenticity of the data collected.  Using this case study approach, though, it can be 

seen as an advantage as this is the very reason that I am selecting this particular 

sample. I was very careful to ensure that the teachers understood I wanted to know 

what really happened, rather than them hoping not to offend me by telling me that 

my intervention had an impact on their teaching if it did not. 

In order to gain as much information as possible for my ‗finished story‘ (Thomas 

2009, p.115) and to corroborate the evidence I collected, I used a range of data 
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collection tools. Using a variety of data sources ensured that I was not exploring 

‗through one lens, but rather a variety of lenses‘ (Baxter & Jack 2008, p.544) and 

this is where the case study approach enabled me to build up a particular picture of 

the teachers which might not have been possible with other methodologies. 

I began my study by designing questionnaires. The questions were ‗precise and non-

leading, that neither assume nor presume‘ (Castle 2010, p.67) and were a 

combination of closed questions and open questions to allow for comments about 

their teaching of mental calculations during their first years of teaching (Cohen, 

Manion &  Morrison, 2000). I included some questions about confidence and 

competence in teaching mental mathematics strategies from the original 

questionnaires, completed by this group of students nearly two years ago, in order 

that I could make comparisons. For this reason I used a five-point Likert scale, as 

that was used in the original study. 

In order to establish whether Haggarty et al.‘s (2009) findings regarding a strong 

focus on behaviour management overriding other aspects of teaching were true for 

my sample, I also included a section where they ordered a range of five statements 

about areas they felt they developed most during their first year of teaching. These 

statements included both behaviour management and subject knowledge. Finally, the 

questionnaires included three open ended questions about the impact of the PGCE 

year as a whole on their development in their first year of teaching.  

Following an initial analysis of the questionnaires I conducted semi-structured 

interviews with each teacher, which were recorded and transcribed. In particular, this 

method of data collection enabled me to prompt the teachers to reflect on any impact 

during their NQT year of my mental calculation strategy intervention and provided 

an opportunity for them to consider whether any teaching of strategies had any 

impact on the mental maths skills of the children. Planning and assessment records to 

support these opinions were collected where available.   

CASE STUDIES 

Ellie  

‗Ellie‘ was a mature student who taught across the primary age group in one school 

as a regular ‗supply‘ teacher for a year, before spending two terms in a Year 5/6 

class. She has recently returned to the first school to resume regular supply cover, 

again covering Years 1-6 (ages 5-11). 

The data shows that Ellie has taught a range of mental mathematics strategies to 

children across this age group. In particular, teaching doubling and halving with all 

age groups was clearly very important to her, as this was mentioned for the first time 

less than ninety seconds into the interview. Although she initially taught this strategy 

to Key Stage 1 children (ages 5-7) Ellie also teaches it regularly to 9 to 11 year olds, 
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focusing on how this can support a range of other calculations; for example 

calculating percentages, equivalent fractions or simply using it to divide by 4 easily.  

Ellie also teaches rounding and approximating to Year 3 and 4 pupils, to support 

their mental mathematics, and using Interactive Teaching Programmes (ITPs) (DfE, 

2010) and physical resources, such as bead strings, to support the children in 

understanding and visualising the number system.  

Ellie is very keen to encourage children to discuss their mental methods whenever 

appropriate and this was a topic she frequently returned to during the interview. She 

believes this is a direct result of my intervention sessions. Her passion for this crucial 

element of teaching mental strategies can be seen in the following extract: 

Ellie:  I often, I do, I do ask them about methods a lot now because I remember 

sitting with you and we all had so many different methods and it might be 

that there‘s children in that classroom that just have not worked out a really 

easy method but by swapping methods, sort of do it this way, have you got a 

different way so you‘ve counted on, you‘ve rounded, and y‘know, added 

bits on and taken bits off....... 

Later in the interview Ellie returned to this topic when she reflected on the fact that 

until her PGCE course she generally had just one way of tackling any set 

mathematical problem. The structure of the intervention enabled her to realise that 

there were other ways of approaching mental calculation and this realisation has 

altered her own way of teaching, ensuring she teaches a range of methods. She says 

she has ‗a better awareness, which is probably why I now ask the children, ‗how did 

you do that?‘ and I think oh yeah, ‘cause *** (names one of the students) did it 

differently to the way I did it.‘ 

In contrast to Haggarty et al. (2009), who found that Newly Qualified Teachers 

(NQTs) did not develop subject knowledge but focused merely on classroom and 

behaviour management, Ellie had made a conscious effort to continue to develop her 

subject knowledge throughout her first two years of teaching, attending three 

mathematics courses in this time. Indeed, improving subject knowledge in core 

subjects was the area she had most developed in her NQT year. 

Whilst Larose et al. (2009) found that practice in school overrode the practice 

learned during the university part of ITE, it is clear that Ellie had reflected on all of 

her university based mathematics sessions, including my intervention sessions. Her 

maths file, containing notes from all the taught sessions, has been in constant use 

throughout the intervening two years. As she says, ‗I know that I have dipped in and 

out of that file a lot, for resources and, and for bits and pieces ...... no doubt about it.‘  

Ellie agrees with the findings of Murphy (2004) and Torbeyns et al. (2009), that 

learning a range of strategies does not necessarily mean that children will use them. 

However, she also believes that revisiting and rehearsing constantly is a crucial part 

of children‘s learning and she found herself going, ‗over it and over it and over it‘.  
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She has found that if children are exposed to these strategies regularly, and are 

encouraged to talk about them regularly, they do begin to select an appropriate 

strategy more independently.  

Donna 

‗Donna‘ completed her NQT year in a year 1 class (ages 5-6) and has spent the 

subsequent year teaching Foundation Stage, Year 1 and Year 2 (ages 4-7) children in 

the same school, where she is now employed to cover other teachers‘ classes during 

their time for other commitments. This has meant that Donna has been in the unusual 

position of teaching some of the children this year who she taught throughout last 

year, which has given her the opportunity to see how the children have developed 

their skills and to judge the longer term impact of her teaching. 

Donna has taught and practised a range of strategies to support mental calculation, 

the first that she mentioned (after only 53 seconds) being doubling and halving. Like 

Ellie, she was able to explain why she believes this to be an important skill, and she 

began this with Year 1 children by using counters and other resources to support 

their learning. As she says, ‗in Key Stage 1 its probably one of the first .... non-

counting operations .... you do mentally‘. Some of these very young children were 

already able to recall doubles up to 20 by the age of 6 and this year she has seen how 

they are able to use these skills to support other aspects of mental mathematics. 

Many others were still learning one to one correspondence, though, and basic 

counting skills, so by no means were all children able to calculate mentally even in 

Year 2.  

It is interesting to note that Donna encourages the development of mathematical 

skills across many other areas of the curriculum, and sees this as an important part of 

their learning. Indeed, this approach is advocated by many leading educationalists, 

and forms one of the main recommendations of the recent ‗Cambridge Primary 

Review‘ (Alexander, 2010). Donna particularly focuses on these skills in Physical 

Education (PE) lessons:  

Donna:  But in PE and in games we used a lot of .. things like counting in 

twos to score, rather than always counting one point, y‘know for 

getting one thing back in a race or something. Counting in different 

numbers or thinking about .. playing games with beanbags. How 

many more beanbags do you need to make 10? ---- and having 

teams racing against each other.... and I found PE was a really good 

way of, .. kind of incorporating maths... 

It was clear from interviewing Donna that she was working in a team who were all 

keen to encourage children to develop mental skills, combined with a strong level of 

independence of thought. This made me wonder whether my two intervention 

sessions had had any impact on her teaching, or whether, as suggested by Larose et 

al. (2009), practice observed by students (and presumably NQTs) in school overrides 
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the information given during the university part of teacher training. Donna 

acknowledged that she has learned a lot from these new colleagues, and, for that 

matter, she has always used doubling to support her mathematics since her own 

school days, but she makes it very clear that despite the two sessions lasting less than 

two hours in total, they have had a significant impact on her teaching: 

Donna:  DEFINITELY, definitely ...... probably even more so this year 

because I‘ve been working more with year 2....trying to get the 

children to explain to me the different strategies and then explain 

why they would choose a particular one and why it was better, and 

picking out the features. It really stuck with me that when we were 

talking, how useful that was, so I‘ve done that quite a lot with the 

children in the class. Definitely. 

Tutor:  And was that something you might have picked up anyway on your 

TE placement? 

Donna:  I might have done but I think that really rammed it home, that.., 

how important it was for the children to find out for themselves 

which ones work for them and which ones are..are more efficient 

than, than others, erm and that unless you get them to think about 

what they‘re doing and why they‘re doing it they might not, you 

know, I think I was just more overt with it than maybe I would 

have been anyway. 

Donna indicated that she had received no professional development in mathematics 

since completing her PGCE, and I wondered if this might support Haggarty et al.‘s 

view (2009), that behaviour management becomes the main focus for NQTs, with a 

lack of enthusiasm for development of their own subject knowledge. From the initial 

questionnaire it was clear that Donna felt that behaviour management was the skill 

she developed most in her NQT year, but further discussion during the interview 

revealed that this was because she had two children displaying such challenging 

behaviour that both the children and Donna received regular specialist support from 

the local authority throughout the year. This did not mean that Donna had a lack of 

enthusiasm for developing her own subject knowledge; in fact, she attended three 

courses and an NQT conference, all of which heavily focused on subject knowledge, 

albeit not mathematical subject knowledge. Donna would really appreciate the 

opportunity to receive further training in mathematics, and made it clear that it was 

not through choice that the courses she attended had different foci. 

From her responses in the questionnaire it is clear that Donna is very confident about 

her own knowledge of mental calculation strategies and she has increased her 

confidence in her own ability to teach these strategies to children since she was a 

PGCE student. This was supported by her discussion of the impact of her teaching on 



Working Group 17 

CERME 7 (2011) 2637 

 

the children, which was particularly evident when working with one group of 

children for both years of her teaching career.  

Belinda 

‗Belinda‘ has spent her first two years in a Foundation Stage class (ages 4-5), 

although the PGCE course she completed was a Key Stage 1 and Key Stage 2 course 

(ages 5-11). Children are divided by achievement into maths groups and she teaches 

the higher achievers. 

Once again, teaching doubles was one of the first strategies mentioned by Belinda 

(less than two minutes into the interview); although despite mentioning this strategy 

at various points during the interview it is interesting to note that she did not mention 

the corresponding halves at all. However, the children learn doubles up to 20, using 

resources such as counters, pencil marks or fingers to initially support this, before 

they develop as ‗known facts‘.  

Belinda has learned an enormous amount from her colleagues, and readily admits 

that most of her mathematics teaching is based on their advice and experience rather 

than on her learning from her PGCE course, which, in contrast to Donna and Ellie, 

supports the findings of Larose et al (2009). She has not looked at her mathematics 

file since the day she left the course. Having said this, she still believes that the two 

intervention sessions have had some impact on her first years of teaching. In 

particular, these sessions made her realise that ‗everybody visualises things 

differently and they see things very differently and they have to use different ways to 

work it out‘. She thinks this, combined with her colleagues‘ advice, ensures that she 

offers children a range of choices throughout their mathematical learning, despite 

this not being a strategy included in the published scheme that the school generally 

work from.  

When considering developing subject knowledge compared to developing behaviour 

management skills, Belinda has attended a number of courses during her first two 

years of teaching and these have all been based on subject knowledge. Bearing in 

mind that she is teaching in an age phase for which she was not trained, this is 

probably unsurprising. The courses have taught her knowledge of the Foundation 

Stage Curriculum and ways to assess children of this age. Behaviour management is 

something which Belinda feels she has made least progress in as it has not been a 

problem for her. 

CONCLUSION 

Considering the main aim of my research, to establish whether or not there is any 

long term impact of the teaching of mental calculation strategies to PGCE students, 

there clearly was for all three of these teachers. In particular, all had a strong belief 

that an ability to quickly mentally double and halve numbers is crucial to mental 

calculation. I would certainly agree with this and this was a message given 
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throughout my intervention sessions. It can clearly support multiplication and 

division by four or eight, but it can also support multiplication by 5 (multiply by ten 

and halve); division by 5 (double then divide by 10); multiplication by 20 (double 

and multiply by 10); division by 20 (divide by 10 and halve) and can similarly 

support multiplication by 50, 25 and so forth. Percentages can also be worked out 

mentally using the knowledge of doubles and halves; for example to find 25% of a 

number just halve and halve again; to find 15% just find 10%, halve it and add the 

two numbers together. Similarly, equivalent fractions can be found by doubling or 

halving both numerator and denominator. 

Whilst this has been a very small scale study and I therefore cannot possibly draw 

any general conclusions from my data, I have succeeded in answering all of my 

subsidiary questions. All three teachers taught mental calculation strategies; they 

taught these even when it was not on the school‘s planning; they all believed that not 

only could the children use the strategies, but some children could also select from a 

range of strategies, even at the age of five. Confidence was a different issue 

altogether, as only one student had increased her level of confidence in teaching 

these strategies, and this seems to be entirely down to the individual experiences of 

the students.  

So why might these teachers have been different to those researched by Larose et al 

(2009) and Haggarty et al. (2009)? Why have they built on the teaching they received 

on their PGCE course and why have they continued to develop their own subject 

knowledge? As suggested by Elliott et al. (2009), I am convinced that this is as a 

result of the type of teaching they received. If suitable consideration is given to the 

content and delivery of ITE taught sessions, a small amount of input can have long 

term impact on their teaching. For maximum impact, the subject knowledge related 

to mental calculation needs to be taught in an environment where students, teachers 

or children can discuss their methods freely with one another. 
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Mathematics learning is a continuous process in which students face some abrupt 

episodes involving many changes of different natures. This work is focused on one of 

those episodes, transition from primary to secondary school, and targets teachers 

and their mathematical knowledge. By including expert teachers‘ views about 

transition and characterising the mathematical knowledge that they need to smooth 

transition processes, we aim to highlight their importance in the continuity in 

mathematics education. The concept of Mathematical Knowledge for Teaching 

(MKT) developed by Ball among others(Ball, Thames & Phelps, 2008) and, within 

this framework, the construct Horizon Content Knowledge (HCK) emerge as our 

theoretical response to the knowledge for teaching mathematics in a continuous way, 

particularly relevant during transition to secondary school. The enrichment of the 

idea of HCK and its expression in the teaching practice intends to develop a 

theoretical tool to approach transition from teachers‘ mathematical knowledge 

perspective. 

Keywords: Transition; Continuity; Mathematical Knowledge for Teaching; Horizon 

Content Knowledge. 

INTRODUCTION 

Mathematics learning is a continuous process in which students face some abrupt 

episodes which involve many changes of different nature that derive in a variety of 

alterations in their educational path. This work is focused on one of those episodes, 

transition from primary to secondary mathematics, a compulsory transition for 

students that involves many external changes and targets teachers‘ mathematical 

knowledge.  

An extensive survey let us detect that previous research on transition from primary to 

secondary school has been mostly focused on its effects in students‘ academic 

attainment (McGee, Ward, Gibbons & Harlow, 2003) whereas a focus on teachers 

and their perspectives has been mostly absent. Considering specifically transition in 

mathematics, the following questions arise immediately: which characteristics 

describe it? Looking at previous research foci of attention and conclusions the 

mathematical content emerges as a determinant factor: the step from arithmetic to 

algebra (Boulton-Lewis et al., 1997; Boulton-Lewis, Cooper, Atweh, Pillay & Wilss, 

1998; Cooper et al., 1997; Flores, 2002; Gonzales & Ruiz Lopez, 2003), the learning 

of integer numbers (Gallardo, 2002; Pujol, 2006) or the development of the need of 

proofs in geometry (Berthelot & Salin, 2000-2001; Sdrolias & Triandafillidis, 2008) 

and other fields appear as particular well-known problems embedded in the teaching 

and learning of mathematics that involve transition to secondary school. Since 
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teachers shape the access of students to this content, we consider their role in 

transition as crucial. 

In conclusion, albeit transitions are processes with a broad range of effects and 

consequences in the whole students‘ educational experience, we believe that it is 

necessary to investigate the specificity of mathematics in transition and particularly, 

the role of the teacher and his/her professional knowledge during this process. More 

specifically, the objectives of our investigation are: 

O1. Find out mathematics teachers‘ views about transition. 

O2.Characterise the mathematical knowledge that teachers need to smooth transition 

processes. 

With regard to O1, we believe that teachers‘ opinions and practical everyday 

experience on transition must be taken into consideration in order to broaden our 

understanding of transition in mathematics, since they are the only professionals that 

experience the process of transition along with the students in the classroom. By 

involving the views of expert mathematics teachers we want to enlarge the multiple 

perspectives from which transition to secondary school can be considered and thus 

gain a better comprehension of it. Experts‘ responses will constitute the justification 

of the appropriateness of the theoretical perspective adopted in O2. 

In order to accomplish O2 we require a solid theoretical frame that suits our purpose 

of focusing on the role of the teacher and, particularly, on the relationship of his or 

her mathematical knowledge and practice with primary to secondary transition. The 

concept of Mathematical Knowledge for Teaching (MKT) (Ball, Thames & Phelps, 

2008; Hill, Rowan & Ball, 2005; Hill et al., 2008) and its division in different 

domains and sub-domains appears as a suitable framework for this part of our 

investigation. Within this theory, the construct Horizon Content Knowledge (HCK) 

emerges as our theoretical response to the knowledge for teaching mathematics in a 

continuous way, particularly relevant during transition to secondary school. Hence, 

our research focus in this part of the investigation is the enrichment of the idea of 

HCK in order to use it as a theoretical tool to approach transition. 

EXPERTS‘ VIEWS  

We aim to find out experts‘ opinions about transition to secondary mathematics 

regarding the following questions: which elements affect in a determinant way the 

transition to secondary mathematics? And which of these refer to the teaching 

practice? Moreover, not only we want to collect judgements of individual experts but 

we also want to offer a scenario of group decision, where participants are capable of 

interact anonymously and reach a consensus. In the following, we will consider an 

expert a mathematics teacher that has taught in both levels and has shown a 

particular concern about transition issues.  

In order to create an experts‘ group discussion we use the classical Delphi method, 

which allows us to create a scenario of group decision where experts feel free to 
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express their opinions and interact anonymously in a very efficient way, ensuring 

that the information obtained is of ―good quality‖ and reliable (Plans & Leñn, 2010). 

The versatility of the Delphi method seems particularly appropriate for our research, 

since it includes open and closed questions as well as qualitative and quantitative 

analysis. Figure 1 shows the steps included in a typical three round classical Delphi 

method (Skulmoski, Hartman & Krahn, 2007, p3) which guides the design of this 

part of our work. 

 

Figure 1: Classical three round Delphi method (Skulmoski, Hartman & Krahn, 2007, 

p3) 

Delphi study 

Our own teaching experience led to the problem of transition to secondary school 

and a previous survey detected a theoretical gap in transition research focused on 

teachers. Our uncertainty involves expert teachers‘ opinions on the elements that 

affect transition and particularly those related to the teaching practice in both levels.  

In the study 15 experts answered our open questionnaire, which included three 

questions: What factors affect students‘ mathematical learning during transition to 

secondary school? Which qualities should primary teachers have in order to smooth 

students‘ transition to secondary mathematics? Which qualities should secondary 

mathematics teachers have in order to smooth students‘ transition from primary 

school? Among the factors that affect student‘ learning they identified 

methodological issues and the influence of teachers‘ initial training as especially 

remarkable. For example, scarce use of manipulatives or group work in secondary 

school, and no balance between teachers‘ pedagogical and mathematical knowledge. 

Experts pointed out that in order to manage transition, teachers must have a set of 

skills, attitudes and knowledge related to general education such as preparing 

primary students for a greater autonomy, valuing diversity, managing the interaction, 

using active and constructive methodologies or encouraging participation. We can 

infer from data that they refer to those skills from a theoretical framework that 

conceives a pure pedagogical knowledge. Experts also refer to a specific 

mathematical knowledge for teaching, which, in terms of Ball, Thames and Phelps 
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(2008) we call Mathematical Knowledge for Teaching. For example, they refer to 

manage with different degree of mathematical rigor, know the mathematics taught at 

both levels and have a global vision of the contents. Some kind of experience 

connecting the two levels appears essential, as the need to know about the previous 

and/or forthcoming stages. Following Ball et al. (op cit.), we find that experts refer to 

characteristics that describe the long-term perspective embedded in the idea of 

Horizon Content Knowledge. This way, experts‘ responses become our way in and 

justify the second part of our investigation, in which the framework of the Horizon 

Content Knowledge appears crucial to approach teachers‘ role in transition.  

MKT AND HCK 

In this part of the investigation we explore the concepts of MKT and HCK in order 

to clarify the latter‘s place in the diagram and introduce a different approach to the 

MKT‘s organisation above that concludes with the refinement and placement of 

HCK in this framework and thus, with the inclusion of the notion of continuity in 

MKT‘s theory.  

Mathematical Knowledge for Teaching overview 

Ball, Thames and Phelps (2008) distinguish two domains within the MKT, namely 

Pedagogical Content Knowledge and Subject Matter Knowledge (see Figure 2). 

These are not independent from each other, but it is their combination which defines 

the knowledge needed for teaching mathematics. 

 

Figure 2: Categories of Mathematical Knowledge for teaching (Ball, Thames & Phelps, 

2008, p.403) 

Pedagogical content knowledge is subdivided attending three foci of attention within 

the teaching practice: students, methodology and curriculum. Knowledge of content 

and students (KCS) involves students‘ expected difficulties, questions, motivations, 

etc. and teacher‘s preparation and responses to those. Knowledge of content and 

teaching (KCT) concerns methodology issues such as the design of the sequence of a 

topic or the use of appropriate tasks, representations and examples, etc. Finally, 
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knowledge of content and curriculum (KCC) is the curricular knowledge needed for 

teaching. This includes not only the knowledge of the mathematical topics that are 

included in a particular curriculum, but also the specific moments when they have to 

be taught and how they are developed in the educational path. Subject matter 

knowledge is sub-divided in three categories: common content knowledge (CCK), 

which is the mathematical knowledge that is common to other professions and 

specialised content knowledge (SCK), which is the specific mathematical knowledge 

needed for the teaching practice (Ball, Thames & Phelps, 2008).  

Before centring our attention on the last sub-domain, the HCK, we detect that KCS, 

KCT and SCK arise and are expressed only during the teaching practice in 

mathematics or in the observation of other‘s teaching practice, while the KCC and 

the CCK are not necessarily linked to the teaching practice. We highlight this 

observation by considering KCC and CCK as foundation knowledge and KCS, KCT 

and SCK as having an in-action nature. It is important to remark here that the word 

foundation denotes our idea of this theoretical knowledge being the basis and it is 

not related to the more complex construct of Foundation knowledge included in the 

Knowledge Quartet of Mathematical Knowledge in Teaching (MKiT) framework 

(Rowland, Huckstep & Thwaites, 2005). Figure 3 shows our interpretation of the 

categories of MKT from this approach, not considering yet HCK.  

 

Figure 3: Categories of Mathematical Knowledge for teaching without the HCK 

Horizon Content Knowledge 

Our main interest is focused on the Horizon Content Knowledge (HCK), 

provisionally included within subject matter knowledge. About HCK the authors say 

We are not sure whether this category is part of subject matter knowledge or whether it 

may run across the other categories.    (Ball, Thames & Phelps, 2008, p.403) 

HCK refers to the general awareness of the previous and the forthcoming, and 

requires an overview of students‘ mathematical education so that it can be applied to 

the mathematics taught in the classroom (Ball, Thames & Phelps, 2008). Teachers‘ 

consciousness of the past and the future within their subject is actually very closely 

related to continuity in mathematics education and thus, our view of HCK comprises 
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this teacher‘s longitudinal perspective required for continuity. However, this 

longitudinal view that we understand as HCK encompasses a complex combination 

of pedagogical and mathematical knowledge, skills and experience that must be 

clarified in order to successfully approach transition issues in mathematics from this 

framework. 

Firstly, despite the fact that the HCK may be related to the knowledge of the 

curriculum (KCC), it is independent from the curriculum itself. HCK is not only an 

awareness of how mathematical topics are related over the span of mathematics 

included in the curriculum but also refers to the global knowledge of the evolution of 

the mathematical content and the relationship among its different areas needed for 

the teaching practice. This general knowledge does not depend on the curriculum 

context and it is different to the curriculum awareness that a teacher must have in 

order to teach the appropriate topics at a particular grade. In other words, a teacher 

could have good level on KCC but fail on approaching this knowledge from a long-

term perspective. 

Secondly, HCK influences the KCS, the KCT and the SCK. For example, HCK must 

include the ability of the teacher to find out students‘ previous mathematical ideas 

and to prepare them for the future. This ability involves KCS (knowledge of 

previous, current and future students‘ difficulties, misconceptions or questions) and 

KCT (different ways students might have seen that represent the same idea or types 

of tasks that facilitate students‘ learning in the future). Also, the SCK of a teacher for 

a particular grade depends on whether that teacher currently teaches in that level. If 

so, his/her SCK for that grade will be obviously greater than for the other grades. 

The inclusion of HCK in the framework implies the extension of the SCK to those 

topics that may really have an effect in what students are learning at the moment or 

to those future topics for which a teacher is setting up the basis. 

Thirdly, HCK has a different nature than the other sub-domains since it does not 

seem sensible to find the presence of HCK in a particular teaching situation if there 

is a previous absence of KCS, KCT or SCK. In fact, these are the required bases that 

allow the posterior gradual inclusion of HCK in the professional practice. From this 

perspective HCK is not another category in the diagram but it adds a more 

sophisticated (continuous) perspective to the teaching practice. For instance, we 

would not expect to observe a teacher recognising previous misconceptions in a 

particular topic, dealing with students‘ difficulties or conveying a prospective 

mathematical view of the future if that teacher does not know the topic and its 

methodological issues at first.  

The previous ideas lead us to consider HCK, not as another sub-domain of MKT, but 

as a mathematical knowledge that actually shapes the MKT from a continuous 

mathematical education point of view since it must be present in every in-action 

category in order to attend transition. Figure 4 shows our interpretation of the 

framework with the inclusion of the HCK. The idea of opening the previous diagram 
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(Figure 3) and shaping it when including the HCK intends to indicate: a) the 

difference in the expression of each in-action category in the teaching practice with 

or without HCK; b) the connection with past and future mathematical levels, 

particularly important from a transition (or a continuous) point of view and c) the 

fact that HCK has a different nature than the rest of categories since it does not 

appear in the diagram but its presence modifies the teaching practice.  

 

Figure 4: HCK shapes MKT and outlines its nature 

Characterisation of HCK 

At this point, our consequent aim now is to characterise more specifically our idea of 

HCK. Hill et al (2008) highlight the need of clarifying how teachers‘ knowledge 

affects classroom instruction by carrying out an investigation in which the 

relationship between teachers‘ MKT and the quality of their practice is analysed. We 

follow this idea for the particular case of refining the construct of HCK. Since we do 

not consider HCK as a theoretical cluster itself but a type of knowledge that shapes 

the in-action knowledge needed for teaching and also because our purpose is to 

obtain a useful tool for future research on transition, we adopt a practical perspective 

from which the following question emerges immediately: how does HCK get 

expressed in teaching practice? 

In order to obtain an answer to this question, a series of non-participant observations 

were carried out. Mathematics lessons in the last year of primary school as well as 

the first year of secondary school were observed during three months. Participating 

schools were city centre comprehensive schools that were chosen in order to cover 

the different possibilities in transition: schools with transitional programs and links 

among primary and secondary teachers, schools with transitional programs but no 

communication among teachers and schools without transitional programs. The 

observation and analysis of these mathematics lessons allowed us to identify 

classroom episodes in which students‘ and teacher‘s interventions offered a good 

potential in terms of achieving a more specific characterisation of the HCK. We 
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identified the episodes in which there is a clear opportunity for the teacher to express 

the HCK. Despite the fact that, on the contrary, its absence or weak presence is 

evident in the real situations observed, these episodes have proved to be very rich as 

objects of our investigation, since they let us reflect about the different possibilities 

of reaction that the teacher could have. Hence, the following question arose: what 

could have happened, had the HCK been present? 

The episode shown in Figure 5 exemplifies these ideas by targeting, in this case, the 

well documented misconception between area and perimeter.  

 

Figure 5: Example of a real classroom situation in which HCK may get expressed 

Two critical moments can be observed in this episode. The first one occurs when 

Student1 asks the reason of obtaining 100. The second one arises from Student2‘s 

misconception of considering that two shapes with the same perimeter should also 

have the same area.  

Student1‘s question about the result points out at the operation that the teacher has 

used to calculate the perimeter of the rectangle: if the perimeter is the sum of all 

sides, why do we double them and add the results in this case? With the aim of 

clarifying Student1‘s confusion, the teacher could show how both calculations are 

equivalent. Moreover, the teacher could make the connection with algebra and 

generalise by reminding/showing that a+a+b+b=2a+2b. We observe that the ability 

of the teacher to make this connection is a pre-requisite for this possibility to occur. 

In this case, the connection required refers to the concept of perimeter itself and its 

relationship with algebra. We generally name this level of connection as 

intraconceptual connection, since it is in the essence of the particular mathematical 

concept. 

Student2‘s ingenious proposal of transforming the rectangle into a square to 

calculate the perimeter in a more simple way offers an excellent opportunity to attend 

the common (and broadly studied by research) misconception that follows in the 
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episode: two shapes with equal perimeter have also the same area. One way the 

teacher could proceed would be to return the mistake to the student or the classroom 

by posing a series of questions that target the origin of Student2‘s mistake: do two 

rectangles with the same perimeter have always the same area? With the help of the 

teacher (questions, counterexamples, etc) and/or the rest of the class, the 

responsibility of correcting the mistake would be returned to the student or the class. 

As in the previous critical moment, it is necessary that the teacher makes a 

connection between the notions of area and perimeter in order to attend the 

misconception arisen. This is the next level of connection since it links two 

mathematical concepts and thus, we regard it as an interconceptual connection. 

Moreover, with an eye on the future and in order to strength the basis for the future 

learning of more complex geometry concepts, the teacher could also extend these 

ideas to other 2D shapes or even 3D solids by comparing surface and volume. This 

temporal connection with future (or past) topics of students‘ mathematics 

educational path is the third level of connection required for the teacher to attend 

these types of situations with a continuity perspective.  

FINAL REMARKS 

This work intends to move towards a better understanding of continuity in 

mathematics education. HCK emerges as a noteworthy construct within MKT 

framework that allows the researcher to approach continuity questions in 

mathematical education by looking at teachers‘ professional knowledge. Identifying 

real practice situations in which an opportunity of attending continuity in the 

classroom is missed, leads to the detection of the connections required for the 

potential expression of the HCK. The future systematic investigation of HCK‘s 

expression in the teaching practice and its consequences on transition shows a path 

to the potential inclusion of this mathematical knowledge as part of teacher training 

programs designed to smooth transition. Moreover, proposing examples like the one 

described in this work and discussing them in teacher training programs could be a 

future way in to attend continuity in mathematics education. 

NOTE 

This study is conducted under the auspices of Ministerio de Ciencia e Innovaciñn (grant EDU2009-

07298). 
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This paper reports the evolution of a primary school teacher´s conceptions and 

practices of mathematical communication, during a study supported by a 

collaborative work among three teachers and the first co-author. It is part of a large 

research which intends to study the evolution of the conceptions and practices of 

mathematical communication and interaction in the primary school classroom. This 

paper focuses on the need for training teachers in mathematical communication and 

mathematical knowledge for teaching.  
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INTRODUCTION 

The curriculum guidelines on mathematical communication emphasises the 

representation of mathematical ideas in the speaking, the writing and the reading of 

and about mathematics, in abstract and symbolic language and in the social 

interactions in classroom. The value given to student-student and student-teacher 

interactions in constructing a significant mathematics learning (ME, 2001, 2007, 

NCTM, 1991, 2007) hinges on the notion of communication as social interaction, as 

opposed to the traditional view of communication as a process of transmission of 

information and knowledge.  

The first co-author of this paper conducted a research about the evolution of 

conceptions and practices of mathematical communication, during a collaborative 

work focused on the analysis and the reflection of the teacher‘s communicative 

practices in the classroom, with three primary school teachers. This research was 

supervised by the second co-author. 

The research problem was specified the following questions: (i) How do the 

teacher‘s conceptions concerning mathematical communication, in the classroom, 

evolve? (ii) How do the teacher‘s communication practices value the students‘ 

acquisition of mathematical knowledge? (iii) How are teacher-students 

communication and interaction patterns related to the negotiation of mathematical 

meanings? (iv) What is the relation between the moments of reflection about the 

teacher‘s communication practices in the classroom and the evolution of such 

practices? 

In this paper we present a theoretical synthesis about mathematical communication 

framed in theories of communication, emphasizing the role of mathematical 



Working Group 17 

CERME 7 (2011) 2651 

 

communication as social interaction in classroom. We present a summary of 

methodological options, where we stress the methodological challenges of the 

collaborative work among three primary school teachers and the first co-author. 

This paper proposes to explore the role of teachers in the development of 

mathematical communication and of the student-student and student-teacher 

interactions. It further intends to highlight the evolution of the teacher‘s conceptions 

and communicative practices in the mathematical classroom. We seek to reflect on 

the increment of mathematical communication in class and the teacher‘s 

mathematical knowledge for teaching (Ball, 2003). It results from the work 

undertaken with one of the teachers who participated in the study – Laura. 

MATHEMATICAL COMMUNICATION 

The curriculum guidelines for mathematics teaching advocate mathematical 

communication as a process of social interaction, which differs from others views of 

communication as transmission of information and knowledge. The greater value 

given to the role of dialogue and the sharing of information are opposed to a more 

traditional form of communication based on an one-way process. Brendefur and 

Frykholm (2000) refer to the existence of unidirectional communication and of 

contributive communication in the teacher-oriented classroom discourse, where the 

student limits himself to attend the class with few interventions. It exists in 

opposition to the reflective communication and the instructive communication, where 

the students use mathematical conversations to share their ideas, strategies, and 

solutions with peers and teachers.  

Interactions between teacher and students generate interaction patterns (Godino & 

Linares 2000; Wood 1994, 1998), which can be typical either of a teaching process 

based on memorization, questioning and reproduction, grounded on the teacher‘s 

mathematical knowledge – patterns of reciting, funneling and focusing –, or of a 

learning process grounded on the personal contribution of the learner, making room 

for an evaluation and reflection on the mathematical activities and on mathematical 

knowledge constructed in the classroom – patterns of extraction and discussion. 

From a communication standpoint, the role of teacher and students acquire 

substantially different meanings, in line with the conceptions and practices of 

mathematics teaching (Thompson, 1984, 1992). 

Mathematical communication as a process of social interaction results from the 

sharing of meanings constructed and reconstructed by individuals, where the subject 

identifies himself/herself with the other, and at the same time, expresses and affirms 

his/her singularity (Belchior 2003). The communicative function is to create and 

maintain understanding through the negotiation and reconstruction of meaning 

between individuals (Godino & Llinares, 2000; Yackel, 2000). This communicative 

action is characterized as a process in which the subject affirms his/her view of world 

and understands the points of view of the others (Habermas, 2004, 2006). 
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Mathematical learning on the part of the subjects arises from the interactions 

between the individual and the culture (Sierpinska, 1998), including the interactions 

between students and the teacher. Mathematical learning results from the students-

teacher-mathematics interactions, where the discourse is understood as a language in 

action, thinking with words with the others and for the others (Godino & Llinares, 

2000; Sierpinska, 1998). The practices of communication, based on the process of 

interaction between the subjects, seem to be linked with a mathematical learning 

based on the value given to the students‘ mathematical ideas and meanings 

(Thompson, 1984, 1992). 

METODOLOGICAL OPTIONS 

The background investigation for this study fits into a qualitative methodology 

(Bogdan & Biklen, 1994), which adopts the interpretative paradigm and follows the 

design of a case study (Stake, 1994; Yin, 1989).  Three teachers from the same 

primary school – Alexandra, Carolina and Laura – participated in this study, in a 

context of collaborative work with the first co-author, the point of which being the 

reflection on their professional practices concerning mathematical communication, 

for two year (from December 2006 to February 2009). The selection of the teachers 

resulted from the first author acquaintance with them and their willingness to work 

on the mathematical communication in the context of the primary school classroom. 

The data collection consisted of initial and final audio-taped interviews with the 

teachers, audio-taped descriptions of the collaborative meetings between the first co-

author and the teachers (both collectively and individually), and audio and video-

taped classroom reports. The multiplicity of instruments for data collection did not 

depend on the triangulation of data, but on the need to clarify, supplement the 

meaning of information and identify different ways of seeing the events (Stake, 

2000). 

The data analysis was organized in case studies: the characterization of the 

collaborative work between the first co-author and three primary school teachers, and 

the evolution of the teacher‘s mathematical communication conceptions and 

practices. The procedures for data analysis involve various stages until the 

construction of the interpretative text of the case. The data were reduced and 

transcribed to expressive episodes, incorporating the complexity of the phenomena 

and contexts, which allowed reconstructing the experiences of participants (Goetz & 

LeCompte, 1984). 

CONCEPTIONS AND PRACTICES 

Conceptions 

Laura‘s conceptions about mathematical communication seem to have evolved from 

the perspective of mathematical communication as transmission of information and 

knowledge – "They are small and we are transmitting a lot of things" [2006 
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december _ initial interview] – to mathematical communication as social interaction, 

in an attempt to reach a better understanding between all the students involved – 

"When they [students] do not understand anything, I always say «please, ask us, 

don‘t keep the questions to yourselves»" [2009 february _ final interview].  

Laura integrated in her conceptions about mathematical communications and 

mathematical teaching and learning aspects related to social interaction like the 

students‘ knowledge and their cognitive ability to learn:      

I let them think. (…) They would come to me and I would say «It is wrong». (…) I would 

say it was wrong and I wouldn‘t be expecting their thinking. Not anymore. It‘s different. I 

was expecting: «So, clear it up for me. So, why did you do this? How was it?» 

[2009 february _ final interview]       

Laura acknowledged the close proximity that existed between the processes of 

interaction in classroom and the mathematical learning. She had given priority to the 

students‘ personal knowledge and the moments of communicative interaction. This 

modification in the teacher‘s practices seems to have caused a change in the 

discourse and in the teacher‘s conceptions, in such a way that the students were now 

seen as communicative partners in mathematical teaching and learning. This 

recognition of the student as a knower was also reflected in her personal and 

professional knowledge for mathematical teaching. The existence of these 

conceptions seems to confirm the dichotomy between the transmission of 

information and the construction of knowledge through social interaction. 

Practices   

Kind of communication. At the beginning of the collaborative work, the teacher‘s 

communicative practices in classroom valued the contribution of students – 

contributive communication – with short interventions, used by the teacher (Laura) 

to assess their knowledge: 

Laura:  Today, we will go to do an activity about shapes. Do you remember? We 

talked about squares, more… 

Students:  Triangles, Rectangles... 

Laura:  Squares, Triangles, Rectangles and... 

Students:  Circles. 

[2007 june _ lesson _ first year of primary school] 

Laura has begun to encourage the students‘ participation, particularly in discourse in 

mathematics classroom, and the interactions between the students in the discussion 

of different perspectives of mathematical resolutions. In the problem of the River 

Crossing [1], the teacher opted to begin the discussion with a solution that was 

incongruent with the conditions of the problem.  

The student Monica presented the solution of her group, writing: 
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Little Johnny takes the rabbit in the boat.  Little Johnny takes the cabbage in his lap and 

the dog on one side, and they go on their way 

While the student was writing on the board, some students were waiting with their 

hands up, as a sign that they wanted to question their colleague. 

Teacher:  There are hands up.   

[2008 march _ lesson _ second year of primary school] 

The teacher alerted Monica to the questions of her colleagues and she ended her 

presentation and chose one of the other students to ask her a question. Following the 

conclusion about the impossibility of more than two passengers in the boat, one of 

the members of this same group – Tiago – presented a new proposal for the solution, 

writing:   

First goes the dog [the students became agitated because they consider that what their 

colleagues wrote was wrong]. Second goes the cabbage. And last goes the rabbit. 

Gonçalo, observing the solution written by Tiago, said: 

Gonçalo:  I know what‘s wrong. 

Teacher:  So go up there Gonçalo.  Go to the blackboard and say what‘s wrong. 

Gonçalo went up to the blackboard and explained his reasons to Tiago. 

Teacher:  Tiago, stay there to defend yourself. 

[2008 march _ lesson _ second year of primary school] 

The comments of the teacher were intended to promote the interaction between the 

students – ―There are hands up‖ – and to encourage the justification of student‘ 

reasons – ―Stay there to defend yourself‖.  This attitude of this teacher promoted a 

greater interaction between the students in the classroom. The exploration of the 

incomplete or incorrect resolutions by the teacher resulted from the collaborative 

work. Usually, Laura would say: «This is wrong. What do you think? What is it 

saying there?» [2008 april _ collaborative meeting with teacher] 

The participation of the students in the classroom discourse went beyond the routines 

of contributive communication. The emergence of reflexive communication resulted 

from the value given to the students‘ mathematical ideas and knowledge: 

Laura:  What do you make of these two tables? (Each table was paved with equal 

squares but different from one table to the other) 

Marcia:  The biggest pave more and the smallest pave less.  

Laura:  Stop, what did you say? 

Marcia: The biggest pave more and the smallest pave less. The biggest are less used 

and the smallest are more used.  

[2008 april _ lesson _ second year of primary school] 
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The increase in mathematical communication resulted in the need for training in 

mathematics knowledge for teaching as a way to support and to value the students‘ 

mathematical ideas and strategies: 

If I don‘t understand how can I explain? (…) My fear is what will happen if one day I 

will face a situation I do not know and I think «So what now, how do I use this? What 

should I do? ». (…) This is true, sometimes I think about this. [2008 april _ collaborative 

meeting with teacher] 

The collaborative work seems to contribute to the evolution of mathematical 

communication as social interaction in the primary school classroom and to the 

teachers‘ awareness that they should become more involved in getting more 

mathematical knowledge. 

Patterns of interaction. The centrality of the lesson around the teacher‘s 

mathematical knowledge seems to discourage the student‘s questioning about his 

own learning. This kind of approach seems to result in the existence of the pattern of 

reciting, characterised by questions related to the checking of knowledge addressed 

to the students. Collective or individual answers are validated by the teacher as she 

repeats the answer: 

Teacher:  Why do you say this is a square? 

Students:  It has four equal sides. 

Teacher:  It has four equal sides. 

[2007 june _ lesson _ first year of primary school] 

A strategy often used by the teacher aiming to overcome the students difficulties is 

asking simple and straightforward questions that will direct them to the intended 

answer or to the resolution of the proposed task, generating an interaction 

characterised by funnel and focus patterns. At different key moments in the lesson, 

Laura resorts to this sort of strategy right after wrong solutions have been given. In 

one of the lessons we observed, the students were supposed to write consecutive 

natural numbers starting at a given number. Miguel, one of the students, went to the 

blackboard to fill in the gaps with the predecessor and the successor of 300. Faced 

with the student‘s difficulty in determining the predecessor of 300, Laura pointed 

him towards the solution by means of a dialogue that could be said to be 

characteristic of the funnel pattern: 

Teacher:  What is the one before that? Is it 300? 

Miguel:  No. 

Teacher:  What is it? What is the order that we should follow? What is it? 

[The Student remains silent.] 

Teacher:  Is the number that comes before that one three hundred and something? Is 

it? 

Miguel:  No. 

Teacher:  So what is it? If it isn‘t three hundred, what is the hundred before three 

hundred? 
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[Student falls back into silence.] 

Teacher:  What is the hundred before three? 

Miguel:  Two. 

Teacher:  So that other number has to begin with… 

Miguel:  Two hundred. 

[2008 february _ lesson _ second year of primary school] 

Laura feels powerless to change this sort of patterns because she believes that she 

lacks enough knowledge and creativity to take her students on a different path: 

‗Many times, when I‘m trying to help them out, I‘m already providing the answer 

unwittingly. Sometimes I also lack some imagination to fetch other examples, to 

pursue different paths‘ [2008 april _collaborative meeting with the teacher]. Such 

lack of imagination and creativity, along with a superficial mathematical knowledge 

may explain traditional interaction patters based on questions of knowledge 

validation and focusing on procedures.  

However, the discussion pattern emerged with the increasing number of interactions 

among the students and between the teacher and them. In the presentation of 

resolution strategies concerning a problem on height [2], Laura helped the students 

to clarify their presentation, following a scheme similar to the pattern of discussion: 

Student:  180 is her height standing on the stool and 45. And now we subtracted 45 

from 180.  

Teacher:  Which is…? 

Student: Which is her height standing on the stool. 

Teacher:  45? 

Student:  No, 180. 

Teacher:  So 45 refers to what? 

Student:  To the stool. 

Teacher:  So what do we have to do to figure out her height only? 

Student:  We have to subtract 45 from 180  

[2008 may _ lesson _ second year of primary school] 

Traditional interaction patterns, such as reciting, are now practically nonexistent, 

despite the teacher‘s omnipresence. The increase in the number of interventions of 

the students and a growing command of mathematical discourse resulted in the 

emergence of patterns other than funneling and focusing, such as patterns of 

discussion, where the students themselves assumed the explanation of resolutions 

and strategies, with the help of the teacher in the clarification of procedures and 

learning processes.  

SOME FINAL CONSIDERATIONS 

Laura‘s conceptions and practices about mathematical communication evolved from 

the transmission of information and knowledge to mathematical communication as 

social interaction. Mathematical knowledge was socially constructed in the 
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classroom as a result of the value given to mathematical ideas, strategies and 

knowledge of the students. 

The increase of social interaction in the classroom among students and among 

students and teacher contributed to intensify the role of Laura in encouraging the 

participation of her students in collective talk in the classroom. It also contributed to 

increase the interaction between students, either mediated by teachers or not and to 

value the students‘ mathematical knowledge and individual strategies. 

The interactions between the students played a major role in the presentation and 

discussion of strategies and results of mathematical tasks. The interactions between 

students were intentionally fostered by the teacher to encourage students in the 

collective discourse of the classroom. These interactions originated a growing 

respect among students as they shared their mathematical knowledge and ideas.   

Social interaction appears to lead to a change from a mathematical communication 

centered on the teacher to a mathematical communication centered in the classroom – 

students and teacher – based on the singular knowledge of each student as a 

structural component of mathematics learning. In this perspective, the mathematical 

communication conceptions and practices of the teacher seem to adjust to 

mathematical communication as social interaction, resulting in value being given to 

the students‘ knowledge and strategies:  all of this due to reflective communication 

based on inquiring questions and the discussion in the mathematics classroom. 

NOTE 

[1] River Crossing - The hunting dog, the rabbit and the cabbage 

Little Johnny was crossing a dry, unshaded field on the way to his grandfather‘s house.  He 

was taking with him a hunting dog to go with his grandfather on the hunt, a jack rabbit for 

his grandmother to put in her rabbit hutch with a pretty female rabbit and a nice cabbage for 

lunch. 

All along the way, the dog wanted to eat the rabbit and the rabbit to eat the cabbage.  Little 

Johnny had to be very careful as he walked along to avoid anything going wrong.  After a 

while Johnny came to a river he had to cross. 

In order to cross the river there was a small boat which he could use, but it was so small that 

he could only take with him one passenger at a time: the dog or the rabbit or the cabbage.  

He could never leave the dog alone with the rabbit or the rabbit alone with the cabbage, so 

how can he get all of them across without any problem?  You are going to help to resolve 

this problem. 

[2] Luís and his two friends were playing heights as you can see in this picture. Each of the 

three friends has a different height. 
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Considering only the measurements in the picture, write the name of each of the three 

friends, from the shortest to the tallest. 
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LESSON STUDY IN TEACHER EDUCATION: 

A TOOL TO ESTABLISH A LEARNING COMMUNITY 

Guðný Helga Gunnarsdñttir and Guðbjôrg Pálsdñttir  

University of Iceland, School of Education 

This paper presents a study on the use of lesson study in teacher education. Teacher 

education in Iceland has been under constant development and the authors of this 

paper have taken part in developing mathematics teacher education based on resent 

research on teacher education. The study shows that lesson study can create a 

learning community where teacher students can develop their professional language 

and collaborative competence which are considered to be important issues in 

teacher education. Lesson study also helps teacher students to put focus on pupils 

learning and content when planning lessons together. Lesson study with teacher 

students seems to be a good way for them to learn to teach and to develop as 

professionals.  

Key words: lesson study, mathematics teacher education, learning community 

INTRODUCTION 

Mathematics teacher education in Iceland has been changing and developing during 

the last decades. From 1971 teacher education for teachers in compulsory school 

(grades 1-10) has been a three year B. Ed. degree
85

. The structure has varied but 

teacher students have always specialized in one or two subjects. From 2007 the B. 

Ed. degree has consisted of 80 ECTS
86

 in pedagogy and didactics, 80 ECTS in 

specialization and 20 ECTS for studies of own choice (Stefnumñtun Kennaraháskñla 

Íslands 2005-2010). In their specialization the mathematics teacher students study 

mathematics and mathematics education. In some courses they study either 

mathematics or mathematics education while in others the study is combined. For 

their teaching practice (12 weeks) the teacher students have a home-school.  

The authors of this paper have taught different mathematics education courses for 

more than 20 years and have taken part in developing the studies in cooperation with 

colleagues. In choosing a structure and content for our mathematics education 

courses we have put an emphasis on creating a learning community among the 

teacher students. Weplay an active role in this community as participants in 

discussions and as group leaders or experts. The teacher students are to be active and 

bring in their knowledge, views, and thoughts about mathematics education. We 

have chosen to introduce our students to lesson study (Lewis, 2002) to establish 

                                           

85
 
In 2011 a five years M. Ed. degree will be required to qualify as compulsory school teacher.

 

86 European Credit Transfer System – A full academic year of studies is 60 ECTS 
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learning communities within the frame of the courses. This is based on the belief that 

the creation of learning communities in teacher education it gives the students good 

learning opportunities for developing a professional language and a collaboration 

competency. Our aim is also to introduce a professional learning strategy to our 

students they can use in different contexts when they enter the teaching profession.  

In this study we explore the effectiveness of using lesson study to develop a learning 

community within our courses.  Our research questions are:    

 How does the learning community develop during the lesson study process? 

 What characterizes the learning community? 

THEORETICAL BACKGROUND 

Mathematics teacher education has become an important field of study among 

researchers in mathematics education during the last 20 years. The increased interest 

was marked by the publication of the first issue of the Journal of Mathematics 

Teacher Education in 1998 and the publication of the first International Handbook of 

Mathematics Teacher Education in 2008 (Krainer & Llinares, 2010). The 

collaboration of teachers, teacher educators and pupils seems to be a central issue in 

many of the research studies. Team work, learning communities, networks and 

design research are often suggested as ways to help teachers to tackle and meet the 

complexity of teaching mathematics and to support them in their lifelong learning 

process. (Jaworski, 2005, 2006, 2007; Krainer, 2003; Wood, 2002; Wood & Berry, 

2003). 

Many researchers have tried to identify a knowledge base for mathematics teaching 

or important competencies for mathematics teachers. A professional learning 

competency is considered to be an important factor and teacher students need to 

learn to create professional learning opportunities during their pre-service teacher 

education. They also have to learn to collaborate with others and to create learning 

communities that will support their learning as teachers (Grevholm, 2006; Hiebert, 

Morris, & Glass, 2003). Teacher students have to realize that they are only starting to 

create a knowledge base and that they are entering a profession where lifelong 

learning is essential.  

Hiebert, Morris, & Glass (2003) describe learning environments prospective teachers 

must learn to create in order to sustain their own and other teachers learning. In these 

environments teacher students need to learn to learn from their teaching in 

collaboration with others. They mention lesson study as an example of such a 

learning environment.  

According to Darling-Hammond (1998) the best learning environment for teacher 

students is when the they are given the opportunity to teach, study and reflect in 

collaboration with others and by looking closely at the pupils and their work and 

share what they see with others. This requires a close connection to schools and 
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teaching practices. Teacher students need both opportunities to try out their ideas in 

practice and  support to reflect upon and interpret practice (Darling-Hammond, 

1998).  

Professional learning communities seem to play an important role in supporting 

teachers in continuously improving their teaching and sustaining their professional 

learning. Trends in teachers‘ professional development show increased attention to 

professional learning strategies grounded in classroom practice. (Fernandez, 2002; 

Loucks-Horsley, Stiles, Mundry, Hewson, & Love, 2010).  Professional learning 

communities where teachers share understandings about the nature of good teaching 

and work together on planning and improving teaching seem to provide particularly 

conductive settings for learning to teach (Hammerness, Darling-Hammond, & 

Bransford, 2005). 

Lesson study is often referred to as an example of a professional development 

strategy that creates a learning environment in which teachers engage in learning 

with their peers (Lewis & Perry, 2009). It is also a strategy that aims to achieve all of 

the four outcomes that according to Loucks-Horsley and her colleagues characterise 

effective professional development. They are; enhancing teachers´ knowledge, 

enhancing quality teaching, developing leadership capacity, and building 

professional learning communities (Loucks-Horsley, et al., 2010) 

Lesson study is mentioned as an example of a pedagogy for preparing teachers for 

teaching as a lifelong learning process (Hammerness & Darling-Hammond, 2005). 

Several research studies report on successful use of lesson study with teacher 

students (Burroughs & Luebeck, 2010; Tsui & Law, 2007) and teacher educators 

have shared their experiences of using lesson study with teacher students in journals 

like NCTM´s Mathematics Teacher.  

The Lesson Study Process 

The main idea of lesson study is that a group of teachers, develop a teaching plan for 

one lesson. The structure of the lesson, the role of the teacher and pupils learning are 

in focus. The lesson study process can be described as a cycle, a process where the 

group of teachers repeatedly goes through the phases, discussion, goal-setting and 

planning, research lesson. 

In the first phase, the group has to discuss the aim and the content of the lesson.. 

Then the participants explore the content, both what it means to acquire 

understanding of the content it and how it can be approached in teaching. The 

participants are in control, and make decisions about the process. The participants 

often deepen their knowledge of the content and possible teaching approaches. They 

communicate, do research, work together, make decisions, plan teaching, and 

experience the advantages of participating in a learning community. The research 

lesson is taught by one of the participants and the other participants are present and 

take notes. Some timed an outside expert is invited to observe the research lesson 
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and take part in the post lesson discussions. On basis of observations during the 

research lessons og the post lessons discussions the lesson plan is revised and the 

lesson taught again for a similar group. The cycle can be repeated several times 

(Lewis, 2002)..  

In organizing our courses we have focused on establishing a learning community 

with our teacher students. A learning community where teacher educators and 

teacher students share ideas, discuss and work together on planning good teaching. 

Such an environment gives opportunity to develop professional language and 

collaborative skills. By engaging in the lesson study process the teacher students take 

part in creating a learning community where the focus is on the pupils learning of a 

specific content.   

METHOD 

This research-study focuses on two 10 ECTS courses in mathematics education. The 

teacher students attend them in their second year and are at the same time attending 

courses on geometry and number theory. Teaching practice in grades 7-10 is an 

important part of the mathematics education courses. In the fall they follow the 

course: Mathematics teaching and learning in lower secondary school where they 

are introduced to mathematics education as a field of study. They learn about lesson 

study, discuss and study various resources for lesson study 

(http://www.lessonresearch.net/),. Lesson study is introduced as a tool to use in a 

professional development. The focus in on how being a part of a learning community 

gives teachers the supporting environment to develop their teaching collaboratively. 

In the spring term the teacher students attend the course: Mathematics teaching and 

learning for all. Then they try out the ideas of lesson study. All the students, around 

15, work as one lesson study group. They start with discussing the aim and the 

content of the lesson. They focus on what could be relevant for 8
th

 and 9
th

 grade in 

their home-school and use the curriculum guide and their own analysis and interest 

in their considerations. The teacher students plan the lesson in collaboration with 

their teacher educators and make use of different literature and teaching materials as 

well as their own experiences. In the making of the lesson plan they use a four-

column lesson plan (Matthews, Hlas, & Finken, 2009). The columns are: Steps of the 

lesson: Learning activities and key questions (1), expected pupils reactions and 

responses (2), teacher´s response to pupils reactions/things to remember (3) and 

goals and method(s) of evaluation (4).  

Some of the teacher students are distance learners and all students share a digital 

learning environment (Blackboard). The students on campus work together in class 

and records of the work in progress are shared with the distance students in 

Blackboard. The distance students contribute to the process by communicating their 

ideas, thinking and reflections the same way. Three or four weeks are used for the 

preparation of the lesson. Then the teaching plan is introduced to the practice-

http://www.lessonresearch.net/
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teachers in the home-schools. They can make comments to the lesson plan and share 

their experiences with the group. Groups are created for teaching and observing 

research lessons. In each groups there is a teacher educator, practice teachers and 

teacher students from two home schools if possible. The groups adjust the lesson 

plan to the actual situations in the school and make practical decisions regarding the 

research lesson. All groups teach the lesson two times. After the research lesson 

there is a short evaluation meeting. When all groups have taught the lesson once the 

teacher students and teacher educators meet at campus to discuss the experience and 

make revision of the lesson plan. The reasons for different adjustments of the lesson 

plan in each home school are also discussed. When the teacher students are back at 

the university time is taken to discuss the lesson study project and this way of 

planning and collaborating as a tool for professional growth.  

The lesson study process reported on in this study has been conducted with two 

groups of teacher students in total 30 students. Both groups developed lesson plans 

around prime numbers. The students were attending a course in number theory and 

the teaching of numbers and number theory was a topic in the math education course. 

The overarching aim for the teacher students was to find ways to make the 

mathematics teaching and learning interesting and fun for the pupils. They also 

found it challenging to make this particular topic, prime numbers, interesting and 

purposeful for their pupils. The first group developed a lesson plan around the 

question:  What use can be made of prime factorization? They developed six 

different tasks that could be worked on in groups and then discussed in the whole 

class. The second group developed a game where the pupils were supposed to find 

out whether a number was a prime number or a composite number and how they 

could argue for their categorization.   

DATA 

In this research-study the data was gathered during the school-years, 2008-2010. 

This study builds on prior studies on teaching teacher students similar courses. There 

the focus was on how research on mathematics teacher educations has influenced the 

structure, content and teaching approach in the courses (Gunnarsdñttir, 

Kristinsdñttir, & Pálsdñttir, 2008; Gunnarsdñttir & Pálsdñttir, 2010). The data in this 

study consists of two lesson plans, teacher educators´ notes, an interview with two 

teacher students, audiotapes from planning meetings, correspondence between the 

teacher students at campus and the distance students, notes from evaluation 

meetings, a video tape from the evaluation meeting at campus and notes from 

discussion after the teaching practice period. We also have an audiotape from the 

oral presentation of the final course assignment where the teacher student presented 

their ideas about ideal mathematics teaching.    

The data was analysed with our goal for using lesson study, to create learning 

communities, in mind. When reading and listening to the data our attention was 
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drawn to four main themes that are all important in a learning community. The four 

main themes; professional language, collaboration competence, focus on pupils 

learning and teacher students elaboration of the content are evident in all our data. 

The development  of a professional language and collaborative  competency are 

often mentioned as the main goals for establishing learning communities 

(Hammerness, et al., 2005; Jaworski, 2007). A learning community based on a lesson 

study process puts focus on pupils learning and mathematical content. We will 

provide some examples of how these four themes emerge from the data.      

Professional language  

In the beginning of the lesson study process the teacher students found it hard to 

understand how you could use several weeks to plan one lesson. It took one session 

to discuss the approach and decide on content. But when they started to work on the 

content in more details they realized that there were many things to consider and 

many different ways to go. They felt the need to understand each other‘s ideas and 

they needed to be more precise in their use of language and had to support their 

arguments by referring to prior readings and common course literature in 

mathematics education. They also had to refine their shared understanding of 

concepts from general didactics and mathematics.  The discussions became longer 

and more intense.  They were developing their ideas in collaboration and trying to 

consider the teaching of the content from all points of view. Because of the distance 

students a part of the dialog was in written format and that demanded a more precise 

use of professional language. All the teacher students were going to teach the lesson 

at some point so they felt the need to understand and agree with the lesson plan.  

Despite of the assumed shared understanding written in the lesson plan the students 

realized that the lesson turned out differently in the schools when they met after the 

first round of teaching.  The teacher students‘ use of professional language 

developed considerately during the process, they used more professional concepts, 

their discussions lasted longer and they referred more often to literature connecting 

theory and practice In her final assignment Elsa refers to the book Adding it up and 

that she wants to establish communities of learners in her ideal school. When she 

introduces her idea to her fellow students they elaborate on the idea and discuss it in 

a professional way with reference to their shared experiences during the lesson study 

process.    

Collaborative competence 

When using lesson study the challenge is to develop an effective way to teach a 

certain content or concept with some long term educational goals in mind. This is 

done in collaboration and participants have to present their ideas, discuss them and 

take joint responsibility for the planning of the lesson. They have to reason with each 

other and build on their previous experiences. They come to realize how important it 

is to collaborate, think and plan together.  There are many things to consider when 
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planning a lesson and when it is done in collaboration more details are discussed and 

from different points of view.  

Kristin: It was fun and rewarding to plan this together. We all thought we understood the 

plan the same way but it turned out differently.  

It also encourages and gives the teacher students opportunity to try out things they 

otherwise would hesitate to do. They experience what to collaborate about in a 

learning community and what teacher collaboration can mean. The teacher students‘ 

collaborative competence strengthens during the lesson study process. It is evident 

they have more to discuss and they experience the benefit of having colleagues and 

common experiences to relate to. They feel it is important for their future 

development as mathematics teachers to be a part of a learning community and that 

they themselves have a responsibility in creating such a community. In their final 

assignment almost all the teacher students see themselves as a part of learning 

community planning and reflecting on teaching.  

Focus on pupils‘ learning 

In the lesson study process the teacher students discuss possible teaching 

approaches. In choosing an approach they use their knowledge of pupils, their 

situations and different learning needs. The teacher students try finding an approach 

that many pupils will find appealing and is at the same time challenging to 

themselves. In the lesson plan they focus on what the pupils should do but they often 

fail to anticipate pupils‘ responses and how they as teachers should react to them. 

During the teaching of the lesson there is always at least one teacher student in the 

role of an observer. The teaching approach is well known to the observers and 

therefore it does not become the main object of study even though they have an 

interest in how the teaching develops. Instead the observers focus more on the pupils 

and their reactions and learning. In the evaluation meeting the teacher students often 

refer to particular pupils responses and become fascinated of how the different pupils 

deal with the content. Changes in the lesson plan are based on their analysis of the 

pupils‘ responses. Their main focus is on making the lesson a positive learning 

experience for the pupils. The teacher students feel that by choosing approaches like 

games and group work they succeed in creating good conditions for pupils learning. 

During the preparation of the lesson the teacher students express their ideas on what 

is important for the pupils‘ learning.  

Elsa: We need to make use of their interests.  

Anna: They have to be able move around.  

Karen: It has to be fun and it should be hands on.  

Berta: Pupils show more interest when they can work together and decide what to do.  

When discussing their future teaching the teacher students point out the importance 

of getting to know the pupils ideas about mathematics and mathematics learning and 

base their teaching on that knowledge.    
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Focus on mathematical content 

The choice of content is influenced by what the teacher students are learning in 

mathematics courses. They have some prior knowledge of prime numbers, rules for 

finding prime factors and whether a number is a prime or not and rules for 

divisibility of numbers. But there are some shortcomings in their understanding that 

become obvious during their initial discussions. They make use of each other‘s 

knowledge, make connections and refine their understanding through common 

discussions.  They become more aware of what it means to understand prime 

numbers and composite numbers.  

Tina:The pupils know about prime numbers and ways to find them. They have also 

worked with divisibility, square roots and composite numbers. We need to discuss 

with them how to use this when finding out whether a number is a prime number or 

composite number.   

Through the discussion the teacher students also better understand the importance of 

a good content knowledge for a teacher. They experience that good content 

knowledge gives you more power and flexibility when designing a lesson process. 

During the process all the teacher students become better in expressing their 

knowledge and for many their basic understanding of the content improves a lot. 

They realize that there are many things to consider if you want to teach this content 

with understanding.     

CONCLUSION 

During the lesson study process the teacher students have developed their 

professional identity. They have realized the complexity of teaching but they have 

also become more eager and stronger in dealing with the complexity. In the 

beginning the teacher students focused on the teaching plan as a platform for 

collaboration. But during the process they realized that they needed to collaborate 

more closely regarding other aspects of the teaching and the learning of the content. 

They also felt how rewarding these collaborations were. They felt the need to 

verbalize their ideas and thinking, ask into others thinking and reflect on that. More 

and more teacher students became active and they became more able to dwell on 

things and discuss them in details. Both the distance students and the students on 

campus became more willing to collaborate and share ideas and they developed a 

community of learners where everyone had a voice. It was noticeable in the 

discussions that the teacher students were also ready to take risks and could provide 

some strong arguments for their ideas. They became more convinced that they could 

learn a lot from others and by trying out things in collaboration with others.  

Trust and openness characterized the learning communities that were established. 

The fact that it was only a short term commitment and the teacher students had to 

take part in the project as a part of their study influenced their participation. Because 

it was not a long term commitment it did not involve much risk for them. It became a 
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positive experience that they can use and learn from when they enter into teaching. 

But trying to establish a learning community in school can become much more risky 

because it is more long term and there are other expectations and power structures in 

place. Because the teacher educators were a part of the learning community the 

teacher students did not have to take full responsibility for the process or the 

outcome of the process, the lesson plan.  

The lesson study process is an important venue to connect theory and practice and it 

also gives the teacher educators an opportunity to enter the practice field more in the 

role of a partner than an evaluator. The focus was more on making the learning 

opportunities for the pupils learning better than on the teacher students‘ performance. 

Lesson study has a potential for changing the focus in teaching practice and puts the 

collaboration between the teacher educators, teacher students and practice teachers in 

a different context. Many teacher educators are trying to use and develop lesson 

study with teacher students and here there are many opportunities for further research 

and development. It is a future challenge to establish learning communities with all 

three partners, teacher students, teacher educators and practice teachers that could 

strengthen professional learning communities in schools  
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In England and Wales, mental mathematics has been emphasised in the primary 

school curriculum for over a decade but little has been done to prepare trainee 

teachers faced with the task of delivering this curriculum.  The Williams Review 

(2008) recommends that this is an area which should receive ‗careful attention‘ on 

initial teacher training programmes. Design-based research sought to use 

conceptual pedagogy to develop an effective programme for trainee teachers to 

develop their mental mathematics knowledge for teaching.  This paper describes the 

use of the empty number line within the intervention programme for 129 trainee 

teachers on a one year post graduate training programme. 

Key words: Mental mathematics, subject knowledge, conceptual pedagogy 

INTRODUCTION 

The mathematics curriculum in England and Wales has changed dramatically over 

the last ten years since the introduction of the National Numeracy Strategy (NNS) in 

1998. Pupils in primary schools are expected to be competent in adding and 

subtracting any pair of two digit numbers before they are taught formal written 

calculation strategies.  As a result, mental calculation has attained a dominant 

position in the primary curriculum and teacher education programmes in the UK 

have required adaptation to reflect these changes.  

Teachers' Subject knowledge 

Until the 1970s, little research had been carried out to determine what sort of 

mathematics teaching made for effective pupil progress (Ball, 1990).  However, 

during the next few decades, mathematics education theorists and researchers began 

to consider the implications of Shulman's (1986) general categories of subject 

knowledge for the specification of the mathematics knowledge requirements for 

teaching and the construct was appropriated and refined for the purpose of 

mathematics research and practice.   

In attending to mathematics content for teaching, some researchers concentrated on 

subject matter knowledge and delved deeply into the nature and purpose of the 

discipline to illuminate the task of ascertaining the mathematics knowledge required 

of teachers of mathematics (Goulding, Rowland & Barber, 2002). Further research 

was inspired by respect for the discipline of mathematics. It reflected research 

studies conducted in the USA, for example Ma (1999) who was specifically 

concerned with discipline-specific knowledge for teaching mathematics in its content 
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(substantive and syntactical) and pedagogical forms, and in the UK, for example 

Askew, Brown, Rhodes, Wiliam, & Johnson (1997), McNamara, Jaworski, Rowland, 

Hodgen, and Prestage (2002) and Rowland and Turner (2008) who sought to relate 

subject knowledge to effective teaching. 

Ma‘s work (1999) explored the relationship between discipline-specific knowledge 

for teaching and pedagogy.  Her results showed that American teachers had limited 

knowledge of mathematics and that their knowledge was often faulty. These findings 

were not new to American researchers (Ball, 1990) but what was novel was the 

comparison with Chinese teachers. This and other similar examples led Ma (1999) to 

contend that Chinese teachers identified and encouraged the specific conceptual 

understanding which was of importance in covering these types of problems. She 

described it as a profound understanding of fundamental mathematics (PUFM) – 

teachers‘ recognition, within their teaching of: 

 the connectedness of the simple but powerful ideas at the core of mathematics; 

 the capacity of these ideas to sustain multiple perspectives and flexibility; 

 the location of the ideas within a coherent and holistic disciplinary structure. 

Crucially, within this specification, there was no differentiation between conceptual 

subject matter knowledge and pedagogical content (or specialist) knowledge. The 

conceptual foundation for PUFM was teachers‘ sense of the connectedness of 

mathematics ideas; in pedagogical terms it meant that they formed knowledge 

packages around a central core. Conceptually, teachers had an awareness of the 

importance of simple but powerful ideas, which were especially stressed and 

developed through pedagogy. Conceptually, teachers were able to entertain multiple 

perspectives; pedagogically this meant that, as teachers, they could analyze their 

advantages and disadvantages and lead students to a flexible understanding. The 

coherence of their teaching over time reflected teachers‘ conceptual sense of the 

primary mathematics curriculum as a whole. Pedagogically, it meant that they could 

exploit what pupils had already studied and create foundations for what was to 

follow. 

Mental mathematics  

A new curriculum for mathematics was established in England and Wales in 1998 

(DfEE, 1998) in order to raise mathematical achievement (Brown, Askew, Baker, 

Denvir & Millet, 1998).  This new curriculum – the National Numeracy Strategy 

(NNS) emphasised the development of mental calculation, which was in line with 

research in mathematics education in the Netherlands, where mental calculation and, 

in particular, informal strategies, had been a key component of the Realistic 

Mathematics Education (RME) programme.  

The hundred-square, commonly found in primary classrooms in England and Wales, 

and used in the Netherlands prior to the introduction of the Realistic Mathematics 
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Education programme, was seen as restricting, particularly in terms of mental 

calculation.  The Empty Number Line (ENL) was introduced as a model in schools in 

the Netherlands, which helped pupils visualise the ‗quantity value‘ of numbers.  It 

replaced the practice of partitioning using base ten that encouraged pupils to 

concentrate on the ‗column value‘ (Thompson, 1999) of numbers.  Beishuizen (1999) 

emphasised the benefits of the approach taken in the Netherlands in terms of general 

mathematics competence: 

‗dealing with whole numbers supports pupils‘ understanding and insight into number 

and number operations much more than the early introduction of vertical algorithms 

dealing with isolated digits‘ (p.159). 

Furthermore, Klein, Beishuizen and Treffers (1998) suggested that other benefits 

accrued from the action of replacing the hundred-square with the ENL, such as 

'enhancing the flexibility of mental strategies' (p.427).   

Mental Mathematics and Teachers 

The new mathematics curriculum left university teacher educators charged with the 

need to make provision within their courses and programmes for opportunities to 

promote and assess the development of trainee teachers‘ mental mathematics 

teaching competence. 

So what were the knowledge requirements of teachers training to teach mental 

mathematics in primary schools? What did an understanding of mental mathematics 

mean for a primary trainee teacher charged with developing pupils‘ ‗with the head‘ 

(Beishuizen, 1997) use of mental mathematics, as opposed to the ‗in the head‘ notion 

of rote learning?  These problems were formulated into the following research 

questions: What are the most effective interventions to enable trainee teachers to 

enhance their mental mathematics subject knowledge for teaching and how can these 

be implemented during the university-based element in a one-year postgraduate 

primary teacher education programme?  

THE PROJECT 

The project involved the formulation of an innovative intervention programme to 

develop mental mathematics for teaching.  Design-based research, through various 

diverse methods, involves accumulate a body of evidence that supports and enriches 

the theoretical principles underpinning a specific intervention and leads to the 

refinement of the intervention in situ.  In their definition of design studies Wang and 

Hannafin (2005) argue that design-based studies provided access to: 

...a systematic but flexible methodology aimed to improve educational practices through 

iterative analysis, design, development and implementation (p. 6). 

The purpose of design-based research is the development of contextually sensitive 

theories in real-world settings and for these reasons, they offer a methodological 
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option which met the specific needs of this study manifested in its research question 

and underlying commitment to theory development.  

Theoretical principles for designing the intervention  

The design study was predicated on the belief that, in the context of teacher 

education, a knowledge-framed curriculum was an appropriate object for the study 

and development of trainee teachers‘ mental mathematics subject knowledge for 

teaching. Furthermore, the knowledge-framed curriculum was driven by two 

theoretical principles, one discipline specific, relating to the conceptual foundations 

of mental mathematics and the other context specific, relating to the embedding of 

the conceptual within teaching. 

The first principle was that the conceptual foundations of mental mathematics 

knowledge for teaching implied a commitment to working with numbers as wholes, 

an understanding of the reciprocal nature of mathematical operations as well as a 

strategic approach to calculation. 

The second theoretical principle was that, in order to extend and realise these 

conceptual features within their teaching, trainee teachers required access, through 

conceptual pedagogy - the integration of conceptual and pedagogic knowledge into a 

bigger whole - to a connected, flexible, coherent approach to subject knowledge for 

teaching. In other words, the course needed to make provision for the development 

of what Ma (1999) described as profound knowledge.  

The design of curricular activities in the study was based on design principles 

created by the contextualisation of these theoretical principles within the context of 

teacher education. Activities were designed to: 

 Connect the three conceptual features – whole numbers, interchangeable 

operations and strategic approaches; provide the means to generate data for 

review of the effectiveness of the activities by inviting trainees to model pupil 

behaviour 

 Focus on the simple and powerful ideas of mathematics (such as number 

structure, the laws of arithmetic, principles of counting, equations); re-visit 

and provide opportunities for their identification  

 Nurture flexibility through comparisons by trainees, individually and in 

groups, with others‘ perspectives, with their own previously held views and 

habits and through the application of mathematical ideas within discussions of 

‗best‘ strategies 

 Reinforce the coherence of mental mathematics in relation to the primary 

curriculum  

The process of design of activities and materials for use with a cohort of 129 primary 

trainee teachers during a year-long programme of teacher education was based on 
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these principles. Micro-analyses of trainee teachers‘ interactions with the designed 

activities - individually, through group work within the university and in teaching 

placement contexts – led to review and modification of activities while offering a 

theoretically-informed commentary on their effectiveness.  

Two strategies were adopted to improve validity and reliability: the use of data 

collection methods that captured the complexity of trainees‘ interactions with 

materials and activities in as full a range of contexts as possible; and the creation of a 

partnership between a small group of trainees and the researcher as a means to 

challenge tacitly held assumptions and to establish consensus.  

The intervention 

During the programme, interventions, both planned and reactive, gave recognition to 

the importance of the principles outlined above.  Each of them permeated the 

mathematics programme‘s interventions, and specific activities were also planned to 

target particular areas. 

The principles underlying the simultaneous presentation of the four number 

operations (addition, subtraction, multiplication and division) were derived from the 

requirements of mental mathematics – the reciprocity of the operations – and of 

conceptual pedagogy – in this case, connectedness and coherence.  

Materials were prepared to highlight the way in which the empty number line could 

be used in teaching to model and, therefore connect, each of the four number 

operations.  The intention during the initial stages of the session was to provide a 

stimulus for discussion within small groups in the form of: an explanation of the 

structure of the empty number line; a brief description of its introduction and use in 

the Netherlands; and an account of the way in which it was incorporated into the 

mathematics curriculum in the UK. At this stage group activity would involve the 

further exploration of the concept and the framing of questions for whole group 

discussion.  

A variety of problems were chosen for use during the next stages of the session, with 

the specific aim of connecting the four operations. Once again, trainees were to be 

asked to participate in a group activity and to use the empty number line to find 

solutions to the problems. Pre-designed materials included the use of the empty 

number line to tackle, for example, division problems through the repeated 

subtraction of ‗chunks‘.  Finally trainees were to be asked, in a group activity, to 

reflect on the appropriateness of the empty number line in the context of their own 

preparation for teaching and to reveal their thinking.  

During the year, qualitative data on trainees‘ responses were gathered continuously 

during normal teaching sessions. This was achieved by creating opportunities for 

trainees to record the detail of the processes used individually and during group 

discussions and, where appropriate, to justify their responses in writing or verbally, 

in the whole group public arena.  
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Each mathematics session in the programme was planned to focus on progressing 

trainees‘ mental mathematics knowledge for teaching by providing access, through 

conceptual pedagogy, to a flexible, connected and coherent approach to subject 

knowledge for teaching.  This involved a commitment to working with whole 

numbers, the relationship between mathematical operations and a strategic approach 

to calculation over a number of weeks and environments (university and school 

placement) during the one-year programme.   

Following the ENL activities described above, some trainees queried  the 

effectiveness of the use of the empty number line.  They were directed to research 

about alternative approaches to partitioning when calculating and critiques of these 

approaches (Thompson, 1999).  After considering the research, trainees in six 

seminar groups, each of between 25 – 30 trainees, discussed the possible effects of 

focusing on one approach rather than the other.  Initially, three groups reported in the 

feedback sessions that some members could not understand the need for such a tool 

because they had learnt strategies for each of the operations which 'worked for them'.  

One group reported that this tool could become too much of a prop for pupils, 

encouraging counting in ones. For another group, the notion of using a number line 

was alien, as the experience of group members, prior to the course had tended to 

focus on a more formal approach to calculation.  One member, commented that ‗the 

empty number line is an interesting concept, but perhaps one of the most challenging 

methods for me to grasp‗.  It also became apparent that some trainees were 

developing an algorithmic approach when using the empty number line.  During 

workshop sessions where trainees were looking at subtraction by counting back or 

counting on, one trainee commented ‗I‘m confused, which numbers do I write on the 

line?‘  The response by other trainees was that, ‗you put the largest number on the 

right, then the other number at the other end‘.   

Such data led to the adaption of the intervention programme.  Specific examples 

were introduced which allowed trainees to consider whether counting on or counting 

back was more appropriate.  Trainees commented that specific examples also made 

them realise the importance of stopping to consider the numbers involved, which 

enabled them to assess the most appropriate calculation approach.  The intervention 

was adapted further to provide opportunities for trainees to make use of individual 

whiteboards (similar to those used in primary schools) in order to do rough jottings 

using the empty number line.  One trainee noted that the process of actually using the 

empty number line for her own calculations had enabled her to become more 

‗flexible and confident in the use of the empty number line for teaching‘.  

The comment made, by one trainee, that she had found the empty number line to be a 

‗revelation‘ in the classroom, generated overwhelming agreement.  The following 

comments are representative of the group‘s views about the usefulness of the empty 

number line:   

Trainee 1: The empty number line is a very important visual resource for pupils. 
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Trainee 2: I agree... that drawing jumps on the line works well as a natural way of  

  keeping track and recording mental solution steps. 

Trainee 1 described a scenario from her classroom, where a group of pupils were 

using the rounding and adjusting strategy.  The example was 98 + 137.  The pupils 

rounded the 98 to 100, but were then unsure whether to add or subtract the 2 which 

had been rounded.  She demonstrated to the group how she had used the empty 

number line to encourage the pupils to consider the whole numbers involved.  She 

reported that the pupils went on to complete the examples successfully, and claimed 

that although the pupils did not continue to draw the empty number line, they said 

that they were visualising it. Trainee 1 was challenged about whether the method had 

become an algorithm, but she was confident that the empty number line was used in 

quite a different way, as a means for visualising the relative sizes of the numbers. 

At this stage the opportunity to broaden the cohort‘s discussion was used to compare 

the whole numbers approach with alternative approaches in the form of formal 

written strategies or algorithms.  A particular example was selected from an audit 

which had been used at the beginning of the year (199 + 174).  Data from this audit 

revealed that over half of the cohort had used a formal written strategy at the 

beginning of the year.  A number of the cohort described this as an unacceptable use 

of a formal written strategy.  A quick paper survey was undertaken to establish how 

many of the cohort agreed with this ‗unacceptable‘ use of the formal strategy and it 

was found that 93% of the group (106 trainees) agreed with this description for this 

particular item.  Some trainees reported that they had not considered an alternative 

strategy at the beginning of the programme because they were using what they 

described as their security blanket - those algorithms which were quick to administer 

and gave reliable results.  One group admitted that its members had not considered 

the numbers involved before diving in to carry out a procedure.  A few trainees from 

other groups said that they were reluctant to move away from the strategies with 

which they felt comfortable. They could not appreciate why pupils should be 

introduced to so many different strategies as they felt this could cause confusion. All 

other groups, however, concluded that while formal algorithms may be effective and, 

ultimately, be the most efficient strategy, the ‗stop and think‘ approach would 

encourage thinking about the numbers involved, before making a strategy choice and 

that this was of greater importance. This reference to a ‗stop and think‘ approach was 

re-visited throughout the programme in order for trainees to consider alternative 

approaches. 

The empty number line was further developed during discussion regarding problems 

involving decimals, where trainees reported that they made use of the empty number 

line for these types of problems purely as a visual image, to consider the relative 

sizes of the numbers involved.  In this context, one trainee noted that the empty 

number line had helped her to appreciate the structure of the number system. She 

wondered why she had been ‗so concerned about working with decimals, because if 
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you just think about them on the number line, they are just normal numbers, but 

zoomed in‘.  The commitment to focusing on numbers as wholes was an indication 

of the success of the use of the ENL as a model for developing mental mathematics 

for teaching. 

CONCLUSIONS  

As noted above, some trainees were initially sceptical about the value of the empty 

number line, but for many, this perception changed over the course of the 

intervention.  After spending time in the classroom, trainees began to change their 

views as they saw the potential benefit of this approach. One trainee observed, 

during school experience, what was seen as the benefit of planning activities to 

emphasise connectedness using the ENL ‗these children were slowly beginning to 

make some creative connections between numbers that they could use to help them 

solve a variety of calculations.‘ 

Although most trainees concluded that a flexible approach to calculation was what 

they would strive for in their teaching, this commitment was not always evident in 

their own calculations.  The following is one trainee's explanation of her initial 

response to 199 + 174, where she had used a formal written method: 

'When I look down I think 199 and I know automatically that you should  see this as 

200.... But when it is written down like that it‘s not, to me,  it‘s not obvious that it would 

relate to 200....I definitely only see the digits.'  

During review the data which had been collected throughout the programme was 

referred to and used to provide some insight into these contrasting experiences. A 

minority of trainees had routinely reported during the first workshops that they found 

the standard formal written methods efficient and straight forward to apply, and that 

it was difficult to understand why any other methods were taught in school.  When 

invited to reflect on their experiences during seminars and in schools, there was 

general agreement that it felt as if they were ‗learning backwards‘.   

Such comments indicate the potential of conceptual pedagogy for change. Even in a 

generally negative example there is evidence that a trainee was enabled to analyse 

and identify a lack of coherence as the source of the insecurity of her knowledge of 

mental mathematics:  

'See this is the problem that I have got, I‘ve got all these little facts and they are all over 

the place. So that, so somehow I know that obviously three quarters is 0.75 and then you 

times it by 10 and it‘s 75, I‘ve got all these useless, they are not useless, but, well, they 

are useless unless I can apply them.....See that‘s the thing, I‘ve got all these jumbled up 

facts and I know all these silly little things, that that needs to be that but I don‘t know 

why, there is no sense to it.' 

This clearly showed that there had been insufficient time for this particular trainee to 

come to terms with her early experience of mental mathematics, which was 
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sufficiently strong to resist the coherence promoted in the programme. However, the 

statement shows that the trainee does appreciate the need for integration and for 

meaning in the knowledge possessed by teachers of mental mathematics.  

Others had been able to use experience of the programme to come to terms with their 

own knowledge base. One trainee explained how the programme had affected her 

mathematics knowledge:   

'Like most students I would instinctively choose the column method and (abbreviated) 

long division for these problems, but I would have great trouble teaching them and this 

brought home the requirements that I must in a sense ignore my own knowledge and 

capabilities.' 

This comment is yet further evidence of the recognition that teachers have a different 

requirement in terms of mathematics knowledge. It is not sufficient to know 

mathematics, what is significant is the way in which mathematics is known for 

teaching.  These types of comments suggested that, even if they were not fully 

successful in terms of their own facility with mental mathematics, trainees were able 

to appreciate the significance of the different approach to mental mathematics that is 

required of teachers. 

Although some trainees had not found a way to resolve their deficiencies in their 

own mental mathematics through engagement in the programme, for the 

overwhelming majority of participants, who claimed that they now recognised the 

negative and lasting effects of embedded routines and practices learnt while they 

were at school, the situation was acceptable, since they argued that they could 

operate differently in their teaching. Further speculation about the intellectual 

significance of the way trainees dealt with the dissonance created by their own 

development would not be warranted on the basis of this study‘s data. However, the 

study has provided legitimate grounds for seeking answers to questions about the 

limits, durability and architecture of this way of holding knowledge.  

At this stage it is possible to conclude that the evolving behaviours of trainees 

fuelled the development and refinement of an intervention that was based on 

conceptual pedagogy as applied within the context of mental mathematics knowledge 

for teaching. Successful outcomes include the illumination and exemplification of 

existing theoretical constructs such as coherence and connectedness over a range of 

mental mathematics content involving the use of the empty number line. 

REFERENCES 

Askew, M., Brown, M., Rhodes, V., Wiliam D & Johnson, D. (1997). Effective 

Teachers of Numeracy. London: King's College London, for the Teacher Training 

Agency. 

Ball, D. L. (1990). Prospective Elementary and Secondary Teachers' Understanding 

of Division. Journal for Research in Mathematics Education, 21(2), 132-144. 



Working Group 17 

CERME 7 (2011) 2679 

 

Beishuizen, M. (1997). Mental arithmetic: mental recall or mental strategies? 

Mathematics Teaching, 160, 16–19. 

Beishuizen, M. (1999). The empty number line as a new model, in Thompson, I. 

(Ed.) Issues in teaching and numeracy in primary schools (pp.157–168). 

Buckingham, Open University Press. 

Brown, M., Askew, M., Baker, D., Denvir, H. & Millet, A. (1998). Is the National 

Numeracy Strategy research based? Research Review, 46 (4),  362–385. 

Davis, S. (2009). Oral and Mental Mathematics.  Mathematics Teaching, 125,  45-

48.  

Department for Education and Employment. (DfEE). (1998). The NNS framework for 

teaching mathematics from reception to year 6. London. DfEE.  

Goulding, M., Rowland, T. & Barber, P. (2002). Does it matter? Primary teacher 

trainees‘ subject knowledge in mathematics, British Educational Research Journal. 

28 (5), 689-704. 

Klein, A. S., Beishuizen, M, & Treffers, A. (1998). The empty number line in Dutch 

second grades: Realistic Versus Gradual program design. Journal for Research in 

Mathematics Education, 29 (4),  443-464. 

Ma, L. (1999). Knowing and Teaching Elementary Mathematics: Teachers' 

Understanding of Fundamental Mathematics in China and the United States. 

Mahwah, NJ: Lawrence Erlbaum Associates. 

McNamara, O., Jaworski, B., Rowland, T., Hodgen, J., & Prestage, S. (2002). 

Developing Mathematics Teaching and Teachers: A Research Monograph. 

www.maths-ed.org.uk/mathsteachdev/pdf/mdevpref.pdf. 

Rowland, T. & Turner, F. (2008). Issues for Further Research.  Paper Presented at 

Seminar 6:  Formulating a Research Agenda on Mathematical Knowledge in 

Teaching.  Nuffield Seminar Series. 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. 

Educational Researcher, 15 (2),  4-14. 

Thompson, I. (1999). Implications of research on mental calculation for the teaching 

of place value, Curriculum, 20, (3),  185-191. 

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-

enhanced learning environments. Educational Technology Research and 

Development, 53 (4), 5-23.  



  

CERME 7 (2011) 

READINGS OF THE MATHEMATICAL MEANING SHAPED IN 

THE CLASSROOM: EXPLOITING DIFFERENT LENSES 

Maria Kaldrimidou, Haralambos Sakonidis, Marianna Tzekaki 

University of Ioannina, Democritus University of Thrace, Aristotle University of 

Thessaloniki 

 

Research literature indicates that the mathematical knowledge interactively 

constructed in the classroom is closely related to teachers‘ management of the 

epistemological features of mathematics.  In this study, we focus on teacher-

students‘ classroom interactions, adopting a learning and a teaching perspective to 

examine the mathematical status of the knowledge emerging in the context of two 

primary teachers‘ lessons.  The results indicate the limits of these two perspectives 

and the need for multiple lenses in order to adequately capture the complexity of this 

knowledge. 

 

Keywords: mathematical meaning, epistemological features, teaching practices 

 

INTRODUCTION 

Several studies attempted to examine the ‗quality‘ of the mathematical knowledge 

shaped in the classroom (e.g., Steinbring 1998).  The theoretical frameworks adopted 

in these studies allowed the identification of limitations and deficiencies in teachers‘ 

classroom practices but do not appear to have provided powerful lenses for judging 

the actual nature of the mathematical meaning constructed by the pupils 

(Kaldrimidou et al. 2008).  In the present paper we adopt a learning and a 

predominately didactical perspective to pursue further the search for analytical tools 

that enable us to effectively examine the epistemological status of the mathematical 

knowledge interactively constructed in the classroom. 

THEORETICAL ISSUES 

Recent developments suggest that socio-cultural factors cannot be ignored in 

teaching and learning mathematics, thus directing attention to the adult-learner 

interactions taking place in the classroom (Lerman, 2006). Two distinct patterns of 

these interactions have been indicated early on by Wood (1994): funnelling (pupils 

are provided with leading questions which aim at guiding them to a pre-determined 

answer) and focusing (students‘ attention is drawn to the critical aspects of the 

problem through questioning and summarizing what is taken as shared knowledge). 

Anghileri (2006), in an attempt to ―identify a hierarchy of interactions which relate to 

teaching practices that can enhance mathematics learning‖ (p. 33), re-visited the 
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metaphor of ‗scaffolding‘ introduced by Wood et al. (1976) and suggested the notion 

of three levels scaffold.  At level 1, environmental provisions of tasks and resources 

enable learning to take place without the direct intervention of the teacher.  Such 

provisions include artefacts (e.g., manipulatives) and classroom organization (e.g., 

peer collaboration), sequencing and pacing events, structuring tasks, etc. The 

subsequent two levels are related to teacher interactions that are increasingly directed 

to enriching the support of the mathematical learning.   

Level 2 concerns three types of direct scaffolding interactions between teacher and 

students related specifically to mathematics: showing and explaining the ideas to be 

learned (limited attention to pupils‘ contributions), reviewing and restructuring 

(responsiveness to the learner). Reviewing is about encouraging students‘ reflections 

and concerns five types of interaction: getting students to look, touch and verbalize, 

getting students to explain and justify, interpreting students‘ actions and talk, using 

prompting and probing questions and parallel modelling (solving auxiliary tasks). 

Restructuring, on the other hand, is about altering students‘ understandings and 

regards interactions like providing meaningful contexts to abstract situations, 

simplifying the problem, rephrasing students‘ talk and negotiating meaning. 

At level 3, interactions address developing conceptual thinking through specialized 

processes such as generalization, extrapolation and abstraction.  Interactions at this 

level include making connections, developing a range of representational tools and 

generating conceptual discourse (initiating reflective shifts and accentuating 

mathematically valued ways of thinking). 

Anghileri‘s notion of the three levels scaffold appears to offer a challenging socio-

cultural lens to explore the mathematical meaning constructed as a result of 

classroom interactions, allowing for students‘ creativity and teachers‘ responsiveness 

to individuals to be taken into account in the shaping of this meaning. 

The quality of the mathematical meaning constructed in the classroom came under 

scrutiny also in studies inquiring into the relationship between the mathematical 

knowledge for teaching (MKT - the subject matter knowledge both common to 

diverse professions and supporting teaching) and the mathematical quality of 

instruction (MQI – determined by features characterizing the rigor and the richness 

of the mathematics of the lesson, e.g., the mathematical justifications exploited).  

Early studies in this area identified certain deficits in the mathematics teaching: 

significant mathematical inaccuracies, e.g., definitions missing key elements, as well 

as mathematically poor teaching patterns, e.g., the use of material that does not 

support further development (e.g., Cohen 1990).  Follow-up studies focused on the 

practices of teachers involved in reform initiatives, indicating their tendency to adopt 

practices enriching the mathematics available to the learner: open-ended questioning, 

careful work with definitions, linking representations, probing for students 

explanations, and so on (e.g., Lampert 2001). 
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Hill et al. (2008) lately attempted to carefully test the relationship between MKT and 

MQI.  To this purpose, they pointed out to five determinants of the mathematical 

quality of instruction: mathematical errors (computational, conceptual, 

representational or other), responding to students appropriately or inappropriately 

(addressing successfully or unsuccessfully their mathematical utterances or 

misunderstandings), connecting classroom practice to mathematics (relating the work 

done to significant mathematical ideas), richness of mathematics (effective use of 

multiple representations, provision of mathematical explanation and justification, 

explicitness about mathematical practices like proof and reasoning) and 

mathematical language (coherent and accurate language to present mathematical 

ideas). 

The approach suggested by Hill et al. (2008) allows for concretely defined features 

of the mathematical knowledge to be traced in specific mathematics teaching 

practices, thus constituting a promising candidate for examining the mathematical 

knowledge shaped in the classroom. 

On the basis of the above, it could be argued, Anghileri (2006) and Hill et al. (2008) 

offer two challenging but rather distinct frameworks for inquiring into the 

mathematical outcome of the teacher-learners interactions in the classroom. In both 

perspectives, these interactions are seen in the context of the instructional practices 

employed by the teachers.  However, the status of the mathematical outcome is 

examined through the learning process from within Anghileri‘s framework and via 

the instructional process from within Hill and colleagues‘ perspective. 

In previous studies we adopted successively socio-constructivist, interactionist and 

epistemological perspectives to examine the mathematical meaning shaped in the 

classroom, concluding that they all offer partial readings of its nature (Kaldrimidou, 

et al. 2008). Moving forward, in the present study we exploit comparatively the 

lenses provided by Anghileri and Hill et al. in yet another search of analytical tools 

that allow for a satisfactory identification of the epistemological status of the 

meaning constructed in the mathematics classroom. 

THE STUDY 

The aim of the study was to explore the degree to which each of the two perspectives 

allow for the identification of a) the mathematical status of the meaning shaped in the 

classroom and b) the task management efficiency (i.e., how students‘ productions 

were dealt with) in relation to a). 

Two primary teachers, a young male (A) and a more experienced female (B), both 

professionally well developed, participated in the study.   The teachers were asked to 

teach a lesson on the properties of symmetry designed for 5
th

 grade students.  The 

central task required from the students to work in groups and to decide whether eight 

pairs of triangles were symmetrical or not and why.  The students were expected to 

eventually note that, in order for the triangles to be symmetrical, they should be 
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equal, to the same distance from the axis and reverted.   The teachers discussed the 

task and issues related to its management with one of the researchers thoroughly.  In 

particular, they were encouraged to let students experiment and to support them in 

their search of the properties of symmetrical figures, intervening only when it was 

absolutely necessary. 

The teaching session devoted to the task by each of the two teachers was audio-

taped, transcribed and carefully examined, in search for episodes that would 

exemplify and substantiate the categories suggested by Anghileri (2006) and Hill et 

al. (2008).   

 (a) Results I: Anghileri‘s framework 

The analysis of the data showed that, in general, the two lessons were very much 

alike, sharing a central characteristic: the students were allowed to work on their own 

and to develop their own ideas, but they were not encouraged to present them 

synthetically to the class, thus missing opportunities for negotiation of meaning and 

connecting ideas, that is, for systematizing the properties of symmetrical shapes. 

More specifically, the students in teacher A‘s class came up with all the required 

criteria simultaneously, while in teacher B‘s class each group ended up with a 

different criterion of symmetry.  The quotes below provide an idea of how teachers A 

and B attempted to prompt their students‘ work respectively (Extract 1):  

Teacher A:  We must find something, so that we can say whether a shape is symmetrical 

to another or not. The easy solution is folding, but we cannot always fold …  

If it is drawn on the blackboard, how will you tell me whether it is 

symmetrical? We need to find ways that will allow us, when we see two 

shapes, to be able to say whether they are symmetrical about an axis or not. 

Student in teacher‘s B class: In order for the two shapes to be symmetrical, they have to 

have the same shape … 

Teacher B:  Fine! Is it only then? Have you observed something else?  Look at the cases 

one by one.  See if you agree that, indeed, there is symmetry …. What 

things should be happening, what should by in effect? 

The two teachers‘ scaffolding practices indicate that they mainly function at level 2 

(Restructuring & Reviewing).  Initially, they appear to adopt mostly reviewing 

strategies, as they often invite students to verbalize or explain (Extract 2):  

Teacher A: What does the (symmetry) axis do to the two shapes? … What is the first 

thing we ended up with? The first result in relation to the two shapes? 

…What do we mean when we say that it makes them the same? 

Teacher B:  Fine, and what is the problem in the first case, why there is no symmetry? … 

Does it matter where the (symmetry) axis is or what matters is where the 
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two shapes are? …Since what matters is where the (symmetry) axis is, 

where should this line be then, in order to have symmetry? 

Also, the two teachers tend to often prompt children via questioning (Extract 3):  

Teacher A:  The one (shape) should look right and the other left? …Can it also be 

something else?… Initially, are they (symmetrical) or not? Why they are 

not? Which are the three elements that we mentioned? 

Teacher B: Before we get to the shapes, have you something to complete in the axis? … 

… Since we agree for case 5, let‘s move to case 6.  What happens here? 

The restructuring practices followed by the two teachers are limited and mainly 

related to rephrasing occasionally students‘ thoughts (Extract 4):    

Student AA:  The fourth case is not (a symmetry case), because, first of all, they are 

different shapes … 

Teacher A:  It is not, Tasos says, because they are different shapes, one is small and one 

is large, so it goes.  And the other two? Are they the same? 

 

Student BB:  It should be the same… 

Teacher B:  The same shape! There should be the same shape on both sides of the axis! 

Do you agree with this? 

Possibly the most interesting but not frequent scaffolding strategies are those bearing 

characteristics similar to the ones present in negotiation of meaning situations 

(Extract 5): 

Student CA:  One (shape) should look to the right and the other to the left …  

Teacher A:  The one should look to the right and the other to the left? Can it also be 

something else? 

Student CA:  Yes, one of the two should look to the opposite side 

Teacher A:  It is not only right-left.  I have above-below, northern-southern, eastern-

western … 

Student CA:  The one should look at the opposite side compared to the other 

Teacher A:  That is, when someone wishes to go somewhere, how would you explain to 

him?  Are you going to only tell him right-left? How do we call all this? 

 

Student DB:  The one shape shouldn‘t be like the other, because they are opposite to one 

another 

Teacher B:  They should be the same, but not exactly the same, they should be opposite 

to one another! I would like you to explain this ―opposite‖ to me …What is 

the meaning of this ―opposite‖? 

Student EB:  They should be equal but from the other edge, the edges should be opposite 

to one another. 
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Student FB:  They should be opposite to one another, that is, they shouldn‘t be… 

Teacher B:  I heard a word before, what does this ―opposite‖ you are trying to explain to 

me mean? 

Despite their common way of dealing with pupils‘ ideas, some distinct differences 

are also noticeable.  In particular, the language employed by teacher A to express 

mathematical meanings appears to maintain a certain level of accuracy, while teacher 

B is more tolerant to the adoption of a vernacular, everyday language to this purpose.   

Also, despite the fact that both teachers‘ practices remained at level 2, teacher A 

tended to be more exploratory than teacher B in utilizing pupils‘ ideas.  For example, 

he attempted to exploit a counter-example related to representational aspects, 

initiated by one student‘s suggestion (Extract 6): 

Student GA:  Two shapes, in order to be symmetrical, they have to be exactly the same. 

Teacher A:  (He draws on the board).  Are these symmetrical? 

Student GA:  (Tries to explain) … the triangle should be like this  

(he rotates)  

Teacher A:  We rotate it (he rotates the right-hand shape).   

  This one? 

Student GA:  Ah, no! (they carry on looking for a way to say it) 

Thus, teacher A tried to summarize the symmetry criteria identified by the pupils 

within a new representational framework, unlike teacher B, who maintained a rather 

funneling approach until the end. 

Based on the above, it could be argued that Anghileri‘s approach appears to offer a 

useful reading of teachers‘ exploitation of their pupils‘ ideas but does not help in 

making sense of the mathematical meaning emerging in the classroom.  In particular, 

it provides a rather limited tracing of the students‘ approach to the task and also of 

their actual understanding of the properties of symmetrical shapes. 

 

(b) Results II: Hill and colleagues‘ lenses 

Unlike Anghileri‘s approach, which makes possible the exploration of the 

mathematical meaning constructed in the classroom from within a learning 

perspective, the framework by Hill et al. (2008) turns the lenses on the teacher and 

his/her teaching actions, trying to identify how these actions affect the final 

mathematical outcome.   

To this direction, the analysis showed that both teachers made very few 

mathematical errors.  In fact, the only ones identified were related to mathematical 

justifications and explanations provided by them and, on the whole, concerned no or 

incomplete explanations.  For example, in the extract below, the term ‗symmetry‘ is 

incompletely described by teacher A, whereas in an incomplete, if not problematic, 
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justification is provided with respect to the meaning of each of the words ‗next‘, 

‗opposite‘ and ‗same‘ and their interrelationship by teacher B (Extract 7): 

Teacher A: What does the symmetry axis do to the two shapes? 

Student HA: It makes them the same 

Teacher A: When we say it makes them the same, what do we mean? 

Student HA: Symmetrical 

Teacher A: Symmetrical! Our triangles can be similar but not symmetrical.  It is another 

thing to be ‗similar‘ and another to be ‗symmetrical‘! Symmetrical are two 

things separated by this axis of symmetry, the way it is on the one side, it is 

also on the other side.  

 

Teacher B: Finally, the shapes are next or opposite to one another? I want you to tell me a 

little better what do you mean by ‗opposite‘. 

Student IB: The axis of symmetry separates the shapes 

Student JB: You can say that they are both opposite and next to one another 

Teacher B: Mmmm... They are the same 

As for connecting classroom practice to mathematics, teacher A appears to 

occasionally try to accentuate mathematical elements in the work carried out in the 

classroom by linking this work with mathematical ideas and procedures.  Thus, in the 

introduction of the lesson, he explicitly stresses the necessity of identifying criteria 

for deciding whether two shapes are symmetrical or not (see Extract 1). 

Closing the session, teacher A brings forward the most critical question, that is, 

whether the three criteria should be fulfilled at the same time, in order for the plane 

shapes to be symmetrical (Extract 8):   

Teacher A:  Fine! KA says that we know that these shapes are not symmetrical, because 

they are different! Therefore, in order to examine if two shapes are 

symmetrical, we need to examine all three criteria or only one?… I must 

check all three or only one of the criteria, as your schoolmate argued? 

Student KA:  If one of the criteria does not apply, you do not need to look for the rest. 

However, this behavior of teacher A is not stable, as he occasionally slips to 

contradictory actions.  In particular, while he resorts to the constructivist exploitation 

of counter-examples, in order to help students identify the criteria for symmetry, he 

simultaneously deters them from using folding to realize its presence (providing 

practical but not mathematical reasons for this). Folding might not be a mathematical 

procedure, but it is the only available to the students at the time being, in order to 

process this mathematically significant checking.  Thus, students are left with no 

choice but to judge holistically by visual means (see Extract 1).  

There is not much connecting of classroom practice to mathematics in teacher B‘s 

lesson. The only action that could be seen as contributing to this direction is the 
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emphasis he places upon checking, allowing the use of folding but without explicit 

reference to the mathematical necessity of it.  

On the whole, both teachers appear to be effectively responding to pupils by 

encouraging them to reflect on their sayings.  There are very few cases where this is 

done inappropriately (Extract 9 – see also extract 1): 

Teacher A:  You say that the two triangles, when joint, should make up one what …? 

Student LA:  When you will join the two shapes, you should have either a square or a 

rectangle or a rhombus. 

Teacher A:  Two shapes are symmetrical about an axis, when …? We need to bring 

together these three things, eh? ‗Separate ‘, ‗share‘ and ‗two symmetrical 

shapes‘ indicate different things, eh? Forget folding! How should it be? 

 

Teacher B:  What do you mean by this ‗opposite‘, because I do not understand. Can you 

explain using more mathematical terms? 

Student KB:  They look each other … The two ‗points/noses‘ of the shapes are different, 

but is like when two people look at each other…  

Teacher B: So, which points should be opposite to each other? 

Both teaching sessions appear weak with respect to the richness of the mathematics 

and, in particular, of the mathematical explanations and justifications. Even teacher 

A, who makes explicit references to practices and ways of reasoning does not invoke 

mathematical necessity or does not explain why.   

Finally, with respect to the mathematical language, both teachers tend to question 

the meaning of the mathematical terms used by the pupils, but the descriptions 

provided remain often incomplete.  Also, terms with double meaning are utilized 

without clarifications and self-evident notions and relationships are presented in 

confusing ways (e.g., below, the equality of shapes turns to equality of sizes, a 

necessary but not sufficient condition for the former).   

Teacher A:  We have two shapes; the distance from the axis should be the same! ... So, 

the first is that the distance of my shapes must be the same, 

I do this. Are they symmetrical now? 

Student LA:  They are not, because they have different size.  

Teacher B:  They should be reverse … the same sides of the shape should be the one 

opposite to the other...(A little later on, talking about the axis of symmetry) 

Teacher B:  Mmm… what should be to equal distance from the axis? When we say ‗in 

the middle‘, what should be equal? 

Student MB:  The shapes? 

Teacher B:  The shapes should be what, equal with respect to what? 

Student MB:  Size. 
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Based on the above, Hill et al. perspective allows for the identification of some but 

not of other significant aspects of the two teachers‘ teaching actions closely related 

to the quality of the emerging mathematical knowledge.  For example, teacher A 

pays attention to the use of mathematically ‗legitimate‘ processes, thus reinforcing 

the mathematically unacceptable visual means of judging whether two shapes are 

symmetrical.  Teacher B, on the other hand, encourages the exploitation of not 

mathematically ‗legitimate‘ processes (folding), attributing to checking special 

mathematical value.  These contradictions in the two teachers teaching practices are 

poorly addressed by this particular perspective.  The same is true for issues related to 

the epistemological nature of the enacted argumentation. For example, in both 

classes, the development of a definition turns to applying the definition (symmetry), 

giving rise to a distorted meaning for symmetry (e.g., that the line joining a point and 

its symmetrical should be vertical to the axis of symmetry is neither addressed nor 

identified).  

CONCLUDING REMARKS 

The classroom management of the same task carried out by different teachers offers a 

fruitful occasion to examine the emerging mathematical meaning.  This is because 

the fixed mathematical content allows for the identification of the impact of specific 

learning and teaching issues on the mathematical outcome.  To this direction, the 

present study adopted two distinct analytical tools, one focusing on the learning and 

the other on the instructional management of two teachers, in order to examine the 

quality of the mathematical knowledge given rise in their classrooms. 

The two approaches utilized highlighted different aspects of the teaching process.  

Anghileri‘s perspective essentially indicated the ways in which the teachers 

interacted with their students and dealt with their ideas, revealing a moderate effort 

to exploit these ideas in supporting the mathematics learning.  On the other hand, the 

lenses offered by Hill and her colleagues related the two teachers‘ management of 

their pupils thinking with only certain mathematical features. An especially 

interesting issue within this context was the use of language, one of the 

differentiating characteristics of the two lessons.  

Bearing in mind the central research question of the study, that is, what is the 

mathematical meaning shaped by the two teachers‘ actions in the classroom, as they 

deal with the same task, it appears that both approaches provide some useful insights 

into this shaping, without though allowing a satisfactory access to the status of the 

mathematics constructed by the pupils.  In particular, Anghileri‘s analytical lenses 

showed that both teachers dealt with pupils‘ ideas in a funneling mode, with the 

exception of teacher A, who was functioning predominately at level 2, moving only 

occasionally to level 3. Hill et al perspective, on the other hand, indicated how 

concrete aspects of the two teachers practices affected particular features of the 

mathematics emerging in the classroom. 
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The analysis of the two teachers‘ transcripts identified some common characteristics 

of the two lessons in relation to the mathematical errors and the management of the 

students‘ thinking carried out by the teachers. However, some differences concerning 

the connection of the teaching practices to the corresponding mathematical concepts 

were also apparent.  Thus, both perspectives seem to constitute valuable tools for 

analyzing mathematics teaching as far as the orientation followed by the 

management of the tasks in the classroom is concerned.  This is an issue of great 

interest for mathematics education in general and for mathematics teachers‘ 

education in particular, because, as Wood (1994) argues, passing from funneling 

(dominating traditional teaching) to focusing (characterizing constructivist teaching) 

requires a clear understanding of the essential changes in process.  

Beyond this, however, the question of what mathematical meaning is constructed in 

the classroom is an extremely complex issue requiring the combination of 

approaches in order to be captured.  
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The focus of this paper is to present some of the findings emerged from a study 

investigating the development of preservice mathematics teachers‘ pedagogical 

content knowledge (PCK) in a methods course and its associated field experience. 

Six preservice teachers participated in the study and the data were collected in the 

forms of observations, interviews and written documents. The analysis of data 

revealed that preservice teachers‘ knowledge of subject matter was influential on the 

development of their PCK. 
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INTRODUCTION 

The major goal of teaching is to enhance students‘ understanding and learning. 

Teachers need to be equipped with various knowledge and skills to establish and 

maintain effective teaching environments that enable them to achieve that goal. 

Shulman (1986) used the term pedagogical content knowledge (PCK) to name a 

special knowledge base that involves interweaving such various knowledge and 

skills. He defined PCK as ―the ways of representing and formulating the subject that 

make it comprehensible to others‖ (p. 9). He stated that PCK includes teachers‘ 

knowledge about specific topics that might be easy or difficult for students and 

possible conceptions or misconceptions that student might have related to the topic. 

Many scholars accept PCK as a distinct knowledge domain for teachers but there is 

no single definition of PCK due to ambiguity of what constitutes PCK (e.g., Ball, 

Thames, & Phelps, 2008). Because PCK is perceived as knowledge of how to teach a 

particular subject matter (An, Kulm, & Wu, 2004), viewing PCK as the integration of 

content and pedagogy would not address all requirements needed for effective 

teaching. Teachers not only need to possess knowledge of subject matter and 

pedagogy but also they need to know about students, curriculum, educational goals, 

and instructional materials to promote students‘ understanding as well as to achieve 

learning goals identified in the curriculum. Therefore, some scholars (e.g., An, Kulm, 

& Wu, 2004; Marks, 1990) accept knowledge of subject matter, knowledge of 

pedagogy, knowledge of students, and knowledge of curriculum are the components 

of PCK. Teachers need to know characteristics and needs of a particular group of 

students, and their conceptions and misconceptions about a particular topic that will 

be taught. They also need to know the arrangement of the topics covered in a 

particular grade level and how to use curriculum materials to achieve the learning 

goals identified in the written curriculum. 
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Pedagogical content knowledge is assumed to be developed as teachers gain more 

experience in teaching because it is directly related to the act of teaching (Borko & 

Putnam, 1996). However, studies of preservice mathematics teachers‘ knowledge 

and skills related to teaching have revealed that methods courses and field 

experiences are likely to contribute to the development of PCK to some extent (e.g., 

Tirosh, 2000). Although there is no widely accepted standardized instrument 

specifically developed to measure teachers‘ PCK or the development of their PCK, 

researchers could learn about the nature of teachers‘ PCK by using different methods 

such as classroom observations, structured interviews, questionnaires, and journals 

(e.g., An, Kulm, & Wu, 2004). A methods course for mathematics teachers could be 

designed in a way that preservice teachers would have various opportunities such as 

analyzing students‘ error, developing a task, and microteaching to improve their 

PCK (e.g., Ball, 1988). Therefore, I aimed to investigate what components of 

preservice secondary mathematics teachers‘ PCK developed in a methods course and 

its associated field experiences. 

THEORETICAL FRAMEWORK 

Based on my review of the literature of which I could only discuss very limited part 

of it above, I accepted that PCK involved four aspects of knowledge; subject matter, 

pedagogy, students, and curriculum, and there exists reciprocal relationships between 

them. In my definition of PCK, knowledge of subject matter refers to both teachers‘ 

procedural knowledge and conceptual understanding of mathematics. Knowledge of 

pedagogy refers to teachers‘ ability to choose appropriate tasks, examples and 

representations for a particular group of students and their repertoire of teaching 

strategies. Knowledge of students involves teachers‘ knowledge of students‘ 

conceptions, misconceptions, and possible difficulties about a particular topic and 

their ability to diagnose and eliminate such misconceptions and difficulties 

effectively. Finally, knowledge of curriculum includes knowledge of learning goals 

for different grade levels and knowledge of instructional materials. Although Ball et 

al. (2008) separate knowledge of subject matter from PCK in their model of 

Mathematical Knowledge for Teaching (MKT), they accept that teachers should 

know the content to teach, to help the students and to understand and apply the 

curriculum. Therefore, I accept knowledge of subject matter as one of the aspects of 

PCK. 

METHODOLOGY 

I conducted a qualitative study to investigate what aspects of secondary mathematics 

preservice teachers‘ PCK developed in a methods course and its associated field 

experience in fall 2008 at a large public university in the southeastern U.S. I wanted 

to understand the variety and the extent of the issues discussed in these courses and 

how preservice teachers could benefit from those discussions and field experiences. 
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There were 29 preservice teachers taking both courses. I administered a 

questionnaire at the beginning of the semester to learn how they perceived their level 

of PCK. The questionnaire consisted of 13 items; eight of them were multiple-

choice, one was Likert-type and four were short-answer question. Based on their 

overall scores, I formed a representative group consisting of six preservice teachers 

varying degree of perceived level of PCK (low, medium, high).   

I was a participant-observer in all class sessions in both classes and I took some 

notes and collected any written documents given in the courses. I also conducted 

three interviews with each participant during the semester. At the beginning of the 

interviews, I asked them to reflect on the issues discussed in the methods and the 

field experience courses and how they contributed to each aspect of their PCK. Then 

I gave them some content-specific questions to understand the nature of their PCK. 

Although the methods course and its associated field experiences were not designed 

with an intention of developing preservice teachers‘ PCK, in each session, the 

preservice teachers were discussing how to teach a particular mathematical concept 

that was determined by the instructor.  Therefore, I used my field notes to prepare 

content-specific tasks that I asked during the interviews. I also wanted the preservice 

teachers to reflect on their field experiences. I looked at the students‘ assignments to 

gain a better understanding of the course topics and students‘ thoughts and 

reflections about those topics.  During the last interview, I gave them a shortened 

version of questionnaire to see how they perceived their knowledge levels at the end 

of the semester. Furthermore, I asked them to make an overall evaluation of the 

methods and field experience course in terms of their gains from these courses.  

Then, I transcribed all interviews and coded them according to the PCK framework 

developed for this study. I compared the answers to similar types of questions to 

determine the similarities and differences between the explanations and also to detect 

any change, if there was one, in their knowledge level of that particular knowledge 

domain. I discussed my decisions about each participant‘s responses to the interview 

questions with a member of faculty from the mathematics education department and 

we agreed on almost all of them. 

RESULTS 

I identified four salient features of the nature and the development of preservice 

teachers‘ PCK: 1) knowledge of subject matter is a crucial aspect of PCK and 

influences the quality of the other aspects of PCK, 2) the course practices and field 

experiences raised preservice teachers‘ awareness of some issues of teaching and 

learning mathematics; however, they were not able to apply this knowledge, 3) the 

preservice teachers benefited from the course practices and field experiences to 

varying degrees, and 4) the preservice teachers generally overestimated the level of 

their knowledge of each aspect of PCK. Because of space limitation, I will not 

discuss the findings in detail, but give examples from interview data to support only 

the first bullet. 
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Choice of Teaching Activities, Tasks, and Examples 

The preservice teachers‘ knowledge of pedagogy was investigated in terms of their 

choices of tasks, examples, and teaching activities and their repertoire of teaching 

strategies. The findings revealed that the preservice teachers‘ choices of teaching 

activities, tasks, and examples depended on their views of teaching and learning 

mathematics. Collectively, the preservice teachers viewed mathematics as the set of 

rules, procedures, and facts. When asked to teach a particular topic, they mostly 

stated mathematical facts and described how to carry out the procedures or apply a 

rule. Given a set of examples and asked to place them in the order in which they 

would solve them, some of the preservice teachers looked at their surface features 

such as the number of terms involved in a given equation or number of steps to solve 

that equation rather than paying attention to how the examples would facilitate 

students‘ understanding. For instance, given the task shown in Figure 1, four of the 

preservice teachers preferred to begin with the fourth example because it seems 

easier. One of them reported that she would begin with the second one because she 

would get a linear equation when cross multiplying the terms and it is easier to solve 

a linear equation. The other one would begin with the third example because students 

are familiar with adding fractions with unlike denominators so they would solve it 

easily. 

Similarly, during the second interview I asked them put given linear equations in an 

order to teach how to graph linear equations. Two of the preservice teachers 

preferred to begin with line 5y because it is horizontal line and there is nothing to 

think about. Although drawing horizontal line is easier than drawing the graph 

of 5xy , students usually fail to recognize that 5y  is a line not a point. Therefore, 

teachers should make sure that students know the difference between a line and a 

point. 

 

In which order would you like to use the equations to introduce rational equations?   
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Figure 1. The solving rational equations task. 

Identification of Source of Students‘ Difficulties and Errors 

The nature of preservice teachers‘ mathematical knowledge and their views about 

mathematics reflected on how they would help students when the students had 

misconceptions about or difficulties in understanding of a particular topic. The 

preservice teachers thought that the students fail in mathematics because they do not 

know the mathematical rules or procedures or they apply them wrongly. They did not 

state how flaws in students‘ conceptual understanding would likely lead to failure in 
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generating a correct solution. Therefore, when they were asked to address students‘ 

errors they inclined to tell how to apply the rules or carry out the algorithms 

correctly. They did not attempt to justify the reasoning underlying those rules or 

algorithms.  

During the third interview, I asked the preservice teachers how they could help a 

student who made a mistake when solving inequalities such that the student did not 

change the direction of the inequality after dividing the coefficient of the x term by a 

negative number. All participants stated that they would tell the student that when 

dividing by a negative number you need to flip the inequality sign. To convince the 

student that the answer was incorrect they would ask her to check the reasonableness 

of the result by assigning a value from the solution set to x. Furthermore, all of them 

were aware of that there was a mathematical explanation for why they need to 

change the inequality sign; however except one preservice teacher they failed to state 

it clearly. 

Conceptual Understanding of Mathematics 

The preservice teachers‘ answers to the content-specific questions revealed that their 

knowledge of subject matter is mostly procedural and they did not know the 

conceptual foundations of some topics such as ellipses, polynomial equations, 

permutation and combination. For instance, none of the preservice teachers were able 

to define what ellipse is. They knew what it looks like but they had no idea what is 

used for in mathematics. Two of them told that you could form an ellipse by 

combining two parabolas. Although an ellipse could be visualized as a combination 

of two parabolas, it is a mathematically invalid argument. They also failed to 

remember the expressions for ),( rnP  or ),( rnC even though they knew that 

permutation refers to ordering objects while combination is finding different 

combinations of given objects. 

The weakness of preservice teachers‘ conceptual knowledge of mathematics was 

evident when answering other type of content-specific tasks such as identification of 

the source of students‘ errors. Because they did not know the reasoning for flipping 

the inequality sign when dividing or multiplying inequality with a negative number, 

they would tell their students that it is a rule. Furthermore, some of them said that 

they had not been taught some of the concepts such as ellipses in depth in high 

school nor studied on them in the college. Therefore, they did not have any idea 

about them. 

DISCUSSION 

The findings of this study supported the findings that PCK involves various 

knowledge and skills which are highly interrelated to each other (e.g., Even & 

Tirosh, 1995). A teacher should possess in-depth knowledge of subject matter, have 

a rich repertoire of teaching strategies, and be able to critically select tasks, 

examples, representations, and instructional materials to promote students‘ 
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understanding of a particular topic, and to diagnose and eliminate students‘ errors 

and misconceptions effectively. Moreover, among the other components of PCK, 

knowledge of subject matter needs specific attention because a teacher should have 

strong knowledge of the subject matter s/he would teach in order to be able to 

develop effective teaching strategies that are appropriate for a particular group of 

students, to choose appropriate tasks for them, and to identify the reasons underlying 

their errors and address them effectively.   

The findings of this study supported the fact that preservice teachers lack knowledge 

of pedagogy (e.g., Ball, 1990) and knowledge of students (e.g., Morris, Hiebert, & 

Spitzer, 2009). For instance, when the preservice teachers were asked to order given 

examples of linear equations, some of them preferred to start with ―y=5‖ because 

they thought that it was the simplest one. They disregarded the fact that some 

students might fail to distinguish between a line and a point, therefore ―y=5‖ might 

not be easily understood by students as they assumed to be so. As indicated in the 

solving inequality task, the preservice teachers perceive teaching as telling the rules, 

showing students how to use them, and then having students practice them (e.g., 

Kinach, 2002). Furthermore, preservice teachers‘ pedagogical decisions are 

influenced by their knowledge of subject matter (e.g., Borko & Putnam, 1996). When 

they were not sure about the reasoning underlying the algorithms as in the case of 

solving inequalities, they just preferred telling rules.  

Although the purpose of this study was to investigate the development of preservice 

teachers‘ PCK in a methods course and its associated field experience, I was not able 

to detect improvement in their PCK, because their knowledge of subject matter was 

the overriding determinant of their success in answering the questions. I used various 

tasks involved secondary school mathematics content for the questionnaire and 

interviews, and I used different items in each interview. This was problematic 

because if the preservice teachers did not have a strong conceptual understanding of 

the subject matter involved in an item, the item revealed their knowledge of subject 

matter rather than another aspect of their PCK. For instance, at the beginning of the 

semester some of the preservice teachers were able to provide conceptual 

foundations underlying mathematical facts because they knew the subject matter 

involved, but at the end of the semester they performed poorly on a similar item 

involving different subject matter because they did not know much about it. 
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background, Bruner‘s theory about two modes of thought, syntagmatic and 

paradigmatic, is presented. The Knowledge Quartet is used as an analytical tool in 
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from a literacy perspective. Finally, suggestions are made to put more weight on 

mediating tools, rather than on basic skills, in the learning process.  
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BACKGROUND 

Our project, ―The Didactic Challenge of New Literacies in School and Teacher 

Education‖, focuses on literacy both in classrooms and teacher education from the 

perspective of didactics in several subjects. In Kleve & Penne (2010), which was a 

joint presentation in two subjects, Norwegian and mathematics, we explored the 

expression ―Knowledge is made, not found‖ (Olson, 2001, p. 104), and discussed 

how meaning is constructed. Drawing on Vygotsky and particularly on Bruner‘s 

distinction between syntagmatic and paradigmatic modes of thinking (Bruner, 1986), 

we suggested some didactical perspectives that we claim have been obscured and 

ignored in recent years‘ focus on basic skills. Also, in Norway, student-centred 

pedagogy with the slogan ‗responsibility for own learning‘ has been a focus over 

time. Thus, teachers‘ expertise and knowledge have been taken less into account.  

In this paper, I will follow this approach and discuss the importance of the two 

modes of thought in teaching and learning mathematics, and how a teacher Cecilie, 

took her pupils with her in using these modes of thought in the mathematics 

classroom. To emphasise the importance of teachers‘ expertise and knowledge, I 

have used the Knowledge Quartet (Rowland, Huckstep, & Thwaites, 2005) as an 

analytical tool to find out how aspects of Cecilie‘s mathematical knowledge surfaced 

in her work in taking her pupils with her in using the two modes of thought in 

mathematics. The importance of these aspects of a teacher‘s knowledge is discussed 

and implications for teacher education are suggested. 

The Knowledge Quartet has four broad dimensions; Foundation, Transformation, 

Connection and Contingency. Foundation is the mathematical knowledge the teacher 

has gained through his/her own education, it is knowledge possessed, which can 

inform pedagogical choices and strategies. It is the reservoir of pedagogical content 
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knowledge you draw from in planning and carrying out a lesson and thus informs 

pedagogical choices and strategies. Transformation focuses on the teacher‘s capacity 

to transform his or her foundational knowledge into forms that can help someone 

else to learn it. It is about examples and representations the teacher chooses to use. 

The third category, Connection, binds together distinct parts of the mathematics and 

concerns the coherence in the teacher‘s planning of lessons and teaching over time 

and also coherence across single lessons. Contingency is the category that concerns 

situations in mathematics classrooms that are impossible for the teacher to plan for; 

the teacher‘s ability to deviate from what s/he had planned and the teacher‘s 

readiness to respond to pupils‘ ideas are important classroom events within this 

category.  

TWO MODES OF THOUGHT 

Vygotsky made a strict distinction between two levels of mental functioning:  

The lower level he characterized as natural, biological, causal and shared with nonhuman 

animals. The higher mental processes he portrayed as representational, sociohistorical, 

linguistic, voluntary, conscious and distinctively human (Olson 2001, p. 107). 

As a development of Vygotsky‘s distinction between ―lower‖ or natural mental 

functions and ―higher‖ or cultural functions, Bruner (1986) introduced the 

paradigmatic mode and syntagmatic mode as ―two modes of cognitive functioning, 

two modes of thought, each providing distinctive ways of ordering experience, of 

constructing reality‖ (p. 11). The syntagmatic mode of thought is basically related to 

linear time, and has primarily a narrative character. It is told from a subjective point 

of view and does not require truth, but rather a general probability or verisimilitude, 

referring to life in culture. This everyday thinking communicates an experienced 

world, and communicating in this mode means that the narrative structure is the most 

pervasive cognitive structure. It is merely based on tacit knowledge and acquired as 

part of communication in the family and in our everyday life, and thus slips easily 

into the mind. We all live in an ―obvious‖ discursive world and we are linked 

together in communities through common discourses. Syntagmatic thinking is useful 

and necessary in our lives. From a didactical perspective however, this way of 

thinking can lead us only into obvious and tautological reasoning. We therefore need 

something more which can make us more conscious of other opportunities than what 

is obvious. 

The paradigmatic mode of thought is different. The mind is more resistant to this 

way of thinking, reasoning about universal aspects of meaning and conclusions valid 

beyond time and context. Bruner (1986) writes: 

[It] attempts to fulfil the ideal of a formal, mathematical system of description and 

explanation. It employs categorization or conceptualization and the operations by which 

categories are established, instantiated, idealized, and related one to the other to form a 

system (p. 12). 
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The paradigmatic mode deals in general cases and uses procedures in testing for 

empirical truth. Consistency and non-contradiction are required.  

According to Bruner, the narrative structure acts as a mediating tool in the 

syntagmatic mode whereas in the paradigmatic mode concepts and metaphors are 

important mediating tools.  

For mathematics, this means that exercising skills and methods (procedural 

knowledge) takes place in a syntagmatic mode of thinking, whereas generalisations, 

reasoning beyond time and context and building concepts (conceptual knowledge) 

takes place in a paradigmatic mode of thinking.  

Bruner emphasised that the two modes of thought will never act ―alone‖. We all use 

them both continuously, however to different extents depending on the context.  

Science has often started out as hypotheses in everyday discourse and then been 

developed scientifically through a paradigmatic effort, a perspective which actively 

and consciously strives to transcend the narrative structure in the syntagmatic 

discourse. We therefore need continuous interaction between the two modes of 

thought to understand both everyday life and science. Bruner (1986) put it this way: 

We all know by now that many scientific and mathematical hypotheses start their lives as 

little stories or metaphors, but they can reach scientific maturity by a process of 

conversion into verifiability, formal and empirical, and their power at maturity does not 

rest on their dramatic origins (p. 12). 

As an example of the importance of both ways of thinking in the process of 

constructing concepts, Olson (2001) used a child‘s learning to represent nothing with 

something, a zero. He claimed that concepts cannot pass smoothly from culture to 

mind, and, therefore, for a child to compare what is in his consciousness, ―no cats‖, 

with what is in the culture, ―the zero‖, is problematic. Olson suggested that both the 

knowledge of absence and the knowledge of a sequence of numerals (learned by 

rote?) have to be available in the child‘s consciousness. 

Learning then, consists of applying the memorized sequence of the numerals to the prior 

knowledge of absence. In so doing the child is not merely making explicit the known but 

forming a concept applicable to all sorts of nothings (Olson, 2001, p. 113). 

According to Bruner, knowledge is made and not found, even for scientists. Olson 

(2001) put it this way: ―Children, like adults, make what they find‖ (p.113). For 

teaching this means that teaching defines the problem space from which knowledge 

is constructed by the children and constructivism makes competent teaching 

significant. Competent teachers are needed to determine what children have found 

from which knowledge can be made rather than to ―cover‖ a settled curriculum.  

Mediational means are central in Vygotsky‘s (1986) theory. The task for the 

competent or expert teacher is to make sure that pupils get access to the language or 

mediational means that can open up new aspects of the world, and develop their 
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thought. But how does transformation from mediational means to inner thoughts take 

place, given that children do not find new knowledge, they make it? Discussing this 

question, Olson (2001) elaborated how knowledge construction takes place: 

Knowledge is constructed I have suggested, when the learner can take one set of concepts 

and use them as a model for thinking about some other sets of events. My example was 

seeing [  ] nothing [no cats] in terms of a numeral [zero]. The basic mode is metaphor, 

abduction, narrative construal, inference to the best representations rather than things. 

These representations, accumulated archivally in maps, charts, books and computer 

programs provide many of these most important models (p.113). 

Thus importance is put on metaphors; through the metaphor, zero became a part of 

the child‘s thinking. According to Olson, it is easier to understand Vygotsky through 

metaphor theory.    

In her book, Thinking as Communication, Sfard (2010) discussed the same aspects 

from Bruner‘s theory and she put weight on discourse and metaphors in science and 

everyday life: 

Jerome Bruner describes the transition from a metaphor to its operationalized, ―scientific‖ 

version in a beautifully metaphorical way. After stating that metaphors are ―Crutches to 

help us get up the abstract mountain,‖ The author notes: Once up, we throw them away 

(even hide them) in favor of a formal logically consistent theory that (with luck) can be 

stated in mathematical or near-mathematical terms (p.41). 

How do teachers ‗re-present‘ their mathematical knowledge to pupils in terms of 

examples, demonstrations, illustrations, activities and questions? What crutches are 

the pupils given which they can throw away? In the next section of this paper, I will 

present examples from mathematics classrooms and discuss the importance of 

aspects of the teacher‘s mathematical knowledge, with emphasis on the 

transformation aspect, in encouraging pupils to think in both modes of thought, 

syntagmatic and paradigmatic. For pupils to learn to think in a paradigmatic mode, 

to form new mathematical concepts on which they can perform operations, their 

interaction with more knowledgeable peers (the teacher), who can use the concept in 

a paradigmatic mode, is of decisive importance.  

This stresses the importance of both modes of thinking, syntagmatic and 

paradigmatic, in pupils‘ learning process. In our curriculum, LK06 

(Kunnskapsdepartementet, 2006) ―basic skills‖ are emphasised. From a literacy 

perspective, it is even more important for the pupils to learn how to use mediating 

tools to understand and develop new insight and to form new mathematical concepts. 

They need tools of the mind to extend mental abilities. In this work, aspects of the 

teacher‘s mathematical knowledge play a crucial role.  
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EXAMPLES FROM THE MATHEMATICS CLASSROOM 

I will now present extracts from two mathematics lessons in 10
th

 grade with a 

teacher, here called Cecilie. The data are taken from Kleve (2007), a study in which I 

investigated how mathematics teachers in lower secondary school implemented a 

curriculum reform in Norway. Four mathematics teachers were observed over a 

period of three months, and the mathematics lessons were audio recorded and 

transcribed. The two episodes, which I present below, are selected because they 

illustrate how shifts between syntagmatic and paradigmatic modes of thought took 

place in Cecilie‘s lessons.   

Episode 1 

Cecilie had drawn a right-angled triangle on the board and asked the pupils to have 

their calculators ready: 

1 Cecilie: What kind of a triangle do we have there, Mikkel? 

2 Mikkel: Right-angled triangle 

3 Cecilie: Then we know the lengths of the two sides. [ ]. How can I find the 
third side, Leif? 

4 Leif: You have to use Pythagoras 

5 Cecilie: Yes, have to use Pythagoras. Let us try to do that with this triangle. If 
we call this side for x, Leif? 

6 Leif: Must take x
2
= 3.6

2 
+ 4.8

2 
 

  (Cecilie wrote it on the board) 

7 Cecilie: Yes, let us calculate that. Three point six squared is? 

8 studs: Twelve point ninety six 

9 Cecilie: Four point eight squared is? 

10 pupils: twenty-three point o four 

11 Cecilie: Twenty-three point o four (wrote it on the board). The sum of these 
numbers is? 

12 Pupil: Thirty-six 

13 Cecilie: It is thirty-six 

14 Pupil: It makes six 

15 Cecilie: Yes okay it became six long. This was lots of calculations. If we look 
at the numbers here, we could have simplified it. Is it like, here I have 
added one point two, and if I add another one point two I‘ll get the 
third side? Is that a rule which always works? Let us take another 
example. New triangle (She drew a new triangle on the board with 
sides like 7.5 and 10). If that is seven point five and that is ten, will 
that one (the hypotenuse) be twelve point five? Can you check if it 
works? 

16 Baard: Yes 

17 Cecilie: That worked as well. Your exploratory task is now: Does it always 
work? Does it work for any length?  
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Later in the lesson, when the pupils had found counterexamples to the teacher‘s 

―rule‖, that in a right angled triangle, you can add the difference between the two 

smaller sides to get the hypotenuse, Cecilie said: 

If it had been that easy in all cases, we wouldn‘t have had this rule (Pythagoras‘ 

sentence). Then I‘d tricked you to calculate a lot. Next question is then: why does it work 

on these sides? What is special with the numbers here? Why does it work with my 

examples? Take a look at the lengths of the sides.  

Towards the end of the lesson, when they had worked out that the ratio between the 

smaller sides had to be ¶, they investigated further. They went on to Pythagorean 

Triples, taking 3-4-5 as a starting point and Cecilie presented Euclid‘s formula p
2
-q

2
, 

2pq, p
2
+q

2
, which makes Pythagorean triples when p and q are whole numbers, and 

makes the special 3-4-5 triple when p=2 and q=1.  

Before discussing this episode from a literacy perspective, I will investigate aspects 

in the KQ of the teacher‘s mathematical knowledge which became evident in the 

episode and especially when Cecilie took her pupils with her in what I see as a shift 

from a syntagmatic to a paradigmatic mode of thought. Since there were no 

contingent moments in this episode, (which may be because she was not open to it), I 

will focus on the three other aspects, Foundation, Transformation and Connection of 

the KQ. 

I will start with the teacher‘s foundational knowledge, the knowledge from which she 

chose examples, illustrations and kinds of questions asked. First of all, Cecilie 

demonstrated knowledge of Pythagoras‘ Theorem and the sentence to be 

investigated: ‗In right angled triangles where the ratio between the two smaller sides 

is ¶, you can take the difference between the two smaller sides and add to the largest 

to get the length of the hypotenuse‘. Also the teacher‘s knowledge of Euclid‘s 

formula was demonstrated. This shows that the teacher in this case had the 

foundational knowledge required for the topic of this lesson.  

How did Cecilie make this knowledge accessible for her pupils? A feature of the 

transformation aspect of Cecilie‘s knowledge was that she related what was new to 

something well known. She started off with a right-angled triangle and Pythagoras‘ 

Theorem. That way she used for the pupils a well-known theorem to explore a new 

sentence. From her knowledge of the sentence to be proved (which was part of her 

foundational knowledge), Cecilie chose examples which made the sentence true. 

Also, when introducing Euclid‘s Formula, she used the, for the pupils, now familiar 

3-4-5 triple to exemplify. To incorporate the pupils in this episode, she asked 

questions for them to answer.  

In this episode, there was a connection from the start through calculating the 

hypotenuse in one triangle then in another triangle, then finding a counterexample to 

explore in which cases the sentence was true. Cecilie then made the link to Euclid‘s 

formula, which shows that she was in a position that made her able to make 
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connections between Pythagoras‘ Theorem, the sentence to be explored and Euclid‘s 

formula.  

Looking at this episode from a literacy perspective, we will see that the course of the 

lesson was in a syntagmatic mode until turn 15. Throughout turns 1-14 the teacher 

had funnelled the pupils through calculations, stage by stage, using a well-known 

theorem (Pythagoras). Pythagoras‘ Theorem was used in calculating the hypotenuse 

in a triangle with the shorter sides being 3.6 and 4.8, and in another triangle with 

sides like 7.5 and 10. Then, in turn 15, she shifted to: ―Is that a rule which always 

works?‖And the question was restated in turn 17: ―Does it always work? Does it 

work for any length?‖ All of a sudden they were challenged with the word why. And 

she gave them a hint in saying: ―Take a look at the lengths of the sides‖. One strategy 

was to find a counterexample, which is a well-known way of proving that something 

is not true. The next stage was to investigate in which cases the ―rule‖ worked. That 

way, the teacher took her pupils with her towards a paradigmatic mode of thinking 

which, in mathematics, incorporates generalisations. In which cases does it always 

work? To prove that something works, it is not sufficient to find many, thousands, 

examples with numbers in which it works. Using algebra is a way of proving, 

generalising and reasoning beyond time and context.  

In recent curricula in Norway, the algebra content is reduced, and more weight is put 

on ―basic skills‖. Thus mathematics in school has moved towards a more linear 

discourse or syntagmatic mode. Less weight has been put on vertical generalisations 

and paradigmatic thinking. In turn 17 above, ―does it always work?‖ the pupils were 

challenged into another mode of thought, the paradigmatic, from the one in which 

they had so far been working. Until now, they had only carried out simple 

calculations on their calculators and answered the teacher‘s closed questions. The 

examples the teacher used, the questions she asked, and the connections she made 

acted as mediating tools for the pupils. 

Episode 2 

Let us take a look at a similar episode from a mathematics lesson with the same 

teacher two weeks later. The starting point was a task from a test. Like in episode 1, 

there was a sudden break in discourse, or a shift in mode of thinking, from 

syntagmatic to paradigmatic. The generalisation question was in the text. However, 

on the test, the pupils had worked out the task with concrete examples. The teacher 

took those examples as a starting point and thus offered the pupils mediating tools to 

solve the task which was: ―The length of a rectangle is increased by 15% and the 

breadth is reduced by 20%. How many percent does the area of the rectangle 

change?‖ Thus, the relation to something known for the pupils, a reified object, was 

established, before a similar break or shift in discourse (like in episode 1, turn 17) 

took place. 

1 Cecilie: The length in a rectangle is increased by 15% and the breadth is 
reduced by 20% how many percent does the area of the rectangle 
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change? And the way everybody who answered that task did it, was 
that you chose a rectangle. Let us take this rectangle in which the 
length is 20 and the breadth is 5 (she drew it on the board). How big is 
the area of the rectangle? 

2 pupils: Hundred 

3 Cecilie: It is hundred. The area is hundred. And then the task was: The length 
is increased by 15%, how much will the new length be? 

4  Leif: Twenty-three 

5 Cecilie: Very good, Leif, very good mental calculation. The new length 
becomes twenty-three, and when the breadth is reduced by 20 %, what 
is the new breadth then? 

6 Baard: Four 

7 Cecilie: Yes, and what is the area? 

8 Baard: It is ninety-two, right? It‘s a guess. 

9 Cecilie: Right. It is not a guess, it is a mental calculation. How many percent is 
the area reduced? 

10 Baard: Eight percent 

11 Cecilie: Yes, it is. If it was hundred percent earlier, then it is ninety-two 
percent now, an eight percent reduction. Then the question is: are you 
sure it is applicable for other rectangles as well? This was for one 
special rectangle.  

Also, here, I will discuss aspects of the KQ before studying the episode from a 

literacy perspective. In this episode, Cecilie demonstrated that she knew that length 

20 and breadth 5 would make the area 100, that the change in area and the change in 

percent then would be the same. Also, 15% of 20 and 20% of 5 giving two whole 

numbers (3 and 1), which again gave them two whole numbers with which to 

calculate further, is worth noticing. This knowledge, which is a feature of the 

foundation aspect of the teacher‘s mathematical knowledge, informed her choice of 

measures in the example in this episode. Her choice of using a 100 rectangle was 

informed by her foundational knowledge, which included that the change in area and 

percentage change would have the same value. This demonstrates the transformation 

aspect of her knowledge. Also taking the pupils‘ answers to the task as a starting 

point, which had been choosing a concrete rectangle, demonstrates how she 

transformed or ―re-presented‖ her knowledge of percentage change to be available 

for the pupils. She offered the pupils a 100 rectangle as a mediational means to 

percentage change. Thus a relation within mathematics was used, which 

demonstrated the KQ‘s connection aspect of Cecilie‘s knowledge.   

In this episode, like in episode 1, they started in a syntagmatic mode, working with 

concrete examples, and as in episode 1 (is that a rule which always works?), we can 

see a shift in discourse, a shift in thinking: Is it applicable for other rectangles? A 

move to the paradigmatic mode of thought was initiated. After this episode, later in 

the lesson, the teacher emphasised that, on the test, it had not been sufficient to show 

the percentage change for concrete rectangles. She required a way to find out if it 
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applied to all rectangles. A shift to a paradigmatic mode was taken. In mathematics, 

generalisations play a crucial role in this mode, and use of algebra is a way of 

carrying out generalisations. After the episode presented above, a pupil suggested 

using algebra: 1.15a 0.8b=0.92a b, which is 0.08=8% change related to a b. That 

way they had proved that the change was 8% for all rectangles.  

In this lesson, Cecilie referred to the lesson two weeks earlier in which they 

concluded that 
2

2

2

3

5

3

4
aaa . This elucidates another feature of the connection 

aspect of Cecilie‘s mathematical knowledge.  There was a connection, a relation, 

between the two lessons, a relation the teacher made the pupils aware of. Such 

connections can act as mediational means in pupils‘ learning, and are important in 

strengthening their paradigmatic thinking.  

DISCUSSION 

In this paper, I have shown how Cecilie, in two lessons, took concrete examples as a 

starting point, and the examples she used acted as meditational means for the pupils 

to generalize and to move from a syntagmatic mode to a paradigmatic mode of 

thinking. I have used the Knowledge Quartet as an analytical tool and suggest that 

aspects of teachers‘ knowledge, with emphasis on transformation and connection are 

of crucial importance in the work with pupils in both modes, syntagmatic and 

paradigmatic, of thinking. In episode 1, the well known Pythagoras‘ Theorem was 

used as a crutch to find lengths of sides. In episode 2, a 100-rectangle was used as 

crutches to find percentage change. This implies that there is ―something‖ needed 

which can serve as meditational means to make pupils more conscious for other 

opportunities than the obvious. Based on how they had solved the task on test, I 

suggest that it was obvious for the pupils how big the percentage change was in 

concrete rectangles. In solving the task on the test, they had been in a syntagmatic 

mode of thinking. However, for the pupils it was not obvious that the percentage 

change was the same for all rectangles; that the change was valid beyond concrete 

rectangles.  

In earlier research, I have discussed how pupils‘ difficulties, which surfaced in 

contingent moments, in the conceptual understanding of fractions greater than one 

can be traced back to the transformation aspect of the teacher‘s mathematical 

knowledge (Kleve, 2009, 2010). From a literacy perspective, I suggest that the 

examples and illustrations the teacher used in that lesson was more of a hindrance 

than a help for the students to think in a paradigmatic mode. They failed in serving as 

meditational means between concrete conceptions of something more than one and 

improper fractions. In Kleve (2009b), I discussed the teacher‘s difficulties in 

illustrating improper fraction, and suggested that the focus on fractions as part of a 

whole, the ―easiest‖ way for pupils to understand a proper fraction, also acted as a 
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hindrance in illustrating an improper fraction. They were stuck in the syntagmatic 

mode of thinking.   

Based on this, I suggest that aspects of teachers‘ mathematical knowledge are crucial 

factors and therefore important to focus upon in teacher education. What are student 

teachers‘ choices of examples and illustrations and questions informed by? How do 

questions, examples and connections they choose influence pupils‘ thinking and 

learning in mathematics? For teachers, it is of great importance to be conscious of 

the two modes of thinking and consequently not let that work be overshadowed by 

―responsibility for own learning‖ and focus on basic skills.  
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The focus of this study is on the investigation of seven teachers‘ conceptions 

concerning the cognitive demands of the mathematical task. This study is part of an 

ongoing research on elementary teachers‘ professional development concerning 

their ability in designing goal oriented activities for mathematics teaching. Through 

our research, we tried to investigate precise components of teachers‘ Mathematical 

Knowledge for Teaching and Pedagogical Content Knowledge. Teachers 

collaborated as members of a Community of Practice in order to design, comment 

and reevaluate mathematical activities, concerning mainly their cognitive demand. 
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INTRODUCTION 

In our ongoing research we investigate ways to support elementary pre service and 

practicing teachers in developing a much deeper understanding of mathematics 

curriculum via problem posing activities.  

Research indicates that success of any educational reform depends mainly on 

teachers. Teachers use textbooks in different ways. Some tend to follow the textbook 

almost as a script for instruction (Remillard, 1992), whereas others adapt textbook 

activities and instructional suggestions to the needs of their classroom (Stake & 

Easley 1978). Researchers, point on these different attitudes drawing the distinction 

between designed and enacted curricula (Ball & Cohen, 1996). Many teachers 

function as designers of curricula that are enacted in their classrooms. Nevertheless, 

traditional use of textbook and teacher-directed approaches dominate (Jaworski & 

Gellert, 2003), because of a number of socio-cultural issues relating to classroom 

culture, teachers working individually, textbooks‘ structure in discrete lessons, 

teaching for exams and grading, teachers personal epistemologies, and teachers lack 

of knowledge. Designing a mathematical unit of study, teachers must first clearly 

understand the interrelationships of the various ideas within the unit, and second be 

able to choose or to construct learning activities in order to help students see and 

appreciate these connections.  

In order for teachers to be able to act creatively concerning curriculum, they need 

support on a conceptual and on an attitude level. To change the way they teach 

mathematics, teachers must have opportunities to learn mathematical content and 

pedagogy in new ways, and believe to their capacity to implement the changes.   
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Concerning knowledge teachers need to teach mathematics, recent research has 

specified Shulman‘s categories (1987) of content knowledge and pedagogical 

content knowledge subdividing them into common content knowledge and 

specialized content knowledge, on the one hand, and knowledge of content and 

students and knowledge of content and teaching, on the other (Hill and Ball, 2004; 

Ball, Thames & Phelps, 2008). Ma (1999) in her study of the differences between 

U.S and Chinese teachers pointed to four aspects of knowledge-for-teaching. These 

are: 

 knowledge of basic mathematical ideas  

 the ability to make connections between these ideas  

 the capacity to create and use multiple representations of these ideas in 

teaching  

 deep knowledge of the curriculum continuum.  

Second and third aspect of Ma‘s knowledge taxonomy, is similar to specialized 

content knowledge (SCK). ―Perhaps of most interest to us is evidence of the second 

category — specialized content knowledge. Like pedagogical content knowledge it is 

closely related to practice, but unlike pedagogical content knowledge it does not 

require additional knowledge of students or teaching. It is distinctly mathematical 

knowledge, but is not necessarily mathematical knowledge familiar to 

mathematicians‖ (Ball et al. 2008, p.394). This kind of knowledge is of special 

interest if we want teachers not only to apply but also to be able to choose or 

construct mathematical learning tasks with high cognitive demand. By cognitive 

demand we mean the kind and level of thinking required of students in order to 

successfully engage with and solve the task. For example, tasks as Martha‘s 

Carpeting Task and Fencing Task (Stein et al., 2000) may help students think of 

fractions, decimals, and percents as different but equivalent representations of 

rational numbers, but are tasks of different cognitive load. At the heart of SCK lies 

the skills and knowledge required to unpack, to ―decompress‖ a mathematical 

concept or skill into its sub concepts. And ―decompression‖ of mathematical 

knowledge is a prerequisite of specifying and formulating curricular goals and 

designing corresponding learning activities (Ball et al., 2008; Hill et al., 2008).   

OUR RESEARCH 

Our research, deals with the professional development of elementary and middle- 

schoolteachers. The whole project foresee two phases: Design/Teachers‘ Formation, 

and Implementation. In the present paper we are referring to the first one.  

Having in mind that the effectiveness of a lesson depends significantly on the care 

with which the lesson plan is prepared, during first phase we designed a seminar in 

order to support elementary teachers on formulating instructional goals and on 

assessing and constructing mathematical tasks in terms of their cognitive demands. 
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Planning phase is the most important moment of instruction, because it is during this 

phase that ―teachers make decisions that affect instruction dramatically. They decide 

what to teach, how they are going to teach, how to organize the classroom, what 

routines to use, and how to adapt instruction for individuals‖ (Fennema & Franke, 

1992, p. 156). 

The main question guiding our seminar‘s planning was: How can we help teachers 

improve their capacity to plan (and enact) lessons that support students‘ learning? 

Four main competences we anticipated that teachers acquire through seminar. These 

competences are referred as important for teachers‘ professional development by a 

number of researchers (Stigler & Hiebert, 1997): 

 Designing and assessing mathematical tasks of different cognitive demands 

 Connecting mathematical tasks with learning goals 

 Generating questions that could be asked to promote student thinking during 

the lesson, and considering the kinds of guidance that could be given to 

students who showed one or another types of misconception in their thinking 

 Anticipating solutions, thoughts, and responses that students might develop as 

they struggle with the problem 

Researchers (Stein et al. 1996; Stein et al., 2000) distinguished four categories of 

tasks related to cognitive demand: memorization tasks, procedures without 

connections, procedures with connections, and doing mathematics. They 

characterized the first two categories as Math Tasks of Low Level Cognitive 

Demand (LLCD), whereas the last two as Math Tasks of High Level Cognitive 

Demand (HLCD). The kind of tasks teachers use, largely define what students learn 

(Hiebert & Wearne, 1993). But, between designing mathematics tasks and 

implementing them in the classroom intervene many parameters. Further research on 

cognitive demand of mathematical tasks has sawn that mathematical tasks alone do 

not guarantee students' learning because teachers often may not implement 

challenging tasks as they were intended. Stein et al. (1996) found that only half of 

HLCD tasks are treated as such in the classroom. Investigation of parameters that 

influence teachers‘ decision to maintain or change the cognitive demand of an 

activity was one of the main goals of the second phase of our research.   

In this paper we present instances from the seminar. More precisely, we comment 

teachers‘ difficulties in assessing mathematical tasks, focusing on the investigation 

of their conceptions concerning the cognitive demands of mathematical tasks 

METHODOLOGY 

Eight in service elementary teachers (2 men and 6 women) participated in the course. 

Helen, Marianna, and Martha have 20, 22 and 23 years teaching experience in 

primary schools, Vaso and Despina have 14 and 16 years teaching experience and 
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Maria, Nikolas and Dionisis have 7 years teaching experience each. 

Teachers participated on a volunteer basis, and thus, this is not a random sample and 

may not be representative of the population of in service elementary teachers. 

Nevertheless, as mentioned before we tried to engage teachers from three different 

groups concerning their teaching experience. Although all were graduated from a 

University Department of Primary Education they were not familiar with the 

‗philosophy‘ of new mathematics textbooks. For example discussing during seminar 

about tasks involving critical thinking, most of them considered that the request for 

justification is just enough to raise the cognitive load of a task even in the case that 

the task in an algorithmic routine one. i.e. ―Are the fractions 1/2 and 5/10 

equivalent? Justify your answer.‖   

For seminar‘s design, we used (lightly modified) the 4-I Model (Teacher-Innovator 

Model) (Yeap 2006), a teacher -development model for good practices. The model 

comprises four stages: Ignoring, Imitating, Integrating and Internalizing. 

At Level 0 (Ignoring) during three approximately two-hours meetings we presented 

and discussed with the team of teachers three theoretical Frameworks concerning 

Instructional Design: The ―Understanding by Design‖ (Wiggins & Tighe, 2005), The 

―Learning by Design‖  (Kalantzis & Cope, 2005) and ―The Implementing Standards-

based Mathematics Instruction: A Casebook for Professional Development Ways of 

Knowing in Science Series‖ (Stein et al, 2000).  

Wiggins & Tighe (2005) describe an approach of designing the teaching unit, 

focusing on Understanding.  They have developed a theory, presenting a 

multifaceted view of what makes up a mature understanding, the «six facets of 

understanding»: explanation, interpretation, application, perspective, empathy, and 

self-knowledge.  

Kalantzis & Cope (2005) describe eight «knowledge processes» which represent a 

range of different ways of making knowledge. Each knowledge process means 

something different in the structuring of the learning activities. These knowledge 

processes are: Experiencing the known—or reflecting on our own experiences, 

interests and perspectives. Experiencing the new—or observation of the unfamiliar, 

immersion in new situations, reading and recording new facts and data. 

Conceptualising by naming,—or developing categories and defining terms. 

Conceptualising with theory—or making generalisations and putting the key terms 

together into theories. Analysing functionally—or analysing logical connections, 

cause and effect, structure and function. Analysing critically—or evaluating critically 

your own and other people‘s perspectives, interests and motives. Applying 

appropriately—or applying insights to real-world situations and testing their validity. 

Applying creatively—or making an intervention in the world that is truly innovative 

and creative and that brings to bear your life‘s interests, experiences and aspirations.  

Neither of these two Frameworks is especially designed for mathematics classroom. 
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Nevertheless, we considered them as important knowledge source for the seminar, 

because of their emphasis on teaching and learning by understanding. 

Level 1 (Imitating): ―The Implementing Standards-based Mathematics Instruction‖, 

framework was the main tool of our formatting process. More precisely, after 

presenting and discussing with teachers the Task Analysis Guide (Stein et al, 2000), 

we spent one three-hours meeting in commenting and sorting mathematical tasks as 

of their cognitive demand.  At the end, we gave them for reflection the following 

activity: Choose five activities from your class textbook (or from any other mathematics 

textbook you wish): 2 of LLCD and 3 of HLCD. For each one of these activities, try to 

answer the following questions:  

1. Do the activity. What are all the ways the task can be solved? 

2. What is the cognitive demand of the activity? (Choose one of five categories of the 

Task Analysis Guide). Justify your response: In what kind of thinking processes does 

the activity engage students?  

3. Identify the mathematical goal(s) of the activity. 

4. What mathematical ideas does the activity develop? 

5. What misconceptions might students have? What errors might students make? 

6. What are the possible difficulties students may be confronted? Could you anticipate 

their possible errors? 

7. What questions will you ask to focus their thinking? Identify specific questions 

through which you could activate students thinking process concerning the 

activity (especially in case they are stuck)  

8. (In case you think it is necessary) How you would modify this textbook activity? 

9. Design, you yourself, an activity of HLCD with the same mathematical goal. 

10. Write anything else you think as important about this activity 

They had at their disposition one week to reflect and react. 

At Level 2 (Commenting/Integrating) teachers‘ reaction to previous questions 

became the object of a team-discussion during one three-hours meeting. During this 

phase we tried to apply in our community of practice the six elements of a  ―Learning 

by Inquiry Process‖ as it is described in (Grevholm, 2009), i.e. Teachers are 

encouraged to ask questions (Questioning), to investigate each others ideas and 

collect information in order to reformulate their own ideas (Investigation). In this 

way new knowledge is created (Creation). Teachers, as members of the community 

discuss the new knowledge (Discussion), and reflect on their old knowledge and 

practices (Reflection) Discussion and reflections leads to wondering, which raises 

new questions (Wondering). 

At Level 3 (Internalizing) we asked teachers to design a teaching unit following the 

preceding theoretical framework. 
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In what follows, we focus on the teachers‘ responses to the given activity (Level 1) 

as well as their interaction trying to justify their choices within the team (Level 2). 

The data consists of the three-hour meeting‘s transcribed audio, the researchers‘ field 

notes and the teachers‘ written responses to the given tasks. During interaction, each 

teacher in his turn spoke and argued for every question or subject that emerged 

during the talks, explaining and illustrating his point of view. One could interrupt the 

flow of the conversation to add something, to express a different or contrasting view 

or to ask for a clarification. 

ANALYSIS 

Through the analysis, a number of interesting issues concerning the way that the 

teachers conceive the mathematical task and its cognitive load emerged.  

Defining the cognitive demand of a mathematical task 

The distinction between mathematical tasks of Low Level Cognitive Demand 

(LLCD) and High Level Cognitive Demand seemed to be a difficult activity for the 

teachers. We observed that often there were disagreements about the characterization 

of an active as a LLCD or a HLCD.  

Most of them considered that the discrimination of the level of the cognitive demand 

of a task depends mainly on the complexity of the involved arithmetical operations. 

The case of Vaso, who tried to justify her decision of a HLCD task, was 

representative of the teachers‘ tension to focus mainly on the arithmetical operations 

that the task involves. She argues that ―...division between large numbers is very 

difficult for them (students)‖.  Particularly, she proposed the following task: 

(Task 1)  In a summer camp there are 60 scouts. The scouts are divided into groups 

of 15 people and form circles to play games.  

a) How many circles are going to form? The scouts will form …… circles. 

b) In each circle there are 3 guides. How many guides are all together?  

c) How many people are together scouts and guides?  

Vaso argues that the fact that there is a number of arithmetical operations that 

students are asked to carried out transforms the task to HLCD. On the contrary, 

Maria, another member of the team, considers this particular task as a LLCD arguing 

that ―....the solution path is predefined. There is no doubt about the solution 

approach.‖  

Teachers‘ inadequacy in providing all the possible solutions of the mathematical task 

prompted them to underestimate its ―cognitive load‖. An illustrative example was the 

case of Despina who considered that a task involving percents is a LLCD one, as it 

can be solved applying the specific algorithmic routine that students have already 

taught. She focused only on one possible solution, ignoring a number of interesting 

approaches, which involve proportions, rates, fractions, and even the use of the 
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number line representations. In particular, the task she proposed as an LLCD was the 

following: 

(Task 2)  The director of a movie theatre, notice that the usual number of the 

audience on Mondays is about 70 persons. In order to increase the number of the 

audience he announced that every Monday for each one of the first 45 tickets a 

movie poster will be provided free of charge. Next Monday he calculated that the 45 

persons who won the movie poster were the 60 percent of the audience. 

a) Find out how many persons watch the movie that Monday. 

b) The cost of each poster is 2€ and the profit of each ticket is 6€. Comparing the 

total income of that particular Monday with the income of the preceding Mondays, 

does it worth continuing this particular promotion for the next Mondays? 

Through the interaction with the members of the team Despina figured out that, in 

fact, there are a number of interesting approaches to the task. Moreover, the members 

of the team realized that the level of the cognitive load of a task could be raised by 

the investigation-during teaching- of a range of possible solutions. In other words, 

they concluded that the ―openness‖ of a task is a factor that possibly defines the level 

of its cognitive load. Another factor they also considered was that the placement of 

the task in the teaching sequence. For example, they argued, the summer scouts camp 

could be a HLCD one, if it had been used as an introductory to the concept of 

division. Marianna, referring to the specific textbook, asserted: ―actually this is the 

first mathematical problem involving division that students confronted in the 

textbook of the third grade‖.  

Modifying the level of the cognitive load 

Teachers‘ responses to the inquiry of finding ways of ―raising‖ the cognitive load of 

a task were initially limited to the creation of more difficult/complex arithmetical 

operations. For example, Maria suggested in the case of the summer scouts camp 

task to modify the number of the scouts or the number of people in a group so as to 

provide a division with a remainder. Nikolas transformed that task by involving a 

reverse arithmetical operation. An interesting case was Martha who argued that 

giving students –through task 2- a general rule of finding percents applicable to a 

great number of similar tasks, could make task 2 a HLCD one. Actually, she 

combined cognitive demand and range of applicability. Martha suggested that in 

order to rise the cognitive demand of task ―I should ask students to explore all the 

possible solutions, present them in class and justify which one is the best‖. Nikolas 

questioned the term ―best‖ for a solution. He argued that it is appropriate to define 

the criteria under which students will choose a solution. He claimed that the 

―easiest‖ solution is eventually the ―best‖ for the students.  

The use of multiple representations and connections between different mathematical 

concepts in order that the task evolves into a ―more advanced mode‖ was also an 
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idea that teachers discussed. For example, Despina suggested asking students 

represent the data of the ―movie theatre task‖ in an empty number line and make 

estimations about the possible solutions. In her opinion, such an intervention may 

encourage students to make connections between the different representations of the 

quantities and possibly conceive the interrelations between percents, ratio and 

proportions and fractions. 

DISCUSSION - Concluding Remarks 

The project created opportunities for in-service teachers to learn and participate with 

their textbooks in professional development and provided them with opportunities to 

change their notions of learning and teaching mathematics. The project also offered 

the opportunity for collaboration between primary school teachers and university 

researchers, under the main goal to develop knowledge and practice in the teaching 

and learning of mathematics, so that teachers in schools have better teaching 

experiences and achieve better conceptual understandings of mathematics with their 

students.  

The analysis of our data provides interesting issues concerning teachers‘ ability to 

characterize mathematical tasks according to their cognitive load as well as their 

efficiency to reconstruct/redesign tasks, raising their cognitive demands. In almost 

all cases, the mathematical content of the tasks as well as their cognitive load were 

not so obvious for the teachers who restricted themselves to school practices 

reproducing ―well known‖ techniques. For the teachers we worked with during this 

project, cognitive demand of a task is not independent of the activity‘s goal as it is 

described in textbook‘s instruction. More specifically, the position of the task in the 

unit is a parameter that influences its cognitive demand.  A task that is placed in the 

start of the instruction in order to introduce the students (for example) to the concept 

of division can be characterized as high -level demand task. The same task could be 

considered as a low-level task demanding practice if it is placed in the end of a 

lesson plan.  

Concerning the ―raising‖ of the cognitive level of a task, teachers initially confronted 

difficulties. Their first suggestions were limited to the creation of more 

difficult/complex arithmetical operations, modifying an arithmetic/numerical element 

(data) of the problem.  But during the progress of the meeting and with the growing 

discussion and the interactions within the team, teachers orientated towards more 

effective ways to manage and organize the task. I.e. they referred to the exploration, 

presentation and discussion of all possible solutions of a task, the use of multiple 

representations and connections between different mathematical concepts such as the 

use of a blank number line and estimations of the solutions. 

The goal in this research was not to achieve complete agreement between the team 

but to provide teachers the opportunity to participate in a thoughtful analysis of the 

tasks, to emerge their shared interest for discussing the characteristics of the tasks 
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and to raise the level of discussion among participants toward a deeper analysis of 

the sorting of the tasks.  The point was to encourage teachers to dig beneath the 

surface in determining the level of thinking required to complete a task, based on the 

point of researchers (Stein, Smith, Henningsen, & Silver, 2000) who claim that when 

teachers take the opportunity to analyze the tasks, they become more alert to the 

potential for slippage between intentions and actions in their teaching.  

Specific issues generated lively discussion on topics such as the difference between 

―level of cognitive demand‖ and ―difficulty‖ of a task, the factors associated with the 

decline or maintenance of the level of cognitive demands of mathematical tasks 

during the implementation phase in the classroom, and construction of goal-oriented 

high-level mathematical tasks.  

Hopefully, the results of this study will provide insight into some substantial issues 

that form the instruction of mathematics.  Understanding the cognitive demand level 

of the mathematical tasks and the ways to ―rise‖ this level will have potential 

benefits for teachers in acquiring the competencies needed for a better design and 

implementation of an effective instruction.  
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Professional knowledge of mathematics teachers related to big ideas in mathematics 

and mathematics instruction can enhance teachers‘ competencies of designing rich 

learning opportunities in the mathematics classroom. Responding to a need of 

empirical research on professional knowledge connected with big ideas in 

mathematics, this study presents results of a test administered to more than 100 

German pre-service teachers. The results indicate that the pre-service teachers often 

were unable to discern big ideas behind mathematical contents and to link elements 

of content matter according to these big ideas. The results call for an emphasis in 

teacher education not only on a solid content matter knowledge base, but also on 

overarching concepts and meta-mathematical ideas.  

Keywords: Professional knowledge, big ideas, connecting PCK/CK components  

INTRODUCTION 

There is a consensus that designing rich learning opportunities in the mathematics 

classroom can be supported by an emphasis on big ideas associated with mathema-

tics and mathematics instruction. Awareness of such big ideas requires professional 

knowledge of teachers, especially in the areas of content knowledge (CK) and 

pedagogical content knowledge (PCK). However, empirical research on professional 

knowledge connected with big ideas in mathematics is scarce, even though evidence 

is needed, e. g. for designing teacher education programs on an empirical base.  

Consequently, this study concentrates on components of professional knowledge 

linked to big ideas. A test and questionnaire instrument has been developed in the 

EU-funded teacher education and research project ABCmaths (―Awareness of Big 

Ideas in Mathematics Classrooms‖) for this purpose and has been used in a first 

approach to assess the knowledge of 117 pre-service teachers. The results show that 

the pre-service teachers were often not able to link mathematical contents according 

to selected big ideas and to communicate about these ideas. There is hence a need of 

supporting reflective competencies of teachers with respect to mathematics-related 

overarching concepts like big ideas.  

In the following first section we give an overview on the theoretical background, 

presenting both a working definition of big ideas and an outline of the theoretical 
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model of professional knowledge components used in this study. The second section 

leads to the research interest of the study. After having given information about 

research design and sample in the third section, we report on results in the fourth 

section of this paper. The fifth section concludes with a short discussion of the 

evidence and of its implications. 

THEORETICAL BACKGROUND 

Big ideas related to mathematics and mathematics instruction 

Providing rich learning opportunities in the mathematics classroom is essential for 

instructional quality and the development of competencies of students. Many 

researchers have emphasised the role of overarching concepts or fundamental ideas 

in mathematics and its teaching and learning for creating conceptually rich learning 

opportunities (e.g. Schweiger, 1992, 2006; Bishop, 1988). Supporting these goals, 

the aims of national standards in many countries (e.g. Office of Qualifications and 

Examinations Regulation, 2002; KMK, 2003; NCTM, 2000) can be associated with 

such implicitly shared underlying ―big ideas‖. According to the working definition of 

big ideas in the teacher education project ABCmaths, big ideas associated with 

mathematics in the classroom anchor, link and constitute mathematical knowledge in 

contexts (within maths, the curriculum and/or beyond maths) and foster making 

sense of and communicating this knowledge in a more general way. Following a 

pragmatic approach, which aims above all at encouraging teachers‘ reflection on 

overarching concepts in mathematics and on their potential for learning, four 

important aspects have been collected that may help to identify big ideas (ABCmaths 

team, in preparation). Big ideas can be characterised as:  

 Ideas that should have a high mathematics-related potential of encouraging 

learning with understanding of conceptual knowledge (including orientation, 

linking and anchoring of knowledge)  

 Ideas that should have a high relevance for building up meta-knowledge about 

mathematics as a science (adapted to the target group of learners) including 

knowledge necessary for interdisciplinary comparisons  

 Ideas that should support abilities of communicating meaningfully about 

mathematics and providing mathematics-related arguments 

 Ideas that should also encourage reflection processes of teachers connected 

with designing rich and cognitively activating learning opportunities as well as 

with accompanying and supporting learning processes of students. 

These aspects can be seen as a pragmatic answer to a partly divergent discussion of 

multiple approaches in the area of big ideas: In the German-speaking discussion for 

example, the diversity of the notions of ―fundamental ideas‖ (e.g. Schweiger, 1982, 

2006), ―central ideas‖ (Schreiber, 1983), ―universal ideas‖ (Schreiber, 1983), ―core 

ideas‖ (Gallin & Ruf, 1993), ―leading ideas‖ (e.g. Vollrath, 1978) and ―basic 
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ideas/basic conceptions‖ (―Grundvorstellungen‖, e.g. v. Hofe, 1995) give a 

heterogeneous picture and call for an integrative and sufficiently open perspective 

like suggested by the criteria given above.  

Three examples of big ideas are the following: 

 Using multiple representations: This big idea reflects strategies used and 

required in many mathematical domains that have to do with the use of 

different ways of representing mathematical facts or concepts as well as with 

changing representations and linking them. 

 Giving arguments/proving: Mathematics as a science can be characterised by 

the forms of argumentation and proof used in this discipline (cf. Heinze & 

Reiss, 2003). As a consequence, argumentation plays an important role in all 

domains of mathematics.  

 Dealing with infinity: This big idea highlights the significance of exploring 

phenomena linked with infinity in mathematics, strategies of maintaining 

generality in thoughts in order to include an arbitrary, often infinite number of 

cases as well as patterns and structures that bear infinity often in themselves.  

Big ideas associated with pedagogical content knowledge (PCK) support teachers 

when designing rich conceptual learning opportunities for encouraging mathematical 

thinking. More detailed considerations about these big ideas and examples are 

provided in (ABCmaths team, in preparation). The big ideas ―using multiple 

representations‖ and ―giving arguments/proving‖ appear both in the domains of CK, 

i.e. as mathematics-related big ideas, and PCK.  

Professional knowledge related to big ideas 

Professional knowledge about big ideas is not only ―horizon knowledge‖ (Ball, 

Thames, & Phelps, 2008; Ball & Bass, 2009) – it has strong links to different areas 

of CK and PCK (Shulman, 1986). For 

example, using multiple representations 

requires CK in various domains. This can 

be seen e.g. when looking at a sample 

task published by the group of D. Ball  

(s. Ball & Bass, 2009) which relates to 

professional knowledge about the idea of 

multiple representations, clearly requires 

CK and which focuses on knowledge 

relevant for teaching in the mathematics 

classroom (Figure 1).  

Hence, knowledge about big ideas is central for many components of professional 

knowledge and potentially links different components. For this reason, the teachers‘ 

awareness of big ideas in mathematics and mathematics instruction appears to be 

Fig. 1: Sample item in Ball & Bass (2009) 
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crucial not only for designing learning opportunities, but also for the ongoing 

professional learning of teachers. 

As a base of reference for this study, we refer to a framework for the description of 

components of professional knowledge (shown in Figure 2) that includes instruction-

related views held by individual mathematics teachers (Kuntze, submitted; Kuntze & 

Kurz-Milcke, 2010). This model of professional knowledge integrates the spectrum 

between knowledge on the one hand and convictions/beliefs on the other, because a 

dichotomous theoretical distinction between knowledge and beliefs is impossible (cf. 

Pajares, 1992). Hence, both are considered as being contained in the notion of 

professional knowledge. The distinction between different domains of professional 

knowledge as suggested by Shulman (1986) appears in the vertical columns (see 

Ball, Thames, & Phelps, 2008, for the possibility of further refinement into domains). 

Taking into account that individual professional knowledge is often organised in an 

episodic structure (Leinhardt & Greeno, 1986; Bromme, 1992), we consider 

furthermore different levels of globality (Tôrner, 2002; Lerman, 1990; Kuntze & 

Reiss, 2005). Besides global components of professional teacher knowledge, e.g., a 

general cognitive constructivist view of mathematics teaching and learning (Staub & 

Stern, 2002), content domain-related components are considered relevant, e.g., views 

linked with content domains like geometry or decimals. Further, studies by Biza, 

Nardi and Zachariades (2007) as well as by Kuntze (accepted) focus on views of 

teachers related to concrete tasks, hence are specific to a particular content. Finally, 

views of teachers concerning (videotaped) instructional situations have also been 

included in empirical studies (e.g. Lerman, 1990; Kuntze & Reiss, 2005). 

Professional knowledge related to big ideas is relevant for different levels of 

globality, as they are important for mathematics and mathematics instruction as a 

whole but also relevant for many specific contents and instructional situations.  
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content domain-specific 

related to particular content 
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pedagogical knowledge 

content matter knowledge 
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Figure 2: Model for components of professional knowledge (Kuntze, submitted) 

Together these components of professional knowledge are likely to influence 

instruction and hence learning opportunities for students in mathematics classrooms. 
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Thus, evidence about teachers‘ professional knowledge can help to design teacher 

education programmes with the aim of helping teachers to improve their teaching. 

RESEARCH INTEREST 

Against this theoretical background, the project ABCmaths (―Awareness of Big 

Ideas in Mathematics Classrooms‖, www.abcmaths.net) aims at investigating 

professional knowledge of mathematics teachers related to big ideas as those 

introduced above and at its further development through both pre-service and in-

service teacher professionalisation programmes at the level of CK and PCK. For this 

purpose it is necessary to explore the status quo of professional knowledge in this 

area in so-called analysis of needs studies. Moreover, new test and questionnaire 

instruments had to be developed and piloted.  

This paper presents an analysis of needs study with pre-service teachers. Further 

research in ABCmaths will include in-service teachers and evaluation research on 

effects of teacher professionalisation programmes. In order to get insights into the 

professional knowledge of pre-service teachers, we focus on the three mathematics-

related big ideas introduced above, namely ―using multiple representations‖, ―giving 

arguments/proving‖, and ―dealing with infinity‖. At later stages of ABCmaths, the 

research will be extended to further big ideas. Hence, this study aims at providing 

evidence for the following research question: What professional knowledge related 

to the big ideas ―using multiple representations‖, ―giving arguments/proving‖ and 

―dealing with infinity‖ do German pre-service teachers have? 

More explicitly, the study focuses on professional knowledge about big ideas related 

to linking contents and examples of subject matter with big ideas, as well as 

analysing them against the background of specific big ideas. This component of 

professional knowledge is likely to play a key role for competencies of designing 

rich learning opportunities in the classroom and it requires also mathematics-related 

meta-knowledge about specific big ideas.  

SAMPLE AND METHODS 

In order to find out about the research question above, a test was administered to 117 

German pre-service teachers (78 female, 35 male, 4 without data) before the 

beginning of a university course. The pre-service teachers had a mean age of 22.33 

years (SD = 3.56 years) and had been studying on average for 2.19 semesters 

(SD = 1.12). 61 pre-service teachers were preparing for being teachers in primary 

schools, 35 in secondary schools for lower-attaining students, and 15 for working in 

schools for students with special needs.  

Corresponding to the aspects emphasised in the previous section, the test focused 

especially on analysing contents and perceiving links across contents according to 

big ideas. The test instrument concentrated on the ideas, ―dealing with infinity‖, 

―giving arguments/proving‖, and ―using multiple representations‖.  
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A sample task related to the idea ―using multiple representations‖ is shown in Figure 

3. In this task, the pre-service teachers were given an example of two representations 

of the definition of square numbers and asked to give other examples of 

mathematical contents where definitions can be based on different representations.  
 
 
6.  On the right, there is a graphical representation of the 

definition of “square number”. This representation 
affords an additional access compared to the symbolic 
definition (“if q=n2 for a positive integer n, the q is called 
a square number”).  

 

Can you think of other mathematical concepts, for which 
a symbolic definition can complement with a non-
symbolic representation in a similar way? 

 
Please give as many examples as possible. 
 

„A number that can be 
visualised like shown 
here in the form of a 
square is called a square 
number.“ 

 

Figure 3: Sample task related to the idea ―multiple representations‖ (task 6)  

 

The answers of the pre-service teachers were collected in an open format. There were 

two tasks related to the big idea of ―dealing with infinity‖, and three tasks for the 

ideas ―using multiple representations‖ and ―giving arguments/proving‖, respectively. 

The pre-service teachers were given as much time as they liked to devote to 

answering the test.  

For gaining an overview of the quality of the answers of the 117 pre-service teachers, 

a top-down coding method was used. The coding categories concentrated on the 

aspects of existence of a codable answer, the quality and transfer level related to the 

examples provided, and the embedding of these examples. For an easier 

understanding, more details about the codes are reported together with the 

corresponding results in the following section.  

RESULTS 

In order to get an overview of the number of codably answered tasks, an initial 

coding assigned the answers to the categories ―no answer given to the task‖, 

―irrelevant answer given, i.e. no detectable semantic relationship between answer 

and the task‖ and ―codable answer with respect to quality codes‖. The frequencies of 

codes for this initial coding are displayed in Figure 4. An over-all observation is that 

the frequencies of codable answers were low: For almost all tasks, more than a third 

up to about two thirds of the pre-service teachers could not give an answer at all.  

For task 6, which is the sample task given in Figure 3, we give a more detailed 

picture of the findings, in order to provide more in-depth information about the 

professional knowledge of the pre-service teachers.  
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Figure 4: Frequencies of answers to tasks  

 

In the task, the participants were asked to provide other examples related to multiple 

representations. In a corresponding coding of the quality of these examples provided, 

65.8% of the answers were classified in the code ―no example given‖, 17.1% of the 

answers were coded as ― ‗peripheral‘ relationship of example with big idea visible, 

but substantial gaps or disruptions / inadequate character of the example given‖ (an 

example of an answer classified in this code is presented in Fig. 4), 10.3% of the pre-

service teachers gave one adequate example, 6.0% provided two adequate examples 

and 0,9% gave more than two adequate examples.  

An additional coding relating to the quality of the answers focused on their transfer 

level. As an example was given in the task, the coding distinguished whether the pre-

service teachers gave adequate examples in other content domains which were not 

‗close‘ to the given example – an indicator whether teachers are able to link contents 

according to big ideas across content domains. In case of more than one example 

provided in the answer, the highest category was coded. Out of the 17.2% of answers 

with at least one adequate example, a majority of 89.5% gave at least one adequate 

example from another content domain, which is 15.4% of all pre-service teachers. 

Finally, the level of embedding or argumentation linked with the examples given was 

coded for the 17.2% of answers with at least one adequate example. Out of these 

answers, 55% did not have any embedding or reflecting comments on the examples 

provided, whereas in the remaining 45% of the answers, embedding comments for 

the examples were given. The category of ―adequate argumentational embeddings/ 

justifications/analysing comments e.g. about how the example fits to the big idea‖ 

turned out to be hypothetical for this sample of pre-service teachers, as 0% of the 

answers fulfilled this criterion. 

Figure 5 shows some sample answers. The first answer was coded as an appropriate 

example close to the given example, as the given example is just modified. In the 
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second example, possibilities of representing fractions graphically or as partitions of 

a cake are used as an example, 

which was still coded as an 

appropriate example, even though 

the example seems neither 

completely developed, nor linked or 

embedded by explanatory terms. 

The last answer in Figure 5 was 

coded not to be an appropriate  

answer, because the representations 

can not replace each other but one 

might be used as an illustration or 

specification only, even if a correct 

and complete diagram of the 

geometrical situation had been 

given. Beyond the findings related 

to the coding, all examples are 

relatively short and seem not to 

correspond to high skills of mathe-

matics-related communication. 

DISCUSSION AND CONCLUSIONS 

The results suggest that pre-service teachers were not able to give a lot of examples 

for mathematical contents linked to the big ideas considered in the test instrument. 

As answers referring to relatively simple mathematical contents were possible, this 

can be interpreted as a lack of awareness of big ideas in the professional knowledge 

of the pre-service teachers.  

The results seem to suggest that the tasks were too difficult for the pre-service 

teachers. Indeed, the tasks were also designed to be used with in-service teachers, 

which raises research questions about the role of instructional experience for 

professional knowledge related to big ideas. However, from a theoretical viewpoint, 

the tasks focus on knowledge that teachers really should have – ideally already as a 

consequence of their school mathematics experience, which should have provided 

them with a base of examples and networking knowledge linking these contents to 

ideas. The results however indicate that there is a need for professional development 

in this area, potentially both for a content knowledge base of examples and 

networking skills or reflection knowledge related to big ideas that can organise 

knowledge and help to develop rich learning opportunities.  

Further attention should be devoted to research questions concerning the knowledge 

of in-service teachers, possibilities of developing professional knowledge by teacher 

education programs, extensions to other big ideas, and the role of culture.  

Figure 5: Sample answers 

“Fractions, e.g. slices of a cake, a football ground etc.  

                                      (1 cake for 4 persons)” 

“Pythagorean theorem” 

“The same example in three dimensions” 
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This paper will report on the role of video-based experiences and reflection among 

pre-service secondary school mathematics teachers as the drive towards a more 

constructivist approach to teaching and learning mathematics strengthens in Ireland 

through the introduction of a new initiative called ‗Project Maths‘. This study uses 

the critical analysis and reflection of video recordings to examine pre-service 

mathematics teachers‘ subject content knowledge. 29 pre-service teachers were 

video-taped teaching a mathematics class to mature students at the University of 

Limerick (UL) from January to May 2010. Rowland‘s (2008) Knowledge Quartet 

was the framework used for reflection of this teaching. The findings are discussed 

and implications for mathematics teacher education are highlighted. 

Keywords: Mathematics Teacher Education, Pre-Service Mathematics Teachers, 

Video-Based Experiences, Subject Content Knowledge and Pedagogical Content 

Knowledge 

INTRODUCTION 

The low uptake of Higher Level¹ mathematics (16% of total cohort in 2011) and the 

large failure rate of mathematics at Leaving Certificate² has highlighted the need for 

reform of mathematics education in Ireland. A move towards addressing the teaching 

and learning of mathematics is currently being implemented under a new initiative 

called ‗Project Maths‘ which will see much greater emphasis placed on student 

understanding of mathematics concepts and applications.  

However, there is also need for change to occur in the training of our mathematics 

teachers. Recent PhD work by the first author (ML) suggests that first year pre-

service mathematics teachers (studying Physical Education and Mathematics at UL) 

have a fragmented, disjointed view of mathematics and the approaches that they 

adopt to learning mathematics are mainly of a procedural nature. There has been 

similar research internationally portraying the poor conceptual understanding that 

often exists among pre-service mathematics teachers (e.g. Nicol, 1999). This study 

was undertaken in order to link the research to a current teacher education 

programme by critically assessing, reflecting and most importantly, developing pre-

service mathematics teachers‘ awareness of their subject content knowledge, as well 

as their pedagogical content knowledge, through the use of video-based experiences. 

The study is predominantly exploratory in nature since it aims to identify and create 
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awareness among pre-service mathematics teachers‘ in relation to their subject and 

pedagogical content knowledge. Although not analysed in this study, it is also hoped 

that in light of their Knowledge Quartet (KQ) training outlined in the methodology 

below, pre-service teachers will develop their knowledge in preparation for their 

video-based teaching experience and indeed after this experience. Shulman (1986) 

clarified subject matter knowledge as knowledge of the content of the discipline such 

as facts and concepts. He described pedagogical content knowledge as the manner in 

which a teacher can represent the subject in a way that others can comprehend and an 

understanding of what makes the learning of the subject easy or difficult. 

There has been much research carried out on the use of video-based experiences in 

the training of prospective teachers as a tool to critically observe and reflect on their 

own teaching and the teaching of others. Alsawaie and Alghazo (2010) concluded 

from their study that video-based experiences increased pre-service teachers‘ 

knowledge about problems in practice, developed their sensitivity toward student 

learning and lead to them to think in depth about efficient instructional strategies. In 

addition, Maher (2008) claims that it provides students with an opportunity to reflect 

and review theirs, and others, mathematics teaching, helping them to become aware 

of their practice as well as assisting them to grow in their pedagogical content 

knowledge.  

For these reasons, one focus of the paper is on pre-service teachers‘ reflection of 

their own teaching. The authors also believe that the use of video-based experiences 

in mathematics teacher education pedagogy classes are beneficial to teacher 

educators by enabling them to observe and evaluate their students‘ subject and 

pedagogical content knowledge. Therefore, this study also focuses on the 

researchers‘ critical observation and reflection of the pre-service teachers. Due to 

constraints to the length of this paper, as well as the need for further analysis of the 

data collected, pre-service teachers‘ critical observation and reflection of their peers 

is not reported on here.  

THEORETICAL FRAMEWORK 

The theoretical framework employed in this study for investigating pre-service 

mathematics teachers‘ subject content knowledge and to a lesser extent, their 

pedagogical content knowledge, is now discussed.  

The Knowledge Quartet (KQ) devised by Rowland, Huckstep & Thwaites (2005) 

was the framework upon which this study was conducted. Rowland and his 

colleagues created this framework for the observation and review of mathematics 

teaching. It consists of four units: foundation; transformation; connection and 

contingency. Each unit is subdivided into smaller sub codes of which there are 17 in 

total. The framework used in this study is a slight adaptation to Rowland et al.‘s 

(2005) KQ since one or two of the sub codes are not identical to the original version 

e.g. ―depth of mathematical knowledge‖ was not a code in the original KQ. Rowland 
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(2008) describes foundation as trainees‘ knowledge, beliefs and understanding 

acquired in preparation for their role in the classroom. Transformation concerns 

―knowledge-in-action as demonstrated both in the planning to teach and in the act of 

teaching itself‖ (Rowland, 2008, p.289). Connection, the third category, links 

together choices and decisions for the more discrete parts of mathematical content. It 

includes making connections between concepts and procedures as well as sequencing 

of subject matter. The final category, contingency, incorporates the pre-service 

teachers‘ ability to respond to students‘ ideas and think on one‘s feet. Table 1 below 

summarises the Knowledge Quartet framework adapted from Rowland and his 

colleagues for use in this study. 

Foundation Transformation Connection Contingency 

- Depth of 

mathematical 

knowledge. 

 

- Use of 

terminology 

 

 

- Use of textbooks 

 

- Reliance on 

procedures 

-How the mathematics 

is communicated to the 

learner (the difference 

between someone who 

knows mathematics and 

someone who knows 

how to  teach 

mathematics 

 

- Example Choice (real-

life examples, other 

subject areas etc.) 

 

- Analogy 

- Demonstration 

- Representation 

- Illustrations 

- Making connections 

between mathematical 

concepts 

 

- Making connections 

between mathematical 

procedures 

 

- Sequencing of subject 

matter (order in which the 

mathematic concepts are 

taught) 

 

- Anticipation of complexity 

(knowledge/awareness of 

areas which students will 

find difficult) 

- Ability to  

think one 

one‘s feet 

 

- Response to 

unexpected 

 

- Deviate 

from lesson 

plan if 

advantageous 

 

Table 1: The Knowledge Quartet (adapted from Rowland, 2008 and Rowland et al., 

2005) 

METHODOLOGY 

Research Design  

The research was carried out in two main stages. In stage one both authors separately 

watched and compared three extracts from a TIMSS video study and analysed them 

according to the KQ identifying aspects of each of the four units that impacted on the 

lesson. Following this pre-service teachers were provided with KQ training in the 

form of two workshops. The first workshop included a 20 minute lecture and 

discussion of the KQ. They then observed and analysed one extract from the TIMSS 

video study (selected by both authors) in the same manner as that previously done by 

the authors. This was done individually firstly, following by paired and whole class 

discussion on findings. Finally, the pre-service teachers were provided with a copy 

of the researchers‘ analysis to compare and contrast their own analysis with. The pre-

service teachers had one further workshop where they again observed and reflected 
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on a 30 minute extract from another TIMSS video and in pairs/groups they discussed 

what they had observed and reported on based on the KQ units and sub codes. 

In the second stage of this research, the pre-service mathematics teachers were split 

into pairs for teaching a 50 minute support tutorial (25 minutes each) to ―Access‖ 

mature students. As the name suggests, these tutorials support the work done in 

lectures and in the students‘ regular tutorials provided by the University. Each pre-

service teacher was required to teach a support tutorial and reflect on it once 

provided with the DVD of the lesson. They were also required to attend two other 

lessons observing and reflecting on their peers‘ teaching although this is not reported 

on in this paper as explained earlier. The KQ is the basis for all observation and 

reflection. Pre-service teachers were provided with a copy of the KQ table and a 

critical observation and reflection report form devised by the authors for this analysis 

(available from the first author). Prior to teaching, each pre-service teacher was 

provided with a tutorial sheet from the lecturer of the Access Mathematics or Access 

Statistics course with specific questions to follow. The first author also attended all 

support tutorials and observed and reflected on each pre-service teaching session. 

Research Sample, Data Collection and Data Analysis 

The sample included 29 pre-service secondary school mathematics teachers studying 

Physical Education and Mathematics at UL. Access to the sample was not a problem 

since their mathematics pedagogy module from January 2010 to May 2010 was 

taught by the second author (OL). Olivia Gill is also manager of the Mathematics 

Learning Centre in UL and assigns tutors for all support tutorials. This provided us 

with the sample to teach – mature students studying an access certificate course 

designed to refresh students‘ skills in areas such as basic mathematics and statistics. 

Many of these mature students have not studied any form of mathematics in a 

number of years and are returning to education in the form of this Access course 

which provides a means of entry to third level undergraduate courses in the future.  

Prior to data collection, consent was obtained from all mature students and pre-

service teachers for recording the lessons. The participants were informed that all 

data was anonymous and that it would be stored securely for the authors‘ use only. 

Four pre-service teachers taught per week, two at the mathematics support tutorial 

and two at the statistics support tutorial with exception of one pre-service teacher 

who taught a full lesson on his own due to odd numbers. All lessons were recorded 

and DVDs developed of each lesson. Each pre-service teacher was given the DVD of 

their teaching only. The authors also had a copy of the DVD of each lesson. 

This paper reports firstly on the researchers‘ analysis of the 29 pre-service teachers‘ 

teaching. The first author attended each lesson and at a later date she again reflected 

on all video-recordings in more detail. Again, the KQ and the codes designed by 

Rowland et al. (2005) was the framework for this analysis. On completion of this 

stage of analysis, the authors determined the main themes or findings that emerged 
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from the data under each of the four units. The findings coming from the data were 

compared by the two researchers for consistency.  

The pre-service teachers‘ own critical observation and reflection reports are also 

analysed and discussed in this paper. These reports were completed in the same 

manner as the authors in that each pre-service teacher watched the DVD of their own 

teaching and reflected on it by identifying aspects of each of the four units of the KQ 

that impacted on their lesson. The reports were then submitted to the first author. 

One pre-service teacher failed to submit his report so analysis is based on 28 pre-

service teachers. Again, the first author determined the main themes/findings 

emerging from the pre-service teachers‘ reports in terms of pre-service teachers‘ 

awareness, or otherwise, of aspects of the KQ that impacted in any way on their 

lesson. 

FINDINGS AND DISCUSSION 

The findings and discussion in terms of both the researchers‘ critical observation and 

reflection of the pre-service teachers and in terms of the pre-service teachers‘ critical 

observation and reflection on their own teaching are now presented and discussed 

under the four main categories of the KQ; foundation, transformation, connection 

and contingency. The KQ sub codes as in Table 1 are in italics for clarity. 

Researchers‘ critical observation and reflection of the pre-service teachers 

Foundation 

The depth of mathematical knowledge demonstrated by the pre-service teachers was 

poor with only six teachers displaying a good depth of knowledge. In general, the 

pre-service teachers relied on procedural knowledge (19 out of 29), described by 

Skemp (1978) as instrumental understanding or knowing the ‗how‘ rather than 

knowing the ‗why‘. For example, one pre-service teacher did not relate to students‘ 

method for calculating the median as it differed from her method. She was confused 

stating that  

―5.5 is the median because it is the right middle number. I don‘t know why the formula 

isn‘t working‖. 

Many explanations were also focussed at a procedural level. When explaining the 

basic laws of probability one teacher reinforced the idea that students should 

multiply when they see the word ‗and‘ and add when the see the word ‗or‘. Mason & 

Spence (1999) stress the failings of rehearsal and practice of techniques. While a 

mixture of both procedural and conceptual understanding is important, an 

overreliance on procedural understanding can be damaging. A concluding remark 

from one teacher was that 

―If you can learn off the formulas you‘ll be fine‖. 
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This may have been the manner in which this pre-service was taught himself in 

school. Developing subject matter knowledge is essential for these pre-service 

teachers since improvements in particular kinds of subject matter competence 

contribute to better analysis of practice thus improve teaching (Hiebert, Morris, Berk 

& Jansen, 2007).  

In addition, 25 out of the 29 pre-service teachers frequently used poor mathematical 

language or failed to introduce terminologies in their teaching.  

Transformation 

Communicating the mathematics to the learner is one of the sub codes under this 

category. 8 out of the 29 pre-service teachers were categorised as good transformers 

or communicators of knowledge, 14 categorised as poor transformers of knowledge 

and 7 as average. The pre-service teachers were categorised according to the way in 

which the teacher transformed his or her own meanings and descriptions of the 

content. An example of where knowledge was transformed effectively through 

representation and indeed by using a real-life example was where a pre-service 

teacher used a You Tube video of a car overtaking another car to introduce the 

concepts of velocity and acceleration. While the first author is not suggesting that 

real world contexts are the only effective way to transform the mathematics to the 

learner, she is in agreement with researchers such as De Lange (1996) that some real 

world connections develop students‘ understanding of mathematical concepts.  

While pre-service teachers were provided with specific questions to follow, they 

were given scope and encouraged to provide their own examples and vary their 

teaching strategies throughout the lesson. 5 out of the 29 pre-service teachers used 

real-life examples more than once in the lesson, while 7 out of the 29 made one 

attempt to put some concepts in context, and the remaining 17 used no real-life 

contexts. Boaler (1994) explains that teaching in context motivates students and 

builds their confidence and interest in mathematics so long as a realistic view of 

mathematics is given which makes sense both in the classroom and in the real world. 

There was some varied use of demonstrations and analogies but at times these were 

incorporated in the lesson to little effect e.g. one teacher used the interactive 

software package ‗GeoGebra' to introduce the meaning of differentiation but she 

struggled to explain what was happening on the diagram. The importance of 

foundation knowledge is again to the fore here. 

Connection 

The main finding to emerge from this category in terms of making connections 

between concepts or procedures was that many of the pre-service teachers lacked the 

knowledge to do just that. In a number of lessons, in particular the statistics lessons, 

no link was made between the answer obtained and the actual concept involved. Ball, 

Lubienski & Mewborn (2001, p. 433) report on a lack of understanding of the 

mathematical knowledge necessary to teach well.  
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Sequencing of subject matter is another sub code within this category but as students 

were provided with tutorial sheets prior to the lesson the code was less relevant to 

this study. It was interesting to note however, that only four of the 29 pre-service 

teachers re-ordered the sequence of exercises or topics according to what they felt 

would most benefit the students‘ learning. There were eight incidents observed 

where the pre-service teachers anticipated difficulties their students may have with a 

particular concept.  

Contingency 

The final category in the KQ is contingency which is determined by the pre-service 

teachers‘ ability to think on his or her feet, respond to the students and deviate from 

the lesson where he or she feels it would be beneficial for one or all learners. These 

three codes are discussed together since they are very much interlinked. The main 

findings emerging from this category were that most pre-service teachers (21 out of 

the 29) appeared to lack the content knowledge necessary to interpret students‘ 

questions and misconceptions and to confidently deviate from the lesson plan to 

explain such misconceptions. For example, in a lesson on integration a number of 

students were confused when the pre-service teacher removed the integral sign when 

he had not in fact integrated yet. The pre-service teacher was unaware and struggled 

to correct his error. The importance of subject content knowledge has been reported 

many times throughout this paper. 

There was however, some evidence of good responses and ability to deviate from 

lesson plan where appropriate and beneficial for students (6 out of the 29). 

Pre-service teachers‘ critical observation and reflection on their own teaching 

Foundation 

There was a mix of awareness among the pre-service teachers when reflecting on 

their foundation knowledge. 10 of the 28 pre-service teachers recognised their 

strengths or weaknesses in terms of depth of mathematical knowledge, use of 

mathematical terminology and reliance on procedures. One pre-service teacher who 

was categorised by the authors as having poor foundation knowledge recognises this 

to be the case and reflected that he 

―Doubts own knowledge of the content while explaining (solve 3

2

64 ) to the class, thus 

creating confusion for the pupils‖. 

A further 9 pre-service teachers displayed a poor ability to critically reflect on the 

aspects of foundation failing to recognise a reliance on procedures and unaware of 

their poor content knowledge. One pre-service teacher stated that she had a 

‗comprehensive knowledge of the topic‘ despite the fact that the she struggled to 

calculate the median. This would suggest that her beliefs about her knowledge do not 

match her actual content knowledge. Sullivan (2008) talks about the importance of 

teachers understanding the relevant mathematics needed to appreciate the work that 
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their students are expected to do. The remaining four pre-service teachers submitted 

vague reflection reports suggesting that perhaps their interpretation and 

understanding of the KQ was not as the authors would have hoped.  

Transformation 

The authors categorised 11 of the 28 pre-service teachers as demonstrating good 

critical reflection skills in terms of transformation of knowledge. These pre-service 

teachers were very much aware of the way in which the knowledge was 

communicated be it in an effective way or otherwise. One pre-service teacher 

recognises the effective transformation of Pythagoras‘ Theorem through use of You 

Tube video while also noting that her explanation of angles of elevation was unclear. 

Similar findings were noted in the authors‘ analysis. There was also some poor 

understanding of transformation (9 out of the 28 pre-service teachers). The pre-

service teachers whose reports highlighted both good and poor critical awareness and 

reflection were categorised as mixed transformation reflections. One such pre-service 

teacher reflected on the many effective aspects to his lesson but also maintained that 

he used pair and group work to encourage peer learning. This was not evident to the 

authors and perhaps the pre-service teachers need more guidance in terms of how to 

implement group and pair work effectively.  

Connection 

This category was the most poorly reflected on by the pre-service teachers. 16 out of 

the 28 demonstrated very poor critical analysis and reflection here and it seemed they 

were unaware of what ‗connection‘ means. Another possible reason for the poor 

reflection was the focus of some pre-service teachers on procedural knowledge. 

According to one student he had linked and made connections between the 

mathematical procedures because he had ―Reiterated to pupils the importance of 

showing all workings in case you make a mistake‖. 

The importance of teachers‘ beliefs comes into play again here and the author is in 

agreement with Grootenboer‘s (2008) suggestion that there is a strong case for 

considering the development of reform of prospective teacher‘s beliefs.  

Contingency 

There were once again varied critical reflections for this category with 11 out of the 

28 pre-service teachers demonstrating good critical awareness of where contingency 

was in action or where it could have been improved upon. 8 of these 11 pre-service 

teachers admitted that they lacked the content knowledge to deviate from their lesson 

plan or respond effectively to students‘ questions. According to Shriki (2010), many 

teachers do not possess the abilities needed to foster their students‘ creativity in 

mathematics, mostly due to lack of prior experience or proper college preparation. In 

the authors‘ reflections, it was noted that foundation knowledge seemed to impact on 

the pre-service teachers‘ contingency. Of the 9 pre-service teachers who reflected 
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poorly on contingency, 6 were not aware that insufficient foundation or content 

knowledge hindered their ability to respond to the unexpected.  

CONCLUSIONS 

The above findings offer an insight into pre-service teachers‘ subject and 

pedagogical content knowledge from the researchers‘ perspective and from the pre-

service teachers‘ own perspective. Some findings suggest that pre-service 

mathematics teachers may not have sufficient subject matter knowledge to alter their 

teaching strategies and ultimately teach for understanding. There is an onus on 

mathematics teacher educators to develop pre-service teachers‘ ability to move away 

from traditional approaches to teaching and create an awareness of the benefits of 

doing so. Video-based experiences are one way of doing that and this is one of the 

main reasons as to why the data was firstly analysed from the researchers‘ 

perspective. It offers a challenge to teacher educators to create awareness among pre-

service teachers of the need to develop their subject and pedagogical content 

knowledge which was the focus of this study. From their own reflections and the 

findings reported above, it is clear that there is a mixed awareness among the pre-

service teachers about the need for them to develop these essential tools for effective 

mathematics teaching. This offers a major challenge for teacher educators. 

Video-based experiences also provide trainee teachers with the opportunity to 

develop critical reflection skills in terms of their own teaching which is why this 

study included analysis from the pre-service teachers‘ perspective. Evidence from the 

paper highlights the further need to enhance pre-service teachers‘ reflective skills 

and develop their awareness of how to so do effectively. The process of mathematics 

teachers‘ reflecting on teaching situations is described by Garcia, Sanchez & 

Escudero (2006, p. 2) as ―an important process providing information that 

contributes to our understanding of their professional knowledge‖. 

NOTES 

1. There are three levels of mathematics in the Irish examination system with the highest level referred to as 

Higher. 

2. The Leaving Certificate, commonly referred to as the Leaving Cert., is the final course in the Irish secondary 

school system and culminates with the Leaving Certificate Examination. 
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This paper presents results regarding the Multicommented Transcripts Methodology 
(MTM) we have enacted to promote in teachers of primary school and secondary 
school awareness of their own ways of being in the class and to guide them in 
managing mathematical discussions. After a brief overview of the theoretical 

framework and the methodological structure of MTM, two multicommented 
classroom-based episodes are proposed, with the aim of highlighting the MTM 
educational potentialities. Some final remarks concerning the formative, cultural, 
educational and methodological principles of MTM are made. 

Keywords: Early algebra, Metacognition, Multicommented Transcripts 

Methodology, Reflective Teaching, Teacher Education 

INTRODUCTION 

Early algebra is proving to be an appropriate approach to algebra for 5 to 14 years-

old pupils, which allows them to achieve a better control over the meaning of the 

algebraic objects as well as of their generative processes. This achievement may 

occur in different ways depending on the age of exposure to early algebra, either in 

the first years of primary school or after several years of traditional teaching. In the 

first case, arithmetic should be introduced in a pre-algebraic perspective, whereas in 

the second one it should be revisited from a relational and structural point of view 

overcoming the traditional focus on algorithms execution. This entails a re-framing 

of teaching in the arithmetic-algebraic area requiring a greater attention to the 

construction of algebraic language as an instrument for representing relations and 

properties. This change of perspective leads teachers to revise their own knowledge, 

beliefs, attitudes, working styles. 

The MTM, on which we report here, was born for this aim. It developed within our 

ArAl Project, which involves in-service teachers in long term educational process. In 

the project the teachers deal with basic theoretical issues in early algebra together 

with the development of teaching sequences across the school grades: from algebraic 

generational activities to meta level activities (Kieran 1996), such as modeling and 

proof 1. This led us to design ways and tools to study the behavior of teachers 

involved in our project and engaged in early algebra teaching sequences, with the 

aim to lead them to reflect on their actions in the classroom and understand how 

these may be improved. (Malara & Navarra 2009, Cusi & Al. and related references). 
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SOME THEORETICAL INDICATIONS 

Several studies highlight how teacher‘s knowledge, beliefs, emotions and attitudes 

are intertwined and determinant components of teaching and learning processes (see 

Malara & Zan 2008 and related references). They underline that the study of these 

relationships is crucial to provide teachers with useful suggestions in their 

professional development. In this respect, the analysis of interactive and discursive 

practices, the awareness of the variables that influence the classroom process and 

self-observation during action are fundamental. The value of the teacher‘s critical 
reflection is a well known fact in the achievement and empowerment of the above 

mentioned skills (see for example Mason 2002, Jaworski 2003). In Jaworski‘s view, 

the essence of the reflective practice consists of making explicit teaching approaches 

and processes, so that they become the object of a detailed critical examination. She 

promotes the usefulness of communities of inquiry in teaching, discussion groups 

composed of teachers and researchers, in which the teacher has the opportunity to 

develop a specific identity. 

Our teacher training model follows these conceptions and modalities. But it 

represents the outcome of research and training practices developed in Italy since the 

1970‘s. Our hypothesis is that by critically reflecting on socio-constructive 

teaching/learning processes, the teacher is led to become aware of the different roles 

he/she is supposed to play in the classroom, of the best modalities to interpret them 

and can also get useful suggestions about how to behave in the classroom. Moreover, 

it is crucial for teachers to approach research results that can be useful for practice 

and become aware of the importance of studying them for their own professional 

development. 

The focus of our research is on the analysis of classroom-based processes that 

develop along teaching sequences planned with the teacher. These studies aim at: 

showing teachers the micro-situations which compose a process and the higher or 

lower effectiveness of the micro-decisions made; favoring the achievement of control 

over their own behavior and communication styles, as well as noticing the impact the 

latter have on pupils‘ behavior and learning. More in general they aim at gathering 

both theoretical and practical tools for pre-service and distance teacher training. 

THE METHODOLOGY 

In our project teachers are involved for at least two years in training activities. After 

planning and implementing lesson units together with the researchers, the teachers 

carefully record some lessons they choose, transcribe them according to a predefined 

format, add details coming from the notes they have taken during the lessons 

(gestures, expressions, etc.) and include reflections and comments. The teachers then 

engage themselves in a network exchange of e-mails with their mentors and 

sometimes with other teachers. The exchange consists mainly of reflections and 

comments regarding the classroom transcripts, through which the mentor infers the 

teachers‘ interpretation of their theoretical frame and the developed cultural values, 
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as well as their progressive harmonization with the background and the previous 

attitudes. This is the core of MTM. 

There are two different ways of implementing MTM. One way takes place in a 

university environment as part of a national or international research and training 

programs. It involves a small number of researchers and teachers who strictly interact 

with specific research proposals. The other way is implemented in schools, from 

different Italian regions and organized in networks, by teachers who take part into 

the ArAl Project. It is characterized by a few meetings with researchers and teachers 

and several long distance interactions, conducted via e-mail. A high number of 

teachers are involved (in the year 2010 nearly 150), organized in small groups of 

work. Each group is coordinated by a researcher, who plays the fundamental role of 

E-tutor. This latter type of intervention is mainly aimed at training although with 

important spin-offs for research. 

As first step, teachers are required of including in their transcripts of class session, 

either positive or negative comments concerning mathematical issues or critical 

points in the development of the discussion, possibly attaching some class material. 

The transcript of each session is sent by e-mail to the E-tutor, who makes comments 

and sends it to other teachers and researchers involved for further comments. Each of 

them can intervene again in the cycle with further meta-comments. So, the 

multicommented transcripts (MT) reify. They become an important object of study 

for the teachers through sharing with colleagues within the school and during 

meetings with the E-tutors. They are also published in the schools websites, in some 

cases included in www.aralweb.unimore.it as ‗good practices‘. In the following we 

wish to highlight their educational potentialities through some excerpts. 

ANALYSIS OF CLASSROOM EPISODES: TRANSCRIPTS AND 

COMMENTS 

Here, two MT excerpts, which document both the interactions among the actors and 

the variety of the faced themes, are presented. The order of their presentation is: (a) 

context; (b) transcript of session; (c) comments. In the comments, the words written 

in Italic indicate key elements of the ArAl Project theoretical framework, which are 

described in its Glossary 2 (some examples can be seen in 

http://www.aralweb.unimore.it/on-line/Home/ArAlProject/Glossary.html). 

Episode 1 (year 3 primary, 8-9 years old) 

The teacher is participating in the project for the 

second year and she is working on the distributive 

law, already discovered by the class in simpler cases. 

She shows two boxes, divided in eight parts, 

containing two types of marbles, as shown above. She 

says they belong to Marina‘s collection who  has organized them in a very orderly 

http://www.aralweb.unimore.it/
http://www.aralweb.unimore.it/on-line/Home/ArAlProject/Glossary.html
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way. Then the teacher formulates the task: ―Represent the situation in mathematical 

language so that Brioshi 3 may find the total number of marbles in the two boxes‖. 

Pupils work and their proposals are written on the blackboard. Many of them 

formulate more than one proposal. 

Andreina, Danilo, Francesca, Martina 16 40=n  40 16=n   n=16 40   n=40 16 

Andrea     (5 2)+(4 2)=n   n=(5 2)+(4 2) 

Maria     2 8=n   5 8=n   n=2 8+5 8 

Bruno     (2 8)+(5 8)=n  

Melania     4 2+4 5 

Sara, Elena, Giovanna   5 8=n   2 8=n   n=5 8   n=2 8 

Francesco     (2 8)+(5 8)=n 

Chiara     2 2+5 2=n   n=(2 8)+(5 8)   n=4+10 

Teacher: Good! Now, as usual, let‘s open up the discussion. [Comm 1] 

Andreina: Teacher, we were wrong because 16 is not repeated 40 times. 

Teacher: Explain it better. 

Andreina: I understood that we didn‘t have to multiply red marbles and green marbles, 

but rather put them together. 

Teacher: What do you mean by ‗put together‘, try to use mathematical language 

better. 

Andreina: United… 

Teacher: Do you know a more suitable term to explain what Andreina means? 

Francesco: You must add. 

Teacher: Yes, this sounds clearer… Any other remark? 

Melania: In my opinion the translations made by Andreina‘s group are opaque. 

Teacher: What do you mean? 

Bruno: They are opaque because they have already found the number of marbles. 

Chiara: It was not up to us to find 16 and 40, but rather write the translation to be 

sent to Brioshi. They have nearly solved the problem. 

Bruno: It‘s true, they found the product and not the process. 

Teacher What do you think about Andrea‘s representation? 

Andrea: Miss, I got wrong too… erase, erase. 

Teacher Hold on, explain what you wrote (Andrea can‘t explain). 

Melania: I also realize that I forgot to write something. I wrote 4 2 and 4 5 because I saw 

separate columns, but now I understood that my representation is not complete, I must add ‘ 2’. 
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Teacher Tell me which changes I should make. 

Melania: 4 2 2+4 5 2=n. 

Francesco: But she wrote like me… like Bruno… and like Maria Giovanna, because 

4 2 equals 8. 

Andrea: Melania factorized eight! 

The expression by Francesco is chosen to be sent out to Brioshi: n=2 8+5 8. 

[Comm 2] [Comm 3] 

1. Comment by the E-tutor: Regardless how correct the expressions are, the 

pupils show they use the letter as indicator of a number to be found. It is a naive 

and sometimes not pure use of the letter, like in the cases of Maria, Sara, 

Giovanna, Elena and Chiara, where the same letter stands for different quantities. 

Pupils should be led to reflect upon this from the beginning. 

2. Comment by the E-tutor: The transcript shows how the class is familiar with 

mathematical discussion. Also, it shows the good argumentative skills of the 

pupils and the fact that they draw on important theoretical constructs such as the 

distinction between opaque and transparent representations and between process 

and product of a calculation. It would be appropriate not to overlook a collective 

investigation on expressions like Melania‘s, which are incorrect but revealing her 

initial vision of the situation. How do they get to decide that Francesco‘s 

expression should be sent out to Brioshi? 

3. Comment by the coordinator: The iconic representation proposed by the teacher 

for translation into mathematical language is problematic and deserves reflection. 

Its negative influences can be detected in the translations made by Andrea or 

Melania. Many pupils use the (correct) representations 2 8 e 5 8. But the 

numerical representation consistent with the given representation is: 

2 4+2 4+5 4+5 4. Moreover, reading by rows, one may be led to the 

representation (2+2+5+5) 4, changeable into (2 2+5 2) 4, for the meaning of 

multiplication as repeated addition, an expression which can be, in turn, modified 

into (2+5) 2 4, for the distributive law they just met. The latter expression 

permits a link with representations ‗perceived‘ by many pupils: (2+5) 8 e 

2 8+5 8. These steps are certainly very sophisticated for pupils aged 8-9 and 

require control over parentheses and the property itself. The teacher should 

appropriately make hypotheses about the possible interpretations induced by an 

iconic representation and constructs a discussion sketch for each of them, in case 

some pupils propose it or even to show how a representation can be viewed in 

more different ways. A general point must be highlighted: the need to favor the 

interpretation of paraphrases in mathematical language contributing to the 

construction of meaningful skills in pupils. 
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Episode 2 (grade 9, pupils aged 11-12) 

A general representation of the sequence 4, 11, 18, 25, 32, … is sought for. The table 

reported below is constructed on the blackboard to identify the link between place 

number and term of the sequence. 

Place [Comm 4]
 

Term Rule 

1 4 7 2–10 

2 11 7 3–10 

3 18 7 4–10 

… … … 

8 53 ? 

Pupils find various rules, but they are focused on one in this case. The teacher is 

encouraging reflection upon relationships between numbers of the first and the third 

columns. 

Teacher: You have discovered that ―the place equals the term preceding the second 

factor of the multiplication‖. So, for instance, what is the rule at place 8? 

[Comm 5] 

Serena: You must do 7 9–10. 

Teacher: Do we all agree? [Comm 6] 

Many: Yes. 

Teacher: And is it 53? [Comm 7A] [Comm 7B] 

Many: Yes. 

4. Comment by the E-tutor: ‗place‘ is used instead of ‗place number‘. It is appropriate to 

be precise not to induce pupils to identify quality and quantity. 

5 Comment by the E-tutor: Pay attention to the abbreviations (see Comm 4). The fact that 

pupils know the meaning of ‗preceding‘ in Italian is not enough for a translation in 

algebraic language. They must learn to express ‗preceding‘ in relation to the number that 

follows. If they are able to paraphrase it only with ‗that precedes‘ (as in the transcript), 

they get stuck, because these paraphrases are opaque. They should rather be induced to 

make explicit the link between the two numbers and express the preceding number as a 

function of the subsequent. Natural language supports the achievement of this expression. 

In a grade 8 class, for instance, the proposal made by a pupil: ‗the preceding number is 

always one unit smaller than the number that follows‘ turned out to be very effective and 

decisive for translation. 

6. Comment by the E-tutor: There should be a shared didactical contract according to 

which monosyllabic answers are not acceptable. They do not help the teacher understand 

how the topic has actually been understood and do not help classmates either. Questions 

that require only ‗Yes‘ or ‗No‘ answers are not productive as well. Pupils do not argue, 
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they only answer the teacher‘s questions and let her guide them towards her objective. 

Requests like ‗Explain what you mean‘ make the pupil himself define the objective of his 

reasoning, and construct the related explanation. In these cases, the teacher should only 

evaluate the quality of the discussion, sorting out the argumentative traffic by intervening 

mainly on the methodological plane, thus favoring the social construction of knowledge 

through negotiation, sharing and stabilization of meanings. A teacher should become 

aware that control over natural language and implementation of social practices are basic 

elements for the understanding of mathematical language and therefore of mathematical 

concepts. 

7A. Comment by the teacher: At this point (I refer to Serena‘s ‗You must do‘ and to my 

‗it is‘, but this also occurs elsewhere in the transcript), I realize how imprecise my 

language is. I could have said ―Does 7 9–10 ‗represent‘ number 53?‖ or ―Does it 

‗correspond‘ to 53?‖. 

7B. Comment linked to the previous one by the E-tutor: Ok, right. But it is not only a 

matter of language, I think this reveals rooted attitudes which reflect hidden convictions. 

Very often teachers‘ algorithmic approach is ‗dominant‘ (referring to: operations, result, 

calculate, solve, ‗how much is‘, ‗it is‘, ...), the relational one is ‗recessive‘ (mainly 

focusing on: relations, structure, representation, ...). These activities in an early algebra 

environment aim to induce teachers to reflect on this point. 

REFLECTION ON EPISODES AND COMMENTS 

Comments in the transcripts are valuable for training in several aspects. Some of the 

most meaningful are reported below. 

Socio-linguistic aspects. We underlined how important linguistic aspects are in the 

construction of mathematical knowledge and how central they are in mathematical 

discussions. Pre-requisite for teachers to be able to make the discussion a shared 

instrument for the class is that they acquire many skills: to create a good context for 

interaction, to enact socio-mathematical norms that lead to compare different 

solutions, evaluate if a solution is acceptable or of a good quality, to steer the 

direction of the discussion in the different phases, to involve pupils in meta cognitive 

acts and so on. 

The relationship theory-practice. Another aspect emerging from comments is 

reference to the theoretical framework and to the glossary of the project not only 

shared by researchers and teachers but also – with appropriate adjustments - by 

teachers and pupils. Sharing is extremely important in both cases, because teachers 

and above all pupils are enabled to understand how aspects apparently far from 

mathematics, such as: 1) competence in using languages, mainly natural language, 

and control of their semantics and syntax; 2) being able to translate from one 

language to another; 3) difference between representing and solving a problem 

situation; 4) distinction between process and product; 5) recognizing the meanings of 

the equal sign; …  are the foundations of a meaningful construction of mathematical 
knowledge. 
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Mathematical aspects: an example, the conquest of the letter. In the first episode 

the letter is used in a very naïve way, in the second one it represents a high-level goal 

(in the next step the variable ‗n‘ is introduced as place number and to represent 7 (n-

1)-10 by tn as the n-th term of the sequence). Algebraic babbling (a theoretical 

constructs of the ArAl project, which compares modalities of construction of 

algebraic language to those of construction of natural language) emerges throughout 

exploration, discovery, conjectures, failed attempts which entail the introduction and 

use of the letter with various meanings (generic number, unknown, variable). 

Through transcripts and the analysis of comments, teachers become aware that the 

main difficulty for pupils is to get to understand that a letter can represent a 

number. It is an epistemological jump, fundamental for algebraic thinking, which 

may become a block if the pupil is not guided enough. 

The use of comments in the training process aims to make the teacher sensitive to 

basic general issues, such as: are students aware they are communicating through 

mathematical language? What kind of relationship do they have with the semantics 

and syntax of mathematical language? Which environment (situation, contest) can 

improve algebraic thinking? How can one detect the awareness of ‗algebraic content‘ 

in pupils‘ sentences, intuitions, proposals, representations? These kinds of questions 

make teachers‘ reflections profound, meaningful and productive. 

CONCLUDING REMARKS 

MTM appears to be an effective instrument in teacher‘s training processes involving 

mathematics. 

This methodology has an important pre-requisite: a trusting relationship between 

teachers and researchers. Moreover, when the teacher edits a transcript, he puts 

himself on a different level. He detaches himself from the activity he was part of and 

critically reads what happened in the classroom. His class is no longer his class. His 

transcript is no longer narrative, it acquires scientific aspect and becomes a training 

instrument. Comments may bring her/his misconceptions to the surface, touching 

sensitive points. Many teachers immediately realize that the comments are valuable 

and accept the remarks. Others see their competence jeopardized; they feel 

uncomfortable and refuse to accept that their transcripts may become public. Others 

tend to ‗watch and wait‘, they need time to familiarize themselves with the 

methodology and be convinced before using it. These different types of behavioral 

patterns are monitored by researchers, who are always trying to make teachers 

understand that MTM is meaningful and productive only if participants engage in the 

project with open and sincerely committed minds. 

Notes 

1. For an overview of the project and related bibliography, see the site www.aralweb.unimore.it. 

2. Glossary terms are more than 100 and belong to several categories: theoretical constructs, which are both 

original or coming from previous studies of mathematics education, terms relating to linguistic or 

http://www.aralweb.unimore.it/
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psychological aspects. These are interconnected in a network of references, which allows the teacher to 

build a reticulum of knowledge that led him/her gradually to a new vision of the arithmetical-algebraic area 

and its teaching. 

3. Brioshi is a metaphor from the ArAl Project. He is a virtual Japanese student exchanging messages in 

mathematical language with pupils. His acknowledged skill in this area, encourages pupils to check the 

correctness of the mathematical expressions to be sent out to him. 
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The Laboratory of Mathematical Machines of Modena, supported by the ―Regione 

Emilia Romagna‖ (Italy), invested the most recent mathematics education 

researches in the teacher training project MMLab-ER. The training course was 

unique both in methodology and focus: teachers joined laboratory activities with 

mathematical machines analysing the interactions (between peer, experts and also 

with tools) and the cognitive processes involved. The paper presents examples of 

these activities where teachers construct, and then analyse, different resolution 

strategies carried out during ruler and compass constructions. 

Keywords: Mathematical laboratory, teacher training, resolution processes. 

INTRODUCTION  

The Project "Laboratory of Mathematical Machines for Emilia-Romagna‖ (MMLab-

ER) [1] aims at facilitating the implementation of a laboratory approach in the 

teaching and learning of mathematics. The first step of the Project was the set up of a 

network of math laboratories distributed among five cities in Emilia Romagna region 

(Italy), followed by the training of in-service teachers (primary, secondary and high 

school) on laboratory activities with special tools, such as the mathematical 

machines: reconstructions of tools belonging to the historical phenomenology of 

mathematics from ancient Greece to 20
th

 century (i.e. curve drawers, pantographs and 

mechanical calculators) [2]. The training course started with laboratory activities on 

ruler and compass constructions (the compass is one of the oldest and well known 

mathematical machines) and continued by introducing other curve drawers and 

pantographs for geometrical transformations used in history both for mathematical 

purposes and also for practical purposes. In all these activities it is highlighted how, 

through appropriate tasks, the mathematical machines laboratory activity can be a 

suitable environment to develop crucial aspects in the teaching and learning of 

mathematics: for example the exploration processes, the production and comparison 

of conjectures and argumentations. 

This paper presents some examples of teacher training activities in which teacher 

educators focus the attention on important learning goals, such as the development of 

adaptive reasoning: ―the capacity for logical thought and for reflection on, 

explanation of, and justification of mathematical arguments‖ (Kilpatrick, 2001, p. 

107). 

THEORETICAL FRAMEWORK  

MMLab-ER Project is grounded on a laboratory idea that is well expressed by this 

metaphor: ―We can imagine the laboratory environment as a Renaissance workshop, 
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in which the apprentices learned by doing, seeing, imitating, communicating with 

each other, in a word: practicing‖ (Bartolini Bussi et al., 2004, p. 2) [3]. For this 

reason, the math laboratory should not be conceived only as a physical space in 

which teaching practices based on the use of specific technologies are developed, but 

rather as a teaching methodology. This laboratory idea, linked to the tradition of the 

European cultural history and highlighted by ICMI (International Commission on 

Mathematical Instruction) since the last century, is suggested by the Italian 

Commission for the Teaching of Mathematics in the ―Mathematics curriculum for 

the citizen‖ [4]. During the training, teachers were involved in this type of 

mathematics laboratory. The hands-on tools used and analysed in these activities are 

the mathematical machines.  

The MMLab-ER Project is based on the experience gained from MMLab in the 

laboratory activities carried out in school: in particular researches on epistemological 

and educational aspects involved in activities with mathematical machines (Bartolini 

Bussi, 2000; Bartolini Bussi & Maschietto, 2006; Maschietto & Martignone, 2008). 

In recent years the MMLab research analyzed also the cognitive aspects involved 

during mathematical machines activities. In particular Martignone & Antonini 

(2009) studied the interaction between a subject and a mathematical machine using 

Rabardel theory (Rabardel, 1995). According to Rabardel, an instrument is defined 

as a hybrid entity made up of both artefact-type components and schematic 

components that are called utilization schemes. Following these ideas, during the 

interaction with a machine, we have identified artefact exploration processes and 

different (utilization) schemes carried out to solve a specific task. This study focused 

our attention on the importance of analysing these aspects and it was also useful to 

project tasks on the machines explorations dealing with the analysis of artefact 

components (how is done) and the genesis and development of utilization schemes 

(how do you use it? What is done?). 

The theoretical framework, used to describe and interpret the different phases of 

laboratory activities with artefact and the role of the teacher, is the construct of 

semiotic mediation introduced by Mariotti & Bartolini (2008). In this framework  

the teacher's main roles are the following: to construct suitable tasks; to create the 

condition for polyphony, eliciting the polysemic feature of the artefact; to guide the 

transformation of situated ―texts‖ (signs) into mathematical ―texts‖. In this way the 

teacher mediates mathematical meanings, using the artefact as a tool of semiotic 

mediation. (Bartolini Bussi, 2009, p.125) 

The Project has provided the opportunity to rethink on these existing researches 

bringing some innovations. For example, the study of the potential that the 

laboratory activities with mathematical machines can offer in the genesis and 

development of students‘ exploratory and argumentative processes. Our attention to 

the study of these processes is grounded into different studies: e.g. the researches 

collected in Theorems in school: From History, Epistemology and Cognition to 
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Classroom Practice (Boero, 2007) and the study of exploration processes during 

problem solving activities (Martignone 2007). 

The training project has also taken into account international researches in the field 

of teacher education, many of which were presented in The International Handbook 

of Mathematics Teacher Education [5]. In particular, we are in agreement with 

Watson & Sullivan (2008) research because we designed tasks for teachers that 

focused on important aspects of mathematical activity ―to provide insight in to the 

nature of mathematical activity‖ (Watson & Sullivan, 2008, p. 110) and we worked 

with teachers who faced these tasks reflecting on what they are doing and on what 

way they could make something similar for their students (classroom tasks). 

―We use classroom tasks to refer to questions, situations and instructions that teachers 

might use when teaching students and task for teachers to include the mathematical 

prompts many of which may be classroom tasks, that are used as part of teacher learning‖ 

(Watson & Sullivan, 2008, p. 109)  

LABORATORY ACTIVITIES WITH TEACHERS  

Teacher training features 

The MMLab-ER involved primary, secondary and high school math teachers [6]. For 

this reason, it was an important opportunity to foster a dialogue and a discussion 

between teachers from different school levels. Teachers could share ideas and 

thoughts about the role of the teacher and the different cultural aspects and contents 

that emerged from the laboratory experiences with mathematical machines. The 

training course, designed and managed by the author, exploited this opportunity by 

offering activities that could be an inspiration to teachers from different types of 

schools, with the common goal of the acquisition of laboratory methodology, the 

development of attention on exploration and argumentation processes and on relative 

verbalization.  

One of the purposes of MMLab-ER training was to give room for the dynamic 

discussion and comparison of solution strategies among peers and experts. In 

particular we asked to explain the procedures of geometrical constructions in order to 

understand their roots, motivations and development not only related to the 

mathematical contents involved, but also to the use of tools. Therefore, the focus is 

on the analysis of own and others' problem solving processes. 

It is important to stress that MMLab-ER training did not wish to give pre-packed 

worksheets for classroom activities. The working session aimed at providing ideas 

and guidelines for possible teaching experiments, which were designed during the 

course according to the needs and the goals of teachers. 

Summarizing, the peculiarities of MMLab-ER teacher training are related to: 



Working Group 17 

CERME 7 (2011) 2749 

 

 The course methodology: during training sessions the teachers are placed, with 

the obvious differences, in learning situations ―acting as students‖; they are 

divided in working groups and joined the discussions orchestrated by a teacher 

educator. In these activities the tasks are open and the different possible 

solution strategies are described and discussed with all other colleagues who 

belong to different schools and grade levels. 

 The exploration and use of special hands-on tools coming from the history of 

mathematics and from everyday life. 

 The choice to focus on the verbalization and comparison of problem solving 

strategies (analysing roots, choices, procedures and arguments of the 

resolutions). 

This article presents an experience carried out during the MMLab teacher 

training, from individual tasks to collective discussions in which teachers 

described and analyzed different ruler and compass constructions. It will also 

shed light on the role of the teacher educator who manages the collective 

discussion with teachers through specific techniques, such as asking to explain, 

summarizing and highlighting the implicits of resolutions strategies. 

An example: ruler and compass constructions 

The first mathematical machines used in the MMLab-ER training is the most known: 

the compass. We wanted to reassess the importance of ruler and compass 

constructions in mathematics teaching-learning: the compass, in fact, although 

widely used for practical purposes (e.g. in technical education), is not often analyzed 

in its foundational role in the mathematics culture (we just think to Euclid's 

Elements). 

Following Rabardel theory, teachers analysed the compass. At first, the physical 

object with its specific characteristics, and then the utilization schemes that develop 

under specific tasks, for example to draw circles and the measurement transfer. This 

first activity set the protocol of exploration that will be the basis of each machines 

exploration. After analyzing the artefact components and its utilization schemes 

(answering to the questions: how is it done? What it does?), teachers studied the role 

of structure and movements in order to justify the machine functioning (why it does 

that?). Obviously, in this particular case, the exploration was carried out very rapidly 

because the compass is already well known by the teachers. The analysis of 

instrument finished with a problem solving activity guided by the open question: 

―What if it does change...?‖. Teachers explored the possible changes of the compass 

(e.g. with equal or different rots and with extensions) and the existing different types 

of compasses (e.g. plane compass and the blackboard compass).  

After this instrument analysis the teachers faced this crucial task: To construct an 

isosceles triangle using ruler and compass. 
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From the point of view of contents, the choice of the isosceles triangle was made 

because it is a figure whose definition and properties are known since primary school 

and therefore suitable to all course participants and reproducible in different classes 

(with obvious adjustment). Moreover, the request is deliberately left open (we do not 

ask: to construct an isosceles triangle given the sides) in order to encourage the 

genesis of different construction strategies. This activity, carried out by all teachers 

involved in the Project (about a hundred divided into five provinces) was proposed 

to focus teachers attention on the following aspects: how and why the same final 

product (in this case, the isosceles triangle) can have different constructions; the 

importance of analyzing the theoretical and practical reasons grounding the different 

choices; the role of artefact components and utilization schemes analysis in the 

planning and development of the resolutions.  

Teachers faced the task individually and discussed the possible solutions in small 

groups and then collectively. This methodology should foster the verbalization of 

their processes and argumentations. The teacher educator orchestrated the collective 

discussion using different techniques: calling teacher to play his/her construction, 

asking to dictate the procedure highlighting the implicits, comparing different 

constructions and giving suggestions for other possible constructions.  

Below we show and analyse some excerpts selected from a collective discussion in 

which are presented different constructions of the isosceles triangle. The discussion 

started after the working group session. 

Teacher educator: Who can explain to me his construction? Always step by step so we can 

reproduce it. 

Teacher A: I was lazy and I have only drawn a circle with radius at will, then I 

connected the circle center to two points belonging to the circumference. 

The teacher educator performs the procedure on the blackboard (fig. 1). 

 

Figure 1: Solution A 

Teacher A: I almost chose the sloped side and then I constructed the triangle.  
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Teacher educator: Okay, first you gave me a procedure and now, do you want to justify it? 

The procedure is correct: I found an isosceles triangle. I know that it is just 

an isosceles triangle because … 

Teacher A: Because the points I have chosen are on the circumference. 

Teacher B: Yes, they are the circumference rays and so they are equal. 

Teacher A: But now … I'm asking myself this question: I said at will, but I had to be 

careful... 

Teacher C: They should not be on opposite sides. 

Teacher D: They should not belong to the diameter. 

Teacher educator: This is an additional step: asking if... 

Teacher A: Then, perhaps in order to be more precise I should have said that I excluded 

the points diametrically opposite. 

Teacher educator: Yes, I should not take B aligned with O and A. The exploration of the 

limit cases is important. With a dynamic geometry software this exploration 

could be facilitated […] 

As we can see in this excerpt, the teacher educator orchestrates the discussion asking 

questions, highlighting the limits and peculiarities of the suggested procedures, 

raising ideas, and summarizing.  

Now we show a second excerpt in which a teacher describes another construction 

and, as before, the teacher educator reproduce that on the blackboard. 

Teacher E: I draw a segment, I open the compass at will and I draw a circumference 

pointing on the two extremes. 

Teacher F: But with the same opening. 

Teacher E: Yes, maintaining the same opening. 

The teacher educator opens the compass less than half of the segment (selected as 

triangle base) and she draws the two circumferences while the classroom starts to 

rumor. 

Teacher E: Not in this way. 

Teacher educator: You told me ―as I will‖…  

Teacher E: Larger. 

Teacher groups: More than half. 

Teacher educator: Ok, why? In the meantime, let us ask our self, what we said before: my 

construction starts from a definition or a property of the isosceles triangle. 

What property would you use? 

Teacher E: I wanted to use the properties of segment axis. 
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In this excerpt we notice the attention and the effort involved in highlighting the 

implicits in teachers‘ procedures and in the roots of constructions. 

The discussion continues analyzing other constructions (see figure 2-3). 

  

Figure 2: Solution B: a construction 

that uses the segment axis 

Figure 3: Solution C: a construction of 

a triangle given three sides when two 

sides are equal 

In these collective discussions the teachers see and listen to procedures (made by 

colleagues or by teacher educator), by asking questions and focusing more on 

understanding the reasons behind the single steps in relation to mathematical 

concepts involved and the role of compass. This work leads teachers to reflect on the 

formulation of procedures, the limit cases, the roots of the constructions and the 

argumentations that support them. 

The teacher educator notices that nobody has used the isosceles triangle propriety of 

―having two equal angles‖ and therefore she suggests this task: To construct an 

isosceles triangle given one of the equal angles. 

This task is interesting because not all the teachers remember the procedure and, for 

this reason, the activity is seen as a challenge that they have to face by collaborating 

and discussing in small groups.  

Here is a brief excerpt from a discussion that followed the explanation of the 

procedures carried out by a teacher (teacher 1) who made the construction shown in 

fig.4.  

 

Figure 4: Solution D: a construction of isosceles triangle given one of the equal angles 
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The teacher 1 constructs an isosceles triangle cutting the angle with a circle and then 

re-constructs it as we can see in fig.4. 

Teacher 2: But the problem is that…we said it is equal to this (he indicates the isosceles 

triangle sides identified by the circumference that cuts the angles sides). 

This is equal to this, so these two triangles have equal sides, so they are 

isosceles. 

Teacher educator: The fact is that you have chosen how to cut the angle with the 

circumference. 

Teacher 2: But in this way they are isosceles, did we construct an isosceles triangle using 

isosceles triangles?  

Teacher educator: Yes, they are isosceles triangles, but it could be done also by using the 

construction of a scalene triangle. The crucial step is when you construct 

this arc (she points out the line segment that connects the points of 

intersection between the circumference and the angle sides). 

Teacher 1: As a matter of fact, I constructed two congruent triangles, so now I have the 

correspondent angles congruent; the isosceles triangles are made in few 

steps. 

Teacher 2: It is true, what interested me was to construct an angle congruent to another 

and in order to do that it is sufficient to construct two congruent triangles. 

Naturally for the construction of an isosceles triangle I have to put them in 

this way (he points that out), if they do not mirror, it does not work. 

In the excerpt we see how the construction steps are analyzed and discussed with a 

teacher who wants some clarification about the key elements that ensure the 

construction validity. 

The whole activity on the isosceles triangle construction (individual task followed by 

collective discussion) highlights how, even in this simple task, we can use the 

laboratory approach in order to develop the analysis and the comparison of different 

solutions, underlining the importance of verbalization and explanation of choices 

(theoretical knowledge, practices, etc.) and procedures. From the point of view of 

mathematical contents, teachers realize that even starting from the same definition of 

isosceles triangle (a triangle that has two equal sides) there are different 

constructions and cognitive processes involved: i.e. the solutions A and C.  

The final discussion dealt with the constructions frequency because more than half of 

the teachers made constructions like in solutions B and C, few like the solution A, 

and almost none like the solution D. Teachers thought about these choices and 

concluded that the first two strategies (B and C) are more frequent because they are 

used both in technique drawing (―when you learn the construction of triangles, you 

do so‖) and when you draw on squared paper (―these are constructions that we, and 

our students, usually made using the squared paper: the segment axis are simple and 
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fast to do‖); while construction D has not occurred because is not used frequently (―it 

has not come to my mind because I never do it‖). It should be noted that all these 

reflections were been useful to teachers in the subsequent phase of teaching 

experiments design, in particular for the a priori analysis, for the tasks choice and for 

the management of group discussion. 

CONCLUDING REMARKS 

The methodology and tasks carried out during the MMLab training course aimed at 

developing the teacher‘s attention to other ways of thinking and awareness of their 

own resolution processes. The development of this type of competence is not only 

useful for teachers to analyze the possible solutions of their students (the 

peculiarities in their thoughts and the possible mistakes or misconceptions), but it 

opens up the horizons on important mathematics features which are not reduced to 

symbols manipulation or reproduction of proofs studied on books. The reflection on 

these processes and on the role of theoretical and practical knowledge was one of the 

most important guide lines in the laboratory activities designed by trained teachers 

and developed in teaching experiments during the two years of the Project. Even if 

the analysis of project results is only at the beginning, because the project ends this 

year, we already have found a correspondence between the guide lines of the training 

and the teaching experiments carried out by trained teachers. In these teaching 

experiments, teachers, fostering individual production and critical observations, have 

always asked their students to verbalize their solutions, by discussing and sharing 

their knowledge. 

NOTES 

1. The MMLab-ER is a two-year project (2008-2010) founded by ―Regione Emilia Romagna‖ and coordinated by M. G. 

Bartolini Bussi and M. Maschietto. The responsible of the teacher training design and development are F.Martignone 

and R. Garuti. 

2. For information about the MMLab mathematical machines: www.mmlab.unimore.it. 

3. http://www.icme-organisers.dk/dg20/italians.pdf 

4. ―Matematica per il cittadino‖: http://umi.dm.unibo.it/scuola--99.html 

5. The International Handbook of Mathematics Teacher Education, Terry Wood (Ed.) Sense Publishers, 

Rotterdam/Taipei, 2008. 

6. The training lasted 28 hours (distributed in seven meeting in each of the five provinces) and was managed by expert 

teachers or researchers who joined the MMLab group. 
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The present text is part of a more comprehensive work purporting to study the 

professional development of primary school teachers within the program for 

continuous training in mathematics (PCTM). We will present a cross analysis of the 

case studies of teachers Dora and Aida, focusing on the meaning they confer upon 

the process of planning a teaching activity, tasks planned and planning development 

within PCTM. Aida bestows great importance on this process. Dora‘s participation 

in PCTM widened her horizon to the necessity of undergoing it.  
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FOREWORD 

This text is based on a work whose main purpose is to study the professional 

development of in-service primary school teachers within the program for continuous 

training in mathematics (PCTM). We specifically wish to ascertain how didactic 

knowledge relating to teachers planning develops through participating in PCTM. 

I.e.: what meaning do they confer upon planning? How do they plan? What sorts of 

tasks do they select?  

We consider that professional development is conceived as a permanent, continuous 

and intentional process, aiming at improving professional knowledge, teaching 

practices and reflection thereupon, thus contributing towards better students‘ 

learning in Mathematics (Guskey, 2002; Sowder, 2007). Participation in training 

programs is taken to be a tool for professional development (Guskey, 2002; Wu, 

1999). One of the goals of PCTM is ―to foster the undertaking of curriculum 

development experiences in mathematics which contemplate class planning, class 

direction and reflection by the teachers involved, supported by peers and coaches‖ 

(Serrazina et al. 2005, p. 3), thus foreseeing that in PCTM there will be an 

intentional investment in the aforementioned components. Thus, this program aims at 

providing, throughout the academic year, a site for experimentation and joint 

reflection, between teacher-trainer and trainees, so that one can reflect upon practices 

and use them to develop a sustained knowledge, which takes into account the 

characteristics of the students it addresses (students aged 6 to 10). 

The activities to be developed within this program, take the form of: 

─ Group training sessions (GTS), biweekly joint sessions for planning and reflection 

upon activities associated with the teaching practice, involving the teacher trainer 

and a group of teachers voluntarily enrolled in PCTM. 
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─ Classroom supervision sessions (CSS), sessions for the development of classroom 

curriculum activities corresponding to conducting practices materializing the 

planning detailed in the joint sessions and respective discussion, involving the 

teacher trainee and the trainer in her role as supervisor; 

─ A joint work session for the development of other enlivening actions with the 

teachers. 

As far as evaluation is concerned, the elaboration of a portfolio reflecting the 

professional development resulting from the training is proposed. 

In this text we wish to present Aida and Dora‘s vision of the planning process, trying 

to perform a cross analysis of these two cases on the basis of the following 

categories: (i) meaning/importance of planning; (ii) tasks planned under PCTM; (iii) 

weight of planning undertaken under PCTM; and (IV) collaborative work in 

performing planning. 

THEORETICAL FRAMEWORK 

Teaching practice is a key component of a teacher‘s professional life. Teaching 

Mathematics, regardless of level, involves students, teachers, administrators and 

schools in contexts which change on a daily basis making the creation of a formula, 

―a kind of guide‖, or even of a set of practices teachers can adopt, difficult (Franke, 

Kazemi, & Battey, 2007). Within teacher‘s action three basic stages are usually 

considered, concerning teaching practice: pre-active, interactive and post-active 

phase. (Canavarro, 2003; Clark and Peterson, 1986, Santos, 2001; Vale, 2000). 

Classroom practice begins with planning, this being the phase were the teacher 

identifies content, materials and teaching methods necessary for the practice. For 

Yinger and Hendricks-Lee (1995) teachers have, on one hand, daily and yearly, the 

responsibility of selecting and conceiving learning experiences based on course 

content and, on the other, must be prepared to take the utmost profit from non-

planned teaching opportunities which might arise in the course of educational 

interactions, and being able to achieve these purposes thus demanding preparation. 

Pacheco (2001) sees planning ―as a practical activity allowing the organization and 

contextualization of didactic action taking place at classroom level‖ (p. 104), 

presenting two main functions, one being to clarify what one wants to perform in the 

classroom and the other to predict and modify forecasts, throughout the process in 

agreement with the didactic situation (Pacheco, 2001). Thus, ―the act of planning 

presents itself as a specific and essential teacher‘s competence which allows him/her 

to configure, by means of a mental or written plan, the several didactic elements used 

as a basis to structure the teaching learning process, providing a reduction of 

incertitude or insecurity‖ (Pacheco, 2001, p. 105). Even when written plans are 

produced, they represent only a small part of the true planning that has been taking 

place in the teacher‘s mind (Arends, 2007, p. 100). 
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According to Yinger and Hendricks-Lee (1995), to be prepared for interactions as 

dynamic as the ones that take place during class seems to be less a question of 

prediction and control and more a question of preparation and response ability. 

Specifically, the teacher must anticipate difficulties and student‘s resolution 

procedures, foresee how to monitor them and sequence the possible interventions 

and connections that might be established (Stein, Engle, Smith, & Hughes, 2008). 

Within this framework, planning producing more generic charts, more flexible and 

activity-based, will be more useful than the one producing strictly specified and goal-

oriented plans. Likewise, plans will become more useful if not conceived to be 

implemented as means for interaction control, but rather as framing tools purveying a 

starting point for educational interactions (Yinger & Hendricks-Lee, 1995). 

The selection of tasks to submit to students is envisioned as the main point for 

planning the teaching/learning process (Fernandes, 2006; Ponte, 2005). It is up to the 

teacher to be responsible for their preparation and direction, taking three concerns 

under account: mathematical content, students and their learning paths. It is also 

important to understand how students and teachers deal with the diversity of existing 

tasks, namely concerning evaluation of work undertaken, progress achieved and 

difficulties to be faced, and cognitive and metacognitive processes and strategies 

associated with each range of tasks submitted to them (Fernandes, 2006). 

The possibility of performing teaching practice collaborative planning work allows 

capitalizing energies, to provide extra support, to multiply perspectives, to enrich 

reflection (Serrazina et al., 2006). Collaborative learning as a professional 

development strategy (Marcelo, 2002) involves group-oriented formative processes, 

causing not only that learning activities be performed with others in interactional 

context but also that goals and results of such learning also present a collaborative 

aspect. PCTM is presented as a privileged means to perform this task (Serrazina et 

al., 2006). In the context of teacher‘s professional development Joubert, Back, De 

Geest, Hirst and Sutherland (2010) state that there are different models but most of 

them aim at providing opportunities for teachers to become involved in learning and 

change processes. They suggest, however, that different teachers, influenced by their 

work contexts and personal motivation, beliefs, theories and experiences, will 

perceive different opportunities, and such perceptions may change in the course of 

time. 

INVESTIGATION METHODOLOGY 

The undergoing investigation is qualitative/interpretative in nature (Teddlie & 

Tashakkori, 2003), using case study techniques (Stake, 2007).  

The wider study has considered three primary school teachers, Aida, Dora and Sara, 

belonging to the same training group, who enrolled voluntarily in PCTM. Selection 

criteria were number of teaching years and academic training. In this text we will 

only focus on Aida and Dora. 
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Aida is about 45 years old, and has 25 years experience as a teacher. She underwent 

one year in PCTM. As academic training she has a primary school teacher‘s degree 

(three years course), a specialized course of superior studies in the French teaching 

area (license degree) and a master‘s degree in History of Education. Mathematics has 

always been one of her favorite subjects, although her post-college training has been 

unconnected with this area. From PCTM she hopes to become up-to-date and try that 

―children might learn to see mathematics in a different way, as a subject that can be 

interesting‖ [Aida, portfolio].  

Dora has less than 10 years teaching experience and is about 40 years old. Dora 

underwent two years of PCTM. She has a license degree (four year course) in Basic 

Teaching, specialized in visual and technological education, enabling her to teach in 

primary school. Her life as a student is determined by mathematical failure and a 

conflictive relationship with it. Dora expects from PCTM ―to be able to overcome 

myths‖ [Dora, first interview] she has felt since childhood and to learn.  

Data gathering started in the academic year 2006/2007 and took place for two 

consecutive years, through semi-structured interviews (namely one initial, one half-

way, one final, one two years after completion of the program and four post-

observation interviews conducted with Aida who only took one year of training, the 

same number with Dora plus 5 post-observation interviews in the second year of 

training) participant observation of the Group training sessions and of the Classroom 

supervision sessions, and documental analysis of materials produced by the teachers 

and field notes and accounts of the teacher-trainer.  

Following an interpretative paradigm an analysis of information started at the end of 

the training year, consisting in organization and interpretation of data, according to à 

posteriori defined categories, taking into account the problem under consideration, 

theoretical presuppositions and empirical work undertaken. The interpretative 

paradigm subscribes to a relativistic perspective of reality ―envisaging the real lived 

world as a construction of social actors who, at each moment and place, construct the 

social meaning of events and phenomena and reinterpret the past‖ (Santos, 2001, p. 

186). 

In this text, according to the categories developed, different topics were found 

characterizing these teachers‘ vision about the process of planning teaching activity. 

AIDA AND DORA: PLANNING TEACHING PRACTICE 

Meaning and importance of planning 

To Aida, planning teaching activities is a key aspect of the teaching/learning process, 

assertively stating that she has always planned, specifically noting the prediction 

relevance of the aspects planning includes: 

I really don‘t know how people manage to teach a course they have not planned 

beforehand. Although there might be one day when one does not have the time, but 
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everything is lined-up in one‘s mind. As rule I have everything actually written down. 

[Aida, initial interview].  

In her final interview she mentions class preparation, seeing it as a privileged 

moment to consider the several aspects present in a class, an essential condition for 

its success: 

It is essential because when we are preparing the course we reflect about class content, 

about the material we are going to bring, about what students know and about how to do 

it. So, I think one has to go this way. We must prepare every class for it to succeed, 

although improvisation is important, but only up to a point. I think preparation is essential 

for every class to take place as we want it. [Aida, final interview] 

Dora clearly associates planning task to writing, which she claims not to like: ―It is 

true, I don‘t like it, I never did‖ [Dora, initial interview]. She claims she usually 

prefers to mentally plan tasks, and only organize some ideas on paper, which are 

often changed when she enters the classroom: 

I always think about what to do, but I don‘t write every step down, every step I must take, 

that is, I put down some topics for my own guidance, it‘s my way of organizing myself. 

Of course I prepare materials, the files I am going to use, and I bring it with me like that. I 

just get there and I don‘t follow a script, never, never. [Dora, initial interview] 

In her final interview, she talks about planning teaching activities during PCTM 

clearly reinforcing the importance of the selection of tasks to put forward: ―After 

having had the idea I prepared the material, oh yes… . That part is what‘s more 

important. For instances I made up the problem I was going to bring with me. And 

some of the material I used. If its correctly made up, why not using it, right?‖ [Dora, 

final interview]. 

At the end of the first year of PCTM she assumed the importance of planning, 

namely referring to planning investigation activities (speech 1) as well as 

undertaking planning in general (speech 2): 

1. I prepared classes, that‘s obvious, it‘s just that I did it lightly, and not anymore, I go 

down to details more. Even because regularities tought me, I must pay more attention to 

that part, I must be rigorous when I prepare classes, to know whether or nor I am prepared 

for the answers and questions of students. [Dora, final interview] 

2. Useful to know what we are going to do, to have a sequence, to know the steps we 

have to take, to consider what we are going to do, what must be done, the objectives, to 

know all those steps. [Dora, 2
nd

 post-observation interview] 

Although Aida has always acknowledged planning as an essential part of the 

teacher‘s teaching practice, associating it to a written record, Dora became, through 

participation in PCTM, more sensitive to its necessity, distancing herself from the 

idea of something exclusively mental and mainly associated with selecting tasks to 

face the students with. 
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Tasks planned in PCTM 

Ever since the beginning of their training Aida and Dora have decided to experiment 

in tasks that were not usual in their teaching practice which caused them, for 

instances, to gain a new vision on the meaning and importance given to problem 

solving. Although Aida considered that problem solving was part of her classroom 

strategies, she had seldom presented problems that could not be solved directly 

through the use of an algorithm and whose resolution was possible using different 

strategies. This aspect is remarkable in her choice to include this task in the 

portfolio: 

The choice of this task to become a part of the portfolio is due to the fact that it was 

precisely the first and, as such, was surrounded by larger expectations. Another reason 

which has defined my option is also related to its content. Introducing a ―different‖ kind 

of problem from the ones you usually face the students with, which constitutes a 

challenge regarding my professional practice. [Aida‘s portfolio, justification for inclusion 

of the first task] 

Dora also mentions that before the training she already engaged in problem solving, 

but that she considered them to be different from the problems she currently uses, 

upon which the student can use different solving strategies: 

But they were not problems just like these, sort of games that cause mental reasoning to 

develop, that make them think, that can be practical, useful for their daily life, less 

routine. And they do them very gladly and with much more willingness than the others. 

The others are much more a mathematical task. That is an operation! Is it a sum, a 

subtraction, or a division? It‘s always the same thing. And in these problems they don‘t 

see it, they see them as game, a challenge. [Dora, 1
st
 post-observation interview] 

Thus, for both of them, the tasks planned within PCTM have constituted a challenge 

in setting up a new meaning. 

Elaboration of planning within PCTM 

Resorting to planning developed within PCTM. Aida followed planning worked 

out within the training group, but always adding a personal touch to it. For instances, 

in the first task undertaken, Aida thought about presenting the students with a 

problem similar to the one worked out in the group, but adapted to a context fitting 

the Christmas season, stating regarding this in the 4
th

 GTS: ―I am going to make the 

experience‖ and she went on ―I‘m thinking about introducing precisely this one for a 

4
th

 grade, not the spider, but with Santa Claus, giving it another development‖. 

[Aida, transcript of 4
th

 GTS] 

While experimenting with classroom tasks, Dora based herself upon the planning 

―discussed in the group‖ but ―afterwards did not follow them to the letter‖ [Dora, 

final interview]. According to herself, this option his connected to her own way of 

being; ―Besides, if I get stuck to a piece of paper I am less spontaneous, I don‘t feel 
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like myself. I like to improvise, …‖ [Dora, final interview]. However, when she talks 

about not fulfilling the first planning undertaken within PCTM she also grounds her 

justification in the students: 

The fact that I did not lecture everything I had planned to, was my own option, and 

because, as I already mentioned, the students had perfectly understood the mechanisms 

for solution. Thus, to continue would only be useful for the students to apply the already 

mechanized procedure. Besides, I did what I ought to have done, we must not stick to 

what is written down, in this case in the planning, but, instead, in under what conditions is 

the activity carried out, what the students needs are, and, unquestionably, their mental 

availability. This is a factor that has a great weight in my way of living the profession. 

[Dora‘s portfolio, 1
st
 written reflect] 

Thus, while Aida when elaborating her planning adapts it to her students, Dora 

adapts it to herself, although having the students under consideration. 

The role of collaborative work. Aida has always been careful to prepare her 

planning in writing and in detail, and to discuss it within the work group. ―We went 

on to Aida‘s planning, who presented in detail the task she intends to explore, an 

activity of mathematical investigation based upon a multiplication double entry 

table‖ [report of the 7
th

 GTS]. In planning classroom tasks she not only profited from 

and requested collaboration from colleagues, as she gave her own opinion about 

other people‘s work. In the 4
th

 Group Training Session she questioned a colleague 

about how on long it had taken to perform a problem solving task: ―Is is a 3
rd

 or a 4
th

 

grade?, How long, more or less, has the task taken?‖ [transcript from the 4
th

 GTS]. In 

the same session, faced with the suggestion of a problem put forward by a member of 

the group for experimentation in a classroom, she mentioned: ―It seems to me even 

more complicated [than the one with the spider]‖ [report of the 4
th

 GTS].  

She also never refrained herself from asking the supervisor for clarification which 

could help her to sort her ideas out and, simultaneously, in planning tasks: 

I was thinking about, this time, a mathematical investigation activity starting from a 

double entry multiplying table, correct me if I am not using the appropriate terminology, 

(…) And since we are in a clarifying mood, regarding the 2 multiplying table, is it more 

correct to say that 1 x 2 , 2 x 2, 3 x2, 4 x 2, or, instead, 2 x 1, 2 x 2, 3 x 2, 4 x 2, as we 

were taught. [transcript of the 7
th

 GTS] 

In her portfolio, she alludes to and includes the material given by the supervisor in 

the group training sessions ―since these constitute an essential support for the choice 

and programming of the task‖, including ―[Internet] research carried out during 

preparation phase, because I consider that the whole process of teaching and learning 

presupposes some kind of investigation‖, indication of bibliographic research carried 

out, as ―it also turns out to be a legitimation of some of the options taken‖ [Aida‘s 

portfolio, justification for the inclusion of the material used in the preparation of the 

first task]. 
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Dora also considers the participation of the other elements of the group and the 

supervisor in carrying out planning. Thus in the 7
th

 Group Training Session Dora 

shares some of her concerns regarding time management: 

We proceed to Dora‘s planning, who had previously exchanged some ideas with me 

through e-mail. Her task consist in finding regularities in the 2, 5 and 9 multiplying 

tables, with the students grouped in pairs.  

Dora: Do you think I can use up the whole time just with this?  

Reseacher: I think so, if you let them air their discoveries. 

Dora: Aida has got so much here! (...) [Report of the 7th GTS] 

Dora mentions in particular the importance of the supervisor in preparing the tasks to 

experiment. Specifically about the second task undertaken, she makes it clear that 

she needed ―a lot of help from you, a lot of guidance‖, which leads her to conclude: 

―but I also learned from this, it‘s not just that you helped me, you helped me out with 

doing the planning and you taught me how to do it‖ [Dora, 2
nd

 post-observation 

interview] As a matter of fact, Dora recognized that planning a mathematical 

investigation activity for the first time constituted a controlled risk, as she was 

participating in the program and had the support of the supervisor, and also 

recognized that student‘s activities and their learning from undertaking this task, 

overcame all other factors. ―I risked it because I had the support of the supervisor, in 

case it would be needed, and as I liked the theme, I thought it was interesting for 

students, as they could perform several explorations and, lead them to be interested, 

in a more attentive way, in the numbers and in the investigation‖ [Dora‘s portfolio, 

justification of the choice of the 2
nd

 task].  

To Aida, collaborative work, either with the whole group either with the supervisor, 

was used in a double perspective, for her own support and for that of the others. It 

was seem as a multidirectional collaboration. For Dora instead, this working context, 

relies more upon the supervisor, and in a one way direction. It is a one directional 

relationship, to learn. 

FINAL CONSIDERATIONS 

The starting point of these two teachers is clearly different, so it would be expectable 

that their professional development during PCTM would also be different. Aida 

starts out from two kinds of expectations for the training, one connected to teaching, 

one connected to learning, helping out her students, Dora, on the other hand, takes 

teaching as her strong bet, to learn and to gain confidence in an area with which she 

has always entertained a conflictive relationship.  

Aida identifies the different aspect present in planning, contents, tasks and materials, 

methodologies and what students already know (Canavarro, 2003; Clark and 

Peterson, 1986, Santos, 2001), while at first Dora concentrates herself on the 

materials, seeming that the associated objectives are not determinant for classroom 
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work orientation. For Aida, one needs to clarify in order to be able to modify 

(Pacheco, 2001), Dora instead, who stresses the importance of change within the 

class, does not associate it with a thorough preparation, but rather to her whim of the 

moment, resorting to the unforeseen. With the course of the training, Dora begins to 

mention the importance of planning to ascertain the sequence of the task in 

accordance with the objectives defined and to be prepared to answer students (Stein, 

Engle, Smith, & Hughes, 2008) and address unforeseen situations of the teaching 

practice to use them for the better advantage (Yinger & Hendricks-Lee, 1995), 

recognizing the advantage of resorting to a written record.  

The planning undertaken in group during training constitutes the starting point for 

both teachers. However, once again, one can see that while Aida valuates from the 

very beginning the learning component, adapting it to her students, Dora centers 

herself upon teaching, adjusting it in the classroom to herself, also taking the 

students under account. The different levels of professional development that both 

teachers present are also shown in the way they profit from collaborative work 

undertaken during training, as an asset to all elements involved (Hargreaves, 1994), 

or as a context for personal learning. However, the tasks carried out during training 

have constituted a context for professional development for both teachers. 

With the analysis of a training program with specific and innovating characteristics 

we aim to provide answers which contribute to improve initial and continuous 

teacher training. However, from the evidence gathered from these two cases, the 

question remains to determine up to what point the same training format can apply to 

such different teachers. In which way can one foster professional development of 

teachers starting up from different levels? How to ensure the sustainability of this 

program?  
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This paper draws from a study that aimed at finding out how teachers‘ collaborative 

action research in the Teachers Learning Together (TLT) project promotes 

professional development in the area of mathematics amongst elementary school 

teachers. The paper focuses on an analysis of teachers‘ experiences of teaching and 

learning of problem solving in a collaborative action research. Qualitative research 

approach was used to conduct case studies of three teacher-researcher teams. In the 

two cases analysed in this paper, collaborative action research provided 

opportunities for teachers to learn about problem solving process,  creating an 

environment that fosters students‘ learning through problem solving and 

mathematics knowledge for teaching 

Keywords: professional development; problem solving; collaborative action 

research; mathematics knowledge for teaching 

INTRODUCTION 

Mathematics education reform movements reflected in documents such as the 

Ontario Mathematics Curriculum (2005), NCTM Principles and Standards, (2000) 

call for mathematics teachers and educators to look at different ways of teaching and 

learning mathematics. One of the elements of these reforms is a focus on problem 

solving as a key component of effective mathematics teaching and learning. For 

example, according to the National Council of Teachers of Mathematics (NCTM, 

2000), ―solving problems is not only a goal of learning mathematics but also a major 

means of doing so‖ (p. 52). Recently mathematics education researchers have 

recognized the importance of mathematics teachers‘ understandings of the 

underlying assumptions and theories of teaching and learning of problem solving as 

reflected in these documents and their practical applications.  As such, researchers 

have argued for the importance of professional development for teachers to enable 

them to enact, in their classrooms, the teaching and learning of problem solving.  

Traditionally teachers‘ professional development models comprised of one-day 

training workshops provided by experts who come and go.  Researchers have argued 

that this type of professional development does not result in a change of teachers‘ 

practices (Joyce & Showers, 1995). Researchers also contend that professional 

development that is close to the classroom, collaborative, content focused, and relies 

on expertise and lived experiences of participating teachers have the potential to 

affect teaching practices (Kratzer & Teplin, 2007).  
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This paper draws from a study that aimed at finding out how teachers‘ collaborative 

action research in the Teachers Learning Together (TLT) project promotes 

professional development in the area of mathematics amongst elementary school 

teachers (Mgombelo & Jaipal, 2010). The study was guided by the following 

questions: 

 In what ways does collaborative action research, when used as 

professional development, influence teaching practice?  

 In what ways does participation in teacher-designed action research 

inform teachers‘ understanding of elementary school mathematics and 

elementary mathematics teaching and learning? 

The paper focuses on an analysis of teaching and learning of problem solving in a 

collaborative action research. TLT is a professional development initiative of The 

Elementary Teachers Federation of Ontario (ETFO). ETFO invited and provided 

support for teacher teams from the same school or in similar roles at different schools 

to come together to conduct action research projects relevant to their specific 

professional needs, circumstances and interests. For the 2008 school year, the focus 

of professional development was on mathematics. Over the course of the year, teams 

of teacher-researchers were supported by university facilitators as they conducted 

their own research projects at their schools. As part of this project, ETFO contracted 

university facilitators to facilitate the professional development and conduct three 

case studies of some of the teacher teams with whom they were working. In this 

paper we describe some of the findings from two case studies that we conducted --

these teacher teams investigated problem solving in their action research projects. 

THEORETICAL FRAMEWORK 

The research was framed by the following ideas: teachers develop knowledge of 

teaching and learning mathematics in practice by engaging in activities that promote 

collaboration, reflection and experimentation such as collaborative action research; 

effective mathematics teaching requires a sound knowledge of mathematics for 

teaching; and teachers need to learn how to teach through problem solving.      

Collaborative Action Research 

Action research derives its roots from the work of the German social psychologist 

Kurt Lewin (Carson, 1992). Lewin was concerned about the gap that existed between 

theories about society and the dynamics of social practice. In the past two decades 

action research has emerged as a significant form of research into practice. In 

education, in-service and pre-service teachers are being engaged in action research as 

part of professional development and as part of educational reform efforts (Feldman, 

1996). Following Lewin, various manifestations of action research have developed. 

Action research can be individual or collaborative. Collaborative action research can 

be defined as collaborations between teachers and outsiders, such as university 
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researchers (Savoie-Zajc & Descamps-Bednarz, 2007) or collaborations among 

teachers (Feldman, 1996). In the TLT project, teachers were involved in a 

collaborative action research. Feldman (1996) defines collaborative action research 

as research that involves practitioners working together to take actions within their 

situations in order to improve their practice and to come to a better understanding of 

that practice. The words ―collaborative‖, ―research‖ and ―action‖ in collaborative 

action research might be conceived as: 

 Collaborative: group of teachers working together 

 Research: systematic, critical inquiry made public 

 Action: Understanding the teaching and learning system requires taking action 

within the system and paying close attention to the results of taking those 

actions  

In their paper ―Complexity Science and Educational Action research: toward a 

pragmatics of transformation‖ Davis and Sumara (2005) notice a similarity between 

sensibilities promoted by collaborative action research and those promoted by 

complexity science. Both collaborative action research and complexity science are 

concerned with ―what one might do to bring together the self interests of autonomous 

agents into grander collective possibilities‖ (p. 454). One way that complexity 

science addresses this question is by elaborating on conditions that are necessary for 

bringing together a collective learning system. These conditions include making sure 

that there is redundancy among the participants in a team. Redundancy, understood 

as commonalities among participants in a team, is necessary to ensure a transition 

from a collection of me‘s to a collective of us (Davis & Simmt, 2003). Another 

condition that is necessary for the emergence of a collective learning system involves 

the presence of diversity among the members of the team. Diversity allows novelty; 

it is the source of a collective‘s flexible response—its intelligence. 

Mathematics Knowledge for Teaching 

The question of the relationship between knowledge of subject matter and 

knowledge of teaching has been a central concern in teacher education. In practice 

any mathematics professional development program has to contend with the question 

of how to integrate knowledge of subject matter (mathematics) and knowledge of 

teaching.  An initial characterization of this integration comes from Shulman‘s 

(1987) work on pedagogical content knowledge. Shulman defined pedagogical 

content knowledge as a particular form of knowledge that embodies the aspects of 

content most germane to its teachability. Recently, Ball and Bass (2002) elaborated 

on pedagogical content knowledge and used the term ―mathematics knowledge for 

teaching‖ to capture the complex relationship between mathematics content 

knowledge and teaching. Ball and Bass suggest that any inquiry into teachers‘ 

knowledge of mathematics should begin by analyzing the work of teaching and 

questioning what mathematics matters for this kind of work; they maintain a  
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delineation between knowing mathematics and knowing mathematics that is useful 

for teaching.  In addition to knowing mathematics content, knowing mathematics 

that is useful for teaching involves specialized content knowledge that is not 

pedagogy but includes for example knowing how to represent fractions and decimals 

with diagrams. 

Teaching through Problem Solving 

There is consensus in mathematics education about the importance of problem 

solving and its potential for increasing students‘ engagement with mathematics. 

Consequently, teaching through problem solving has gained prominence in 

mathematics education over the last two decades. From the student perspective, the 

experience is one of ―learning through problem solving,‖ and NCTM (2000) states 

that: 

Instructional programs should enable all students to build new mathematical knowledge 

through problem solving; solve problems that arise in mathematics and in other contexts; 

apply and adapt a variety of appropriate strategies to solve problems; and monitor and 

reflect on the process of mathematical problem solving. [p. 52] 

Although problem solving is regarded as a beneficial approach to teaching 

mathematics, teachers however, have often found effective teaching of mathematics 

problem solving to be a major challenge. For example in Finland, Pehkonen (2007) 

found that teachers who believe problem solving is beneficial still fail to implement 

it in within their classrooms.  

METHODOLOGY 

We used qualitative research methodology to conduct case studies of three teacher-

researcher teams, focusing on the teachers‘ learning as they engaged in their own 

action research activities. Overall, the two Mathematics educators acted as 

facilitators for nine teacher-researcher teams as part of the Teachers Learning 

Together project. ETFO held a symposium over two days in August 2008 where 

participants were introduced to the Teachers Learning Together project and action 

research methodology.  From the nine teacher teams that were assigned to us by 

ETFO, we selected three groups to be the focus of our case studies. Selection of 

teams was based on the following aspects:   

 The diversity provided by the three teacher-team projects selected according to 

their home school districts, the grade levels addressed, mathematic topics 

addressed, the teachers‘ levels of teaching experience, and their experience 

with research 

 The potential of the each team‘s plan to address our research questions 

 The alignment of the each teacher team‘s action research project with the 

Ontario Elementary Mathematics Curriculum (2005). 



Working Group 17 

CERME 7 (2011) 2770 

 

Data Collection methods 

 Data sources were: 

1) Copies of teacher-created artefacts relating to the focus of the teachers‘ research 

such as lesson plans, teaching materials, and teachers‘ post-lesson reflections in 

journals: These were collected by the teachers on our behalf throughout the school 

year 

2) Teacher-created action research project reports: The teachers‘ final action research 

reports described and presented findings of how their action research had impacted 

their professional practice. 

3) Transcriptions and field notes of teacher-researcher team meetings (selectively 

audio-recorded).   

4) Our own researcher journals: Each researcher kept a written record of her own 

reflections relating to the research project over its duration. 

5) Transcriptions of one focus group interview per team at the end of the project, 

audio recorded  

DESCRIPTION OF TWO CASES 

Case 1: Student Questioning in a Problem Solving Context 

This teacher team of four junior division (grade 4-6) teachers were mathematics 

facilitators from four different schools with a history of engaging in collaborative 

professional development projects initiated by the Ministry of Education and the 

District school boards. At the time of the TLT project, the four teachers taught one 

grade 4/5 class, one grade 5 class and two grade 6 classes respectively, located in 

two rural and two urban schools. Three schools were K-8 schools and one was a 

grade 4-8 school. Their research question emerged from observations of students 

learning during their two-year professional learning in the District School board 

project that had focussed on teaching through problem solving. Teachers observed 

that students were not asking mathematically relevant questions and engaging in 

productive dialogue that furthered their mathematical understandings. They therefore 

wanted to make math more ―visible‖ to students.  For this TLT project, the teachers 

used instructional strategies that included math congress and gallery walk (Fosnot, 

2007; Fosnot & Dolk, 2001; 2002).  These instructional strategies involve students in 

dialogue, conversation, discussion, and questioning of mathematical solutions 

presented by their peers. After discussions with each other and the researchers, the 

group narrowed their focus to the role of students‘ questioning and dialogue during 

problem solving contexts. Their research question was: How can we enhance 

productive questioning and dialogue through the implementation of targeted 

instruction so that classroom conversations make the mathematics more accessible to 

all students?  The goal of their study was to identify strategies that would promote 
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effective student questioning and dialogue during problem solving to foster 

mathematical reasoning for all students. 

After conducting an extensive literature review, the team observed that most studies 

on mathematical questioning focused primarily on teacher questioning.  The limited 

literature in the area of student questioning in mathematics meant that the team 

would have to explore a number of targeted strategies designed to engage students in 

rich dialogue and effective questioning (by teachers and students), to find out if such 

strategies made the mathematics accessible to all students. Since they were already 

familiar with a number of strategies learned in the district school board project, they 

decided to try out the following strategies: Math Congress , (Fosnot, 2007), Gallery 

Walk / Post-it-notes, Think/Pair/Share, Modeling, Anchor Charts, Annotation of Key 

Mathematical Ideas / Student Comments / Questions, Summarizing / Generalizing, 

Wait Time / Pacing. Their intent was to try out these strategies, observe students, 

reflect as a group, and adjust the strategy. 

Case 2: Students Communicating their Problem Solving Strategies through 

Bansho 

Participants in this case consisted of four Grade 3 teachers from four different 

schools and one special assignment teacher in mathematics. Similar to the first team, 

all five teachers had participated as a group in their school boards‘ professional 

development initiative, prior to the TLT project. The team had been working on 

problem solving as the focus on the project.  They observed that their students had 

problems communicating their computational strategies during problem solving. 

Upon further discussion and dialogue with each other and the researchers, they 

therefore decided to focus on students‘ communication of problem solving strategies. 

Their research question was: ―How can we increase our students‘ ability to 

communicate their problem solving strategies more effectively by using the strategy 

of bansho in the classroom?‖ They decided to implement bansho, a Japanese strategy 

where students‘ problem solving strategies, serving as a public record, is displayed 

on a board. The teacher organizes the board writing so that the progression of ideas 

in the entire lesson builds logically and is captured for the duration of the lesson so 

that students may use the record for their note taking.  The public record, or the 

bansho, is the class‘s collective thinking. The mathematical strand they chose was 

number sense and operations.  

The team initiated the implementation by meeting to familiarize themselves with the 

mathematical landscape of learning for multiplication (Fosnot, 2007). This was 

crucial to understanding students‘ thinking strategies in problem solving. The 

teachers selected four different problems that involved multiplication concepts. The 

implementation was organized in a cycle of co-planning and co-teaching and was 

repeated 4 times. In each cycle, a bansho lesson was co-planned for half a day, one 

classroom was selected for two teachers to co-teach the lesson, three other classes 

were taught by the respective class teachers independently, and all teachers collected 
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student work in the form of the banshos for a post –lesson debriefing on a second 

half day. During the post lesson debriefing, the team spent time collaboratively 

dialoguing about their implementation and students‘ learning – specifically 

discussing the bansho strategy and how students‘ communicated their learning 

through the strategy. Based on these post lesson debriefings, they refined how to 

implement the bansho strategy.  

FINDINGS  

Through a qualitative analysis of data and informed by theoretical framework we 

identified a number of themes that characterise the experiences of teachers in 

collaborative action research. In what follows we present some of the themes which 

resulted from the analysis of two cases of teachers‘ experiences about teaching and 

learning of problem solving in a collaborative action research. 

Relation between collaborative action research and problem solving processes 

For the teachers the collaborative nature of the action research process enabled them 

to experience learning environment similar to an environment that promotes learning 

through problem solving. In other words as teachers engaged in their own learning, 

they were empowered to foster the same learning environment for their students. For 

example one teacher felt that her experience in the project empowered her to be able 

to create a similar collaborative learning environment in her own classrooms to 

support students to take ownership and risks in learning. 

It really is almost a mirror of exactly what is going on here [action research group]. When 

you get support, and when you get respect, and when you allow people to sort of figure 

out and talk to each other and find their way, then you get happier learners. You get more 

committed learners, you get more enthusiastic learners. You get learners who are willing 

to take risks, which we all are now. It‘s almost like this is the mini version and then we 

take it back to our classroom and we create it. 

 Another teacher felt that her own learning process that she was engaged in the TLT 

action research project reflected the learning process that bansho strategy for 

teaching problem solving was promoting for her students.  Her awareness of her own 

learning enabled her to support her students‘ learning through problem-solving.   

I might say the bansho does for the students what the math TLT does for me this year. It 

validates my opinions, it listens to me, it allows me to show it. The other kind of P.D. we 

get, is more like the old textbook: ―okay, today we‘re going to look at pages 1 to 10. 

Here‘s the lesson. I want you to do questions 3 and 4. Take 5 and 6 home for homework. 

Tomorrow we‘ll take it up.‖  …whereas, the math TLT we‘ve been doing this year is a 

bansho.  My opinions are validated. I‘m looking at other people‘s strategies. 
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Impact on Students‘ Learning through Problem Solving 

In a couple of instances, teachers noted that their professional learning in the project 

had positive effects on their students‘ learning. For instance, one teacher expressed 

how the targeted instruction on developing questioning skills during collaborative 

problem solving gave students an awareness of the value of learning by listening to 

different students‘ ideas, and engendered respect in students for other students‘ 

ideas. 

I think one of the biggest things for me is having the kid that is traditionally smart in 

math, see a child that he or she would assume is in the lower end of the class, giving a 

strategy, presenting a strategy, explain their strategy…and then that really sharp kid goes 

―Ah! I never really thought of it like that!‖ That opens their eyes to the potential of the 

other kids in the class, which sometimes they just…ignore... 

Teachers in the first case reported progress in students‘ mathematical questioning 

and dialoguing during problem solving.  For instance, teachers described students‘ 

growth in mathematical thinking in terms of students‘ use of mathematical language 

in their questioning of peers‘ solutions of problems. 

As the year progressed we noticed an improvement in the facility with which students 

used mathematical language.  Comments such as: ―How did the open array help you?‖, 

―What are the dimensions of the long rectangle?‖, ―Are those equations part of the Venn 

diagrams? And ―Can it work so that the area stays the same and the perimeter change?‖ 

show this development. 

Learning Mathematics Knowledge for Teaching 

It seems that collaborative action research project provided opportunities for teachers 

to learn mathematics knowledge for teaching. One teacher noted how she was better 

able to use math resources and know what to look for in the resources in ways that 

supported her growth in mathematics knowledge for teaching.   

My math shelf is constantly [used]…I am constantly taking things off, putting things on, 

looking things up, making notes, looking for references, figuring out the math, looking at 

my math dictionary, looking at all my professional resources… and to say, ―okay, I want 

to do this lesson, but what are the strategies that might come out of this problem solving? 

What might I see on my bansho?‖ It [action research] certainly, it has been more useful as 

a professional learning tool than many others. 

Teachers identified specific aspects of their projects that had an impact on growth of 

their knowledge of mathematics for teaching. For example teachers reported how 

mathematics they focused on in the bansho strategy was also enhanced through 

reflection on student‘s work. 
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I think we were all aware of it [bansho] before, but having the opportunity to chew it up 

the way that we did, the depth of our understanding certainly has increased. 

By identifying the strategies the students used in our banshos, we also looked for the 

ways that those strategies were connected with respect to the [mathematics] Big Idea. 

This enriched our pedagogical content knowledge and sometimes even our own 

understanding of mathematics. 

CONCLUSIONS 

In the two cases analysed, collaborative action research engaged teachers in ways 

that enabled them to learn about problem solving process and how to create an 

environment that fosters students‘ learning through problem solving. Teachers‘ 

participation in the project led to growth of their mathematics knowledge for 

teaching. Collaborative action research spurred teachers to do their own research into 

math topics and use a variety of resources to support their planning and teaching.  

Collaborative analysis of students‘ work and teaching strategies promoted reflection 

on how different problem solving strategies supported growth of student 

mathematical thinking and increased teacher‘s understanding of how to teach 

through problem solving.   

In conclusion it appears that collaborative action research   can lead to the generation 

of new mathematics knowledge and understanding of problem solving for teachers. 

This has significance for mathematics professional developers and educational 

reformers. Professional development for teachers should foster a collaborative 

environment in which teacher can experiment with new ideas in theory and practice.  
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There is a consensus that designing rich learning opportunities in the mathematics 

classes and thus the improvement of the students‘ mathematical knowledge and skills 

can be supported by the application of findings about instructional practice. This 

application is a challenging task for both researchers and teachers. In a study 

conducted in Germany it was possible to investigate the reasons for the lack of 

positive effects of the application of theoretical findings about instructional practice 

on students‘ mathematical behavior. The results of the investigation and their 

consequences will be presented in the paper. 

Key-words: deep structure, surface structure, teacher‘s activity, students‘ activity in 

the classroom 

INTRODUCTION 

International studies like TIMSS and PISA show that students face considerable 

difficulties in reaching well-founded mathematical knowledge and in using it 

autonomously. Such difficulties point to the need of developing effective 

instructional methods that have a potential to modify the teaching and learning 

processes in the classroom and to improve the students‘ mathematical achievement. 

Numerous initiatives have been taken in many countries to innovate mathematical 

classroom practice with new instructional methods (Kramarki & Mevarech, 2003; 

Depaepe et al., 2010; Gärtner, 2008). In the discussion about the quality of 

mathematical instruction the role of metacognition (e.g. NCTM 2000) and cognitive 

activation (e.g. Lipowsky, 2009) are stressed.  From the researchers‘ point of view, it 

is obvious that those new instructional methods should encourage students to engage 

with the learning content and thus to develop elaborated knowledge basis. For an 

effective implementation of any instructional methods, it is important to distinguish 

between visible and invisible students‘ activities. For example, if an instructional 

method involving a cooperative learning form is performed, it can be expected that 

the student-student interaction around matters of teaching and learning also increases 

and that the students articulate their thinking, explain their mathematical reasoning 

and learn critical thinking. In doing that, the diversity in the students‘ prior 

knowledge will be used for an internal cognitive process of knowledge construction, 

carried out by an individual learner. These are some of the factors that make learning 

in cooperative groups promising (Slavin, 1980). The fact that the students are seated 

in cooperative working groups does not mean that they are actually working 

cooperatively and that the cooperative group has an impact on their cognitive activity 

and on their learning outcomes. 
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However, the literature on mathematical education change shows that it is difficult to 

transfer theoretical findings in the instructional practice and thus to reach the aimed 

positive effects in students‘ mathematical knowledge and skills. Depaepe at al. 

(2010) provide one example which highlights this difficulty: A group of researchers 

conducted a 7-month video-based study in two sixth-grade classes focusing on the 

teachers‘ metacognitive and heuristic approaches to problem solving. The 

researchers investigated the extent to which two teachers focused on metacognitive 

and heuristics skills in their teaching of mathematical problem solving. They found a 

positive relationship between the students‘ spontaneous application of heuristics to 

solve non-routine word problems and the teachers‘ references to these skills in their 

problem-solving lessons. However, increased application of heuristics did not result 

in students‘ better performance on those non-routine word problems. It can be 

supposed that the students didn‘t use the heuristics for a better understanding of the 

given problems und their solution ways were incorrect. Depaepe at al. (2010) try to 

explain the findings, but the explanation is difficult. It needs a more critical and 

qualitative perspective to appropriately interpret the relationship between the 

teacher‘s instructional methods and the students‘ learning processes and learning 

outcomes. The results of the study emphasized that it must be questioned and 

investigated to what extent metacognitive and heuristic skills were mainly done 

exclusively by the teachers and to what extent their students also internalized these 

new activities and skills.   

The study of Depaepe at al. points to the need for the explanation of the lack of 

positive effects of the application of some new instructional methods designed to 

improve the students‘ metacognitive and heuristic skills and thus their problem-

solving skills.  Another promising study of a new instructional method (i.a. 

increasing the use of challenging and cognitively activating mathematical tasks) but 

without the expected positive effect on students‘ competencies (i.e. reflection, 

critical thinking, cooperation, and communication) was conducted by Gärtner (2008). 

Gärtner supposes that the expected positive effects regarding the students‘ 

competencies cannot be achieved within a year. He supposes that more time is 

needed to gain these positive effects, but there is no precise explanation how they 

can be achieved later. Moreover, Gärtner investigated classroom practice using 

teacher and student questionnaires. And he did not verify the results through direct 

observation. 

In my PHD research (Nowińska, 2010) conducted in Germany it was possible to 

investigate the lack of the positive effects of a project to improve the students‘ 

mathematical knowledge. To explain the lack of the effectiveness of the project, I 

investigated the instructional practice, particularly the teacher and students‘ activities 

and the relationship between them, when new instructional methods were being 

practiced. An in-deep transcript analysis leads to the assumption that mainly the 

visible structure of the instructional practice itself (visible teachers‘ and students‘ 
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activities) has changed. Consequently, the cognitive potential of the new teaching 

content, challenging tasks and classroom discourse could not be used effectively by 

the students. The achieved explanations for the unexpected lack of positive effects of 

the project will be presented in this article. 

In the first section to follow, I give an overview of the background of my study, 

presenting both the idea of the project to improve the students‘ mathematical 

knowledge and skills and the dataset and research question. The second section 

(Theoretical background) leads to key theoretical ideas used in my study. 

Information about the result of the investigation will be given in the third section. 

The fourth section concludes with a short discussion of the results. 

A PROJECT TO IMPROVE MATHEMATICAL INSTRUCTION 

Project idea 

The aim of the project that I analyzed in my PHD research was the application of a 

learning environment that makes it possible (for students) to reach a deeper 

understanding of mathematical concepts and a well-founded mathematical 

knowledge. The project was conducted in Germany, in two six-grade classes (13 

years old students, Realschüler). The project was based on some key ideas of 

Cognitive Mathematics Education (CME) (Cohors-Fresenborg & Kaune, 2005). 

CME uses the description of the mathematical knowledge of pupils via the concepts 

‗frame‘ and ‗procedure‘, which were introduced to cognitively-oriented mathematics 

education by Davis and McKnight (1979). CME puts the construction of a cognitive 

mathematical operating system as a priori goal of mathematics lessons. Its most 

important elements are the ‗function frame‘ and the ‗contract frame‘ with suitable, 

attached procedures. Both frames use the frame ‗formal representation of intuitive 

knowledge‘. The development of the function frame, in students‘ cognitive 

mathematical operating systems was the main aim of the learning environment 

designed for the two six-grade classes in the project that I analyzed. The students 

involved in the project should develop a certain concept of function with several 

variables. The function concept makes the organization of the mathematical 

knowledge in students‘ minds and the connection between its parts possible. This 

hinders fragmentation of the knowledge. Conceptual understanding of the 

mathematical tool ‗function‘ forms the basis for formalizing the intuitively existing 

knowledge (i.e. when dealing with complex mathematical tasks), for working out the 

formal aspects of this knowledge and thus for creating more transparency and 

understanding functional dependence. It makes it possible to work on complex 

mathematical problems. The conceptual understanding of ‗function‘ constitutes the 

basis to improve the learners‘ skills to expose, explain and present functional 

dependence. For those skills the expressions thinking in functions or functional 

thinking will be used. They include an excellent handling of mathematical formalism 

of functions of several variables as well as the concept ‗variable‘. In Kaune (1995), 
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the role of thinking in functions and their formal representations is explained in a 

more detailed way. The improvement of those students‘ skills should be supported by 

the new learning environment with different external representations of the 

mathematical tool ‗function‘ and by new formats of tasks, exercises and 

mathematical problems which should be solved by using functions. 

What is more, the change in mathematical instruction should be supported by a 

change of classroom culture. The classroom culture should encourage students to 

cognitive, metacognitive and discoursive activities (Cohors-Fresenborg & Kaune, 

2007a, b). The key features of the classroom instruction complement one another to 

the concept of ‗cognitive activation‘, as explained in Lipowsky (2009, p. 529): ―In 

cognitively activating instruction, the teacher stimulates the students to disclose, 

explain, share, and compare their thoughts, concepts, and solution methods by 

presenting them with challenging tasks, cognitive conflicts, and differing ideas, 

positions, interpretations, and solutions. The likelihood of cognitive activation 

increases when the teacher calls students‘ attention to connections between different 

concepts and ideas, when students reflect on their learning and the underlying ideas, 

and when the teacher links new content with prior knowledge. Conversely, the 

likelihood of cognitive activation decreases when (...) the teacher merely expects 

students to apply known procedures‖.  

There are numerous visible or easy to implement ―elements‖ of the new instructional 

concept (mathematical tasks, content, some features in teacher behavior). Anyway, 

the main focus when using or practicing these elements should be on the students‘ 

cognitive, metacognitive and discourse activities that are main factors of knowledge 

acquisition in constructivist view of learning. 

The intended changes in the instructional practice were challenging for the teacher 

involved in the project. Two teachers from one school decided to take part in the 

project. The teachers had diverse possibilities to improve their content and 

pedagogical-content knowledge in order to be able to realize the project. Supportive 

coaching and meetings with the researchers leading the project were realized before 

and during the project.   

Dataset and research question 

The dataset includes a video recording of 46 lessons, students‘ worksheets and 

written answers to control tasks. The way in which teachers actually put the project 

idea into practice was investigated through an in-deep analysis of the transcriptions 

of the lessons. The main focus of the investigation was on the way how the teachers 

involved students in using the function concept and formal representation and to 

solve the assigned tasks.  

Students‘ written answers to the tasks designed for the lessons and for control tests 

during the school year were carefully scrutinised by looking for accuracy of the 
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application of the function concept and for their argumentations and explanations 

given to the designed tasks and questions.   

The main research problem was to work out the explanations for the unexpected 
lack of positive effects of the change of the instructional method that had 
been achieved. A quantitative analysis with a pretest-posttest design at the end of 

the school year showed no project effect: The students of the project group (N = 29) 

and a control group (N = 111) have developed – concerning their mathematical 

achievements – almost identically over one school year. Because of this result the 

videotaped instructional practice had to be investigated intensively to work out some 

explanation for that unexpected project result. 

THEORETICAL BACKGROUND 

In order to work out an explanation for the unexpected project result, a qualitative in-

deep analysis of transcription of the lessons was conducted. Thereby, the attention 

was directed to the students‘ use of learning opportunities and of the new 

instructional features. For that purpose, the surface and the deep structures of 

teaching and learning practice were investigated. The distinction between the surface 

and the deep structures of teaching and learning practice was introduced by Oser and 

Baeriswyl (2001). The surface structure means the situation the teacher sets for 

students (learning topics, methods, social forms, teaching styles), routines and 

regulation in the teacher‘s and students‘ activities observed in the situation and all 

teacher‘s activities planned to initiate learning processes and to provide learning 

opportunities. Observing the surface structure helps to assess the classroom 

instruction regarding its cognitive potential for meaningful learning processes by 

students. The deep structure means the quality of the initiated learning processes and, 

in particular, the internal learning sequences, or operations that students follow to 

appropriate knowledge, develop socially, solve problems and acquire skills (Oser & 

Baeriswyl, 2001, p.1041). Any investigation of the deep structure needs to take a 

closer look at the interplay between the presented mathematical content and its use, 

at the mediation by the teacher between the mathematical content and at the students‘ 

activities and their cognitive, metacognitive and discourse behavior. According to 

Cobrun (2003, p. 4), the investigation of changes which go beyond the surface 

structures and procedures of a classroom instruction is important if the success of the 

implementation of new instructional methods should be evaluated.  

The deep structure of teaching and learning practice was investigated by using the 

system for categorizing metacognitive and discourse activities during stepwise 

controlled argumentation in mathematics lessons (CMDA) (Cohors-Fresenborg & 

Kaune 2007a,b). When analyzing a transcript with CMDA, metacognitive and 

discourse activities of teachers and students are made transparent in the transcript 

and thus easy for further analyzing of patterns in practicing these activities in 

student-student and teacher-student interactions. Using CMDA helps to assess if the 



Working Group 17 

CERME 7 (2011) 2782 

 

instructional features of ‗cognitive activation‘ are internalized by a teacher and also 

by students and to what extent students make use of challenging teachers‘ questions, 

demanding mathematical tasks or classroom discussion for their learning processes. 

RESULTS 

The first results of the qualitative analysis of instructional practice were promising: 

the behavior of the participating teachers gave evidence of the intended change in the 

instructional method. The teachers asked the students to explain misconceptions and 

errors in argumentations and in internal representations of mathematical terms and 

concepts. They leaded their students to check and assess arguments of other students, 

to explain functional dependencies, to discuss and assess different approaches to 

mathematical tasks and also to listen carefully in order to have discussions with other 

students. In so doing, the teachers provide learning opportunities for students. They 

encouraged students to practice metacognitive activities (like monitoring or 

reflection) and to engage cognitively in classrooms discussions.  

The revealed changes in the teachers‘ behavior and in the implemented teaching 

contents pertain to the survey structure of the teaching and learning practice. They 

show its cognitive potential to provide meaningful learning opportunities for 

students. Another positive result of the project was that the learners were able to 

handle complex modeling tasks and to formalize complex functional dependencies. 

To investigate how students use the cognitive potential for their own learning 

activities and how teachers promote these activities, the deep structure of the 

teaching and learning activities in the classroom was analyzed. The results of the 

analysis lead to the assumption that exclusively the surface structure of classroom 

practice has changed as desired. Consequently, the cognitive potential showed to the 

outside in the visible structure of the teaching and learning practice was only seldom 

used by the student. The teachers organized what is visible (the surface structure of 

learning) and neglected to consider if the students actually reflect on what, how and 

why they are doing when using functions or on benefit they have by using functions. 

That can be an explanation for the lack of positive learning effects and an 

explanation for the unexpected results of changes in instructional practice. This 

phenomenon will be illustrated with the following example. 

Transcript, example 

Numerous demanding mathematical tasks were designed to be implemented in the 

classroom practice. When solving these tasks, students‘ skills to think in functions 

and their cognitive activities by using the function concept when precisely stating 

and formalizing the tasks should form the center of the teacher‘s attention. Those 

activities play an important role in problem-solving and building a mental 

representation of a given situation.  

In the following part of a complex mathematical task a functional dependency 

between the total price for the holiday in an apartment on the north beach and two 
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variables should be formalized. It is the first task in which the notation of functional 

equation with two variables has to be written, so students‘ explanations, 

argumentations and interpretation of the situation described in the task should be 

intensively supported by a teacher. These activities make the learning situation when 

discussing this task particularly challenging and they should be actually realized by 

students. This mathematical task as a part of the surface structure presents a 

cognitive potential of the instructional situation. 

By the investigation of the deep structure, attention should be focused on the 

mediation by the teacher between the mathematical task and the students‘ activities 

to understand and solve the task.  

Mr. and Mrs. Schulte, their two adult children and their dog, are planning a 14-days 

holiday trip to the island Borkum. They have to choose between two offers. The first offer 

states the following: 

"Apartments on the north beach": Price per week 504 €, costs for the final cleaning 100 €, 

pet one-off 55 €. Write down a functional equation that can be used to calculate the total 

price for the holiday in an apartment on the north beach:  

         x1: number of days  

         x2: number of pets taken with you. 

An analysis of a classroom discussion when discussing and solving this task revealed 

that there are no reflection activities on functional dependency described in this task 

and on the mathematical tool ‗function‘ which has to be used to formalize this 

dependency. One student suggested the following equation as a solution for this part 

of this task: 10055
7

504),( 2
1

21 x
x

xxp . However, the student did not explain how 

he got his functional equation and why this equation is correct. He gives no 

interpretation of the situation described in this task. As long as the functional 

equation is formulated, the cognitive potential of this task is not used effectively in 

the learning situation. The following transcription shows the further classroom 

situation.   

1 Teacher: Now, I need somebody who can explain the price function in his own 
words.  

3  Student:  The whole function?  

4  Teacher:  Yes, I'll point at it and you (...) So, the first part stands for?  

5   [L. pointing at 504 of the functional term.]  

6  Student:  Well, the first part, so 504 stands for what they have to pay for... er... 
for one week.  

8   [L. pointing at x1/7 of the functional term.]  

9  Student:  The x1 divided by seven means that they have to pay it for seven days.  

11 Teacher:  Yes.  

12  [L. pointing at the functional term 55 • x2.]  
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13 Student:  And the 55 times x2 means er, that they have to pay  55 Euros for the 
pet, for one pet.  

15   [L. nods and points to the functional term 100.]  

16 Student:  100 Euros, that is the final cleaning, that occurs only once.  

18 Teacher: Ok. So you have it, the function.  

The teacher asks a student to explain the functional equation (line 1). This demand is 

a part of the surface structure of the instructional situation and has a great cognitive 

potential. It suggests that the teacher tries to encourage the students to engage 

cognitively by working on this task.  

Now, the deep structure of the situation is to investigate and thereby the focus is on 

directing the students‘ activities. Using CMDA, the first teacher‘s intervention (lines 

1-2) is to be understood as a demand for the reflection on the suggested formal 

representation. Nevertheless, there is no correct answer from the student trying to 

explain the functional equation. No explanation of this equation can be understood as 

a reflection on the formal representation and on its semantics or syntax. The student 

gives only fragmented information about the function term and does not take the 

function name and the arguments into consideration. The student focuses on the 

formal representation but when interpreting it, he switches to some information 

about the Schulte family: ―they have to pay‖ (lines 6, 9, 13). His remarks on variables 

x1 and x2 are not clear and not correct. The teacher, however, accepts the student‗s 

answers by saying "Ok. So you have it, the function‖. 

The transcript shows that neither the cognitive potential of the task nor the cognitive 

potential of the teacher‘s demand leaded to the expected students‘ activities. Such 

situation does not contribute to foster students‘ skills to think in function because 

there is no possibility to learn how to create more transparency and understanding of 

functional dependencies and how this dependency can be represented precisely. The 

teacher leaves no room for students to wonder how to tackle the formal 

representation for the given task and how to get the solution. Consequently, 

cognitive activities that meaningfully constitute the use of a function concept cannot 

be internalized by the students.  

There is one more interesting aspect in this classroom situation. The teacher directs 

students‘ attention by pointing their finger at selected parts of the functional equation 

(lines 4, 8, 12, 15).  The teacher‘s intention to react in this way is difficult to 

interpret. This reaction and the teacher‘s comment in line 18 lead to the assumption 

that the teacher has difficulties to use his knowledge about the new instructional 

methods to support and control students‘ learning activities. His attention is 

concentrated more on the surface structure of the teaching and learning situation then 

on the deep structure. This classroom situation shows that positive changes in the 

surface instructional structure do not implicate that also the deep structure changes as 

desired. The presence of specific tasks or the teacher‘s challenging questions is not a 

guarantee for the intended change of the ways teachers engage students in using 
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these tasks and questions and support the internal learning operations that children 

should follow to gain knowledge or to acquire skills. The students were able to use 

function to solve the designed mathematical task. Therefore, their knowledge about 

functional dependency and their skills to explain and formalize functional 

dependencies were not sustainable. The lack of the intended change in the deep 

structure can be an explanation for that unexpected result of the project. 

DISCUSSION 

Our analysis of the surface and the deep structure of lesson suggests that teachers‘ 

attention in class was focused on immediate outcomes, that is, on obtaining solutions 

to given tasks and using functions as mere procedures for calculations rather than on 

the long-term goal – on developing students‘ functional thinking.  With the teacher‘s 

support, students were able to solve even very complex mathematical problems using 

functions with several variables, but they did not seem to be given the opportunity to 

internalize the acquired skills, to control their activities and to (re-)organize their 

knowledge. Teachers‘ expectations for their students included application of well-

known procedures, but not reflection on them. Our findings stress the importance of 

the qualitative analysis of the deep structure of the instructional practice when the 

practice is changing through the application of the theoretical findings about 

effective teaching and learning approaches. Our results are similar to those stressed 

by Robert and Rogalski (2005), achieved by using their methodology with a twofold 

analysis of the classroom session dynamic. The findings stress the need to pay more 

attention to the ways teachers manage the relationship between students and 

mathematical content, in a ‗normal‘ lesson and also while changing the teaching and 

learning practice to improve the students‘ mathematical knowledge and skills. 
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This study addresses the teacher daily practice. The goal is to understand, from the 

teachers‘ perspective, the challenges and difficulties that they face when attempting 

to involve the pupils in mathematics learning. We are particularly interested in 

issues that arise when teachers assume curriculum management decisions in the 

context of the school mathematics department. The methodology is qualitative and 

interpretive, with case studies. The results indicate that curriculum management 

supported by the collaborative context creates tensions when a teacher makes 

decisions that diverge from those assumed collectively and also between the 

collaborative group with an innovative approach to teaching and teacher 

professional identity. 

Key-words: Curriculum management, mathematics teacher, mathematics subject 

group. 

INTRODUCTION 

A key element of teachers‘ professional practice is the way he/she interprets and 

manages the curriculum, taking into account the students‘ characteristics and the 

conditions and resources of the school. This study draws on several fields of 

knowledge: teachers‘ professional knowledge and identity, curriculum management 

in mathematics, and collaboration and leadership in school context. It strives to 

understand the practice of collaborative curriculum management in the context of a 

school mathematics department. Particularly, we address two questions: (i) How 

teachers conduct curriculum management, in this context, as they attempt to diversify 

students‘ learning experiences? (ii) What is the potential of collaborative work 

around curriculum management in the development of a professional culture at the 

school?  

CURRICULUM MANAGEMENT AND TEACHERS IDENTITY 

It is usual to distinguish different curriculum levels – e.g., the prescribed (or formal) 

curriculum of official documents, the available curriculum mediated by school 

textbooks, the curriculum planned (or shaped) by the teacher, the curriculum in 

action enacted by the teacher in the classroom, the curriculum learned by the 

students, and the curriculum evaluated, for example, through national examinations 
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(Gimeno, 1989; Stein, Remillard & Smith, 2007). Curriculum management refers to 

the actions of the teacher that contribute to the construction of the curriculum in the 

classroom (Gimeno, 1989; Ponte, 2005). For the teacher, the focus of the curriculum 

management process is students‘ learning, and it is according to this (at least in 

theory) that he/she takes all the necessary decisions. Therefore, as Ponte (2005) 

suggests, curriculum management has to do, essentially, with the way the teacher 

interprets and shapes the curriculum, on two levels: a macro level, concerning the 

overall planning of teaching for an extended period, and a micro level, corresponding 

to the teaching process in the classroom. The teacher makes decisions selecting 

tasks, strategies, and materials appropriate to the objectives and purposes of 

mathematics teaching, taking into account his/her students and working conditions. 

The teacher adjusts the curriculum as he/she evaluates and periodically reflects on 

his/her professional practices. Nowadays, as a curriculum manager, the teacher faces 

new challenges: the modern society poses constantly new demands on schools, the 

student population assumes a cultural diversity never seen before, and curriculum 

orientations proposes a major change on the role of the teacher, from a ―deliverer‖ of 

knowledge, to that of a facilitator of learning. 

To teach well, the teacher must know teaching techniques, the content of what is 

taught, the students, and the school context (Shulman, 1986). But, fundamentally, the 

teacher teaches what he/she is (Elbaz, 1983; Ponte & Chapman, 2008). The teacher‘s 

professional identity is an aspect of his/her social identity, which presupposes the 

existence of a community providing ways to think and act which constitute collective 

values (Dubar, 2002). Ponte and Chapman (2008) indicate that in the construction of 

a professional identity, the teacher takes the culture, values and norms of the 

professional group, but also has the possibility of influencing and thus contributing 

to the change of the group, mobilizing his/her cultural background and personal 

experience. Moreover, the socialization process of the teacher at the school and in 

his/her mathematics department is often complex, sometimes inhibiting the 

experimentation of new ideas, the involvement in curriculum innovation projects and 

the establishment of personal relationships and sharing of experiences. This process 

makes a real the duality that often exists between the model of professional culture 

devised by the teacher and the reality that the teacher faces in daily practice (Ponte & 

Oliveira, 2002). In order to schools experience a significant development, the most 

important element to address is the teachers‘ professional involvement and collective 

work (Nunes & Ponte, 2010). These critical dimensions may help understand how 

teachers develop their work, includes how they manage the mathematics curriculum. 

METHODOLOGY 

This study follows a qualitative approach (Erickson, 1986), with a case study design 

(Stake, 1994; Yin, 1989). The study involves a group of 14 mathematics teachers of 

a secondary school with 12-18 years old students. The mathematics teachers have an 

extensive experience of working collaboratively and, in recent years, they developed 
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various projects at the school. Most of these projects emerged from the need that 

they felt to improve their practice and to help students to overcome their difficulties. 

During the school year 2007/08 the teachers of the mathematics department 

developed the project ―Investigations, proof and problem solving tasks in textbooks 

and in curriculum management‖, involving all classes from grades 7 to 12. This 

project aims to diversify tasks in the mathematics classroom, in order to encourage 

the students‘ in learning mathematics. 

This study considers the group of teachers involved in the project and within that 

group, focuses particularly on three teachers: Ana, the coordinator of the 

mathematics department, Matilde, a teacher that arrived recently to school and to the 

department, and Simon a teacher at the school for 28 years. These cases provide 

several contrasts that enable understanding the relationships between professional 

knowledge and curriculum management, as well as regarding collaboration and 

leadership at the school. In this article, we present a small glimpse of the cases of the 

three teachers. 

Collection of data was done during the school year 2007/08 and includes participant 

observation (Jorgensen, 1989) of the teachers‘ working sessions and of two classes, 

with record of field notes in a research journal, two interviews with each of the three 

teachers selected for case studies, and collection of documents (Adler & Adler, 1994; 

Patton, 2002; Yin, 1989). According to the research plan, data analysis began 

simultaneously with data collection, to identify the need for further collection of 

data. The second level of data analysis involves the development of categories 

focused on professional knowledge, curriculum management, collaboration, and 

leadership that may help in noticing interesting relations. The third level of analysis 

seeks to explain the meaning of the data, in order to provide contributions to the 

understanding of the phenomenon under study (Merriam, 1988). 

RESULTS 

The group working sessions 

This group of teachers holds a session every week, for three hours, working 

collaboratively in curriculum management. Usually, they start altogether collectively 

but to work in a specific school level they splits in subgroups. Collectively,  

The group shares their practices experiences, plan and prepares tasks and 

assessment instruments, defines classroom strategies and questions to help 

students in their difficulties, and later the group reflects on students work, in 

particularly in the tasks related to the group project that are realised in all grades 

[Research journal on Group Working Sessions-GWS].  

In subgroups of two or three teachers,  

They plan teaching units, using first the textbook and other curriculum 

materials, particularly the official curriculum documents; construct assessment 
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tests; and discuss specific issues related to the school level involved [Research 

journal on GWS].  

Also the purpose of these subgroups is, 

To plan lessons and regulate practice, defining common tasks to be developed 

and classroom strategies with different classes, sharing experiences and 

difficulties teachers with colleagues [Research journal on 10
th

 grade subgroup 

work].  

During the working sessions all teachers are invited to participate and have the 

opportunity to share and express their point of view. All work is developed in a 

supportive environment and there are friendly interpersonal relationships among all 

teachers. This dynamic is focused on a particular concern of this group of teachers – 

developing and practicing an effective mathematics teaching that may guarantee 

students‘ success in their learning: ―We want them prepared for the future, especially 

those who want to access to higher education‖ [Ana Interview-INT, 25/10/2007].  

Some of these teachers, being aware of the educational changes, strive to be always 

updating their professional knowledge [Researchers‘ journal, GWS]. This may 

explain their frequent participation in professional meetings outside the school. Also, 

this may clarify why these teachers are invited to share what they learn from those 

meetings by providing of a workshop based on what they learned for the other 

colleagues of the group. As an example, a teacher has attended an in-service training 

course in calculators and he organized a workshop for his colleagues on this topic 

[Research journal, GWS 2]. 

There are different statuses and roles assigned to each group member. Since the last 

ten years, one norm of this group is that there is always a teacher responsible to lead 

the group of teachers that are teaching classes from grades 7 to 9. One of the 

teachers, Simon, explains:  

This leader is chosen from the group of teachers that belong to this school for 

more than 15 years. He/she has to teach grades 7 to 9 and has to be replaced 

every three years. When none of us is there [leading] things go wrong! There 

are problems with parents, some of the curriculum topics are not achieved... 

[Simon INT, 16/10/2007].  

Simon‘s words suggest that the group seeks to take into account the expectations of 

students and parents. This may explain why the teachers manage the curriculum and 

build the assessment tools in group or subgroups. Doing so, they strive to harmonize 

them with the views of all teachers and to support the decisions of each teacher about 

their own students‘ learning and assessment.  

Also, this seems to be a way the group found to support the younger teachers, who 

are usually responsible for teaching middle school grades, as this allows a stronger 

regulation of the teaching-learning process to assure the quality of students learning 



Working Group 17 

CERME 7 (2011) 2791 

 

in these grades. In contrast, older teachers are responsible for teaching grades 10 to 

12, but every three years they have to teach one or two classes from grades 7 to 9, 

keeping in close contact with all the issues of all school grade curriculum goals and 

eventual changes. 

The professional experience of the three teachers 

Matilde has 11 years of experience teaching mathematics classes from grades 7 to 

12. She is in this school since 2006. She has already worked in seven different 

schools performing roles as a mathematics teacher and as a class director. She has a 

degree in mathematics teaching. She says that, outside the school, all her time is 

dedicated to her family. 

Ana is 39 years old. She has been a teacher for 12 years and she has a master‘s 

degree in mathematics. Her capacities and work are recognised by all mathematics 

teachers by the school community. The results get by her students in the national 

exam are well known and the number of her students who go into university 

contribute to this social recognition. At the beginning of the school year of 2007/08, 

she was elected, by her colleagues, the head of the mathematics department. Her 

colleagues mention that ―Ana‘s first reaction was panic because she felt that she was 

not prepared to face the challenges and she did not know all the tasks involved in 

this job‖ [Research journal, 11/09/2007]. 

Simon is a teacher with 28 years of experience teaching mathematics classes from 

grades 7 to 12. Throughout his career he played several roles in his school such as 

deputy head teacher, in-service teacher education coordinator, department 

coordinator, and project coordinator (of mathematics projects and of other school 

projects). He is an in-service teacher educator in professional development courses 

and belongs to several working groups in and outside his school. Because of his 

professional experience and the initiatives he promotes in the group, Simon is 

recognized by his colleagues as the unquestionable leader of the group. This 

academic year he has only grade 12 classes. 

Matilde, Ana and Simon are in different stages of their careers and have a 

relationship with the school and the mathematics group marked by their personal and 

professional trajectories.  

Managing the curriculum: Individual dimension 

Concerning the individual work of the teachers in managing the curriculum, Matilde 

shows little identification with the perspective of the group. The voices some 

concern in the decisions that she makes in the classroom when using more open 

tasks; Ana shows confidence in taking decisions in relation to the work to develop 

with students; and Simon shows how to articulate the work with the textbook with 

working on open tasks, diversifying the tasks proposed to students. 
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Matilde teaches grades 7 and 8. The way she works with open tasks in the classroom, 

contradicts the view of the group in relation to mathematics‘ teaching and learning: 

Matilde – I think that I often influence the students‘ reasoning while they are 

solving a problem. I say what they should do! (...) I do this because I have to go 

on!  

Simon – That exactly what you should never do!  

Sebastian – We have to control our selves! We have to go step by step, 

questioning the students but wait for their answer. They have to think by 

themselves. Today you spend some time more, but you will gain tomorrow 

because your student have learned and achieved the goal. We can help you! 

[GWS, 20/11/2007]. 

In this discussion it is possible to understand that Matildes‘ decision contradicts 

the perspectives of the group about the way of manage student work with open 

tasks. It is also perceptive that Sebastian, the leader of the subgroup grade 7 and 8, 

tries to give Matilde some clues to help her future working, sustained in his large 

teaching experience (26 years). 

Ana teaches grade 12. She follows the planning done in the subgroup and in the 

classroom she uses the textbook as a central resource. She offers to the students 

the tasks that are prepared in the context of the grade 12 Subgroup: 

I do something that I already did a few years ago, it is not new. I issue students 

a challenge and I want them to write anything about these issues. They write 

funny mathematics‘ reports. [Ana INT, 26/09/2007] 

Simon teaches grade 12. He follows the planning done in the subgroup and, in the 

classroom he also uses the textbook as a central resource. He also offers his 

students the same tasks as Ana but he proposes solving them in two phases. He 

argues that classroom work must be focused on the student. The first approach is 

always the textbook. [GWS, 11/09/2007]. 

To learn, students have to like what they are doing, and so what I like most is 

that they solve their own problems. First, I would like them to be able to read a 

problem and not turn their arms down, not get discouraged, therefore grasping 

the problem. (…) Achieving that with my classes is to get weapons to grasp and 

solve the problems which arise. [Simon INT, 16/10/2007] 

In summary, the evidence shows us that Matilde has some difficulties to manage 

students‘ difficulties while they solve more open tasks and decides to provide 

them the answers. Simon tries to help his students to be autonomous assuming that 

students have to reflect on their own work and mistakes to learn. 

The three teachers and the mathematics subject group 



Working Group 17 

CERME 7 (2011) 2793 

 

In this section we present some of the dimensions of the relationship between the 

teachers and the group. Matilde does not identify herself with the culture of the 

group, Ana shows some embarrassment related to her role as head teacher, and 

Simon appreciates the dynamics and the work that the group develops. As the natural 

leader of the group, he nurtures his relationship with his colleagues using curriculum 

management as a focal activity. 

Matilde recognizes that she is an outsider regarding the group: 

I feel [quite outdated] by people who are here in school for longer than me. (...) 

I never felt this, but [now] I feel, because I think they [the other teachers] search 

for professional development training and I do not. [Matilde INT, 15/01/2008] 

But at the end of the study, Matilde recognises that she has learned a lot with the 

teachers of this group: 

In this group I felt that we should invest: I saw happy teachers even when 

difficulties emerge. We fell supported be my colleagues and still have a lot to 

learn to empower my practice [Matilde Final Reflection - FR, 14/07/2008]. 

As a mathematics teacher, Ana needs to share her work with her colleagues. As 

subject leader, she considers this to be a ―special‖ group, where all the work is 

planned in collaboration and where there is a strong reflexive attitude, all members 

sharing with each other their own practices and experiences: 

This is a special group. We work together for a long time. I hope it will stay like 

this! This one is the first [school] where the teachers of the mathematics 

department work in collaboration sharing all the tasks. [Ana INT, 25/10/2007] 

I've been a coordinator, in a school much smaller than this one at the beginning 

of my career. (...) Working with colleagues is sometimes difficult. I have a bit of 

fear in this task, but I try to be ready. [Ana INT, 08/05/2008] 

Ana refers to Simon as the catalyst element of the working processes developed 

inside the mathematics‘ subject group, and, in the different projects developed by the 

group. She refers to him, 

He has his own beliefs about how professional and school culture should be – 

with strong collaborative work and a continuous development and learning 

attitude – and the entire group follows his vision [Research journal].  

Furthermore, and besides the fact of being the subject leader, Ana decided to share 

the coordination of the school project. She looks at collaboration as a natural 

working situation of the members of the subject group and as a tool for help, support, 

and sharing:  
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I am always telling what happens in my classes and I like to know my 

colleagues‘ experiences, so I can have different opinions on my decisions and 

classroom strategies [Ana INT, 08/05/2008].  

Decisions about assessment provide an interesting episode concerning the 

relationship of Simon and the group. In fact, the other grade 12 teachers felt that 

the students should do assessment tasks just in one phase. That is what Ana and 

Diogo indicate: 

Ana – I think that if the task is to assess the students‘ learning then it has to be 

done individually. (...) I do not agree to give a second chance, because there are 

students with private tutoring and already know the task and many of them can 

provide ready-made answers. 

Simon – I think that they perform much better in a second stage. And I do not 

agree with you [Ana] that the reason is that they have external help and they 

already know the task. 

Diogo – I agree with Ana. In addition, if it counts for assessment, we have to do 

all in the same way, so that some [students] benefit and others do not. [GWS, 

20/11/2007] 

However, Simon decided to use a different strategy and gave a second chance to 

his students to improve their first response to the task, once corrected and 

commented. This decision was discussed in the following working session, as 

Simon announced his decision and suggested the group to analyse and reflect on 

the performance of his students in both phases. There were some negative 

reactions, especially from Ana and Diogo who have disagreed with Simons‘ 

decision [GWS, 4/12/2007]. The issue was taken up later at meetings in which the 

group built tasks and discussed how to implement them in the classroom [GWS, 

15/01/2008; 19/02/2008; 8/04/2008; 6/05/2008]. As a result, some other members 

of the group began to use Simons‘ strategy. In particular, at the end of the study 

Diogo admitted that this strategy can help students improve their learning, as he 

has verified with his own classes [GWS and FR, 14/07/2008]. 

Simon says that the discussions that the group has done in the project working 

sessions have been very ―interesting‖ for him. In particular, he stresses the 

construction of open tasks and the definition of criteria to assess and reflect on the 

results of students: 

The construction of tasks of proofs, problems and explorations and 

investigations and their implementation in the classroom, the discussions we 

had in the group working sessions, has always been very enriching, and the 

exchange of ideas and clarification of points were a highlight of this project. 

(...) Discussions on the grading of the students‘ work and their achievements to 

give them feedback were undoubtedly very important aspects for my learning. 
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The contributions of all colleagues made me to reflect on my practice in these 

aspects, questioning what we did and discovering ideas and suggestions 

perfectly workable in practice in the future. [Simon FR, 14/07/2008] 

From Simons‘ words it is evident the importance of teachers‘ reflect on their own 

practice and have opportunities to share experiences and doubts about their 

practice. These are key elements for teachers‘ professional development and also 

for the sustainability of a collaborative work culture in school context.  

CONCLUSION 

Ana, Matilde and Simon are teachers in different phases of their careers, from the 

same mathematics department that work collaboratively. The results of this study 

show that the curriculum management made in the context of a collaborative group 

and the various initiatives of the group in developing innovative practices that 

involve the development of exploratory tasks are significant changes in educational 

practice and enable the sustainability of a culture of collaboration (Nunes & Ponte, 

2010). There are situations that generate conflicts in the group, especially when most 

participants support some decision and some individual practices diverge from that, 

as illustrated by the case of Matilde and Simon.  

But this dynamic and working context seem to motivate the involvement of the 

teachers in teaching and learning. In particular, such dynamic appears to support the 

professional development the teachers and their capacity to accept new challenges. 

For example, Ana feels that she still has much to learn. But the context, in which she 

develops her profession, in particular the subject group she leads, represents an 

advantage for her. As one of the youngest members of the group, when she was 

elected subject leader, she chose to have a quiet and learning attitude. Every time she 

needs help she asks her colleagues and she can count on them for collaboration and 

experience, mostly from Simon.  

One important conclusion that we draw from this analysis is that Simon, the natural 

leader of the group, bases most of his relationship with his colleagues in the activity 

of curriculum management. The professional practice of these teachers, supported by 

this working environment, shows that current curriculum orientations may be 

implemented not just at an individual or small group level, but by a whole school 

mathematics department.  

Finally, the group culture and collaborative work seems to help in the gradual 

socialization process of new elements such as Matilde, while fostering a climate of 

confidence conducive to sharing experiences and difficulties (as showed in the 

discussion involving Matilde, Simon and Sebastian in the group working sessions), 

essential elements for the construction of teachers‘ professional identity development 

(Ponte & Chapman, 2008). Also, these group culture and collaborative work in the 

context of a project that involve all the teachers of the mathematics department of a 
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school shows some important elements for an effective way of promoting sustainable 

mathematics teachers‘ professional develpment (Zehetmeier & Krainer, 2011). 

From this study new issues emerge for future research, namely: How teacher‘s 

practices and curriculum management influence students‘ learning of mathematics? 

What conditions are necessary in schools, and more widely in the social context, so 

that this kind of collective curriculum management takes place, very much in line 

with current curriculum orientations? How can we create an effective network 

between professional development programmes and school mathematic departments 

in able to promote sustainable collaborative culture and professional development? 
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This paper reports on a study conducted to explore prospective mathematics 

teachers‘ reflections on teaching practice at the secondary level through noticing 

key aspects of classroom interactions. The study used critical incidents taken from 

everyday classroom situations as a means to make the act of noticing more concrete. 

The participating prospective teachers were engaged in a number of different 

activities including observing, designing and teaching. The results indicate a 

progression of prospective teachers‘ noticing of classroom practice and 

development of teaching awareness marked by shifts in analysing and interpreting 

classroom events. 

Key words: reflection, noticing, critical incidents, teaching awareness 

INTRODUCTION 

In this paper we aim to tackle the theory-practice problem in mathematics teacher 

education (cf. Mason, 2002, Jaworski, 2006) by exploring prospective teachers‘ 

reflection on teaching practice through noticing key aspects of everyday classroom 

situations. Our approach involves the use of critical incidents (Goodell, 2006) as the 

means by which noticing -and thus reflection on teaching practice- is facilitated to 

emerge. Our theoretical position towards reflection is based on Jaworski‘s (1998) 

interpretation of Dewey‘s definition of reflective thinking, i.e. ―firstly, a recognition 

of questions to address, identifying some perplexity, making some aspects of 

teaching problematic; and, secondly, through some processes of enquiry, to seek 

solutions, or resolutions to, or new ways of understanding, the problems identified.‖ 

(ibid., p. 7). In resonance with a number of current research approaches (c.f., Scherer 

& Steinbring, 2006, Jansen & Spitzer, 2009) we see noticing as an activity involving 

description, analysis and interpretation of teaching practice, thus creating a 

framework for reflection. A number of research approaches have indicated a number 

of difficulties that prospective teachers face while engaged in reflection on 

classroom interactions (eg. collecting evidence about  students‘ learning as well as 

developing interpretative analysis of classroom instruction (Morris, 2006)). A recent 

focus on the prospective teachers‘ reflections on critical incidents taken from 

classroom situations (Goodell, 2006) supports the idea that critical incidents can be a 

powerful tool towards promoting prospective teachers‘ reflective practices to 

develop. In our study, we used critical incidents as means to engage prospective 

teachers in reflecting on teaching practice so that they could learn to attend to their 

students‘ thinking, interpret classroom phenomena and start to develop ideas of 

alternative teaching actions. This paper demonstrates how this approach can facilitate 
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the progression of prospective teachers‘ noticing of classroom practice and 

development of teaching awareness marked by shifts in interpreting classroom 

events.  

THEORETICAL FRAMEWORK  

Two main bodies of research informed our study: the first, concerns reflective 

thinking through noticing of classroom interactions in teacher education, and the 

second, critical incidents of classroom practice as a concrete basis for reflection and 

interpretation. In his elaboration of the idea of noticing in teachers‘ professional 

development, Mason (2002) pointed out the importance of teachers‘ attention on the 

students‘ learning processes as well as to the teachers‘ self-observation practices in 

the classroom. In this view, noticing has been related to systematic reflection on acts 

or issues, leading to shifts in the structure of attention and, through this, to different 

levels of awareness both in mathematics and in mathematics teaching. In the research 

reported by Scherer and Steinbring (2006), noticing of students‘ learning processes 

was at the core of the joint reflection of teachers and researchers. The analysis 

suggests that a critical step towards a positive change of teaching activity consists in 

moving the dominating focus of mathematical interaction in teaching from the 

teacher to the learning students.  

In the domain of preservice teacher education existing research studies suggest that it 

may be possible to help prospective teachers engage in reflective thinking through 

noticing so as to enhance their ability to focus on key aspects of teaching practice. 

Morris (2006) reported that under the condition to form hypothesis about the sources 

of students‘ difficulties in a videotaped mathematics lesson, prospective teachers 

appeared to be able to develop claims and conjectures about the connection between 

specific instructional activities and students‘ mathematical understanding. Spitzer et 

al. (2011) reported that a rather short classroom intervention (2 lessons) involving 

joint reflection and discussion on written classroom transcripts provided by the 

researchers, produced substantial improvement in prospective teachers‘ ability to 

identify and analyze evidence of student understanding. Similar findings were also 

reported by research studies in which prospective teachers were engaged in reflecting 

on their own teaching. The results revealed that reflective activities served as 

transition mechanisms that promoted prospective teachers‘ awareness of the need to 

monitor student understanding during the lesson (Artzt, 1999) and develop 

hypothesis when interpreting how their teaching affects their students‘ learning 

(Jansen & Spitzer, 2009).  

Along with a focus on prospective teachers‘ reflective practices, researchers have 

been concerned about the introduction of sufficient structures for making the act of 

inquiry into teaching practice more concrete. A particular example of a structured 

framework for reflection on classroom episodes are critical incidents, i.e. everyday 

classroom events which are significant for the teachers, make them question their 
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practice and seem to provide an entry for their better understanding of teaching-

learning situations (Hole & McEntee, 1999). Recent research focus on the use of 

critical incidents in pre-service teacher education (Goodell, 2006) supports the idea 

that critical incidents can be considered as a means to facilitate prospective teachers‘ 

productive engagement in noticing teaching events and critically reflecting on them. 

In resonance with this approach, in this study we were interested to stimulate 

prospective teachers‘ noticing through critical events and see if and how the 

developing process of selecting and reflecting on critical incidents in different 

contexts (i.e. observing, designing and teaching) might promote changes in the 

prospective teachers‘ stance towards analysing and interpreting classroom events.  

METHODOLOGY 

Context of the study and participants  

The research took place in the context of a 16-week mathematics education 

undergraduate course (taught in one semester by the first author, mentioned as 

teacher educator in this paper) at the University of Athens in Greece. The philosophy 

of the course was to link theory-driven instruction on the teaching and learning of 

mathematics at the secondary level with realisation of mathematics teaching in real 

classroom settings. The aim was to engage prospective students in critically 

consideration of aspects of mathematics teaching as they emerge from the 

complexity of teaching practice in schools. Every second week (for the entire 

semester) prospective teachers were asked to participate in a number of field 

activities such as to observe other teachers‘ course in cooperating schools, to conduct 

a didactical intervention in one group of students and to design and implement 

lessons in the classroom. Each week following the field activities-week included a 3-

hour class session taking place at the University. Instructional practice in this session 

aimed to support prospective teachers‘ reflective activities on their recent field 

experience and to link emergent issues with existing mathematics education research. 

The 22 prospective teachers (9 males, 13 females) who served as participants in this 

study were divided in pairs and carried out collaboratively the field activities under 

the supervision of 8 experienced secondary mathematics teachers who served as 

mentors. Apart from the teacher educator, the research team consisted of two more 

researchers of mathematics education (the second and fourth author) and an 

experienced teacher (the third author) who acted as mentor-researcher in the study. 

Enrolling in the course, prospective teachers had a background of undertaking at 

least four other mathematics education courses as a part of their teacher education 

program at the University. Most of them also parallel to their university studies were 

helping school students on a private base with their mathematical homework. 

Research design and data sources 

Reflection on teaching practice through noticing of classroom events in the 

framework of critical incidents was the foundation of our research design. Critical 
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incidents were considered as a methodological tool for triggering prospective 

teachers‘ reflection on teaching practice. In the first class meeting, prospective 

teachers were introduced to the idea of critical incidents mostly through examples 

and also by reference to teacher education research. In the next class meeting and in 

the first half of the third, the groups of prospective teachers completed tasks that 

required them to identify why some classroom incidents ―provided‖ by the teacher 

educator (e.g. transcripts of lessons or videotaped teaching episodes) could be 

considered as critical, discuss the features of those incidents, and finally analyze and 

interpret them. These incidents were considered as critical by the researchers as they 

could indicate an important teaching and learning moment (e.g. an unexpected 

student‘s response, an ―effective‖ classroom interaction etc.)  In the second half of 

the third class meeting and in all the subsequent ones, the groups of prospective 

teachers were asked to select and present in the next class session a critical incident 

that represents an unexpected situation that they had experienced during their 

fieldwork activities (i.e. observation of lessons, didactical interventions, design and 

implementation of lesson plans). It was expected that these presentations and the 

subsequent class discussions would provide a fruitful terrain for studying the 

development and evolution of prospective teachers‘ noticing through critical 

incidents in different contexts. All class sessions (8 in total) were video recorded. 

The data for this study was conducted over the entire semester, and consisted of: (a) 

prospective teachers‘ personal portfolios including their written accounts of critical 

incidents and material related to the design, implementation and presentation of their 

field activities in the classroom (e.g. worksheets, lesson plans, presentation files); (b) 

video recordings of all class sessions at the University; (c) audio-recordings of 

interviews with some of the prospective teachers regarding their field activities, and 

(d) researchers‘ field notes. For the analysis verbatim transcriptions of all recordings 

were made. The analysis presented in this paper is based only on the video 

transcripts of the class sessions.      

Data analysis  

In this study we worked broadly through a grounded theory approach (Strauss & 

Corbin, 1998) as our goal was rather exploratory. The unit of analysis was the 

episode, defined as an extract of interactions performed in a continuous period of 

time around a particular issue. The episodes which are the main means of presenting 

and discussing the data were selected (a) to involve prospective teachers‘ 

interactions on student learning according to an unexpected teaching event and (b) to 

represent indications of emerging shifts in prospective teachers‘ noticing of 

classroom interactions involved in the episode.  

RESULTS 

The prospective teachers identified a variety of critical incidents throughout the 

activities of the course. The issues that were addressed by them concerned mainly 
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students‘ difficulties; classroom management; curriculum and textbooks, overall 

educational and social context. In this paper, we report findings indicating the shifts 

in analysis and interpretations of students‘ learning that occurred during the 

university class meetings.  

Noticing students‘ learning in teaching examples provided by the researchers 

In the initial class sessions the prospective teachers‘ comments and interpretations of 

critical incidents were mostly related to students‘ misconceptions and to ineffective 

teacher‘s strategies. They appeared to attribute these problems either exclusively to 

students‘ responsibility or to wider social factors that framed teaching and learning. 

Moreover, these factors seemed to have been considered in a fragmented way despite 

of the teacher educator‘s attempts to encourage prospective teachers to see teaching 

and learning at its complexity. We provide below some evidence of some of the 

issues described above by referring to an extract from the second classroom meeting. 

The teacher educator presented a task related to students‘ proofs for the statement: 

―The sum of two consecutive odd numbers is divisible by four‖. (taken from Boero 

& Guala, 2008). One 14- year- old student provided the following response:  

―By making some trials like for instance, 3+5, 15+17, 31+ 33 I realise that I always 

get sums made by the first odd number and by the same odd number increased by 

two, thus I get the double of an odd number plus two. This result is divisible by four 

because the sum of two equal odd numbers would be (alone) an even number 

divisible only by two, but if I add two I get the consecutive even number, which is 

divisible by four because even numbers follow each other with the rule that if one is 

divisible only by two, the following one is divisible by four (like: 2, 4; 6, 8; 22, 24; 

etc) because the multiples of four are four units far from each other‖ (ibid, p.238). 

Initially, prospective teachers considered student‘s reasoning empirical: 

 ―The student makes an attempt to generalise but constructs some rules that hold for small 

numbers but then he concludes arbitrary that this is true for all.‖ (Lefteris, 2
nd

 class meeting) 

Later on in their attempts to develop a better understanding of the student‘s thinking 

they started to consider much deeper issues such as the symbols‘ use in a 

mathematical proof, what constitutes a mathematical proof, and the distance between 

curriculum demands and students‘ mathematical understanding. The following 

example indicates prospective teachers‘ initially rather narrow perspective about the 

nature of mathematical proof: 

 ―It is like another example we had seen in the previous lesson where the student could not 

use the symbols. Although this student seems to understand what the answer is and how 

more or less to get it, this is not a mathematical proof... it does not have operations and 

relations.‖ (Ioanna, 2
nd

 class meeting) 

Although in this part of the discussion the teacher educator‘s intervention was 

minimal, the prospective teachers started to express different opinions from their 



Working Group 17 

CERME 7 (2011) 2803 

 

initial ones indicating their appreciation of student‘s reasoning and their efforts to 

provide an adequate justification (2
nd

 meeting):   

Spirithoula: We need to remember that this student is only in the 9
th

 grade and he does 

not have yet the experience to write the even number in the form of 2k and 

the odd in the form of 2k+1, so that to construct an accurate mathematical 

proof. I think that for a student of that age the whole thinking was very 

good. 

Adriana: I would also agree, let‘s not forget that it took ages to develop the 

formalism ... 

Oliver: Diofantus also did not use algebraic symbols... 

Adriana: How can a student of that age construct such a proof?  

Although the class seemed to come to a consensus, one prospective teacher reminded 

the audience that the mathematics curriculum suggested a formal approach to 

problems of that kind. This creates some tensions again:  

―I completely disagree. It is very good that a student does something different from what he 

has been taught. Following a problem solving method mechanically is not good for his 

future mathematical development. It is more important to encourage him to make 

explorations.‖ (Oliver, 2
nd

 meeting)  

Through the above comment, Oliver brought to the foreground the critical role of 

exploration in students‘ mathematical development in the long term.  

Prospective teachers‘ attention to students‘ thinking in this context seemed to have 

made a number of shifts in the ways they analysed students‘ understanding. In 

particular, they started to recognise students‘ reasoning beyond the formality of the 

symbols and to view it as an integral part of students‘ mathematical future 

development. 

Noticing students‘ learning in classroom observations 

In the third, fourth and fifth meeting the prospective teachers commented on critical 

incidents which they had noticed in the classroom observations. A variety of issues 

emerged in the discussions such as conceptual and procedural learning, students‘ 

difficulties to make connections between different representations, the relation 

between the nature of teacher‘s questions and students‘ answers, curriculum and 

wider social issues and their impact on learning and teaching, the role of students‘ 

prior knowledge in learning and the effectiveness of specific teaching examples and 

tasks (e.g. the use of paradoxes, the connection among different content areas). In the 

discussions a central issue was the construction of mathematical meaning. Initially 

the focus was on students‘ mistakes that were due to lack of understanding. 

However, during the discussion the prospective teachers started to link this 

phenomenon to teachers‘ choices (examples, tasks, questions) and to research 

findings. We will try to indicate these shifts by using examples from our data. 
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A number of critical incidents that the prospective teachers presented were related to 

the fact that the students often apply a method to solve a mathematical task without 

understanding the underlying properties. Some examples were the transformation of 

a fraction to an equivalent one, the solution of a first degree equation, arithmetic or 

algebraic computations. For example, one critical incident reported by a prospective 

teacher was about a classroom interaction between two students concerning the 

transformation of the fraction 7/5 to its equivalent with 30 as denominator. The first 

student completed the transformation by multiplying both terms of the fraction by 6. 

Then the second student wondered why he did not use a faster common technique 

based on the use of the appropriate factor that is ―kept‖ in a place over the 

nominator. The prospective teacher interpreted the phenomenon by considering this 

technique as a ―picture‖ in the student‘s mind which might provide a barrier to 

conceptual understanding:  

―The second student seems to have clear in his mind a picture without knowing why this 

method works, the essence of the method.‖ (Kostas, 3
rd

 class meeting) 

In a subsequent stage of the discussion, the teacher educator attempted to move the 

class attention on how to deal effectively with the situation in order the make the 

meaning of this specific technique transparent to the student. Kostas stated that he 

would ask him to reflect on his actions ―What are you actually doing?‖ ―In what way 

your approach is different from your peer‘s?‖. Another prospective teacher recalled 

from his fieldwork observation how another teacher managed a similar situation. 

Instead of stressing the rule ―change side, change sign‖, commonly used, in solving 

algebraic equations, he emphasized the properties involved in the solution process. 

The prospective teacher found this approach original as it was beyond his own 

experiences:  

―There was not the method of moving it to the other side and change its sign but the teacher 

was emphasizing that we do the inverse operations. I find this approach very different, more 

advanced.‖ (Lefteris, 3
rd

 class meeting)  

In a subsequent class meeting, the prospective teachers themselves started to build 

connections between learning, teaching and research. They had been asked to find 

and read a research paper that would help them to develop adequate explanations of 

the fact that students often do things at an operational level without deeper 

understanding of the underlying properties. In terms of students‘ learning they 

managed to give deeper interpretations by realising the meaning of the variable, the 

double meaning of the equal sign and the transition that the students needed to make 

from arithmetic to algebra. In terms of teaching they identified tasks such as a tree 

diagram that could help students to understand the priority of operations and use it 

for solving equations or they talked about the emphasis needed to be given on 

algebraic structures in arithmetic. Some typical comments were: 
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―The students need to understand that a variable is an element of a set, something like this.‖ 

(Ioanna, 5
th

 class meeting) 

―We read about a tree diagram that helps students to read and see how the algebraic relation 

is structured and it also uses a computer program to represent it.‖ (Lefteris, 5
th

 class 

meeting)  

By summarising, in this context the prospective teachers extended their own 

examples about mathematics teaching and learning and started to reconsider and 

evaluate the effectiveness of some of the teaching approaches they experienced as 

school students. We also noticed deeper interpretations of students‘ mathematical 

contributions by relating them to the research findings. Finally, they started to focus 

on the role of teaching practices to the development of learning and identify fine 

elements of teaching.  

Noticing students‘ learning in prospective teachers‘ teaching 

In the last three class meetings the prospective teachers presented critical incidents 

from their own teaching. The critical incidents were related to students‘ difficulties 

or unexpected responses, to the appropriateness of the designed tasks, to 

epistemological aspects and to classroom management. Almost all the prospective 

teachers participated in the discussion by presenting and justifying their critical 

incidents as well as by challenging their peers‘ interpretations and claims. In this 

phase, the main part of the class discussions was based on the prospective teachers‘ 

interactions. Some of the main issues that emerged were: a teacher‘s difficulty to 

notice students‘ learning; the problem of time; the connection among different 

representations; the difference between procedural and conceptual understanding; 

the management of students‘ different mathematical backgrounds and interests; the 

difficulty to design a mathematically challenging task consistent with students‘ 

cognitive and affective needs; and the epistemological characteristics of geometry. 

In terms of students‘ learning the prospective teachers‘ interpretations focused more 

on the students‘ strategies and thinking processes rather than on their difficulties and 

errors. Moreover, they often seemed to overtly recognise the critical role of tasks in 

challenging students‘ mathematical thinking. We are giving below some examples 

from prospective teachers‘ reflections.  

In the 7
th

 class meeting, Katerina talked about what she learned from her 8
th

 grade 

students while working on a task she had designed for comparing the areas of three 

irregular polygonal areas: 

―We wanted to see how the students were thinking while they were dividing the areas to 

regular shapes. We let the students to work on their own. I had expected them to develop 

three or four different strategies but when I analysed them afterwards I discovered that they 

were twelve!...What I have understood is that when you let the students to work on 

themselves they have a lot of different ideas. We can also see how they are thinking... All 

the students in the class had done something.‖ (Katerina, 7
th

 class meeting) 
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Katerina recognised that students‘ thinking can be very powerful through the 

analysis of their strategies. Moreover, she acknowledged the importance to provide 

space to all students to think mathematically during the teaching. In the discussion 

that followed the other prospective teachers also commented on the added 

pedagogical value of students‘ multiple solutions of a mathematical task:  

 ―I think that it has to do with the nature of the tasks. A very specific task does not allow for 

multiple solutions and answers. So, I do not have to ask questions that have as answer ―yes‖ 

or ―no‖. We need to ask why.‖ (Spirithoula, 7
th

 class meeting) 

In the last class meeting Aggeliki and Maria presented a critical incident from their 

teaching in a 9
th

 grade class. Their teaching goal was for the students to make sense 

of the algebraic formula (a+b)
2
 =a

2
+2ab+b

2
 through a geometrical task they had 

developed. One student who was engaged in calculating areas in the geometrical 

context he recalled the formula without connecting it to the problem. The two 

prospective teachers did not expect this response and they interpreted that the student 

did not make any connection to the problem but he only recalled the relation without 

understanding:  

―I expected to hear that the area of the total land was the sum of the four rooms and he gave 

me the algebraic formula.‖ (Aggeliki, 8
th

 class meeting)  

―I used to do this when I was at school. The teacher was telling me something and when I 

did not know it I was giving him the formula I knew.‖ (Maria, 8
th

 class meeting) 

In their attempt to interpret student‘s approach the prospective teachers were trying 

to go more deeply to student‘s thinking process. For example Lefteris mentioned the 

fact that the student worked at the operational level and could not see the relation 

structurally:  

―The student says that the solution of this relation is... he does not see the equivalence of the 

two quantities, he only sees that he will expand the (a+b)
2
 and he will find the result. He has 

acted only procedurally.‖ (Lefteris, 8
th

 class meeting) 

Overall, by reflecting on their actual teaching the prospective teachers seemed to 

focus on key aspects of student‘s learning and to relate it to features of the tasks (e.g. 

openness, kind of representations).  

CONCLUDING REMARKS 

Our purpose in this paper was to illustrate a particular approach to encourage and 

study prospective teachers‘ reflection on teaching practice by noticing key aspects of 

classroom interactions through critical incidents. The results indicate a progression 

of prospective teachers‘ noticing of classroom practice marked by shifts in the 

analysis and interpretation of critical incidents. An initial analysis of students‘ 

thinking at a surface level has gradually been moving towards considering salient 

features of the learning process. Towards the last class sessions prospective teachers 

seemed to be able to make connections between students‘ learning with particular 
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aspects of teaching practice. Finally, this process seemed to be carried out through 

the integration of different sources of knowledge such as prospective teachers‘ tacit 

knowledge about teaching from their experiences as students and private tutors and 

the academic knowledge they were developing at the University course.  
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The paper deals with problem of introduction of new mathematics content into 

secondary school curricula and its influence on changes in curricula for future 

teachers of mathematics. We are focused on development of content knowledge. We 

choose area of (everyday) financial mathematics because of the new school reform in 

year 2008 and the basic financial mathematics is obligatory part of the mathematics 

education at secondary schools in Slovakia. In our research we observed changes in 

students‘ content knowledge from financial mathematics after following the course of 

financial mathematics for future mathematics teachers. The results imply that their 

knowledge is not sufficient and therefore there is need to give more courses/lecture of 

financial mathematics in preparation of future teachers focused on basic financial 

notions and mechanisms. 

Key words: financial mathematics, financial literacy, school reform, preparation of 

future mathematics‘ teachers  

INTRODUCTION 

The importance of financial education has increased in recent years, in particular as  

a result of developments in the financial market and demographic, economic and 

strategic changes. Currently, consumers have better access to a whole range of credit 

and saving structures that differ with regard to fees, interest rates, maturity or other 

parameters. 

 ―Financial education is the process by which financial consumers/investors improve their 

understanding of financial products and concepts and, through information, instruction 

and/or objective advice, develop the skills and concepts and, through information, 

instruction and/or objective advice, develop the skills and confidence to become aware of 

(financial) risks and opportunities, to make informed choices, to know where to go for 

help, and to take other effective actions to improve their financial well-being and 

protection.‖  OECD (2003) 

Ministry of Education of Slovak Republic in compliance with OECD Recommendations 

How to Improve Financial Literacy (OECD, 2003) prepared National standard of 

financial literacy (Ministerstvo školstva SR & Ministerstvo financií SR, 2008) in 

October 2008. The main goal was start with financial education at schools according 

with new State educational programs (SEP) within new school reform. 
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New school reform started in September 2008 at primary and secondary schools. 

This reform innovated content of many subjects, financial education was integrated 

mostly into mathematics education. Implementation of this reform unfortunately did 

not count with necessary changes on the universities that prepare future mathematics 

teachers. The effect of this situation is that universities continue with preparation of 

future teachers that are not appropriately prepared for teaching according the new 

State educational programs.  

Therefore we suggested study material from financial mathematics (FM) for students 

– future mathematics teachers. These students were just graduated from secondary 

schools; they followed the old system of education – it means without the FM course 

and other changes that are part of the new school reform from 2008. 

The aim of our research was to find out if the study material prepared for teaching 

FM improves knowledge of the students in the 1
st
 year of study on university to be 

teachers of mathematics. To verify suitability and propriety of suggested course of 

financial mathematics as a part of the subject Didactical seminar 2 from the 

standpoint of students understanding of basic terms and mechanism of FM we 

suggested research in this area. 

The research question was if the students´ knowledge from financial mathematics 

after attending the FM course is on the level of institutionalization, it means if they 

are able to apply obtained knowledge from FM.  

Following formulated research question we observed students´ ability to apply 

knowledge from FM in solving the real life problems from financial area that could 

improve students‘ attitudes towards mathematics education (Vanköš & Kubicová, 2010).  

THEORETICAL FRAMEWORK 

We can identify at least three general approaches in didactics of mathematics: 

cognitive, social and epistemological. Epistemological approach of the research is 

focus on using of the mathematical knowledge and its spread into educational 

institutions (Kohanová, 2008). Therefore we choose Theory of didactic situations 

(TDS) for the analysis of students´ solutions in our research. 

Brousseau (1998) defines the didactic situation as a situation for which is possible to 

describe the social intention of acquirement of student‘s knowledge. This situation is 

realized in system called the didactic system (didactic triangle) that is composed 

from three subsystems: learner (student), learning (teacher), information (knowledge) 

and from relations between them. In didactical situation are subjects confronted with 

prepared milieu. The didactic milieu (Brousseau, 1990) is the basic notion of Theory 

of didactic situation. Following the Piaget‘s theory the milieu is source of 

contradictions and non-steady states of learner (subject) by process of adaptation (by 

Brousseau (1986) it is assimilation and accommodation). All knowledge has its 

specific environment in which students are confronted with.  
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The didactic situation can be described as a game between a (person in the role or 

position of the) teacher and the student-milieu system. Every game has its rules and 

strategies. The rules and strategies of the game between the teacher and the student-

milieu system, which are specific of the knowledge taught, are called the „didactic 

contract―. The rules of the didactic contract are not explicit and they can be slightly 

different from classroom to classroom, culture to culture, and they can even change 

in the history of a single classroom with the same teacher and the same students. 

(Sierpinska, 2003b) 

Analysis of our research was carried out following knowledge building by TDS: 

action, formulation, validation, and institutionalization according Sierpinska 

(2003a). 

The results followed from research focused on level of financial literacy of 

university students described in Regecová & Slavíčková (2010) indicate that 

students‘ knowledge from financial mathematics are mostly on the level of action or 

formulation. In presented research we were interested also in ability of student to 

estimate the result of problem. As was written in Brisudová & Slavíčková (2006) 

students are not able to make a guess and their calculation always depend on 

calculator. The ability of guessing is missing on mathematics lessons.  

METHODOLOGY 

Following the model of design-based research (DBR) (Wood & Berry, 2003) and in 

accord with our research question we developed a proposal of proper course of 

financial mathematics (FM) for student of the 1
st
 year on Faculty Mathematics, 

Physics and Informatics (FMPI) and Faculty of Natural Sciences (FNS) to be a 

teachers of mathematics. This curricular change should permit to the students‘ 

teachers to be obtaining necessary knowledge from the FM both for usage in real life 

and notably in their future teacher of mathematics career on secondary school.  

The main idea of State Educational Program (SEP) (Ministerstvo školstva SR, 2008) 

is to know use knowledge from financial mathematics in real life and on secondary 

school mathematics level. Therefore we tried to suggest tasks, problems and 

examples in accord with SEP. There were no Slovak text-books for secondary 

schools that can be used on the lessons corresponding with New Curricular Reform 

(NCR) in that time. When we were preparing the course of FM for future teachers on 

our university, we use the text-book from Czech Republic (Odvárko, 2005), in which 

the educational program focused on FM is very close to the program determine by 

Slovak SEP. The other reason were similar trends in both countries (from historical, 

linguistic and socio-cultural point of view) and similar school reform in Czech 

Republic that was realised in 2007 (one year sooner than in Slovakia). From this 

textbook we pick up tasks that were in accord with NCR and we change these tasks a 

little bit (change the names of persons and institutions to made it more attractive).  
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Because of not enough space in subject Didactical seminar 2 on bachelor degree of 

the teacher education program on FMPI and NFS (2 lessons) we pick up 42 tasks and 

divide them into 2 thematically independent parts. The 1
st
 part was focus on bank 

accounts, fix deposit, bankbook and different type of save up products. The 2
nd

 one 

was focus on different type of loans, leasing, and credit. (Regecová, 2009) 

Integration of the FM course into 2 lessons in winter 2008 allowed us to start with 

teaching in summer term 2009. Because of many tasks need a bigger calculating, or 

more difficult formulas, we realize to teach both - with using of ICT and common 

way (chalk and blackboard). We used MS Excel and free software GeoGebra. 

Before we started with the experimental teaching of FM we prepare didactical test. 

The test had 4 tasks chosen to cover important areas from financial mathematics 

taught on secondary school level (2 tasks were focused on saving products and 2 on 

loans). Therefore content and construct validity of this test was high.  

We tested sample of 25 students at university level in the 1
st
 year of study to be a 

teacher of mathematics (2 groups of students). Pre-test was written in the same week 

in both groups. Students in the groups were taught by different teachers (one group 

taught Michaela, the second group taught Maria) and they did not know that they 

will be involved to the experiment. The teaching/learning process started one week 

after the pre-test. The innovation of teaching was not only in adding a new topic into 

the existing subject. The approach to the problem was different. We started to use 

ICT not only as demonstration tool, but students also had computers to made their 

own simulation, calculation and modeling, students had possibility to use ICT to 

made up their home works etc. Using of the ICT was common, individual work of 

the students was necessary, home works could be prepared by using of ICT.  

According to teaching/learning process we would like to specify that every student 

has one task to solve one week before the lesson. Therefore process of action and 

formulation of hypothesis was realized at home environment of every student. There 

was possibility to discuss students´ hypothesis among schoolmates whole week. 

Validation of students´ hypothesis started during the presentation of their solutions 

on the lesson. There was discussion among students themselves and among students 

and teacher. Institutionalization of new knowledge was up to the teacher.  

During the teaching we were doing also observation of the behavior of the students, 

their attitude and opinion on these changes. It of course differs from student to 

student. Mostly girls were discouraged because of computers.  

Posttest was written approximately 2 weeks after the finishing of the topic financial 

mathematics. We offer analysis of two chosen tasks from the experiment in this 

paper. 
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RESEARCH AND RESULTS 

Before the testing of the students we write analysis a priori of all 4 tasks. We point 

out the aim, terminology and possible models of solving the tasks. In general we can 

write that the aim of the test was: 

- find out which model for solving chooses students to solve standard tasks from 

financial mathematics, it means, if they know terminology and models of 

financial mathematics,  

- if students are able to guess and count the better alternative, if they know 

mechanism of loan interest or credit and if they know influence of loan interest 

or credit on profitability of the loan. 

Necessary terminology which had to understand for solving the task was bank 

account, annual interest, interest rate, interest tax, credit, loan, mortgage, principal, 

repayment plan. 

Models used in solving the test differ according to the aim of the tasks. We assumed 

also incorrect solving strategies/models. We can divide the strategies into two main 

categories: M1 – financial mathematics approach, M2 – non-financial mathematics 

approach. 

Detailed a priori analysis of students´ solutions is described in Regecová & 

Slavíčková (2010). In this article we would like to focus on analysis of student 

knowledge improvement and errors in their solutions.  

The results from the first part of the research imply that students do not have proper 

knowledge from FM. The comparing their result before the curricular changes and 

after is described bellow. We compare level of knowledge of each student before and 

after the course of financial mathematics.  

Task 1 

We would like to set up new bank account and deposit 100 EUR (3 012,60 SKK ) 

every month starting  at the beginning of the year. The deposit will always be made 

at the beginning of the month. We know that ―our bank― offers a 2.3% fixed interest 

rate (the interest rate will not change throughout the year). The interest rate is 

calculated and deposited only once (every quarter in post-test) to our account, and 

always at the end of the calendar year. How many EUR would have in the account by 

December 31
th

 with a 2.3% interest rate? How many EUR would we save by the end 

of the year if we would put 100 EUR every month to our piggy bank? 

Pre-test: 

There were 23 students who used model M2 to solve the task 1; it means the model 

without the tools of FM in the pre-test. None of these students achieved the correct 

answer. Most often mistakes were: 12 students did not think of tax 19 % (missing 

relation with real life), 2 students made error in the order of number magnitude 

(missing the guess of possible result), incorrect interest rate (1 student), and not 
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proper tax (1 student). One student solved this task correctly (model M1) and one 

student did not solve this task.  

Post-test: 

All 25 students used model M1 in the post-test, it means after the course of FM. All 

of them tried to apply their knowledge from FM in solving the task. But correct 

answer gets only 4 students. The most often error was that students did not think of 

periodicity of the deposit – 8 students did not count with every month deposit 100 

EUR. Similar, 4 students did not think on quarter period, but months‘, 5 students did 

not use the proper interest rate (they use months‘, quarters‘ instead of the years‘), 2 

students think of quarter period but in next quarter count only with interest, not 

whole amount of deposit from the 1
st
 quarter, 1 student think in quarters, but do not 

think that in the second quarter we have also amount from the 1
st
 one, in the 3

rd
 from 

the 2
nd

 one etc. The positive result is that every student count with 19% tax.  

Comparing pre-test and posttest: 

From the results of pre-test and post-test in each students (25) we can see, that all of 

them tried to use these knowledge to solve the task after the attending the financial 

mathematics course. The one of possible reasons could be didactical contract 

(Sierpinska, 2003b) the effort of the students to apply obtained knowledge by any 

way. But the higher level of the task 1 in post-test comparing to pre-test could be the 

reason that only 4 students get correct answer to the question. In general we can say 

that students after the financial mathematics course are able to apply the methods and 

tools of FM but with some problems. Their knowledge of FM was not 

institutionalized during courses of FM.  

We demonstrate progress in using of solving method by one chosen student in the 

Table 1 even if presented solutions are not correct. 

Pre-test 

Sum of deposits: 12 100 = 1 200 EUR 

Counting with tax 19 %: Tax 2.3  0.19 = 0.44 % 

Interest rate after taxation: 2.3 − 0.44 = 1.86 % 

Value of the interest add to the account: 1 200  0.0186 = 22.356 EUR 

At the end of year: 1200 + 22.356 = 1222.356 EUR 

Piggy bank money: 12  100 = 1200 EUR 

Post- test  

Sum of deposit and interest (in EUR) in three months separately, so in one quarter:  

January: 3 2,3
100 100 0.81 100.466

12 100
, February: 

2 2,3
100 100 0.81 100.311

12 100
,  

March: 1 2,3
100 100 0.81 100.155

12 100
, …, July: 6 2,3

100 100 0.81 100.932
12 100

, … 

Total sum: 1 2 3 4 122,3
12 100 100 0.81 1212.11

100 12 12 12 12 12
 

Piggy bank money: 12  100 = 1200 EUR 

Table 1: Example of student solution in pre-test and post-test. 
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Task 2 

A brokerage firm received a loan for 99 000 EUR with a 13% interest rate over 3 

years. According to the contract with the bank, they will start the payments one year 

from the origination of the loan. Payment is yearly and the bank collects interest once 

a year. How much would the yearly payment be? Round your answer to the nearest 

cent. 

Pre-test: 

There were 4 students who tried to solve this task in model M1 but because of the 

week knowledge of FM only 1 get a correct answer in the pre-test. 10 students did 

not start to solve this task, other students tried to save the fairness in payments and 

divide the amount into 3 equal parts and use interest rate to get an answer, or they 

start with counting or the interest rate and the result divide by 3, or 12, or 36. The 

obtained number they declared as an annuity. The counting was mostly illogical what 

implies that students did not understand to the term annuity and there is again 

didactical contract present – students tried to count ―something‖, because it was 

expected. 

Post-test: 

In the post-test 23 students used M1 model, but 6 of them obtained correct answer. 

The rest 2 students did not start to solve this task. The most often errors were: using 

the formula instead of the logical procedure (13 students), but many students did not 

use this formula in correct way. One student tried to solve the task by both models, 

but without any success. Two students who used the formula correct were not sure 

with the answer, for just in case they multiply this result by 3. Three students used 

months‘ interest rate period instead years‘. 

During the schooling we tried to do not use formula, we tried to lead the students to 

understand the mechanism of different financial products. The fact that students use 

formula even that we forbid it implies that students were not able to use mechanism 

and obtained knowledge was formal. Their knowledge of FM was deformed and not 

institutionalized during courses of FM. 

Comparing pre-test and posttest: 

Analysis of pre-test and post-test in every students pointing that after the attending 

FM course most of the students tried to solve the task by mechanism and knowledge 

of FM. This fact is necessary to highlight mostly in 10 students who in pre-test did not 

tried to solve this task. In total we can say that students had an effort to use FM tools 

and mechanism in solving this task, but as we say before, only some of them get 

correct answer. 

We demonstrate progress in using of solving method by one chosen student in the 

Table 2 even if presented solutions are not correct. 
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Pre-test 

Interest paid in total: 99000 0.13 12870 EUR  

Interest paid in one month: 12870:12 1072.5 EUR  

Annuity will be 1072.5 EUR. 

Post-test 

The end of: Annuity Interest Principal Debt 

 – – – 99 000 

the 1
st
  year x 12 870 x – 12 870 99 000 – (x – 12 870) 

the 2
nd

  year 
x 

99 000 –  

(x – 12 870) 

x – [99 000 –  

(x – 12 870)] = y 

99 000 –  

(x – 12 870) – y = z 

the 3
rd

  year x z x – z 0 

99000 12870 99000 12870 0.13 99000 12870 99000x x x x  

62370x  EUR, but if I use formula, then 
99000 0.13 1

41928.70 EUR
3

1 1 0.13 1
a . 

Table 2: Example of student solution in pre-test and post-test. 

CONCLUSION 

The results of our research show that knowledge of the students (graduated 

secondary school students) from FM is not on sufficient level. We did not noticed 

progress in solving the tasks by students after attending the FM courses in duration 2 

hours. Future teachers are only able to apply their knowledge to problem solving in a 

superficial way relying on recalling formulate or remembering procedures. One of 

the possible reasons why deformation of educational process happened is the lack of 

the teaching hours. Therefore the students were not able to shift their knowledge on 

level of validation and institutionalization and they obtain only formal knowledge. 

That indicates that it is necessary to pay attention to this topic in more detailed way 

and in bigger time donation. The results also indicate that information from the 

media and everyday life are not sufficient. Therefore the students are not prepared 

for it and need to learn more at secondary and university/higher school level from 

this very important area of the life. As we can see, the one of the aim of the teaching 

mathematics (following NCR) ―develop the analytical thinking and ability to solve 

the task in real life‖ was not reached – students are able to memorize, but they do not 

understand, they cannot make their own construction; they need to be lead by 

teacher/tutor. The other ability – make a guess is still not on adequate level. 

In our study we focused on development of content knowledge but there should be 

balance between developing future teachers‘ content knowledge and their pedagogic 

knowledge.  The question is, what approaches on the part of teacher educators can 

help future teachers to develop all aspects of their knowledge for teaching 
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(knowledge of math, ways of teaching math and ways in which students learn math) 

at the same time? 
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Drawing on the conceptualization of Mathematical Knowledge for Teaching (MKT) 

this paper considers the knowledge underlying the practice of Maria, a primary 

school teacher, as evidenced in an episode where she attempts to explain the reason 

for representing the concept of area with superscript: dm
2
. Through analysis of 

situations identified as revealing critical gaps in her MKT, we discuss the 

particularities of the mathematical knowledge required to allow the pupils to 

achieve a full understanding of the content in question. 

Keywords: Mathematical Knowledge for Teaching, teachers‘ practices, primary 

school.  

INTRODUCTION 

The way we approach mathematics and its teaching is intrinsically linked to our 

knowledge of each topic we are to cover. This knowledge necessarily influences the 

nature of the tasks we set and how we implement them in the classroom, in particular 

with respect to regulating the mathematical demands involved (Charalambous, 

2008). The teacher‘s knowledge allows a wealth of factors to be taken into account 

when devising tasks (in terms of both design and delivery) and contributes to the 

effective construction of mathematical knowledge on the part of the students. It 

follows, then, that research into the mathematical knowledge involved in the 

teaching process is of great importance. We follow the line taken by Stylianides and 

Stylianides (2010) in which mathematics knowledge is considered an applied 

knowledge, specifically linked to the nature of education and the "problems" 

associated with the task of teaching. 

Only by being in possession of a solid knowledge of mathematics for teaching (and 

the mathematics underlying this) can it be possible for us, as teachers, to develop a 

practice that encourages sustained learning by students, enabling them to create 

networks of concepts and fruitfully navigate between them (e.g. Ribeiro (accepted)). 

This paper conceptualises mathematical knowledge according to the proposals of the 

research group led by Ball (e.g. Ball, Thames and Phelps (2008) and Hill, Rowan and 

Ball (2005)), and follows their concept of Mathematical Knowledge for Teaching 

(MKT). 

In order to be able to seek improvement in practice and likewise in teacher training, 

it is essential to know the areas of mathematical knowledge in which teachers find 

themselves most deficient. Fuller knowledge of these areas, and the situations in 

which they can be brought to light in the classroom, would (one hopes) lead to a re-
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structuring of training programs to focus on these areas, and to teachers becoming 

more active and reflective professionals, better informed of their own MKT. 

This paper considers several aspects/sub-domains of MKT brought to the fore in the 

practice of Maria (a teacher in the ‗1
st
 Cycle

87
), during an episode concerning an 

attempted explanation as to why the unit of area one square decimetre is written as 

1dm
2
 (i.e., the reason for the ‗2‘ in superscript). We chiefly discuss the gaps this 

incident highlights and the potential impact on the pupils‘ learning, both immediate 

and future. This analysis and discussion aims to achieve a broader understanding of 

the possible factors leading to these failures, so that we can devise strategies for 

intervening and supplying the missing knowledge. 

THEORETICAL FRAMEWORK 

The work of Shulman and his associates (e.g. Shulman (1986) and Wilson, Shulman 

and Richert (1987)) has provided various perspectives and conceptualisations of the 

professional knowledge of mathematics teachers. Three of these conceptualisations 

which have proved to be influential are Mathematics for Teaching (MfT) (Simmt & 

Davis, 2006), the Knowledge Quartet (KQ) (Rowland, Huckstep & Thwaites, 2005) 

and Mathematical Knowledge for Teaching (MKT) (Ball et al. 2008). These have in 

common that they start from practice and take as the key focus the mathematical 

knowledge that teachers need to perform their teaching duties, although each work 

takes a different approach.  

In MfT, Brent Davis and colleagues (e.g. Davis and Renert (2009) and Davis and 

Simmt (2006)) focus on the teacher from a theoretical perspective, and bring a 

systemic interpretation to the complexity of practice, with a view to understanding 

how teachers learn. The KQ, developed by Tim Rowland and associates, constitutes 

a theoretical framework grounded in practice and developed inductively (e.g. 

Rowland, Huckstep & Thwaites, 2005; Rowland, Thwaites & Huckstep, 2003). Their 

work focuses on ―what the teacher actually knows and what he believes and how 

opportunities to enhance knowledge can be identified‖ (Rowland et al., 2005, p. 

257). The model jointly considers teachers‘ knowledge and beliefs about the 

teaching process. As the name implies, the KQ is composed of four distinct 

dimensions: foundation, transformation, connection and contingency. The group led 

by Deborah Ball regards the professional knowledge that teachers should possess as 

the knowledge of mathematics required to develop the various tasks involved in the 

act of teaching students (tasks of teaching), which it denominates MKT. Once again 

theory is very much rooted in practice (Ball & Bass, 2003), with their 

                                           

87
 Education in Portugal is divided into four cycles: the 1st Cycle covers the first four years at school (pupils aged 

between 6 and 9), with the class teacher covering all the curricular areas; the 2nd Cycle stretches over just two years (5th 

and 6th years of primary) with pupils aged from 10 to 11; the 3rd and 4th Cycles, at Secondary level, each cover three 

years and complete the 12 years of compulsory education. 
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multidimensional model of the mathematical knowledge involved in the task of 

teaching emerging from the analysis performed and relationships obtained. 

For the analysis of practice presented here, and consideration of the mathematical 

knowledge involved (applied mathematics), we chose to employ the 

conceptualization of MKT, with its various sub-domains. The choice of this 

conceptualization over the others mentioned above (MfT or KQ), or indeed any 

other, was due to the fact that our aim was to identify, from observed practice, what 

knowledge the teachers were deploying at each specific moment, and hence the 

system for making this identification played a key role
88

. In addition, this 

conceptualisation attributed a very specific orientation to the teacher‘s mathematical 

knowledge, placing emphasis on the mathematical reasoning they are immersed in 

during the course of their work (understood as more than correcting mistakes and 

evaluating students' answers). While the KQ focuses, originally, on pre-service 

teachers‘ knowledge in action, and MfT deals with the mathematical domain mainly, 

the MKT embraces the focus of knowledge in action from the perspective of the 

mathematical knowledge teachers‘ show in relation to teaching. 

Ball and her associates introduced the notion of MKT, a specific type of 

mathematical knowledge in relation to teaching which is not necessarily picked up or 

increased through the attendance on mathematics courses of a purely scientific bent. 

This mathematical knowledge must be related to the kind of mathematics they are 

going to teach, and concerns the ability to make the content comprehensible to their 

students, being aware of the students‘ mathematical background, and knowing how 

to relate previous knowledge to the learning opportunities to come (Hill et al., 2005). 

In their words MKT can be defined as  

the mathematical knowledge used to carry out the work of teaching mathematics. 

Examples of this ―work of teaching‖ include explaining terms and concepts to students, 

interpreting students‘ statements and solutions, judging and correcting textbooks 

treatments of particular topics, using representations accurately in the classroom, and 

providing students with examples of mathematical concepts, algorithms and proofs. (p. 

373)    

In the multidimensional model which has been developed by the group, Content 

Knowledge and Pedagogical Content Knowledge (following Shulman) are each 

divided into three sub-domains. They consider Content Knowledge to be formed by 

Common Content Knowledge (CCK), i.e., typical ‗schoolboy‘ mathematics, 

                                           

88
 This process of identification should not be understood as referring to a limited number of dimensions, but should be 

understood in a broader perspective that takes into account future research projects involving teachers and trainee 

teachers in which one of the points of focus is the mathematical knowledge that they have/ require to teach different 

contents in order to improve their own performance and the type and focus of the training available to mathematics 

teachers (current or future). 
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Specialised Content Knowledge (SCK) and Horizon Content Knowledge (HCK). 

Pedagogical Content Knowledge they likewise divide into three types, each a variant 

of Knowledge of Content and: Teaching (KCT), Student (KCS), and the Curriculum 

(KCC). Teachers should have a specific professional knowledge, so that in addition 

to knowing ‗how to do‘, considered in CCK, they should also have a knowledge of 

‗how to teach to do‘ (how to teach to understand), which corresponds to SCK. SCK 

is seen as the knowledge required by the teacher who genuinely wishes their students 

to understand what they do and not merely run blindly through a set of given 

procedures. This component is not limited to knowledge regarding procedures, but 

has a broader meaning which includes the necessary concepts. The teachers should 

also be familiar with the way that each the various mathematical topics relates to the 

others and the way in which the learning of a particular topic develops as one moves 

up the school (HCK). In relation to the situation presented below (cf. the section 

‗Applying the analysis to practice‘), knowing how to write the area of measurement 

1dm
2
 is considered CCK, whilst understanding and being able to explain why the 

unit is written in this particular way corresponds to SCK (ie, the reason for the 

superscripted ‗2‘ in the written representation – what it means and represents within 

the mathematical domain). 

In addition to knowledge of content, teachers should also have a thorough 

knowledge of the curriculum and pedagogy. Knowledge of Content and Teaching 

(KCT) corresponds to the type of knowledge which the teacher draws on in order to 

organise the different ways the students explore mathematical contents, such as 

determining the sequencing of tasks, choosing examples, and selecting the most 

appropriate representations for each situation. Regarding Knowledge of Content and 

Students (KCS), Ball et al. (2008) relates it to the need for the teacher to anticipate 

what the students are likely to think, their difficulties and motivations as well as 

listening to and interpreting their comments. The teacher must be aware of the 

students‘ capacity to understand in such a way that it could allow him/her to go 

further in deepening the students‘ knowledge. With respect to Knowledge of Content 

and Curriculum (KCC), the authors agree entirely with Shulman (1986, p. 10) that 

teachers should have a complete picture of the diversity of programs for teaching 

certain subjects and topics at a particular level/year group, and a variety of 

educational materials they can draw on. They should also be able to recognise the 

varying circumstances which suggest the adoption of one approach over another. In 

general terms, their curricular knowledge should be what can be termed both vertical 

and horizontal in its scope.  

DESCRIPTION OF THE STUDY AND CHOICES MADE 

This paper is part of a broader study (involving two primary teachers) focusing on 

teachers‘ profesional development in which the MKT is one of the dimensions under 

consideration. To facilitate the identification of this knowledge we chose a case 

study approach combined with a qualitative methodology. Here, we shall analyse and 
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discuss various aspects of the MKT that was in evidence on the part of a teacher 

(Maria) teaching year 4 (9 year-olds). Maria was a teacher of 18 years‘ experience 

and had been with her class since their first year. Amongst several volunteers to 

work on such project
89

, Maria revealed a clear will to improve her practice, not being 

―afraid‖ to recognize gaps in her knowledge, intending to learn to be able to fulfil 

them.   

Data collection consisted of audio and video recordings of the teacher in action, 

supplemented by informational talks before and after each lesson (to gather lesson 

previews – lesson image – and to clarify certain inferences). All the audio recordings 

were transcribed and complemented with the information from the video, which 

allowed us to capture the greater part of the teacher‘s actions and her interactions 

with the pupils (Brophy, 2004). The transcripts were then used to divide each lesson 

into episodes (associated with the immediate goals of the teacher). The identification 

of each of the sub-domains of MKT was then made for each of these episodes. Such 

identification allows an in-depth analysis of the teachers practice. 

Our primary interest has been in instances where a lack of knowledge on the part of 

the teacher becomes evident, as these represent an opportunity to learn (Hiebert & 

Grouws, 2007). We explore possible causes for such occurrences and consider 

various means of supplying the lacking knowledge (as part of teacher training). 

APPLYING THE ANALYSIS TO PRACTICE 

Here we present a brief contextualisation, description, and subsequent analysis, of an 

episode previously considered by Maria as part of her lesson image. Prior to this 

episode the students had performed various activities for measuring the area of a 

surface (table top) using triangles, rectangles and squares with a ratio of 2 and 4 

between them (there were not enough units available to cover the surface because 

Maria intended to use the task to remind students of the rectangular model of 

multiplication). The pupils measured the sides of one of these squares after which the 

teacher told them that ―because it had these special measurements‖, it was known as 

a square decimetre. 

Lines  Transcription 

878  (T writes on board: 1dm
2
) 

879 T So why is it called a square decimetre? 

880  (Points to what she had written on the board) It‘s a square decimetre. 

881 S  A ‗two‘?! 

                                           

89
 These volunteers were part of a group of 14 teachers participating in a National (Portuguese) Program for Continuous 

Training in Mathematics for Primary School Teachers (PCTM). For more information concerning such PCTM see 

Ribeiro and Martins (2009). 
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882 T  (S holds up one of the squares with sides of a decimetre)  

883  That is, this is a geometric shape is a decimetre ... is a square with  

884  what length sides? 

885 S  A decimetre. 

886 T  With sides of a decimetre. 

Illustration 1 – Transcript of an episode were the teacher aims to present how to write 1dm
2
 

(T: Teacher; S: student) 

Later in the lesson a second student again questioned the teacher about the reason for 

that "way of writing it", suggesting that it would be better to put a square "up there" 

(instead of a ‗2‘). Maria answered as before, adding that they were always "written" 

in this way. This environment informs us about some of the sub-domains of the 

MKT, as well as some gaps in these components, but also provides access to 

information regarding beliefs about school mathematics. (Following Climent (2005), 

Maria reveals beliefs concerning such school mathematics to coincide precisely with 

what the textbook says; it is precise and polished, and has the objective of equipping 

pupils with the basic skills for everyday life.) 

Concerning subject matter knowledge, Maria demonstrates that she knows how to 

write a square decimetre (1dm
2
), an item of knowledge pertaining to CCK. But 

despite having given thought to the situation previously, she had not anticipated the 

question raised by the student (line 881) because she was not in possession herself of 

the knowledge that might have made her ponder the convention – beyond 

assimilating it as one more "rule". It reveals an understanding of the contents 

themselves, but without questioning their origin and mathematical explanation. 

Maria reveals a lack of SCK in that she was unable to explain why units of area are 

written with a ‗2‘ in superscript, conflating the exponential notation (for powers) 

with the geometric shape for measuring area (a square of 1dm). She showed that she 

lacked the knowledge that would have allowed her to give a mathematically valid 

explanation for the role the symbol takes in this position.
90

 This association of the 

two notations (with natural base and exponent) might result in students assuming, 

later in their school life when they cover the topic (on the curriculum for the 2nd 

cycle (Ponte, Serrazina, Guimarães, Breda, Guimarães Sousa Menezes, Martins & 

Oliveira, 2007)) that powers correspond to analogous concepts/representations, 

impeding a full understanding of this subject content. 

Such gaps in terms of MKT frequently prevented her, among other things, from 

providing appropriate and rich mathematical explanations in order to make the 

                                           

90
 This lack of knowledge was acknowledged by Maria in the discussions after class, saying that she had never 

questioned herself about that, she supposed it was just another math convention. 
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contents comprehensible to students. She provided examples which did not allow the 

mathematical exploration of doubts raised by the students – it revealed not knowing 

herself the reason for the use of the ‗2‘, so that she was unable to distinguish its use 

for dimensions from that of exponent, which could lead to students then assuming 

that dm
2
 is obtained by performing dm × dm (as if it were two variables). 

These shortcomings led us to reflect on what mathematics underpins a 

mathematically adequate and comprehensible explanation for students in year 4. The 

explanation of the role/meaning of the superscript ‗2‘ would perhaps be much 

simpler (from a mathematical perspective) if the question were posed by students in 

higher year groups to their mathematics teacher. This leads us to agree with 

Rowland‘s (2009) observation that much elementary mathematics teaching is 

'difficult' compared with teaching in the secondary grades and beyond, because the 

very concepts being taught lie somewhere beneath our conscious awareness, and our 

ability to pedagogically analyse in useful ways. It is therefore also difficult to 

provide a more detailed specification of the distinct aspects of mathematical 

knowledge that could be included in the specific and necessary knowledge required 

by the teacher (in terms of knowledge content such as PCK). 

SOME FINAL NOTES 

The analysis we undertook allowed us to discern some aspects of the teacher's MKT 

and, from there, look to different approaches and perspectives for facilitating 

improvement (with respect to this teacher in particular, but also to teachers generally 

during the course of their training). The identification of sub-domains in the 

conceptualization of MKT served as a starting point for a fuller discussion of the 

mathematics involved in this specific situation, and/or what should underlie this for 

optimal learning – this was one of the reasons why we adopted this conceptualization 

and not the MfT or the KQ. Hence, our approach to this teacher's knowledge took a 

general form, without intending to suggest the supremacy of one dimension over 

another, but rather considering (clearly) all sub-domains interconnected and 

interdependent. 

The MKT revealed by Maria, as with the shortcomings identified, are applicable only 

to each individual situation and cannot be extrapolated to other contexts (Delaney, 

Ball, Hill, Schilling & Zopf, 2008). However, this information (and knowledge of 

gaps) allows us to focus attention on mathematically critical hypothetical situations 

for teachers (current or future) which could lead to poor (or even inaccurate) learning 

by the students and hence limit the opportunities for learning provided in the 

classroom (Hiebert & Grouws, 2007). Even in those situations in which Maria shows 

a lack of knowledge, the constituents of the dimensions of the MKT are in harmony 

(in the sense understood by Potari and Jaworski (2002)) even though these cases 

correspond to instances in which the students' learning may not reflect correct 
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mathematical constructions/concepts, being based on somewhat incorrect 

assumptions on the part of the teacher. 

The analysis and study of this teacher‘s MKT (through her practice) aimed chiefly to 

provide a richer understanding of certain critical features which emerge from 

practice, as a means of contributing to the improvement of this practice, and not 

merely to identify potential gaps. So that in future studies the analysis does not 

remain at the level of identification/attribution (or is applied simply to highlight 

teachers‘ lack of ―pure‖ mathematical knowledge, which in this conceptualisation 

concerns only CCK), it is necessary that the practice and specific situations identified 

be subsequently discussed with the teachers, so that they can reflect on them and 

convert them to mathematically correct ones (considering the various dimensions 

involved). 

Initial and in-service training could also benefit from this system of analysis as a 

bridge between theory and practice, hence promoting a dialogue based on a common 

language and a shared understanding. 

We consider it essential that training should be based on practice and in particular on 

any gaps in knowledge which come to light in this practice, with the aim of enabling 

teachers to respond ―with understanding‖ to all situations that come up in their day-

to-day work. This point of departure is important, too, as we believe that learning is 

circular – we teach what we are, what we know, and how we know it. Each of us 

learns by facing situations designed to stimulate this learning. So despite being 

constantly faced with different situations demanding our immediate response, it is 

only through ―outside‖ help that it is possible to focus attention on what we don‘t 

know (some gap in our knowledge brought to light) and we are able to  learn. 
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The Knowledge Quartet (KQ) is a theoretical framework for the analysis and 

development of mathematics teaching. It focuses attention on classroom situations 

when the teacher‘s knowledge of mathematics and of mathematics-related 

professional knowledge comes to the fore. This focus for analysis and reflection is a 

stimulus to the enhancement of teacher knowledge and the improvement of teaching. 

The KQ has been developed in empirical research since 2002 in the context of 

elementary mathematics teaching: the purpose of this paper is to demonstrate the 

application of the KQ in a secondary school mathematics context.  

Keywords: teacher knowledge, secondary, novice teacher, Knowledge Quartet 

INTRODUCTION 

A programme of research at the University of Cambridge (SKIMA: subject 

knowledge in mathematics) from 2002 to the present has investigated the 

mathematics content knowledge of novice teachers, and the ways that this knowledge 

becomes visible in planning for teaching and within classroom instruction itself. 

Aspects of this research programme have been reported at each CERME conference 

since 2003 (e.g. Huckstep, Rowland & Thwaites, 2006). A significant outcome has 

been the identification of a framework for the observation, analysis and development 

of mathematics teaching, with a focus on the contribution of the teacher‘s 

mathematical content knowledge. The framework in question, called the Knowledge 

Quartet, categorises events in mathematics lessons with particular reference to the 

subject matter being taught, and the mathematics-related knowledge that teachers 

bring to bear on their work in classrooms, as opposed to more generic features of the 

lesson. While Shulman‘s distinction between subject matter knowledge and 

pedagogical knowledge underpins this ‗theory‘ of mathematics teaching, the 

Knowledge Quartet (KQ) is more interested in the situations in which such 

knowledge comes into play than in categorising the different ‗kinds‘ of mathematics 

teacher knowledge. The origins of the KQ were in observations of elementary 

mathematics teaching, and grounded theory methodology (Glaser and Strauss, 1967), 

in the context of one-year graduate elementary teacher preparation.  

The Knowledge Quartet 

According to the KQ, the knowledge and beliefs evidenced in mathematics teaching 

are conceived in four categories, or dimensions, named foundation, transformation, 

connection and contingency. The application of subject knowledge in the classroom 

always rests on foundation knowledge. This first category consists of knowledge and 
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understanding of mathematics per se and of mathematics-specific pedagogy, as well 

as beliefs concerning the nature of mathematics, the purposes of mathematics 

education, and the conditions under which students will best learn mathematics. The 

second category, transformation, concerns the presentation of ideas to learners in the 

form of analogies, illustrations, examples, explanations and demonstrations. The 

third category, connection, includes the sequencing of material for instruction, and 

an awareness of the relative cognitive demands of different topics and tasks. The 

final category, contingency, is the ability to make cogent, reasoned and well-

informed responses to unanticipated and unplanned events. This conceptualisation of 

each of the four dimensions of the KQ is the synthesis of a set of codes which 

emerged from grounded analysis of the primary mathematics classroom data. Each 

dimension is composed of a small number of subcategories that we judged, after 

extended discussion, to be of the same or a similar nature. Table 1 shows the codes 

contributing to each of the four dimensions. 

Dimension Contributory codes 

Foundation: awareness of purpose; adheres to textbook; concentration on procedures; 

identifying errors; overt display of subject knowledge; theoretical 

underpinning of pedagogy; use of mathematical terminology. 

Transformation: choice and use of examples; choice and use of representation; use of 

instructional materials; teacher demonstration (to explain a procedure). 

Connection: anticipation of complexity; decisions about sequencing; making connections 

between procedures; making connections between concepts; recognition of 

conceptual appropriateness. 

Contingency: deviation from agenda; responding to students‘ ideas; use of opportunities; teacher 

insight during instruction. 

Table 1: The Knowledge Quartet – dimensions and contributory codes 

Further details are given e.g. in, Huckstep, Rowland & Thwaites (2006), and in 

Rowland, Turner, Thwaites & Huckstep (2009). We emphasise that the 

conceptualisation of the KQ has been refined, and the constituent codes enhanced, in 

an iterative response since 2003 to additional classroom data, in the process of 

application. This paper is best understood in the context of that process of theory 

evolution. 

Rationale 

From time to time questions have arisen about the adequacy and relevance of the KQ 

to analyses of mathematics teaching in secondary schools, and even to subjects other 

than mathematics. While we could not comment on the second of these questions, we 

believed that it would be meaningful and productive to test the application of the KQ 

to mathematics teaching beyond the primary years, and began to do so systematically 

in 2010. We began unsure about how well the KQ might ‗fit‘ secondary teaching – 
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and the work of trainee secondary mathematics teachers in particular – on account of 

certain characteristics of both the teachers and the subject matter being taught, when 

compared with their primary mathematics counterparts. In particular, these secondary 

trainees are all specialist mathematics teachers, with evidence of recent success in 

their own study of mathematics, and their teaching is supported by mathematics 

specialists throughout their practicum placements. By contrast, generalist primary 

teachers, who have typically specialised in the arts and humanities in their own 

education, often lack confidence in their own mathematical ability (e.g. Green & 

Ollerton, 1999). From the mathematical point of view, the subject matter under 

consideration in secondary classrooms becomes significantly more abstract and 

complex than that in the primary school. As Potari and her colleagues indicated at 

CERME5, ―teachers‘ knowledge in upper secondary or higher education has a 

special meaning as the mathematical knowledge becomes more multifaceted and the 

integration of mathematics and pedagogy is more difficult to be achieved‖ (Potari et 

al., 2007, p. 1955). The purpose of this paper is to test, and to illustrate, the 

application of the KQ as an analytical and developmental tool in the context of 

novice secondary mathematics teaching. One could expect that the secondary context 

could necessitate annexing additional codes to those which emerged earlier in the 

analysis of primary mathematics teaching (Table 1). 

METHODS 

UK teacher education context 

In the UK, the majority of pre-service secondary teacher education takes place under 

the auspices of university education departments. Trainee mathematics teachers are 

required to have at least half of their undergraduate study in mathematics, and 

expected to have achieved at least an ―upper second‖ class bachelor‘s degree, before 

following a one-year, full-time course leading to a Postgraduate Certificate in 

Education (PGCE). In order to achieve a good theory/practice balance in the PGCE, 

for the last 20 years the programme has been conceived as a ‗partnership‘ between 

the university and several collaborating schools, and two-thirds of the 36-week 

course is spent working in two schools under the guidance of mathematics specialist, 

school-based mentors.  

Participants 

The project participants were three volunteer trainee teachers from one secondary 

mathematics PGCE cohort at our university. Their professional placements were in 

different schools, all within a half-hour commute from the university. 

Data Collection 

The trainee participant in each school taught two ‗project‘ lessons to the same class. 

These lessons took place in May, towards the end of the trainees‘ second school-

based placement, which had begun in January of the same year, so that the 
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participants were familiar with their schools and with the pupils in their classes. One 

or two members of the research team (the authors) observed and videotaped each 

lesson. One tripod-mounted camera, operated manually, was placed at the rear of the 

classroom. Sound recording was via a radio microphone worn by the trainee-teacher. 

Trainees were asked to provide a copy of their lesson plan, for reference in later 

analysis. As soon as possible after the lesson, the research team met to undertake 

preliminary analysis of the videotaped lesson, and to identify some key episodes in it 

by reference to the KQ framework. These were fragments, typically 5-10 minutes 

long, in which two or more of the four KQ dimensions were particularly salient, 

according to our preliminary analysis. Then, again with minimum delay, one team 

member met with the trainee to view a selection, typically two, of these episodes
1
 

from the lesson and to discuss them, in the spirit of stimulated-recall (Calderhead, 

1981). These interview-discussions addressed some of the issues that had come to 

light in the earlier KQ-structured preliminary analysis of the lesson. An audio 

recording was made of this discussion, to be transcribed later. In some cases the 

observation, preliminary analysis and stimulated-recall interview all took place on 

the same day. In the case of Heidi, the trainee featured in this paper, the delay 

between observation and interview was nearer 20 days for both lessons, on account 

of her prior commitments and those of the researchers.  

Data analysis 

The data analysis consisted mainly of fine-grained analyses of each of the lessons, 

both before and after the stimulated-recall interview, against the theoretical 

framework of the KQ. In this sense, in contrast with the earlier SKIMA research, 

analysis was primarily theory-driven as opposed to data-driven. Initially, we 

identified in the video-taped lessons aspects of trainees‘ actions in the classroom that 

could be construed to be informed by their mathematics content knowledge 

(including their pedagogical content knowledge). In addition, when possible, our 

interpretation of the trainees‘ mathematical and pedagogical purposes and intentions 

was further assisted by reference to their lesson plans and the post-lesson interviews. 

These actions were, where possible, coded in accordance with the KQ and its 20 

constituent codes, thereby testing the adequacy of the theoretical framework, 

developed in the context of elementary mathematics teaching, in this secondary 

school context. Therefore, this research phase entailed ‗theoretical sampling‘ (Glaser 

and Strauss, 1967), whereby the application of a theory has the potential to expose its 

shortcomings, laying it open to refinement, modification and possible improvement.  

THE CASE OF HEIDI 

We come now to our case study. Heidi was, in many respects, a ‗typical‘ secondary 

PGCE student, having come to the course direct from undergraduate study in 

Mathematics and Statistics at a well-regarded UK university.  Her placement school 

was state-funded, for pupils aged 11-16. The school was ‗comprehensive‘, providing 
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for some 1400 pupils across the attainment range. In keeping with almost all 

secondary schools in England, pupils were ‗setted‘ by attainment in mathematics, 

with 10 or 11 sets in most years. 

We offer Heidi‘s lesson as a ‗case‘ in the following sense: it is used to illustrate, and 

to test in the secondary context, how the KQ can be used to identify, for discussion, 

matters that arise from lesson observation, and to structure reflection on the lesson. 

Heidi‘s lesson 

This was Heidi‘s second videotaped lesson. Her class was one of two parallel ‗top‘ 

mathematics sets in Year 8
 
(pupil age 12-13), and these pupils would be expected to 

be successful both now and in the high-stakes public examinations in the years 

ahead.  According to the observation notes, there were 30 pupils in the class, 17 boys 

and 13 girls. They were seated at tables facing an interactive white board (IWB)
2
 

located at the front of the room. Heidi stood alongside the IWB for the whole of this 

lesson, and the video camera was trained on her and/or the board. The objectives 

stated in Heidi‘s lesson plan were to ―Go over questions from their most recent test, 

and then introduce direct proportion‖. 

As soon as the pupils were settled at their tables, Heidi returned test papers to 

them, from a previous lesson, and proceeded to review selected test questions with 

the whole class. These questions included two on simultaneous linear equations. 

Several pupils offered solution methods, and these were noted on the IWB. Nearly 

30 minutes of the 45-minute lesson had elapsed before Heidi moved on to the topic 

of direct proportion. She began by displaying images of three similar cuboids on 

the IWB: she explained that the cuboids were boxes, produced in the same factory, 

and that the dimensions were in the same proportions. The linear scale factor 

between the first and second cuboids was 2 [Heidi writes x2], and the third was 

three times the linear dimensions of second [x3]. Heidi identified one rectangular 

face, and asked what would happen to the area of this face as the dimensions 

increased. They calculated the areas, and three pupils made various conjectures 

about the relationship between them. The third of these said ―I think it is that 

number [the linear scale factor] squared‖. Heidi then introduced two 

straightforward direct proportion word problems, such as ―6 tubes of toothpaste 

have a mass of 900g. What is the mass of 10 tubes?‖ Different approaches were 

offered and discussed.   

THE KNOWLEDGE QUARTET: HEIDI‘S LESSON 

Earlier, we introduced the four dimensions of the KQ, and gave a general account of 

the characteristics of each of them. We now offer our interpretation of some ways in 

which we have observed, or inferred foundation, transformation, connection and 

contingency (but not in that order) in Heidi‘s second videotaped lesson. It will 

become apparent that many moments or episodes within a lesson can be understood 

in terms of two or more of the four dimensions. We also draw upon her lesson plan, 
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and upon her contributions to the post-lesson, stimulated-recall discussion with a 

researcher (Anne, in this case). This discussion had homed in on two fragments
3
 of 

the lesson that had been selected at the preliminary analysis session a few days 

earlier. The first of these fragments was Heidi‘s review of the first of the two test 

questions on simultaneous equations; the second was the introduction of the 

proportion topic using the IWB-images of the three cuboids.  

Transformation 

Heidi had little or no influence regarding the choice of examples (a key component 

of this KQ dimension) in her test review, since the test had been set by a colleague. 

However, the stimulated-recall interview gave an opportunity and a motive for her to 

reflect on the test items. There had been two questions (7 and 8) on simultaneous 

equations, and the related pairs of equations were 

Q7:  2x + 3y = 16, 2x + 5y = 20  Q8: 3b – 2c = 30,  2b +5c = 1 

In response to an interview question, Heidi thought the sequencing appropriate. In 

particular (regarding Q7) she said ―They could do it the way it was‖, seeming to refer 

to the fact that one variable (x) could be eliminated by subtraction, without the need 

for scaling either equation. In fact, the pupils‘ response to Heidi‘s invitation to offer 

solution methods suggested that this opportunity was not recognised, or not 

welcomed. The first volunteer, Matthew, proposed multiplying the first equation by 

10, and the second by 6, suggesting a desire on his part to eliminate y, not x. (We 

shall consider Heidi‘s response to this under Contingency). Heidi was able to explain 

this in her answer to Anne‘s question ―What if the y-coefficients were the same‖. 

Heidi‘s first response was ―That would be less difficult because they tended to want 

to get rid of the y. I don‘t know why‖.  

In fact, in this lesson segment, when eliminating one variable by adding or subtracting 

two equations, Heidi reminds the class several times about a ‗rule‘, namely: if the signs 

are the same, then subtract; if they are different then add. Heidi suggests, later in the 

interview, that the pupils tend to want to make the y-coefficients equal, as Matthew 

did, because their signs are explicit in both equations. This can be seen, in both Q7 and 

Q8, where the coefficient of the first variable is positive in both equations, and the sign 

left implicit, whereas + or – is explicit in the coefficient of the second variable. This 

insight of Heidi‘s is typical of the way that focused reflection on the disciplinary 

content of mathematics teaching, structured by the KQ, has been found to provoke 

valuable insights on how to improve it (Turner & Rowland, 2010). Heidi‘s observation 

is that restricting the x-coefficients to positive values (and emphasising the ‗rule‘) has 

somehow imposed unintended limitations on student solution methods, with a 

preference for eliminating y even when ―they could do it the way it was‖ by 

eliminating x. 

Turning to choice of representation, and Heidi‘s introduction of the direct 

proportion topic, we note that we misinterpreted Heidi‘s use of the three cuboids in 
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our preliminary lesson analysis. Her lesson plan included: ―Discussion point: What 

happens to the area of the rectangular face as the dimensions increase? What happens 

to the volumes of the cuboids as the dimensions increase?‖. We took this to mean 

that she intended to investigate the relationship between linear scale factor (between 

similar figures) and the scale factors for area and volume. In the event she was drawn 

into this topic, but this had not been her intention, and the subsequent word problems 

make this clear. In the event, there is discussion of the area of one rectangular face of 

the cuboid, and how its area increases as the cuboids grow larger: there is not time to 

consider the volumes. When probed about her choice of context for the introduction 

of the direct proportion topic, Heidi said that she had chosen the cuboids because it 

was ―a nice visual‖ which contrasted with the ―wordy‖ presentation of the other 

problems. In fact she drew on her IWB expertise by unveiling the images of the 

cuboids, one by one, as if drawing back electronic curtains. She responded to 

appreciative ‗Wow‘s from the pupils with modesty, saying ―It‘s not all that 

impressive is it?‖ In the interview when asked whether she agreed that she could 

have done the work on area comparison with rectangles, she replied ―You‘re 

absolutely right, rectangles would be enough … but I did like my box factory‖. Here 

we see an example of trainees‘ propensity to choose representations in mathematics 

teaching on the basis of their superficial attractiveness at the expense of their 

mathematical relevance (Turner, 2008). In this instance, the preference for these 

‗visuals‘ took Heidi into mathematical territory for which she was not 

mathematically prepared (see Contingency). 

Contingency 

Analysis of this dimension of the KQ in Heidi‘s lesson intertwines with the 

component of foundation concerned with teachers‘ beliefs about mathematics and 

mathematics teaching. Here, we begin by taking up the story of Matthew‘s 

suggestion to solve Q7 by multiplying the first equation by 10, and the second by 6. 

Heidi responded to Matthew (responding to students‘ ideas) with ―Excellent, you 

could do that‖, and talks it through (without writing on the board), saying that 

Matthew is trying to ―make the number in front of the y, which we call the 

coefficient, the same‖, so that both will be 30. She does point out that ―You wouldn‘t 

have to do quite as much timesing as that, quite big numbers, if you didn‘t want to‖, 

and there might be ―other multiples‖ which could be used.  

Given Heidi‘s earlier comment that, with the equal x-coefficients, ―they could do it 

the way it was‖, Anne asked her why she had ―run with‖ Matthew‘s suggestion
4
. 

Heidi replied ―Because it would work. You‘re trying to find the lowest common 

denominator but it would work. Like adding fractions, it would work with any 

common multiple. I didn‘t want him to think he was wrong‖. This kind of openness 

to pupils‘ suggestions, and ability to anticipate where they would lead, was very 

characteristic of Heidi‘s teaching, and several examples of it can be found in our 
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data, although there are occasions when her prior expectations blinker her reading of 

events as they unfold.  

Within the class discussion which followed Heidi‘s introduction of the three cuboids, 

the pupils calculated (in cm
2
) the areas of the rectangles with sides (respectively) 

2x3, 4x6, 12x18 (all cm) viz. 6, 24, 216 (in cm
2
). Heidi had annotated x2, x3, as we 

noted earlier. The first pupil contribution about the relationship between the areas 

conjectured that cubes (unspecified) were involved. Heidi acknowledged this 

suggestion, but set it aside. Now, it just so happens that the third area is the cube of 

the first (6
3
=216). This is, admittedly, a coincidence, and we are in no position to 

know whether it is what the pupil had discovered. A second pupil suggested that the 

relationships were ―timesed by 4 and timesed by 6‖. Heidi made it clear that she was 

not checking these calculations numerically (―I‘m going to take your word for that‖), 

recorded this second proposal on the IWB (writing x4 and x6) and said ―So two 

times what this has been timesed by [pointing to the linear scale factors]. Good 

observations‖. This seemed to be the end of the matter, until a third pupil, Lucas, 

said ―I think it is that number squared‖. Heidi paused, then changed the second factor 

to x9 and emphasised the squares.  

Now, this length/area relationship in similar figures was not what Heidi had set out 

to teach, and it became clear at the interview that Heidi (unlike Lucas) did not know 

in advance about ―that number squared‖. In the interview, the discussion proceeded: 

Anne:  Then you go on to areas. They give a range of options. Now, you take all 

these responses and give value to all of them. But this was different, in that 

two of these responses were not correct. 

Heidi: I want to take everyone‘s ideas on board. When you do put something on 

the board they correct each other rather than me being the authority. In that 

case I had a bit of a brain freeze, I hadn‘t worked out how many times 24 

goes into 216, but they‘re used to me putting up everything. 

We see here, paradoxically, a situation – by no means the only one – in this 

secondary teaching data in which some subject-matter in the school curriculum lies 

outside the scope of the content knowledge of the trainee at that moment in time. 

This should come as no great surprise. For all their university education in 

mathematics, and their knowledge of topics such as analysis, abstract algebra and 

statistics, there remain facts from the secondary curriculum that they will have had 

no good reason to revisit since they left school. This is no disgrace, and they will 

have cause to remember soon enough. What is significant, however, exemplified by 

Heidi but more-or-less absent in our observations of primary mathematics 

classrooms, is a teacher with the confidence to negotiate and make sense of 

mathematical situations such as this (the length/area relationship) ‗on the fly‘, as they 

arise.  
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We noted earlier Heidi‘s response to Matthew: ―Excellent, you could do that‖, in a 

situation when his method differed from the one she had in mind. She used versions 

of this formula (praise, followed by an implied caution) on two other occasions in the 

lesson. In an earlier test item, it was given that £36 is 75% of some quantity (x). 

Heidi had in mind solutions such as x= 36x
75

100
, but Adrian suggested finding a third 

of 36 and adding it to 36. Heidi responded ―That‘s a perfectly acceptable way, 

Adrian. Yes, you can do it that way …‖. Later, in the dog-walker proportionality 

problem (a dog walker walks 7 dogs in 2 days, how many dogs in 10 days; 5 days?) a 

pupil suggests a unitary approach (how many dogs in one day) some way into the 

discussion. Heidi responds ―Lovely, you can do that‖, and in fact she subsequently 

emphasises the x3.5 scaling. These responses suggest a tension in Heidi‘s mind, 

when responding to students‘ ideas, between acknowledging and valuing flexible, 

idiosyncratic solution methods and promoting standard methods that will ‗work‘ for 

them now, and in the high-stakes tests to come. This tension is probably not lost on 

her pupils either, and is conveyed in her language, in the modal ambiguity between 

possibility and permission (‗can‘ and ‗could‘).  

Foundation 

This lesson does raise a few issues about Heidi‘s content knowledge that might be 

brought to her attention, and some of them were raised in the interview. Briefly, 

these include: her use of mathematical terminology, which is either very careful 

and correct (e.g. ‗coefficient‘), or quite the opposite (e.g. ‗timesing‘); her lack of 

fluency and efficiency in mental calculation, such that she did not question the 

suggestion that 6x24=216 herself in the cuboids situation: on occasion it appeared 

that she was puzzled by some of the pupils‘ mental calculations; thirdly, she was not 

aware of the length/area/volume scale-factor relationships referred to earlier. 

But, after many hours spent scrutinising the recording of this lesson, and that of the 

post-lesson interview, our lasting impression relates to the beliefs component of the 

Foundation dimension. In particular Heidi‘s beliefs about her role in the classroom 

in bringing pupils‘ ideas and solution strategies into the light, even – as we remarked 

earlier – when she believed that ‗her way‘ would, in some sense, be better. As she 

told Anne, ―I want to take everyone‘s ideas on board. When you do put something on 

the board they correct each other rather than me being the authority‖. Her perception 

of this aspect of her role, as teacher, and the possibility of the pupils themselves 

contributing to pupil learning, is resonant of various constructivist and fallibilist 

manifestos. Balacheff, for example, advised that ―[the] transfer of the responsibility 

for truth from teacher to pupils must occur in order to allow the construction of 

meaning‖ (1990, p. 259), and identified classroom discussion as a context in which 

this transfer can take place. Heidi constantly assists this ‗letting go‘ by 

acknowledging pupils‘ suggestions, and making them available for scrutiny by 
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writing them on the board. Occasionally she finds herself in deep water as a 

consequence, but she never seems to doubt her [mathematical] ability to stay afloat. 

Connection 

We identified a few events in this lesson under connection. For example, Heidi‘s 

introduction to direct proportionality with the cuboids seemed quite unrelated to the 

word problems which followed. In any case, the rather diverse objectives for the 

lesson were likely to make it somewhat fragmented, and we omit further analysis of 

this KQ dimension from the present narrative.  

CONCLUSION 

The purpose of this phase of our SKIMA research was to test the ‗fit‘ of the 

Knowledge Quartet to secondary mathematics teaching. The indicative analysis of 

Heidi‘s second lesson in this paper indicates the potential of KQ as an analytical and 

(potentially) developmental tool in the context of novice secondary mathematics 

teaching. In this lesson, there were no moments or events, in which Heidi‘s 

mathematical content knowledge became a significant and/or influential factor in the 

proceedings, that could not be accommodated by one or more of the four dimensions 

of the KQ and the existing 20 codes. There are, however, such events in the data, as a 

whole, that may cause us later to want to supplement the codes within existing KQ 

dimensions. For example, the existing four transformation codes might not 

adequately capture the kinds of extended explanations, or the imaginative task 

design, that we saw in some other lessons. In other cases, such as Heidi‘s 

commitment to valuing student ideas and conjectures, the difference between these 

data and those from our novice primary teachers is more one of degree than of kind, 

from a KQ perspective. In our role as mathematics teacher educators, our analysis (as 

researchers) of the six lessons taught by these three volunteer participants now 

encourages us to pilot the use of the KQ as a developmental framework for the 

observation and review of lessons taught by secondary PGCE trainees during their 

school-based placements. This, in turn, will create yet more opportunities for testing 

and refining the KQ in the field. 

Notes 
1
A DVD of the full lesson was given to the trainee soon afterwards, as a token of our appreciation, 

but their reflections on viewing this DVD in their own time are not part of our data. 

2
 Interactive whiteboards, with associated projection technology, are now more-or-less universal in 

secondary classrooms in England. 

3
The two corresponding video clips were each about four and a half minutes. 

4
 Our earlier KQ research had identified three kinds of responses to unexpected ideas 

and suggestions from pupils: to ignore, to acknowledge but put aside, and to 

acknowledge and incorporate. 
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This study investigates the professional competence of a group of pre-service 

secondary-school mathematics teachers with respect to assessing the mathematical 

competencies set out in the PISA 2003 report. It considers only those theoretical 

constructs proposed by this report. The research is descriptive in nature and 

includes a case study. The results were: 1) pre-service teachers do not recognize the 

level of complexity (reproduction, connections or reflection) of the competencies 

needed to solve a given problem; and 2) neither do they recognize when it comes to 

assessing the mathematical competencies that can be inferred from the solution 

given to a problem. 

Key words: pre-service teachers, mathematical competencies, assessment, PISA 

2003, professional competency 

INTRODUCTION 

The competencies set out in the PISA 2003 report are inspiring competency-based 

curricula in several countries. An inherent problem with this type of curriculum is 

how to ensure that teachers have the professional competency required to assess the 

mathematical competencies established by such curricula. This, in turn, is related to 

the problem of determining the mathematical and educational knowledge which pre-

service teachers need to acquire (Ball, Lubienski & Mewborn, 2001; Hill, Schilling 

& Ball, 2004; Sowder, 2007; Hill, Ball & Schilling, 2008; Wood, 2008; Font, Rubio, 

Giménez and Planas, 2009; Godino, 2009).  

Assessment is the process of obtaining information that is used to make educational 

decisions about students, to give feedback to the student about his or her progress, 

strengths, and weaknesses. The professional competency about knowing how to 

assess the students is considered in recent literature of mathematics education for 

many reasons. For instance, the impact of evaluations on the work of students is very 

important (Romainville, 2002). Researchers, such as Brown and Coles (2000), relate 

this competency to the need for developing a teacher‘s ability to make complex 

decisions, and others talk about the need to develop professional formative 

assessment competency (Hodgen, 2007).  

The present study forms part of a more general research project (EDUC2009-08120: 

―Assessment and development of professional competencies in mathematics and how 

to teach them during the initial training of secondary and high-school teachers‖), 

which aims to determine how to ensure that pre-service secondary-school teachers 

develop, during their initial training, the professional competency required to assess 
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the mathematical competencies of pupils and their metacognitive support (Niss, 

2002). 

The main aim of this paper is to determine the initial competency level of pre-service 

secondary-school teachers with respect to assessing the mathematical competencies 

set out in the PISA 2003 report when using their proposed theoretical framework. As 

a result, the research presented here is descriptive in nature. The regional 

government of Catalonia (Spain) had just approved a proposal for a competency-

based curriculum that differs only slightly from the PISA 2003 competencies. We 

therefore opted to use the PISA 2003 competencies as the benchmark for this study. 

The starting hypothesis was that pre-service teachers, who have mathematical but not 

professional competency, will not find it easy to assess mathematical competencies 

purely on the basis of the information provided by PISA 2003 tests, i.e. using the 

constructs ‗competency clusters‘ (which can be used to determine three levels of 

complexity: reproduction, connections and reflection) and the list of ‗competencies 

and their components‘ set out in the PISA 2003 report (OECD, 2003).  

PISA 2003 considers eight competencies (thinking and reasoning, argumentation, 

communication, modelling, problem posing and solving, representation, using 

symbolic, formal and technical language and operations, use of aids and tools), 

which, taken together, can be seen as constituting comprehensive mathematical 

competency. Each of these competencies can be possessed at different levels of 

mastery (OCDE, 2003). In order to assess students‘ capabilities, as well as their 

strengths and weaknesses, PISA 2003 also uses the construct competency clusters 

(reproduction, connection, reflection). Such constructs had been used to build tasks 

for summative assessment of students‘ mathematical competences. Nevertheless, 

such a framework does not consider formative assessment of competences as 

explicitly needed for several authors (Hodgen, 2007). Thus, competences manifested 

by the students and the degree of intensity were not indicated in a way possible to 

permit regulated feedback. Therefore, the teacher needs to have such artifacts in a 

way to promote and develop mathematical competence (Wiliam, 2007).  

In our theoretical perspective, we assume that the development of teacher 

competence in the analysis of mathematical objects and processes activated in 

mathematical practices is a necessary step to develop the expertise needed to assess 

the mathematical competencies of students. According to the theoretical model 

proposed by an onto-semiotic approach (Font, Planas & Godino, 2010), the 

competence in the analysis of mathematical objects and processes is a component of 

didactical analysis for instructive processes to be developed for pre-service teachers.   

DATA COLLECTION  

To identify the initial level of prospective teachers, we observed and analyzed two 

classes given in the Faculty of Mathematics of the University of Barcelona as part of 

the module ‗Teaching Mathematics‖. Both classes addressed the topic ‗PISA 2003 
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competencies‘. With the course tutor‘s agreement, the second class was modified 

slightly compared to what had been taught in previous academic years. The class 

content included an introduction to the PISA 2003 report by the tutor and individual 

work by students. The first class involved information about and reflection upon the 

‗competency clusters‘ (levels of complexity) and the list of ‗competencies and their 

components‘ from the PISA 2003 report. Some of the problems proposed in the PISA 

tests were used as examples. In the second class, students responded to a 

questionnaire designed to assess their initial competence in assessing mathematical 

competencies. 

The 22 students who participated in these classes were in their final year of a 

mathematics degree. This ensured that they would have mathematical competence 

but very little competence in assessing mathematical competencies, due to their lack 

of previous training in teaching mathematics. These final-year students from the 

Faculty of Mathematics were aspiring to be secondary-school teachers and were 

studying their first module in ‗Teaching Mathematics‘. The two classes took place 

during the third week of the academic year, which meant that students had already 

discussed and analyzed (during the first four classes of the term) the secondary-level 

curriculum drawn up by the regional government of Catalonia (Spain). As mentioned 

earlier, this curriculum was based on competencies that were very similar to those set 

out in the PISA 2003 report and the principles and standards of the NCTM. 

The data collected were as follows: 1) prospective teachers‘ responses to a 

questionnaire; 2) information obtained from interviews (pre- and post-) with the tutor 

imparting the ‗Teaching Mathematics‘ module; and 3) responses to a second 

questionnaire in which they were asked about their responses to the first one. Before 

giving the first questionnaire, the pre-service teachers received information about 

PISA 2003 constructs (the ‗overarching ideas‘ to which the problem referred; the 

types of situation and context; a description of the competency clusters that serve to 

characterize three levels of complexity: and a list of the eight main competencies, 

along with a description of each one).  

The first questionnaire was structured as follows: first let‘s observe several PISA 

problems, so called ―CO2 levels‖ (OECD, 2009, p. 144-145) and ―Internet relay 

chat‖ (OECD, 2009, p. 112), as well as a pupil‘s solution to a slightly modified 

version of the carpenter problem (Figure 1).  

The modification merely involved asking for an open rather than a closed answer, in 

which students were also asked to justify their answer of the ―carpenter‖ problem 

(OECD, 2009, p. 111), which is shown below (Figure 2).  After solving the problems 

as secondary school students, two professional questions were proposed: (a) Classify 

the three problems according the type of clusters; (b) Which competences can you 

infer looking at the student‘s answers for the carpenter-adapted problem? To 

consolidate the data, the research team interviewed the tutor. After knowing their 
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answers, in a subsequent class, a second questionnaire was proposed to the sample of 

students. Let us say now, as examples, only two of the questions proposed in this 

Figure 1: Statement of the carpenter problem (adapted)  

 

CARPENTER (ADAPTED) PROBLEM: 

A carpenter has 32 meters of timber 

and wants to make a border around 

a garden bed. He is considering the 

following designs for the garden 

bed. For each design, say whether 

the garden bed can be made with 32 

meters of timber. You must answer 

yes or no, and explain why.  

 

 

 

Figure 2: Reproduction of a student‘s solution 

 

 

 

 

questionnaire: (a) If you remarked that one of the competences present in the 

solution was modelling, tell us why. (b) If you consider one of the competences 

(argumentation, communication) but not both of them, do you feel they are 

independent one from the other?  Some other questions, proposed to understand 

students‘ justifications of previous answers, are not included in this text.  
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ANALYSIS OF RESPONSES 

The data were analyzed by means of a triangulation process. The first step involved 

two researchers analyzing the responses to the first questionnaire. Thus, the tutor 

participated in a second analysis with the research team, in order to gather his views 

on the initial analysis for refining the observations.  

Analysis of responses to the first questionnaire 

With respect to the competency clusters, it was expected that pre-service teachers 

would not find these easy to apply. The analysis of their responses suggested that 

they did indeed have difficulties in distinguishing between levels. For example, 12 of 

the 22 pre-service teachers did not consider the adapted carpenter problem to be a 

problem of connections (even though it remains so).  

Given the type of training received by students in the Faculty of Mathematics our 

initial hypothesis was that those students who classified the problem as one of 

reproduction did so basically because they considered it to be an easy problem (an 

exercise) and failed to put themselves in the pupil‘s shoes. The pre-service teachers 

were asked about this issue in the second questionnaire. 

As regards competency in ‗thinking and reasoning‘, it was expected that this would 

be mentioned in the response of all the pre-service teachers, since it would follow 

from the correct response of a pupil to the carpenter problem. In other words, in 

order to answer a problem correctly a pupil would have to be capable of ‗thinking 

and reasoning‘. The analysis revealed this to be the case, since pre-service teachers 

indicated the ‗thinking and reasoning‘ competency at all three levels of complexity 

(reproduction, connections and reflection). 

Another expected result was that the competencies ‗argumentation‘ and 

‗communication‘ would both be present in the responses of pre-service teachers, 

because the solution analyzed was correctly argued and communicated. However, 

this expectation was not fulfilled, since a group of 11 pre-service teachers (50% of 

the total number of students) considered only one of these competencies. It thus 

appears that they did not regard these competencies as sharing a common ground. 

They were asked more about this issue in the second questionnaire. 

It was also expected that the ‗modelling‘ competency would appear in few responses 

of pre-service teachers, however this competency appeared in eight of them. Given 

this relatively high number of pre-service teachers who did consider this competency 

to be present it was decided to ask them more about the reasoning behind their 

response in the second questionnaire. 

The ‗problem-solving‘ competency was expected to feature in the majority of 

responses, unless the problem was regarded as trivial or an exercise. Of the 17 

students who considered the problem on the level of connections or reflection only 

two failed to consider the ‗problem-solving‘ competency. Of the five who considered 
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the problem on the level of reproduction, two said that the ‗problem-solving‘ 

competency could be inferred from the pupil‘s answer. These latter two students 

were asked about their responses in the second questionnaire. 

The ‗representation‘ competency was also expected to be present in almost all the 

pre-service teachers‘ responses. However, given that a significant number of them 

(7) did not mention it, it was decided to ask them about the reasoning behind their 

response in the second questionnaire. 

Given the type of training received by students in the Faculty of Mathematics, it was 

also expected that the competency ‗using symbolic language‘ would not feature 

widely in the students‘ responses, since the pupil‘s solution they were asked to 

analyse contained a lot of written text in natural language and very few mathematical 

symbols. However, only three of the 22 students fulfilled this expectation so it was 

decided to ask them about the reasoning behind their responses in the second 

questionnaire. 

The final competency ‗using aids and tools‘ was not considered when evaluating the 

competencies that could be inferred from the pupil‘s response to the carpenter 

problem, since only pen and paper were used to solve the problem. 

Interview with the tutor 

The tutor was in complete agreement regarding the ambiguity of the levels of 

complexity, and said he was not surprised that students had difficulties in applying 

them correctly; indeed, he added that he himself found it difficult. He also stated that 

the reason why some students considered the problem to be one of reproduction was 

because they regarded it as easy and failed to put themselves in the pupil‘s shoes. 

The tutor was not surprised that the ‗thinking and reasoning‘ competency appeared 

in the response of all his students, and added that in his view it was not a very useful 

competency for discriminating between responses, since one could always consider it 

to be present, even if the answer given by a pupil was incorrect. 

In contrast, the tutor was surprised that 11 of the 22 students considered that the 

pupil‘s solution showed argumentation but not communication. He attributed this to 

the fact that for pre-service teachers, argumentation is associated with formalism, 

whereas they associate communication with oral or written expression. 

The tutor agreed that the ‗modelling‘ competency should not be considered as 

present in the solution to the carpenter problem. In his view, those students who had 

inferred its presence had simply responded without too much thought. He suggested 

asking them more about their reasoning. With respect to the ‗problem-solving‘ 

competency the tutor‘s view was that pre-service teachers did not consider this 

because they regarded the problem to be an exercise. 
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The tutor was also surprised that his students had not mentioned the competency 

‗representation‘, since this had come up in previous classes when discussing the 

secondary-school curriculum drawn up by the regional government of Catalonia. 

The tutor agreed that the reason why pre-service teachers did not consider the 

competency ‗using symbolic language‘ to be present was that the problem-solution 

analysed contained very few mathematical symbols. In his opinion, the profile of pre-

service teachers was such that this idea was sometimes taken to extremes. i.e. if they 

saw a meaningless series of mathematical symbols they might say that ―this is 

mathematics‖, whereas when presented with graphs and verbal expressions they 

would say ―this isn‘t mathematics‖. 

The tutor was told that the present research sought to corroborate that a pre-service 

teacher, with good mathematical skills but very little training in mathematics 

education, would find it hard to assess the mathematical competencies of pupils 

solely on the basis of the theoretical constructs set out in the PISA 2003 report. It 

was also pointed out to him that one possible objection to this hypothesis could be 

that the same students might perform better with these theoretical tools once they had 

gained more experience. However, the tutor was sceptical about this latter 

possibility, as he considered that tools other than the theoretical constructs set out in 

the PISA 2003 report were required. 

Analysis of pre-service teachers‘ responses to the second questionnaire 

The pre-service teachers who regarded the problem as one of reproduction did so 

because they considered it to be a familiar and simple problem. Examples of their 

responses included: ―It involves calculating the perimeter of different shapes, in 

other words, the reiteration of a known and familiar algorithm which only requires 

dealing with simple expressions and formulas‖; ―Because for the possible garden 

beds you always need to calculate the perimeter, a familiar formula‖; ―Because he 

uses the perimeter formula‖; ―It is conceptually very simple… a very general 

exercise‖; ―The problem is simple and can be solved with routine procedures‖.   

The pre-service teachers who considered that only the argumentation, not the 

communication, competency was present stated that this was because communication 

implies transmitting a message or information, whereas arguing requires robust 

explanation. Their responses included: ―Communicating means transmitting 

information, whereas arguing implies giving more reasons why, it‘s more than just 

transmitting something or making it known‖; ―Communicating means expressing 

something that you think, whereas arguing involves doing something that you 

propose and have to resolve‖; ―I don‘t think the two are totally independent, because 

when you communicate you have to argue what is communicated. However, on this 

occasion good argumentation is considered more important‖; ―I don‘t think they are 

independent of one another, because in order to argue it is very important to 

communicate beforehand‖; ―They are independent here, because the pupil explains in 
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his own way how he solved the problem, but he doesn‘t communicate‖. The pre-

service teacher who inferred the presence of the communication but not the 

argumentation competency said that in his view ―communicating knows how to 

transmit a message whereas arguing implies that the arguments used must be robust 

and not contradictory‖. 

The pre-service teachers who considered that the ‗modelling‘ competency was 

present based this view on the fact that the pupil translates figures into mathematical 

structures. Their responses included: ―The solution to the problem presented here 

begins with the model of the garden bed that the pupil makes in order to solve the 

problem‖; ―The problem makes you translate the figures into a mathematical 

structure‖; ―Because the pupil uses a system to find the perimeter, in other words, he 

makes an algorithmic model‖; ―Because the figures in the problem can be broken 

down into parts or other more simple figures and this makes it easier to solve the 

problem‖.  

The two pre-service teachers who considered the problem to be one of reproduction 

and felt that the pupil‘s solution illustrated the ‗problem-solving‘ competency gave 

responses such as: ―You need to propose what you can use and then find the 

solution‖; ―Solving the carpenter problem obviously requires the problem-solving 

competency, even if the answer is a mere reproduction‖. 

The pre-service teachers who did not consider the ‗representation‘ competency to be 

present said that in this problem there was nothing to represent. Their responses 

included: ―The representation is already given in the problem statement, you only 

have to make calculations‖; ―To calculate the perimeter, which is necessary, you 

don‘t have to interpret the different representations‖; ―Nothing is represented here, 

and nothing is drawn‖. 

The pre-service teachers who considered that the competency ‗using symbolic 

language‘ was not present in the pupil‘s solution did so because there is no 

formalism (e.g., use of symbols, variables, algebraic operations) in the solution 

given. Their responses included: ―I think there are several sentences that could have 

been written mathematically‖; ―There are only a few common operations‖; ―It is not 

necessary to use any algebraic or formal tool to solve the problem‖. 

final considerations 

This study has highlighted a number of preconceived ideas held by pre-service 

mathematics teachers that derive from their previous training. For example, in 

determining the level of complexity they take into account, above all, their personal 

appreciation of the problem‘s difficulty. Furthermore, they consider argumentation 

and communication to be two competencies without common ground. Finally, they 

do not contemplate the competency ‗using symbolic, formal and technical language 

and operations‘ when graphs and natural language, for example, are present.  
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The pre-service teachers do not use the theoretical constructs properly as set out in 

the PISA 2003 report in order to determine the level of complexity of the 

competencies required by a given problem. Nor do they recognize when it comes to 

assessing each one of the competencies that can be inferred from the response given 

to a problem.  

There are at least two possible explanations for these findings. One would be that the 

pre-service teachers need more practice in using these theoretical constructs before 

they reach a level of competence similar to that of the experts who evaluated the 

PISA 2003 tests (this is to be considered in future studies). The other would be that 

the problem lies not in the lack of practice but, rather, in the ambiguity of the 

theoretical constructs used in the PISA 2003 report (for example, the different ways 

of understanding competency; the relationship between the notions of ‗process‘ and 

‗competency‘, which appear as closely related and, in some cases, are even used as 

analogous terms; the overlap between competencies, almost all of which have a 

common ground, and the fact that two of them (i.e., problem-solving and modelling) 

are more akin to ‗meta-competencies‘).  

Such analysis allows us to reflect (in the wide project) about the variables 

influencing development of professionals in assessing competence, by means of 

successive observations during the pre-service training process. We found that the 

question that remains to be answered is what theoretical tools would be required by 

pre-service teachers to enable them to be aware of assessing students‘ competences 

in a formative way. We also found that (1) to reflect about assessing realistic 

mathematical projects formatively, and (2) the use of suitable criteria for analysing 

their own practices as teachers were two crucial tools for having indicators about 

their developing professional competences.  

Acknowledgment 

The research work reported in this paper was carried out as part of the project: 

―Evaluation and development of professional competencies in mathematics 

education for pre-service teacher training for Secondary School‖, EDU 2009-08120. 

References 

Ball, D., Lubienski, S. T. & Mewborn, D. S. (2001). Research on teaching 

mathematics: The unsolved problem of teachers‘ mathematical knowledge, in V. 

Richardson (ed.), Handbook of Research on Teaching (pp.433-456), Washington, 

D.C., EEUU. American Educational Research Association. 

Brown, L. and Coles, A. (2000). Complex decision-making in the classroom: The 

teacher as an intuitive practitioner.  In T. Atkinson and G. Claxton (eds.), The 

intuitive practitioner: On the value of not always knowing what one is doing (pp. 

165-181).  Buckingham: Open University Press.   



Working Group 17 

CERME 7 (2011) 2847 

 

Font, V., Planas, N. y Godino, J. D. (2010). Modelo para el análisis  

didáctico en educaciñn matemática. Infancia y Aprendizaje, 33 (1), 89-105. 

Font, V., Rubio, N., Giménez, J. & Planas, N. (2009). Competencias profesionales en 

el Máster de Profesorado de Secundaria, UNO, 51, 9-18. 

Godino, J. D. (2009). Categorías de Análisis de los conocimientos del Profesor de 

Matemáticas. Uniñn, 20,13-31. 

Hill, H.C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers‘ 

mathematics knowledge for teaching. Elementary School Journal, 105, 11-30. 

Hill, H. C., Ball, D. L. & Schilling, S. G. (2008). Unpacking pedagogical content 

knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of 

students. Journal for Research in Mathematics Education, 39, 372-400. 

Hodgen, J (2007) Formative assessment. Tools for transforming school mathematics 

towards a dialogic practice?  In D. Pitta-Pantazi and G. Philippou (edss.), 

Proceedings of Fifth Congress of the European Society for Research in 

Mathematics Education (pp. 1886-1895). Larnaca, Cyprus: University of Cyprus.  

Niss, M. (2002). Mathematical competencies and the learning of mathematics: the 

Danish KOM Project. IMFUFA, Denmark: Roskilde University. 

OECD (2003). The PISA 2003 Assessment Framework – Mathematics, Reading, 

Science and Problem Solving Knowledge and Skills. Paris: OCDE. 

OECD (2009). PISA Take the Test. Sample Questions from OECD‘s PISA 

Assessments. Paris: OECD. 

Romainville, M. (2002). L‘évaluation des acquis des étudiants dans l‘enseignement 

universitaire. Rapport établis à la demande du Haut Conseil de l‘Évaluation de 

l‘École. Paris : Haut Conseil de l‘Çvaluation de l‘Çcole. 

Sowder, J. T. (2007). The mathematical education and development of teachers. In F. 

K. Lester (ed.), Second Handbook of Research on Mathematics Teaching and 

Learning (pp. 157-223). Charlotte, NC: National Council of Teachers of 

Mathematics. 

Wiliam, D. (2007) Keeping learning on track : Classroom assessment and the 

regulation of learning. In F Lester (Ed) Second Handbook of research on 

mathematics teaching and learning (pp 1051-1089). Charlotte, NC: Information 

Age Publishing. 

Wood, T. (Ed.) (2008). The international handbook of mathematics teacher 

education. Rotterdam: Sense Publishers. 



  

CERME 7 (2011) 

MOVING BEYOND AN EVALUATIVE TEACHING MODE:  

THE CASE OF DIANA 
Rosa Antñnia Tomás Ferreira 

University of Porto, Portugal & CMUP 

In this paper, I describe and analyse a student teacher‘s evolving teaching modes 

throughout her year-long practicum, and within a modified teacher development 

experiment research design. I also discuss some factors that may influence the 

student teacher‘s anticipated developmental trajectory along three teaching modes. 

Keywords: student teaching, classroom interaction, teacher development experiment, 

teaching modes.  

THE TEACHING MODES AND THE CONCEPTUAL FRAMEWORK 

It is widely accepted that the quality of teacher-student classroom communication 

plays an important role in students‘ learning. In this regard, teachers‘ questioning, 

listening, and responding approaches may be seen as underpinning the core of 

classroom communication. In fact, these three facets of teachers‘ practices have been 

suggested to characterize their pedagogical approaches and to reflect their beliefs 

about mathematics and its teaching and learning. Additionally, teachers‘ analyses 

and reflections about how they question, listen, and respond to their students have 

been shown to foster teachers‘ increasing awareness of their own beliefs and 

practices, thus helping them in improving their own teaching (e.g., Coles, 2001; 

Nicol, 1999). 

Research has suggested that the student teaching experience of teacher education 

programs does not have a significant impact on aligning student teachers‘ beliefs and 

classroom practices with current recommendations for school mathematics; 

furthermore, student teaching has often failed to foster prospective teachers‘ 

reflective thinking and awareness of their own practices. These are cumbersome 

results for mathematics teacher educators, pushing for further inquiry. Based on 

existing research and on theoretical developments in the field of mathematics 

education, I built a conceptual framework (CF) that was used to conduct a study, 

whose major goal was to trace and understand how the teaching modes of a group of 

Portuguese secondary mathematics student teachers evolved over the course of their 

year-long student teaching practicum (Tomás Ferreira, 2005). Following a teacher 

development experiment research methodology (Simon, 2000), the study was 

designed to provoke teacher development and to describe and interpret that 

development. Yet, the CF itself was investigated for its adequacy for analyzing and 

interpreting classroom teaching and for informing the data collection and analysis 

procedures. 

The teaching modes are comprised of teachers‘ inter-related classroom questioning, 

listening, and responding approaches. As described in an earlier paper (Tomás 
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Ferreira, 2007), the CF encompasses several strands, each one of them drawn from 

frameworks that emerged from or were used in prior research in the field: (1) 

teachers‘ teaching modes, by extending Davis‘s (1997) framework of listening  

modes to include Ainley‘s (1988) categories of teachers‘ questions, as well as 

teachers‘ different forms of responding to students (e.g., Nicol, 1999); (2) teachers‘ 

dominant patterns of classroom interaction (e.g., Bauersfeld, 1992; Cobb, Wood, 

Yackel, & McNeal, 1992; Voigt, 1985, 1995; Wood, 1998); (3) teachers‘ key beliefs 

about mathematics and its teaching and learning (e.g., Ernest, 1989); and (4) 

teachers‘ levels of reflective thinking (e.g., van Manen, 1977; Schôn, 1983). Next, I 

briefly explain my understanding of these constructs.  

Acknowledging the lack of consensus about the notion of reflection, my 

understanding of teachers‘ reflective thinking is teachers‘ 

intentional engagement in thinking about their classroom practices with two main goals: 

(a) becoming aware of their actions in the classroom and of their key beliefs about 

mathematics … against the perspectives on mathematics teaching and learning envisioned 

by current school mathematics reform movements; and (b) using those insights to 

improve their teaching … and … students‘ learning (Tomás Ferreira, 2005, p. 34).  

The construct of teachers‘ beliefs does not gather consensus either amongst the 

research community in mathematics education. However, teachers‘ beliefs about 

mathematics and its teaching and learning shape their classroom practices 

(Thompson, 1992). Ernest‘s (1989) model of teachers‘ views of mathematics as a 

whole, their orientations towards mathematics learning, and their models of 

mathematics teaching resonates with van Manen‘s (1977) model of teachers‘ 

reflective thinking. The patterns of classroom interaction emerge ―from the 

permanent interaction between teacher and students, as well as among students 

themselves‖ (Bauersfeld, 1992, p. 21). Research has identified several patterns of 

classroom interaction; in this research, I considered six of them. Though recognizing 

their differences, I grouped the patterns of classroom interaction that are typically 

centred on the teacher and called them traditional patterns: the IRE pattern (e.g., 

Cobb et al., 1992), the funnel pattern (e.g., Voigt, 1985, Wood, 1998), the elicitation 

pattern (Voigt, 1985), and the direct mathematization pattern (Voigt, 1995); the 

patterns of classroom interaction typically centred on the students‘ mathematical 

activity were grouped into inquiry patterns: the focusing and the discussion patterns 

(e.g., Voigt, 1995; Wood, 1998). To construct each strand of the CF, I chose existing 

frameworks in the literature that were fairly accessible to student teachers to work 

with. The use of a CF was an attempt to reduce and simplify the complexity of the 

classroom phenomena while emphasizing some specific aspects, which were at the 

core of the study. 

The three teaching modes – evaluative, interpretive, and generative – were not 

considered in isolation but sharing qualitative characteristics amongst each other. 

Figures 1, 2, and 3 depict the anticipated relationships amongst all four strands of the 
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CF for each of the teaching modes. It is important to notice that the thicker the 

linking lines in the figures, the stronger the relationships amongst the constructs 

were likely to be. No exact correspondences were expected to exist. Despite being 

instrumental in the course of this research, the conceptual framework was a focus of 

inquiry for its adequacy for analysing and interpreting classroom teaching, as well as 

for its appropriateness for guiding the whole research design (Tomás Ferreira, 2005).  

 

 

 

 

 

 

Figure 1. Evaluative teaching mode. 

Some of the most distinctive characteristics of an evaluative teaching mode are 

asking students many pseudo and testing questions (Ainley, 1988) – to establish an 

acceptable behaviour and to find whether students answer correctly, – listening to 

them in an evaluative mode (Davis, 1997) – that is, looking for the correct answers 

they have in mind, – and responding to students to evaluate their answers since 

having students producing right answers is more valued than understanding students‘ 

underlying reasoning. Someone teaching predominantly in an evaluative teaching 

mode tends to closely follow lesson plans, not allowing for the emergent during the 

lessons.  Communication is seen as a matter of speaking; yet, students‘ contributions 

to the classroom discourse are largely ignored. Traditional patterns of classroom 

interaction are the norm, such as the IRE pattern (Cobb et al., 1992) or the funnel 

pattern (Voigt, 1985; Wood, 1998); thus, the teacher owns the locus of authority. 

Typically, evaluative teachers hold instrumentalist beliefs about mathematics and its 

teaching and learning, seeing themselves as instructors (Ernest, 1989), and their 

reflective practices are very superficial, hardly ever allowing themselves to question 

their actions in the classroom – van Manen‘s (1977) technical rationality level. 

 

 

 

 

 

 

Figure 2. Interpretive teaching mode. 
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Teachers teaching in an interpretive mode tend to ask fewer testing questions than in 

an evaluative mode. In addition, they begin asking more genuine and provoking 

questions (Ainley, 1988), that is, questions that seek information and questions 

aimed at stimulating students‘ thinking and sense making. The interpretive listening 

mode (Davis, 1997) is now predominant, as teachers increase the opportunities for 

classroom interaction and discussion; yet, their responses to students are still 

evaluative in nature. Teaching is still much textbook-driven, though teachers tend to 

enrich classroom tasks by diversifying its nature. The ―students‘ contributions to the 

discourse still do not have a significant impact on lesson unfolding, since despite 

some room for inquiry patterns of interaction, the traditional ones are clearly 

predominant‖ (Tomás Ferreira, 2007, p. 8). However, the locus of authority is mainly 

allocated to the teacher, whose Platonist typical beliefs about mathematics and its 

teaching and learning are related to his/her perception of self as an explainer (Ernest, 

1989). Teachers teaching in an interpretive mode tend to focus their reflections on 

assessing the appropriateness of their teaching strategies in order to guide future 

practices, thus relying on van Manen‘s (1977) practical action level of reflective 

thinking. Hence, teachers predominantly reflect on action, in Schôn‘s (1983) terms. 

Within a generative teaching mode, to communicate is to participate, interpret, and 

negotiate meanings, involving all classroom members alike. Genuine and provoking 

questions (Ainley, 1988) are predominant, though there is room for other types of 

questions. Teachers teaching in a generative mode tend to listen to students in a 

hermeneutic listening mode (Davis, 1997), that is, accessing and assessing students‘ 

thinking in order to inform teaching. They tend to respond to students by stimulating 

discussions, probing answers, etc. Teaching is now a matter of responding in a 

flexible manner to constantly changing circumstances. Thus, the inquiry patterns of 

classroom interaction are predominant (though there is also room for other patterns), 

and the locus of authority is equally shared amongst all classroom members.  

 

 

 

 

 

Figure 3. Generative teaching mode. 
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a problem-solving perspective on mathematics and its teaching and learning (Ernest, 

1989), and to reflect at van Manen‘s (1977) critical level as they problematize the 

whole teaching in context, looking for reasons and consequences of their actions in 

the classroom. Hence, teachers often reflect both in and on action (Schôn, 1983). 

RESEARCH DESIGN 

The research reported here is part of a larger study (Tomás Ferreira, 2005) which 

followed an overall teacher development experiment (TDE) research design (Simon, 

2000), involving a teacher-educator/researcher, myself, four Portuguese student 

teachers, their students, and their cooperating teacher. A TDE ―can allow researchers 

to generate increasingly powerful schemes for thinking about the development of 

teachers in the context of teacher education opportunities‖ (Simon, 2000, p. 338). 

The teacher-educator/researcher ―teaches courses for teachers, endeavours to 

understand the teachers‘ perspectives, identifies goals for teachers‘ learning, and 

plans course activities to promote learning in the direction of those goals‖ (Simon, 

Tzur, Heinz, Kinzel, & Smith, 2000, p. 581). The TDE design has two different 

components: a whole-class teaching experiment in the context of teacher education 

courses, and a case study approach of individual teachers in their own classrooms.  

The teacher-educator/researcher engages in several interaction-reflection cycles 

(Simon, 2000). The interaction phases aim at promoting professional development 

based on the teacher-educator/researcher‘s ―ideas of the current state … [of the 

participant teachers‘ practices, and on the researcher‘s] current hypotheses about 

how development might proceed‖ (Simon & Tzur, 1999, p. 253). Relying on existing 

literature and personal experiences, and drawing on the CF presented, the participant 

student teachers were expected to begin their practicum enacting an evaluative 

teaching mode. The CF provided the hypothetical developmental trajectory I 

envisioned for the participants, guiding my interactions with them, as a teacher-

educator, under the scope of the teaching experiment component of the whole 

research design. Thus, the interaction phases with the student teachers were aimed at 

stimulating their awareness and understanding of their own development, mainly in 

terms of their teaching modes and, specifically, concerning their questioning, 

listening, and responding approaches in the classroom. 

The reflection phases (Simon, 2000) aim at the teacher-educator/researcher‘s 

analysis of the interactions with the participant teachers in which they engage in the 

context of the teaching experiment component of the overall research design. Again, 

using the CF, my reflections were focused on the participants‘ current teaching 

modes, as well as on the remaining three strands. Although the developmental 

trajectory envisioned for the participants had specific goals, the reflection phases of 

the interaction-reflection cycles ensured that other emergent issues would be 

addressed. 
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The context of this research was the student teaching phase of the mathematics 

teacher education program offered by a large public university, in a large urban area 

in northern Portugal. I worked with four student teachers, placed in the same school, 

interacting with them once or twice every week, for about six months, divided into 

four interaction-reflection cycles. I focused my attention on how the individual 

student teachers evolved in their teaching modes, and replaced the case study 

component of the TDE for the generation of accounts of practice (Simon & Tzur, 

1999). Teachers‘ accounts of practice are characterized by the explanation of the 

teachers‘ perspectives from the researchers‘ perspectives, having two main goals: to 

describe teachers‘ current classroom practices, and to promote and sustain the 

development of those practices. In this research, the CF provided ―the basis for 

considering current and potential development‖ (Simon & Tzur, 1999, p. 255) since 

it guided my interactions with the participants, focused my reflections about their 

development, and structured the generation of accounts of practice of the participant 

student teachers. 

Each participant student teacher taught a 7
th

 grade and an 11
th

 grade class, sharing 

each class with another student teacher of the group. The sharing of classes was an 

innovative aspect of the placement school due to a sudden decrease in the pupil 

population, thus in the number of classes. The pairing of the student teachers was 

made by their cooperating teacher ensuring as much variability as possible, and it  

… was not meant to stimulate team teaching in any aspect. Each pair of student teachers 

shared a class in terms that one of them was the teacher in charge of the class, while the 

other served as a secondary teacher in the classroom, as a supportive peer, not intervening 

in the lesson except for monitoring student behaviour … (Tomás Ferreira, 2005, p. 137) 

For each one of the four interaction-reflection cycles, data were collected through 

field notes of classroom observations, audiotape-recorded lessons and semi-

structured interviews of distinct types (all transcribed and translated into English), 

and several documents such as lesson plans and written essays. The analysis was 

guided by the CF and had two approaches: (1) ongoing analysis occurred during and 

between the interaction-reflection cycles, providing foundation for planned and 

unplanned interactions, and allowing the modification of the participants‘ models of 

professional growth; and (2) retrospective analysis occurred after all data were 

collected, allowing the re-examination and reinterpretation of situations. The sharing 

of classrooms became a significant aspect in the generation of the accounts of 

practice. Next, I summarize Diana‘s case in terms of her evolving teaching modes, 

leaving the other dimensions of the CF and the analysis of the other participants to 

another paper. 

THE CASE OF DIANA 

Diana always expressed her dislike for expository teaching, direct instruction. Her 

enthusiasm and commitment to the various activities proposed in the scope of the 
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teaching experiment component of the research design were probably two factors 

that pushed her to try to move beyond teaching in an evaluative mode from the 

beginning. She wanted to ―give meaning to mathematics and to learning … and to try 

to change the students‘ heads … It‘s a huge challenge but I want to try‖ (October, 

2002). However, over time, she experienced many tensions in her teaching modes. 

Diana shared a 7
th

 grade class with Abel and an 11
th

 grade class with Jölia. Table 1 

summarizes Diana‘s teaching modes throughout all four cycles of the study.  

Table 1. Diana‘s evolving teaching modes. 

 First cycle Second cycle Third cycle Fourth cycle 

 

 

Teaching 

mode 

Mostly an 

evaluative 

mode, 

though 

sometimes 

enacting an 

interpretive 

mode. 

Mostly an evaluative 

mode when irritated 

with Abel‘s role as 

secondary teacher or 

7
th

 graders‘ 

unproductive noise. 

Otherwise, tensions to 

enact an interpretive 

mode. 

Evaluative mode with 

a few instances of an 

interpretive one when 

feeling more 

comfortable with the 

math and 11
th

 grade 

students collaborated 

in the lessons. 

Evaluative 

mode with a 

few instances 

of an 

interpretive 

one when the 

students 

collaborated 

in the lessons. 

Starting from the second cycle of the TDE, it became clear she was struggling to 

cope with Abel‘s inappropriate behaviour as a secondary teacher in their shared 7
th

 

grade class. This was the most determinant factor for Diana‘s tensions and 

difficulties in enacting in her classroom what she believed teaching should be. Abel 

frequently distracted the students with questions, comments, or repetitions of what 

Diana was explaining to the whole class. His quick movements around the classroom 

added a distracting factor, and his chatting with the students contributed to the 

widespread (unproductive) noisiness, which significantly irritated Diana:  

… compare the role of Jölia in her 7
th

 grade classroom with Abel‘s … I think he 

destabilizes because he gives too much confidence to the students! What am I going to 

do?! That is why I start getting enervated … The students make much noise because of 

him and … I start losing control … It seems like he likes to have students almost kissing 

his feet … But, I do not need that they … venerate me. (March, 2002) 

Despite her efforts to make him realize how he should act as a secondary teacher, 

Abel never questioned the effects of his actions on his partners‘ teaching, seeming to 

always wanting to maintain his status as a head teacher. When his behaviour was not 

a problem, Diana did manage to engage her 7
th

 graders in lively and fruitful 

discussions, using students‘ input to construct mathematical meaning, stimulating 

students to explain their thinking to each other, and so on, thus enacting many 

instances of an interpretive teaching mode; otherwise, her teaching mode was mainly 

an evaluative one. Diana became increasingly aware of the conflicts between her 

actual classroom practices and what she would have liked to do with her students:  
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… it is very difficult for me to listen to the students in a lesson where there is noise… in a 

normal lesson, I am aware that … I listen to the students much better. And … perhaps I 

pose more questions when I am calmer … I hate when there is that noise. It is a complete 

frustration to me … I cannot pose questions or listen to them. I start getting irritated and I 

don‘t do anything of that! (November, 2002) 

Realizing she was able to move beyond an interpretive teaching mode only seldom 

was a source of great frustration. 

Diana fought three different kinds of battles when teaching 11
th

 grade. On one hand, 

she felt much pressure from the school mathematics department to cover the 

curriculum and maintain a certain instructional pace gauging it in accordance with 

other classrooms. Diana‘s 11
th

 graders showed many learning difficulties, needing 

more time to work on the mathematics ideas being taught than other students from 

other classes. The pressure to move on caused Diana frustration and a sense of 

helplessness. On the other hand, Diana struggled to motivate her students to engage 

in mathematical tasks and to share their ideas and solutions with each other. Yet, the 

students were always very passive and apathetic, making no efforts to surpass their 

difficulties. Their attitudes contrasted greatly with the dynamic and inquiry 

environment that Diana strove so hard to establish in that classroom:  

They forget everything! Then they do nothing on their own … They just copy things from 

the board! That is why these lessons are very frustrating … Would it make a whole lot of 

a difference if I would go to the board and solve everything? And tell them ‗You do this 

in this way‘? ... That would be expository teaching! [sighing deeply] (January, 2003). 

On the rare occasions the students were more involved in the lesson, Diana was 

indeed able to enact an interpretive teaching mode. 

Another factor that forced Diana to enacting an evaluative teaching mode emerged 

during the third cycle of the study. Her insecurity regarding the topic she was 

teaching led her to no longer attempt to spice up her lessons or promote a classroom 

environment that contributed to her students‘ active participation in their own 

learning. Not being comfortable with her visualization skills, Diana closed the 

possibilities for dialogue, using rhetoric questions to structure her speech and 

prevent threatening situations, and increasing her instructional pace. Realizing the 

effects of her lack of sound mathematical knowledge in her teaching created another 

source of frustration:  

I am a bit afraid of this material … teaching something I cannot visualize very well … I 

am afraid of getting mixed up … I will continue doing more expository teaching because 

I do not feel at ease asking questions and all of that … I don‘t know! (January, 2003) 

In sum, the tensions in Diana‘s teaching modes throughout her entire student 

teaching experience were never resolved. She did not win her battle to teach in ways 

that resonated with her problem-solving oriented beliefs (Ernest, 1989), fighting 

against very different factors: if Abel‘s inadequate behaviour as a secondary teacher 



Working Group 17 

CERME 7 (2011) 2856 

 

in their shared 7
th

 grade classroom was the determinant factor for her lack of success 

in teaching in an increasingly generative mode, distinct factors accounted for a great 

sense of frustration and helplessness when teaching 11
th

 grade: external pressures to 

cover the curriculum, passive and unmotivated students, and, above all, lack of a 

sound mathematical knowledge to give her the sense of security she needed to teach 

how she wanted to teach. Nevertheless, when conditions were favourable, Diana 

temporarily resolved the conflicts between her espoused and enacted beliefs, 

evidencing clear instances of an interpretive teaching. Yet, she did not give up on 

pursuing her goal, postponing her attempts to enact a generative mode for further. 

FINAL REMARKS 

The CF worked as a fundamental tool for conducting the teaching experiment 

component of the research design, especially for selecting readings for discussion 

and reflection. It was also instrumental for interpreting and analyzing the 

participants‘ progression regarding all its four strands, and for generating the 

accounts of practice. However, while the anticipated relationships between teachers‘ 

teaching modes and dominant patterns of classroom interaction, and between 

teachers‘ key beliefs and levels of reflective thinking were somewhat confirmed, 

there were inconsistencies between those two groups of teaching aspects. In addition, 

the CF did not show itself useful as a reflective tool for the participants themselves. 

More research is needed to, for example, explore and assess the influence of factors 

such as sharing classrooms with peers on one‘s own teaching modes, and to 

investigate the usefulness and appropriateness of the CF as a support construct to 

frame other professional development endeavours, in various contexts.  
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The goal of this presentation is to discuss using mixed methods to study preservice 

teachers‘ (PST) geometry content knowledge. Effective geometry instruction 

practices in methods courses were investigated by qualitative methods to develop a 

protocol to enhance geometry learning of PST, then the effect of the protocol was 

studied by quantitative methods. The individual interviews (n=3), classroom 

observations and artifacts from the methods courses data yield to narrative analysis 

results and thematic analysis results. The following quasi-experimental (n=102) 

investigation to study intervention protocol which is developed from the qualitative 

investigation results, showed a significant change in treatment group participants‘ 

geometry content knowledge and a significant main effect of knowledge but no 

significant interaction between geometry content knowledge and grouping.  

Keywords: teacher knowledge, geometry content knowledge, mathematical 

knowledge for teaching, mixed methods 

INTRODUCTION 

Teachers bear an important role in reform movements. ―The desired learning 

environments can result only from knowledgeable teachers‖ (Putnam, et al., 1990, p. 

225). Teachers‘ knowledge should be addressed in PST education and in 

professional development for in-service teachers. This study reports a two-phase 

research study which integrated qualitative and quantitative research methods to 

study elementary first PSTs‘ geometry learning and then their geometry content 

knowledge. The first phase of the study was the qualitative investigation to 

understand elementary school PSTs‘ geometry learning and the effective geometry 

learning experiences for PST. Integration of results from the study of the qualitative 

investigation and theoretical knowledge from the literature, the researcher developed 

a protocol for a mathematics methods course. The protocol used as the intervention 

for the quasi-experimental quantitative phase with purpose of improving the 

geometry content knowledge for teaching of PST.  

REVIEW OF LITERATURE 

The most commonly accepted definition of teacher knowledge was given by 

Shulman (1986, 1987), who developed a cognitive model of teacher knowledge, 

which consists three types of teacher knowledge; content knowledge (CK), 

pedagogical content knowledge (PCK) and curriculum knowledge. CK refers to 

knowledge base of the content one is teaching, such as mathematics. PCK ―… goes 

beyond knowledge of subject matter per se to the dimensions of subject matter 
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knowledge for teaching…‖ (p. 9). PCK is the type of knowledge that distinguishes 

the work of a teacher from the work of a scientist. The third knowledge, curriculum 

knowledge addresses effective use of curriculum materials and being familiar with 

other subjects that students study.   

Among these knowledge types, content knowledge stands out as a point of focus for 

teacher education. Brown and Borko (1992) asserted that PSTs‘ limited mathematical 

content knowledge is an obstacle for their training on pedagogical knowledge. In the 

mathematics education field, mathematical knowledge for teaching (MKT) was 

developed as following the Shulman‘s model for teacher knowledge (Ball et al., 

2008). MKT model addresses how a teacher uses mathematics for teaching (Ball, 

2000). According to MKT model, there are six domains of teacher‘s content 

knowledge which can be categorized under Shulman‘s different types of knowledge 

(Ball, Thames & Phelps, 2008). There are three domains under subject matter 

knowledge: common content knowledge (CCK, mathematics knowledge not unique 

to teaching), specialized content knowledge (SCK, mathematics knowledge unique to 

teaching), and horizon content knowledge (knowledge of mathematics throughout the 

curriculum). Also, there are three domains under pedagogical content knowledge: 

knowledge of content and students (KCS, interaction of knowledge of mathematics 

and students‘ mathematical conceptions), knowledge of content and teaching (KCT, 

interaction of knowledge of mathematics and teaching methods), and knowledge of 

content and curriculum (interaction of knowledge of mathematics and mathematics 

curriculum).  

Many leading mathematics education researchers, Ball (2000), Rowland, Huckstep 

and Thwaites (2005), Usiskin (2001) discussed role of addressing content 

preparation of teachers in the context of teaching. There are two practices stands out 

in the literature to address teachers‘ knowledge which are using video discussion 

groups (Sherin & Han, 2004) and using students‘ work to analyze (Kazemi & 

Franke, 2004). The synthesis of the literature on these two practices shows that the 

practice of video discussion groups allows for deeper discussion on PCK while 

absence of classroom environment in students‘ work allows for deeper discussion on 

CK by teachers (Lampert & Ball, 1998; Sherin & Han, 2004). Using students‘ work 

to analyze what students know and what they are learning to facilitate teacher 

learning results in teachers‘ deeper subject matter knowledge (Kazemi & Franke, 

2004). Therefore, using students work in a methods course could also improve PSTs‘ 

mathematics knowledge for teaching especially when they have no classroom 

connection during the methods course.  

Content knowledge of teachers is important for every subject including geometry. 

The limited number of research projects focused on knowledge of geometry for 

teaching concludes that beginning teachers are not equipped with necessary CK and 

PCK for geometry, and it is important to address this issue in teacher education 

(Jones, 2000; Swafford, Jones, & Thornton, 1997).  In a study of middle and 
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secondary school teachers‘ geometry content knowledge, Fostering Geometric 

Thinking (FGT), content activities and analysis of student work were used with in-

service teachers (Driscol, Egan, Dimatteo & Nikula, 2009). FGT study showed 

significant difference between control group teachers who did not receive any 

professional development and treatment group teachers who received 20-week long 

intervention. The intervention was designed to provide geometry content experiences 

for teachers and analysis of student work from teachers own classroom in order to 

address geometry content knowledge in the context of teaching. 

Therefore, this study strives to investigate the following research questions in 

elementary school mathematics methods course from the constructivist perspective to 

inform PSTs‘ geometry preparation. The first two questions were investigated 

through qualitative methods in order to pursue deeper understanding of PSTs‘ own 

perception on their geometry learning and effective practices to promote their 

learning.  

1. What is elementary school preservice teachers‘ understanding of geometry for 

elementary school?  

2. What are the perceptions of elementary school preservice teachers on effective 

instructional strategies to promote their learning of geometry content knowledge 

in mathematics methods courses?  

Integration of the results from the above research questions and literature on 

teachers‘ mathematics and geometry preparation led the below research questions to 

be investigated by quantitative methods to study PSTs‘ geometry content knowledge. 

For example the topic of geometry to focus, quadrilaterals were chosen according to 

the results from the qualitative investigation and suggestions from the literature.  

3. Does use of geometry activities focused on quadrilaterals with analysis of 

student work influence elementary school preservice teachers‘ geometry content 

knowledge for teaching as measured by CKM-T?  

4. Is there a difference in geometry content knowledge for teaching as measured 

by CKM-T between preservice teachers who are in a traditional mathematics 

methods course and preservice teachers who are in experimental mathematics 

methods course? 

SETTINGS  

This study took place in elementary mathematics methods course in a large south 

eastern public university in the U.S. This course plays an important role in PSTs‘ 

education because it is the only mathematics methods course for elementary school 

PSTs. Usually, there are three sections of the course for the spring semester whereas 

there are four sections for the fall semester. The qualitative investigation took place 

during the spring semester and the following quantitative investigation was 

conducted during the fall semester.  
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QUALITATIVE INVESTIGATION DATA SOURCE 

The goal of the qualitative investigation was to understand PSTs‘ geometry learning 

and effective instructional practices to promote their learning. The results of this 

study informed teacher education practice to develop geometry practices for methods 

course to be used in the second phase (quantitative investigation). One student from 

each of the three sections of the elementary mathematics methods, Christiana, Emma 

and Liz (pseudonyms) participated in this investigation. The data collection included 

observations of geometry instruction in each section, and the collection of materials 

for the geometry instructions. Field notes were taken during the observations. The 

primary data source was individual interviews. The interview protocol was designed 

for semi-structured and open-ended narrative interviews. The narrative interviews 

are tailored to intrigue story telling from participants through open-ended questions 

or probes (Reissman, 1993).  

QUALITATIVE INVESTIGATION DATA ANALYSIS 

Individuals may use narratives for meaning making or for sharing their experiences 

(Riessman, 1993). Furthermore, teachers may prefer to discuss their learning and 

their knowledge through stories (Cortazzi, 1993). According to Labov (1972) a 

narrative has a structure and a sequence. If a narrative is fully formed, it has six 

components; abstract, orientation, complicating action, resolution, evaluation, and 

coda. The structure of the narratives gives insights about how the participants 

perceive their experiences. In addition to structural analysis of narratives, thematic 

analysis (Coffey & Atkinson, 1996) was used and the whole interviews were coded. 

Literature supports using other analysis methods in addition to narrative analysis in 

order to deepen the analysis of the rich data similar to the data of this study (Lloyd, 

2005; Reissman, 1993).  

QUALITATIVE INVESTIGATION FINDINGS 

There were two main kinds of stories with sub headings emerged from participants‘ 

narratives: stories as a learner and stories as a beginning teacher. The thematic 

analysis yielded three themes from PSTs‘ geometry learning: history of learning 

geometry, perceptions about geometry, and effective geometry instruction 

approaches. 

Narrative Analysis Findings 

(a) Stories as a learner. Even though all three participants took one of the required 

mathematics courses, only Liz had taken the content course before the methods 

course. All three participants told stories from the mathematics courses they took and 

they expressed that those courses were as a review of high school mathematics rather 

than rigorous study of mathematics topics for elementary school. The stories of Liz 

from the content course reflect her concerns of limited mathematics (especially in 

geometry) learning and the lack of the connection to her teaching career.  
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(b) Stories as a beginning teacher. The beginning teacher aspect, being able to relate 

college education into teaching, was briefly expressed in the narratives from 

mathematics courses. For example, even though Liz‘s priority in that the content 

course was to learn mathematics as a student, she had thoughts about ways to 

transfer the presented knowledge into her teaching. Most of the stories of all three 

participants as a beginning teacher took place in methods course. Only one 

participant (Liz) was satisfied from her learning in the methods course. The other 

two participants expressed their frustration as the lack of the mathematical 

discussions and connection between content and the teaching methods (Emma) and 

the misguided flow of the course by moving to the more difficult topics before 

discussing easier topics (Christiana).    

Thematic Analysis Findings 

(a) History of geometry learning. Participants‘ background in geometry played an 

important role in their learning in college courses especially the methods course. All 

of them stressed the emphasis on algebraic topics in K-12 education with limited 

opportunities to learn geometry. Furthermore, they all perceive geometry as being 

different than mathematics because they have the perception of mathematics as 

algebraic topics.  

(b) Perceptions about geometry. All the participants recognized the importance of 

visualization in geometry. Participants think geometry as a study of shapes and 

measurement features related to the shapes (such as area). Other important topics of 

geometry such as transformation were not mentioned by any of the participant. Even 

for the two dimensional shapes they expressed their limited knowledge in 

quadrilaterals. They classified topics of three dimensional shapes as difficult. Their 

limited experiences with geometry resulted in distorted perception of geometry.  

(c) Effective instructional approaches. The mostly emphasized instruction approach 

was addressing geometry topics for elementary school in addition to the studying 

pedagogical aspects of those topics. Even tough, participants perceived college 

mathematics courses as reviews before the methods course, because those reviews 

did not provide desired understanding of in-depth geometry for elementary school, 

they were expecting content preparation from methods course too. Some 

instructional practices were highlighted from the data. Those practices were 

considered while developing the protocol.   

QUALITATIVE INVESTIGATION DISCUSSION 

All three of the participants stressed the importance of providing discussion on 

content before pedagogy. The content as noted by participants is not college level 

geometry, but geometry that they would be teaching. Especially Emma emphasized 

content preparation because in spite of the effective pedagogical preparation she 

could not relate to the ideas. This emphasis on learning geometry for teaching is 

parallel with MKT model (Ball et al., 2008) in terms of knowing mathematics in the 
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context of teaching. The second aspect was to progress from easy to more difficult 

topics. Because of participants‘ limited knowledge of geometry, they needed to study 

geometry from basic topics (e.g. 2-D shapes). Furthermore, they especially stressed 

that they could not learn classification of quadrilaterals in spite of studying that topic 

in college level courses.  

DEVELOPMENT OF GEOMETRY PROTOCOL 

The researcher developed a series of geometry activities to use in methods course for 

two weeks. The length of the protocol was limited because there were only two 

weeks for geometry topics. The topic of the activities was the classification of 

quadrilaterals as informed by the qualitative investigation. The first week of 

activities focused on content aspect of the topic whereas the second week focused on 

analyzing students‘ work in order to address geometry topics in the context of 

teaching. There were three groups of activities: sorting shapes, attributes of shapes, 

and classification of polygons. In addition to individual characteristics of the 

activities, the combination of them provided coherence. Participants worked 

individually, in pairs and small groups. The participants experienced geometry topics 

with visual representations. Also, the activities progressed through van Hiele 

geometric thinking levels. Therefore, the activities reflected suggestions from both 

literature and qualitative results. Kazemi and Franke (2004) suggested that the 

student work to be used to improve teachers‘ content knowledge should be 

challenging. In other words, the student work should show wrong student answers 

and misconceptions in order to intrigue teachers‘ discussions on mathematics topics. 

With this purpose, the researcher collected student work from local elementary 

schools with mathematically struggling students. The participants were given a 

protocol to study student work. The protocol was developed by suggestions from 

several resources (E. Kazemi, personal communication, August 17, 2008; NCTM, 

2006). First in pairs, the participants discussed what the student did, what the student 

knew (and misconceptions), what they would ask the student in order to learn more 

about the student‘s knowledge of geometry. Then, in small groups (two pairs), 

participants discussed what they would do to teach these concepts to the student and 

how they would address the student misconceptions. 

QUANTITATIVE INVESTIGATION DATA COLLECTION AND ANALYSIS 

There were three instructors for four sections of the methods course for the fall 

semester. There were one hundred and seven students enrolled and 102 of them 

volunteered to participate in the study. All the participants were female. Two of the 

sections were assigned to be the treatment and other two to be the control groups.  

All the instructors were teaching geometry for two weeks during the last third of the 

semester. The intervention took 90 minutes (half of one class meeting) of each 

geometry week. The remaining half of the time of class meetings were used to 

discuss other geometry topics. 
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The instrument to measure PSTs‘ geometry content knowledge, Content Knowledge 

for Teaching Mathematics Measures (CKT-M Measures)
1 

was developed as 

continuum of research on mathematics knowledge for teaching (MKT) which 

provides the theoretical framework for this study.  The instrument aims to measure 

elementary school PSTs‘ mathematics knowledge in the context of teaching. For this 

current study, only the geometry section of the instrument was used. Two parallel 

forms of the geometry section of the test were administered as pre and post test.  

Participants completed the CKT-M Measures geometry test one week before their 

geometry instruction. For next two weeks they received the geometry instruction and 

the following week they completed the post-test. Both pre and post tests were 

administered at the beginning of the class. In order to address the last two research 

questions, geometry knowledge growth of treatment group and detection of any 

difference of knowledge growth between treatment and control groups, two different 

analysis methods, repeated measures ANOVA and mixed ANOVA, were used, 

respectively.  

QUANTITATIVE INVESTIGATION RESULTS 

In order to study the first research question, geometry knowledge growth of 

treatment group, repeated measures ANOVA was used. Results showed a significant 

change in participants‘ geometry content knowledge, F(1, 49) = 16.08, p<.001, R
2
 = 

.25, eta
2
 = .25. This indicates statistically significant positive change in treatment 

group participants‘ geometry content knowledge. A mixed ANOVA method of 

analysis was conducted to study whether there was difference of knowledge growth 

between treatment and control groups. Results indicated a significant main effect of 

time F(1, 91) = 28.38, p<.001 but there was no significant interaction between time 

and grouping (treatment/control), F(1, 91) = .21, p=.646. The results showed that 

geometry knowledge of participants was increased significantly, however the 

grouping did not have any effect on participants‘ knowledge growth. It can be 

concluded that even though treatment group participants‘ geometry content 

knowledge growth was significant, the difference between treatment group and 

control group participants‘ growth in geometry content knowledge was not 

significant. 

QUANTITATIVE INVESTIGATION DISCUSSION 

The analysis of growth in treatment group can be interpreted as that use of the 

protocol developed from the previous studies resulted in significant increase in 

PSTs‘ geometry content knowledge. However, the control group results showed 

increase in PSTs who received regular instruction too. Even though treatment group 

participants‘ increase was more than the increase of control group participants, the 

difference was not statistically significant. However, it should be noted that the 

regular instruction for the control group also addressed the geometry topics from the 

perspective of learning mathematics in the context of teaching. During the geometry 
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instruction of the control group, the researcher observed the control group 

instruction. For further research, the control group instruction designed not to 

address geometry in the context of teaching may provide further information on 

affect of using the protocol with PSTs. Furthermore, using student work with PSTs 

to promote their content knowledge might not be as effective as using them with in-

service teachers (e.g. Driscoll et al., 2009). In the case of in-service teachers, 

participants first experience teaching the materials and then analyze student work. 

On the other hand, in the case of PSTs, participants only experience the materials 

without teaching them. Therefore, this study might start the discussions on the role of 

actual teaching of the materials before analyzing student work. 

CONCLUSIONS 

Therefore, this study provides further understanding on teacher‘ geometry content 

knowledge. It informs mathematics teacher education in three important points. For 

the qualitative investigation, PSTs reported that they have limited geometry 

knowledge as previous research studies have showed (Jones, 2000; Swafford et al., 

1997). Since PSTs perception of geometry for elementary school is limited to the 2-D 

shapes, it may be suggested to conduct further studies on geometry content 

knowledge of PSTs for other geometry topics too. Lastly, use of student work in PST 

education may not lead to similar results as using with in-service teachers.  

Endnote 1: Copyright © 2006 The Regents of the University of Michigan. For information, 

questions, or permission requests please contact Merrie Blunk, Learning Mathematics for Teaching, 

734-615-7632. Not for reproduction or use without written consent of LMT.  Measures 

development supported by NSF grants REC-9979873, REC- 0207649, EHR-0233456 & EHR 

0335411, and by a subcontract to CPRE on Department of Education (DOE), Office of Educational 

Research and Improvement (OERI) award #R308A960003. 
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ABSTRACT. The paper deals with the sustainable effectiveness of professional 

development programmes. This article links theoretical considerations with research 

findings a case study about a secondary mathematics teacher, who took part in the 

Austrian nationwide teacher professional development programme IMST² in 2002. 

The case study‘s results provide information regarding the teachers‘ professional 

growth and the sustainable effects of the professional development programme. The 

paper also discusses implications for the design of teacher professional development 

programmes.  

Keywords: Sustainability, professional development, effectiveness, case study, long-

term impact of innovations. 

INTRODUCTION 

Evaluations of long-term impact of innovations or programmes are well established 

in disciplines like health promotion, social medicine, or management research (e.g., 

Lawrence, Winn, & Jennings, 2001; Pluye, Potvin, & Denis, 2004; Scheirer, 2005). 

Goals and sustainable outcomes of teacher professional development programmes 

are of great interest, in particular for both the participating teachers and the 

facilitators. Despite its central importance, research on this issue is generally lacking 

within the educational disciplines (Datnow, 2006; Rogers, 2003).  

LITERATURE REVIEW AND THEORETICAL FRAMEWORK  

In most papers that put an emphasis on the impact of teachers‘ professional 

development programmes, teachers‘ learning is the main focus (see e.g., Guskey, 

2000; Lipowsky, 2004, 2010; Sowder, 2007; Zehetmeier, 2008). The major 

indicators for describing teachers‘ learning are their knowledge, beliefs, and practice. 

However, the situation is rather complex since each of these notions can be defined 

in different ways:
91

  

Teachers‘ knowledge, for example, can be differentiated into content knowledge, 

pedagogical knowledge, and pedagogical content knowledge (Shulman, 1987); but it 

can also be regarded as knowledge about learning and teaching processes, 

assessment, evaluation methods, and classroom management (Ingvarson, Meiers, & 

Beavis, 2005); other foci are expressed by the notions of attention-based knowledge 

(Ainley & Luntley, 2005) or knowledge of mathematics for teaching (Ball, 1990). 
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Working Group 17 

CERME 7 (2011) 2869 

 

Similarly, teachers‘ beliefs can include different aspects of beliefs about 

mathematics as a subject, and its teaching and learning (Leder, Pehkonen, & Tôrner, 

2002). It includes also the participating teachers‘ perceived professional growth and 

their satisfaction (Lipowsky, 2004, 2010), their perceived efficacy (Ingvarson et al., 

2005), and the teachers‘ opinions and values (Bromme, 1997). At the teachers‘ 

practice level, the focus is on various kinds of classroom activities and structures, 

teaching and learning strategies, methods, or contents (see e.g., Ingvarson et al., 

2005).  

Zehetmeier (2008) points out that the complexity of possible impact is not fully 

covered by this taxonomy. For example, results of an impact analysis (Zehetmeier, 

2010b) in the context of an Austrian professional development project (see e.g., 

BMUKK, 2010; Krainer, 2008; Pegg & Krainer, 2008) show that the project made 

impact also on students‘ beliefs or other – non participating – teachers‘ practice. So 

the taxonomy of levels of impact needs to be extended. Other aspects that also could 

be considered are the learning of teacher educators and of other relevant 

environments of professional development programmes, like participating teachers‘ 

colleagues, their principals, their school, etc.  

A model that comprises this rather wide range of possible levels of impact is the 

IPD-model (Impact of Professional Development model; Zehetmeier, 2008, 2009, 

2010b, see Figure 1):  

Professional Development

Fostering

Factors

Levels:

Knowledge

Beliefs

Practice

Impact 
Elements:

Teachers

Facilitators

Programme

Context

 

Figure 1: The IPD-model 

This model uses the categories knowledge, beliefs, and practice to analyse the impact 

not only on the teachers‘ level but also on other in-school levels like pupils, 

colleagues, principals, or parents. Moreover, this model considers beyond-school 

levels to analyse the impact of professional development projects: e.g., other schools, 

media, policy, or scholarship (see Zehetmeier, 2010b). Besides this extended 

taxonomy of possible levels of impact, the IPD-model also includes an overview 

concerning factors fostering the impact of professional development projects (see 

e.g., Zehetmeier, 2010a). Moreover, the IPD-model opens the scope for various types 

of impact (e.g., short-term or long-term; planned or unintended) on different levels 

(e.g., new knowledge, changed beliefs, or new teaching practices).  
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BACKGROUND: THE AUSTRIAN IMST² PROJECT 

The initial impulse for the IMST² project (Innovations in Mathematics, Science and 

Technology Teaching) in Austria came from the 1995 TIMSS achievement study. In 

particular, the results of the Austrian high school students (grades 9 to 12 or 13) in 

the TIMSS advanced mathematics and physics achievement test, shocked the public. 

The responsible federal ministry launched the IMST research project (1998-1999) in 

order to analyse the situation.  

The research identified a complex picture of diverse problematic influences on the 

status and quality of mathematics and science teaching. Mathematics education and 

related research was seen as poorly anchored at Austrian teacher education 

institutions. Subject experts dominate university teacher education, other teacher 

education institutions show a lack of research in mathematics education; the 

collaboration with educational sciences and schools is – with exception of a few 

cases – underdeveloped. A competence centre like those established in many other 

countries was not existent. Also, the overall structure (including two institutions for 

the education of prospective teachers that are mostly unconnected, a variety of 

different kinds of schools with corresponding administrative bodies in the ministry 

and in the institutions for the education of practising teachers, etc.) showed a picture 

of a ―fragmentary educational system‖ of lone fighters with a high level of 

(individual) autonomy and action, however, there was little evidence of reflection 

and networking. The situation in science education was even worse. 

The analyses mentioned above led to the four year project IMST² (2000-2004). The 

project focused solely on the upper secondary school level and involved the subjects, 

biology, chemistry, mathematics and physics. The two major tasks of IMST² were (a) 

the initiation, promotion, dissemination, networking and analysis of innovations in 

schools (and to some extent also in teacher education at university); and (b) 

recommendations for a support system for the quality development of mathematics, 

science and technology teaching. 

In order to take systemic steps to overcome the ―fragmentary educational system‖, 

the approach of a ―learning system‖ (Krainer, 2005) was taken. It adopted enhanced 

reflection and networking as the basic intervention strategy to initiate and promote 

innovations at schools.  

Besides stressing the dimensions of reflection and networking, ―innovation‖ and 

―work with teams‖ were two additional features. Innovations were not regarded as 

singular events that replace an ineffective practice but as continuous processes 

leading to a natural further development of practice. Teachers and schools defined 

their own starting point for innovations and were individually supported by 

researchers and expert teachers. The IMST² intervention built on teachers‘ strengths 

and aimed at making their work visible (e.g., by publishing teachers‘ reports on the 

website). Thus teachers and schools retained ownership of their innovations. Another 
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important feature of IMST² was the emphasis on supporting teams of teachers from a 

school. 

Teachers‘ participation in IMST² was voluntary and gave them and their schools a 

choice among several priority programmes (e.g., ―basic education‖ or ―teaching and 

learning processes‖) according to major challenges concerning mathematics and 

science teaching. In general, teachers in these priority programmes were supported 

by mathematics and science educators and experienced teachers. The priority 

programmes can be regarded as small professional communities that not only 

supported each participant to proceed with his or her own project but also generated 

a deeper understanding of the critical reflection of one‘s own teaching, of 

formulating research questions, of looking for evidence based on viable data, and on 

methods that help to gather that data.  

METHOD 

In 2005, eleven case studies (Stake, 1995; Yin, 2003) were generated to describe and 

explain specific aspects regarding the impact of the IMST² project (Benke, Erlacher, 

& Zehetmeier, 2006). In 2010, all these case studies were revisited to analyse the 

project‘s impact five years later (Zehetmeier, in preparation). For this purpose, semi-

structured interviews were again conducted with the teachers who formerly took part 

in the IMST² project; interviews were also conducted with the teachers‘ respective 

colleagues, schools‘ principals, and former project facilitators.  

The data gathered in 2010 was analysed according the IPD-model (Zehetmeier, 2008, 

see above) and contrasted with the 2005 case studies‘ results. This comparison 

allows a thorough discussion of the following questions: Which of the 2005 impact 

was still effective in 2010? Which were the respective fostering factors? Which 

impact did disappear within the last five years? Which were the factors hindering the 

sustainability of impact?  

In this paper, exemplary results from one of these studies (the case of Barbara
92

) are 

provided to discuss the question about effective ways of promoting sustainable 

mathematics teachers‘ professional development. Thus, this study provides insight 

going beyond the evaluation of short-term effects of a particular professional 

development programme. In fact, the study analyses and discusses various levels of 

impact and their respective fostering factors that occur more than eight years after 

the programme‘s termination. The objective of this research is not to evaluate the 

respective professional development programme (which was not explicitly designed 

to have sustainable impact, but to support teachers for the time they are 

participating). Rather, the case study aims to analyse, why some impact is 

sustainable, while other effects disappear after the programme‘s termination. In other 
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words, the particular professional development programme is rather the case study‘s 

frame, not its focus.  

We decided to use a case study approach for this research, because they are 

particularly suited for analysing the impact of innovations: ―The usual survey 

research methods are less appropriate for the investigation of innovation 

consequences. […] Case study approaches are more appropriate‖ (Rogers, 1995, p. 

409). Similarly, Hancock and Algozzine (2006) state: ―Trough case studies, 

researchers hope to gain in-depth understanding of situations and meaning for those 

involved― (p. 11). The case study presented here is historic (Merriam, 2001), 

intrinsic (Stake, 1995) und explaining (Yin, 2003), since it analyses the teacher‘s 

developments over time, focuses on the particular teacher‘s case, and quests for her 

professional developments‘ fostering conditions.  

The case study includes data from varying sources and dates to gain validity by 

―convergence of evidence‖ (Yin, 2003, p. 100): Collection of data was done during 

2002 and 2006 and contained both documents (teacher‘s annual written project 

reports), archival records (first author‘s artefacts), and open-ended and structured 

interviews (with teacher, project facilitator, colleagues, and principal). 

Creswell (2007) has identified eight verification procedures for qualitative studies 

and recommends that qualitative researchers engage in at least two in any given 

study. Four of these verification procedures were present in this study: prolonged 

engagement, triangulation, negative case analysis, and rich description: The contact 

with the teachers has spanned more than one year in the contexts of teaching and 

coursework, and the time span under research lasted for more than eight years 

(prolonged engagement). Our data came from a variety of sources (triangulation by 

convergence of evidence, see above). We refined our results with regards to 

disconfirming evidence until we eliminated any disagreements among the findings 

(negative case analysis). Finally, the case study provides detailed information on all 

persons and activities relevant for this research (rich description). 

The data were analysed by qualitative content analysis (Mayring, 2000) in order to 

identify common topics, to elaborate emerging categories, and to gain deeper insight 

into teacher‘s professional growth over time.  

RESULTS 

The case study‘s results point to different levels of impact of the IMST² project (e.g., 

teachers‘ knowledge, beliefs, or teaching practices), that endured over time, even 

after the project‘s termination. In the next sections, the 2005 case study‘s results are 

contrasted with the recent 2010 data. This allows discussing the question, which of 

the 2005 impact was still there in 2010. For the sake of reducing complexity, these 

results are presented according Zehetmeier‘s (2008) levels of impact (see also Figure 

1, above).  
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Barbara‘s knowledge 

Barbara took part in the IMST² priority programme ―teaching and learning 

processes‖ during the school-year 2001-02. Barbara integrated open learning 

environments into her mathematics classes. The 2005 case study showed various 

results concerning long-term effects, for example regarding Barbara‘s knowledge: 

She learned that open learning environments had positive effects on pupils‘ content 

knowledge, as well as on their self confidence. In particular, there were positive 

changes regarding low-performing pupils‘ self esteem, as well as concerning the 

further development of high-performing pupils‘ competences. Moreover, Barbara‘s 

pupils stated to have more fun and less anxiety in her mathematics lessons. This 

impact was sustainable: Barbara still used this knowledge in 2005 and 2010. Her 

expertise and her knowledge regarding open learning environments enabled her to 

create and implement innovative teaching methods. For example, since Barbara 

knows about the importance of time resources for these open settings, she is very 

conscious of providing enough resources in each implementation phase. The school‘s 

principal stated: ―This had very positive effects on the didactics of our mathematics 

lessons. In particular, the open learning settings represent sustained impact‖ 

(Principal, 2005, interview). 

Another impact was Barbara‘s new knowledge regarding the activities of teachers 

from other schools. During her participation in IMST², she had the opportunity to 

network with and to learn from colleagues teaching at other schools. The teachers 

met in seminars, workshops, and conferences organised by the IMST² project. 

Moreover, all teachers wrote project reports which were distributed mutually. ―This 

was a very useful source of ideas. I got motivation and suggestions to try similar 

things in my classroom‖ (Barbara, 2010, interview). Similarly, the principal valued 

these project reports as „a basis for good ideas and comparisons‖ (Principal, 2005, 

interview). This impact was not sustainable. After the projects‘ termination, there 

was no opportunity to exchange (as easy) with colleagues from other schools, nor 

were there any written project reports.  

Barbara‘s beliefs 

On the level of Barbara‘s beliefs, she developed a reflective stance towards the 

content and the method of her teaching; she stated: ―Now I see the value of letting 

the pupils work self-dependently and I am aware of the importance to reserve extra 

time for this‖ (Barbara, Interview, 2005). This stance was mirrored by her belief 

about the value of feedback: Topics like classroom atmosphere and teaching quality 

were discussed with her pupils on a regular basis: ―Now I see the value of discussing 

questions of good mathematics teaching together with the pupils‖ (Barbara, 2005, 

interview). This impact was sustainable: In 2005, as well in 2010, Barbara was 

convinced of the importance of critically evaluating one‘s own teaching. ―It is 

important to reflect on good and problematic aspects of my work‖ (Barbara, 2005, 

interview). 
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Barbara‘s practice 

Also on the level of her practice, the project caused some impact: Barbara actively 

facilitated her pupils‘ cooperation and communication, because: ―The pupils learn 

much more when they work in groups autonomously and when they experience that 

they can solve the tasks for themselves‖ (Barbara, 2005, interview). This impact was 

sustainable: Even after the projects‘ termination, Barbara provided time for her 

pupils‘ open learning: ―This remained: I facilitate their individual work and provide 

time for this. (...) I have the courage to do so‖ (Barbara, 2010, interview).  

Another impact regarding Barbara‘s practice was the use of evaluation methods. For 

example, she used questionnaires in order to learn about her pupils‘ perspectives and 

used tape recordings in order to gain new insight into her pupils‘ competences or 

difficulties. This impact peaked off. Barbara still used questionnaires after the end of 

her participation in IMST², but not as often as during the project phase. Tape 

recordings were no longer used: ―During IMST², there were smaller classes with 

fewer pupils, so I could manage the recordings. Now, in classes with over 30 pupils, 

this is not possible any more‖ (Barbara, 2010, interview).  

Barbara‘s colleagues‘ practice 

Going beyond Barbara‘s individual level, there were also effects on the level of her 

colleagues‘ practice. For example, a system of mutual exchange and teaching 

observations between Barbara and her colleagues was established within the school. 

―Even after two years, this system of mutual classroom visitations is still in progress 

– without being imposed by the principal or school administration, just because we 

all know its value‖ (Barbara‘s colleague, Interview, 2005). In 2010, this system of 

mutual feedback is persisting. However, the number of participating teachers peaked 

off, because ―now, this immediate need is no longer given. The most important and 

interesting things are already said‖ (Barbara‘s colleague, 2010, interview). In 

particular, the school‘s novice teachers gladly make use of this opportunity to learn 

from their experienced colleagues. Similarly, Barbara stated: ―This peaked off. The 

colleagues can do it, if they want. But this opportunity is no longer used as often as 

in the first years after the project‘s termination‖ (Barbara, 2010, interview).  

DISCUSSION 

Even though Barbara‘s project was not explicitly designed to have sustainable 

impact, the case studies‘ findings show that more often than not the effects could be 

sustained over eight years. Some other levels of impact disappeared as the 

professional development project was over. One explanation for this finding is that 

some of the respective fostering factors are tightly bound to the existence of the 

professional development project, while others are not. 

Another highly important question, that should be considered in the conception of 

professional development projects, is: Which of the influencing factors can actually 
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be controlled or affected by the professional development project? (And which 

cannot?) Maybe the most important factors lie beyond the project‘s realm. In this 

case, it could also be reasonable to look out for alternative and supplementary factors 

that can be provided and influenced by the project itself. 

To sum up: Professional development projects with the objective to cause sustainable 

impact should be designed by carefully considering the following questions  

 Which factors are dependent from the project itself?  

 Which factors are located beyond the project‘s realms? 

For professional development projects to be sustainable, it is crucial to carefully 

consider the fostering and hindering factors. This implies to know these factors and 

to be sensible for them. Considering and facilitating these factors when designing 

and implementing professional development projects is one important step on the 

journey to effective in-service teacher professional development. The next step 

should be to enhance further research and evaluation to get new results regarding the 

relevance of these factors. These findings should be again integrated into the 

conception of future projects. In sum, this can lead to a virtuous circle towards the 

goal of effectively promoting sustainable mathematics teachers‘ professional 

development.  
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This article reports part of a research project that attempts to identify the elements 

of an online course that promote the emergence of teachers‘ reflections. A definition 

of reflection that is helpful to identify instances of reflections that appear 

spontaneously in an online course is used in the study. Elements of the 

documentational approach (Gueudet & Trouche, 2009) are applied to try to 

establish connections between components of the design of an online course and the 

emergence of teachers‘ reflections. The main finding presented is that concepts from 

mathematics education research can help teachers to see their own teaching practice 

from a different perspective and thus stimulate reflexions in them. 

Keywords: Reflection, online mathematics teacher education, research literature as a 

tool for teacher development. 

INTRODUCTION 

This paper reports part of a research project focused on identifying some of the 

elements in the design of an online course that promote the emergence of reflections 

in in-service mathematics teachers (see Sánchez, 2010a). In particular, this article 

addresses the following research question: 

Which non-human elements of an online course promote the emergence of 

mathematics teachers‘ reflections? 

The previous research question is located at the intersection of two sub-areas of 

research within the field of mathematics teacher education research, namely, 

reflective thinking and online mathematics teacher education. Its scientific relevance 

lies in trying to identify components of an online course that have the potential to 

encourage the emergence of teachers‘ reflections, which in turn are considered as an 

important element for the development of mathematics teachers (see for example 

Ticha & Hospesova, 2006).  

This research was developed in an online mathematics teacher education program, 

aimed at in-service mathematics teachers working at different educational levels, and 

coming from all over Latin America
1
.  

CONCEPTUAL FRAMEWORK 

In this section I clarify the key terms that are involved in the research question, but I 

also refer to the theoretical constructs that I used to address such question. 
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What is an online course? 

An online course is a course that is based on the use of the Internet. This means that 

the content and the activities of the course are delivered via the Internet. The 

participants in this type of course do not meet physically to interact and discuss. All 

the interaction and communication within the course are carried out by using the 

Internet and related communication tools such as email, discussion forums, audio 

and video conferencing. 

Human and non-human elements 

Another key term is non-human elements of an online course. I perceive the structure 

and content of an online course as an amalgam of human elements and non-human 

elements. I use the term human elements to refer to the people who participate in an 

online course. In the context of this study, the human elements are the mathematics 

teachers and the teacher educators who are participating in an online course. When I 

use the term non-human elements I refer to the resources that a participant in an 

online course interact with, but which are intentionally provided by the teacher 

educator. These are resources that are part of the design of an online course. The 

resources can be of different nature: software, video, activities, articles, audio files, 

web pages. The two main characteristics of the non-human elements of an online 

course are: (1) they are elements that are intentionally provided by the course 

designer. The designer has control over them in the sense that he/she decides when 

and how they will appear within the course; and (2) they are elements that serve to 

represent and communicate mathematical and/or didactical ideas that are considered 

relevant to mathematics teachers‘ development. 

I find relevant to differentiate between human elements and non-human elements of 

an online course, because the latter are more likely to be controlled by the designer 

of an online course. That is, although it could be possible to identify some of the 

human elements in an online course that favour the emergence of reflections (for 

example, attitudes or types of human interactions), such elements cannot be easily 

controlled and regulated within an online course.  

Reflection 

A central theoretical construct used in this study is reflection. I think of reflection as 

a mental process by which our actions, beliefs, knowledge or feelings are 

consciously considered and examined. To reflect involves more than just recalling or 

considering something consciously. A process of reflection provides enlightenment 

about the actions or ideas that are being considered. A process of reflection involves 

a kind of ―Aha! moment‖ in which something is discovered or revealed.  

Comparing my definition of the concept of reflection 

A fundamental similarity between my definition of the concept of reflection and 

other definitions that can be found in the specialized literature is that reflection is 
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interpreted as a mental process in which something is considered or examined in a 

conscious way. I wrote ―something‖ using italics because many researchers in 

mathematics teacher education usually interpret such ―something‖ as the act of 

teaching. In other words, researchers in mathematics teacher education lay particular 

emphasis on the kind of reflections that are anchored in teaching practice. The 

widespread use of video recordings in reflection research, through which teachers are 

asked to analyse classroom episodes, can be considered as an evidence of the 

emphasis on reflection on teaching practice (see for example Stockero, 2008). The 

extensive use of theoretical concepts such as reflection-for action, reflection-in-

action and reflection-on-action is another kind of evidence of this emphasis on 

teaching practice (see for example Scherer & Steinbring, 2007). However, in my 

interpretation of the concept of reflection not only the teaching practice can be the 

focus of a reflection. You can also reflect on your mathematical knowledge, on the 

role and application of mathematics in non-mathematical contexts or even on your 

own feelings and values. 

An important difference between my definition of the concept of reflection and other 

definitions that can be found in the literature is that, in my definition, emphasis is 

placed on the stage of discovery or revelation (the ―Aha! moment‖) that a reflection 

can produce. I decided to include the Aha! moment in the definition of reflection on 

methodological grounds. This point is discussed in the methodology section of the 

article. 

Documentational approach 

In order to answer the research question it was necessary to investigate the possible 

connections between the components of an online course and the emergence of 

mathematics teachers‘ reflections. I used the documentational approach (Gueudet & 

Trouche, 2009) to investigate such connections. This theoretical approach is 

adequate to address the research question because it helps to study the ―effects‖ that 

the different resources that a teacher interact with (books, webpages, notes, 

discussions with colleagues, etc.), produce in his/her practice and schemas. Thus, I 

used the documentational approach to try to identify the non-human elements of an 

online course that produced teachers‘ reflections. The concepts of instrumentation 

process and documentational orchestration were particularly useful for the study. 

In the documentational approach it is claimed that the professional development of 

mathematics teachers can be tracked by focusing our attention on the activities that 

mathematics teachers develop outside the classroom, but that influence their work 

within the classroom. The focus is particularly centred on teachers‘ documentation 

work. That is, the interaction between the teachers and a set of elements that allows 

them to shape and define their work in the classroom. Expressions of such 

interaction are for example: to extract examples and exercises from a textbook in 

order to include them in their lesson plans; to analyse their students‘ mathematical 

productions; to listen to the suggestions, ideas and experiences from colleagues; to 
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review the contents of a website that contains educational materials; to study a 

curriculum reform to be applied in their own school, etc. The set of elements with 

which a teacher interacts during her documentation work is called resources. 

In the documentational approach it is argued that, when an interaction between a 

teacher and a set of resources takes place, a documentational genesis (DG) may 

appear. The concept of DG can be interpreted as an analogy of the concept of 

instrumental genesis (Trouche 2005) applied to the field of mathematics teacher 

education. Like the instrumental genesis, the DG is a two-way process in which the 

teacher appropriates and/or modify the set of resources with which she interacts (this 

part of the process is called instrumentalization), but the set of resources also shapes 

and influences teacher‘s activity and way of thinking (this part of the process is 

called instrumentation). The latter concept was used to try to establish links between 

the non-human elements of an online course and the emergence of reflections. 

Finally, a documentational orchestration (DO) can be defined as the selection and 

arrangement of resources that a teacher educator (or a group of teacher educators) 

carry out with the intention of facilitating teachers‘ documentation work. Such 

documentation work is aimed at contributing to the development of teachers‘ 

professional knowledge. 

METHODOLOGY 

In order to answer the research question, I designed an online course which had the 

scientific aim of promoting the emergence of teachers‘ reflections, and thus help me 

to study the influence of the non-human elements of the course on the emergence of 

such reflections. Three methodological challenges were identified at this stage: (1) to 

determine what non-human elements were likely to stimulate teachers‘ reflections (in 

order to include them as part of the course design); (2) if reflection is an entity that is 

not directly observable, how to detect a reflection in an online setting?; and (3) how 

to establish connections between the non-human elements of a course and the 

emergence of reflections? 

To address the above-mentioned points (1) and (2), I conducted a literature review 

on the concept of reflection in mathematics teacher education research (see Sánchez, 

to appear). In this review I analysed, among other things, (a) what kind of 

methodological tools are used to detect a reflection, and (b) what type of elements or 

conditions have been identified as promoters of teachers‘ reflections. The 

information obtained in (a) and (b) was used as inspiration to devise a strategy to 

promote and identify teachers‘ reflections in an online setting. To try to establish the 

connections mentioned in point (3), I applied the concepts of documentational 

orchestration and instrumentation process. Next I illustrate these points. 
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Stimulating reflections in an online setting 

Several elements were identified in the literature review as promoters of reflections, 

but only three of them were considered in the design of the course because of their 

applicability in an online setting. Here I refer to the act of writing, the availability of 

time, and the reading of mathematics education publications. 

Several researchers claim that the act of writing is a vehicle for reflection. For 

example Ponte & Santos (2005) assert: ―[W]riting is a powerful way of reflecting, 

helping teachers to clarify ideas, to look at them from different angles, to come back 

and revise; the steadiness of the written word also seems to provide more depth to 

the ideas‖ (p. 123). I also found that the relevance of time in the emergency and the 

depth of a reflection has been highlighted by several researchers: For instance 

Sowder (2007) underlines: ―[T]ime is needed for developing the ability and habit of 

reflection. Reflection rarely occurs when time is not a resource available to teachers‖ 

(p. 198). These two elements, the act of writing and the availability of time, were 

considered in the design of the course through the inclusion of asynchronous 

discussion forums. In this kind of forum people interact through the exchange of 

written messages. Here the feedback or responses to your written messages and 

comments are not received immediately. You can post a question in a discussion 

forum and get an answer some hours or even days later. The asynchronous 

interactions usually last several days, allowing the participants to have more time to 

formulate their opinions and to consider the comments and opinions expressed by the 

other participants. The comments and discussions expressed in the asynchronous 

discussion forums were the main empirical evidence used in this investigation 

Researchers like Shari L. Stockero suggest that the reading of mathematics 

education publications is another activity that improves the level of reflection: 

―Course readings, for example, exposed the PTs [prospective teachers] to alternative 

ideas that allowed them to begin to think about learning mathematics in ways other 

than how they had learned as students. Without these readings to draw upon, the PTs 

may not have had the tools necessary to reflect at higher levels‖ (Stockero, 2008, p. 

391). Thus, I decided that the structure of the online course should include some sort 

of writing produced within the community of mathematics education research. 

Detecting reflections in an online setting 

In the literature review that I conducted it was found that sometimes researchers 

explicitly ask teachers to produce reflections. This is usually done through the 

application of questionnaires or through some sort of written assignment. Let me 

present the following quotation as an illustration of this practice: 

―[T]he PTs [prospective teachers] were required to write a paper in which they reflected 

on their experience by analyzing how they as the teacher helped or hindered the 

development of students‘ mathematical understanding of the problem‖ (Stockero, 2008, 

p. 378). 
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I think that this way of identifying reflections is somewhat artificial. I was interested 

in identifying reflections that could appear more spontaneously. This was one of the 

reasons why I decided to include the ―Aha! moment‖ as part of my definition of 

reflection. My intention was to use the ―Aha! moment‖ as an indicator that the 

teacher had experienced a reflection. Another reason for using the ―Aha! moment‖ 

was to avoid confusing instances of reflection with instances of remembering or 

recalling. The ―Aha! moment‖ indicated to me that the teacher had done more than 

just remembering. It indicated me that the teacher had discovered or learned 

something based on the explicit consideration of his/her actions or values. 

Establishing connections between non-human elements and reflections 

To try to detect the possible connections between the emergence of reflections and 

the non-human elements of the online course that I designed, I did the following: 

Firstly, I ordered the set of non-human elements (which in terms of the theory can be 

called ―resources‖) of the course into stages. Each stage had a particular purpose and 

comprised a particular subset of resources. I explicitly defined the resources that 

each stage should contain, and the function and location of the stages within the 

course. I have called this sort of arrangement documentational orchestration (see 

Sánchez, 2010b).  

When the course was being implemented, the concept of reflection was applied to 

identify teachers‘ reflections within the asynchronous discussion forums. It was 

necessary to read and reread several times each utterance within a forum in order to 

become familiar with its contents. While I was trying to get familiar with the 

contents of a specific discussion, I also focused on locating the moments of an 

interaction that could be labelled as reflections, according to my own definition of 

the concept.  

After having these two sets (the set of ordered resources and the set of teachers‘ 

reflections), I focused on observing the instrumentation and instrumentalization 

processes that appeared between these two sets (Gueudet & Trouche, 2009). That is, 

it was studied how teachers used the resources (instrumentalization processes), but 

the kinds of effects that the resources produced on teachers (instrumentation 

processes) were also observed. When the effect produced by an instrumentation 

process was a reflection, then the development of such process was analysed 

―backwards‖ in order to identify the particular resource that produced it.  

DATA ANALYSIS 

The course that was designed for this study was an in-service course on the use of 

technology in mathematics teaching. The didactical aim of the course was to make 

teachers aware of the potential changes that may occur in the mathematics classroom 

when the use of CAS technology is introduced.  
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During the course, teachers were solving different mathematical tasks (algebraic 

factorisations, for example), and comparing techniques based on the use of CAS and 

techniques based on the use of paper-and-pencil. Then they discussed their 

experiences obtained through these comparisons in asynchronous discussion forums.  

Due to space limitations, it is not possible to describe each of the stages that 

constituted the course. I will only refer to the latter stage of the course in which the 

teachers read and discussed the paper by Lagrange (2005). The aim of this stage of 

the course was to make teachers to compare the experiences that they obtained when 

using CAS and paper-and-pencil techniques during the course, with the ideas and 

concepts included in the article. 

Two of the main theoretical concepts included in Lagrange (2005) are the pragmatic 

and the epistemic value of a technique that is based on the use of technology. The 

pragmatic value of a technique refers to the efficiency and economy (of time, of 

effort) with which a technique helps to solve a mathematical task. For example, the 

pragmatic value of any CAS software may be related to the speed and efficiency with 

which the software performs algebraic factorisations. The epistemic value of a 

technique refers to its potential to serve as a means to understand the mathematical 

objects involved in the application of the technique. For instance, the epistemic value 

of CAS-based techniques may be related to the fact that such techniques allow a 

more experimental approach to elemental algebra, where students can explore several 

particular cases of the factorisation of an algebraic expression (x
n
 – 1, for example) 

and produce conjectures about the general factorisation of the expression. 

After analysing the teachers‘ asynchronous discussions produced during the initial 

stages of the course, it became clear that many of them only acknowledged the 

pragmatic value of CAS techniques. In other words, teachers perceived CAS 

software as a tool that facilitates the execution and verification of algorithms, but not 

as a tool that can serve as a means for mathematical inquiry and the construction of 

mathematical knowledge. See for instance the following comment expressed by a 

teacher called Francisco
3
: 

I agree with Rosa on the usefulness of the calculator in the sense that it saves a lot of 

work [...] In general, when there is a discussion on this topic I always conclude that it is 

important for students to first learn the methods by hand, let us say pencil and paper. [...] 

However, eight days later, and after reading Lagrange‘s paper, this same teacher 

expressed the following reflection in an asynchronous forum: 

Until I read Lagrange‘s article I only applied it [the technology], using the terminology of 

the article, in a pragmatic way. I even felt that without a prior knowledge the use of tools 

such as CAS and/or calculators did not help to generate learning, i.e., I did support the 

use of these tools but apparently only attaching value to their pragmatic aspect. In integral 

calculus I encouraged the use of these tools in all the required calculations up to 

derivation. In differential equations I incentivise its application in the calculation of 
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integrals and so on. So I was very surprised that the article emphasises the epistemic 

aspect of these applications. Partly he was right, because the epistemic application 

apparently requires planning and construction of new specific activities that do not arise 

naturally from the teaching with paper and pencil. I would like to conclude this 

contribution leaving the reflection and concern of how a methodology for applying the 

epistemic value should be. 

RESULTS AND FINAL DISCUSSION 

My interpretation of the reflection mentioned in the last section is that such 

reflection was triggered by the interaction between Francisco and the contents of the 

article Lagrange (2005). The theoretical concepts contained in Lagrange‘s paper 

were the only non-human resource identified in the study as trigger for mathematics 

teachers‘ reflections. Thus, a possible answer to the research question posed at the 

beginning of this paper is that theoretical concepts from mathematics education 

research can promote the emergence of mathematics teachers‘ reflections. 

I try to be cautious and say that it is a ―possible‖ answer because I did not obtain 

more empirical evidence to confirm that the theoretical concepts contained in 

mathematics education articles are non-human elements that promote the emergence 

of reflections. The lack of more instances of reflections to support this conclusion 

can be caused by the definition of reflection applied in the study. Such definition is 

restrictive in the sense that requires the appearance of an Aha! moment. The 

definition for example is not appropriate for detecting reflections that are internally 

experienced by the individual, but which are not expressed externally by an Aha! 

moment.  

I however claim that the answer to the research question is likely to be a result with 

some degree of generality. I claim this because there are other studies where it is also 

argued that the study of concepts and theories from mathematics education research 

promotes critical reflection on our own beliefs and practices as mathematics 

educators (see for example Even, 1999 and Tsamir, 2008). If one accepts that the 

theoretical concepts from mathematics education research have the potential to 

encourage the emergence of teachers‘ reflections, then a question naturally arises: 

what kind of theoretical concepts must be used for this purpose? Tsamir (2008) 

raises similar questions, without providing a specific answer. Of course these 

questions deserve further investigation, however, it is possible to formulate a 

hypothesis: I believe that the type of theoretical concepts that can help teachers to 

reflect on their own practice and values, must be concepts that seem applicable to 

them. In other words, teachers need to find some relationship or application between 

such concepts and their own teaching practice. Thus, it is likely that theoretical 

concepts with little or no relation to teachers‘ practice will not serve for this purpose. 
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NOTES 

1. More information about this educational program can be found at www.matedu.cicata.ipn.mx (in Spanish). 

2. All teachers‘ names are pseudonyms. 
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The paper describes our work with pre-service primary school teachers focusing on 

development of their ability to cope with heterogeneity in mathematics classroom. In 

our experiment students were introduced to three substantial learning environments: 

Way, Room, Mosaics. The students‘ task was to (a) pose problems supporting 

natural differentiation and (b) identify the substantial mathematical ideas inherent 

in these environments. Similarly, we worked with a group of teacher educators and 

researchers, in which case we focused primarily on development of properties of the 

concept of natural differentiation.  

Keywords: mathematics education, teacher training, subject knowledge, natural 

differentiation 

INTRODUCTION 

It has been stressed in a variety of contexts that mathematics forms an integral part of 

many different spheres of life. That is why the importance of mathematics education 

and of achievement of functional mathematical literacy is growing. This makes 

considerable demands on teachers‘ knowledge of the subject and on their 

pedagogical skills and techniques, i.e. on their professional competences. There is no 

doubt that teachers must be helped on their way to enrich, develop and refine their 

professional competences. Therefore over the last years, we have searched for ways 

of facilitating the enhancement of teachers‘ professionalism (Tichá & Hošpesová, 

2006).  

Our research clearly shows that the quality of education greatly depends on the 

subject didactic competence of the teacher, i.e. on knowledge both of the content and 

its didactic treatment and on the application of this knowledge in school practice 

(Tichá & Hošpesová, 2010). This paper discusses a different area of our recent 

research, namely some of the aspects of coping with heterogeneity of pupils. It is 

another competence that teachers must master in order to create favourable 

conditions for the development of their pupils‘ educational potential.  

THEORETICAL BACKGROUND 

Natural differences between children; the need of individualization and 

differentiation  

It is a generally accepted fact that there are differences in how children learn that 

they need different lengths of time to master the same subject matter under the same 
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conditions with peers and with the same teacher (e.g. Jonassen & Grabowski, 1993). 

That is why an increasing number of educators and teachers try to apply the 

principles of individualization in teaching. Individualization is closely connected to 

differentiation. Educators looked for and proposed various methods of external and 

inner differentiation which would respect the differences between pupils and their 

individualities, and whose objective is optimum pupils‘ development (Skalková, 

1999). 

Natural differentiation is one of the forms of inner differentiation. The roots of our 

interest in this issue go down to the solving of the just finished Comenius project 

―Motivation via Natural Differentiation in Mathematics‖ (NaDiMa). We found 

important sources of motivation in the works of Wittmann (1995), Scherer and 

Krauthausen (2010). They use such an approach to the issue of heterogeneity in 

teaching in which differentiation is not perceived as an obstruction but as something 

natural and in some aspects also beneficial and challenging.   

―Usually, measures on differentiating are pre-determined by the teacher. In contrast, when 

using natural differentiation the topic as such enables the children to choose their own 

level to work on. The same learning offer for all children is one constituent characteristic 

of natural differentiation (the teacher being responsible for the subject-related framing). 

Further constituents are a holistic content-related learning offer with a sufficient level of 

complexity (i. e. complex tasks, e. g. in the form of a research or exploration assignment; 

see below), the free choice of solution strategies and manipulatives and, where applicable, 

free choice of the tasks as well as the form of presentation (oral or written) within the 

framework of social conventions (Wittmann/Müller 2004, p.15).‖ (Krauthausen, Scherer, 

2010, authors‘ translation). 

In addition to allowing children to work at their own level, such problems also 

facilitate social aspects of learning.  In this approach, during the concluding 

discussion pupils present their solving procedures and their result and justify them. 

The possibility to solve the same problem on different levels is beneficial for the 

weaker and slower as well as for the highly talented pupils. The pupils on lower level 

acquire new knowledge in the final discussion and move to a more advanced level, 

the talented pupils are generally led to look for and apply new approaches. 

Substantial learning environments  

If we want to enable and support natural differentiation, we must try to foster such a 

learning environment in which there are inherent tasks and problems that all pupils 

will be able to handle, albeit on various levels. Wittmann puts emphasis on the 

creation of substantial learning environment (SLE). SLE is  

„a teaching/learning unit with the following properties: (1) It represents central 

objectives, contents and principles of teaching mathematics at a certain level. (2) It is 

related to significant mathematical contents, processes and procedures beyond this level, 

and is a rich source of mathematical activities. (3) It is flexible and can be adapted to the 
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special conditions of a classroom. (4) It integrates mathematical, psychological and 

pedagogical aspects of teaching mathematics, and so it forms a rich field for empirical 

research.‖ (Wittmann, 1995, 365/366)  

The characteristics quoted above make considerable demands on teachers who try to 

create such environments and teach in them. Wittmann points out that the search for, 

conception and creation of SLE is one of the fields where researchers‘ and teachers‘ 

objectives interlink, where not only theory and practice, but also mathematics and 

didactics of mathematics mingle and which is open to natural long-term, systematic 

cooperation of researchers and teachers.  

It is not uninteresting to recall at this point that Vyšín (the prominent Czech 

mathematics teacher educator) already emphasized in the beginning of the 1970s‘ the 

need for simultaneous theoretical and practical conduct of research in the didactics of 

mathematics. He regarded systematic cooperation with teachers and preparation of 

materials for development and refinement of teachers‘ work to be crucial. Similarly 

Bell, claimed already in the middle of the 1980s‘ that ―The developing theory of 

mathematical learning and teaching must be a refinement, an extension and a 

deepening of practitioner knowledge, not a separate growth‖ (Bell,, 1984, p. 109, 

quoted from Wittmann, 2001). There are a number of developing trends in the 

various forms of cooperation between researchers and teachers, e.g. action research 

(Benke, Hošpesová, & Tichá, 2008). For that matter the authors of this paper have 

been developing similar ideas for a long time.
[1] 

 

STUDY WITH TEACHERS AND TEACHER EDUCATORS 

Starting points, aims, objectives  

Most existing works on natural differentiation deals with algebra or arithmetic. That 

is why we tried to construct geometrical SLEs and asked whether and to what extent 

it is possible to use them for natural differentiation. We chose three environments, 

which we entitled Way, Room, and Mosaics. The SLEs were originally created for 

primary school pupils and were experimentally tested at this level (Hošpesová, 

Matějů, & Fantová, 2010; Tichá, 2010). 

Later we used the same environments in in-service and pre-service teacher training 

with the aim of training both pre- and in-service teachers for work in SLE and for 

natural differentiation. We introduced them to the SLEs and asked them to analyze 

pupils´ productions and to create problems.  

In a subsequent stage we also had the opportunity to study the reactions of teacher 

educators to these environments. We primarily focused on two areas of questions (i) 

which mathematical topics may be developed in the given SLE, which mathematical 

topics may be pursued in them, (ii) which substantial mathematical and pedagogical 

knowledge is prerequisite, what knowledge the teacher needs for efficient use of the 

environment. First and foremost it was mathematical content, potential for natural 

differentiation and posing a wide variety of problems that were discussed.  
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Description of the created SLEs and our experience from teaching primary 

school pupils  

The environment Way works with an idealized street plan (see an example in Fig. 1). 

In the introductory lessons pupils became familiar with the map; with the structure of 

a description of a way; with interpretation of instructions; with criteria that 

a description should meet. After that we focused on three types of problems: 

(a) drawing a verbally described way in the map, (b) verbal description of a mapped 

way, (c) pupils‘ individual choice of a way and its description. 

 

Fig. 1 Street plan  

In the background of the choice of this context 

was our belief that development of the ability 

to move and orientate oneself in space 

contributes to development of mathematical 

literacy in various areas (for example 

construction of geometrical conceptions, 

modeling of real situations and use of 

appropriate language, introduction to various 

concepts and procedures and to an algorithmic 

approach).  

The second environment was named Room. Two basic activities were used in this 

environment: (a) modeling of 3D space and objects in 2D and (b) placing objects in 

space. Pupils were given a room plan and models of furniture. They were asked to 

furnish the room. It was up to them how many people would inhabit the room, 

whether they would use all items of furniture and so on. The environment opens 

space especially to development of modeling, estimating, of work with scales, of the 

concepts of congruent shapes (symmetry, translation, rotation) and of filling up the 

space. The pupils‘ work displayed a considerable number of differences. The source 

of these differences often was on the social level; the differences were most often 

connected with different real-life experience with this activity. What was positive 

was the pupils‘ effort to find a fair layout of furniture in the room when the room was 

furnished for more than one person. There were differences in the ability  

to estimate the size of the items of furniture (estimations 

and measuring), the ideas of the size of the (needed) free 

space. There were also differences in the number of items 

of furniture used, the number of inhabitants etc.  

In the third environment Mosaics we worked with 

different sets of geometrical shapes (see an example in 

Fig. 2). The goal of the designed tasks was to make 

pupils identify geometric figures and their properties by 

assembling shapes from elements of the mosaic. In a  
 

Fig. 2 Mosaic 
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sequence of tasks, pupils successively assembled (a) the figures given in the model, 

(b) their own pictures, (c) all possible figures, (d) figures from 2, 3, 4, n elements of 

the mosaic, (e) a given figure (square, triangle etc.) from 2, 3, 4, n elements of the 

mosaic and (f) created their own mosaic. 

Use of SLEs in seminars for pre-service teachers; a new perspective 

Pre-service teachers for primary school level were asked to assess all the above 

mentioned environments. The students‘ task was to explore their potential for natural 

differentiation and to pose questions and problems. Our former research clearly 

shows that problem posing is of a strong stimulating and motivational value both for 

pupils and for students (Tichá, 2009). That is why we decided to use a new point of 

view and in the following phase of our research we focused on differentiation while 

posing problems in a given context (a street map). We present here what our students 

proposed. 

In the environment Way the students tried to pose problems enabling natural 

differentiation connected to the environment of the street plan. The most common 

problems were the following two types: 

Describe the way. 

Follow the shortest way to get from the hotel to the restaurant. From the restaurant, go to 

the bus stop and take a bus to go to the swimming pool. On the way, make a stop at the 

post office. Once you have reached the swimming pool, go to the zoo and from the zoo 

back to the hotel. How will you go? Draw it in the plan.    

Where will you arrive? 

We go to the right from the bus stop. On the first crossing we turn left and go straight on. 

On the next crossing we continue walking straight on. Then we turn left. Where do we 

arrive? 

Very rarely we came across problems with hints of combinatorics:  

Go from A to B. You can take whatever way you want. Or: Go from A to B passing C, D 

and E in any order. 

There were differences in the posed problems, for example in the number of places 

that were to be passed on the way; in the number of changes of direction; in the use 

of ―diagonal‖ connecting lanes (see Fig. 1) etc.  

We have ascertained again that if results of pre-service teachers and pupils are 

compared, they turn out to be of a similar nature.  

Finally we asked the students in the concluding discussion to state the mathematical 

concepts and methods that can be developed in the particular environment. The 

students suggested: orientation in space (right, left), estimation of distances (what is 

closer/farther), reading of a map (the meaning of symbols). They did not realize other 

possibilities which this SLE offers. 
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In SLE Mosaics students suggested that natural differentiation could be supported by 

different difficulty of the models (of some elements of the mosaic lined out in the 

model, only the outlines of the assembled figure given) and assembly of shapes of 

various difficulty. They also proposed that pupils record their results in various 

ways: copy the figures on blank sheets of paper, draw the figures into various grids 

(making it easier for them to construct the shapes). We regard this as a very 

becoming possibility for natural differentiation, because in geometry, construction of 

the solution is a substantial part of the solving process. Traditionally, geometrical 

problems are constructed with a pencil and ruler. Our problems were designed for 

primary school pupils and thus we expected that the results could be drawn and 

―exact drawing‖ is difficult for the pupils.  

As far as mathematical content in this environment is concerned, students expected 

pupils to enrich their ideas of geometrical figures in plane (2D). They also believed 

that the SLE would on an intuitive level develop pre-concepts of the concept of 

isometry (the figures if placed in a certain way overlap), of angle and symmetry. 

Differentiated records of the solution require from the pupils the ability to draw a 

figure with certain properties, e.g. the length of sides in a particular ratio, with 

particular interior angles. 

Both SLEs however also confirmed our initial opinion that pre-service teachers are 

not very ―fond‖ of geometry, they have very little idea of how to teach it at primary 

school level
[2]

. In consequence they highly appreciated the opportunity to work in 

SLE.   

Seminar with teacher educators and researchers; new stimuli 

The described environments were also used for work with a group of researchers and 

teacher-educators within the frame of a working seminar on CME 2010 conference 

(Hošpesová, Roubíček, & Tichá, 2010). Our work with this group helped us 

considerably in our effort to deepen the theoretical background of the concepts of 

SLE and natural differentiation. All the participants welcomed the focus on geometry 

and emphasized the wide range of stimuli stemming from geometrical environments 

and the potential for their use in the system of propaedeutics. The discussion 

concentrated on the mathematical core and didactical possibilities as well as pre-

service teacher training for primary school level. The participants emphasised the 

question: What knowledge do we develop? They asked for an example of the task 

which cannot be taken as SLE.  

The conclusion of the discussion was that all the environments provide a wide range 

of opportunities for natural differentiation. The proposals of the participants included 

structured requests for: related mathematical knowledge, activities, and tasks.  

The environment Way was seen as suitable for: (a) orientation in space and plane, (b) 

utilization of pictures as universal language, (c) development of coding and decoding 

(requiring from the pupils to erase unnecessary words, substitute words by signs in 
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the description of the way), (d) development of algorithmic approach, optimization 

of the procedure, (e) adding/completing estimation and comparing distances 

(lengths), (f) challenging pupils to create their own ratio scale/measurement.  

The environment Room was regarded as suitable for development of intuitive ideas, 

pre-concepts: (a) projection in two dimensions and in three-dimensional space and 

transition between the two, (b) covering the plane, (c) orientation in space, (d) 

measuring and using the scale, (e) solids, shapes, …, (f) transformations – isometry, 

symmetry, congruency, similarity, (g) mathematical ideas, meaning, (h) language 

(describe your room, the room you have designed, create a room according to a 

description), (i) sense of representation (design furniture and cut it out from a piece 

of paper).   

In their comments the participants also paid attention to the relation to reality and 

proposed questions such as: Why do we furnish a room? What kind of a room? Why 

are wardrobes cuboids? How high should wardrobes be?  What happens if our room 

is not a cuboid? Why do you use double beds in a bedroom? What would be the price 

of having the room redecorated? How does the position of objects in a room 

influence the social dimension of that room?  

The environment Mosaics in their opinion provides the opportunity:  

- To assemble and identify geometric figures (e.g. they posed the following problem 

with triangles whose one side is red and the other white: create various shapes 

combining two triangles – see examples in Fig. 3 – and questions: propose criteria 

for classification of the created shapes, why are some of them monochromatic and 

others dichromatic?  

  

Fig. 3 Shapes from triangles Fig. 4 Material for tessellations 

- To seek similarities and differences in geometric figures; on intuitive level to 

identify their properties such as length of their side, size of the interior angles 

- To enrich notions of polygonal shapes  

- To develop intuitive notions of congruence 

- To gain experience with homothetic transformations on visual level 

- To introduce pupils to measuring area – problem: cover the rectangle using 

geometrical figures; what figures did you use?  
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- To use this knowledge in modelling of practical situations  

The participants also suggested other environments and activities: tessellations 

(proposed shapes designed by participants in fig. 4), constructions in Cabri.   

CONCLUDING REMARKS 

As stated above, this paper presents information of ongoing research, on its 

background and its preliminary results. We are convinced that creation of SLE 

pertaining to the subject matter taught should be at the centre of attention of didactics 

of mathematics. It is not only research but also teacher training that should be related 

to it. The first experience of work targeted on this issue show that it is a long-term, 

systematic research focusing both on theoretical and experimental solution of the 

promising issues of teaching goals, contents and methods and pupils‘ learning of 

mathematics.  

Work with pre-service teachers confirmed our belief that teacher training must 

involve activities of this type as students often fail to ―see mathematics in the world 

that surrounds them‖. It is even in-service teachers with long teaching experience 

who lack this ability. They often fail to realize that what they deal with is an open 

problem, open situation – they cannot make any use of it for they are not able to see, 

understand, and grasp mathematics inherent in it. It is becoming more and more 

apparent that it is mathematics that is the leading agent. It confirms again that the 

teacher must master mathematics – mere teaching experience, however long it may 

be, not anchored in knowledge of mathematics is not sufficient.  

In our work with pre-service teachers we observed that the nature of the posed 

problems gradually changed: from simple problems with easy solutions of 

―textbook‖ nature, commonplace (both with respect to the context and to the topics) 

and often badly worded problems, to challenging uncommon problems with 

diversiform assignments (graphs, tables, diagrams, …), representations (iconic, 

symbolic) facilitating various solving procedures and approaches, asking for 

justification, leading to further meditation (open problems). Referential contexts 

were enriched.  

It is gratifying that the atmosphere in mathematics lessons changed: teacher students 

became more active, everybody participated in the lesson as their abilities were 

respected, not only their attitude but also their beliefs and self-confidence improved. 

Again joint reflection proved to be of utmost benefit as it shows that students 

penetrate mathematical concepts, procedures and structures in greater depth. 

Working with teacher educators we realized their orientation towards mathematics 

and their ability to grasp the depth of the content. At the same time they discussed 

the pedagogical aspects in relation to the mathematical classroom and teacher 

training. We saw that realization of benefit of natural differentiation requires the 

change of approaches to coping with heterogeneity in mathematics classroom. 
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NOTES 

1. Similar ideas are in the background of our studies of the process of grasping a situation (Koman 

& Tichá, 1998). By grasping a situation we understand the thinking process which blends activities 

focusing especially on formulation of questions and problems springing from the situation, solution 

of the posed problems and interpretation of the results. To be able to grasp a situation with 

comprehension, it is necessary not only be able to construct a mathematical model, but also to 

communicate and reason. The social aspect is of great importance here. We want to make pupils and 

pre-service teachers see mathematics in the world that surrounds us, in different ―mathematical‖ and 

―non-mathematical‖ situations. Our exploration of grasping became the starting point of our 

research of development and use of the ability to pose problems. We perceive it not only as a goal, 

but also the means of mathematics education and also as a diagnostic and motivational tool (Tichá, 

Hošpesová, 2010). 

2. In the Czech Republic, geometry is a component of primary school curricula. The Framework 

Education Programme for Basic Education (2007) demands that: ―In the thematic area of two- and 

three-dimensional Geometry, pupils identify and draw geometric figures and model practical 

situations, seek similarities and differences in common figures, study an object‘s position on a plane 

(or in space), learn to compare, estimate and measure length, angle, circumference and area (surface 

area and volume), and to improve their graphic skills.‖  

 3. This research was partially supported by the grant projects: GACR 406/08/0710; AS CR, 

Institutional Research Plan AV0Z 10190503; 142453-LLP-1-2008-1-PL-COMENIUS–CMP. 
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DIFFERENCES IN THE PROPOSITIONAL KNOWLEDGE AND 

THE KNOWLEDGE IN PRACTICE OF BEGINNING PRIMARY 

SCHOOL TEACHERS 

Fay Turner 

University of Cambridge 

In this paper I draw on a four year study into the development of mathematics 

teaching of beginning primary school teachers. I focus on the finding that in the 

early stages of teaching, it appeared to be difficult for the teachers to apply 

‗propositional‘ pedagogical content knowledge (PCK) that had been ‗taught‘ in the 

university, even though they were able to demonstrate this PCK in discussion.  As the 

teachers became more experienced, their supported reflection on practice seemed to 

enable them to draw on, and activate, their propositional knowledge.  This perhaps 

suggests that mathematics educators should not ‗despair‘ that their students do not 

appear to apply the content of their mathematics methods courses when they begin 

teaching. Rather, they should encourage beginning teachers to reflect on their 

practice with a focus on mathematical content knowledge. 

Key words: elementary teachers, content knowledge , professional development 

INTRODUCTION 

From the start of their careers, beginning primary school teachers have a bank of 

knowledge about mathematics teaching on which they can draw in their practice.  

This knowledge originates variously from their own experience as a pupil, from their 

observations of mathematics teaching and from the mathematics methods courses 

they undertook as part of their teacher education.  However, the knowledge of 

beginning teachers might be considered to be qualitatively different to that of 

experienced teachers because it is not ‗embedded in practice‘.  There a number of 

theoretical perspectives which help us to understand the qualitative difference 

between the knowledge of beginning teachers and knowledge which is embedded in 

practice.   

Shulman (1986) proposed three forms of knowledge: propositional knowledge, or 

academic knowledge; case study knowledge, i.e. knowing what worked from 

observation or from past experience and strategic knowledge, i.e. the ability to make 

appropriate strategic decisions while in the act of teaching by drawing on relevant 

propositional and case study knowledge. The knowledge of beginning teachers might 

be categorised as propositional knowledge, gained from their teacher education 

courses, and also case study knowledge gained from reflections on their own 

teaching and the teaching of others as a student teacher.  Strategic knowledge can 

only be developed through the act of teaching and beginning teachers will therefore 

have little access to this.   
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Other mathematics educators have argued for a kind of active knowledge that can 

only develop in practice. Mason and Spence (1999) distinguished between knowing-

about and knowing-to.  They drew on the seminal work of Ryle (1949) in which he 

distinguished between knowing that (factual knowledge), knowing how (knowledge 

of how to perform acts), and knowing why (having stories to account for actions).  

Mason and Spence suggested that these three ways of knowing may all be considered 

as knowing about, but that knowing about a subject does not guarantee being able to 

apply this knowledge in practice.  They proposed knowing-to as a fourth way of 

knowing that is active rather than static. They suggested that knowing to might arrive 

‗suddenly like a bolt of lightening‘ (p. 146), which resonates with the model of 

teacher knowledge suggested by Hegarty (2000).  In this model the teacher is seen as 

having a number of incomplete sets of relevant insights, elements of  which come 

together in instances of teaching to form a new insight specific to that situation.   

According to Hegarty‘s model, teacher knowledge is firmly situated within the act of 

teaching, and can only be developed in practice.  

These ideas are consistent with a social theory perspective of knowledge and 

knowledge development.  Lave and Wenger (1991) suggested that knowledge does 

not exist in the consciousness of individuals but rather in their participation in social 

practices.  Rather than bringing knowledge to situations and applying it, knowledge 

is constructed in social practice, and can therefore only be identified or developed in 

context (Greeno, 1998; Putman and Borko, 2000).  Hodgen (2003) found 

mathematical content knowledge to be situated in the professional context of 

practitioners.  Experienced practitioners in his study demonstrated more 

sophisticated knowledge of mathematics in the context of their practice than they 

were able to do in an interview.  These practitioners appeared to know to when 

involved in professional action and when surrounded by the artefacts of their 

practice.  This was in contrast to the findings of the study reported here where the 

mathematical content knowledge of the beginning teachers did not initially appear to 

be supported in the same way by the contexts of their teaching.  In this paper I 

explore why this might be, and suggest how working with the Knowledge Quartet 

(KQ) framework (Rowland, Huckstep and Thwaites, 2005) appeared to accelerate 

the teachers‘ ability to turn their propositional knowledge into strategic knowledge. 

The KQ framework was developed from observation of mathematics teaching and 

the categorisation of situations in which mathematical content knowledge was 

revealed. The original 18 ‗situations‘ or codes were later classified into four 

‗superordinate‘ categories based on associations between them.  These categories 

make up the four dimensions of the Knowledge Quartet; foundation, transformation, 

connection and contingency. The foundation dimension encompasses situations in 

which subject matter knowledge (SMK) (Shulman, 1987) including common content 

knowledge (CCK) and specialised content knowledge (SCK) (Ball, Thames and 

Phelps, 2008), become apparent.   It also encompasses situations in which 
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propositional pedagogical content knowledge (PCK) (Shulman, 1987) becomes 

apparent.  The prefix ‗propositional‘ suggests that this knowledge is in the form of 

knowing- about (Mason and Spence, 1999) and is knowledge which may be gained 

‗in the institution‘, from personal research or experience.  

The three remaining dimensions categorise types of situations in which teachers‘ 

‗propositional knowledge‘ is activated to make it accessible to learners in the process 

of teaching.  Knowledge relating to these three dimensions may be conceptualized in 

terms of Mason and Spence‘s (1999) notion of knowing-to. The Transformation 

dimension encompasses situations in which the active forms of PCK are revealed 

through demonstrations, representations and examples used by teachers. The 

Connection dimension encompasses situations in which a teacher‘s knowledge of 

connections in mathematics is made visible in their teaching and involves drawing 

on their SMK.  Connection also encompasses situations in which knowledge of how 

to sequence mathematics teaching and make connections for learners becomes 

visible and relates to PCK.  Finally, the Contingency dimension relates to situations 

in which teachers respond to the unplanned-for and the unexpected in their teaching, 

when they are seen to draw on combinations of knowledge from the categories 

defined by Shulman (1986) and Ball Thames and Phelps (2008).   

THE STUDY 

The KQ framework was used in this study to facilitate reflection both as a means to, 

and as a measure of, professional development.  I wanted to investigate how 

effective the KQ would be as a tool for supporting beginning teachers in reflection 

on practice that would facilitate developments in their mathematical content 

knowledge. This paper focuses on whether the KQ supported the ability to activate in 

practice aspects of mathematical content knowledge learned in the institution. The 

study was conducted in four phases, each lasting one year, and the data collection 

methods were developed to suit the objectives for each phase. These included 

observations and videotaping of teaching, post-lesson interviews, group and 

individual interviews and participants‘ written reflective accounts. The KQ was used 

by me to analyse observed teaching and was used as a framework for discussion with 

participants about their teaching. The participants used the KQ to structure their 

written reflective accounts of their teaching.  The study began with twelve student 

teachers from the 2004-5 cohort of primary (5-11 years) postgraduate pre-service 

teacher education course at the University of Cambridge.  The numbers reduced, as 

anticipated, to 4 in the fourth and last phase of the study. Case studies were 

completed for three of the four teachers who participated throughout all four years of 

the study. Two of the teachers worked with Reception classes (4-5 year olds) and it 

was decided to complete a full case study for just one of these. The three case study 

participants were given the pseudonyms Amy, Kate and Jess. Amy was an early years 

trainee (3-7 years) and her highest formal mathematics qualification was a grade B at 
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GCSE
93

.  Kate was a general primary trainee (5-11 years) and her highest formal 

mathematics qualification was an A* at GCSE.  Jess was a general primary trainee 

and had gained a B in her mathematics GCSE. 

FINDINGS IN RELATION TO ACTIVATION OF PROPOSITIONAL 

KNOWLEDGE 

Amy‘s lesson that I observed during her final student teaching placement contained 

two instances in which it appeared that she did not draw on her propositional 

knowledge. This was a lesson on counting with a Reception class (4-5 years) and 

during the introduction part of the lesson Amy wanted to assess whether the children 

could match spoken and written numerals.  She asked the children to write various 

numbers on their individual white boards.  One example was ‗19‘ and several 

children wrote ‗1P‘, at least one wrote ‗99‘ and many wrote ‗91‘.  Amy then asked 

two children to demonstrate how to write ‗19‘ on the class white board.  One of the 

children wrote ‗1P‘ and Amy spent some time demonstrating how to write ‗9‘ 

correctly.  She focused on the reversal of the nine but did not address the problem of 

incorrect digit order that was apparent for several children.  During the post-lesson 

interview I observed that I had seen several children write ‗91‘ and asked Amy if she 

knew why this might be: 

Because you say nine first, then you say the teen that‘s why often they write the nine first 

they often want to write nine first then write it from right to left instead of left to right. 

(Amy, Phase One, Post-lesson reflective interview) 

Amy knew about the problems children encounter in writing teen numbers (Wigley, 

1997; Anghileri, 2007), but did not apply this knowledge in her practice. 

Later in the lesson, the children worked at a number of tasks, some of which 

involved counting objects.  I asked Amy why she had chosen these activities and she 

explained that she had selected sets of interesting objects in order that the children 

might practice their counting.  I then asked what she thought the children needed to 

know in order to be able to count these objects: 

It‘s number names and order … it‘s not anything to do with cardinality or anything yet, 

it‘s just the rote and the reciting numbers … (Amy, Phase One, Post-lesson reflective 

interview) 

I suggested that some of the activities were practising other pre-requisites of 

counting (Gelman and Gallistel, 1978), and asked Amy if she remembered what 

these were: 

One to one correspondence … moving an object, that‘s in one to one really, so if you‘ve 

got a random pile of objects you might want to move them out of that into a line or a 
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group … and remembering the final count is the total. (Amy, Phase One, Post-lesson 

reflective interview) 

Amy also knew that ―remembering the final count is the total‖ was called 

‗cardinality‘. Amy was able to explain this aspect of her PCK even though she said 

she had not drawn on these ideas when planning her teaching.   

I observed Amy teaching another lesson on counting during the second term of her 

first year of teaching.  This lesson suggested that Amy had become more likely to 

apply the propositional PCK in her teaching that she had demonstrated in our earlier 

discussion.  In the introduction to this lesson the children guessed how many unseen 

objects they thought were in various boxes, and then counted them. When the 

children were counting the objects, Amy praised them for, and drew attention to, the 

strategies they used, i.e. putting the objects in line, pointing to each in turn with their 

fingers, saying the numbers in order, and saying that the last number was the answer 

to ‗how many‘. At the end of the introductory part of the lesson, Amy reinforced 

what had been good about their counting, saying ―We said the numbers in the right 

order, we touched each thing once, and the last number we said was how many there 

are.‖  Amy made several comments in her reflective account of this lesson that 

suggested she had drawn on her propositional PCK when planning and teaching the 

lesson: 

When I was planning this lesson I drew on  my knowledge of the pre-requisites for 

counting: knowing the number names in order, one to one correspondence, the cardinal 

principle, being able to count objects that cannot be moved/touched and counting objects 

that cannot be seen e.g. sounds or beats.  These developmental stages formed the 

progression and structure to the lesson. (Amy, Phase Two, Reflective account of observed 

lesson)   

The principles of counting that Amy referred to and made explicit in her teaching 

had been taught during her teacher education course.  She had not made explicit use 

of this knowledge in the lesson observed in her training year however her knowledge 

became more explicit in the lesson observed the following year.  It seems likely that 

Amy‘s supported reflection on her teaching led her to make greater use of her 

knowledge of the pre-requisites for counting in the later lesson:   

I could have stressed moving the objects rather than putting them in a line …when they 

were counting sounds it would have been helpful to match each sound to a held up finger 

…When I asked are there more frogs or more snakes I could have asked a child to come 

up and show these on the number line … (Amy, Phase Two, Reflective account of 

observed lesson)    

Amy‘s reflection on her practice appeared to draw on her propositional knowledge of 

the principles of counting and enabled her to make informed suggestions for 

improvements. 
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Kate also appeared to have early difficulties in drawing on the propositional 

knowledge that had been taught in her teacher education course. In a lesson with a 

Year 1 class (5-6 years), observed during her final student teaching placement, Kate 

used a representation of a witch‘s cauldron to record doubling.  The number to be 

doubled was written as an addition sentence in the cauldron, e.g. 3 + 3, and the 

answer in a bubble above the cauldron.  After demonstrating doubling the numbers 

1-9, Kate moved on to doubling two digit numbers.  Her method for recording these 

involved writing the doubled number of tens and of units in separate bubbles, e.g. 

double 13 was recorded as 2 tens in one bubble and 6 units in another. This method 

of recording would seem to reflect column value rather than quantity value 

(Thompson, 2003).  When discussing this in the post-lesson reflective interview, 

Kate recognised that her recording of this procedure might have been problematic: 

Maybe it wasn‘t the most helpful thing to do at all because the easy way to do it is to 

think about it as a column method and if you are not doing it that way then it is probably 

quite hard. (Kate, Phase One, Post-lesson reflective interview) 

In discussion, Kate demonstrated that she knew that by recording the tens as single 

units she had obscured the value of the tens number and suggested a column method 

for addition. She recognised that this was not the most appropriate calculation 

method for these problems. Propositional knowledge concerning the advantages of 

using quantity value over column value and mental over written methods for addition 

was available to her in discussion but had not been drawn on during the lesson.  

On a number of occasions during the lesson, Kate used a number line to help 

children complete addition calculations such as ‗8 + 3‘ by beginning at one of the 

numbers and then counting on the second number, e.g. starting at 8 on the number 

line, counting on 3 and giving the answer as the number at which she had arrived.  

This pre-supposed that children had reached the ‗count on‘ stage in addition 

(Carpenter and Moser, 1984).  However, observation of the children‘s independent 

use of the number line suggested that some were still at the ‗count all‘ stage.  I asked 

Kate if she remembered the stages children go through in learning addition: 

At first not knowing that you can just start at numbers, that you have to count the one, 

two, three … so you have to count three to get up to three before you can carry on. (Kate, 

Phase One, Post-lesson reflective interview) 

Although she knew that some children would not be able to understand the addition 

strategy of starting with one number and then counting on the second number, Kate 

had not drawn on this knowledge in her teaching.  Like Amy, Kate demonstrated that 

when probed, she could refer to PCK that was not apparent in her teaching.  In phase 

two of the study I observed a lesson in which Kate modelled a number of methods 

for solving addition problems, involving both ‗count all‘ and ‗count on‘ strategies.  

Kate demonstrated that she was now drawing on her propositional knowledge of the 

stages in which children learn addition by counting, and applying this to her 
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teaching. Kate‘s reflection on her phase one lesson appeared to have enabled her to 

draw on and activate her propositional knowledge in the later lesson. 

In a lesson observed during her third year of teaching, Kate demonstrated that she 

had become adept at drawing on her propositional knowledge in the act of teaching. 

The lesson had been planned by another teacher.  This teacher had prepared a power 

point presentation to demonstrate addition strategies for two-digit numbers. Kate had 

only briefly looked at this before starting the lesson. When a slide was displayed 

showing 23 + 12 as (20 +10) + (3 + 2), Kate ‗deviated from the agenda‘
94

 and made a 

new slide showing 23 + 12 as 23 + 10 + 2.  In the post lesson reflective interview, I 

asked Kate why she had changed her demonstration in this way.  Kate explained that 

for two-digit addition, she normally used the strategy of keeping one number whole 

and partitioning the second number as children found this easier. When she realised 

that the slide was introducing a different addition strategy, she had changed it to 

represent the method her class were used to.  Although she did not use the terms 

1010 and N10 (Beishuizen, 2001) which had been referred to in her mathematics 

methods course, Kate demonstrated that she was aware of these two different 

methods of addition, and was able to make decisions about the appropriateness of 

their use in the act of teaching.   

There was evidence from my study that both Amy and Kate appeared more able to 

draw on their propositional knowledge as they gained experience of, and reflected 

on, teaching. I observed instances at the beginning of their teaching in which they 

did not draw on knowledge taught during their teacher education course although 

they did refer to this knowledge in post-lesson interviews.  In later lessons, there was 

evidence that they were drawing on the same propositional knowledge and activating 

it in their teaching. The findings were slightly different for the third case study 

participant, Jess. I observed an instance in Jess‘ early teaching in which she did not 

seem to draw on propositional knowledge taught in her teacher education course. 

However, unlike Amy and Kate, Jess was not able to recall this propositional 

knowledge during discussion.  There was evidence however that she was able to 

develop this knowledge and to draw on it as she reflected on her teaching 

experience. 

The observation happened in the second term of Jess‘ first year of teaching. This was 

a lesson involving the relationship between multiplication and division and Jess 

wrote ‗3 x 4‘, ‗12 ’ 3‘ and ‗12 ’ 4‘ on the class white board.  She represented the 

relationship between these operations by drawing four circles, each containing three 

dots.  For 12 ’ 3, this reflected a ‗quotition‘ structure of the division problem and for 

12 ’ 4 a ‗partition‘ structure.  Teachers commonly refer to these two structures as 

‗grouping‘ and ‗sharing‘ respectively.  Jess consistently used the term ‗share‘ when 
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talking about this division calculation.  During the post-lesson interview, I probed 

Jess‘ understanding of the two structures of division, and she admitted to being 

unsure of the distinction: 

Explaining dividing in terms of grouping and sharing still gets me mixed up.  It is 

something I need to work on myself.  The aim was to explain in terms of grouping.  In 

future I am going to sort this out before the lesson so my physical representations don‘t 

get mixed up. (Jess, term two first year of teaching, reflective account)  

Helping student teachers understand the two structures of division was a key 

objective of one of the sessions in Jess‘ mathematics methods course. At this stage, 

Jess appeared unable to draw on the knowledge taught in this session. However, a 

year later there was evidence that Jess was more secure in her knowledge of the two 

structures and was able to draw on this in her teaching.  During a lesson on division,  

Jess told the children that they would be focusing on the word ‗share‘ and using 

sharing to answer some division problems.  She displayed an interactive whiteboard 

screen showing the problem ‗16 divided by 2 equals [  ]‘ also written as ‗16 ’ 2 = [  

]‘ and 16 small circles which she referred to as buttons.   

Jess demonstrated a procedure for solving this problem involving ‗sharing‘ the 

sixteen ‗buttons‘ one at a time into two groups and counting how many in each 

group.  A similar ‗sharing‘ procedure was demonstrated for 20 ’ 2, 20 ’ 5 and 24 ’ 

4.  All the models used in this lesson reflected Jess‘ intended focus on the partition 

(sharing) structure of division.  During the group interview Jess explained how she 

had become clearer about the structures of division: 

In the [previous] division lesson you saw I got my sharing and my grouping mixed up …  

now I have got like this clear idea so when I was planning I did think about ‗is this 

sharing, is this grouping‘ and did actually draw a diagram out to make sure I had my ideas 

clear. (Jess, first term second year of teaching, group interview) 

It seems that when she began teaching, Jess did not have sufficiently secure 

knowledge about the two structures of division to support her teaching. However, 

reflection on her teaching supported by the KQ framework appeared to enable her to 

develop this propositional knowledge and to activate it in her teaching 

If you make a mistake in a lesson, like I got sharing and grouping wrong, every time I do 

division now I get my book out and go ‗that‘s sharing, that‘s grouping‘ and draw some 

pictures so I know I have got it clear in my head before I start. (Jess, Phase Three, term 

three, Group interview)  

DISCUSSION 

There were instances in the early teaching of all three teachers that suggested they 

did not draw on PCK that had been taught during their mathematics methods courses.  

There was evidence, particularly in the cases of Amy and Kate, that some of the 

ideas that they had been taught appeared to be held as propositional knowledge but 
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that they were unable to draw on this and activate it in their teaching. Amy was able 

to state the principles for counting, but did not use them explicitly in her planning 

and teaching.  Kate recognised the advantages of using quantity value rather than 

column value when recording calculations, but did not take account of this in her 

teaching. She also failed to recognise the need of some children to use ‗count all‘ 

strategies when doing addition. However, Amy and Kate were both able to answer 

questions about these aspects of PCK during post-lesson reflective interviews.  This 

would seem to be inconsistent with the notion of knowledge as being situated, which 

suggests that teachers should exhibit greater knowledge in their professional context 

than they could demonstrate through questioning (Hodgen, 2003).  However, the 

professionals in Hodgen‘s study were experienced ‗experts‘, whereas Kate and Amy 

were both at the very beginning of their careers. It may be that some experience is 

necessary before beginning teachers are able to draw on situated knowledge.  In her 

second year of teaching, Kate was able to draw on her knowledge of the 1010 and 

N10 strategies for addition when using a power point presentation prepared by 

another teacher.  Two years of experience enabled her to bring together the 

knowledge situated in the context of her teaching and the propositional knowledge 

taught in the university.   

There was evidence that all three teachers drew on propositional knowledge in their 

later teaching that they had not seemed able to draw on in earlier lessons. Amy 

explicitly referred to the principles for counting, Kate used both ‗count-on‘ and 

count-all‘ strategies and Jess clearly focused on the ‗partition‘ structure in her lesson 

on division.  The beginning teachers in this study appeared to become more able to 

draw on their propositional knowledge as they had more experience of teaching and 

as they reflected on that experience. Reflection on their practice close to the teaching 

context, in terms of both time and physical proximity, seemed to enable the teachers 

to draw on knowledge that had been inaccessible to them when planning and when 

teaching.  Propositional knowledge appeared to become more likely to become 

activated in future lessons following such reflection.  My study suggested that 

reflection, supported by the KQ framework to focus on the mathematical content of 

teaching, helped the teachers to draw on their propositional knowledge and to 

activate it in their teaching.  This suggests that in order to help student teachers apply 

mathematical pedagogical content knowledge taught during their teacher education 

courses we should perhaps take a longer view and support beginning teachers in 

consistently reflecting on their practice in a way that focuses on the mathematical 

content. 
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―STEPPING‖ AND ―STAIRCASE‖ 

Naďa Stehlíková, Milan Hejný, Darina Jirotková  

Charles University in Prague, Faculty of Education 

A scheme-oriented teaching strategy based on developing mental schemas (Hejný et 

al., 2007) has been systematically studied at the Faculty of Education. Its main tools 

are didactical environments (substantial learning environments, see Wittmann, 

2001). The focus of the poster are two arithmetic environments that we use for 

learning operations with natural numbers, negative numbers and as a preparatory 

vehicle for equations. (The whole poster is available from the first author.)  

Keywords: substantial learning environments, natural numbers, integers, operations   

The learning environments ―Stepping‖ and ―Staircase‖ were developed in the Czech 

context by M. Hejný to support teaching at the elementary school: handling integers 

and understanding simple equations and their systems. The poster presents a brief 

description of the recent implementation of this environment in Grade 6 with 

students who had not met any stepping in their elementary grades (see Stehlíková, 

2010).  

In the ―Stepping‖ environment, students took steps according to 

instructions in the school corridor with square tiles on the floor 

(see fig.). E.g., Adam and Boris were standing next to each other 
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on the blue tiles facing forward. Adam got an instruction ―Two steps forward, then 

three steps backward, begin now!‖ and carried it out.  The teacher asked the class: 

―What is the instruction for Boris so that he stands next to Adam?‖ The class: ―One 

step backward.‖ (A step backward was done without turning.)  

Note: In ―Stepping‖, numbers are used as operators. If we take steps on numbered 

stairs, we work with two types of numbers: addresses of stairs and operators of the 

position change. This environment is called ―Staircase‖. 

To record the instructions, the pupils spontaneously used arrows or plus/minus signs. 

The teacher negotiated with them that they would use the arrow notation: an arrow 

to the right meant one step forward and an arrow to the left, one step backward: 

or .   

Next, a new instruction was introduced – ‗turn about‘, which meant that a pupil 

turned 180þ to the opposite direction. It always came in pairs (so that the pupil faced 

the original direction). The pupils took actual steps and solved tasks which should 

start their journey towards understanding the effect of the minus sign before a 

parenthesis; i.e., subtracting a negative number is the same as adding a positive one. 

A new abbreviation was used:  

etc. (ČV as ‗turn about‘ in Czech.) When taking steps, the pupils experienced that 

―turning about changes the direction of the arrow‖.  

Later, the pupils were to transcribe the arrow tasks in numbers and the question 

was what to do with ČV. The pupils felt the need to separate a part of the calculation 

so it was natural to introduce a convention: the first ČV is written as the minus sign 

and left parenthesis and the second ČV is written as the right parenthesis.  

Instead of continuing with actual stepping, each pupil was given a stepping slip (see 

fig.) and a little figure with a marked nose (so that it was clear where it faced). The 

pupils put the figure on the blue tile, facing to the right, and then moved it as if they 

took steps. An important rule was that the figure had to begin and end with its face in 

the ‗forward‘ direction (facing to the right).   

With the tasks, the pupils were to get experience with operations with integers and to 

realise the meaning of minus before a parenthesis. E.g., – (– 1) = 1, – (1) = –1, 3 – (– 

1) = 4, – 3 + 1 = –2, – 1 + 3 = 2, – 1 – 3 = –4, – (– 1 – 3) = 4,  – (1 + 3) = –4, etc. 

Differences in the pupils‘ performances were seen. Some quickly spotted rules. Some 

began to calculate without the use of the figure. The aim was to let everyone use the 

slip as long as they wanted. After writing numbers 0, 1, 2, 3, ... –1, –2, –3, ... on their 

slips they created a model of a number line. Negative numbers explicitly acquired 

double meaning: procedural (movements backwards) and conceptual (an address). 
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CONCLUSIONS 

We have observed that Stepping-Staircase environments: 1) reinforce the idea of 

addition and subtraction as a movement on a number line and that is why it preceded 

the use of the stepping strip; 2) help pupils to grasp the meaning of calculating with 

negative numbers by means of the arrows notation; 3) illuminate the difference 

between subtraction and negative numbers; 4) help pupils to understand the rule of 

‗minus before a parenthesis‘; 5) serve as a model which bridges the gap between the 

informal and formal understanding of operating with integers.  

Acknowledgement: The presented work is supported by the project MSM 0021620862. 
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UNDERSTANDING THE INFINITE SETS OF NUMBERS  

 

CristianVoica Florence Mihaela Singer 

University of Bucharest, Romania University of Ploieşti, Romania  

INTRODUCTION 

We present an over view of a long term research program focused on students‘ 

understanding of the concept of infinity. Many questions connected to the idea of 

infinity could be addressed to school learning. Among these: Does an intuition of 

infinity really exist in children? Does the school build an understanding of infinity? 

How is this understanding reflected on problem solving along the schooling period? 

What capacities do trigger one‘s choice of a strategy in solving problems that deal 

with infinite sets? We answered these questions in a series of papers, some already 

published and others in progress. The poster was a summary of this research, 

organized around the themes listed below. 

PERCEPTIONS IN UNDERSTANDING INFINITY 

When discussing infinity, children seem to highlight three categories of primary 

perceptions: processual, topological, and spiritual (Singer&Voica, 2003, 2007). 

Around 11–13 years old, processual and topological perceptions interfere each other, 

while before and after this age they seem to coexist and collaborate, one or the other 

being specifically activated by the nature of different tasks. 

REASONING ABOUT THE INFINITY OF THE SETS OF NUMBERS  

School mathematics is dealing with infinite sets of numbers: these are, actually, the 

only infinite objects that we ―know‖ so far. Based on a processual perception, 

children see the set of natural numbers as being infinite, and endow Q with a discrete 

structure by making transfers from N to Q. In addition, children are able to make a 

transfer of reasoning from N to Q (Singer&Voica, 2008). Contrary to other studies, 

we found that, for many children in the lower secondary school, the concept of 

infinity of N is strong enough to permit reasoning. For example, some students found 

it necessary to apply negation for argueing that a given set is finite. 

STRUCTURES ACTIVATED IN THE PROBLEM SOLVING PROCESS 

When reasoning about infinite sets, children seem to activate four categories of 

conceptual structures (Singer&Voica, 2010): geometric (g-structures), arithmetic (a-

structures), fractal-type (f-structures), and density-type (d-structures). Students select 

different problem-solving strategies depending on the structure they recognize within 

the problem domain. They naturally search for structures in challenging learning 

contexts.  
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FURTHER RESEARCH: RELATION MISCONCEPTIONS - STRUCTURES 

Students activate various misconceptions when comparing infinite sets of numbers 

(e.g. Tsamir, 1999). Our research leads to the conclusion that the emergence of a 

certain structure is responsible for the misconceptions the students show when 

dealing with infinite sets. An overview of the relations between the categories 

presented aboveis given in Figure 1. 

Fig. 1: Connections between perceptions, structures and comparing strategies 

BRIEF DESCRIPTION OF THE CONTENT OF THE POSTER 

The poster contained the scheme presented in Figure 1, brief explanations, and some 

excerpts from relevant comments and drawings of the interviewed students. The pdf 

version of the poster is available underhttp://gta.math.unibuc.ro/pages/cristi.html.  

Keyords: infinity, structures, misconceptions. 
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EXPLORING PATTERNS IN ALGEBRAIC THINKING  

Antñnio Borralho, Elsa Barbosa  

Education and Psychology Research Centre, University of Çvora, Portugal 

Nowadays algebraic thinking has become central to the mathematics curriculum. 

The development of algebraic thinking is seen as essential to the mastery of algebra. 

The transition between numbers and a higher level of abstraction is not trivial and in 

moving from arithmetic to algebra students experience genuine difficulties (Barbosa 

and Borralho, 2009 and Sinistsky, Ilany and Guberman, 2009). Teachers should 

diversify strategies, allowing their students to develop algebraic reasoning and 

symbol sense (Arcavi, 2006). Considering the classroom environment, the present 

study aims to understand the use of patterns in a context of research tasks as a way 

to improve the progress of algebraic thinking. We started out with two main 

research questions focused on: (1) algebraic reasoning and (2) mathematical 

communication. 

Keywords: mathematics education, investigations tasks, patterns, mathematic 

reasoning, Algebra, algebraic thinking. 

INTRODUCTION 

The transition between numbers and a higher level of abstraction seems to be one of 

the thorniest stages in the mathematics teaching-learning process. Therefore, it is 

essential to choose adequate strategies that allow students to broaden and deepen 

their understanding of the algebraic language. 

Algebraic equations may have multiple solutions, giving students the opportunity to 

explore different solution paths. This view acknowledges the crucial role played by 

teachers, in what concerns encouraging and exploring varied solutions; that is, 

helping students to improve algebraic thinking.  

Orton and Orton (1999) claim that patterns are a possible way to approach algebra 

and, consequently, develop algebraic thinking. According to Bishop (1997), when a 

student identifies the relationship between quantities and patterns he/she acquires 

important mathematical knowledge, for example, the concept of function. This 

means he/she is learning to investigate and communicate algebraically. Solving 

research tasks related to patterns emphasizes, on the one hand, investigation, 

conjecture and proof. On the other hand, and no less important, these tasks need to 

be interesting and challenging to students (Vale and Pimentel, 2005). Finally, they 

need to promote the communication of mathematical ideas (Barbosa, 2007). In short, 

they need to promote a patterning approach to algebra furthers mathematical skills as 

it interconnects itself with exploration and investigation tasks. 
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METHODS 

A qualitative and interpretive method was chosen, where a class was considered the 

unit of analysis in what concerns research tasks involving patterns. The study was 

carried out in an eighth-grade class (13-14 years old) and between two of its 

students, considering definite criteria, and aimed a descriptive and analytical 

outcome. The methodological option in conducting this research led to a qualitative 

and analytical study case. 

CONCLUSIONS 

Our study confirms Orton and Orton‘s results (1999) that the study of algebra may be 

initiated through inquiry and generalization of patterns. We found that exploring 

patterns in a context of investigative tasks enables the development of algebraic 

thinking and that such tasks are interesting and challenging to students. However, at 

the same time, teaching practices must be changed, leaving behind a ―traditional‖ 

teaching that promotes routine and an ―isolated‖ learning experience of contents, and 

move to teaching practices that give rise to meaningful and contextualized learning. 
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PROSPECTIVE TEACHERS DOING MODELING ACTIVITIES 

AND INTERPREATING STUDENTS WORK  

Neusa Branco 
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The poster presents strategies of prospective elementary school teachers in modeling 

situations and the contribution of the exploratory approach of their course of 

algebra and functions to their understanding of how to promote its teaching before 

the use of formal notation. 

Keywords: Prospective elementary school teacher, algebraic thinking, modelling. 

The poster presents the understanding of prospective teachers about modeling 

situations and the contribution of the exploratory approach of their course of algebra 

and functions to the understanding of how to promote its teaching to elementary 

school children. Moreover, this approach intends to promote discussions with 

prospective teachers about the development of algebraic thinking in their future 

students and about some misunderstanding and errors starring by students. 

MODELLING AS A STRAND OF ALGEBRAIC THINKING 

In Portugal algebra is taught throughout all grades. Thus, recent programs for 

elementary school try to articulate the algebra in all mathematical topics and to adapt 

the strands of algebra to each grade. Kaput (2008) presents two central aspects of 

algebra: (A) symbolic generalization of regularities, and (B) syntactically guided 

reasoning and actions on generalizations expressed in convectional symbol systems. 

These aspects are integrated into three strands: (1) the study of structures and 

systems abstracts, (2) the study of functions, relationships and covariation, and (3) 

application of a cluster of modeling languages. In elementary school, before the 

introduction of algebraic notation, students must be able to generalize situations 

using natural language and drawings in informal strategies. Students may guess and 

check solutions informed by the identification of linear relations and use their own 

notations (Sutherland, 2004). The focus of this poster is the third strand of algebra in 

two dimensions, the prospective elementary school teachers‘ understanding of 

algebraic activities and the expanding of these activities to elementary school 

students. 

THE STUDY 

The research follows a qualitative approach, using case studies. The participants are 

a class of 20 prospective teachers that attended the algebra and functions course in 

the third year of a teacher education program. This course was taught by the 

researcher. The main instruments of data collection are two mathematical tasks 

where two quantities are unknown (Task A – carried out before the course and Task 

B – carried out after the course), participant observation and documents produced by 
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participants. Exploratory tasks proposed in the course contribute to develop 

participants‘ algebraic thinking and their knowledge about learning and teaching 

algebra in elementary school. One of the tasks proposes the analysis of strategies 

used by Grade 6 students to solve the chicken‘s problem and the reflection about the 

teaching approach (Reeves, 2000). Collecting and analyzing of data run, in part, in 

parallel (Merriam, 1988). The analysis of data takes into account the strategies used 

by the participants and discusses the contribution of the exploratory approach to the 

understanding of how to promote the learning of algebra. 

RESULTS 

In task A, five prospective teachers gave the right solution but only four participants 

justified their solution with one guessing the values based on the difference of prices 

and three solving the system of equations. In task B, 15 participants present a correct 

solution and all explained their strategies, using pictorial representations, natural 

language or symbols: Twelve participants established their own strategies based on 

relationships and three solved the system of equations (not exactly the same three 

from task A). In the classes, the prospective teachers recognised the importance of 

discussion with students about different strategies to solve a problem with one or 

more unknown quantities and the initial uses of algebraic symbols: 

The fact that the teacher valorised the reasoning more than the results also contributed to the 

development of algebraic thinking. (Student 1) 

Some children used the letters and then explained their reasoning to colleagues and why they 

used them. From here the teacher can encourage the use of the letters, what begins to happen in a 

natural way. (Student 2) 

CONCLUSION 

The study analyzed the participants‘ answers in modeling situations, before and after 

the course. After the study, a greater number of students present a solution based on 

the identifications of relations. The study shows the perspective of the prospective 

teachers about the exploration of modeling activities with their students, 

emphasizing the relevance of reflecting about pedagogical aspects, namely the work 

that can be used in the classroom to promote algebraic thinking.  
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DIFFERENTIATED LEARNING ROUTES FOR SCHOOL 

ALGEBRA USING ONLINE DATABASE SYSTEMS 
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This poster presents the main lines of my current PhD work. It aims to design 
computer resources to help mathematics teachers to differentiate students‘ learning 
in school algebra in France in the final stage of compulsory education (15-16 years) 

and to study students‘ algebra activity. 

Keywords: School algebra differentiated learning routes, online database system, 

cognitive assessment 

CONTEXT AND AIMS 

While algebra constitutes an essential element of the curriculum in order to have 

access to higher education, it has the reputation of being a difficult, disheartening 

subject, which poses many challenges for students (Kieran, 2007). Many teachers 

also have difficulties taking into account their students‘ cognitive diversity in 

algebra. Taking this into consideration, the PépiMeP project
1
, of which my PhD is a 

part, consists of implementing computer resources in the LaboMeP online database 

system to help teachers to differentiate students‘ learning in elementary algebra and 

to study mathematics teachers‘ practice and students‘ algebraic activity. LaboMeP is 

an online database of exercises developed by one of PépiMeP‘s partners: Sésamath
2
, 

a French mathematics teachers association, which has had a central place in French 

online database systems for ten years. In the project, the Pépite software, a starting 

point of my research, based on a multidimensional analysis of algebraic skills 

(Grugeon, 1997), is integrated in LaboMeP and produces an automatic cognitive 

assessment of students‘ algebraic skills (Delozanne & al., 2008). My research 

consists of modelling differentiated learning routes for school algebra adapted to the 

cognitive assessment produced by Pépite, implementing them into LaboMeP and 

evaluating them as regards to students‘ algebraic activity. My research questions are: 

How to model differentiated learning routes? Which series of tasks to conceive in 

order to improve students‘ relationship with school algebra? How to conceive these 

tasks to integrate them into LaboMeP? Which feedbacks and tools to conceive in 

order to support students‘ activity? What are the effects of learning routes on 

students‘ activity? 

FROM THE MODELLING OF DIFFERENTIATED LEARNING ROUTES … 

The model of learning routes is based on a cognitive approach with Kieran‘s model 

for conceptualizing algebraic activity (Kieran, 2007), an epistemological approach 

and an anthropological approach (Chevallard, 1992) in order to construct the model. 

A differentiated learning route is defined by types of tasks and didactical variables 
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(expression complexity and task formulation) adapted to students‘ cognitive 

assessment established by Pépite and in order to develop transformational, 

generational and global/meta-level activities. Exercises are selected from LaboMeP 

or conceived with feedbacks and tools within the context of PépiMeP in order to 

enrich LaboMeP with new exercises. An example of learning routes is developed in 

the poster presented at CERME 7. 

 … TO THE EVALUATION OF STUDENTS‘ ALGEBRAIC ACTIVITY 

Evaluation is linked to the use of technology because learning routes will be 

integrated and evaluated from the LaboMeP database. The following questions are 

considered: Are learning routes pertinent from a cognitive and epistemological point 

of view? How do students appropriate learning routes on the LaboMeP database? 

What are their effects on students‘ activity? Methodology combines qualitative and 

quantitative studies: a large-scale one with an ICT monitoring in LaboMeP, and 

some case studies with observations and interviews in classroom.  

NOTES 

1. The three partners are: Laboratoire de didactique André Revuz (Paris 7 University), Laboratoire d‘Informatique de 

Paris 6 (Paris 6 University) and the Sésamath association. Ile de France region supports the project. More information is 

given in ―The PépiMeP Project: Online Database Systems and Differentiated Learning Routes for School Algebra‖ 

poster in working group 15 about technologies and resources in math education. 

2. http://www.sesamath.net/ 

3. The actual poster presented at CERME 7 may be obtained from the author by emailing her at 

pilet@math.jussieu.fr . 
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TEACHING AND LEARNING OF PARAMETERS  

IN FUNCTION FAMILIES [1] 
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Abstract: In the study that supports this paper was created a model for teaching the 

concept of parameter in functions, which intended to answer to the students‘ 

difficulties in this mathematical subject. It results from the reflection on the semiotic 

representations and transformations associated with the development of algebraic 

thinking in the resolution of investigative and exploratory tasks. In this model were 

defined three main levels – First: Operational level of reference; Second: 

Operational informal level; and Third: Structural level. These three levels interact 

dynamically in semiotic-cognitive processes in the learning of the parameter concept 

in a functional relationship, and in a hierarchical way (from the first to the third). 

Keywords: Function Families; Parameters; Semiotic Representations 

THE PROBLEM OF THE STUDY 

How do students represent, transform and convert the parameters in a functional 

relationship in achieving the structural level of knowledge? 

THE MODEL  

In a functional relationship, that involves parameters, our model considers three 

levels of understanding: 

First Level (Operational level of reference) – The student recognizes the correlation 

between dependent and independent variables, identifies and implements numerical 

parameters; the student uses informal representations (schemas, tables, graphs and 

statements in natural language) in his reasoning. 

Second Level (Informal operational level) – The student recognizes the change of the 

variables (independent and dependent) and of the parameter; the student uses yet the 

informal representations (schemas, tables, graphs and statements in natural language) 

in his reasoning. 

Third Level (Structural level) – The student turns and connects the representations 

that he used in the previous level; the student uses formal representations (symbolic, 

graphical, schematic, and statements in natural language) in his reasoning. 
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THE RELEVANCE OF THIS MODEL TO THE LEARNING OF 

PARAMETER CONCEPT  

In function families, a parameter is a generalized number that, when concretized, 

identifies functions of that family. For this understanding is necessary abstraction, 

but the progressive formalization of the concept causes difficulties for students. With 

the use of this model is intended to promote the learning of parameter concept by its 

three different levels – from the elementary to the structural one. 

NOTE 

1. This poster is integrated in the TASK 1 (Estimation, Symbol sense, and functions) of the 

Research Project Improving Mathematics Learning in Numbers and Algebra, supported by FCT, 

MCTES, Portugal. 
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LEARNING RISK IN SOCIO-SCIENTIFIC CONTEXT 
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This poster gives you a glimpse at research on how students make sense of the 

concept of risk and how they create their own models when a technology-enhanced 

approach is taken.  

Keywords: probability, impact, risk. 

WHAT IS RISK?   

Risk is an important socio-scientific concept in everyday life. There is a large body 

of literature on risk, covering a range of disciplines from mathematics to psychology. 

Each of these perspectives can contribute to a better understanding of how risk is 

constructed, perceived and managed by experts and the general public. However, 

neither mathematics nor psychology can explain risk by themselves; a combination 

of both sciences is needed, with risk at the socio-scientific intersection of the two. 

Adams (1996) proposed that risk is the product of the probability and utility of some 

future event. However, there is no agreed definition of risk in the literature; therefore 

this issue yields different epistemologies of risk.  Sometimes, risk can be considered 

as possible harm, which is an issue relating to impact. Sometimes, it can be presented 

as a probabilistic idea, which is the quantification of likelihood. In some cases, risk 

can presented as the coordination of likelihood and impact. This coordination makes 

risk a complex issue because, in situations which are not well defined, most people 

do not know how to coordinate likelihood and impact. In this theoretical account, we 

set out these issues in order to motivate the need for design research to explore 

students‘ thinking about risk.  

Methods: 

We aim to design computer-based modelling tools which provide students with the 

opportunity to explore the context, to build their own model and to express their own 

understanding in that context. To do that, we have decided to use Deborah‘s 

Dilemma, which has been designed for teachers to explore and interrogate their 

knowledge of risk. We have conducted interviews with a pair of students (aged 17-

18) and asked questions to trigger the discussion, to expose the idea behind their 

decision. In this sense, the students‘ activity provides us a window on their thinking 

about risk (Noss & Hoyles, 1996).  

Findings and Conclusion:  

Pratt et al. (in press) found that teachers drew on personal experiences and values of 

their risk-based decision-making in a personal dilemma. The mapping tool was 

designed at the end of their study but it has not been systematically tested. I used 
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mapping tool in order to facilitate students‘ risk-based decision-making. In contrast 

to teachers, students in this study talked in a superficial way about their personal 

experiences and emphasising her condition in a social aspect.   

Student:  My mum was in pain and she had the operation, then she got rid of 

the pain.  I knew Deborah is in pain and she has to get rid of it. So, 

she should have the operation… ―Not having the operation‖ affects 

her relationship and her job. .. She will not be happy if she cannot do 

sports as she might likes.  

Subsequently, the same study and methodology was tested with 15 years old students 

and they referred to impact separately from likelihood even though their discussions 

were more thoughtful and rational than 17-18 years old students.  
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FUTURE ELEMENTARY AND KINDERGARTEN TEACHERS‘ 

KNOWLEDGE OF STATISTICS AND OF ITS DIDACTICS 
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This poster addresses prospective teachers and infant educators‘ knowledge of 

statistics and of its didactics. The poster presents the results of a pilot test made with 

a questionnaire given to two classes of students. Some results of the questionnaire 

are presented and some conclusions are made regarding the improvement of their 

training. 

Keywords: statistical knowledge, professional development 

INTRODUCTION 

Most teachers do not feel able to teach statistics at the early years of schooling. 

Given their weaknesses in this field, they avoid teaching it or teach it in a superficial 

way. Nonetheless, in Portugal, the new mathematics curriculum indicates that 

statistics should be taught since the first years of school so that students can deal 

critically with the information around them. Therefore, there is a need to improve the 

professional development to prepare teachers to work accordingly to the curriculum. 

It is with this idea in mind that I propose to diagnose the prospective teachers‘ 

knowledge of statistics and of its didactics at the School of Education of Santarém. 

The poster includes part of this investigation, since it regards only the results of a 

pilot test made with a questionnaire. 26 students in their 3
rd

 and last year of the 

teachers‘ program answered the questionnaire. The questionnaire, composed by 14 

questions, included both questions concerning statistical knowledge and concerning 

their knowledge of didactics of statistics, covering primarily the topics: organization 

of data, statistical measuresand statistical investigations. Aquantitative analysis of 

the answers to the questionnaire is presented and some conclusions are elaborated. 

THEORETICAL FRAMEWORK 

Prospective teachers usually have weak or no training in statistics (Batanero et al., 

2004), as well as in statistical pedagogy (Froelich et al., 2008). However, as Shulman 

(1986) underlines, to teach, it is essential to master the subject and the way of 

teaching it. In his perspective, the knowledge needed to teach a certain subject – 

―pedagogical content knowledge‖ (PCK)– includes not only knowledge of the 

subject, but also examples, applications, models and representations, connections 

between topics, etc..This particular poster uses the Curcio‘s (1987) components of 

graphic comprehension (reading the data, reading between the data and reading 

beyond the data), Mokros and Russel‘s (1995) conceptions of average (as mode, as 
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algorithm, as reasonable, as midpoint and as balance), as well as Monteiro‘s (2009) 

different properties of average. 

FINDINGS 

A student answered, in average, to 70% of the questionnaire and left the other 30% 

blank. This can be related to the fact that it was the final of the year when they 

answered it or may be consequence of their statistical knowledge.Regarding the 

organization of different types of data, these students revealed more difficulty with 

the organization of quantitative continuous data. An interesting fact is that 7 

students, when asked to make generalizations based on a graphic representation, 

used data from their own experience.Concerning the statistical investigation 

implementation in class, the majority of the students who answered this question 

stated a theme (recycling) and a survey or questions to be answered, which is 

probably related to their own experience in class as learners. Only one student was 

able to briefly discuss the class implementation of the statistical investigation. All 

the others connected the task to doing the investigation itself. 

CONCLUSION AND FURTHER RESEARCH 

The most interesting conclusion of this pilot test was that students are stuck to their 

own experience as learners when thinking about teaching. They are not able to go 

further on the planning of a lesson, stating only tasks that they did during their 

training. This may be an indication that students need more diverse experiences as 

learners, where afterwards they discuss its usefulness for students and its 

implementation in a classroom.The actual posterpresented at CERME7 may be 

obtained from the author by emailing her at raquelfms@gmail.com. 
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COMPARING ATTITUDES TOWARDS MATHEMATICS AND 

STATISTICS OF K-10 STUDENTS: PRELIMINARY RESULTS 
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Attitudes towards mathematics and statistics of 48 grade-10 Spanish students are 

analysed. The descriptive analysis of students‘ response to ATMI and SATS as well 

as a qualitative analysis of students‘ justifications for their scores are used to 

comparing the value component of attitudes towards mathematics and statistics. 

Keywords: statistics, attitudes, secondary compulsory education 

INTRODUCTION  

Attitudes are a key factor in improving the learning process (Estrada, 2009). They are 

manners of acting, feeling or thinking that show a person‘s disposition or opinion, 

and may involve negative or positive feelings, which result from positive or negative 

experiences over time in learning a topic (Phillips, 2007). A hypothesis suggested by 

Gal and Ginsburg (1994) is that students may transfer their feelings towards 

mathematics into statistics. In this paper we present results from an exploratory study 

that is oriented to provide empirical results that support this conjecture. 

METHOD 

The ATMI (Attitudes Towards Mathematics Inventory) by Tapia & March (2004), 

and the Survey of Attitudes Towards Statistics (SATS) by Schau, Stevens, 

Dauphinee & Del Vecchio (1995) were given to the same sample students The 

subjects were 48 undergraduate students, with an average age of 15 years and 60.4 %  

of girls in the sample. We carried out a descriptive analysis of scores in 

questionnaires as well as a content analysis or the students‘ written justifications for 

their scores in each item. We also compare our results with previous research 

(Carmona, 2004; Estrada & cols, 2005, 2009 and Tapia, 2004).  

RESULTS 

The results of the descriptive analysis of the ATMI suggest a slightly positive 

attitude in mathematics, since the mean score is over 3 (neutral point) in all the 

items. An exception is item 33 (average score only 2.79). I plan to take as much 

mathematics as I can during my education that corresponds to the factor 

―motivation‖. As regards attitudes towards statistics (SATS), three items (22, 13, 26) 

resulted in scores lower than 3.In general, ATMI scores were higher than SATS 

scores, and the factor ―value·‖ had higher scores in both scales. The content analysis 

of written justifications suggested that: (a) Mathematics was seen as important and 
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useful in personal and professional life by these students; and (b) Statistics was not 

considered to be so important in the personal and professional life for these students. 

Moreover, the importance given to statistics by these students depends of the type of 

work and they were not aware of the full range of application of statistics. 

CONCLUSIONS 

Attitudes towards statistics and towards mathematics were moderate or positive in 

both groups, but attitudes towards mathematics were better, in general. Contrary to 

the suggestion by Gal & Ginsburg (1994), this result suggests that not all the 

students transfer their feelings towards mathematics into statistics. Students have 

different view of the usefulness, relevance and value of statistics and mathematics in 

personal and professional life. All these results should be interpreted carefully, given 

the sample size, but they provide an interesting starting point to future research. 

Acknowledgments: Research supported by the project: SEJ2010-14947/EDUC. 
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TEACHING DIFFERENTIAL EQUATIONS WITH MODELLING  

Guerrero-Ortiz, C.   Camacho-Machín, M. 

Cinvestav- IPN, México       University of La Laguna, Spain 

Some results obtained from the implementation of a teaching experiment are 

presented in this paper. Particular attention has been paid in the modelling process 

of a problem leading to an Ordinary Differential Equation (ODE). The research is 

framed within the methodology of Design Research and the problem used in the 

teaching experiment was designed taking into account certain elements of modelling. 

Introduction and Conceptual Framework  

The activity presented in this paper is part of a teaching sequence that has been 

developed with the aim of introducing the concept of Differential Equation. Our 

main purpose is to provide students with tools to interpret an ODE and its solutions 

when they model a phenomenon. The results shown here are part of the first cycle of 

investigation in accordance with the Design Research Methodology (Brown, 1992; 

Drijvers, 2003).  Several representations of the solution appear in the modelling 

process, therefore, the focus is to show how one can promote the conversion between 

different representations of the solutions (Duval, 1988) and what the students‘ 

interpretations are regarding the rate of change by using different representations. As 

Doerr & Tripp (1999) said, modelling activities stimulate students to show different 

solution strategies as a result of the mental activities generated. Thus, they provoke 

the development of their conceptual comprehension by trying to represent their ideas. 

Methodology  

As part of Design Research, there are two key aspects: the cyclic character of design 

research and the central position of the design of instructional activities. This 

research methodology consists of three phases: preliminary design, teaching 

experiments and retrospective analysis. Here we present the results of the first cycle 

of investigation. The instruction took place with activities involving mathematical 

skills and processes related to Problem Solving (Barrera & Santos, 2002). 

The teaching activity was carried out with a group of seven engineering students, 

who chose to participate voluntarily in the experiment. One of the primary goals of 

the teaching was to begin modelling simple phenomenon by ODE such as  
( )

( )
dU t

kU t
dt

, the activity in figure 1 was designed in this way. The following three 

representations are present in the process of modelling: numerical, graphical and 

algebraic. The students can obtain the algebraic representation of problem by looking 

for patterns of behavior and the visual representation can help them to elaborate 

conjectures about behavior of the substance in the body.  
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Figure 1 

Modelling by using different representations 

 

Results and Comments 

Among other results, we can observe, by implementing the teaching sequence, some 

of the student‘s knowledge of concepts such as: rate of change, continuity, and some 

representations of the derivative. A part of these results show that students think in 

terms of amounts when they interpret a rate of change, this difficulty is verified in 

the different representations of rate of change. However, later activities showed that 

the students built the instantaneous rate of change more easily. We support the idea 

that building the concept of the ODE through modelling can help students to develop 

interpreting skills between the real context and the mathematical context and 

establish relationships between different mathematical concepts. The change from 

the discrete function to the continuous function is not trivial. It is important to work 

on the connections between average rate of change and instantaneous rate of change. 

It is necessary to introduce activities that promote reflection on these topics in the 

future design of teaching sequences. 
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BELIEFS ON THE USEFULLNESS OF MATHEMATICS AND 

MATHEMATICS SELF-BELIEFS AS IMPORTANT FACTORS 

FOR MATHEMATICS ATTITUDES 

Peter Vanköš
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Comenius University in Bratislava, Slovakia
1
 

The poster deals with the results of the questionnaire surveys of pupils‘ attitudes 

towards mathematics. The aim of the poster is to stress results which show the 

importance of specific attitudes in areas for the whole of pupils‘ mathematics 

education. The questionnaire used was a modified version of the Mathematics 

Related Beliefs Questionnaire and the research sample were students of the 5
th

 and 

9
th

 school year in Slovakia. The results of the questionnaire were processed by the 

statistical software CHIC. The pupils‘ beliefs on the usefulness of mathematics and 

their mathematics self-beliefs were identified as important factors for their liking of 

mathematics and their mathematics achievements. 

Keywords: affects towards mathematics, attitudes, MRBQ, questionnaire survey, 

improving of mathematics education 

INTRODUCTION 

The importance of pupils‘ attitudes towards mathematics is supported by the opinion, 

believed to be true in scientific and teacher communities, which states that pupils 

learn more effectively and they are more interested in the mathematics lesson and are 

performing better if they have positive attitudes towards mathematics (Ma & Kishor, 

1997). 

In our poster, we deal with the results of questionnaire surveys on pupils‘ attitudes 

towards mathematics performed in Slovakia. In our study, that was part of the 

comparative research study led by Jose Diego-Mantecon and Paul Andrews from the 

University of Cambridge, the modified Mathematics Related Beliefs Questionnaire 

(De Corte & Op‘t Eynde, 2002) was used. The questionnaire was designed to find 

out the compatibility of its use in various European states, specifically in England, 

Spain and Slovakia (Andrews et al., 2007; Andrews et al., 2008). The aim of this 

poster is to report on part of the results from the surveys carried out in 2007 on a 

sample of 204 Slovak pupils, 76 in the 5
th

 year (9–11 years old) and 128 pupils in the 

9
th

 year of the primary school (14–16 years old) and in 2008 on a sample of 241 

pupils in the 9
th

 year. The outcomes were analyzed by the statistical software CHIC 

(Gras et al., 2008) and showed significant impacts of the beliefs on the usefulness of 

mathematics and mathematics self-beliefs on other components of pupils‘ 

mathematics education as liking of mathematics, mathematics achievements and 

active learning strategies. 
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These results are very informative for mathematics education. They show that we can 

positively influence process of mathematics education by the improving of two 

elements: pupils‘ mathematics self-beliefs and their beliefs on the usefulness of 

mathematics.  
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ON THE MEANING OF MULTIPLICATION FOR DIFFERENT 

SETS OF NUMBERS IN A CONTEXT OF VISUALISATION 

Raquel BARRERA 

Ph.D. candidate in Didactics of Mathematics 

Laboratoire André Revuz – Université Denis Diderot – Paris 7 

Abstract. This work is a study of definitions, meanings and representations of 

multiplication for different sets of numbers from middle school to high school in 

France. Specifically, it concentrates on the integer, rational and complex number 

domains in order to determine the role that visual and geometric representations 

could play in the learning process of multiplication. 

Key-words. Multiplication, semiotics, geometric representations, transformation. 

Description of the poster. Could a geometric treatment of multiplication highlight 

the link between different meanings of multiplication related to different number 

domains? This question serves as the title of the poster, followed by different 

geometric representations of multiplication in the integer, rational, and complex 

number domains. Meanings of multiplication, even those corresponding to 

magnitudes, can be visually linked to transformations in the plane (i.e., factors as 

operators). Considering that geometric figures help students‘ reasoning by giving 

meaning to an assigned problem (Kuzniak, 2006) and by leading students to describe 

mathematical situations ―in order to master mathematical concepts‖ (Duval, 2003), 

we reflect on a historical text.  Descartes‘ product (1637) is one way teachers could 

introduce complex number multiplication: what will we find if we describe what 

goes on between the points, angles and line segments composing Descartes‘ 

geometric construction? Possible responses could include relations of proportionality 

between line segments, co-linearity of segments, as well as relations based on 

transformation in the plane such as homothety and rotation.  

Summary of research and further questions to discuss. Several studies show that 

the learning of multiplication in the rational, integer and complex number domains 

implies a break with the first meaning of multiplication.  This is because the product 

can no longer be seen as the result of repeated addition or as the area of a surface. 

What are the other meanings? How should we teach them and why? Are they 

important in the learning process of multiplication? Is there a ―geometrical common 

thread‖ between the different meanings of multiplication? 

The theoretical framework that has motivated our research on the meanings of 

multiplication in geometry is a cognitive approach to semiotic representations. Our 

assumptions, following Raymond Duval, are that ―mathematical objects are never 

accessible by perception or by instruments. The only way to have access to them and 

deal with them is using signs and semiotic representations‖ (Duval, 2006, p. 107) 
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and also that ―There is not mathematical thinking without using semiotic 

representations‖ (Duval, 2008, p. 1). Thus, we propose that (1) establishing a link 

between a numeric or algebraic register and a geometric register may aid 

comprehension of a complex notion such as multiplication; (2) understanding 

different meanings for multiplication may facilitate the emergence of various 

strategies for solving problems linked to this mathematical Notion; (3) more 

specifically, linking multiplication and geometry may give students a deeper 

comprehension of factors as operators.   

Through this research, we seek to relate our interest in the meanings of 

multiplication to the cognitive process linked to a change of semiotic 

representations that these meanings make possible. A few research questions are: 

can meanings of multiplication allow us to move between one semiotic 

representation and another? Can we suggest didactical treatments for multiplication 

and its meanings linking algebra, arithmetic and geometry? 

An epistemological and didactical analysis of multiplication in three number 

domains—integers, rational and complex numbers (Glaeser, 1981; Flament, 2003)—

and an ecological study (Chevallard, 1985) of middle school and high school 

curricula in France are the starting point of our methodology.  Is there a historical 

link between the meanings of multiplication and geometric representations? If not, 

do epistemological or didactical elements exist which propose this link? Can we 

suggest some didactical treatments for multiplication and its meanings linking 

algebra, arithmetic and geometry?  

Poster accessible online at: http://tinyurl.com/5ubxboy 
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GESTURE AND VISUAL-SPATIAL THINKING 

Conceição Costa 
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José Manuel Matos 

Universidade Nova de Lisboa / UIED FCT UNL 

This work attempts to grasp visual-spatial thinking in mathematics education. It 

analyses two classroom interaction episodes between two elementary students using 

a geometry software that stimulate the exploration of ideas of translation, reflection 

and rotation, through the motions slide, flip and turn. The excerpts are a follow-up 

of a study intended to create, explore and refine a theoretical model for visual-

spatial thinking. This poster also presents part of conclusions of the research about 

the visual-spatial thinking, related to grasping ―what is the role of the gesture for 

thinking?‖and it intends to contribute to the reflection about the theme.  

Key-words: Visual-spatial thinking, gestures and objectification.  

The interest in gestures for mathematics education is growing. Differences in 

perspective about the role of the gestures in cognition have, to an important extent, to 

do with theoretical components about thinking (Radford (2009a). Radford advocates 

that gestures are genuine constituents of thinking, and he presents a sensuous 

conception of thinking: "thinking cannot be reduced to impalpable mental ideas; it 

also made up of speech and our actual actions with objects and all types of signs. 

Thinking, hence, does not occur solely in the head, but in and through language, 

body and tools" (p.113). Within this perspective, gestures may be seen as part of the 

tactile mode that individuals use to conceptually grasp something; and thinking is 

considered a sensuous and sign-mediated reflective activity embodied in the 

corporality of actions, gestures and artifacts (Radford, 2009b). 

Our interest is in gestures as they appear in mathematics learning settings that 

promote the acquisition of visual-spatial thinking and this poster presets a follow-up 

of a previous work (Costa, 2005) that intended to create, explore and refine a 

theoretical model for visual-spatial thinking and through it to understand the 

development thereof by the identification of the visual-spatial thinking modes and 

the thinking processes associated to them. The theoretical framework for visual-

spatial thinking model took into account research in the areas of cognitive processes 

in mathematics education, embodiment in mathematics, a socio-cultural perspective 

on learning with emphasis on the social construction of knowledge and on semiotic 

mediation, theoretical perspectives on the teaching and learning of geometric 

concepts. 

In this poster, we will use the lens of theory of knowledge objectification (TO) 

(Radford, 2008) and the perspective about gesture of Radford to interpret two 
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classroom excerpts. In the TO, learning is conceptualized as the active and creative 

acquisition (thematized as a problem of objectification) of historically constituted 

forms of thinking through means and processes; these means are called, semiotic 

means of objectification; and the processes are called, processes of objectification. 

 

The methodology was qualitative integrating video registrations of individual 

answers and tasks performed in classroom activity. The analysis of those episodes 

centres on the gestures and words of the students that will be interpreted through the 

socio-cultural perspective of Radford, where mathematics learning involves the 

social and semiotically mediated process of objectification. 
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THE EVOLUTION OF SCHOOL MATHEMATICS DISCOURSE AS 

SEEN THROUGH THE LENS OF GCSE EXAMINATIONS 

Candia Morgan* and Anna Sfard** 

Institute of Education, University of London* and University of Haifa** 

The ways in which mathematics is communicated to students shape the ways in 

which they may engage in mathematical activity. A particularly powerful influence 

on the forms of tasks offered to students is the high-stakes examination. In a new 

project, we propose to analyse changes in the discourse of English national 

examinations at the end of compulsory schooling through a period of curriculum 

change and to investigate how these changes affect students‘ mathematical activity. 

Keywords: examinations; discourse analysis 

Over the last decades there has been ongoing public and academic concern about the 

nature and standards of school mathematics. This concern has driven frequent 

revisions of curriculum and examinations, yet controversy continues and there are 

contradictory opinions about the effects of reforms. The overarching aim of our 

study is to investigate the evolution of school mathematics in England, as seen 

through the lens of examinations at 16+. Our main question asks: What has changed 

since the introduction of the GCSE
95

 examination in the mathematics that pupils are 

expected to learn and in the way they are expected to approach mathematics? Rather 

than comparing syllabi or teaching methods, we seek to probe deeply into the nature 

of the mathematical activity expected of students. We do this by developing and 

applying a discourse analytic approach, drawing on Social Semiotics (Bezemer & 

Kress, 2009; Halliday, 1978; Hodge & Kress, 1988; Morgan, 2006) and Sfard‘s 

theory of mathematical thinking as communicating (Sfard, 2008). Studying discourse 

in this way, by focusing on the forms of language used in examination papers, allows 

a subtle characterisation of the ways they construct the nature of mathematics and of 

student mathematical activity. We argue that this type of analysis will provide insight 

into how changes in curriculum and assessment may affect students‘ mathematical 

learning.  

There will be two principal parts to the study. First, discourse analytic methods will 

be applied to a sample of examination papers in mathematics for pupils aged 16+, 

taken from different points in time, including critical points in the development of 

mathematics examinations since the introduction of GCSE. This will allow us to: 

                                           

95
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 develop a means of analysis of the discourse of mathematics examinations at 

16+ that will allow a characterisation of the nature of mathematical activity 

required of students and that will be sensitive to changes over time; 

 identify and characterise differences over time in the nature of mathematical 

activity required of students at 16+. 

Second, a group of current school pupils will answer a sample of questions from 

these examination papers. Analysis of their responses and detailed follow-up 

interviews will allow us to: 

 investigate how differences in the discourse of mathematics examination 

questions may affect the ways students approach the mathematics; 

 contribute to a fuller understanding of how changes in curriculum and 

assessment have affected the nature of students' mathematical learning. 

These two parts, when taken together, are expected to help us in addressing the 

question of in what ways GCSE examinations of different periods can count as 

mathematically comparable, that is, (a) whether they are ―mathematically equivalent‖ 

in the eyes of expert mathematics educators (the first part of the study); (b) whether 

they lead to ―equivalent‖ mathematical activity (the second part of the study). The 

study will thus: 

 contribute to debates about changes in curriculum, pedagogy and assessment 

methods; 

 provide knowledge and analytic tools to inform the design of mathematics 

examinations and curricular materials. 

In presenting the poster we will provide a brief overview of the project, our initial 

schema for analysing the discourse of examination papers, and examples of analysis 

that illustrate the differences in the nature of mathematical activity constructed in 

examination questions from different periods. 
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SELF-REGULATION OF STUDENTS IN MATHEMATICS AND 

ORAL COMMUNICATION IN CLASSROOM 

Sílvia Semana     Leonor Santos 
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Through an interpretative case study, the poster focuses the teaching practices of a 

mathematics teacher, Joana, aimed at promoting students self-regulation, in a 

context of collaborative work between four teachers and one of the researchers. The 

results presented are based, mainly, on observation (with audio and video recorder) 

of two lessons of an 8th grade class of Joana. Special attention is given to oral 

communication in the classroom, as a central concern of Joana‘s reflection.  

Keywords: self-regulation, oral communication in classroom, teaching practices, 

reflection, collaborative work 

THEORETICAL FRAMEWORK 

Research recognizes self-regulation as a process that can help improve students‘ 

learning and academic achievement (Boekaerts, Pintrich & Zeidner, 2000). It 

requires that students possess a concept of the standard level being aimed for, 

compare the current level of performance with that standard and engage in 

appropriate action which leads to the closure of the gap (Sadler, 1989). Oral 

communication in classroom could be an important element in the self-regulation, 

mainly if it is a thoughtful and informative communication that promotes reflection 

and argument, that is used to inform and adapt teaching practices and in which 

prevail discussion patterns (Voigt, 1995). Of course, this depends on how the 

teachers manage the discussions, question, listen and respond to their students. This 

requires the teachers to rethink what they do and how they do it, in other words, to 

reflect on their practice. But changes of practice are challenging. The collaborative 

work is a favourable setting for developing new forms of work in mathematics 

classroom (Sowder, 2007). 

JOANA‘S CASE 

In order to promote self-regulation of students, two lessons of Joana were planned by 

the collaborative group of teachers, including the proposal of a task in small groups, 

oral presentations with discussion in all-class and request of a written self-

assessment of each working group. In the first lesson, the dominant role of the 

teacher and the few interventions of the students in reaction to peers interventions 

were noticed by Joana. An overview of the lesson shows that the number of 
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interventions of the teacher was about half of the total in group-class and that the 

voice of students tends to be ―sandwiched‖ by Joana, that intervenes after each 

student. In the second lesson, Joana stress the need to students comment peers 

interventions and oral communication changed remarkably. The teacher passed much 

more unnoticed during oral presentations and the students asked questions to 

colleagues, commented and argued, communicating among themselves. Indeed, 

following this second episode we find 26 interventions by students, without any 

intervention by the teacher. 

Eduardo: ... you are saying ... So, the number of the figure is one, isn‘t it? You have to 
do three times one plus one? 

Duarte: No. You have to make the number of the figure, supposed that the figure is two 
(...) The number of the figure is two (...) three times, which are the points we add, and 
one more, which is the middle one. 

Eduardo: Ah? 

Filipe: Look, look ... Not counting this, two is what will be here  [in the 2
nd

 figure], three 
is what will be here [in the 3

rd
 figure]... 

Ana: Look. It‘s like this, I get it, we do the number of the figure, which is a ... 

Eduardo: Yea… 

CONCLUSIONS 

The collaborative work provided opportunities for Joana to plan, discuss and reflect 

about her classroom practices, especially concerning oral communication and the 

promotion of self-regulation of students. A remarkable development is visible in oral 

communication in the classroom, from the first lesson to the second one. Joana seems 

to become aware of her role in oral communication in the classroom, being more 

concerned with giving space and encouraging the students to discuss, argue and 

counter-argue their ideas. The reflection by the teacher, in a context of collaborative 

work (Sowder, 2007) gains especial importance, by contributing to changes in the 

teaching practices, which are expected gradual and challenging. 
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TEACHERS‘ ENDORSED AND ENACTED NARRATIVES TO 

PROMOTE MATHEMATICAL COMMUNICATION 
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Ongoing study with the purpose of identifying teachers‘ strategies, tools and settings 

to give the students opportunities to participate in mathematical discourse. Several 

research methods are used to catch and compare the teachers‘ and students‘ 

discourse of mathematic. The study is guided by the commognitive framework and in 

this part teacher interviews are analyzed by a hermeneutic approach. 

INTRODUCTION 

The Swedish curriculum raises demands of individualization and an effect is that the 

students have been left to work individually at their own pace (Skolverket, 2009). 

When the mathematics communication decreases, the pupils cannot build up a useful 

language to master expressions and methods used in the textbook (Lôwing, 2004). A 

conjecture is that teachers‘ awareness of the mathematical communication is 

fundamental for learning. The aim is to investigate the teachers‘ endorsed and 

enacted principles regarding mathematical communication and to identify teachers‘ 

discursive routines to encourage the participants‘ ability to take part in the classroom 

discourse.  

THEORETICAL FRAMEWORK 

This empirical study sets out from the commognitive theoretical framework (Sfard, 

2008) rooted in the participationist assumption that the discourse in mathematics 

plays a central role for learning. Learning is here seen as an activity in which the 

students modify and extend their discursive repertoire. The discourse analyses will 

be guided by the commognitive framework and critical hermeneutics is used to 

interpret the teachers‘ narratives about the role of mathematical communication. 

METHODS AND RESEARCH QUESTIONS   

Several research methods are used to catch and compare the teachers‘ and students‘ 

discourse of mathematic; interviews, video recorded classroom observations and use 

of ―smart pens‖. In this first part, with the purpose of investigating and identifying 

teachers´ strategies, tools and settings to give the students opportunities to participate 

in mathematical discourse, 15 teachers in Upper Secondary School are interviewed in 

semi structured audio taped interviews. The transcribed interviews are analyzed 

according to a hermeneutic approach (Ödman, 2007). The research questions to deal 

with in the interviews of the teachers are: What narratives do teachers tell about the 

role of the discourse in learning mathematics and ways to foster the students‘ 
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mathematical conversation in different learning situations? What is the expected 

impact of the students‘ learning from the teachers' perspective? 

RESULTS 

The teachers emphasize that opportunities for students‘ learning in mathematics 

occur, when the students explain and discuss mathematics with others. Participating 

in the discourse the students can be aware of, and familiar with, the peers´ strategies 

and methods to build up thinking structures in mathematics and identify their ―error 

in thinking‖. The teachers stress that not only the students but also teachers 

themselves are learning in the classroom discourse. Their ability to understand the 

students´ way of thinking increases and they can take more aspects of how students‘ 

struggle with mathematics into consideration in their planning. They put emphasis on 

the opportunities to observe the students when they are struggling with words and 

trying to enlarge the discourse in the current context. This enables them to help the 

students to modify and extend their use of words and fill the existing gaps in the used 

classroom language. 

In order to promote the mathematical communication in the classroom, the most 

essential obstacle to clear away is the students‘ lack of self-confidence in the subject, 

to work against the feeling that it is possible to learn mathematics and defy negative 

attitudes from parents, teachers and society. Further to inspire the students‘ feeling 

that they have time to listen to each other, explain their thoughts with their own 

vocabulary and exchange ideas. The teachers have to work consciously to encourage 

the students to put their strategies and how they have figured things out into words. 

They underline the need to work towards a teaching learning agreement in the 

classroom where comprehensions is more important than getting a lot of exercises 

done. Most of the teachers try to avoid predetermined roles by randomly chosen 

working groups. To encourage the mathematical communication they prefer to 

arrange group discussions without right or wrong answers, and the students have to 

actively explore the explanations and interpretations from others and take sides for or 

against. 

Author‘s email: mebm@soderkoping.se 
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COMMUNICATION – A/THE KEY TO MATHEMATICS 

Birgit Gustafsson 

Department of Natural Sciences, Engineering and Mathematics,  

Mid Sweden University 

Abstract: This poster presents a part study of a larger project dealing with 

classroom communication and teacher-student interaction in mathematics 

education. The study focussed upon in the poster investigates communicative aspects 

and teachers‘ scaffolding strategies during lessons when algebraic concepts are 

being taught.  

 Keywords: Communication, teacher-student interaction, algebra 

INTRODUCTION 

The research project of which the presented study constitutes one part is dealing with 

teaching and learning mathematics in the latter part of compulsory education and the 

first year of upper secondary school. The focus of the project as such is upon 

classroom communication with respect to teacher-student interaction and the 

teachers‘ scaffolding strategies on the one hand and students‘ interpretation and 

understanding of the learning content on the other. The mathematical domain that is 

studied is algebra, and both mathematical concepts which are new to the students and 

concepts, which students are already familiar with, are of interest. It is frequently 

argued that algebra is an abstract and problematic area (e.g., Olteanu, 2007) which 

most students have not met in primary education in any formal sense, and which 

contains a body of new mathematical concepts. Shortcomings in the early teaching 

and learning of algebra and functions may, in turn, cause later problems in 

mathematics. There is a risk that difficulties occur if a large number of new concepts 

that the students have never met before are introduced within a short time and 

without ensuring an adequate understanding. The aim of the present study is to 

investigate the teacher-student interaction with focus on teachers‘ scaffolding 

strategies.  

THEORITICAL FRAMEWORK 

To answer the research questions the Theory of Didactical Situations (TDS) has been 

adopted as a theoretical framework (Brousseau, 1997). In this theory, the didactical 

situation is regarded as three-dimensional, and as a relation between the teacher, the 

pupils and the learning content. Leaning on TDS the analysis has taken its points of 

departure in: the didactical situation vs. the adidactical situation; the milieu created; 

the didactical contract  

There is a didactical situation if the teacher has an active role. If the teacher plays a 

modest role, we have an adidactic situation. The milieu is constituted not only by the 

physical surrounding but also by the design of the lesson. The didactical contract – is 
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an interdependent obligation between teacher and students. It has characteristic rules 

that each one has to fulfill.  

METHOD 

In a first step, before their introductory lesson in algebra, semi structured interviews 

were carried out with each of the seven teachers participating in the project. These 

interviews focused on the learning content and the teachers‘ intentions with the 

lesson. Semi structured interviews were chosen because they allow both a certain 

flexibility and a relaxed conversation in which the teacher might relate to their 

experiences and understanding (Bryman, 2007). Next, the lesson in question was 

observed and both video and audio recorded in order to catch, as accurately as 

possible, the teacher-student interactions and scaffolding strategies used. Follow-up 

semi-structured interviews with the teacher were held after every classroom 

observation. Data have been collected though video-recorded observations of class-

room situations as well as from interviews with the teachers in these situations. The 

analysis is inspired by the three dimensions suggested by Sensevy et al. (2005) and 

deals with (a) the teacher‘s organization of the milieu, (b) the teacher-student(s) 

interaction, and (c) the development of the knowledge. 

RESULTS AND DISCUSSION 

The analyzed lessons are mainly didactic situations as defined by Brousseau (1997) 

because the teachers control the learning situation most of the time. There is certainly 

a didactic contract between the teacher and her/his students. The milieu is 

organization with materials for learning and tasks to be solved – these tasks are 

mostly of the same kind as examples they have been shown, which is in line with the 

teachers‘ intentions that the students ―need to practice‖. Different kinds of class-

room interaction are analyzed. The teachers‘ introductions differed with respect to 

scaffolding strategies and ways of communicating with their students. However, all 

the teachers used everyday language to a great extent and tended to avoid the 

adequate mathematical concepts. When the students‘ worked individually with 

textbook tasks or with problem solving in groups, two teacher strategies  were found, 

namely piloting the students past difficulties and more elaborate guiding.  
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FAMILY MATHEMATICS INVOLVEMENT: DRAWING FROM A 

SOCIOLOGICAL POINT OF VIEW 

Javier Dìez-Palomar, Sandra Torras-Ortin 

EMiCS – Universitat Autonòma de Barcelona 

This poster presents the research project FAMA (Family Math for Adult Learners) 

which aim is to built a European network of good practices and resources to 

promote the family Mathematics education in schools over Europe. Using interviews, 

questionnaires and focus groups whose applied to students, teachers and families, 

we collected data. Our findings show the importance of the family involved in 

children‘s education, and the influence of family members‘ past experiences and 

background in mathematics.  

Keywords: Mathematics, family, involvement 

FAMA (Family Math for Adult Learners)
1
 is a research project funded by the 

European Commission (Grundtvig Program)
2
. International studies provide a 

plethora of evidences showing that family involvement in Mathematics Education is 

a key element to improve children performances in this topic (PISA, TIMSS, 

PIRLS). Drawing on this fact, FAMA intends to contribute to the development of 

quality lifelong learning practices among adult learners (parents) in order to promote 

high performance, innovation and a European dimension in systems and practices in 

this field (specific priority). FAMA work is framed by a theoretical and 

methodological perspective based on a social justice approach (making special 

consideration for vulnerable groups, such immigrant, and working class families). 

This project contributes to encourage more experiences of family involvement in 

mathematics education grounded on scientific criteria and successful prior 

experiences.  

This project proposes the following objectives: 

- To contribute to the development of quality lifelong learning and to promote high 

performances. 

- To help provide adults with pathways to improving their knowledge and 

competences. 

- To improve the quality and to increase the volume of cooperation between 

organizations in adult education. 

In this project we collected data using interviews, questionnaires and focus groups in 

the five countries involved in this research study. These instruments have been 

applied to students, teachers and families. To analyze the data we use discourse 

analysis techniques (Gee, 1999) and critical communicative methodology (Gñmez 

González & Díez Palomar, 2009; Gñmez, 2006). According to our findings, we claim 

that when families get involved in children‘s education they are able to overcome 
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many of the barriers that make learning difficult for themselves as well as for their 

children. As result students improve their scores. In the same way, drawing on our 

data we have also observed that family members‘ past experiences and background 

also impact on their attitude towards mathematics, which mediates their involvement 

in their children‘s mathematics learning as well.  

A lack of communication between families and teachers also arise from our findings.  
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LEARNING MATHEMATICS  

THOUGHTS AND INTERPRETATIONS OF STUDENTS WITH FOREIGN 

BACKGROUNDS 

Petra Svensson 

School of Education, Malmô University 

In this study, which is in the first phase, students‘ foregrounds and rationales for 

learning mathematics will be examined with the aim of producing a qualitative 

picture of thoughts and interpretations of students with foreign backgrounds on their 

possibilities to learn mathematics in the Swedish socio-political context.  

Keywords: Multicultural mathematics classrooms, students´ foregrounds, rationales 

for learning. 

BACKGROUND  

My research interest originates from the complex of problems concerning the 

underachievement in school mathematics of students with foreign backgrounds;  i.e. 

born abroad or born in Sweden with two parents born abroad (Siris databas 2009; 

SCB, 2002). In this text, I will use the term ―student‖ instead of ―students with 

foreign backgrounds‖. In Malmô, the third largest city of Sweden, the academic 

achievement in mathematics is very low in some multicultural areas; at some schools 

the majority of the students finish compulsory school without a grade in mathematics 

(Siris databas, 2009). Hence, too many students do not reach the goals to be attained, 

which according to the National curriculum are the minimum level that students 

should have when they leave compulsory school. But even more important, this is 

one of the reasons why too many students do not get access to equal social 

opportunities in life (Wigerfelt, 2009). In these multicultural areas, the classrooms 

are multicultural and the majority of the students come from Iraq, Yugoslavia, 

Bosnia-Herzegovina and Lebanon. 

Mellin-Olsen, (1987) describes two major rationales that can be identified as drivers 

for school learning, the I-rationale (instrumental) and the S-rationale (social). 

Simplified the I-rationale means that students decide to learn to achieve good grades 

and pass exams and the S-rationale that students decide to learn the particular 

knowledge because it has an importance beyond passing the exams (Mellin-Olsen, 

1987). These rationales combined with the notion of foreground will constitute the 

theoretical framework of this forthcoming study. The notion of foreground was first 

introduced by Skovsmose in 1994 but later developed;  

The notion of foreground refers to a person‘s interpretation of his or her learning 

possibilities and ‗life‘ opportunities, in relation to what the socio-political context seems 

to make acceptable for and available to the person. (Alrø, Skovsmose, Valero, 2009, p. 7) 
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PURPOSE AND RESEARCH QUESTIONS 

The aim of my study is to learn more about students´ thoughts and interpretations on 

their possibilities to learn – or not learn to mathematics – and what kind of rationales 

for learning they have, and to what extent the students´ foregrounds have an impact 

on these rationales.  

 How do students with foreign backgrounds experience their possibilities to 

learn mathematics and what are their reasons? 

 To what extent do foregrounds of students with foreign backgrounds impact 

them when learning or not to learning mathematics? 

 What do students with foreign backgrounds believe are their rationales for 

learning or not to learning mathematics? 

EMPIRICAL STUDIES AND METHODOLOGY 

The study is intended to be carried out through classroom observations and 

interviews with students from 8
th

 or 9
th

 grade. The purpose of the observations is to 

get a picture of the learning situation and to get to know the students and how they 

act during the lessons, and also to help me to decide which students to interview. 

Since I am interested in learning more about the immigrant students´ own thoughts 

and interpretations about learning mathematics I will use narratives where the data 

will be constructed by the informants and the researcher together (Goodson, 2001). I 

will interview students from 8
th

 or 9
th

 grade because they are about to make a 

decision about their future since they are about to leave compulsory school. Only the 

student interviews will be used in the data analysis and it will be carried out by using 

discourse analysis techniques (Winther Jørgensen, 2000). 
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THE EMERGENCE OF CULTURAL MATHEMATICS: AN 

ETHNOMATHEMATICAL APPROACH IN THE CONTEXT OF 

CLASSROOM  

Joana Latas *, Darlinda Moreira ** 

*EBI/JI de Aljezur **Universidade Aberta, UIDEF- U. Lisbon 

This poster presents an ongoing research whose main objective is to understand the 

role of cultural mathematics in the development of transversal mathematical 

processes. Using an ethnomathematical approach based on the cultural profile of 

students in a 7
th

 grade class who participated in the research, a curricular project 

was designed, which  was implemented in the classroom in five phases. An initial 

data analysis shows that the students: i) appropriated culturally distinct practices 

through relationships established with their prior knowledge ii) gradually reveal 

greater predisposition to establish mathematical connections. Throughout the 

research students improved their capacity of mathematical communication. 

Keywords: Cultural mathematics; mathematical connections; mathematical 

communication 

The integration of cultural aspects in the mathematical curriculum contributes to the 

understanding of mathematics as part of everyday life, which, by its term, strengths 

the possibility to establish meaningful connections between different contexts and, 

hence, is a factor of students‘ mathematical comprehension (Adam, Alangui & 

Barton, 2003 and Bishop, 2005; Boaler, 1993, Zaslavky, 2002). However, when 

children come to school they bring a set of cultural experiences with them that might  

not  be valued in the academic context (Gerdes, 2007; Moreira, 2002). The review of 

the literature highlights that students‘ foreground and background are important 

issues that are related to students‘ predisposition and involvement in their learning 

process. Thus, not only it is necessary to understand and take into consideration 

students‘ different backgrounds, but also it is important to combine this information 

with what students long for their future - foreground - and how they deal with their 

expectations in their social context, (Alrø, Skosmose & Valero, 2009; Skovsmose & 

Vithal, 1997). Teachers‘ pedagogical decisions should, therefore, take into account 

the understanding of the background and foreground. 

Inspired by the theoretical model for the implementation of an ethnomathematical 

curriculum (Adams, 2004), grounded in an integrated vision between the concepts 

and cultural practices of students and the predominantly formal mathematics , a 

project was developed and implemented in five phases: 1) search for each student‘s 

background and foreground, their relationships with local meanings, 2) the 

emergence of practices and connections among different cultural practices, 3) search 

for mathematical cultural experience, 4) mathematical formalization, and 5) 

deepening of cultural knowledge based on mathematics. 
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The methodology was qualitative in nature, following the interpretative paradigm. 

Data was collected using participant observation, interviews and documentary 

analysis. Participants were students in a class of the 7th grade in a seashore zone in 

the south of Portugal. The teacher played simultaneously the role of investigator. 

 A first analysis suggests that the ethnomathematical approach to explore cultural 

mathematics in the context of the classroom promotes the establishment of 

mathematical connections with students‘ daily lives and previous knowledge, 

contributing to the appropriation and assignment of meaning to mathematical 

concepts. Throughout the presentation of students‘ tasks, the development of oral 

and written communication and of arguments that used mathematical concepts 

related to the cultural contexts was further evidenced. 
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PARENTAL INVOLVEMENT IN CHILDREN‘S ACHIEVEMENT: 

AN EXPLORATORY STUDY WITH FRENCH 2ND GRADERS IN 

MATHEMATICS  

Ana Lobo de Mesquita  

Université d‘Artois / Université Paris Diderot,  

Laboratoire de Didactique André Revuz & IREM de Paris 7
1
 

Studies in literacy in mother tongue confirm the influence of the family behaviours in 

children‟s learning children in linguistic, cultural and urban backgrounds. With the 

idea of extending these studies, a group of teachers and researchers from two 

domains (mother tongue and mathematics) and from different countries, conducted 

studies about the influence of parental involvement in children achievement on these 

domains.  

In our preliminary study, we analyse the case of parental involvement in pupils‟ 

achievement when mathematical activities are used. We focus on French 2
nd

 graders 

(20 pupils from 7 to 8 years old), in a similar framework and setting than those used 

in literacy studies, issued from Villas-Boas (2001). We also use the notion of 

“communities of practice” developed by Wenger (1998). Our first results seem 

confirm the trend that parental involvement improves student achievement in 

mathematics
2
. 

Key words : Parental involvement, Achievement, Mathematics Education 

Studies in literacy in mother tongue conducted in different contexts and countries 

have shown that the influence of the family behaviours appears to be strongly 

significant when those families help children to be aware of their cultural and 

linguistic backgrounds (Epstein, 1995; Henderson & Berla, 1994). Also, children‘s 

knowledge and achievement have been improved by the cooperation between 

generations (Villas-Boas, 2005). 

In the study presented here, the notion of ―communities of practice‖ - issued from a 

particular context (economics) - developed by Wenger (1998) and implemented in 

mathematics education by Díez-Palomar & Moratonas (2006), was used; two 

dimensions were specially important: the mutual engagement (of the child and the 

parent, engaged in their activities) and the shared repertoire (sharing texts, whose 

writing has a main role). (Note that the third dimension used by Wenger - the joint 

enterprise - was not considered here).  

In our contribution we try to answer to the following questions: Is it possible to 

increase mathematics development by involving parents and children in activities 

about their common (urban, linguistic, mathematical) grounds? How do these 

activities influence pupils‘ achievement ? 
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With this purpose, we have planned an on-going qualitative and quantitative study, 

where the activities proposed to 2
nd

 graders (7 to 8 years old) involved also 

mathematical concepts.  

In the exploratory study, we work with one class, divided into two groups, the 

experimental and the control groups. Pupils were proposed tasks where mathematics 

concepts were progressively used. We ask pupils to develop some activities, in 

partnership with a parent (mother, father, grandmother, brother, …) and to write a 

small text about the realization of this activity. Texts were compiled in a booklet 

untitled « When my mother [or else] was a little child ».  

A questionnary of home environmental processes related to school achievement was 

proposed to the parents, adapted from Villas-Boas (2001) and Davies (1996), aiming 

to scale the importance of different activities of pupils at home. 

In the poster presentation, focus was done: i) on the activities presented to pupils and 

parents during the exploratory study, ii) a qualitative analysis of the progresses of 

pupils observed by the teacher, iii) on ―profiles‖ of home environment issued from 

answers of parents, iv) on a discussion about the study, with suggestions for future 

interventions. 

The actual poster presented at CERME7 may be obtained from author by emailing to 

<mesquita@math.jussieu.fr> 
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NOTES 

1
 This study had been conducted with the teacher of the class, Nathalie Pasquet-Fortuné, from IREM de 

Paris 7. 

2
The project, untitled On Reducing the Intergenerational Gap through the Interaction with Common 

Cultural Grounds in Different European Countries, has been presented at the 7th International Conference 

of the European Research Network About Parents in Education (ERNAPE), at Malmö University, Sweden, 

in 2009, in a Symposium organized by Maria Adelina Villas-Boas, from Lisbon University, Portugal. 
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STUDENTS‘ SELF-REGULATION, SELF-EFFICACY AND 

MATHEMATICAL COMPETENCE IN OECD‘S PISA 

David Pepper 

King‘s College London  

This paper is an iteration of a poster presented at CERME 2011. It describes the 

scope and methods of a planned international comparative study of the relationship 

between lower secondary students‘ self-regulation, self-efficacy and mathematical 

competence using the OECD‘s PISA survey and the ICCAMS study in England. 

Key words: Mathematics, comparative, self-regulation, self-efficacy, competence. 

SCOPE 

This short paper is an iteration of a poster for CERME 2011 which presented the 

scope and methods of a proposed international comparative study. These have been 

revised as a result of feedback from CERME‘s Working Group 11- Comparative 

Studies in Mathematics Education and the author‘s subsequent reflections. The 

study‘s main research question is: to what extent is a relationship between lower 

secondary students‘ self-regulation, self-efficacy and mathematical competence 

generalisable across educational contexts and cultures in different countries? 

Self-regulation is used with reference to students‘ monitoring, control or regulation 

of their cognition and behaviour (Pintrich, 1999). Self-efficacy is ‗a judgment of 

one's capability to accomplish a certain level of performance‘ in a specific task 

(Bandura, 1986; Zimmerman, 2000). Self-efficacy is consistently highly correlated 

with academic performance, including mathematics (eg Pajares and Miller, 1994). 

Pintrich‘s (1999) general framework identified a strong and positive correlation 

between students‘ self-regulation, self-efficacy and academic performance. However, 

his call for future research to explore this beyond white, middle-class students in the 

USA requires attention. The study will therefore investigate the extent to which the 

correlation can be generalised across contexts and cultures in different countries.  

The study will focus on students‘ monitoring of their own learning (as an aspect of 

self-regulation) and the calibration of their self-efficacy judgements to their 

attainment in mathematics. With reference to European and international policy 

discourses (Gordon, et al., 2009), it posits that this calibration should be viewed as 

an aspect of mathematical competence, enabling students‘ ‗selection and use of the 

most appropriate solution strategy on a given mathematical item or problem, for a 

given individual, in a given sociocultural context‘ (Verschaffel, Luwel, Torbeyns, & 

Van Dooren, 2009, p. 343). Students‘ self-regulation and self-efficacy should 

therefore be predictive of their use of their solution strategies and their resultant 

solutions. 
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METHODS 

The study will use multiple methods. Firstly, there will be a correlation analysis of 

self-regulation, self-efficacy and attainment using the influential OECD PISA 

(Programme for International Student Assessment) 2003 data set, which focussed on 

mathematical competencies in 41 countries with varied educational contexts and 

cultures. The analysis will include student background, school and country variables. 

It will also explore whether a multi-level model provides the best fit for the data. 

Secondly, interpretation of the data for selected countries will be supported by the 

development and validation of country profiles (Hodgen, Pepper, Sturman, & 

Ruddock, 2010) detailing socio-mathematical norms (Yackel & Cobb, 1996). 

Thirdly, students will be interviewed through the Increasing Students‘ Competence 

and Confidence in Algebra and Mathematical Structures (ICCAMS) study in 

England (Brown, Hodgen, Kuchemann, Coe, & Pepper, 2010). The interviews will 

explore students‘ use of solution strategies in the context of their self-regulation and 

self-efficacy. These interviews will also help to assess the validity of the associated 

PISA questionnaire items in some contexts in England, perhaps with wider 

implications.  
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CONTRASTING PROSPECTIVE TEACHER EDUCATION AND 

STUDENT TEACHING IN ENGLAND AND SLOVAKIA 

Ján Šunderlík, Soňa Čeretková 

Constantine the Philosopher University in Nitra, Slovakia 

The poster presented a comparison of prospective teachers‘ preparation focused on 

student teaching in England and the Slovak Republic. Based on a small scale study, 

where we used observation of lesson structure and chosen lesson events, we try to 

understand some differences between English and Slovak approaches of prospective 

mathematics teachers‘ preparation.  

Key words: Prospective teachers, lesson structure, comparative studies  

FOCUS OF THE POSTER 

Our poster presented some findings of a study in which we compared prospective 

mathematics teachers‘ preparation in England and Slovakia. To bring about a better 

understanding of mathematics teachers‘ preparation, we used a comparative 

approach based on the insight that ―Being in an environment constantly, one usually 

takes things for granted and fails to see the characteristics of the environment as 

special or different from the others.‖ (Runesson & Mok, 2004, p. 217) 

THEORETICAL FRAMEWORK 

Based on large scale comparative studies as PISA and TIMSS many countries try to 

implement reform mathematics instruction and reform curricula. But these reforms of 

learning and teaching mathematics depart significantly from the school mathematics 

tradition of countries as presented by Cobb, Wood, Yackel and McNeal (as cited in 

Lloyd, 2005, p. 441). One of the countries that have recently implemented a reform 

curriculum is Slovakia (since 2008). From many critical areas we decided to focus on 

student teaching. For the comparison we chose England, a country with different 

cultural traditions in mathematics education. Our main research question was: What 

kinds of differences in prospective teachers‘ learning can we identify during their 

student teaching? 

METHODS AND DATA ANALYSIS  

Our methodology is based on Clarke (2006). We used video based lesson 

observation, video simulated and narrative interviews with prospective teachers 

(Kaasila, 2007) teaching in the two specific cultural settings. All lessons and 

interviews were transcribed and coded. Based on the codes, we used cluster analysis 

by applying Ward‘s method to see the differences between observed lesson 

structures better. From all this information, we identified lesson events that were 
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critical for the prospective teacher and we considered them as an important part of 

prospective teacher learning. 

FINDINGS AND DISCUSSION 

According to the classroom observations and interviews, we identified several 

evidences of Anna‘s learning, a Slovak prospective teacher. There was a good 

cooperation with the associate tutor (AT), who used to give the prospective teacher 

direct advice and, based on this intervention, she kept improving her teaching. She 

was familiar with the style of teaching, because, as she said, ―I taught the way I had 

been taught‖. On the other hand, Anna expressed beliefs about more progressive and 

problem based teaching, even though she kept using traditional ways. She tried some 

activating strategies but those were implemented within the same pedagogy and 

questioning as in a traditional setting. Ben is a prospective math teacher from 

England who prefers problem based and innovative teaching and learning. In 

contrast to Anna, he could teach and develop his teaching in a more innovative 

environment. He was able to use developed materials that helped him to focus more 

on his teaching strategies. Based on the course organisation, he was encouraged to 

reflect on his practice based and set up action points for his further development. The 

comparative analysis gives us a wider perspective for possible future development of 

prospective teachers and also helps us to see some advantages and difficulties of 

more ―open― teaching and learning in a cultural environment that is not aligned with 

this approach. 

NOTES 

This work was supported in part by the EU, within the 7FP project, under the grant agreement 244380 "PRIMAS – 

Promoting Inquiry In Mathematics And Science  Education.‖  

The actual poster presented at CERME7 may be obtained from the authors by emailing them at <jsunderlik@ukf.sk; 

sceretkova@ukf.sk>  
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DEVELOPING A MODERN MATHEMATICS PEDAGOGICAL 

CONTENT KNOWLEDGE: THE CASE OF TELESCOLA IN 

PORTUGAL IN THE MIDDLE 1960‘ 

Mária Correia de Almeida and José Manuel Matos 

UIED – FCT, New Lisbon University 

Modern mathematics reform spread through many countries during the 1960s and 

1970s producing changes in the representations of learning, of mathematical 

content, of the social roles of mathematics, and in classroom teaching practices. 

Telescola – a national network of schools complemented by classes on television – 

implemented a program with the ―modern‖ vision of mathematics. This poster 

focuses on changes in pedagogical content knowledge to appropriate the new ideas.  

Keywords: Modern Mathematics, Pedagogical content knowledge, Telescola. 

From 1965, a network of schools for 10 and 11 years-old supported by televised 

lessons was gradually put in place by the Portuguese Ministry of Education, in an 

effort to enlarge schooling after primary school, as it was demanded by economic 

development. Students that attended the Postos (the name of those schools) and 

finished a two-year course could enroll in the 7th grade of secondary schools. By 

1968, this system that became known as Telescola covered the entire country, 

especially in remote areas. Modern Mathematics (MM) was gradually incorporated 

into these televised classes providing an experimental field for their later 

generalization to the entire population of 5th and 6th graders. Mathematics classes in 

Telescola were actually the first experience in the dissemination of the new ideas 

through an entire school sub-system in Portugal.  

This study encompasses two dimensions aiming at understanding changes in 

pedagogical content knowledge (PCK) at this level: 1) a longitudinal study from 

1965 to 1969 of the Mathematics ―lessons‖ texts; 2) interviews with the teacher who 

prepared and enacted them on the screen, Antñnio Augusto Lopes (AAL). 

Qualitative procedures were performed (Bogdan and Biklen, 1994).   

Shulman (1986) advanced thinking about teacher knowledge by introducing the idea 

of pedagogical content knowledge. This knowledge includes knowing what teaching 

approaches fit the content, and likewise, knowing how elements of the content can be 

arranged for better teaching. At the heart of PCK is the manner in which subject 

matter is transformed for teaching. This occurs when the teacher interprets the 

subject matter, finding different ways to represent it and make it accessible to 

learners. The gradual shaping (bricolage) of PCK was observed, so we could trace 

changes of school mathematics content put into practice and the difficulties that 

aroused for teaching. The distinctive characteristic of mathematical content is the 

adoption of set theory as an appropriate language to express mathematics. 
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Change: Now addition is the number of elements in the union of disjoint sets. 

  

Now the teacher must draw the students‘ attention to the fact that addition may not 

be well defined. It depends upon the universe. In universe E, 

E={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} addition is not defined for all pairs of elements of E 

(3+4 is defined, but 5+8 is not). The possibility of addition was not in question at the 

primary school (its legitimacy was supported in the common sense of empirical, 

sensory experience). 

The concept of connected history (Gruzinsky, 2003) developed by cultural 

historians, has been used to understand how communities elaborate their 

representations and practices in connection to other communities. The influence of 

one culture by another is seen as an act of hybridism (métissage) in which external 

appropriations are not seen as imitations from the original, but as producers of new 

originality. In this model, a key role is attributed to mediators, persons that travel 

among societies and cultures. The role of mediators was important in the expansion 

of the MM ideas in Portugal. A key mediator, AAL, author of the texts of the 

―lessons‖, confirmed the influence of some authors and educators (Gattegno, Puig 

Adam, Servais) on the written materials he produced. The induction of change of 

classroom practices, due to external appropriation, is traceable in the perception that 

for students at this age it is important to see the real world applications of 

mathematic as well as to experience that mathematics embodied in objects that are 

real and accordingly in new materials used to support teaching. We could also trace 

the use of pedagogical materials, such as Geoboards and Cuisenaire Rods, on the 

written material produced for teaching.  

                                                    

The actual poster presented at CERME7 may be obtained from the authors by 

emailing them at <ajs.mcr.almeida@gmail.com> 
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A STUDY ON THE FUNDAMENTAL CONCEPT OF ―MEASURE‖ 

AND ITS HISTORY 

Ana Amaral
a
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ESTM – IPLeiria, CIEC/IE, anamaral@ipleiria.pt; 

b
CIEC/IE, Universidade do 
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c
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This paper exhibits a small part of a PhD degree project on the theme: ―The 

fundamental concept of Measure: epistemological and pedagogical aspects related 

with the first six years of schooling‖. 

It aims at presenting the analyzis of the fundamental concept of measure at the so called 

elementary levels of schooling, in Portugal. We intend to: 1) distinguish elementary 

concepts and fundamental concepts; 2) explain why do we look at the mathematical 

concept of measurement as not only an elementary concept but, and above all, a 

fundamental concept in mathematics; 3) foresee implications of this distinction for 

teaching at the elementary level. 

Keywords: concept of measure, teaching of mathematics, history of mathematics. 

ELEMENTARY AND FUNDAMENTAL CONCEPTS 

Concepts play a key role in the construction of mathematical knowledge with, 

certainly, different importance levels. At Elementary Mathematics‘ schooling we are 

dealing with the so called elementary and fundamental concepts, deserving a special 

attention since their learning will influence the learning in higher levels.  

In contrast to Ma (1999) (Elementary Mathematics is fundamental mathematics), we think 

that elementary and fundamental have different meanings, although a concept may be, at 

the same time, elementary and fundamental. On the one hand, a concept taught and learnt 

in elementary Mathematics created by Man to build a complex structure as a whole, or as a 

specific theme, is an elementary concept (Caraça, 2000). On the other hand, we say that a 

fundamental concept, emerges over time, its genesis is inherent to human activity and it is 

presented in many areas of mathematics as well as in several other areas of knowledge, 

both in the school context and in society, in general.  

THE FOCUS OF THIS POSTER 

Measure: Elementary and Fundamental concept 

We consider the specific mathematical concept of Measure! Through its history we 

understand that this is a concept emerging over time, its genesis is inherent to human 

activity (Astronomy, Agriculture, Economy) and it presents itself in many areas of 

mathematics (Trigonometry; Arithmetic; Probability) as well as in several other areas 

of knowledge, both in the school context and in society in general (Nanotechnology; 
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Medical issues; Biology). Therefore it is considered a fundamental concept. It also is 

an elementary concept since it is taught and learnt at an elementary level. 

Possible implications for the Teaching of Mathematics 

We intend to answer the research question: What is the approach of Measure in the 

Programs of Mathematics for Elementary Education, and in which way is History of 

Mathematics used to promote it as a fundamental concept? To this end, we analyzed 

official portuguese mathematics programs (Mathematics Program for the 2
nd

 Cycle of 

Basic Education, 1991; 1
st
 Cycle Program for Mathematics, 1990 and the new Program 

of Mathematics for Basic Education, 2007), looking, in particular, at the role played by 

the history of Measure. Important works (Schubring (1998), Swetz (1995) and Siu 

(1996), among others) supported this analysis. We conclude that those programs 

present mainly the Geometric dimension of Measure and reduce the use of History of 

Mathematics related with this concept, to curiosities, examples, ―historical aspects‖. 

Seeing Measure as a seed of a future mathematical knowledge at a higher level, this 

approach may cause difficulties to the learning of mathematics. Namely, children 

may experience problems to integrate or to define units, develop misconceptions 

about measure/distance/length, fractions or when relating hours and angles in 

Trigonometry, misunderstanding measure statistics as measures, develop poor sense 

of money or work with temperature. This situation may aggravate if teachers aren‘t 

aware of its importance to the development of mathematical knowledge and are 

unable to provide richer approaches. 

Please recall that this is not a work developed directly with children, but meant to 

alert teachers, textbooks authors, programs and curriculum designers. 
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THE PROJECT OF MODERNIZATION OF THE 

MATHEMATICAL INITIATION IN PRIMARY SCHOOL AS 

CURRICULUM DEVELOPMENT (1965-1973) 

Rui Candeias 

UIED – Faculdade de Ciências e Tecnologia, UNL, Lisboa, Portugal 

Escola Básica 1/JI Quinta de Santo Antñnio, Amora, Portugal 

This poster refers to an ongoing research centered in a project of curriculum 

development in Mathematics, in Primary School (Project of Modernization of the 

Mathematical Initiation in Primary School, developed by the Educational Research 

Centre, of the Gulbenkian Foundation). This research intends to contribute to the 

knowledge of the evolution of mathematics teaching in primary schools, particularly 

the influence of ―Modern Mathematics Movement‖ on curricular development and 

production of didactical material. This poster focuses on two aspects of the 

research: 1) a chronology of the project of Modernization of the Mathematical 

Initiation in Primary School; 2) a description of the documents produced for the 2nd 

grade according to the project‘s scope, referring to mathematical subjects, the 

number of sessions dedicated to each subject, and a focus on the subject most 

worked (multiplication). 

Keywords: elementary school, history of mathematics education, modern 

mathematics movement. 

THE ―MODERNS MATHEMATICS MOVEMENT‖ REFORM IN 

ELEMENTARY SCHOOLS  

According to Moon (1986) Primary Schools only received the impact of Modern 

Mathematics Movement, from the mid 1960‘s when several projects were developed. 

Some trends were detached in primary schools by introduction of Modern 

Mathematics Movement (Moon, 1986): (1) a structuralized trend, (2) an arithmetical 

trend, (3) an empirical trend. 

In Portugal we can distinguish the work developed in some private schools and the 

work designed by the Gulbenkian Foundation (Candeias, 2008). 

THE PROJECT OF MODERNIZATION OF MATHEMATICAL INITIATION 

IN PRIMARY SCHOOL - CHRONOLOGY 

In the 1960‘s the Educational Research Centre initiated a project to introduce the 

teachers in the Didactics of Modern Mathematics (Kindergarten and Primary School 

level). In October 1967, a seminar was attended by 37 teachers, twenty-five of them 

belonging to five Primary Pilot - Schools, that would lead mathematics teaching to 
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the experimental groups. The teachers discussed scientific texts, exercises and had 

contact with educational material that would be used in the experimental classes. 

In 1969 this project was extended to two official schools from the Lisbon area. 

PRELIMINARY RESULTS 

In this work we used two main sources: the bibliographic bulletin of the Gulbenkian 

Foundation (1965-1973) and the documents produced for the 2
nd

 grade. From these 

sources it was made a qualitative analysis. 

The project under study was an initiative of a private foundation, and in the 

beginning it was only implemented in private schools.  

The mathematical themes and subjects for 2nd graders proposed in this project were 

similar to the Portuguese official programs at the time in study. 

The most elaborated mathematical themes for 2nd graders were numbers and 

operations, especially the multiplication and division. 

The approach to multiplication begins in the 2nd grade, and was based on the 

language of sets theory by means of ―equipotent sets‖ which were used to introduce 

multiplication as repeated addition of equal terms. At this level, the multiplication 

was also addressed in rectangular arrangements, to introduce the commutative 

property of multiplication.  
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WHO CAN UNDERSTAND THE GIFTED STUDENTS? A LESSON 

PLAN BASED ON HISTORY TO ENHANCE THE GIFTED 

STUDENTS‘ LEARNING  

Ersin İLHAN 

Bayburt University  

The need of gifted students of a deeper understanding of mathematics has lead to the 

―enrichment programs‖. Al-Khwarizmi‘s work is used to develop a lesson plan 

aiming to create the appropriate atmosphere to help gifted students in a modern 

classroom understand the mathematics created by a gifted mathematician in the 

past. The objectives and the associated lesson plan developed by the author are 

suitable for implementation in Science and Art Centers which the gifted students in 

Türkiye attend after school. 

INTRODUCTION 

The National Ministry of Education of the Turkish Republic (NME, 2005) formed 

the 8
th

 grade mathematics syllabus having algebraic expressions, intended to show 

algebraic equalities using models. What is missing there or the part that needs the 

enrichment is the modelling concept, which could benefit from Al-Khwarizmi‘s 

work on the solution of  quadratics equations (Desay and Akın, 1994). For the gifted 

students, this part of syllabus can be implemented in two teaching hours, during the 

enrichment program they follow after school. 

For the Lesson Plan format, I choose The Integration Education Model, developed by 

Clark (2008). Using this model, all parts (cognitive, intuitive, physical and affective) of the 

needs of learning is activated, especially for the gifted students. I choose Al-Khwarizmi‘s 

work on the solution of quadratics equations. For the curriculum, I choose the 8
th
 grade 

mathematics where the algebraic equations exist. I choose the historical packages, suitable 

for two or three hours of enrichment programs in the Science and Art Centers.  

The aim of the Lesson Plan is to make students  gain the ability of concrete and 

abstract thinking and their relationship after the objectives one and objective two are 

realized. For this reason, after the second objective, the third one is developed for the 

gifted students, who are studying the extended mathematics after school in Science 

and Art Centers belonging to the National Ministry of Education.  

The Lesson Plan 

Learning Subject: Algebra  Sub-Learning Subject: Algebraic Expressions 

Objectives: 

1. To explain the differences between algebraic identities and equalities. 

2. To explain identities via modelling (including equalities). 
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3. To explain the solution of equations via models. (This objective which does not 

exist in the National Curriculum is developed by the author to integrate the 

history of mathematics and use it in the enrichment programs for the gifted 

students.) 

Preparation before the class: To let the students form pairs and ask them to prepare 

their presentation by studying and working on Al-Khwarizmi‘s life including writing 

poems, theatre, songs, drawings, etc.  

Procedure in the class: 

1. To watch the documentary film about Al-Khwarizmi‘s life and works. 

2. To teach in the light of objective 2 using modelling in the way described in the 

National Curriculum. To focus on the inductive thinking in the difference of 

squares (a
2
-b

2
) and deductive thinking in the squares of parenthesis (a+b)

 2
. 

3. To let the pairs give their Al-Khwarizmi presentations, with focus on the 

works and life of the mathematician. 

4. To let the pairs do worksheet 1 (to solve x
2
+10x=39) for the objective 3 as a group. 

5. To let the pairs continue their presentations with focus on sharing their 

feelings about the work of Al-Khwarizmi and his influence till today. 

6. To let the pairs do worksheet 2 (to solve x
2
+5x=56) for the objective 3 as a group. 

7. To ask the pairs the question ―Do you think the work of Al-Khwarizmi is 

important? Explain and discuss as a class‖.  

REFLECTIONS 

C. Tzanakis introduced a 2-D classification of the ICMI and Jankvist‘s hows; the 

lesson plan fits in the 2x2 cell; the cell history-as-a-tool (emphasis on inner-issues) 

& heritage (―learning mathematical topics‖ in the ICMI Study and Jankvist‘s ―history 

based approaches‖). Before CERME7 I implemented the lesson plan about history, 

but in the WG 12 sessions I realized that the above classification could help to 

further improve the teaching design and  
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TEACHER TRAINING AT PEDRO NUNES NORMAL 

SECONDARY SCHOOL (1956-1969) 

José Manuel Matos  Teresa Maria Monteiro 

Universidade Nova de Lisboa, Instituto Politécnico de Beja 

This poster
1
 presents a longitudinal analysis of the papers prepared by mathematics 

teachers trainees in the Pedro Nunes Normal Secondary school between 1957 and 

1969. Three periods can be considered: 1957-1962, subjects related to Modern 

Mathematics in general are presented and the papers are focused in conceptual 

approaches of the new ideas; 1962-1965, although the subjects related to Modern 

Mathematics still show general approaches, the papers present specific pedagogical 

proposals; 1965-1969, the works mainly discuss the pedagogical experiences related 

to the introduction of the Modern Mathematics in the final years of secondary 

school. 

Key-words: Mathematics education history, Mathematics teachers trainees, Portugal 

The reform of Modern Mathematics in Portugal can be divided into three intertwined 

periods: the beginnings, from 1957 until 1963, in which the flow of new ideas can be 

detected; experimentation, from 1963 to 1968, during which the new ideas were 

implemented in classrooms; and dissemination, from 1968 onwards, that led to the 

gradual generalization of the reform to all students (Matos, 2009). 

We have searched for articles printed in education publications authored by teachers 

of mathematics enrolled at a pedagogical training programme at Pedro Nunes 

Normal Secondary School (Liceu). The period of the study runs from 1957 (the 

restart of the teachers training program at the school) to 1969 (when changes were 

made to the teachers education programmes in Portugal). During this period, there 

were 36 mathematics trainees that published 12 papers, one in Labor, Revista de 

Ensino Liceal and the others in the Palestra (Matos & Monteiro, 2010). 

New mathematical contents are mathematically studied in several papers. The 

axiomatic method-associated logic is probably the commonest mathematical topic. 

Although, in the analysed texts, logic is sometimes presented associated to 

axiomatics, it is usually linked to Set Theory. As an example, Fernanda Martins
2
 

describes it integrated in mathematical or symbolic logic. New contents 

mathematically studied include Modern Algebra, which itself includes the study of 

several structures with their corresponding composition laws, operations, unicity, 

neutral elements, inverse, commutativity, associativity and the distributive law. 

Fernanda Martins briefly discusses it, and Iolanda Lima
3
 describes several examples 

of this kind of structures associated to the concepts of group, field and isomorphism. 

New approaches to geometry are also analysed. Maria Bento
4
, considers that ―Geometry 

taught in the euclidian way is out of date‖ (p. 136), and shortly discusses two axiomatic 

alternatives, one proposed by Choquet, and another by Papy. In the same year, Lourdes 
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Ruiz
5
, based in the concept of ―Geometry as a group of drawings‘ properties that do not 

change under  a given set of transformations‖ (p. 141), briefly presents transformations‘ 

geometry (also designated by this author as dynamic geometry) and the associated 

hierarchy. Few works discuss in detail the methodologies. However, some trainees study 

the most appropriate pedagogical approaches. Discussing regular secondary school 

education, Iolanda Lima rejects a program ―leading to individuals that are mechanized in 

dealing only with formulas and problems similar to the ones that are usually presented in 

examinations‖ (p. 61); Dulce Nogueira
6
 criticises Mathematics which is nothing more 

than a ―mechanization and a theorem conglomerate‖ (p. 34). Several trainees declare to 

support an heuristic or active education, but only Iolanda Lima discusses in detail the 

meaning of the concept. Another two subjects, related with strategies to Mathematics 

classes, are discussed: workgroups and materials‘ use. The constitution of these 

workgroups is proposed by some trainees. Dulce Nogueira discusses in detail their aims 

and working principles. 

Many of these proposals were supported by valid studies at the time. There are many 

references to the books published by the CIEAEM: L‟enseignement mathématique 

and Le matériel pour l‟enseignement des mathématiques. Pedro Puig Adam is also 

referred, especially his book La matemática y su enseñanza actual. 

From the school year 1964/65 the Pedagogical Lectures presented by the trainees 

discuss subjects concerning the practical aspects of the introduction of Modern 

Mathematics in high school. The aim was to stimulate reflections about the ongoing 

experiment in the last years of high school and how to expand it to the junior high 

school. Only two papers can be found in this period. 

NOTES 

(1) This study is part of an historical comparative study of the school Mathematics Culture in Portugal and Brazil during the 

implementation of Modern Mathematics supported by the Brazilian CAPES and the Portuguese GRICES. (2) 1962, Palestra, 

15, 48-71. (3) 1958, Palestra, 3, 58-74. (4) 1964, Palestra, 20, 126-140. (5) 1964, Palestra, 20, 141-148. (6) 1961, 

Palestra, 12, 32-53. 
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THE PEDAGOGICAL CONSEQUENCES OF A LAISSEZ FAIRE 

INDIVIDUALISTIC SOCIETY 

Judy Sayers 

The University of Northampton 

This poster reports on some of the early findings from an analysis of several case 

studies examining how English Early Years‘ teachers conceptualise the whole class 

interactive phases of mathematics lessons. The poster reported on a comparative 

examination of the very different approaches adopted by two of the case teachers to 

the development of young children‘s (ages 5-7 years) conceptual and procedural 

knowledge. The findings highlight the ways in which a laissez-faire, individualistic 

culture (Hofstede,1986) may fail to construct equal opportunities to young 

children‘s mathematical thinking, learning and experiences. 

Key words: Pedagogical approaches, didactic foci, early years‘ mathematical 

thinking, measurable skills, early mathematical opportunities.  

INTRODUCTION 

The United Kingdom in general and England in particular has been described an 

individualist rather than a collectivist culture (Hofstede 1986). Recent government 

interventions (DfEE, 2003) have highlighted the extent to which individualism 

permeates education systemically in its encouragement of teachers to personalise the 

learning of their students. Moreover, teacher education in England has traditionally 

eschewed notions of a commonly understood and accepted pedagogy, resulting in 

Simon‘s (1981) well known and repeated plea; ―why no pedagogy in England?‖ and 

Alexander‘s (2004) more recent ―still no pedagogy?‖ 

METHODOLOGY 

A qualitative case study (Yin, 2009) approach was adopted to examine the practice 

of two teachers (Caz and Fiona). Initial and terminal interviews, videotaped lessons 

and stimulated recall interviews, and the method of constant comparison informed 

the analysis of the data.  

FINDINGS 

The findings highlight how these two teachers‘ different approaches, drew on their 

experience as both learners and teachers of mathematics. Their experientially formed 

beliefs about mathematics and its teaching, informed the opportunities they provided 

for their children to engage with and learn mathematics. Three categories emerged 

from the data which have emphasised both differences and similarities of these two 

teachers‘ practices. The first Mathematical Focus, relates to conceptual and 
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procedural mathematical knowledge emphasised by the teacher through reasoning, 

problem solving or other mathematical processes, prior knowledge, explicit 

connections or other mathematical emphasis the teacher makes. The second category 

is the Pedagogical approaches used by the teacher, such as questioning, discussion, 

explaining and models used. And finally the Classroom norms created by the teacher 

which create specific classroom cultures towards learning. This will include the 

regular and routine attention the teacher makes towards children‘s behaviour, 

attitudes and responses to questions e.g. putting up their hand. The espoused practice 

discussed by the teachers expressed identical key pedagogical concepts; however the 

enacted emphasis and explained rationale by the teachers are quite different. 

DISCUSSION 

The enacted practice and rationale provided by the teachers illustrate for Caz a deep 

understanding of mathematical structures which inform her practice in developing 

children‘s strategic competence, adaptive reasoning, productive disposition and 

procedural fluency (Kilpatrick et al., 2002). Whereas for Fiona, a deep focus on 

conceptual understanding through the development of a productive disposition and 

procedural fluency provide a very different experience and create very different 

classroom norms and approaches to mathematical learning.  

The teachers work within an educational system that colludes and condones diversity 

in children‘s opportunities to engage with mathematics. We should then not be 

surprised that teachers do impose their own interpretation on the teaching and 

learning of mathematics. But can a society with a laissez-faire perspective on 

education ever offer consistent or equal opportunities?   
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ICT SUPPORTED LEARNING OF MATHEMATICS IN 

KINDERGARTEN 

Martin Carlsen, Per Sigurd Hundeland and Ingvald Erfjord  

University of Agder, Norway 

Our project, ICT supported learning of mathematics in kindergarten
97

, aims to 

develop and disseminate experience from implementation and use of ICT for pre-

school children‘s learning of mathematics in kindergarten environment. We will 

present aim, focus, research questions and preliminary analysis. 

Keywords: ICT, Kindergarten, Mathematics 

AIM AND FOCUS 

Recently, there has been an emphasis on implementation of mathematics in 

kindergartens and on use of ICT in kindergartens, in Norway explicitly outlined in 

the national curriculum for kindergarten from 2006. In a review of research literature 

on ICT use in pre-school settings, mathematics is not mentioned (Plowman & 

Stephen, 2004). We see this as indicating a need for paying attention to this field. 

Lately, in a review of studies focusing on young children of age 3 to 6 learning with 

digital media, Lieberman, Bates and So (2009) give a list of important lines of 

research in this area. There they point to research focusing on how digital media 

support children‘s early ―learning of mathematical concepts‖ (p. 275) and how 

collaborative learning and ability to interact can be facilitated in what they denote as 

well-designed digital technology. In our project, a number of ICT applications 

developed for children will be adapted and implemented in the kindergarten 

environment. We want to give special attention to 3 to 5 years old children‘s learning 

of mathematics supported by ICT, and to the communication between children and 

the kindergarten teachers in their learning processes. Our research question is: In 

what ways can use of ICT tools give new learning opportunities for mathematics in 

kindergarten? In particular, we are interested in investigating: (a) the content of 

conversations between adults and children; (b) the nature of the mathematics at 

stake, and (c) children‘s mathematical learning outcome. 

THEORETICAL PERSPECTIVE AND METHODOLOGY 

In our study we take a sociocultural perspective on learning and development. 

Learning is viewed as a social and situated process where individuals, i.e. 

kindergarten teachers and children, appropriate concepts, tools, and actions through 

collaboration and communication (Rogoff, 1990). 

                                           

97
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The methodology of this study is developmental research (Freudenthal, 1991). 

Researchers and kindergarten teachers collaborate in order to develop new forms of 

mathematical practice in kindergarten, i.e. we will establish a co-learning agreement 

(Wagner, 1997) with kindergarten teachers. Theoretically and methodologically the 

design of our project is a continuation of the TBM
98

 project in Norway (Carlsen, 

Hundeland, & Erfjord, 2010). The participants are three kindergartens, six 

kindergarten teachers and children of age 3 to 5. Project activities are captured 

through use of video recordings, audio recordings and field notes. 

PRELIMENARY ANALYSIS 

We have analysed children‘s use of ICT applications designed for Norwegian 

children of age 3 to 5. It seems as if the applications do not challenge the children 

appropriately. We suggest that the children are not met in their zone of proximal 

development (Vygotsky, 1978). However, we have experienced that applications 

designed for children age 6 to 7 are more appropriate.    
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THE DESIGN AND IMPLEMENTATION OF MATHEMATICAL 

TASKS TO PROMOTE ADVANCED MATHEMATICAL THINKING 

Sinéad Breen, Ann O'Shea 

CASTeL, St Patrick's College, Drumcondra, Dublin 

National University of Ireland Maynooth 

This study concerns the design of mathematical tasks for first year large group 

mixed ability undergraduate classes. The tasks were designed by the two authors and 

assigned as homework in courses taught by them. The object was to foster deeper 

understanding through problems that facilitate engagement with concepts. We report 

on how the tasks were written and on preliminary student feedback.  

Keywords: task design; conceptual understanding; thinking processes. 

INTRODUCTION 

Traditionally undergraduate mathematics courses have been defined in terms of 

mathematical content and the techniques students are expected to master or theorems 

they should be able to prove (Hillel, 2001). Although it is often assumed that 

students will develop an understanding of the higher level and often abstract 

mathematical concepts involved, such an understanding is seldom specifically 

fostered by the mathematical tasks and assessments students are required to complete 

(Pointon and Sangwin, 2004). Selden et al. (2000) found that more than half of their 

second year university calculus students could not solve any non-routine problems 

even though in a separate test they had demonstrated that they were familiar with the 

techniques required. They recommend that lecturers should ‗scatter throughout a 

course a considerable number of problems for students to solve without first seeing 

very similar worked examples‘ (p.150). 

TASK DESIGN 

Homework tasks on first year Calculus topics were written by both authors drawing 

on the frameworks of Swan (2008), Schoenfeld (1992), and Pointon and Sangwin 

(2004). The tasks required students to generalise and specialise, generate examples, 

make conjectures, reason, make decisions, explore, make connections, and reflect. 

For example, students were given an incorrect statement and proof and asked to 

critique the reasoning used; they were asked to give examples of functions with 

certain properties; they were asked to use graphs to solve problems that they would 

normally solve algebraically. They were also asked to investigate the truth of 

statements, for example: ‗Suppose g(x) is an odd function, is 1/g(x) odd? Justify your 

answer‘ (Task 1); ‗Does every rational function have a vertical asymptote? Explain‘ 

(Task 2). The authors recognised that no one task could foster all of the desired 

thinking skills, but aimed to achieve a balance over a suite of assignment problems. 
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IMPLEMENTATION AND FEEDBACK 

During the Autumn 2010 semester, the homework tasks were assigned to large 

groups of undergraduate students at two institutions. Each assignment contained 

traditional tasks as well as the non-routine tasks designed (or selected from 

textbooks) using the frameworks mentioned above. At the end of the semester, 

student reaction to the tasks assigned was collected using questionnaires. In total 101 

students gave feedback. In each institution, the questionnaire focused on pairs of 

tasks (one traditional and one non-routine) on the same mathematical topic. The 

majority of students reported that both task types contributed to their knowledge and 

understanding of the topic but felt that the non-routine tasks were more challenging 

or required more thinking or understanding than the procedural tasks. For example 

when discussing Task 1 and a related procedural task one student remarked: 

There was more development into the knowledge of odd and even functions. The second 

task (non-routine task) was a lot more challenging.  

For some students, Task 2 challenged their ideas about mathematics itself.  

Problem 1 (procedural task) was mathematically based, and the other (non-routine task) 

was theory based.  

CONCLUSION 

The use of the task frameworks helped the authors expand their range of assignment 

problems and the new problem types challenged their students in meaningful ways. 

Link to poster: http://staff.spd.dcu.ie/breens/documents/BreenOSheaposter_A4.pdf/  
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CRITICAL MULTICULTURAL INSTRUCTION FOR 
UNDERGRADUATE MATHEMATICAL THINKING COURSES 

Irene M. Duranczyk 

University of Minnesota 

Abstract. This poster reports the design and outcomes of a critical multicultural 
mathematics study on student performance and engagement in a required 
mathematics course for non-STEM (science, technology, engineering, or 
mathematics) majors. 

Key Words: postsecondary, math literacy, inclusion, multicultural 

Students‘ sociocultural background and interests can enhance their understanding of 

academic mathematics, particularly statistics, if the instructor and the students are 

open to the idea and have beliefs/attitudes that allow the interplay of academic 

mathematics and the everyday mathematics used for negotiating information. We are 

bombarded daily with statistical information about our society and about us as 

members of multiple cultural identity groups. The Critical Multicultural framework 

interconnects these sources of information. 

Critical multicultural instruction is an inclusive theoretical model, integrating 

multicultural education (Atweh, Forgasz, & Nebres, 2001; English, 2002; Joseph, 

2000; Solomon, 2009), ethnomathematics (D‘Ambrosio, 1985; Powell & 

Frankenstein, 1997), and universal instructional design (Higbee & Goff, 2008; 

Silver, Bourke, & Strehorn, 1998) for equity, access and success of tertiary learners.  

A news story based on the writer/publisher‘s point of view, power, and privilege is 

often supported by numerical documentation. How does this information shape our 

ideas? How can this information be re-purposed to tell our story, a story that 

embraces diversity or be used to understand and address the dynamics of race, class, 

gender, sexual orientation, national identity, immigrant status, and other identity 

dimensions? What story would we tell given the same data and an empowering 

sociocultural lens? With statistical knowledge and skills; a critical lens (examining 

the hidden questions/assumptions) and purposive reflection, we can be empowered 

as individuals and members of society to reshape the story—and tell a powerful story 

of diversity and community strength. 

CONTEXT OF THE STUDY 

The qualitative data was collected from an undergraduate course that fulfills a 

mathematical thinking, liberal education graduation requirement for a student in a 

tier one, doctoral research university in the US. This preliminary qualitative study 

measures the impact of using the critical multicultural instruction model on students‘ 

performance and engagement.  

POINTS OF EVIDENCE–ARTIFACTS AND OBSERVATION  

Midterm grades, journal entries, analysis of evidence of mathematical thinking and 
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engagement within assignments and tests, within-semester and post-semester 

interviews, and comparisons between and among pre-enrollment characteristics were 

used to capture the model‘s impact.  

PRELIMINARY OUTCOMES  

The preliminary outcomes: (a) Students in Service Learning (Fall 2010, 10 out of 38 

students) were more thorough in their discussion, analysis, and summary of the 

research project and statistical concepts; (b) Many students (Fall 2010, 15 out of 38) 

thought that the use of real data important to non-profit would be valuable but they 

did not have time to commit to a ―real‖ study; (c) Most students expressed (Fall 

2010, 30 out of 38) that they learned more about statistics by doing the project than 

by engagement in in-class discussions, in-class and homework assignments, or 

preparing and taking tests; (d) Overall, Students in the course identified more with a 

Deep Approach to Learning (intrinsic interest, commitment to work, relating ideas, 

understanding) over a Surface Approach (fear of failure, aim for qualification, 

minimizing scope of study, memorization). 

The actual poster presented at CERME7 may be obtained from the author by 

emailing duran026@umn.edu 
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PROBLEM-BASED LEARNING AS A METHODOLOGY OF 

STUDYING THE DIDACTIC KNOWLEDGE OF DERIVATIVES IN 

UNDERGRADUATE COURSES IN MATHEMATICS FOR 

ECONOMISTS 

Moreno, M.M.; García, L., and Azcárate, C. 

University of Lerida (Spain); University of Andes (Venezuela) and University 

Autñnoma of Barcelona (Spain) 

This poster reports a study focusing on the teaching of derivatives and their 

applications to an economic context at university level. It is an attempt to 

characterise the didactic content knowledge of teachers about the links between 

mathematical and economic concepts; and, about methodology of teaching and the 

use of problems for developing students‘ mathematical knowledge. We have 

organised four seminars, of two hours each, focused on the teaching of the 

derivative concept in an economic context. 

MOTIVATION AND OBJECTIVES 

Other studies suggest a lack of interest in teaching the derivative concept and its 

applications to economy. Teachers continue to be traditional in the sense that they 

seldom use derivatives to solve economic problems, and students use a large number 

of standardized procedures. There are no differences between the teaching of 

derivatives in chemistry, biology or economics. Our research aims: to characterise 

the didactic content knowledge of teachers about the teaching of derivatives and 

their links with economics; to evaluate the utility of seminars as a training tool for 

university mathematics teachers; and to evaluate a data collection instrument used to 

these purposes. 

CONCEPTUAL FRAMEWORK AND DATA COLLECTING 

We define didactic content knowledge as the specific knowledge required for an 

effective teaching based on the following four components: mathematical content 

knowledge, curriculum knowledge, teaching knowledge and learning knowledge 

(Kahan et al, 2003). Problem-based learning (PBL) is both a teaching method and an 

approach to the curriculum. PBL consists of carefully designed problems that 

challenge students to use problem solving techniques, self-directed learning 

strategies, team participation skills and disciplinary knowledge (Lee & Bae, 2008). 

The study was conducted with six teachers in a seminar consisting of four two-hour 

sessions. Data was collected through a questionnaire based on the seminar sessions 

and open, audio-recorded interviews. Thus, a teaching proposal was designed around 

four economic problems about derivatives and their economic meaning, the notion of 

domain of a function and extreme values, and the chain rule in an economic context. 
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SOME RESULTS AND CONCLUSIONS: EXAMPLE PROBLEM 3 

Problem 3 is a classical economic situation about the production of a product 

(pencils) in which we propose four different questions. We analyse the first one 

which concerns the domain of a function in a mathematical context (ℝ+) and in the 

economic context ([0,2]). Referring to the content knowledge (mathematics and 

economics) teachers express their opinion as follows: 

Ramñn: We should separate both contexts but we do not do so. 

Manuel: This point of view is very interesting and it would help students to 

understand the differences between contexts and the concept itself. 

Alexis: To teach this way, teachers need to make many cognitive and 

methodological changes. Thus, we should make connections between both 

contexts and show the analogies that are there. 

Referring to the teaching knowledge, Kenya considers that this approach implies 

anticipation to the students‘ questions and doubts, and a student-centred teaching. 

This change is necessary, according to most of the teachers, but it takes time, 

especially the first time the teacher prepares the lessons and the corresponding 

learning activities.  

Teachers evaluated our seminars in a positive way and said the seminars helped them 

to think about different approaches depending on the context. They also felt more 

conscious of the difficulties of the planning and the importance of their role as 

tutors: 

Ramñn: I liked the seminars as they were useful for working with and thinking about 

economic problems. I feel I lack knowledge and ideas for teaching this way. 

Kenya: I had never thought about economic problems this way. In my opinion, 

those were only examples and applications of the mathematical concept. I 

feel better sharing my ideas and doubts with my colleagues. 

Elio: After the seminars I am really worried about how to approach the derivative 

with our students. Changes are necessary but I am not prepared for them.  

Work partially supported by EDU2008-05254 of the Spanish Ministry of Science 

and Innovation.The poster is available from the authors. 
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SOME MEANINGS OF THE DERIVATIVE OF A FUNCTION  
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b
CINVESTAV-IPN (Mexico) 

The aim of this poster is to present the set of meanings that 15 first year university 

chemistry students associate with the concept of the derivative of a function. The 

research questions are as follows: Which meanings of the derivative of a function do 

students recognize and use? What kind of relationships do they establish between 

them? How do they use them in problem solving activities? The results obtained 

mark the starting point for the implementation of a teaching module designed to 

introduce Ordinary Differential Equations (ODE) using the link of this concept to 

the derivative of a function in a problem solving scenario. 

Key words: derivative, ordinary differential equations 

RESEARCH 

A previous research project (Camacho-Machín et al., submitted) showed there was 

some discontinuity in the learning of mathematics: several students do not relate the 

concepts of derivatives and ODE. This finding led to the design of a teaching 

sequence where the concept of ODE was introduced in a problem solving scenario, 

making the relationship between this concept and the derivative of a function 

explicit. As a prelude to the implementation of this teaching sequence we wanted to 

establish the set of meanings students associated with the concept of derivative, 

which is the aim of this poster
99

. Results will be used in the future to analyse how 

students‘ understanding of the derivative evolves during the learning of ODE. 

Conceptual framework  

The following two main ideas shape the conceptual framework of this work: the 

importance of analyzing students‘ knowledge in order to explain how they solve 

problems (Schoenfeld, 1992) and that a mathematical concept is built by dealing 

with the different meanings associated with it that can be represented by different 

systems (Hiebert & Carpenter, 1992). In the case of derivatives, the concept can be 

thought of in different ways (Thurston, 1994) including the formal definition, an 

algebraic procedure, the slope of a line tangent to the graph, etc. 

Methodology 

This research was carried out with 15 university students in the first year of a degree 

course in chemistry (the whole population). They had just studied calculus with one 

                                           

99
 Some other research results related with the concept of derivative are included in the poster. This work was partially 

supported by Grant no. EDU2008-05254 of the National Research Plan I+D+I of the Spanish Ministry of Science and 

Innovation. 
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and several variables. Last sessions corresponded to the introduction of ODE. In 

order to answer the research questions formulated here, we designed a questionnaire 

with 11 items (included in the poster) that could be solved in different ways. 

Students answered it individually, only using paper and pencil. 

Analysis and results (Evidence of the results are included in the poster) 

All the students used the derivative of a function as a mathematical procedure 

(although 5 of them showed some difficulties). Another six different uses associated 

with the concept of derivatives were detected in the students' answers: formal 

definition, description of critical points, slope, monotonicity, variation and rate. Even 

though most of these uses are closely related, they are considered individually 

because students did not show how to link them. For example, some students 

described the derivative of a function by analysing the monotonicity of that function 

but they did not obtain the slope of the line tangent to the graph of a function at one 

point. The classification of the students (table) shows the diversity that occurs in the 

construction of the network of meanings associated with the derivative of a function.  

Students who relate the derivative (in addition to consider it as an algebraic procedure) 

at most to 2 meanings to 3 different meanings to 4 or 5 meanings 

Sonia (none) 

Nieves (monotonicity) 

Silvia (slope, monotonicity) 

Juan (slope, rate) 

Ginés (formal definition, rate) 

Virginia- Carmen (formal 

definition, slope, 

monotonicity) 

Alberto (slope, variation, 

monotonicity) 

Zoraida – Naomi (slope, 

monotonicity, rate) 

Mar (formal definition, slope, monotonicity, 

rate) 

Manuel (slope, monotonicity, rate, 

variation) 

Milagros - Nicanor (formal definition, 

slope, monotonicity, rate, variation) 

Alexis (formal definition, slope, critic 

points, rate, variation) 

This classification will be useful for a future analysis of the evolution of the 

students‘ understanding of the concept of derivatives during the learning of ODE in a 

problem solving scenario. The conference poster is available at: 

http://dl.dropbox.com/u/26255014/Poster_Perdomo-Camacho-Santos-CERME7.pdf 
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TRANSITION SECONDARY-TERTIARY LEVEL EDUCATION VIA 

MATH-BRIDGE 

Julianna Zsidñ, Viviane Durand-Guerrier 

Université Montpellier II 

Abstract. With the poster presenting the Math-Bridge project we would like to draw 

attention to this multilingual resource for online mathematics courses and training 

exercises that aims to help the transition for students between secondary school and 

higher education. This resource is developed in an ongoing European project. The 

poster presents briefly the specifics of the project and possible usage modalities. 

Keywords: secondary-tertiary transition, bridging courses, e-learning, European 

project 

THE AIM OF MATH-BRIDGE 

The goal is to provide an e-learning tool that contains relevant mathematical content 

for typically first and second year university students in need for mathematical 

bridging courses. The common European problem of high drop-out rates among 

science and engineering students because of gaps in mathematical knowledge is 

tackled by this project. A large pool of common remedial courses and training 

exercises is created for use and reuse across European universities. 

FUNCTIONALITY 

Math-Bridge is based on an intelligent tutoring system called ActiveMath which 

adapts to the student users' field of study, competency level and progression profile. 

Moreover the multilingual and multicultural aspects (Melis et al. 2009) play an 

important role: the content is available in seven languages easing cross-cultural 

training and Europe-wide mobility. 

Students can create their own personalized exercise books, exploratory books for 

new fields or even simulate tests from the pool of available learning objects and 

progress at their own speed. When doing exercises the system analyses errors in 

answers, gives feedback and adapts further reasoning guiding the student, instead of 

returning only ―correct‖ or ―wrong‖ feedback with the expected answer. 

Tutors can create books for their classes containing learning material, exercises and 

tests. Student user statistics can be recorded in order to determine which content is 

more valuable. 

Authoring of content is possible at any time, that is, adding learning material and 

exercises and translating into new languages. The pool of learning objects becomes 

richer and Math-Bridge evolves constantly. 
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MATH-BRIDGE SUPPORTS SECONDARY-TERTIARY TRANSITION 

Since Math-Bridge provides remedial course material and training exercises, it 

includes secondary level learning material that proved to be partially acquired 

together with higher educational level material. Acquiring knowledge is guided by 

different learning models and the exercises can be repeated as many times as needed. 

Moreover the fact that it is an e-learning tool favours students' personal initiative and 

skills for self-organization typical for higher education level; see also (Mercat, 

2009). 

MATH-BRIDGE IN MONTPELLIER 

A possibility for a (team of) teacher(s) at university is to elaborate a book with 

relevant training exercises for a given course; to use this book partly during their 

sessions and to invite students to go on working on the book as personal work. As a 

bridging course, it can be used by teacher teams encompassing both secondary and 

tertiary teachers, in order to smooth the transition. 

In Montpellier, we are experimenting with these modalities at a rather limited scale 

in 2010-2011 in the first year Calculus course (and probably at a larger scale in 

2011-2012) in order to investigate if the learning objectives are more likely to be 

reached by using Math-Bridge on the one hand, and the possibility of a smooth 

integration in the every-day work of students and teachers on the other. 

It is possible for a student to switch between languages when learning or doing 

exercises, thus Math-Bridge claims to help to overcome linguistic difficulties, that 

arise when learning mathematics in a different language (Barton et al, 2005). Of 

course, further research in this matter needs to be developed. A first step has been 

made by an ongoing pre-experimentation with bilingual  students. 

The poster is available from the author at julianna.zsido@univ-montp2.fr. 
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CHASE FOR A BULLET – USE OF ICT FOR DEVELOPING 

STUDENTS‘ FUNCTIONAL THINKING 

Antonín Jančařík
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2) 
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The poster presented an activity developed in the on-going Socrates Comenius 

project EdUmatics, European Development for the Use of Mathematics Technology 

in Classrooms (503254-LLP-1-2009-1-UK-COMENIUS-CMP). The project focuses 

on integration of technology into secondary school mathematics. Its main goal is the 

creation of a research based course for pre- and in-service teachers to use new 

technologies in math classrooms with the goal of maximising students‘ learning.  

Keywords: Functional thinking, mathematical model, ICT, mathematical education 

The outcome of the project will be teaching materials that illustrate the optimum use 

of ICT in mathematics teaching and learning. The activity presented in the poster, 

Chase for a bullet, has been designed for the module Constructing functions and 

models. It represents an example of a fruitful integration of ICT with paper-and-

pencil activities. Two points A and B are given representing the current position of 

the Target (A) and the Bullet (B). A is moving on a trajectory at a given speed and B 

is trying to catch A. The main activity consists of choosing the trajectory of A and 

the following calculation of the approximation of the trajectory of B. The activity 

focuses on the potential of technology with respect to functions perceived as tools 

for modeling both the inner world of mathematics (internal modeling) and the 

outside world (external modeling). The proposed situation is based on the principles 

of the Theory of didactical situations (Brousseau, 1997). It possesses a high potential 

for dynamic access to families of functional objects depending on one or more 

parameters. It offers flexible access to a diversity of representations of functional 

objects and connections between them. The goal of Chase for a bullet is to enable 

students to learn indirectly about graphs of various functions, to make connections 

between parameters in formulas of functions and their properties. The situation is 

rich in the perspective of interdisciplinary relationships (physics, various 

environments for the same mathematical model). The foreseen age level is 14 years 

and up. The minimal mathematical knowledge is the Theorem of Pythagoras. 

The design combines work without and with computers. ICT is mainly used for 

simulation of processes, as scaffolding for computations (e.g., solving quadratic 

equations), calculating new data using constructed formulas, verifying the 

correctness of the obtained results, and easy creation of examples and problems. 

The added value of the use of computer technologies when solving bullet-target 

problems lies in the following two areas. Students learn how to model real situations 

with the help of a computer model. An analytic solution of the bullet-target problem 

is extremely difficult, even impossible. However a mathematical model constructed 
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by students for the solution of the problem enables a good enough approximation 

and offers a model solution applicable in other situations the student may come 

across in real life. In other words, the computer helps the student solve a problem 

that he/she would fail to solve without its support.  

The benefit of the use of computer technology also lies in the fact that, after having 

developed a numerical model, the computer carries out the repetitive calculation of 

the position of the bullet using the formula that the student him/herself has 

developed within the frame of analysis. Thus the computer takes over the student‘s 

routine activity that he/she would be able to carry out on their own but due to time 

limitations only in a very limited number of problems. ICT allows modeling of the 

situation in real time and the student‘s attention shifts from routine calculations to 

analysis of the behavior of functions and to exploration of the dependence between 

the bullet and the target trajectory. Students may study the influence of the different 

parameters in an extent impossible without computer technology.   

The poster presented the organization, course and analysis of the first pilot 

experiment of the situation in the Prague school Na Slovance (15-year old students). 

The following figures illustrate students‘ activities. 

 

 
 

Figure 1: Estimated 

trajectories 
Figure 2: Trajectory of the target: circumference (MS Excel) 
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THE CHALLENGE OF DEVELOPING A EUROPEAN COURSE 

FOR SUPPORTING TEACHERS‘ USE OF ICT  
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The poster concerns the on-going Socrates Comenius project EdUmatics (503254-

LLP-1-2009-1-UK-COMENIUS-CMP), whose ambition is to develop a research 

based course which aims to educate in-service and pre-service teachers to use new 

technologies in their mathematics classroom to maximize students‘ learning. In the 

poster, we focus on issues raised by the development of one of the five modules for 

this course entitled ―Constructing functions and models‖, and we take one family of 

situations used in this module: ―The Sign Family‖ as an illustration [1] of the 

interaction between research and design.  

Key words: teacher education, ICT, functions and modeling 

The teams involved in EdUmatics have all a research and training experience in ICT 

but they live in different educational contexts, with different curricular organizations, 

teacher education systems, and they face different institutional constraints. Even if 

the use of ICT in mathematics education is promoted by every country involved, 

school equipment and educational policy regarding ICT is also variable. The 

research that these teams have developed also situates in different traditions, relies 

on different theoretical frameworks, and as evidenced for instance by the European 

project ReMath [2], such differences substantially impact the design and use of ICT. 

Building a European course for teachers supposes a good awareness of this diversity 

and its possible consequences, a reached agreement on some core points for teacher 

education in that area in terms both of content and form, and a conception of design 

allowing easy adaptation to a diversity of contexts. In the poster, we illustrate one 

particular facet of our work in progress on these challenging issues: how we 

approach the necessary design flexibility through the idea of family of situations. 

The Sign family that we use as an illustration denotes a family of mathematical 

situations at the interface between geometry, magnitudes and the functional world 

which can be described in the following way: a initial geometrical form is given 

(square, rectangle, circle … or even a 3D form); and a point variable in this form 

(along a side, a bisector, a diameter…) allows its division into different parts; from 

this division a sign is created whose area depends on the position of the variable 

point (see examples in figure 1). Several questions naturally emerge regarding the 

variation of this area or of the area of its different components, its minimum and 

maximum values… 
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Figure 1: Some Sign examples 

From this schema, according to the choices made in terms of didactic variables 

(Brousseau, 1997), one can generate a great diversity of didactic situations, varying 

the context of the task, the functional dependencies at stake, the autonomy given to 

students in the functional modeling, the technology used, and the didactic 

organization. The Sign family presents thus the adaptive character expected from the 

situations for this module. It also offers evident potential for addressing the issue of 

ICT affordances for the teaching and learning of functions: support to an inquiry 

based approach through the enrichment of the a-didactic milieu, support to the 

multimodal semiotic activity of students (Saenz-Ludlow & Presmeg, 2006).  

In the poster, we will visually present how the research developed about the Sign 

family, combining an a priori analysis of the family of situations and analysis of 

screen captures and videos resulting from the experimentations carried out in the 

partner high schools, can be used in the design of the module for studying the 

affordances of ICT in the teaching and learning of functions, making teachers 

sensitive to instrumental issues (Guin, Ruthven & Trouche, 2004), discussing the 

specificities of the teacher‘s role in ICT sessions, and preparing the use of such 

situations in a diversity of educational contexts.  

NOTES 

1. Another example is provided in the poster proposed by our colleagues from Prague. 

2. The European STREP ReMath has especially addressed the impact of theoretical diversity on the design and use of 

digital technologies. Its results are accessible on the project website: http://remath.cti.gr 
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REMEDIAL SCENARIOS FOR ONLINE AND BLENDED-

LEARNING BRIDGING COURSES 

Rolf Biehler*, Pascal R. Fischer**, Reinhard Hochmuth**, Thomas Wassong* 

* University of Paderborn, ** University of Kassel 

The European Project Math-Bridge
1
 aims at providing technical and pedagogical 

support for mathematical bridging courses. Based on the ITS ActiveMath
2
 Math-

Bridge (MB) extends it to the project‘s special needs. MB provides amongst others 

pedagogical remedial scenarios which enable teachers and learners to use MB for 

different course scenarios. This poster will present these remedial scenarios. 

Keywords: Bridging Courses, Remedial Scenarios, Self-Regulated Learning 

THE LEARNING MATERIAL IN MATH-BRIDGE 

Most of the project European partners already have experience with the development 

and implementation of math bridging courses and provide a big amount of learning 

material for reuse within MB. This material needs to be enriched by pedagogical and 

mathematic-structural metadata. Our pedagogical structure (Biehler et al., 2009) 

bases on existing competency models like PISA (OECD, 2003) and the German 

Bildungsstandards (KMK, 2003) and defines four competency clusters on the 1st 

dimension: technical, math problem solving, modelling, and communication and 

reasoning. Our 2nd dimension contains three achievement levels: reproduction, 

connection, and reflection. Our math structure is defined in an ontology which bases 

on the taxonomy for Mathematical Sciences Education
3
. 

THE USE OF LEARNING OBJECTS IN MATH-BRIDGE 

In order to use the enriched content within the adaptive learning system, we extended 

the pedagogical scenarios of ActiveMath (Reiss et al., 2005) to the purposes of math 

bridging courses. These scenarios aim at different learning goals (rehearse, 

workbook…) and select the most reasonable learning objects (LO) with regard to 

students‘ abilities and learning goals, bring them into a predefined order and hence 

give them an appropriate learning environment for their individual purposes.  

An analysis of the learning material showed that some of the sequences of atomic 

LOs are not freely exchangeable and instead belong strictly together. These 

sequences should not be broken up since e.g. an ―introduction‖ sometimes forms a 

holistic unit. Having the individual LOs and also keeping these units together, we 

introduced a new structure element called ―complex learning objects‖ (CLOs). 

According to the learning material from the VEMA-project
4
 (Biehler et al., in press), 

we identified the following types of CLO: Introduction, Info/Interpretation/ 

Explanation (IIE), Application, Misconception, Practice, and Supplement (Biehler et 

al., 2010).  
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FORMALIZED REMEDIAL SCENARIOS 

For the remedial scenarios concerning the CLOs we developed a close order of units 

(overview, intro, info, IIE, application, typical mistakes, exercises, and supplement), 

where the learners can select relevant units for their learning process. To support the 

students in structuring their learning, MB provides scenarios with preselected units, 

e.g. Select Basic (overview, info, IIE, exercises) (Biehler et al., 2010). Hence the 

students can create a book respecting their needs and pedagogical principles. 

THE LEARNING ADVICE COMPONENT 

Most of the first-year students are not trained in self-regulated learning especially in 

ITS. We thus designed a self-assessment component: After having chosen a specific 

domain the learners get an overview of the topics and the relevant definitions and 

theorems. Then they estimate their knowledge and assess themselves using a 

diagnostic test providing feedback on their performance and abilities. Finally they 

compare their own solution to a model one and the assessment results with their 

initial self-estimation. With this feedback, the learners are able to select content and 

learning scenarios adequately. Besides the learning advice component trains the 

student‘s ability of self-estimation and self-regulation (Biehler et al., 2010). 

NOTES 

1. http://www.math-bridge.org 

2. http://www.activemath.org 

3. http://people.uncw.edu/hermanr/mathtax/  

4. http://www.mathematik.uni-kassel.de/vorkurs  
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The poster [1] presents the I2Geo platform developed within the Intergeo project [2] 

whose ambition was to develop a Pan-European math teacher community enabled to 

share resources and practices in using dynamic geometry (DG). We present the main 

tools and services i2geo offers to stimulate the use of DG in mathematics classes.  

Keywords: Intergeo, I2Geo platform, dynamic geometry 

Dynamic geometry systems (DGS) are well known computer tools to support math 

teaching and learning by means of personal explorations and experience. Despite 

their availability and recommendations in European countries curricula to use them, 

their integration in schools is still unsatisfactory (Hendriks et al., 2008). The 

Intergeo project (Kortenkamp et al., 2009) tackles main obstacles to DGS 

integration: (1) difficulties to find suitable resources due to the lack of metadata 

describing accurately their content, (2) impossibility to exploit with a given DGS 

resources created with another one, (3) lack of quality guarantee of available 

resources. We briefly expose solutions proposed to overcome these obstacles. 

SHARING DG RESOURCES 

An accurate resource content description is necessary for easy finding and sharing 

resources. The challenge in Intergeo consisted in defining metadata allowing a cross-

curricular resource search regardless of language and cultural differences. This was 

achieved by defining a math topics and competencies ontology making it possible to 

find resources written in different languages. Sophisticated search tools (e.g., search 

associated to different national curricula key words) have also been developed. 

INTEROPERABILITY OF DGS 

One of the obstacles in the use of DG is the issue of user lock-in with respect to a 

particular software product. Learning new software is time consuming and usually 

unrealistic for teachers. The project defines a common interoperable file format to 

describe constructions created with a DGS in a way to enable content exchange 

between DGSs. The standards are supervised by Intergeo A.s.b.l. association.  
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QUALITY ASSESSMENT PROCESS 

Quality assessment of DG resources (Trgalová et al., 2009) aims at promoting access 

to best quality resources, as well as at ensuring their continuous improvement. The 

main tool supporting the assessment is a standardized questionnaire organized 

around nine dimensions of a resource related to its mathematical, didactical, 

pedagogical, technical and ergonomic aspects. Quantitative evaluation of a resource 

along these aspects in terms of a 4-level range of agreement can be complemented by 

qualitative comments, which are crucial for the resource improvement.  

 

Figure 1: Main page of the platform 

 

Figure 2: I2Geo quality questionnaire 

I2GEO PLATFORM IN A FEW NUMBERS 

By April 2011, around 3500 resources are available on the platform and more than 

700 evaluations have been performed to this day. The platform has more than 1000 

registered members.  

NOTES 

1. The actual poster presented at CERME7 can be downloaded from http://i2geo.net/xwiki/bin/download/Main/ 

Proceedings/CERME7poster.pdf  

2. Intergeo was co-funded by the European Union within the eContentPlus programme, 2007-2010. See http://i2geo.net  
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MOBILE TECHNOLOGY IN MATHEMATICS COURSES FOR 

TEACHER STUDENTS 

Iveta Kohanová 

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 

Slovakia 

In August 2008, Faculty of Mathematics, Physics and Informatics at the Comenius 

University in Bratislava received an HP Technology for Teaching Higher Education 

grant to innovate and transform learning and teaching at the Faculty. The poster 

focuses on the usage of the above-mentioned HP mobile technology in preparing 

future mathematics teachers in courses of Mathematical Analysis, Didactics of 

Mathematics and Didactical seminar in school mathematics. It demonstrates how we 

prepare our future teachers to the integration of modern mobile technology in 

teaching mathematics at primary and secondary schools; how these teachers 

improve their mathematical knowledge, attitudes towards mathematics, connecting 

theoretical knowledge with practical one and increase their motivation. 

Keywords: mathematics education, preparation of future teachers, technology in 

educational process 

IMPACT ON STUDENTS‘ LEARNING 

Achievement of project objectives are measured in form of group comparison (pilot 

course vs. control course - offered without the support of HP mobile technologies), 

tests, and interviews related to the change in motivation and attitudes towards 

mathematics. 

Two Years Ago – A typically successful completion in a Mathematical Analysis 

(Didactical seminar) course was approximately 55% (44%). 

One Year Ago – A typically successful completion in Mathematical Analysis 

(Didactical seminar) course was approximately 74% (58%). 

Today – To the date, our successful completion rate is approximately 75% (63%).  

IMPACT ON TEACHING 

The teacher, as well as teacher students, work during the lessons with tablets. In this 

way, the students came from a passive role to the active role. They have all the 

materials in electronic form and therefore, they can edit them, share them, which 

leads to achieving better results.  

During the course of the Didactics of Mathematics teacher students simulate the 

primary/secondary school classroom; one teacher student plays the role of the 

teacher, other teacher students represent pupils. By practicing of teaching and 

learning mathematics with the usage of the HP mobile technology, they prepare 

themselves for their future career and integration of technology into education.  



Working Group 15 

 CERME 7 (2011) 2989 

TECHNOLOGY IMPLEMENTATION 

Each teacher student works during the lesson with a tablet (Fig. 1); the tablet 

capability of on screen inking enables him/her to work directly with a given problem 

or a representation of a mathematical concept, to write, calculate and draw, to model 

and observe the behavior of functions, parameters, etc. 

 

Figure 1: A photo of teacher students working with mobile technology 
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PEPIMEP PROJECT: ONLINE DATABASE SYSTEMS AND 

DIFFERENTIATED LEARNING ROUTES FOR SCHOOL 

ALGEBRA 

Françoise Chenevotot, Brigitte Grugeon-Allys 

Laboratoire de Didactique André Revuz L.D.A.R., Paris Diderot University, France 

On this poster, we present PépiMep research project (running from 2010 to 2012). It 

articulates two research domains: educational research for school algebra (Kieran 

2007) and Computer Learning Environments (C.L.E.). Our aim is to implement 

computer resources in online database systems to help teachers to differentiate 

students‘ learning in elementary algebra and to study the mathematic teachers 

practice and the algebra activity of students. 

Keywords: online database system, cognitive assessment, teaching and learning of 

school algebra, differentiated learning routes. 

FROM PÉPITE-LINGOT PROJECT TO PÉPIMEP PROJECT 

Many teachers have difficulties taking into account their students‘ cognitive 

diversity. So maths teachers need computer resources to differentiate students‘ 

learning in elementary algebra. Pépite-Lingot project relies on a fifteen years 

collaboration between two partners: CLE researchers from LIP6 Paris and math 

education researchers from LDAR. Pépite software produces an automatic cognitive 

assessment for school algebra. This tool, based on a multidimensional analysis of 

algebraic skills (Grugeon 1997), generates automatic multi-criteria assessments of 

students‘ competence in school algebra (Delozanne and al. 2008). PépiMEP project 

is grounded on the collaboration of the two previous partners and a third one, 

Sésamath, a French maths teachers association which has had a central place in 

online database systems for ten years (Vanroyen 2008). The aim of PépiMEP project 

is to implement computer resources in the Sésamath online database LaboMEP to 

help teachers to differentiate students‘ learning in elementary algebra and to study 

the maths teachers‘ practises and the algebra activity of students. 

AIMS 

PépiMEP project will design and implement assessment and differentiation tools in 

the LaboMEP database. For researchers, the objective is to have large-scale data. For 

Sésamath association, the objective is to develop a new version of their database, 

which includes assessment and differentiation. We present our research questions. In 

educational research: Do mathematic teachers use learning situations and 

differentiated learning routes, structured by students‘ cognitive learning, to organize 

work in groups in their classroom? Are these differentiated learning routes adapted 

to usual evaluation and differentiation practices of teachers? What are their effects 
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on students‘ activity? In ICT research: Is automatic analysis of pupils‘ answers 

developped in prototypes (Pépite) rather robust to pass on the scale (LaboMEP)? By 

combining numerical and didactical analyses, is it possible to develop a dynamic 

assessment tool? 

METHODS 

Our method is based on both an analytical and a didactic engineering point of view. 

At the time of implementation in classrooms, we confront a priori analyses and 

models developped. Methodology is based on the combination of qualitative and 

quantitative studies: a large-scale study with an ICT monitoring in the LaboMEP 

database and some case studies with observations and interviews in classrooms 

(Abboud-Blanchard and al. 2007). 

FIRST RESULTS 

Experimentations with assessment tool and adapted learning routes just began in 10
th

 

grade classrooms. For example, before the use of the assessment tool, a teacher has 

constituted 4 groups for school algebra learning in his class of 35 pupils: the very 

good pupils, the very good pupils with few difficulties, the average pupils, bad 

pupils. The teacher needs help mostly for the average group. The diagnosis agreed 

with the teacher‘s groups with only few differences and helped the teacher by 

lightning some pupils‘ difficulties that need special training. 

The actual poster presented at CERME7 may be obtained from the authors by 

emailing them at chenevotot.francoise@neuf.fr. 
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EXTENDING [1] THE MATHEMATICS TEXTBOOKS ANALYSIS: 

QUESTIONS OF LANGUAGE AND ICT 

Carlos Alberto Batista Carvalho, José Manuel Leonardo de Freitas 

Escola Secundária Lima de Freitas / UIED FCT UNL 

This poster refers to an ongoing research, which deals with the integration of ICT in 

Portuguese mathematics textbooks. However it is relatively unknown how this 

integration has been made. The main goal of this study is to develop a comparative 

analysis of how the syllabus for Mathematics A and for Professionals Courses (CP) 

integrates the technologies and how these technologies are discussed in school 

textbooks, and to characterize the different kinds of language used. For this purpose 

an analytical tool is being developed and tested. 

Keywords: ICT, Textbooks, language 

In an attempt to characterize the language used in different types of textbooks and in 

the process of developing an analytical tool, crossed with an apparatus developed in 

a former work that analysed the levels of use of the graphing calculators in textbooks 

(Carvalho, 2006), we present here very briefly a part of literature review on the 

Theory of Social Activity (Dowling, 1998) directed to the analysis of textbooks. 

A textbook should lead to the establishment of a pedagogical relationship between 

its authors and its content with its target audience to which it is intended. To be 

considered pedagogical, a text, according to Dowling (1998), must involve 

subjective relationship between two positions, on the one side, that dominates what 

should be taught, and on the other, someone with little or no knowledge about it.  

A greater or lesser complexity of discourse adopted in school textbooks, called 

discursive saturation by Dowling (1998), is closely related to the pedagogical action 

being developed. The discursive saturation is directly related to metonymy and 

metaphor. When a math expression is looked at as a series of math symbols, ideally 

exemplified in a math equation or a demonstration, mathematics should be seen as a 

metonymy, presenting a high discursive saturation. If the school math often involves 

references to objects and not math relations, then they seem to have a metaphorical 

relationship, a low discursive saturation. According to Bernstein (1971, 2003), the 

discourse can be classified in two ways, one related to its specialization, the second 

related to the expression (language). For instance, a math expression has symbolic 

connotations in Portuguese, but the connotation with the non-mathematician is short. 

If the expression is translated into regular Portuguese, the content remains intact 

within the context of math, but the mode of expression is less specialized. 

Dowling assigns three levels to the Theory of Social Activity: The Structural, the 

Textual and the Resources. The Structural – Activity level is further divided in other 

three levels: a) Practices – Domain, related to the forms of expression and content 
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relating to signifiers and signified, b) Practices –  Discursive Saturation, related to 

the fact that the practices (DS+) present at the level of discourse, a highly complex 

organization and exhibit compared to a (DS-) practice a complete articulation, and 

c) Positions, related to the construction of hierarchical positions of transmission and 

acquisition. The textual level works on voices: who says what – the author, who 

hears – the reader, and messages, the content. The Resources level is essentially 

semiotic, assuming significant modes.  

When testing the apparatus, we chose a topic: Properties of exponential functions, 

from the same textbooks authors, for two syllabuses: Mathematics A and 

Mathematics CP. Mathematics A is addressed to the students wishing to pursue 

studies, Mathematics CP is addressed to students who want to finish their studies. To 

the former, a more formal knowledge is needed, in the esoteric domain; to the later a 

more practical knowledge is expected, in the descriptive domain. However, in both 

textbooks, the presentation is equal, ―copy and paste‖. In the message, it is not 

possible to distinguish the intended audience. In both textbooks, the resource is 

iconic, no different strategies were used. A reference to the graphing calculator is 

made, in both textbooks, but nothing more than a reference. The pedagogic 

relationship, in the Mathematics CP is more of subject than dependent or even 

objectified, as it should be.  

In conclusion, a student, who had problems with mathematics in a school route, will 

experience the same problems in the other route. The authors used the work of a 

manual for replicating the other, without regarding to whom it is addressed. The 

syllabus recommendations were not attended. Where we should find a practical 

approach, we find a formal approach. In the Mathematics CP textbooks where the 

references and examples with the use of ICT should prevail, the opposite is observed. 

The actual poster presented at CERME7 may be obtained from the author by 

emailing them at almo_mou@hotmail.com  

NOTES 

1. Work within the Research Project QAMURT – Quality of learning in mathematics using technology resources, 

supported by FCT – Foundation for Science and Technology, under contract ner PTDC/CED/71744/2006. 
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INTENSIVE USE OF ICT IN PRE-SERVICE PRIMARY 

TEACHERS‘ PROFESSIONAL TRAINING IN MATHEMATICS: 

IMPACT ON TEACHING PRACTICES. 

Jean Baptiste Lagrange, Alexandre Becart 

LDAR, Research Team in the Didactics of Mathematics, University Paris 7, France 

Up to this year, the training of primary teachers took place in France during two 

years in a Teacher Training College (IUFM). The first year was mainly theoretical 

and aimed at completing students‘ disciplinary knowledge. The second year focused 

on the teaching profession in primary schools, alternating training and practice. 

Research has found that in spite of a significant social development of digital 

technologies, teachers‘ use of ICT is very limited, especially in their classroom 

practice. The specific ICT courses taught at the IUFM did not really change this 

situation. My hypothesis is that an intensive use of ICT in professional training in 

mathematics can be more effective. 

CONTEXT AND PROBLEMATIC OF THIS RESEARCH 

On the one hand, the current development of ICT, particularly in mathematical 

applications, allows considering new teaching practices in teacher training in 

mathematics. On the other hand, few or no in-service primary teachers introduce ICT 

in classroom practice in contrast with institutional guidelines and most of them use 

ICT poorly or not at all to prepare their class lessons and collaborate with colleagues. 

These first observations appear paradoxical in light of the availability of ICT in both 

private (Lagrange, Lecas, & Parzysz, 2005) and professional sphere. They appear 

also paradoxical with regard to the institutional demands. Primary teacher training 

considered in my thesis is multidisciplinary and punctuated by periods of practices 

with full responsibility of a class. For both these reasons a tension exists between the 

different training periods and the different requirements of disciplinary subjects. In 

my assumption, ICT, especially the communication via networks, can offer a way to 

manage this tension positively. 

THEORETICAL FRAMEWORK  

The theoretical framework should apply to the specific training of primary teachers. 

Pre-service primary teachers‘ ages and background are very diverse. The training is 

accessible to any graduate. Brought together in a permanent training group, students 

make a community of learners in which diversity can become an advantage to their 

learning if they collaborate. Many researchers believe that ICT can promote and 

guide this collaboration, especially Internet-oriented tools (Beatty & Geiger, 2010). 

The work of a school teacher in mathematics is to construct workable classroom 

sessions. The choice of the trainer is to support this construction and to promote 

reflexivity, especially by collective discussions. ICT can help the mutualisation and 
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the collective discussion relatively to classroom sessions. The framework of 

communities of practice developed by Wenger (2006) seems particularly well suited 

to the study of learning through exchange and collaboration within a permanent 

group and induced by the structure of training to share practices. Jonassen (2000) 

revisited the activity theory, in order to build learning environments based on the 

analysis of systems of activities in the professional sphere, which is consistent with 

my goal of preparing students to work as members of communities of teachers. That 

is why I choose these two approaches: Wenger‘s communities of practice and the 

activity theory by Jonassen.  

METHODOLOGY  

As a trainer in mathematics, I taught courses for pre-service teachers and I choose to 

implement an intensive use of ICT. An agreement with the students allowed me to 

access to all digital exchanges in some groups. The experimental data collected 

during the courses was supplemented by questionnaires and group discussions with 

students in order to know more about their personal tools, skills, initial and final ICT 

use, how they work, their activities in training and how they use ICT in class. 

FIRST RESULTS  

An initial analysis of data collected reinforces my choice of a dual theoretical approach. Indeed, we 

can see that students built a community after arriving at the Teacher Training College. This 

community first exchanged about work placements and then integrated teaching. In addition, the 

mathematics session production work was built around a division of the task and the activity theory 

revisited by Jonassen corresponds to this work. Students‘ personal equipment available was 

sufficient to consider any use of ICT in training. However while a few students were very good at 

using ICT tools, uses by most of the students were limited to a few tools and their knowledge was 

generally poor. Scaffolding or additional training was therefore often necessary in order to 

generalize in-training ICT practice to the whole group. Regarding classroom uses, the results are 

contrasted.  
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One of the goals of mathematical education is the development of problem solving 

competences. This development is fostered by working on complex story problems. 

There are different models describing the sequences of operations and actions 

during the solving process for regular story problems. Yet, these models cannot be 

used when dealing with complex story problems. The idea of a new model is 

described in this paper. Two existing models were combined and adapted in order to 

get one that is suitable for our purposes. 

Keywords: problem solving, coordination, MLT-Model  

THEORETICAL BACKGROUND 

The term complex story problems specifies a group of tasks that is different from 

regular story problems (Rasch, 2001). Unlike regular story problems, these tasks are 

based on very challenging mathematical structures and cannot be solved by 

arithmetic operation models that students are usually familiar with (Rasch, 2001). 

The development of problem solving competences is an important element of the 

curriculum for mathematics. Concerning this aim, such competences can be built 

when working on story problems (Staub & Reusser, 1995). An according study 

shows the positive influence of complex story problems on the development of 

problem solving competences of primary school students (Rasch, 2001). Steps of the 

problem solving process of regular story problems are defined differently in various 

models. Unfortunately, these models do not fit the problem solving process of 

complex story problems (Ruwisch, 1999). Since there are no models that describe the 

process of problem solving with regard to this special group of story problems, we 

aimed to develop a suitable one for such problems. 

The first model (Reusser, 1993) is called ―Student-Problem-Solver‖ (SPS). 

According to the SPS model the student recodes and gradually transforms the story 

problem into the solution. The second model is the „cognitive-metacognitive model 

of mathematical problem solving‖ (Montague & Applegate, 1993). This model 

defines seven cognitive processes as essential for effective and efficient problem 
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solving. Both models focus on different aspects of the problem solving process of 

story problems and complement each other. Through the ―coordination‖ (Prediger, 

Bikner-Ahsbahs & Arzarello, 2008) of these two models we developed a new model 

(Radford, 2008). Our MLT-Model (Groß, Hohn, Telli, Rasch & Schnotz, 2010) 

describes the sequence of the problem solving process of complex story problems. 

Based on this model, we also developed a system of categories that can be used to 

analyse the problem solving process and the use of different external representations 

while working on complex story problems in primary school mathematics.  

The actual poster presented at CERME7 may be obtained from the author by 

emailing them at gross@uni-landau.de 
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THE COMPLEXITY OF ADVANCED MATHEMATICAL 

THINKING AT THE NON-UNIVERSITY LEVEL  

 Miguel Silva  
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This poster intends to be a presentation of the PHD research project by the first 

author. Understanding the reasons to the (un)success in mathematics, has attracted 

the interest of researchers worldwide. Starting with some theories of knowledge 

construction, it aims to understand the different interactions occurring in the 

classroom.In addition we expect to further study this complexity, by understanding 

the links between the representations of various concepts, and knowing what non-

higher education students make of it. The technology emergence, in all its forms, in 

schools as catalyst for learning, may enhance the connections between various 

representations of a mathematical object as a relevant factor contributing to the 

clarification of learning issues. 

Key-words: Advanced Mathematical Thinking, Mathematics Education, 

Significance, Connexions in curricula 

In higher education, Domingos (2003) studied the understanding of mathematical 

concepts at the university. Internationally, several authors are references on this 

theme, namely Dubinsky(1991) work, on the APOS theory, inspired by Piaget. 

Equally important is the proceptual approach developed by Tall who bases his theory 

on three mathematical worlds of development of mathematical knowledge: 

conceptual-embodied world; proceptual symbolic-world, and formal-axiomatic 

world. (Tall, 2007). Dreyfus (1991), and his approach giving emphasis on 

representation and abstraction power, it will also be studied. 

The main goal of this work is to understand how students acquire knowledge. 

Therefore, we want to: characterize the processes involved in understanding of 

mathematical concepts by students of the secondary school and characterize student 

actions in the appropriation process of mathematical concepts. Understand how they 

coordinate between different representations of the same mathematical object; 

understand how technology is able to influence the articulation and connection 

processes among the different concepts. The interrelation between the theories above 

is fundamental to understand the appropriation process of mathematical concepts. 

Dreyfus proposed the representation and abstraction as the main way to characterize 

this process. The procept notion and the proceptual thinking presented by Tall allow 

us to understand and explain the Dreyfus view. The Dubinsky approach became 

relevant in the way that allows us to describe more deeply the different steeps of all 
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process and mainly the students‘ capacity of managing the encapsulation and de-

encapsulation process. At this point the issues we bring to the investigation are: Does 

a better connection between different representations of a same object, makes a math 

student more skilled? Would these connection lines contribute significantly to an 

increased stage of abstraction leading students to a higher level of complexity? Is 

mathematics specific language used in the different representations of an object, too 

complex to promote peaceful interconnections among them? Would better links 

between different representations, allow a better understanding of upcoming 

knowledge? For studies of this nature makes more sense to use a qualitative 

interpretive methodology (Bogdan & Biklen, 1994). Field work consists on an 11ºth 

grade classroom observation on trigonometry topic. Later interviews will be 

conducted, and analyzed. Some documents analysis such as (notebooks, tests, 

worksheets) will be a complementary way of data collecting. 

To analyze the data collected through the classroom observations and the teaching 

experiments based on proposed tasks, we intended to identify the representations that 

students have about the concepts studied and try to understand how the students 

abstract and reflect about them (Dreyfus position). To understand this process we use 

the notions of procedural and proceptual lthinking (Tall‘s theory) to categorize the 

student‘s answers to the proposed tasks, giving special attention to the procept 

notion. To analyze the transition from one to another kind of thinking we intended to 

take into account the interiorization of the student‘s actions on objects, the 

coordination and inversion of the processes developed and the encapsulation and de-

encapsulation of these processes and objects are fundamental for our analyses of the 

mathematical objects studied (APOS)  

REFERENCES 

Bogdan, R., & Biklen, S. (2006). Investigação Qualitativa em Educação: Uma Introdução à 

Teoria dos Métodos. Porto, Portugal: Porto Editora. 

Domingos, A. M. (2003). Compreensão de Conceitos Matemáticos Avançados - A 

Matemática no Ensino Superior. Dissertação apresentada para a obtenção do grau de 

Doutor em Ciências de Educação .Lisboa. 

Dreyfus, T. (1991). Advanced mathematical thinking processes. In T. David, Advanced 

Mathematical Thinking (pp. 25-41). Dordrecht, Netherlands: Kluwer Academics.  

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall, 

Advanced Mathematical Thinking (pp. 95-123). Dordrecht, Netherlands: Kluwer 

Academics.  

Tall, D. (2007). Embodiment, Symbolism and Formalism in Undergraduate Mathematics 

Education. Plenary at 10th Conference of the Special Interest Group of the Mathematical 

Association of America on Research in Undergraduate Mathematics Education, (pp. 22-

27). San Diego, USA. 



Working Group 16 

 CERME 7 (2011) 3000 

NETWORKING THEORIES 

THE ‗KOM PROJECT‘ AND ‗ADDING IT UP‘  

THROUGH THE LENS OF A LEARNING SITUATION 

Yvonne Liljekvistand Jorryt van Bommel 

Karlstad University 

Abstract: Mathematical skills and understanding have been described in different 

ways. Adding it Up and The Danish KOM project are two such frameworks and in 

this poster these are put side by side. Transcriptions of students working on a 

mathematical task were first categorized within each framework, where after 

comparing and contrasting revealed similarities and differences. We have classified 

these differences and similarities through four cases which are described in the 

poster. 

Keywords: competencies, proficiencies, comparing and contrasting 

INTRODUCTION 

In spring 2009 the authors attended a PhD course where one aim of the course was to 

understand two different reports; the Danish KOM project (KOM abbreviation in 

Danish: Competencies and the Learning of Mathematics) (Niss, Højgaard Jensen, et 

al, 2002) and the American report Adding It Up: Helping children learn 

mathematics(Kilpatrick, Swafford, & Findell, 2001).Kilpatrick et al state that their 

descriptions give ―a framework for discussing the knowledge, skills, abilities, and 

beliefs that constitute mathematical proficiency‖ (p. 116). Niss et al describe their 

work as ―an overarching conceptual framework which captures the perspectives of 

mathematics teaching and learning at whichever educational level.‖(Niss, 2003,p. 1).  

USING NETWORKING STRATEGIES 

Our interest lies in understanding the frameworks. Since both frameworks are in 

their own way describing cognitive and behavioural activities for learning of 

mathematics, a logical question for us was to see whether the frameworks were 

disjoint or overlapping, and in case they would have common characteristics, 

whether they were all inclusive, only partly joined or whetherone is a subset of the 

other. In order to understand the core concepts in the frameworks we needed a tool, 

and an arena, to be able tobetter grasp somecharacteristics. Using networking 

strategies when applyingthese frameworks on transcriptions from a videotaped 

learning situation made it possible to answer our research question: Do the two 

frameworks represent a situation of parallel development of theory in mathematics 

education? 

In order to understand the frameworks we worked with a comparing and contrasting 

procedure (Bikner-Ahsbahs & Prediger, 2010). Each relevant sentence expressed by 
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the students was analyzed to define competencies or proficiencies exposed within the 

sentence, and when possible the sentence was categorized in terms of proficiencies 

and/or in terms of competencies. The focus on our analysis was to find examples of 

all the core components of the frameworks. Once each proficiency and competence 

had been identified by a cluster of sentences, we could start looking for patterns and 

reveal similarity and diversity. Since the sentences could be categorized with 

components from both frameworks, or from one or the other, a contrasting procedure 

pulling out typical (co) variation was conducted. 

FINDINGS AND IMPLICATIONS 

The focus of the poster is the networking strategy method which is used to grasp core 

characteristics in two similar conceptual frameworks. When applying the two 

frameworks on the same data, patterns appeared that enlighten similarities and 

differences. Our results, presented trough four cases, indicate that networking 

strategies can supply researchers (and teachers) with tools to understand the 

explanatory power of different conceptual frameworks. Hence the work to develop 

new theories by networking strategies goes side by side with the endeavor to more 

deeply understand existing frameworks. 

Since we are participating in interdisciplinary projects where networking of theories 

is of importance the method using networking strategies to better understand 

(two)conceptual frameworks is useful in our further studies, even though we are at 

time not going to make a deeper study within these two frameworks.  

The actual poster presented at CERME7 may be obtained from the authors by 

emailing them at yvonne.liljekvist@kau.se, jorryt.vanbommel@kau.se 

REFERENCES 

Bikner-Ahsbahs, A. & Prediger, S. (2010). Networking of theories – an approach for 

exploiting the diversity of theoretical approaches. In BharathSriraman,& Lyn 

English (Eds.),Theories of mathematics education. Seeking new frontiers, Series: 

Advances in mathematics education (pp. 483-506). New York, Berlin: Springer. 

Kilpatrick, J., Swafford, J., &Findell, B. (Eds.). (2001). Adding it up: Helping 

children learn mathematics. Mathematics learning study committee center for 

education division of behavioral and social sciences and education.Washington, 

D.C.: National Academy Press. 

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The 

Danish KOM project. Paper presented at the Third Mediterranean conference on 

mathematics education, Athens. 

Niss, M., & Højgaard Jensen, T. (2002). Kompetencer og matematiklaering : ideer 

og inspiration til udvikling af matematikundervisning i Danmark. København: 

Undervisningsministeriets forlag. 

mailto:yvonne.liljekvist@kau.se
mailto:jorryt.vanbommel@kau.se


Working Group 16 

 CERME 7 (2011) 3002 

A SUCCESSFUL COMBINATION OF COP AND CHAT TO 

UNDERSTAND PROSPECTIVE PRIMARY MATHEMATICS 

TEACHERS‘ LEARNING? 

Kicki Skog 

Department of Mathematics and Science Education, Stockholm University, Sweden 

Can it be useful to combine two theoretical frameworks when attempting to 

understand what kind of challenges prospective teachers are facing and what makes 

sense in becoming a mathematics teacher? The poster suggests a combination of 

Lave and Wenger‘s theory of learning in Communities of Practice and Engestrôm‘s 

Cultural Historical Activity Theory. It also presents a discussion regarding 

commensurability within these frameworks, motives for using these theories in this 

study and what I find challenging.  

Keywords: Communities of practice, CHAT, mathematics, prospective teachers 

INTRODUCTION 

There are times in our lives when learning is intensified: when situations shake our sense 

of familiarity, when we are challenged beyond our ability to respond, when we wish to 

engage in new practices and seek to join new communities. (Wenger, 1998, p. 8) 

My primarily aim for conducting this research is to understand what prospective 

primary mathematics teachers ascribe as meaningful and important in their process of 

learning to teach mathematics. From a first analysis issues regarding the role of 

mentors and peer-collaboration within the teacher education program are central, but 

also the individuals‘ background and school experiences. Thus I need to use 

theoretical frameworks that allow me to move from the present to history without 

changing research track. I believe this inside-view, i.e. social roles, agency etc., 

could be elaborated on as learning within different communities of practice, COP 

(Lave & Wenger, 1991; Wenger, 1998). When it comes to understanding how 

background, family and personal goals influence/affect the individual prospective 

teacher‘s learning, it could be fruitful to elaborate on these questions from a cultural 

and historical perspective. Therefore I consider using COP in combination
100

 with 

Cultural Historical Activity Theory, CHAT (Engestrôm, 1999), as theoretical 

frameworks.  

                                           

100
 For a further discussion on strategies and methods for connecting theoretical approaches, see Prediger et.al (2008)  
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THE POSTER  

Three excerpts from early interviews with two prospective primary mathematics 

teachers were viewed on the poster. Both immigrated to Sweden as adults. The 

excerpts indicates that an analysis through modes of belonging (Wenger, 1998) – 

here with a focus on imagination – could facilitate understanding of prospective 

mathematics teachers‘ identity and identification in communities of practice. From a 

CHAT perspective there is a tension between what mathematics was for them in their 

country of birth, and what mathematics is in the Swedish teacher education 

programme. It affects the prospective teachers and makes an analysis from a cultural 

historical activity theoretical perspective possible. 

CONCLUDING REMARKS 

In this case, after having fruitful discussions with participants at the CERME 7 

conference, I consider that the study can benefit from using both perspectives and 

create a broader picture of the process of becoming a mathematics teacher, but there 

are challenges to overcome. How, for example, do I distinguish between the different 

notions of community? Are the theories competing on the same level – and if they 

do: can that enrich the study? Can a combination of these two theoretical frameworks 

contribute with a deeper understanding of learning to teach mathematics as situated, 

but also as historically and culturally bound meaning? 
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CONNECTING THEORIES TO THINK OF PLANE GEOMETRY 

TEACHING FROM ELEMENTARY TO MIDDLE SCHOOL 

Marie-Jeanne Perrin-Glorian  

Laboratoire de Didactique André Revuz, Université d‘Artois  

Abstract: To think of continuity of geometry teaching along compulsory school, we 

coordinate the theory of didactical situations with a theoretical framework 

concerning elementary geometry obtained by integrating Euclid‘s geometry with 

semiotic theory of Duval (analysis of processing in the register of figures).  

Keywords: geometry, figures, instruments, figure restoration, connecting theories 

RESEARCH QUESTIONS AND NECESSITY TO CONNECT THEORIES 

Motivation of the research: There is a discontinuity between geometry in primary 

school, drawing figures with usual geometrical instruments and further geometry 

with abstract objects and demonstration. In primary schools, teachers usually regard 

geometry teaching as not problematic but find no relation between geometry they 

studied in their secondary courses and the geometry they teach. The use of usual 

instruments for drawing geometrical figures is generally considered as a technical 

problem. Nevertheless, these instruments are strongly related to mathematical objects 

and properties of these objects; this relation is not obvious for pupils.  

Our question: Is there a way to think of continuity in teaching geometry along 

compulsory school (from 6 to 15) and help teachers?  

Necessity of connecting theories: To address our problem, mathematical theories and 

theories on learning are not sufficient. It is necessary to construct intermediary 

theories integrating both. The theory of didactical situations (Brousseau, 1997) is 

itself such an intermediary theory but, to take into account the specificity of 

elementary geometry teaching, we can say, using the definitions of Bikner-Ahsbahs 

et al. (2010), that we needed to coordinate it with a specific theoretical frame we 

constructed, itself integrating two other theories: the axiomatic geometry of Euclide 

as a theory of space and the semiotic theory of Duval (2006). 

CONNECTED THEORIES AND THE WAY TO CONNECT THEM 

First, our own theoretical frame about elementary geometry teaching leads to the 

following main hypotheses from an epistemological and cognitive point of view: 

In relation with Duval‘s theory: There is a specific way to look at figures in 

geometry, different from the way to look at drawings in everyday life. The natural 

view of figures is to see a figure as composed of juxtaposed figural unities of 

dimension 2. However, to solve a geometrical problem as well as to construct figures 

with instruments, you have most of the time to see superposed figures composed of 

surfaces, lines, or points and relations between them and to articulate the register of 
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figures and the register of language. Many difficulties with geometry are rooted in 

problems to change the view on figures. An example is given in the poster. 

In relation with Euclid‘s theory: The different axiomatic theories for geometry are 

not equivalent to define coherence between mathematical theory and a teaching 

progress compatible with students‘ development. By the important role given to the 

triangle, and its reference to magnitudes and ratios of magnitudes without numbers, 

the Euclidian axiomatic is adapted to help thinking of a progression from a view of 

figures as composed of two dimensional objects to a view in terms of relations 

between lines (straight lines and circles) and points.  

We construct a progression, developing in primary school the identification of 

alignments, intersections… in 2D-figures, in relation with tracing with instruments 

and geometric objects and properties. Continuity in teaching geometry also demands 

extending the notion of instrument considering as well forms, templates, stencils, 

tracing paper, scissors and so on… as instruments. Some of these instruments are 

2D-instrument, bearing 2D-information about the figure (e.g. templates) or not (e.g. 

tracing paper), some instruments are 1D-instruments, tracing lines (e.g. ruler), some 

are 1D or 2D-instruments according to how they are used (square, compass). 

Coordination with TDS: This integrated theory of elementary geometry is then 

―coordinated‖ with the theory of didactical situations (TDS) seen as complementary. 

TDS is used to conceive a milieu (mainly figures and instruments) around production 

and reproduction of geometrical figures, possible modifications of this milieu and 

situations (rules to act on this milieu) helping students to progressively modify their 

view on figures and instruments and construct geometrical concepts. A situation, we 

called figure restoration, plays a particular role: a couple of figures is given such as 

one is the model, the other one is a ―damaged‖ figure (partially deleted) that has to be 

restored and a ―cost‖ is introduced for the use of instruments.  

Examples and trends for discussion are proposed in the poster. The actual poster 

presented at CERME7 may be obtained from the author by emailing at 

glorian@math.jussieu.fr 
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DIDACTICAL ANALYSIS AND CITIZENSHIP WITH 

PROSPECTIVE MATHEMATICS TEACHERS  

Yuly M. Vanegas M., Joaquin Giménez and Vicenç Font  

Barcelona University 

Our particular aim is to show some relationships between the development of didactical 

analysis and reflection about teaching of prospective mathematics teachers and developing 

citizenship, as a basic competence through the study of various professional math practices.  

KEY WORDS: didactical analysis; mathematical practices; citizenship 

A persistent problem in mathematics education research is how to justify and design 

training programs giving professional problems that arise and influence the nature 

and quality of professional practices. Such practices should enable the future teacher 

for knowing describing, explaining, evaluating and improving situated and 

contextualized teaching and learning  (Llinares and Krainer, 2006; Font, Planas and 

Godino, 2010). In particular to know how to assess general competencies as 

―training for citizenship through mathematical practices‖. We want to describe the 

path of a future math teacher, characterizing its evolution in relation to training 

analysis expertise, identifying how he evolve being aware of considering citizenship 

when using mathematical practices.  

Citizenship is interpreted here by using 4 axes: political appropriation of knowledge, 

responsible participation, critical mathematical perspective, responsibility for 

practices (Vanegas y Giménez, 2010). To perform didactical analysis, the future 

teacher use tools of description and explanation which have been learned in different 

subjects of the master. Above all, by applying the notion of criteria of suitability 

proposed by onto-semiotic approach (Godino, Batanero & Font, 2007) in which it‘s 

considered at least six criteria for valuing didactical suitability: Epistemic suitability, 

Cognitive suitability, Interactive suitability, Media/resources suitability, Emotional 

suitability, Ecological suitability. 

Methodologically, we discuss two types of didactical analysis practices about 

instruction processes in two different moments: (m1) analyze experienced teacher 

practices by using videoclips, (m2) implement a practice discussing with a tutor 

being a teacher in a regular class of 12-13 years old students, and (m3) analyze their 

own practice two weeks after.  With regard to m2 and m3, we analyze: (1) immediate 

written reflection about their school practice conducted, in which it was asked to 

explain from planning to analysis about what happened. (2) Delayed reflected report 

by which it was to proposed a replanning of the former practice after a certain time 

(part of the Final Master work). In these two tasks, the future teacher reflects on the 

design and implementation of a knowledge-driven sequence of extent of areas with 

flat figures.  
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In m1, the future teacher recognize the value of the context to interplay citizenship 

discussion when analyzing  a presented task about  comparison of  a density 

population problem. In m2, we found that organizes his proposal for students based 

on a realistic mathematics perspective. He introduces the understanding of the 

formulas of the areas, with puzzles and discoveries. Sequence ends with a proposal 

to measure the oil slick from the Mexico Gulf through the NASA pictures, "to 

analyze the magnitude of the tragedy (using future teacher words)". After the 

experience in a real classroom (in a third moment), he think about his mistakes, and 

discuss about a need for a collaborative debate with the students, because ―it was a 

monologue‖. 

We acknowledge a greater depth of analysis of the practice m2 y m3 in relation to 

practice m1, based on the use of structured tools during training process. With regard 

to the didactical analysis levels achieved, we identify adequate descriptions of 

suitability levels in the development of mathematical practice. He recognizes that 

there are different ways to introduce the notion of area and identifies a potential 

cognitive conflict in the passage to the limit when considering the irrational 

measurement. Awareness of the interactional valuing can be seen as identifying rules 

and active positioning of students. With regard to developing critical reflective 

citizenship, we conclude that the future teacher (1) considers that mathematics 

enable the creation of powerful tools for interpretation, characterization and solution 

of problems (in this case, environmental), recognizing the complexity of the situation 

raised not only by the diversity of concepts, processes and mathematical procedures 

involved, but, for the opportunity to reflect on the social impact of such situations (2) 

allowing its students to value the measure as a conceptual tool for interpreting a 

phenomenon and social impact analysis and (3) fostering a reflective analysis of 

students through problem solving and the use of ICT as a working methodology. 
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HOW TO TEACH MATHEMATICAL KNOWLEDGE FOR 

TEACHING 

Jorryt van Bommel  

Karlstad University 

The paper presents the results of a learning study conducted at a teacher-training 

course in mathematics. The Object of Learning of the learning study was to develop 

Mathematical Knowledge for Teaching (MKT) for student teachers (ST). The data 

consists of three videotaped seminars and pre- and post tests (282) written by 47 ST. 

The data was analysed with help of variation theory and four critical features 

concerning MKT were found successively during the learning study cycle. 

Implementation of these critical features in the subsequent seminars increased ST 

results concerning their use of MKT.  

Keywords: Mathematical Knowledge for Teaching, Learning Study, Teacher 

Education. 

INTRODUCTION 

Teachers in mathematics not only need a deep understanding of mathematics but also 

need knowledge on how to teach the mathematics (Ball & Bass, 2003; Grossman, 

1990; Ma & Kessel, 2000). How to teach such MKT was the focus for the study 

described here. In what way would it be possible to work with MKT during a 

teacher-training course so that ST would consider aspects of MKT in their future 

teaching? Five aspects of MKT were chosen to work with: pupils‘ preconceptions, 

models for explanation, related (hands on) materials, suitable exercises and 

curricular knowledge.  

FRAMEWORKS  

Two frameworks were considered in this learning study. The conceptual framework 

MKT describing the kind of mathematical reasoning, insight, understanding and skill 

teaching mathematics demands (Ball, Hill, & Bass, 2005) was used as a background 

when planning the lessons and also to describe the data. Furthermore the theoretical 

framework Variation Theory (VT) was worked with in planning the seminars as well 

as analysing the data. VT sees upon learning as to be aware of the world in a new 

way. To learn about an object one has to identify its parts, see connections within the 

object and discern it from other items. Through a focus on an Object of Learning one 

can identify differences in learning and describe conditions necessary for learning to 

take place. (Marton & Booth, 1997) 
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ANALYSIS & RESULTS  

The tests consisted of writing a lesson plan in which ST would reveal their use of the 

five aspects of MKT. VT was used to describe how the aspects were dealt with in 

relation to the way MKT was addressed during the seminar. What was made possible 

for ST to discern during the seminars and what did they actually discern? Four 

critical features were found and implemented in the subsequent seminars. There was 

a clear improvement in the way the 5 aspects of MKT were addressed by ST in the 

tests. The four critical features found were: 1) Curricular goals must be seen as 

something to choose from (not as a whole package to work with). 2) Contextual 

experiences have to be created and reflected upon from a teachers‘ perspective. 3) 

Components have to be described clearly in order to connect with other components. 

4) The underlying mathematics should be understood when discussing an activity 

from a teachers‘ point of view.  

 

The actual poster presented at CERME7 can be obtained by contacting the author: 

jorrbomm@kau.se or at www.math.kau.se/jorrbomm 
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ANALYSING EXAMS MATHEMATICAL QUESTIONS 

Mário José Miranda Ceia 

Escola Superior de Educação, Instituto Politécnico de Portalegre 

The poster presents a model to analyse exams items. The model is inspired on the 

SOLO Taxonomy (Biggs & Collis, 1982), and in the cycles of learning they 

established. As in the SOLO taxonomy, three parameters were established to allow 

the items analysis: the capacity demanded to produced the answer (amount of 

knowledge required); the mental operations involved in the resolution (type of 

mental operation); and the type of answer required. The preliminary version of the 

model was designed to be used to any grade, and hypothetical answers were 

prepared to test the model. One example to exemplify the analysis made is provided. 

STUDY OBJECTIVES 

The present study pretends to develop a model that allows to establish different 

categories of exams questions complexity, and, in a second moment, to analyse 

exams quality. 

THE MODEL (PRELIMINARY VERSION) 

The model was design using three parameters: Capacity Demanded, the amount of 

concepts involved in the answer, how the concepts are related among them, and if 

they are provided or the student has to search them; Involved Operations, the type of 

reasoning used, inductive or deductive, and if it was an original one or similar to 

others studied before; and Answers Requested, answers are unique or there are more 

than one possible answers, if there are more than one possible answer, are they 

coherent, and consistency between the conditions provided and the answer requested. 

Five categories were considered, using the same designations that Biggs and Collis 

used in their taxonomy: Pre-structural, Uni-structural, Multi-structural, Relational 

and Abstract. 

METHODOLOGY 

For the analysis of the examinations questions, it was considered hypothetical 

answers, produced by the authors according the level to which the examination was 

designed. With those optimal answers it was possible to realise the mathematical 

knowledge involved, the kind of reasoning, and possible coherence and consistency 

of the answers. To define the mathematical knowledge it was used the specific aims 

of the Curriculum of Mathematics for Basic Education (Ponte et al, 2007). 
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AN EXAMPLE OF ANALYSIS (QUESTION 3, 4
TH

 GRADE EXAM, 2009) 

Question: A group of 47 children, from a holiday camp, are going to climb. Children 

are going by car. Each car carries 6 children. How many cars are needed to carry the 

47 children? Show how you reach the answer. 

Hypothetical Solution: The correct answer is 8 cars. Dividing the amount of children, 

47, by 6 (the number of children by car) we realise that 7 cars became full and 

remain 5 children, which make necessary another car. 

To reach the solution it is possible to use: 1) Additive structure; 2) Multiplicative 

structure. In both cases to answer this question it is necessary to understand the 

meaning of the operation involved, and realise what the results mean for the 

proposed context. 

Knowledge Involved: To answer the question it is necessary to use arithmetical 

knowledge from the 3
rd

 and the 4
th

 grades. It is necessary to use several pieces of 

knowledge to reach the solution, and in the end it is required to establish the 

connection between the mathematical solution and the real context of the question. 

Operations: To answer the question it is necessary to use deductive reasoning similar 

to others experienced in class. 

Answer: In both solutions the answer is closed and unique. However, it is necessary 

to solve the inconsistency between the arithmetical result and the real world. 

Category: The question is considered a relational. 
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THE PRACTICES OF PROSPECTIVE TEACHERS IN SOUTH 

AFRICAN AND CANADIAN MATHEMATICAL LITERACY 

TEACHER EDUCATION PROGRAMS:   

WHAT WORKS AND WHAT DOES NOT? 

*Joany Fransman, **Joyce Mgombelo & *Marthie Van der Walt 

*North-West University & **Brock University 

Abstract 

The implementation of Mathematical Literacy (ML) as subject in South African 

schools in 2006 necessitated the re-training of teachers to teach the new subject. The 

teacher education program for ML was implemented at the North-West University 

(NWU) in 2005. This program is therefore quite ―young‖ hence the need for an 

investigation into other similar programs at universities in developed countries. The 

purpose of the poster was to report on a qualitative study that aimed at exploring the 

experiences of in- and pre-service teachers enrolled in ML teacher education 

programs at the NWU in South Africa (SA) and Brock University in Canada. 

Findings indicated that SA can indeed learn from Canada: Put more emphasis on 

the mathematics processes (MP) in the mathematics module in the program.  

Keywords:  Mathematical Literacy, mathematics processes, mathematics teacher 

education programs. 

INTRODUCTION 

The central question in our study was: In what ways can developers and practitioners 

of Mathematical Literacy (ML) in teacher education programs in South Africa (SA), 

learn from programs for similar courses in Canada? The implementation of ML as 

subject in the SA school curriculum in 2006 necessitated the re-training of suitable 

teachers. This raises an empirical question: How does ML teacher education 

programs in SA relate to a wider context of other ML teacher education programs 

from developed countries like Canada?  

THEORETICAL FRAMEWORK  

The definition of ML has been debated for decades, both nationally and 

internationally. A collage of the salient indicators from the various definitions of ML 

in extant literature (e.g. (Bowie & Frith, 2006) describe ML as the individual‘s 

abilities and competencies to make sense of, communicate and engage meaningfully 

in mathematical situations that are encountered in his/her daily life. The approach 

that needs to be adopted in developing ML is to engage with contexts rather than 

applying Mathematics already learned to the context (Department of Education, 

2003). For Bowie & Frith (2006) ML is about seeing every context through a 

quantitative lens.  
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Prospective teachers in an effective ML teacher education program should pay 

attention to the development of all the important skills and the Mathematics 

Processes which are problem solving, communication, connections, reasoning and 

representation (Brown & Schäfer, 2006).    

RESEARCH METHODOLOGY 

The study utilized a multiple case study approach due to its dual contexts (SA and 

Canada).  Participants comprised of 61 out of 189 SA in-service teachers enrolled in 

the program and the 12 out of 30 Canadian pre-service teachers enrolled in the 

program. Data was collected from questionnaires, individual and focus group 

interviews, as well as lesson observation. The data was analysed using ATLAS.ti.5.0 

– a computer-aided system used for the analysis of qualitative studies. 

FINDINGS AND RECOMMENDATIONS 

The study indicates that ML as concept is not yet fully comprehended by the SA 

participants. A thorough understanding of the concept of ML will enhance teaching 

methods as well as the understanding of the learner.  

Analysis of data indicates that sufficient emphasis is placed on the Mathematics 

Processes in the Canadian program as these processes are explicitly stated in the 

curriculum documents. In SA, it seems that the Mathematics Processes are not 

explicitly implemented in ML classrooms as teachers seem not to be aware of them. 

The MP‘s have a large role to play in any ML curriculum and should be explicitly 

mentioned in the National Curriculum Statements in SA and not only be implied as is 

currently the case.  

CONCLUSION 

Developers of ML teacher education programs in SA can indeed learn from Canada 

by having a clear conceptualization of ML and placing more emphasis on the 

Mathematics Processes in the program. The actual poster presented at CERME7 may 

be obtained from the first author by emailing her at joany.fransman@nwu.ac.za. 
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TEACHERS‘ USE OF GRAPHING CALCULATORS IN HIGH 

SCHOOL MATHEMATICS CLASSROOM - THE INFLUENCE OF 

TEACHERS‘ PROFESSIONAL KNOWLEDGE1 

Helena Rocha 

Institute of Education, University of Lisbon, Portugal 

ABSTRACT 

The main focus of this poster is a new model of teacher‘s knowledge: Knowledge for 

Teaching Mathematics with Technology (KTMT). Central in this model is a set of 

inter-domains knowledge divided in two main areas: Mathematics and technology, 

and Teaching & learning and technology. This model is the basis for a study that 

intends to understand how teachers use graphing calculators in their practice and the 

influence of their professional knowledge on that use. 

KEYWORDS: Knowledge for Teaching Mathematics with Technology (KTMT), 

professional knowledge, technology, graphing calculators 

RESEARCH GOALS AND QUESTIONS 

This is an ongoing study that intends to examine the nature and extend of teachers 

use of graphing calculators. Among other questions, it aims to answer the following 

question: What is the influence of the teacher‘s professional knowledge? 

THEORETICAL FRAMEWORK 

The evidence of how teachers' 

knowledge affects teachers' practice 

took to the development of frameworks 

such as Didactical knowledge (Ponte, 

1999). Technolo-gy integration in 

schools raised new questions and 

prompted the need to a special focus on 

technology. TPCK, from Mishra & 

Koehler (2006), is one of the most 

known characterizations that attends to technology issues, but problems still remain 

(Rocha, 2010). KTMT intends to articulate these two conceptualizations, 

overcoming the criticism and integrating important conclusions from technology 

research (Zbiek et al., 2007). In KTMT, beyond the base knowledge domains 

(Mathematics, Teaching & learning, Curriculum, Technology), there are two 

important sets of inter-domains knowledge: Mathematics and technology, and 

Teaching & learning and technology. The first one involves knowledge of 

mathematical fidelity of the technology; knowledge of new emphasis on 

mathematical content; knowledge of new orders of mathematical content; and 

Mathematics 

Teaching & 

Learning 

Curriculum 

Technology 
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representational fluency (i.e. knowledge of different representations and how to link 

them in meaningful ways). And the second one includes knowledge of effective ways 

of overcoming student difficulties in articulating technological and no technological 

information, promoting a critical attitude; knowledge of mathematical concordance; 

and knowledge of the diversity of classroom activities enhanced by technology, and 

of the new roles allowed. Curriculum is seen as a transversal domain that influences 

all the others. KTMT is then conceptualized as a unique body of knowledge 

constructed in an integrative way from the interaction of all the knowledges referred 

above. 

METHODOLOGY 

This study adopts a qualitative methodological approach, performing three teacher 

case studies. Data gathering includes class observation, interviews, and documental 

gathering. All interviews and classes observed are audio taped and transcribed. Data 

analysis consists of data interpretation, considering the problem studied, and the 

theoretical framework. 

EXPECTED RESULTS 

A better understanding of teacher‘s use of graphing calculator and how its effective 

integration can be achieved is the main outcome expected from this study.  

The actual poster presented at CERME7 may be obtained from the author by 

emailing her at hcrocha@ie.ul.pt 
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DEEPER MATHEMATICAL UNDERSTANDING THROUGH 

TEACHER AND TEACHING ASSISTANT COLLABORATION 

Paul Spencer, Julie-Ann Edwards 

University of Southampton, School of Education, UK 

This paper presents a summary of a poster presented at CERME7, the focus of which 

was to examine the way that teachers and teaching assistants (TAs) work together in 

mathematics classrooms in order to encourage mutual effective professional 

development.  Within this paper the aims of the research project, the background to 

the research, the methodology employed and the significance of the research will be 

discussed. 

Key Words: Teachers, teaching assistants, collaboration, professional development. 

The main aim of this study is to determine which characteristics of ways of working 

promote opportunities for developing deep understanding of mathematics in order to 

develop and trial an intervention strategy which will encourage mutual professional 

development.  The study is designed to work from existing practice to address issues 

relating to the professional development of both mathematics teachers and their 

teaching assistants. 

The expected outcomes of the study are: 

a)  A characterisation of the ways in which mathematics teachers and TAs 

currently work together in secondary classrooms in the UK (11-16 years); 

 b) Identification of models of teachers‘ and TAs‘ experiences which lead to 

effective professional development; 

 c) Intervention strategies which promote effective professional development 

opportunities. 

The UK standards framework for teachers (Teacher Development Agency [TDA], 

2007) places an increasing emphasis on the effective working relationships between 

teachers and TAs in the classroom.  Although it is generally acknowledged that the 

presence of TAs in the classroom has a positive effect on pupils‘ achievement, there 

is little research evidence in the UK (other than Muijs, 2003) about how this is 

achieved.  However, recent findings of the Deployment and Impact of Support Staff 

(DISS) project (Blatchford et al. 2009) suggest that teaching assistants may have a 

negative impact on the mathematical progress of pupils. 

Research conducted by Ma (1999) found that Chinese teachers‘ deeper 

understanding of mathematics is linked to the time and support they are given to 

work collaboratively on the content of their lessons.  The importance of this deeper 

understanding of mathematics has been recognised previously by Ball (1989) who 
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concludes that deep understanding of mathematics and its interrelation with 

pedagogical knowledge is crucial to effective teaching. 

This research project combines the work of Ma (1999) and Ball (1989) by utilizing 

the teacher and teaching assistant partnership in order to mutually develop deeper 

mathematical understanding, whilst meeting some of the recent recommendations 

made in the DISS project, thus mirroring the successes in China, but using 

established patterns of working in the UK. The design of this study utilizes 

embedded case study research methods (Scholz & Tietje, 2002) to characterise 

mathematics teachers‘ and their TAs‘ informal experiences and ways of working 

together, and systematic case studies (Yin, 2003) of particular teachers and TAs.  

Grounded theory methods provide the means for developing the models of current 

working practice through analysis of qualitative data.  An intervention strategy will 

be designed, based on these findings, and will be implemented through a trial that 

involves both teachers and TAs. The development of an intervention strategy which 

encourages professional development is planned to have an impact on school and 

government policy which will, in turn affect the way mathematics teachers and 

teaching assistants work together in secondary school classrooms.  Successful 

implementation of an intervention strategy is intended to develop teachers and TAs‘ 

mutual deeper understanding of mathematics which should impact on pupil 

attainment in the subject.   

The actual poster presented at CERME7 may be obtained from the author by 

emailing them at pcs1v07@soton.ac.uk 
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