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Abstract: Multi-agent resource allocation refers to the distribution of resources among agents. Resource allocation can
be particularly challenging if the agents have conflicting objectives over multiple interdependent issues. In
such cases, multi-objective optimization methods can be used to find an optimal allocation of resources, that
maximizes social welfare. Social welfare refers to the welfare of the entire society of agents and therefore con-
sidered as a suitable metric for assessing the overall system performance in multi-agent resource allocation.
In this paper we study and discuss different notions of social welfare and investigate their impact on the opti-
mization outcome specifically for the problems comprising multiple conflicting objectives with interdependent
issues. To this end, we implement and apply different notions of social welfare to a real-world, complex prob-
lem, where a resource domain is responsible for making allocation of energy resources to multiple energy
intensive consumers (Commercial Greenhouse Growers). The problem is modeled as a multi-objective opti-
mization context. Our results show how different social welfare methods affect the optimization outcome and
result in different socially optimal resource allocations, depending on the behavior we expect from the system.

1 INTRODUCTION

Resource Allocation in a system involving multiple
agents is an important research issue, that has gained
a lot of attention in recent years. The agents may have
conflicting and incommensurable objectives with ra-
tional behavior. Such scenarios may demand multi-
objective optimization techniques based on the no-
tion of Pareto optimality, to find an optimal alloca-
tion. In such cases, the optimization process ends up
with multiple Pareto-optimal allocations which repre-
sent trade-offs between conflicting objectives. This in
turn requires a selection of single outcome out of the
resulting Pareto-optimal set at the termination of opti-
mization process. In this regard, the concept of social
welfare as explained in Welfare Economics and So-
cial Choice Theory (Chevaleyre et al., 2006) is used
to rank all the Pareto-optimal outcomes (allocations)
depending on the behavior, desired from the system.

Several attempts have been made, which incor-
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porate the notion of social welfare either within the
search process or to select the final outcome in multi-
objective optimization problems. The authors in (Li
et al., 2009) proposed a mediated negotiation proce-
dure to obtain fair agreements by using fair compro-
mise direction while exploring the negotiation space.
A non-linear negotiation protocol is proposed in (Fu-
jita et al., 2012) to find a secure and fair outcome
in a Pareto-optimal set. Similarly, the authors in
(Finkelstein et al., 2009) proposed a multi-objective
optimization approach to balance the requirements
fulfillment between customers of Motorola Com-
pany for hand held communication devices, such that
each customer is treated on fair basis. An exten-
sible component-based multi-objective evolutionary
approach has been proposed by authors in (Sørensen
and Jørgensen, 2017), which considers a climate con-
trol problem to optimize and finally applies utilitarian
social welfare to select one solution among Pareto-
optimal solutions. The authors in (Darmann and
Schauer, 2015) tries to maximize social welfare in
terms of Nash product while distributing indivisible
goods among agents.

To the best of our knowledge, the existing body of
literature considers derivable and quasi-concave util-



ity functions while applying social welfare criterion
within the search process. This indicates that the ap-
proach cannot be applied to nonlinear utility functions
scenarios. Work to investigate, compare and apply
different notions of social welfare to a multi-objective
problem for the selection of final outcome is also lim-
ited in existing literature. Further, the notion of so-
cial welfare is based on unnormalized costs in most
studies. The consequence is that objectives may con-
tribute unevenly towards the selection of a final out-
come. In such a context, social welfare methods can-
not be utilized to assess the overall performance in
the application domains, as utility cannot be directly
compared across objectives.

The main contributions of this paper are to 1)
compare and evaluate different notions of social wel-
fare on a common problem, 2) modify collective cost
functions (CCFs) of social welfare methods by uti-
lizing normalized costs for the selection of final out-
come, 3) address the weaknesses of weighting mecha-
nism by introducing the notion of relative importance
graph, 4) evaluate modified social welfare methods on
a real-world problem to compare their properties with
respect to the selected optimization outcomes.

The paper is divided in six sections. Section 2
describes the methodology used to address multi-
objective multi-issue (MOMI) problems and a de-
tailed description of social welfare methods. The ex-
perimental setup is presented in section 3. Section 4
describes experiments and results. Section 5 presents
some findings deduced from the results, and finally
our conclusions are drawn in section 6.

2 METHODOLOGY

To perform resource allocation in MOMI problem,
Controleum, a generic MOMI negotiation frame-
work (Sørensen and Jørgensen, 2017), (Clausen et al.,
2014) is used. Controleum solves an optimization
problem with multiple objectives to generate a Pareto
front over the problem that is described in section 3.

2.1 Multi-Objective Optimization

The problem defines a MOMI optimization context
consisting of N concerns, which negotiate over a set
of M issues, (s1,s2 . . .sM). The issue represents a de-
cision point over a resource, the value of which is ne-
gotiated by one- or several concerns. Each concern
cn, n ∈ N, defines a preference as a cost function,
for each issue s j, j ∈ M, over which the cn wishes
to negotiate. The optimization context has a Media-
tor, which is responsible for managing the optimiza-

tion process (Umair, 2018). The Mediator searches
for a contract, defined as a vector of M issues val-
ues C = s1, . . . ,sM , that satisfies the preferences of the
concerns. The optimization process has three main
phases, i.e., initiation phase, optimization phase and
termination phase.

In the initiation phase, the Mediator initiates the
optimization by generating a population of random
contracts. Then the control goes to optimization
phase, where the Mediator presents the contracts to
each concern for evaluation. In response, each of the
concerns assigns cost values to all the contracts in the
population. The cost of the concern cn for a contract
C defined as q(cn,C), describes the degree to which
the proposed contract adheres to the preferences of
the concern. Then, the Mediator selects the subset of
non dominated contracts using Pareto criterion. Af-
ter population selection, the Mediator generates the
next population of contracts by performing mutation
and crossover on randomly selected contracts from
the Pareto set. This process is repeated until a ter-
mination criterion is met.

At termination, the optimization process will end
up with multiple contracts on the Pareto front if the
concerns have conflicting preferences. The Mediator
is therefore responsible for selecting a final contract
from the Pareto front adhering to the social welfare
criterion selected for the problem.

2.1.1 Relative Importance of Concerns

The concerns may have different significance rela-
tive to each other. For example, achieving produc-
tion goal in a greenhouse domain seems to be rela-
tively more important than minimizing energy con-
sumption. In this kind of situation, it is necessary
to ensure the satisfaction of relatively more impor-
tant objectives before the satisfaction of relatively less
important objectives, to guarantee correct behavior of
the system. The concerns may also end up in a con-
flict due to conflicting preferences. To handle such
scenarios, an approach based on weighting factor is
defined in (Liu et al., 2014), to specify the relative im-
portance of users’ preferences. This approach poses
several weaknesses, 1) weights are problem depen-
dent and must be carefully set by the user because
the results are very much sensitive to weights ratio,
2) weights don’t map well to the problem domain.
To address the weaknesses of weights, we introduce
the notion of relative importance of concerns to de-
termine their order in the selection mechanism. The
relative importance between concerns c1 and c2 is de-
fined in terms of three integer values -1, 1 and 0. -
1 means c1 is relatively more important than c2, 1
means c1 is relatively less important than c2 and 0



means c1 is equally important to c2. Once the relative
importance of each concern towards every other con-
cern is defined, the relative importance graph (RIG)
is constructed, which is a directed graph defined as,
RIG =< N,E >, where N = {N1,N2, . . . ,Nn} is a
set of nodes, and E = {E1,E2, . . . ,Em} is a set of
edges. To construct a graph, a root node is created first
and the first concern c1 in the sorted list of concerns
(which are sorted based on their relative importance)
is added to the top most node, i.e., root. Then another
concern c2 is added by comparing it to the already
added concern c1. If the relative importance of c1 and
c2 towards each other is equal, then the concern c2 is
placed in the same node Ni, which already contains
concern c1. Otherwise, a new node N j is created and
concern c2 is placed in node N j. Here, concern c1 is
placed above concern c2. Finally, an edge is created
from node Ni, containing c1 to node N j, containing
c2. The RIG is used in the selection mechanism, to
select the final contract at termination of optimization
process.

2.1.2 Selection of Final Contract

The selection of a final contract is carried out hierar-
chically using RIG along with one of the SWOs de-
scribed in section 2.2. The SWO is applied first to the
top level node in RIG. The selection mechanism will
select a subset of contracts from the current popula-
tion, which conforms to the preferences of the con-
cerns in the top level node according to the applied
SWO. A situation may arise where the subset from the
top level selection contains a single contract. In that
case, the next level nodes won’t be traversed. Other-
wise, the selection mechanism uses the subset in the
next level node to further filter the contracts. This pro-
cess continues until the subset contains only a single
contract or all nodes are traversed. In the end, if there
are multiple contracts in the subset of contracts, then
one contract is randomly selected from the subset as
a final contract, as all the remaining contracts have
equal value to the concerns in the context.

2.2 Social Welfare Orderings

The concept of social welfare studied in Welfare Eco-
nomics and Social Choice Theory is used to model
the aggregation of concerns’ individual preferences.
Several means of quantifying the social welfare met-
ric among concerns exist, which are used in the exist-
ing resource allocation applications to find an optimal
allocation (Chevaleyre et al., 2006).

Every contract C, C ∈ Pf generates a cost vector,
as a result of concerns’ evaluation of the contract. The
concerns may have different nature of cost functions

with different cost distributions. Therefore, 0-1 scal-
ing is used to normalize concerns’ costs by extract-
ing minimum and maximum values from the non-
dominated population of contracts for each concern
(Umair, 2018). Suppose q′C = {q′t1,C,q

′
t2,C . . . ,q

′
tn,C} ∈

Rn, is a normalized cost vector, where q′ti,C is the nor-
malized cost of ith concern for contract C. The Collec-
tive Cost Function (CCF) represents a mapping from
such vectors to the reals f : Rn → R. The different
notions of social welfare can be modeled as a CCF.
Each CCF gives rise to a corresponding Social Wel-
fare Orderings (SWO), which defines a transitive and
complete binary preference relation � on cost vec-
tors. The SWOs are based on normalized costs. That
is to ensure that all concerns contribute equally in the
selection of final contract. The SWOs can be roughly
classified in three categories, i.e, inequality, equality
and overall utility based SWOs.

2.2.1 Inequality Based SWO

This category comprises elitist social welfare method,
which does not favour fairness among concerns.

Elitist Social Welfare This SWO disregards fair-
ness and equality among concerns. The elitist SWO
ranks contracts based on the normalized cost of the
best-off concern, as defined in equation 1.

SWEL(C) = min{q′ti,C | ti ∈ concerns} (1)

A contract C is preferred over contract C′ (C ≺ C′)

if and only if (iff)
↑
q′t1,C <

↑
q′t1,C′ , where

↑
q′C repre-

sents the reordering of the normalized cost vector
q′C = {q′t1,C,q

′
t2,C, . . . ,q

′
tn,C} in an increasing order and

therefore defined as,
↑
q′C = {

↑
q′t1,C,

↑
q′t2,C, . . . ,

↑
q′tn,C}.

2.2.2 Equality Based SWO

This category comprises six social welfare methods,
i.e., egalitarian, lexi-min, approximated fairness, fair-
ness analysis, quantitative fairness and entropy, which
are based on the notion of fairness.

Egalitarian Social Welfare This SWO offers a
level of fairness and equality among concerns and de-
fined as normalized cost of worst-off concern, shown
in equation 2.

SWE(C) = max{q′ti,C | ti ∈ concerns} (2)

Hence (C ≺ C′) iff
↓
q′t1,C <

↓
q′t1,C′ , where

↓
q′C rep-

resents the reordering of the normalized cost vector



q′C = {q′t1,C,q
′
t2,C, . . . ,q

′
tn,C} in decreasing order and

defined as,
↓
q′C = {

↓
q′t1,C,

↓
q′t2,C, . . . ,

↓
q′tn,C}. This SWO

has a weakness that it only takes into account nor-
malized cost of worst-off concern while defining the
ordering of contracts.

Lexi-min Ordering This SWO is considered as a
refinement of egalitarian SWO. In this SWO, (C ≺
C′) iff there exists an integer r ∈ {1, . . . ,n}, such

that (
↓
q′C)i = (

↓
q′C′)i for all i < r; and (

↓
q′C)r <

(
↓
q′C′)r where

↓
q′C = {

↓
q′t1,C,

↓
q′t2,C, . . . ,

↓
q′tn,C} repre-

sents the reordering of the normalized cost vector
q′C = {q′t1,C,q

′
t2,C, . . . ,q

′
tn,C} in a decreasing order.

The idea of lexi-min SWO is appealing in a sense
that it overcomes the weakness with respect to egali-
tarian SWO. It starts by comparing the costs of worst-
off concerns and if the costs of worst-off concerns
coincide then it compares the costs of next worst-off
concerns and so on.

Approximated Fairness This SWO (Fujita et al.,
2012) ranks contracts based on the squared sum of the
deviation of individual normalized costs of the con-
cerns from average of all concerns’ costs as defined
in equation 3.

SWAF(C) =
n

∑
i=1

(q′ti,C−q′avg,C)
2

n
(3)

where q′avg,C =
∑

n
i=1(q

′
ti,C)

n
. Hence (C ≺ C′) iff

SWAF(C) < SWAF(C′). A contract C is considered
ideal if its SWAF(C) = 0.

Fairness Analysis The concept of fairness analysis
SWO (Finkelstein et al., 2009) ranks contracts based
on the standard deviation of the normalized cost of
each concern as defined in equation 4.

SWFA(C) =

√
1
n

n

∑
i=1

(q′ti,C−q′avg,C)
2 (4)

where q′avg,C =
∑

n
i=1(q

′
ti,C)

n
. Hence (C ≺ C′) iff

SWFA(C)< SWFA(C′).

Quantitative Fairness This SWO is based on Jain’s
index (Huaizhou et al., 2014), which is defined as
the fairness measure based on resource allocation X ,
where n is the number of individuals. xi is the amount

of resource allocated to individuals i = 1,2, . . . ,n as
shown in equation 5.

f (X) =
[∑n

i=1 xi]
2

n∑
n
i=1 (xi)2 , 0≤ f (X)≤ 1 (5)

Fairness can be measured both in terms of resource
allocation and utility. Contrary to allocation fairness,
the fairness can be measured in terms of normalized
cost of concerns. In this case, the Jain’s index is
equal to 0 when all concerns have the same cost. The
quantitative fairness SWO with respect to concerns’
normalized cost vectors is modified and redefined in
equation 6.

SWQF(C) = 1−
[∑n

i=1((q
′
ti,C + r)]2

n∑
n
i=1 ((q

′
ti,C + r)2 (6)

where, [r∈ Z+], 0≤ SWQF(C)≤ 1. To avoid division
by zero, a positive integer r is added to the normalized
cost of each concern (equation 6). Hence (C ≺C′) iff
SWQF(C)< SWQF(C′).

Entropy This SWO (Shannon, 2001) is defined as
the fairness measure based on resource allocation X ,
where n is the number of individuals and pi is the pro-
portion of resource X allocated to individual i. The
entropy of the distribution X , i.e., uncertainty of the
distribution X, is usually measured by H(X) as shown
in equation 7.

H(X) =−
n

∑
i=1

(pilog2 pi) (7)

where pi =
xi

∑
n
i=1(xi)

and log2 pi =
ln(pi)

ln(2.0)
. Assum-

ing that the costs returned by concerns in response to
the proportion of resource allocation, is a measure of
fairness. The entropy SWO with respect to concerns’
normalized cost vectors is modified and redefined in
equation 8.

SWEN(C) = σ−|
n

∑
i=1

(pilog2 pi)| (8)

where pi =
q′ti,C + r

∑
n
i=1(q

′
ti,C + r)

[r ∈ Z+]. A positive in-

teger r is added to the normalized cost of each con-
cern to avoid division by zero (equation 8). Here σ

is some arbitrarily large number � 1. The entropy
SWO is smaller when contract is fair or vice versa.
Hence (C ≺C′) iff SWEN(C)< SWEN(C′).

2.2.3 Overall Utility Based SWO

This category comprises three social welfare meth-
ods, i.e., utilitarian, Nash product and median rank,
which take into account overall utility of concerns.



Utilitarian Social Welfare This SWO ranks con-
tracts based on the sum of individual normalized costs
of concerns as defined in equation 9.

SWU (C) =
n

∑
i=1

q′ti,C (9)

Hence (C ≺C′) iff ∑
n
i=1 q′ti,C < ∑

n
i=1 q′ti,C′ .

Nash Product This SWO combines the features of
both utilitarian and egalitarian SWO to rank contracts
based on the product of individual normalized costs
of the concerns as defined in equation 10.

SWN(C) =
n

∏
i=1

q′ti,C (10)

Hence (C ≺ C′) iff ∏
n
i=1 q′ti,C < ∏

n
i=1 q′ti,C′ . This no-

tion of social welfare favors both overall well-being
of concerns as well as reduced inequality among con-
cerns. The overall well-being is achieved by the fact
that, computing the product of concerns’ costs, en-
sures that the total normalized cost of concerns will
not increase too much as it will give rise to an increase
in the product of the costs. On the other hand, reduced
inequality is achieved by the fact that the contract with
equal low costs for all concerns is always the one with
lowest product of costs.

This SWO is applicable to non-negative and non-
zero cost vectors otherwise the result of Nash prod-
uct will fluctuate between negative and positive val-
ues and a single zero cost in the normalized cost vec-
tor will make rest of the costs meaningless. There-
fore equation 10 is modified by adding a small pos-
itive value to the cost of each concern as shown in
equation 11. This is how; ranking of contracts based
on Nash CCF would still be meaningful for the cases
where concerns return zero cost.

SWN(C) =
n

∏
i=1

(q′ti,C + r) [r ∈ Z+] (11)

Median Rank Dictators This SWO defines a social
welfare based on the cost of middle-most concern as

defined in equation 12. Let (
↓
q′C)r represents the rth

largest normalized cost of any of the concerns over
contract C, and r = n/2, in case n is even and r = (n+

1)/2, in case n is odd. Hence (C ≺ C′) iff (
↓
q′C)r <

(
↓
q′C′)r.

SWMR(C) = (
↓
q′C)r (12)

3 EXPERIMENTAL SETUP

The experimental setup is based on a specific resource
allocation problem scenario, where a resource domain
(RD) is responsible for making energy allocations to
Commercial Greenhouse Growers (CGGs). CGGs
of today are advanced production facilities, which
require artificial supplementary lighting for plants
growth especially in winter seasons (Umair, 2018).

To better illustrate the impact of SWOs on an op-
timization outcome, we have chosen to focus on the
RD, which defines a MOMI context. In general, the
approach allows for inter-domain negotiations to bal-
ance interdependent issues distributed across several
problem domains. There are 7 concerns in RD in to-
tal. These concerns include one domain specific con-
cern (DC), and two representative concerns (RCs),
consumer RC (CRC) and consumer RC-sum (CRC-
sum) for each CGG. The RCs represent the prefer-
ences of CGGs in the RD. The RCs in the RD ne-
gotiate over issues reflecting energy allocation plans,
one for each CGG. An energy plan issue is a vector,
en = {e1,n,e2,n, . . .et,n}, describing an hourly alloca-
tion of energy to the CGGs for an entire day. The
value of a time slot in the energy allocation plan issue
en is 0 or 1 MWh. The configuration of concerns in
RD is described in table 1. The RD uses the RIG, in
order to select the final contract, where the DC in the
RD is assigned high relative importance compared to
the CRC and the CRC-sum to ensure an agreement
state between concerns in case of their conflicting
preferences. This configuration is chosen to resolve
the conflict through graceful degradation of the pro-
duction requirements in CGGs without disrupting lo-
cal system operation. The number of CRCs in the RD
depends on the number of CGGs connected to RD.
There are three CGGs which are connected to RD, so
one set of CRC and CRC-sum is used for each CGG.

4 EXPERIMENTS

Considering the problem scenario described in sec-
tion 3, two sets of experiments have been conducted
to study the impact of different notions of social wel-
fare (described in section 2.2) on an optimization out-
come in terms of resource allocation. Each set of ex-
periments is run 20 times to show resilience towards
the potential random behavior sparked by the use of
genetic algorithm (GA).

The first set of experiments simulates a scenario
with unconstrained resources. This means, sufficient
amount of resources is available in the RD. In this
set of experiments, all the CGGs have the same pro-



Table 1: Configuration of concerns in RD.

Concern Preference Issue Cost Function Purpose

DC pn, represents an hourly resource e1, qn = ∑
t
i=1 |yi− pi| To change planned aggregated consumption

capacity i.e., upper bound on amount e2, where, y = ∑
N
n en of CGGs to ensure that combined

of resources that can be allocated e3 allocation complies with resource capacity

CRCn dn, represents the energy en qn = ∑
t
i=1 |ei,n−di,n| To ensure that demand in each hour

efficient demand profile for CGGn matches with allocated amount of energy

CRCsum(n) dn represents the energy efficient en qn = |∑t
i=1 ei,n−∑

t
i=1 di,n| To ensure that correct amount of electricity

demand profile for CGGn is allocated for CGGn it represents
regardless of the time it is allocated

Figure 1: Preferences of CRCs and CRCs-sum.

duction goals, i.e., each of the CRCs and CRCs-
sum is given the same demand preference in terms of
amount. However the time slots in which resources
are demanded, varies for each CRC and CRC-sum as
shown in figure 1. The experiment is repeated mul-
tiple times, i.e., the experiment is run once for each
notion of social welfare. These experiments serve to
show how different notions of social welfare lead to
the same optimization outcome, i.e., all the CRCs and
CRCs-sum will be allocated their requested demand,
in the scenarios where resources are unconstrained.

The second set of experiments simulates a sce-
nario where the resources are constrained. This
means, insufficient amount of resources is available
in the RD. Likewise first set of experiments, the de-
mand preferences for CRCs and CRCs-sum are equal
(figure 1) and the experiment is repeated for each no-
tion of social welfare. These experiments serve to
show how different notions of social welfare lead to
the different optimization outcomes in the scenarios
where resources are constrained, i.e.,when allocating
resources to CGGs in a resource-constrained setting,
1) overall utility based social welfare methods will
lead to an optimization outcome, that favors overall
well-being of CGGs, 2) inequality based social wel-
fare method will lead to an optimization outcome, that
disregards fairness and equality among CGGs, 3) fair-
ness based notions of social welfare will lead to an op-
timization outcome, that favors fairness and equality
among CGGs.

Figure 2: Results of baseline experiment.

4.1 Baseline Experiment Results

Figure 2 shows the results of this experiment. A base-
line profile represents the optimal demand profiles for
the CGGs. The baseline profile received from each
CGG will be regarded as a preference for their re-
spective CRCs and CRCs-sum in the RD. The CRC
and CRC-sum for each CGG in the RD play their role
and influence the optimization process by negotiating
over the issues, they are interested in. The CRCs and
CRCs-sum in the RD will try to minimize the distance
between their preference and the issue values, they
negotiate over. This is how, in case of unconstrained
resources, each CGG is provided with its preferred
energy plan i.e. no change is forced upon the CGGs
and therefore allocation matches with the demand in
each time slot and corresponds to the baseline profile.

Table 2 shows the result of MOMI optimization
process in terms of allocations and demands. A1, A2,
and A3 depict the electricity allocations (MWh) made
by RD for CGG1, CGG2, and CGG3 respectively at
the termination of optimization process. Similarly
D1, D2, and D3 show the electricity demands (MWh)
made by CGG1, CGG2, and CGG3 respectively. As
can been seen in table 2, allocation matches with the
demand and each CGG is able to meet its demand
preference.

4.2 Constrained Experiment Results

Figure 3 shows the preference of DC in the RD, which
reflects the constrained resource scenario. The con-



Table 2: Results of MOMI Optimization.

Experiments A1 A2 A3 D1 D2 D3

Baseline 7 7 7 7 7 7

Constrained (Inequality Based SWO) 6 7 5 7 7 7

Constrained (Equality Based SWOs) 6 6 6 7 7 7

Constrained (Overall Utility Based SWOs) 7 4 7 7 7 7

Figure 3: Preference of DC.

flict can be seen at slot 11, 12 and 13, where a DC
requires modification to the baseline profile, by pro-
viding 1 MW less energy in each of the conflicting
slots. This situation requires CGGs to shed their load
in the above mentioned slots. The results can be seen
in figures 4a to 4c.

Figure 4a shows the result of experiment with in-
equality based SWO. Here, the RIG based on elitist
SWO is used for the selection of final contract in RD.
As explained earlier in section 2.2, elitist SWO tries
to minimize the cost of the best-off concern and en-
sures that at least one of the CGGs must achieve its
goal. As anticipated, allocations are made in a way,
where one of the CGGs, i.e., CGG2 is provided with
its most preferred energy profile, whereas the remain-
ing two CGGs are forced to reduce their demands. Ta-
ble 2 shows that CGG1 and CGG3 have made a com-
promise of 1 and 2 MW respectively, whereas CGG2
meets its demand preference.

The same experiment is then repeated with SWOs,
which favor fairness among CGGs. The experiment
has been run once with each of the equality based
SWOs. In each experiment, one of these SWOs is
used for the selection of final contract. The results
are shown in figure 4b. As can be seen that each of
these fairness based SWOs in the RD, ensures that all
the CGGs are treated equally and they will therefore
all concede as necessary to bridge the gap of the con-
flict caused by the constrained resources. Here, CGG3
sheds its load in slot 11, CGG2 sheds its load in slot
12, whereas CGG1 sheds its load in slot 13. Table 2
shows that all CGGs have made a compromise of 1
MW each and therefore deviated from their desired
demand preferences.

Next, the experiment is repeated with SWOs,
which favor the overall well-being of CGGs. The ex-

periment was conducted using overall utility based
SWOs, which all yielded similar results. The re-
sults are shown in figure 4c. As expected, each of

(a) Inequality based SWOs.

(b) Equality based SWOs.

(c) Overall utility based SWOs.
Figure 4: Results of constrained experiment.

these SWOs favors overall well-being of the group
of CGGs. This explains that why the consequences
of constrained resources are unevenly divided among
CGGs, i.e., CGG2 sheds its load in all the required
slots 11, 12 and 13, whereas CGG1 and CGG3 are
provided with the amount, they demanded. Similarly,
table 2 shows that CGG2 has made a compromise of
3 MW and deviated from its demand preference.

5 DISCUSSION

Taking into consideration the production require-
ments and different types of plants in the greenhouse
domain, it is important to make a right choice about
which notion of social welfare should be applied to



select the optimization outcome. This may have a sig-
nificant impact on plants with respect to their growth.
For instance, in unconstrained resource settings, the
results in figure 2 revealed that the selection of op-
timization outcome can be done using any notion of
social welfare, as all the social welfare methods se-
lect the same outcome where all the CGGs are able to
meet their demand requirements without making any
compromise over production.

In constrained resource settings, we deduce some
facts about the selection of social welfare method with
respect to plant growth in CGGs. First, the inequality
based SWO can be applied to select the final outcome
specifically for long-day photoperiodic plants which
are sensitive to the duration of day-night like rud-
beckia and california poppy. That is to ensure at least
one of the CGGs gets the required amount of light,
instead of making all the CGGs affected by the con-
strained resources, as seen in figure 4a. Second, over-
all utility based SWOs can be used to select the allo-
cation for day-neutral plants which do not require any
specific day length like rose and tomato growing. This
is because all these methods take into account overall
well-being of CGGs (see figure 4c). The CGG, which
takes the consequences of constrained resources will
not be affected too much due to their day-neutral sen-
sitivity. Third, for short-day plants like chrysanthe-
mum, christmas cactus, and poinsettia, it is recom-
mended to use equality based SWOs (figure 4b). This
is because they do not require long lighting hours. In
case of insufficient resources, CGGs can easily make
a fair compromise with respect to their demand pref-
erence without affecting plant growth (Kumpf, 2019).

6 CONCLUSION

This paper discusses the properties and impact of dif-
ferent notions of social welfare on an optimization
outcome in MOMI optimization problems. In this
regard, a GA based MOMI optimization approach is
used to describe a complex, real world problem. To
study the impact of social welfare methods, two sets
of experiments are conducted in unconstrained and
constrained resource settings respectively. The results
show that different notions of social welfare lead to
different optimization outcomes and selection of the
social welfare method depends on the behavior we ex-
pect from the system.

In future works, we intend to investigate the im-
pact of social welfare methods on different real-
world problems which exhibit additional complexity
in terms of number of objectives. We aim to focus
on 1) combining different notions of social welfare

to select the final optimization outcome, i.e., in cases
where multiple contracts yield same utilitarian score,
equality based SWOs can be applied to select the most
fair contract out of the resulting set of contracts yield-
ing high utilitarian score, 2) applying different notion
of social welfare at each level of RIG, i.e., in cases
where each level of RIG comprises more than one
concern.
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