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Culhuacan, Instituto Politécnico Nacional,Santa Ana 1000, México
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Abstract: This paper analyse the problem of control and stabilization of a particular class of
Linear Time Invariant (LTI) systems. The system under consideration has two unstable poles,
n real stable poles, m minimum phase zeros plus time delay. An observer based controller with
four tunable gains is proposed as control strategy in order to ensure stable behaviour of the
closed loop system. Sufficient conditions for the existence of the proposed scheme are shown
in terms of the upper limit of time delay size and the poles and zeros position. The controller
parameters are tuned using hinfstruct which is a non-smooth H∞ optimization method. The
proposed control strategy it is applied to an unstable linearized model of a continuously stirred
tank reactor (CSTR) in order to show the effectiveness of the proposed design scheme. Numerical
results are presented.
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1. INTRODUCTION

One way to define time-delay in the context of control
system theory is the time interval from the application of
a control signal to any observable change in the process
variable (Wang et al., 1999). Such a phenomenon can be
found in several engineering processes, for example: ma-
terial and information transmission, biological embedded
systems, biochemical and chemical process (Wu et al.,
2015).

There exist different systems with two unstable poles and
minimum phase zeros with time-delay. In chemical indus-
try, a common example is the CSTR (Bequetten, 2003). In
the military field, the dynamical model of a ballistic missile
has similar characteristics (H, 1991). Then, the problem of
stabilization of this class of systems becomes an interesting
topic and explicit stabilizability results for many unstable
processes are not available yet.

Few works have addressed the problem of delayed unstable
systems with zero dynamics. In (Kwak et al., 2000), the
authors face the problem of stabilization for first and
second order systems using a P controller as control
strategy. An extended result can be seen in (Lee and Wang,
2010), where the authors analyse a high order system
by simple controllers. It is important to highlight that
the mentioned works only consider the problem when one
minimum phase zero is involved in the original plant.

In real cases, in addition to stability, it is also necessary
to guarantee typical design requirements such as speed of
response, control bandwidth, disturbance rejection, and
robustness unmodeled dynamics. To meet these require-
ments, H∞ theory is a powerful technique used to design
robust controllers for linear systems under uncertainties,
parameter variations, and disturbances.

The objective of this paper is two-fold: First we propose
sufficient conditions in order to stabilize a specific class
of delayed systems with two real unstable poles, n stable
poles and m minimum phase zeros (m < n + 2), using
a structured observer-based controller with four tunable
gains. Then a systematic design procedure of the control
gain is proposed in the H∞ framework. Since the controller
is structured, the noon smooth H∞ synthesis proposed in
(Apkarian and Noll, 2006) has been considered, hinfstruct
is an extension of the H∞ central design method (Bouzid
et al., 2015). One of the main advantages of hinfstruct
method is to choose the order and the structure of the
desired controller.

An illustrative example is considered to highlight the
interest of this work, in particular compared with a full
order H∞ controller.

The remainder of the paper is organized as follows: In
Section 2, we present the problem statement. In section
3, we present some preliminary results on stabilization of
time-delay systems with zero dynamics. Section 4 provides



Fig. 1. Control strategy proposed.

the control strategy proposed. The standard formulation
of structured H∞ synthesis and H∞ control design pro-
cedure are given in Section 5. An example and numerical
simulation are shown in Section 6. Finally, we provide some
conclusions in Section 7.

2. PROBLEM STATEMENT

Let us consider the class of a Single-Input Single-Output
(SISO) systems with delay in the direct path, two unstable
poles, m minimum phase zeros and n real stable poles
given in the form:

G(s)e−τs =

∏m
l=1(s+ bl)

(s− a1)(s− a2)
∏n
i=1(s+ ci)

e−τs (1)

where a1, a2,m, n > 0,m < n+ 2 and a1 ≥ a2. G(s) is the
delay-free transfer function and τ > 0 is the time-delay.
Also consider the observer based controller scheme show
in in Fig. 1.

The objective is provide a control strategy (i.e to find
parameters k1, k2, g1 and g2) in order to stabilize the
closed-loop system shown in Fig. 1.

3. PRELIMINARY RESULTS

This section presents preliminary result used later to
obtain the main results of the paper. Consider the high-
order unstable system given by:

Y (s)

U(s)
= H(s) =

∏m
l=1(s+ bl)

(s− a)
∏n
i=1(s+ ci)

e−τs (2)

where a,m, τ > 0 and n > 0. Applying a traditional
control strategy based on an output feedback of the form:

U(s) = C(s)[R(s)− Y (s)] (3)

which yields to the closed-loop transfer function:

Y (s)

R(s)
=

C(s)H(s)

1 + C(s)H(s)
(4)

The following result is related to the stability of the closed-
loop transfer function (4).

Lemma 1. Consider the delayed system (2) and the pro-
portional output feedback shown in (3), the associated
closed-loop is stable if :

τ <
1

a
+

m∏
l=1

1

bl
−

n∏
i=1

1

ci
(5)

∏m
l=1 b

2
l

a2
∏n
i=1 c

2
l

>

√ ∏m
l=1(ω2

c + b2l )

(ω2
c + a2)

∏n
i=1(ω2

c + c2i )
(6)

where ωc > 0 is the frequency at which the phase angle
is −π. We will demonstrate that the Nyquist plot of
the controller system encircles once the critical point
in counterclockwise guaranteeing the closed-loop stability
according to the Nyquist stability criteria.

Proof. To obtain this encirclement, it is required to
have two intersections with the real negative axis, one
intersection should occur into [−∞,−1] and the second
one should be appear into [−1, 0] . That is: MH(ωc1) >
1,ΦH(ωc1) = −π ,MH(ωc2) < 1,ΦH(ωc2) = −π
where MH(ω) denote the magnitude of H(jω) given by:

MH(ω) =

√ ∏m
l=1(ω2 + b

l
)

(ω2 + a)
∏n
i=1(ω2 + c

i
)

(7)

ωc1 , ωc2 are non-negative crossover frequencies and ωc1 <
ωc2 , ΦH(ω) denote the phase of H(ω) given by:

φH(ω) = −(π−tan−1ω
a

)+tan−1
m∑
l=1

ω

bl
−tan−1

n∑
i=1

ω

ci
−ωτ

(8)

Let us assume that the conditions of Lemma 1 are satisfied.
From (8) we can see that the phase trajectory begins
at φH(0) = −π, therefore ωc1 = 0 . This implies the
first required intersection with the negative real axis. A
growing of φH(ω) is required since φH(0) = −π, this

implies dφH(ω)
dω |ω→0> 0. If the derivative of phase is

always non-positive, then only phase lag happens, and
any encirclement around the critical point can only be

clockwise. In this way we evaluate: dφH(ω)
dω |ω→0= 1

a +∏m
l=1

1
bl
−
∏n
i=1

1
ci
− τ > 0. Thus, it is clear that under

condition (5), there is a growing of φH(ω) since φH(0) =
−π.

Let us analyse the adequate performance of the magnitude.
The value of the magnitude MG(ω) with ω = 0 is

MG(0) =

∏m

l=1
b2l

a2
∏n

i=1
c2
l

. Then, in order to archive the closed-

loop stabilization, assuming condition (6) we assure that
the MG(ω) is a decreasing function for ω ≈ 0 obtaining a
correct direction of the Nyquist trajectory if the conditions
(5) and (6) are met. This result is an extended version of
the conditions given in (Vazquez-Rosas et al., 2017).

4. CONTROL STRATEGY PROPOSED

To handle the problem of stabilization of time delay sys-
tems shown in Eq (1), an observer based control strategy



is proposed. The principal idea is to get an non-delayed
estimation of the internal variables of the system to be
used as control signals for the real process. Regardless of
the order of the system, the scheme use only four tunable
gains in order to obtain a stable behaviour of the closed-
loop system.

Lemma 2. Consider the observer based controller scheme
shown in Fig. 1. There exist constants g1, g2, k1 and k2
such that the closed-loop system is stable if:

τ <
1

a1
+

m∏
l=1

1

bl
−

n∏
i=1

1

ci
− 1

β
(9)

and

∏m
l=1 b

2
l

a21β
2
∏n
i=1 c

2
l

>

√ ∏m
l=1(ω2

c + b2l )

(ω2
c + a21)(ω2

c + β2)
∏n
i=1(ω2

c + c2i )

(10)

Proof. The details of the proof are described in (Novella-
Rodrguez et al., 2014). The observer based controller pro-
posed satisfies the separation principle (Kailath., 1980),
i.e. the controller and the observer can be designed inde-
pendently. The stability of the observer scheme is enough
to assure an adequate error convergence, that is:

lim
t→∞

[ω̂(t)− ω(t)] = 0

Therefore, there exist proportional gains g1 ,g2, k1 and k2
such that the closed-loop system is stable if the conditions
of Lemma 2 are satisfied.

We can design the controller and the observer sepa-
rate, such that the closed-loop systems of the complete
controller-observer scheme it is stable. Using the prelim-
inary results, we will show the stability conditions for
the controller scheme, next we will show the stability
conditions for the observer scheme.

Let us consider the controller scheme strategy shown in
Fig. 1, we can formulate the next result:

Lemma 3. Consider the delayed system (1) and the con-
trol scheme shown in Fig 1. There exist constants k1 and
k2 such that the close-loop system is stable if :

τ <
1

a2
+

m∏
l=1

1

bl
−

n∏
i=1

1

ci
− 1

β
(11)

and

∏m
l=1 b

2
l

a22β
2
∏n
i=1 c

2
l

>

√ ∏m
l=1(ω2

c + b2l )

(ω2
c + a22)(ω2

c + β2)
∏n
i=1(ω2

c + c2i )

(12)

where β being a positive real constant.

Proof. Consider the delayed system (1) and the state
feedback controller shown in Fig. 1, with a constant gain
k1 > a1. The closed loop transfer function of the system
can be written as follows:

Fig. 2. Closed-loop scheme with the weighting transfer
functions.

Y (s)

R(s)
=

∏m
l=1(s+ bl)e

−τs

(s+ β)(s− a2)
∏n
i=1(s+ ci) +

∏m
l=1(s+ bl)e−τs

(13)

with β = k1− a1, note that β is a free parameter function
of k1, with β > 0 the system only has one unstable pole
and n + 1 stable poles. If exist β such that satisfies the
condition (11) and (12) and taking account the Lemma 1,
we can assure a stable behaviour of the closed-loop system
by P controller.

Let us consider the static output injection scheme shown
in Fig. 1, we can formulate the next result:

Lemma 4. Consider the delayed system (1) and the ob-
server scheme shown in Fig 1. There exist constants g1
and g2 such that the close-loop system is stable if the
conditions (11) and (12) are true.

Proof. The proof can be easily derived from a dual
procedure of the previous result.

Reminding the stability conditions stated previously in
Lemma 3 and Lemma 4, the observer time-delay condition
is more restrictive than the controller time-delay stability
conditions that is:

1

a2
+

m∏
l=1

1

bl
−

n∏
i=1

1

ci
<

1

a1
+

m∏
l=1

1

bl
−

n∏
i=1

1

ci

Thus, if the stability conditions of the observer are sat-
isfied, automatically the conditions of the controller are
satisfied to. Therefore, there exist a proportional gains k1,
k2, g1, and g2, such that the closed-loop system is stable
if the conditions shown in Lemma 2 are true.

5. H∞ CONTROL DESIGN PROCEDURE

5.1 Background on H∞ control

Mixed sensitivity optimization is a useful design tool that
allows simultaneous design for performance and robust-
ness. In Fig. 2 we can see the generalized plant for H∞
mixed sensitivity problem where G(s) is the open loop
plant, K(s) is the controller that combines all tunable
control elements. Each control element of K(s) is assumed
to be linear time invariant, We,Wu,Wd are weights for
specify the system performance, d is the disturbance input,
u is the control input, y is the measured output, e1 and
e2 are regulated outputs and r is the reference input. The
transfer matrix from r and d is given by:



[
e1
e2

]
=

[
WeS WeSGWd

WuKS WuTWd

] [
r
d

]
(14)

Where S = (1 + GK)−1 is the sensitivity function and
T = KGS is the complementary sensitivity function. The
main result of H∞ standard problem is: for γ as small as
possible, find a stabilizing controller K(s) such that:

∥∥∥∥ WeS WeSGWd

WuKS WuTWd

∥∥∥∥
∞
< γ (15)

We can use the optimum H∞ controller theory described
in order to find an optimal fixed-structure controller.
In this work we use the hinfstruct function in order to
minimize the H∞ norm of the plant with respect to the
tunable controller gains. Hinfstruct applies non-smooth
optimization to find the free parameters of a prescribed
controller structure. The function can be use for simple
gain controllers, fixed state-space or transfer function
(Apkarian and Noll, 2006).

5.2 Proposed design procedure

Approximation of the time delay. It is necessary to point
out that the controller K(s) cannot be analytically de-
signed if the time delay involved in the process is treated
strictly (Zhang, 1998). Consider a Pade approximation in
the form:

e−τs ≈ Gp =
1− k1s+ k2s

2 + ...+ (−1)qkqs
q

1 + k1s+ k2s2 + ...+ kqsq
(16)

where q is the approximation order to be chosen. The
coefficients ki depend of q and τ and are determined from
a Taylor series expansion of the transcendental function.
When an approximation of the time delay is introduced,
the plant (1) becomes:

G(s)e−τs ≈ G(s)Gp(s) (17)

With the rational transfer function (17) a controller using
H∞ theory may now be calculated.

Augmented plant structure. The Fig. 3 shown an alter-
native configuration of the observer scheme. Where GO
represent a subsystem that contains the next elements of
the system (20): Transfer function of the stable poles and

minimum phase zeros given by:

∏m

l=1
(s+bl)∏n

i=1
(s+ci)

, transfer func-

tion of the pade-aproximation Gp, the transfer function of
the unstable pole a1 given by: 1

(s−a1) . While the subsystem

KO contains: Tunable gains g1, g2 and transfer function
of the unstable pole a2 given by: 1

(s−a2) . An alternative

configuration of the controller scheme can be easily derived
from a dual procedure of the previous result.

The alternative representations of the observer and con-
troller scheme keeps the same dynamic behaviour with the
signals ω, ω̂, y and ŷ of the original proposal shown in Fig.
1 and represent one way to build the augmented system
(nominal system + weighting functions).

Fig. 3. Closed-loop with the weighting transfer function of
the alternative observer scheme representation.

Weighting functions selection. The weighting functions
We,Wu,Wd are selected taking account the basic require-
ment of mixed-sensitivity design (Lundstrm et al., 1991).
The weighting function We represents the performance
objective of the error sensitivity function S(s), it should
work as a lowpass-filter in order to reduce the error sen-
sitivity in the low frequency range for output disturbance
rejection. We is defined in the next form (Skogestad and
Postlethwaite, 2005):

We(s) =
1

Ms

s+ ωbMs

s+ ωbε
(18)

where ωb is the lowest allowable bandwidth of the system
it is chosen close to the minimum required bandwidth. Ms

is the maximum allowable peak for the frequency response
of the sensitivity function.

The weighting function Wu should be a high-pass filter in
order to guarantee the stability of the controlled system
under diverse operating conditions. The weighting func-
tion Wu is defined as follows:

Wu(s) =
1

εu

s+ ωh

Mu

s+ ωh

εu

(19)

where εu > 0 it must be chosen as a small constant in
order ensure good rejection of measurement errors. The
pulsation ωh limits the bandwidth and must be chosen
sufficiently far from the desired grid frequency for closed
loop control. Mu represent the effort of the controller. The
principal effect of the weighting function Wd is to ensure
rejection of disturbances, it is chosen here as a constant
function.

Controller designed using hinfstruct. The controller is
synthesized by hinfstruct method for convergence to a
feasible solution until the cost function γ is minimized.

For run the hinfstruct instruction, in addition to provide
the augmented plant and the required structure of the
controller, it is necessary provide an initial controller as
a starting point. The initial controllers values can be
selected using the gains where the system (2) is stable.
The following procedure is proposed in order to obtain
gains gl and g2 such that the closed loop system is stable.
The value of the proportional gain gl can be stated as
follows:

g1 =
1

1
a2

+
∏m
l=1

1
bl
−
∏n
i=1

1
ci
− τ

+ ε



g2 =

∏m
l=1(b

l
)

g1
∏n
i=1(ai)

+ ε

with ε being a positive real constant. Hence, applying a
continuity argument on g1 and g2, is always possible to
choose a ε small enough such that the gains stabilize the
system. The indicated values ensure a stable behaviour of
the closed-loop system and represent a good start point of
the initial controller in order to find the optimal values of
the tunable gains. The values for k1 and k2 can be easily
derived from a dual procedure of the previous result.

6. EXAMPLE

Example 1: Application to a linearizing model of CSTR
with zero dynamics by numerical simulation. We illustrate
the design of the controller through the following example.

Now, consider the example proposed in (Novella-Rodrguez
et al., 2014) . In this example the flow rate is the ma-
nipulated variable and the temperature of the CSTR is
the controlled variable. The linearization of the equation
assuming a measurement delay of 54 min gives the transfer
function model as:

G(s) =
−4.7475(s+ 3.129)

(s− 0.5545)(s− 0.09395)(s+ 6.394)
e−0.9s (20)

The stability condition given in Lemma 2 is satisfied,
therefore there exists an observer based structure as shown
in the Fig. 1 with proportional gains g1, g2, k1 and k2 such
that the resulting closed-loop system is stable.

The weighting function We(s) is calculated with the next
parameters:Ms = 1.2, ωb = 0.1, ε = 0.0103. The weighting
function Wu(s) is calculated with the next parameters:
Mu = 10, ωh = 10, ε = 0.0001. And Wd(s) = 0.001.

Following the methodology shown in section 5 and using a
Pade-approximation with order q = 9, the calculated gains
for the example 1 are shown in Table 1.

Table 1. calculated gains for the example 1

Gains Values

g1 816.7051
k1 101.6702
g2 −544.9466
k2 −64.8597

Additionally we compute a full-order H∞ controller with
the hinfsyn function of the Robust Control Tool-box for
the example 1 using the same weight functions and the
same order of Pade-approximation in order to make a
comparison between the proposed control strategy using
hinfstruct like a tool to calculate the tunable gains and
hinfsyn instruction to calculate one controller. The full
order H∞ controller obtained with hinfsyn is an eighth
order controller.The simulations are carried out using
Matlab c©/Simulink.

6.1 Frequency response

Fig. 4 show the shape of the complementary sensitivity T,
which also corresponds to the closed loop transfer function.

10-5 10-4 10-3 10-2 10-1 100 101 102 103
-80

-60

-40

-20

0

20

complementary sensitivity T

inverse of weight: 1/Wu

Bode Diagram

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Fig. 4. Frequency response : complementary sensitivity
function

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

3

Nominal delay using Hinfsyn

Nominal delay using Hinfstruct

Uncertain delay using Hinfstruct

Step Response

Time (seconds)

O
u

tp
u

t 
y(

t)

Fig. 5. Closed-loop behavior of the example 1 with a delay
uncertainty of 5 percent

This indicates that the selected weighting functions for
controller design using hinfstruct have achieved the goal
of command tracking.

6.2 Time response

Due to the use of a delayed observer in this work, the
uncertainties in the time-delay of the plant may cause
oscillations or even instability. Fig. 5 shows the effect of
delay mismatches between the plant nominal delay and
the observer delay. Solid line indicates the simulation with
nominal values of the time delay in the plant. The dashed
line shows the response of the system when the time-
varying uncertain delay is introduced to the process. The
time-delay in the plant can be considered as τ(t) = 0.9 +
δ(t), where δ(t) is pseudo-random binary signal scaled to
a magnitude of 0.05.

The results show that the methodology shown in Section
5 using hinfstruct is significantly faster and provide a
minor overshoot than hinfsyn. The error introduced by
the rational approximation will not cause instability in the
proposed method.

7. CONCLUSION

The paper described a control design of an observer
based controller scheme that guaranteed the stabilization
of delayed systems with two unstable poles, n stable
poles and m minimum phase zeros using only 4 tunable
gains. Based on the H∞‘control theory the controller gains
are tuned using hinfstruct optimization. The conditions
that guarantee the stability of the closed-loop system are
derived in terms of the upper limit of time delay size and
the poles and zeros position.



Parameter uncertainty has been considered in the numer-
ical simulations and demonstrate the effectiveness of the
method. Our test demonstrates that hinfstruct together
with the control strategy proposed is faster and present a
minor overshoot when compared to hinfsyn for the exam-
ple used.
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