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Abstract 

 

Despite the recent interest in large carboxylic acid oxidation due to their presence in pyrolysis 

bio-oils, their kinetics of pyrolysis and oxidation has not been experimentally addressed. For the 

first time, this paper reports a new set of experimental data for the oxidation in a jet-stirred 

reactor of two high molecular weight carboxylic acids: butanoic (butyric) and pentanoic (valeric) 

acids. This work was performed at 106.7 kPa (800 Torr) over a range of temperatures from 800 

to 1100 K. The experiments were carried out under highly diluted conditions (inlet fuel mole 

fraction of 0.005) for three equivalence ratios: 0.5, 1 and 2. During this study a wide range of 

products has been identified and quantified from CO and CO2 to C5 species: 36 for pentanoic acid 

and 18 for butanoic acid. An interpretative kinetic model has been developed based on a recent 

theoretical study on the pyrolysis and oxidation of acetic acid (Cavalotti et al. PROCI, 37 (2019) 

539–546) and on alkane rate rules (Ranzi et al. Combust. Flame, 162 (2015) 1679–1691). This 

new kinetic subset has been implemented in the CRECK kinetic framework covering the pyrolysis 

and oxidation of molecules from syngas up to heavy fuels, including PAHs formation. The mole 

fractions of fuel and product species were compared with results from model simulations over 

the experimental temperature range, providing reasonable agreement. A flow rate analysis 

allowed a better understanding of the most important degradation pathways of these acids, 

including a small contribution of low-temperature oxidation channels. 
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1. Introduction 

 

Many reasons lie behind the interest in carboxylic acid oxidation chemistry. Oxygenated species, 

including those carrying acid functionalities, are very abundant in the tar released from biomass 

pyrolysis. Acetic acid, for example, is the major acidic components of bio-oils derived from 

biomass fast pyrolysis [1-3]. Figure 1 presents the composition of three different bio-oils [2] and 

shows the importance of the acids in the composition (around 20% in this case). 

 

 

Figure 1. Composition of three bio-oils. The sections are corresponding from the bottom to the 

top to alcohol (blue), aldehydes (green), carboxylic acids (red) and to the rest of the mixture 

(grey). 

 

New fuel formulations, meant to improve environmental impact and decrease energetic 

dependence on fossil fuels, are obtained by blending increasing amounts of biofuels (e.g. alcohols) 

into conventional fuels. Recent studies highlighted how the combustion of such fuels might 

introduce new issues for human health and that their impact on pollutant formation has not been 

fully assessed. In fact, new unregulated pollutants such as long chain aldehydes and organic acids 

may be formed in significant quantities during the combustion of these new fuels [4-6]. Therefore, 

according to the successive oxidation steps as alcohol > aldehyde > carboxylic acid, the accurate 

description of biofuel combustion has to properly account for the formation of relevant 

intermediates [7-9]. Furthermore, recent experimental and modeling studies on the low 

temperature oxidation chemistry of hydrocarbon fuels highlighted the importance of organic acid 

formation from alternative low temperature pathways of alkanes (e.g. Korcek mechanism) [10-

13]. From a fundamental kinetic perspectives, all of the above reasons highlight the need to 

properly assess the influence of the carboxyl functionality on the overall reactivity of different 

molecular weight acids. 
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Christensen and Konnov [14] recently reported the first experimental measurements of acetic 

acid laminar flame speeds, at P = 1 atm and T = 338–358 K. A kinetic model was also developed 

extending previous studies on formaldehyde and methanol [14,15] and the previous model 

developped by Battin-Leclerc et al. to simulate the formation of formic to propanoic acid for 

laminar premixed flame of propane [16]. Cavallotti et al. [17] recently investigated the gas-phase 

reactivity of acetic acid with ab initio methods, providing a solid basis to develop pyrolysis and 

oxidation kinetics of higher molecular weight acids as presented in this work. Rate constants for 

the unimolecular decomposition of acetic acid were determined with ab initio transition state 

based master equation, over a broad range of temperatures and pressures. The three main 

decomposition channels considered were CH3COOH ↔ CO2 + CH4, CH3COOH ↔ CH2CO + H2O, and 

CH3COOH ↔ CH3 + COOH. H-abstraction reactions by H, OH, OOH, O2, and CH3 from the carboxylic 

function and from the methyl group were also theoretically determined. Results were found to 

agree very well with experimental determinations of the rate constants. The updated CRECK 

model [18] provided good predictions in comparison with the limited amount of experimental 

data on acetic acid pyrolysis and oxidation [14,19, 20,21]. 

 

Motivated by the absence of useful data for the development and the validation of butanoic and 

pentanoic acid gas phase oxidation kinetics in the literature, this work presents the first 

experimental datasets obtained for the above fuels. Experiments were performed in an 

atmospheric pressure jet-stirred reactor, over the temperature range 800–1100 K, for 0.5% 

fuel/O2/He mixtures at varying equivalence ratios (φ = 0.5, 1.0, 2.0). 

 

The unavailability of studies on the oxidation of acids can be explained by some experimental 

complexity. An issue is related to the relatively high boiling point of butanoic and pentanoic acids 

(436 K and 458 K, respectively) which are at the upper limit of our actual set-up capacities. The 

only experimental and kinetic modelling study for higher molecular weight acids (Cn > 2) was 

presented by Doolan et al. [22]. The authors investigated the thermal decomposition of propanoic 

acid in argon in a single pulse shock tube. Operating at temperatures ranging between 1100 K and 

1500 K and at pressures P = 14–18 atm. Following a similar previous study specifically devoted to 

acetic acid [19] the authors systematically interpreted the acid pyrolysis kinetics by means of a 

kinetic model. Clark and co-workers [23] calculated barrier heights and high pressure limit rate 

constants for molecular decomposition pathways for a series of higher molecular weight acids, 

including propanoic and butanoic acids. Mendes et al. [24] performed theoretical calculations of 

H-abstraction reactions for a series of oxygenated compounds, including acetic and propanoic 

acids. 
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Moreover, stemming from the previous theoretical study on acetic acid this work also presents 

the first kinetic model for butanoic and pentanoic acids. This model is derived through analogy 

from both the recent assessment of acetic acid oxidation [17] and from alkane rate rules as 

implemented in the CRECK kinetic model [25,13]. 

 

2. Experimental method 

 

The experimental set-up consists in an isothermal heated jet-stirred reactor (JSR) used at 

atmospheric pressure and coupled with gas chromatographic analyses. This setup was recently 

used to study the low-temperature oxidation of n-pentane [26] and of n-C4-C6 aldehydes [9]. 

Figure 2 shows a schematic of the setup of the JSR with the analytical method used for this study. 

 

 

Figure 2. Schematic of the JSR facility used in this study. 

 

The JSR consists of a fused silica sphere (volume 92 cm3) equipped with four injection nozzles 

positioned in a cross at the center of the sphere [27,28]. This injection method ensures high 

turbulence in the reactor and leads to homogeneity in product concentration of the gas phase. 

Thanks to this homogeneity, the reactor can be assimilated to a perfectly stirred reactor working 

under steady-state conditions. To ensure thermal homogeneity, the isothermal JSR is preceded by 

a quartz annular preheating zone, in which the temperature of the gas is increased up to the 

reactor temperature. The gas residence time inside the annular preheater is very short compared 
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to its residence time inside the reactor (a few percent); therefore the reactivity in this section can 

be considered as negligible. The heating is ensured by resistances (Thermocoax) carefully rolled 

to fit the reactor and the preheating zone shapes, which allows flexibility and swiftness in the 

heating of each area. Temperatures are measured by several K-type thermocouples: one is located 

in a glass finger inside the inlet cross for the actual reaction temperature measurement, and two 

are located between the resistances and the external wall of the reactor for the temperature 

control. The liquid fuel is stored in a pressurized tank. The liquid flow is measured by a Coriolis 

mass flow controller, which is connected to the valve of an evaporator. The liquid mass flow is 

constantly measured and a PID regulation assures the stability of the flow. The gas flows are 

measured with different gas flow controllers. The composition of the inlet mixture is calculated 

for each condition and fixed by the flows. 

 

This study was performed between 700 K and 1100 K, at 106.7 kPa, at three equivalence ratios 

(φ = 0.5, 1.0, 2.0) for mixtures containing 0.5 mol% of fuel with dilution into He. The residence 

time in the reactor is taken equal to 2 s for all experiments. A variation in the residence time by a 

factor of 2, has a very limited effect as shown by Herbinet et al. [29] and the simulations on 

pentanoic acid results presented in Supplementary Materials (Figure S5). Butanoic and pentanoic 

acids were provided by Sigma Aldrich with a purity of 99%. Helium (99.999% pure) and oxygen 

(99.999%) were provided by Messer. Gas flow rates were controlled by mass flow controllers and 

the liquid flow rate by a Coriolis flow controller followed by a vaporization chamber maintained 

at a temperature 15 K above each fuel boiling point. 

 

The outlet gas leaving the reactor was then transferred by a heated line maintained at 420 K to 

three gas chromatographs (GCs) to analyze the wide range of products formed by the reaction. 

Due to the temperature drop between the reactor exit and the transfer line, the gas can be 

considered as quenched and therefore the reactions stopped. The first chromatograph, equipped 

with a Carbosphere packed column, a thermal conductivity detector (TCD) and a flame ionization 

detector (FID), is used for the quantification of light-weight compounds like methane, ethylene, 

acetylene and ethane. The second chromatograph is fitted with a Q-Bond capillary column and a 

FID preceded by a methanizer and is used for the quantification of compounds containing from 2 

carbon atoms, like acetylene or ethylene up to species containing up to 5 carbon atoms. The 

methanizer (nickel catalyst for hydrogenation) allows the detection of species like CO, CO2 and 

CH2O with a good sensitivity and increases the sensitivity for species containing oxygenated 

functional groups in a general manner. A third chromatograph equipped with a HP-5 capillary 

column is used for the detection of the heaviest compounds (C5+) and for both fuels. 
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The identification of reaction products is performed using a gas chromatograph equipped with 

both type of capillary columns and coupled to a mass spectrometer (quadrupole). Calibrations are 

performed by injecting gaseous and liquid external standards when available. For species, which 

could not be directly calibrated with a standard, the effective carbon number method relying on 

the properties of the FID with respect of the structure of the molecule was used to obtain 

calibration coefficients from reference species calibrated using standards. Table 1 summarizes the 

uncertainties sources and their quantifications related to these experiments. 

 

Table 1. Uncertainty quantification of the experimental setup. 

Uncertainty sources Uncertainty bounds 

Temperature in the reactor ±5K 
Temperature in the transfer line ±7K 
Impurity of the fuels and the gases <1% 
Fuel calibration (description below) ±10% 
Products calibration by effective carbon number method ±10% 
Products calibration with standards ±5% 
Flow rate of liquid fuel ±1% 
Flow rate of gases ±0.5% 
Residence time ±2% 

 

It is possible that condensation and physical adsorption occur on some surfaces in the manifolds 

(cold points, valve, gums). This could affect the quality of the results and solutions have to be 

found to limit those phenomena as much as possible. One solution consists in coating the surface 

with the fuel before the occurrence of any reactions [22]. In our case, the surfaces were constantly 

heated to limit the condensation of the heaviest compounds, so the controlled coating of the 

surfaces was not possible. Also some components in chromatographs are prone to adsorption; 

especially the sampling loop, and the inlet liner. Thus specific components of chromatographs 

were supplied by the Restek company and used for the experiments. An inlet liner made of 

deactivated silica (Topaz GC inlet liners) [30] and a surface-coated sampling loop (Sulfinert 

treatment) [31] were installed to minimize the occurrence of adsorption. All these equipments 

are also suitable for the study and analysis of other oxygenated compounds like alcohols or 

aldehydes so it does not modify the results we can get and let us the possibility to compare them 

with previous studies. The implementations described above lead to an maximum estimated 

relative error of 10% in the mole fraction of the fuel, which is however still higher than usual 

values previously obtained with the present setup for other fuels (i.e. 5%). 
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3. Experimental results 

 

Figure 3 compares measured fuel mole fraction profiles at different equivalence ratios. Results 

from kinetic simulations obtained with the model developed in this study are also plotted. As 

expected from the longer carbon chain, pentanoic acid is more reactive than butanoic acid 

throughout the equivalence ratio and temperature ranges here explored. Generally the onset of 

reactivity of butanoic acid is delayed of about 50–70 K with respect to pentanoic acid. 

 

Figure 3. Comparison of experimental fuel mole fraction profiles (symbols) and model 

simulations (lines). Oxidation of 0.5% butanoic (full symbols and full lines) or pentanoic acid 

(open symbols and broken lines)/O2/He mixtures in an isothermal JSR, φ = 0.5, 1.0, 2.0, 

P = 1.05 atm, τ = 2.0 s. 10% error bars are reported. 

 

Figure 4 compares the carbon based selectivities for butanoic and pentanoic acids for the 

stoichiometric case (φ = 1.0) of Figure 3. Only the products exceeding 0.1% in terms of selectivity 

are here reported for clarity. The analysis was conducted at a fixed fuel conversion of 85%. As a 

consequence of the different reactivity mentioned above, this extent of consumption is obtained 

at two different temperatures for the two fuels. Namely, this analysis was carried out at 950 K for 

butanoic acid and at 900 K for pentanoic acid. For these two temperatures, the carbon loss is 

around −1% and 17% for butanoic and pentanoic acid respectively. 

 

For both fuels, beside the expected high yields of ethylene, CO and CO2, ∼8% of the fuel carbon are 

converted to propene. Notable mole fractions of 1-butene are also observed. Due to the C4 

skeleton of butanoic acid, 1-butene can only be formed through recombination reactions of 

relatively stable radicals (e.g. CH3 + aC3H5). In the case of pentanoic acid instead, 1-butene is 

formed mainly by the β-scission decomposition reaction of the fuel radical carrying the unpaired 

electron on the β carbon atom as discussed in Section 5. Butadiene is formed by H-abstraction and 

successive decomposition reactions of the unsaturated pentenoic acid mostly formed by fuel 

radicals β-scission decomposition reactions and interactions with molecular oxygen abstracting 

an H-atom. Methane is mostly formed through H-abstraction reactions (e.g. CH3 + RH ↔ R + CH4) 
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from fuel and the recombination of two methyl radicals produces ethane 

(CH3 + CH3 + M ↔ C2H6 + M). Ethane is converted to ethylene and acetylene by successive 

dehydrogenation reactions. A more detailed discussion of reactive fluxes is provided in Section 5 

(Figures 11 to 14). 

 

 

Figure 4. Experimental comparison of carbon selectivities to products at 85% fuel conversion in 

the oxidation of butanoic and pentanoic acids in stoechiometric conditions (φ = 1). (950 K for 

butanoic acid, 900 K for pentanoic acid). 

 

CH2O and CH3CHO are the most abundant aldehydes formed in the oxidation of both fuels. The 

higher oxygen content in the pentanoic acid mixture, for a given fuel concentration, justifies the 

higher amounts of formaldehyde and acetaldehyde. n-Butanal at high temperatures (T > 1000 K) 

if formed by successive dehydrogenation/oxidation reactions of 1-butene, therefore reflecting its 

relative amount in the two cases, while at low temperatures its formation mostly occurs through 

a Waddington like decomposition of the peroxy radical formed from the α-radical addition to O2 

as discussed in Section 4.5. The same pathway justifies most of the formation of propanal in 

butanoic acid oxidation. 

 

4. Kinetic model 

 

This section describes the development of the kinetic model for higher molecular weight acids. 

Moving from the evaluation of bond dissociation energies and thermodynamic properties of 

relevant species (Section 4.1), the derivation of rate constants for the different reaction classes 

0.1 1 10

Acetone
Propanal

1,2-Dihydrofurane
Ethane

Acetylene
2-Propenal

Butanal
1,3-Butadiene
Acetaldehyde

CH4
Formaldehyde

1-Butene
Propene
Ethylene

CO2
CO

Carbon Selectivity [%]

85% fuel conversion

Butanoic

Pentanoic



9 
 

needed to model pyrolysis, high and low temperature oxidation of long chain carboxylic acids is 

discussed in the followings. 

 

4.1. Thermochemistry and bond dissociation energies (BDEs) 

 

Thermodynamic properties for butanoic acid, pentanoic acid and their radicals were estimated 

using software THERGAS [32] that implements Benson’s group additivity rules [33]. From the 

calculated enthalpies of formation, it is possible to estimate the bond dissociation energies (BDEs) 

reported in Figure 5 for acetic, propanoic, butanoic and pentanoic acids. As recently reported by 

Pelucchi et al. [5], the evaluation of BDEs provides useful guidelines for the development of a 

kinetic model based on analogy rules. This analysis clearly highlights the extent to which the 

oxygenated functional group influences vicinal bonds. In other words, as also discussed by Heufer 

et al. [34] for long chain alcohols oxidation and represented in Figure 5, it is possible to assume 

the acid molecule as composed of an acid specific moiety (BDE values in red) and an alkane-like 

moiety (BDE values in black). In fact, the effect of the carboxylic functional group (R(CO)OH) 

vanishes after the Cβ-H bonds (italics in Figure 5) and after the Cβ-Cγ bonds of butanoic and 

pentanoic acids. Indeed, C-H bonds farther away from the carboxylic function present the same 

values of primary (100.9 kcal/mol) and secondary bonds (98.7 kcal/mol) in alkanes. Similar 

analogies are also valid for C-C bonds far from the oxygenated group involving two primary 

carbons (88.8 kcal/mol) or a primary carbon bonded to a secondary carbons (87.3 kcal/mol). 

 

 

Figure 5. Bond dissociation energies for a series of acids: acetic, propanoic, butanoic and 

pentanoic (C-H bonds in italics), calculated using bond additivity. Values in red represent acid 

specific moieties, black values represent alkane-like moieties. Values in parentheses are from 

Cavallotti et al. [17]. 
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Concerning the accuracy of thermochemistry estimation based on group additivity methods, 

Figure 5 also reports the bond dissociation energies of acetic acid as in the recent theoretical study 

of Cavallotti et al. [17]. Reasonable agreement (i.e. within 2 kcal/mol) can be observed for every 

bond exception made for the terminal OH bond of the carboxylic moiety, where our estimation 

differs of 4.6 kcal/mol from the calculated values. The comprehensive review of Luo et al. [35] 

provides a value of 112 ± 3 kcal/mol for this bond. The same bond for higher molecular weight 

acids is slightly weaker and the computed BDE of 105.5 kcal/mol is only 0.6 kcal/mol smaller than 

the value estimated by Denisov et al. [36]. 

 

Due to resonance stabilization, the most stable radicals with the same carbon skeleton of the 

parent acid is that carrying an unpaired electron on the carbon atom closest to the carboxylic 

function, with a BDE of ∼97 kcal/mol for the primary position in acetic acid and 94.3 kcal/mol for 

secondary positions in higher molecular weight acids. In both cases, the resonance induces a 

stabilization of ∼4 kcal/mol compared to an alkane-like primary or secondary radical derived 

from a CαH bond cleavage. The favored radical decomposition is that involving Cβ-Cγ bonds, as it 

leads to the formation of the stable radical *CH2(CO)OH that is also resonance stabilized. For 

primary-secondary bonds close to the functional group (Cα-Cβ), dissociation energies are 

80.5 kcal/mol, which is 1.5 kcal/mol lower than secondary-secondary bonds in butanoic and 

pentanoic acids. This observation is consistent with the energy difference between a primary-

primary and a primary-secondary C-C bond in alkanes (88.8 vs 87.3 kcal/mol). BDEs for CCOOH-Cα 

bonds leading to the formation of the unstable HOCO radical (*(CO)OH) and a Cn−1 alkyl radical are 

91.5 kcal/mol, which is 4.3 kcal/mol stronger compared to similar bonds in alkanes. 

 

Based on the above observations it is possible to derive a kinetic model based on analogies. Rate 

constants for the different reaction classes can be treated according to the recent work of 

Cavallotti et al. [17] for acetic acid when referring to the acid specific moiety. Concerning the 

remaining part of the molecule, established rate rules for alkanes [13,25] are adopted in this work. 

This model in CHEMKIN format, together with thermochemical data, is provided in 

Supplementary Material. 

 

4.2. Unimolecular decompositions 

 

Acetic acid mostly decomposes through molecular decomposition pathways (Ea ∼ 71–

74 kcal/mol) due to the much larger activation energies of unimolecular initiation reactions 

(Ea ∼ 93–110 kcal/mol) [17]. However, conventional radical initiation pathways are more 
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important for acids with a longer carbon chain, as the effect of the carboxylic substitution 

vanishes. In particular, while a limited contribution is expected from the strong C-O and O-H 

bonds, the weak Cα-Cβ can overcome or compete with decarboxylation and dehydration reactions. 

 

Figure 6 compares the rate constants for molecular decarboxylation and dehydration reactions of 

different carboxylic acids as reported by Cavallotti et al. [17] (acetic acid), Clark et al. [23] (acetic, 

propanoic and butanoic acids) and Doolan et al. [22] (acetic and propanoic acids). 

Decarboxylation reactions of the Cn acid produces CO2 and a Cn−1 alkane molecule. Dehydration 

reactions produce H2O, and an alkyl ketene (R(CH)CO). Specific subsets to describe the primary 

decomposition and oxidation reactions of ethylketene (C2H5(CH)CO) and propylketene 

(C3H7(CH)CO) have been introduced based on analogy with ketene and methylketene kinetics. 

From the systematic investigation of Clark et al. [23] the difference between dehydration reaction 

rate constants of acetic, propanoic and butanoic acids is within a factor of 2, with a surprising 

trend as propanoic > butanoic > acetic. However, the observed differences are well within the 

uncertainties of the adopted theoretical methods, therefore we assume the same rate constants 

proposed by Cavallotti et al. [17] for the molecular decomposition reactions of higher molecular 

weight acids. Despite the hierarchical development of kinetic subsets for higher C4 and C5 acids 

requires the inclusion of molecular and unimolecular initiation reactions, it has to be noted that 

under the experimental conditions presented in this work these reactions do not play a dominant 

role. Better insights on their importance can be obtained from an experimental investigation of 

butanoic and pentanoic acids in pyrolytic conditions. 

 

Figure 6. Rate constants for molecular decarboxylation reactions (left) and dehydration 

reactions (right) for acetic acid (blue), propanoic acid (red) and butanoic acid (black). Literature 

values are from [17,22,23]. 
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principle, the rate constant of initiation reactions are derived from the rate constant of reverse 

barrierless radical recombination reactions. The most favored initiation reactions are those 

involving the lower BDEs and in particular those occurring through Cα-Cβ bond breaking, due to 

its relatively low activation energy (80.5 kcal/mol) and the high frequency factor that is typical of 

initiation reactions (A = 1017 s−1). Differently from acetic acid [17], the radical decomposition 

pathways account for >80% of the total unimolecular decomposition of butanoic and pentanoic 

acids. Due to the high bond dissociation energies in acetic acid instead, molecular pathways were 

found to be the dominant decomposition channels. 

 

4.3. H-abstraction reactions 

 

H-abstraction reactions are relevant to unravel the selectivity to different products. Rate 

constants of the generic reaction: R + R′H ↔ R′ + R H depend on the properties of the abstracting 

radical and the type of hydrogen to be abstracted [32]. In other words, the BDEs of the different 

C-H bonds to some extent reflect the likelihood of one H-atom to be abstracted. While this is 

generally verified for hydrocarbon fuels (alkanes, cycloalkanes and aromatics), hindered rotor 

effects, hydrogen bonding interactions and specificities of transition states [17] can be peculiar in 

oxygenated molecules. Stemming from the relative strength of the different CH bonds in butanoic 

and pentanoic acids, one would indeed expect the relative importance to decrease as 

Cα-H > Cβ-H > Cγ,δ-H > O-H. Starting from a simpler example, the H-abstraction from the primary 

Cα site in acetic acid should be faster than the abstraction from a secondary position in alkanes. 

Figure 7 compares the results from Cavallotti et al. [17] for H-abstraction reactions by H and OH 

from the α site in acetic acid with reference rate parameters for primary and secondary positions 

in alkanes [25]. 

 

 

Figure 7. Comparison between H-abstraction rate constants for primary position in acetic acid 

[17] and primary and secondary positions in alkanes [25]. Left panel: R = H, right panel: R = OH. 
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The interactions with the carboxylic function inhibit the H-abstraction making it a factor of ∼3–4 

lower than an alkane primary position over the temperature range of interest. 

 

According to the approach of Ranzi et al. [37] rate rules for the different R abstracting radicals in 

the CRECK model are expressed as: 

𝑘ோ(𝑇) = 𝑛ு𝐶ௌ௧ு(𝑇)𝑘,ோ(𝑇) = 𝑛ு𝐶ௌ௧ு(𝑇)𝐴,ோ𝑇
ଶ𝑒𝑥𝑝 ൬−

𝐸,ோ

𝑅𝑇
൰ 

where the rate rules rely on reference frequency factors and activation energies of each H 

abstracting radical (𝑘,ோ(𝑇)), on a per site primary alkane H-atom basis. The rates are then 

corrected to account for the number of H atoms and the correction term (𝐶ௌ௧ு(𝑇) =

𝑒𝑥𝑝(−𝐸ௌ௧ு/𝑅𝑇)) is obtained from the bond dissociation energy (or the heat of reaction), through 

an Evans-Polanyi relationship [38]. Following the same approach, the rate constants from 

Cavallotti et al. [17] can be corrected to obtain an estimate of the rate parameters for H-

abstractions from secondary α sites in higher molecular weights acids (propanoic, butanoic and 

pentanoic). The rate is modified reducing the activation energy by 2300 cal/mol 

(𝐸ௌ௧ு = −2300 cal/mol) and accounting for the different numbers of H-atoms available on the 

site. To prove the reliability of this approach, Figure 8 compares the corrected values with 

theoretical calculations of Mendes et al. [24] for H-abstractions by H and OH on propanoic acid. 

Mendes et al. [24] estimated an uncertainty of a factor of ∼2.5 in their calculations. For the case 

R = H, maximum deviations are within a factor of ∼2.7. An even better agreement is obtained for 

R = OH, with maximum deviations within a factor of ∼1.8. 

 

 

Figure 8. comparison between calculated values from Mendes et al. [24] for H-abstractions from 

the α-site of propanoic acid and values adopted in the kinetic model derived by correcting the 

rate constants from Cavallotti et al. [17] for acetic acid. 
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Provided the above agreement, the same approach is applied for the remaining main abstracting 

radicals: HO2, CH3, O2. The rate constants for H-abstractions from the hydroxyl function (OH) of 

butanoic and pentanoic acids are adopted directly from the work on acetic acid [17]. Concerning 

the remaining alkane-like part, we adopt the reference values of alkanes for primary and 

secondary positions. A comparison between these reference parameters for the primary alkane 

positions with the calculations of Mendes et al. [24] for propanoic acid also provides good 

agreement (∼2.5) supporting the validity of the assumption of an alkane-like moiety as resulting 

from the BDEs assessment (Figure 4). 

 

Figure 9 shows the relative selectivities to the different sites for H-abstraction reactions by OH on 

butanoic acid, as computed from the values adopted in this work on a per H-atom basis. As 

expected from the strong bond energy, the selectivity of H-abstraction from the hydroxyl group of 

the carboxylic function only accounts for a few percentage at very high temperatures for the case 

R = OH (10% at 1500 K). 29–43% selectivities are observed for H-abstractions from the secondary 

position in α. H-abstractions from the secondary alkane-like position (β) shows the higher yields 

at low temperatures (40%) decreasing to 23% at 1500 K. Concerning the primary position γ, 

∼30% yields is observed throughout the temperature range. 

 

 

Figure 9. Relative selectivities to the different H-abstraction sites on butanoic acid on a per 

H-atom basis. Abstractor R = OH. 

 

4.4. Radical decompositions/isomerizations 

 

The fuel radicals derived from H-abstraction reactions can either decompose through 

beta-scission reactions to form a saturated bond and a smaller radical, or isomerize to another 

radical. Beta-scission reactions can break a C-H bond or a C-C bond. Rate constants for these 

reaction classes are based on the alkanes rate rules from Ranzi et al. [39] taking into account the 
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differences in bond dissociation energies and the formation of resonance stabilized radicals (α-

radicals) from H-abstractions. The previous study from Cavallotti and co-workers [17] highlighted 

the importance of secondary chemistry of the resonance stabilized α radical (*CH2(CO)OH) in 

acetic acid for the predictions of the laminar flame speeds measured by Christensen and Konnov 

[14]. Preliminary evaluations by Cavallotti et al. [17] have been considered in this study to 

describe the decomposition reactions of these radicals and their interactions with H atoms. 

 

Concerning β-decomposition reactions of α-radicals, rate constants are obtained by increasing the 

reference activation energy for beta-scission reactions (∼30 kcal/mol [39]) by 2 kcal/mol in the 

case of butanoic acid producing methyl radical and acrylic acid (C2H3(CO)OH), and by 1 kcal/mol 

in the case of pentanoic acid where ethyl radical is produced instead. The decomposition reactions 

of the remaining fuel radicals to form unsaturated species and an alkyl radical, or to form 

unsaturated acids (butenoic and pentenoic acids) and H, are based on analogy with alkane rate 

rules [25]. Specific subsets to describe the pyrolysis and oxidation of butenoic and pentenoic acids 

have also been included. According to a similar approach, the carboxylic function is treated in 

analogy with saturated acids, while the unsaturated carbon skeleton is treated according to alkene 

kinetics already implemented in the CRECK model (i.e. propene and butenes). Interactions of fuel 

radicals with O2 can also lead to the formation of unsaturated acids with the same carbon skeleton 

as the fuel, according to the generic H-abstraction reaction O2 + Rn = HO2 + Cn,unsaturated acid. To 

constrain the number of species in the kinetic model, only one butenoic acid and one pentenoic 

acid are accounted for to represent all the isomers. The reader is referred to the Supplementary 

Material for a detailed list of lumped species. 

 

4.5. Low temperature lumped kinetics 

 

Lumped low temperature pathways have been also included in the kinetic subsets here developed. 

The contribution to the low temperature branching pathways of the carboxylic function can be 

neglected due to the strong BDE of the OH bond and due to the lack of H-atoms on the central 

carbon (R(CO)OH). As can be noted from Figure 3, neither low temperature reactivity nor NTC 

(negative temperature coefficient) can be seen under the experimental conditions investigated in 

this study. For these reasons, aiming at a first simplified description of acid low/intermediate 

temperature kinetics, the low temperature pathways and their rate constants are considered to 

be analogous to those in propane for butanoic acid and to those of n-butane for pentanoic acid. 

The anticipated onset of pentanoic acid reactivity observed in Figure 3 is explained by a higher 

production of HO2 radicals, undergoing the usual pathway of termination (HO2 + HO2 = H2O2 + O2) 

followed by H2O2 decomposition triggering the reactivity (H2O2 + M = OH + OH + M). According to 
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the same approach already reported for alcohols [6], a detailed approach is kept until the first 

addition of the different fuel radicals to O2, forming one lumped peroxy radical species that 

undergoes low temperature and NTC pathways. The reader is referred to the Supplementary 

Material for a detailed list of lumped species. 

 

Overall, the CRECK model adopted in this work (503 species and 17,025 reactions) implements a 

C0-C3 core subset obtained by coupling the H2/O2 and C1/C2 from Metcalfe et al [40], C3 from Burke 

et al [41], and heavier fuels from Ranzi et al. [25,42]. It covers from syngas to heavy diesel fuel 

pyrolysis and combustion, including PAH formation [43] as well as a new subset of reactions for 

oxygenated aromatics of interest as bio-oils surrogates components [44]. The thermochemical 

properties for species not specifically belonging to the acid subset were adopted, when available, 

from the ATcT database of Ruscic [45] or from Burcat’s database [46]. 

 

5. Comparison with experimental data and model validation 

 

This section presents comparisons between experimental measurements and model simulations. 

Simulations of the jet-stirred reactor were performed with the dedicated solver included in the 

OpenSMOKE++ framework of Cuoci et al. [47]. Figure 10 compares model simulations and 

experimental results for fuel conversion and mole fractions of the main products for butanoic acid 

oxidation at three equivalence ratios (φ = 0.5, 1.0, 2.0). The model is able to predict well the 

reactivity of the fuel for all the equivalence ratios with the onset of conversion at ∼830 K for all 

the conditions. In general intermediate species are largely underestimated at the highest 

temperatures (T > 1000 K) for the rich case although CO and CO2, covering the most of the carbon 

balance, are correctly reproduced. The largest deviations are observed for acetaldehyde 

(CH3CHO), where predicted yields are ∼4 times lower than the experimental measurements. 

Acetaldehyde is mostly produced by interactions of O/OH/O2 with propene and propene radicals 

(e.g. *CHCHCH3), whose kinetics are outside the scope of this study. 

 

As mentioned in Section 3, propanal is largely produced by a Waddington-type mechanism [48], 

[49] summarized in Figure 11. The same rate constant as that adopted for the Waddington 

mechanism in alcohols [6] is here assumed. 

 

Figure 12 reports a reactive flux analysis for butanoic acid. At T = 900 K, φ = 1.0, corresponding to 

∼45% fuel conversion, butanoic acid is almost entirely consumed by H-abstraction reactions. The 

main abstracting radical is OH, but also methyl radical, which contributes to a lower extent to the 

fuel consumption. ∼33% of the fuel produces the primary γ radical that is largely decomposed 
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through β–scission to form ethylene and the resonance stabilized *CH2(CO)OH radical. A limited 

flux (∼2%) corresponds to the radical addition to O2, forming a lumped peroxy radical (RO2). 25% 

of the fuel forms the secondary β radical, that decomposes (20.3%) to propene and HOCO, or adds 

to oxygen to a lower extent forming RO2. A larger amount of peroxy radicals is produced by the 

radical carrying the unpaired electron in α, as its β decomposition forming propenoic acids 

(C2H3COOH) is energetically slightly less favored due to methyl elimination. Of the overall flux 

leading to RO2, only a minor extent isomerizes to QOOH that is mostly decomposed to butenoic 

acid, not propagating the low-temperature branching pathway by means of a second addition to 

O2. The Waddington-type mechanism proposed above only accounts for 0.8% of the overall flux, 

corresponding to 20% of the fate of RO2 radicals. 

 

Figure 10. Butanoic acid oxidation in JSR for all the equivalence ratios. Comparison between 

experimental (symbols) and predicted (lines) mole fractions (blue: φ = 0.5, red: φ = 1 and black: 

φ = 2). 10% error bars are reported for fuel mole fractions. Uncertainties for other species are 

discussed in Section 3. 

 

 

Figure 11. Waddington-type mechanism explaining the formation of Cn−1 aldehydes from the 

oxidation of Cn carboxylic acids at low/intermediate temperatures. 
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Figure 12. Rate of production analysis of 0.5% butanoic acid/O2/N2 oxidation at T = 900 K, 

φ = 1.0 and 45% conversion. Threshold for contribution is 2% flux. 

 

Figure 13. Pentanoic acid oxidation in JSR for all the equivalence ratios. Comparison between 

experimental (symbols) and predicted (lines) mole fraction (blue: φ = 0.5, red: φ = 1 and black: 

φ = 2). 10% error bars are reported for fuel mole fractions. Uncertainties for other species are 

discussed in Section 3. 

 

Figure 13 compares model predictions and experimental measurements of intermediate and 
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model correctly capture the onset of fuel reactivity, occurring at temperatures lower than 800 K. 

Delays of ∼10–20 K and ∼20–30 K are observed in terms of fuel conversion for the stoichiometric 

(φ = 1.0) and the rich (φ = 2.0) cases, respectively. However, the reactivity seems to be correctly 

predicted when referring to O2, CO and CO2 profiles. Some controversial result is observed also in 
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the case of methane and ethane yields with the model predicting an earlier formation (i.e. ∼ 40 K 

earlier). Methyl radical controls both methane and ethane formation via H-abstractions from the 

fuel (CH3 + Fuel = CH4 + FuelRadical), and methyl radicals recombination 

(CH3 + CH3 + M = C2H6 + M). Provided that the same rate constants for H-abstraction by CH3 are 

implemented for butanoic and pentanoic acids, this disagreement is unexpected. Acetylene is 

mostly formed by successive dehydrogenations of ethane (C2H6 → C2H4 → C2H2), and is also 

slightly overestimated (∼1.5 times). The Waddington-type mechanism allows a correct 

quantitative prediction of n-butanal yields; despite the predicted peaks occur ∼20–30 K before 

those experimentally observed. 

 

Figure 14 reports a reactive flux analysis for pentanoic acid. At T = 865 K, φ = 1.0, corresponding 

to ∼45% fuel conversion, pentanoic acid is almost entirely consumed by H-abstraction reactions 

leading to the formation of δ- (19.7%), γ- (37.9%), β- (15.7%) and α- (15.1%) radicals. Beside OH 

and CH3, HO2 radicals also contribute to fuel consumption via H-abstractions. The lower 

temperature at which the same conversion (Χ = 45%) is reached with respect to butanoic acid 

(Figure 12) justifies the higher HO2 concentration and therefore its contribution to fuel 

consumption. The longer carbon chain justifies the higher importance of radical isomerization 

reactions, with an overall ∼4.5% flux of δ-radicals isomerizing to α-radicals, via a 5-membered 

ring transition state. Ethylene is mostly formed by the decomposition of δ-radical. 

*CH2CH2(CO)OH radical is formed together with ethylene, and its decomposition 

(*CH2CH2(CO)OH = C2H4 + HOCO) leads to another ethylene molecule and HOCO radical. The fuel 

radical in γ decomposes to propene and *CH2(CO)OH, or to pentenoic acid and H. Also in pentanoic 

acid oxidation, only one lumped unsaturated pentenoic acid is considered as a representative for 

all the isomers. 1-butene (C4H8-1) is mostly formed by the decomposition of β–radical. Propenoic 

acid is the main decomposition product of the resonance stabilized α-radical. 23.7% of the overall 

fuel radical concentration undergo addition to O2, forming RO2. The longer carbon chain favors 

the isomerization to QOOH compared to butanoic acid, however most of QOOH is decomposed to 

form butenoic or pentenoic acids and does not propagate the low temperature branching. 

 

Figure 15 shows results from sensitivity analysis of fuel consumption to rate constants for 

butanoic and pentanoic acids, at two different temperatures T = 850 K and T = 1050 K. For both 

acids, at the lowest temperature, the reactivity is controlled by H2O2 decomposition to form two 

OH radicals H2O2 is produced by HO2 radicals termination and by H-abstraction on the fuel by HO2, 

also highlighted as sensitive reactions. The main source of HO2 is for both fuels the decomposition 

of QOOH radicals to form unsaturated acids. H-abstractions by methyl on the α-site are also found 

to be important for butanoic acid. Methyl radical is mostly produced by the decomposition of 
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*CH2(CO)OH forming CO2 [17] and by the decomposition of α-radical forming propenoic acid. 

Interestingly, the Waddington-type mechanism producing propanal (C2H5CHO) in butanoic acid is 

also found to promote reactivity in pentanoic acid. The formation of butanoic radicals in pentanoic 

acid oxidation is related to the interactions of HO2 with butenoic acid 

(HO2 + C3H5COOH = O2 + Rα,butanoic). Concerning pentanoic acid oxidation at 850 K, it is interesting 

to note that the decomposition of Rγ,pentanoic producing propene and *CH2(CO)OH radical 

decreases the reactivity forming one stable radical and propylene, that is mostly oxidized forming 

resonance stabilized allyl radical. At higher temperatures (T = 1050 K) butanoic acid is dominated 

by reactions belonging to the core kinetic model (C0-C2) while H-abstractions by OH dominate 

pentanoic acid reactivity. 

 

Figure 14. Rate of production analysis of 0.5% pentanoic acid/O2/N2 oxidation at T = 865 K, 

φ = 1.0 and 45% conversion. Threshold for contribution is 2% flux. 

 

6. Conclusion 

 

This paper reports the first kinetic study of the oxidation of two large carboxylic acids, butanoic 

and pentanoic acids. Carboxylic acids are significant components in bio-oils obtained from 

biomass fast-pyrolysis, however the kinetics underlying their oxidation has not been addressed 

in the literature. In this study, experiments were performed using an atmospheric jet-stirred 

reactor at temperatures from 800 to 1100 K. A new detailed kinetic model was developed 

considering the specificities induced by the presence of the acid function. Kinetic pathways 

involving the remaining part of the molecule have been described according to rate rules for 

alkanes. The model thus obtained can reproduce the experimental data reasonably well, but some 
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deviations are still observed. In particular, the model seems to predict a slower conversion of 

pentanoic acid at stoichiometric and rich conditions. The systematic approach here reported for 

butanoic and pentanoic acids has been recently applied successfully to investigate the kinetics of 

oxidation of other families of oxygenated molecules such as aldehydes and alcohols [6], [9]. This 

study develops upon a recent theoretical study on acetic acid pyrolysis and oxidation and 

constitutes a further step in the attempt to advance the understanding of the kinetic effect of the 

carboxylic substitutions. Additional experimental data on the pyrolysis and high temperature 

oxidation (e.g. laminar flame speeds, ignition delay times) of acetic, propanoic and higher 

molecular weight acids would be highly beneficial to this aim. 

 

Figure 15. Normalized sensitivity coefficients of fuel consumption to rate constants at T = 850 K 

(left) and 1050 K (right). Top panels (blue bars): butanoic acid, bottom panels (red bars): 

pentanoic acid. 
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