
HAL Id: hal-02157985
https://hal.science/hal-02157985

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Limitations of Affine Automata
Mika Hirvensalo, Etienne Moutot, Abuzer Yakaryilmaz

To cite this version:
Mika Hirvensalo, Etienne Moutot, Abuzer Yakaryilmaz. Computational Limitations of Affine Au-
tomata. UCNC2019, Jun 2019, Tokyo, Japan. pp.108-121, �10.1007/978-3-030-19311-9_10�. �hal-
02157985�

https://hal.science/hal-02157985
https://hal.archives-ouvertes.fr

Computational Limitations of Affine Automata

Mika Hirvensalo1, Etienne Moutot1,2[0000−0003−2073−4709], and Abuzer
Yakaryılmaz3[0000−0002−2372−252X]

1 Department of Mathematics and Statistics, University of Turku, FI-20014 Turku,
Finland

mikhirve@utu.fi
2 LIP, ENS de Lyon CNRS UCBL Université de Lyon , École Normale Supérieure

de Lyon, Lyon, France
etienne.moutot@ens-lyon.org

3 Center for Quantum Computer Science, Faculty of Computing
University of Latvia, Rı̄ga, Latvia

abuzer@lu.lv

Abstract. We present two new results on the computational limitations
of affine automata. First, we show that the computation of bounded-error
rational-values affine automata is simulated in logarithmic space. Second,
we give an impossibility result for algebraic-valued affine automata. As a
result, we identify some unary languages (in logarithmic space) that are
not recognized by algebraic-valued affine automata with cutpoints.

1 Introduction

Finite automata are an interesting model to study since they express the very
natural limitation of finite memory. They are also good computational models,
since they are simpler than many others machines like pushdown automata or
Turing machines. Due to this simplicity, there exists many different models of
finite automata, all trying to express different computational settings. Determin-
istic [16], probabilistic [14] and quantum [3] finite automata (DFAs, PFAs, and
QFAs, respectively) have been studied to try to understand better the computa-
tional limitations inherent to all these cases.

Recently, Díaz-Caro and Yakaryılmaz introduced a new model, called affine
computation [5]. As a non-physical model, the goal of affine computation is to
investigate the power of interference caused by negative amplitudes in the com-
putation, like in the quantum case. But unlike QFAs, affine finite automata
(AfAs) have unbounded state set and the final operation corresponding to quan-
tum measurement cannot be interpreted as linear. The final operation in AfAs is
analogous to renormalization in Kondacs-Watrous [11] or Latvian [2] quantum
automata models.

AfAs and their certain generalizations have been investigated in a series
of works [5, 8, 9, 21]. In most of the cases, affine models (e.g., bounded-error
and unbouded-error AfAs, zero-error affine OBDDs, zero-error affine counter au-
tomata, etc.) have been shown more powerful than their classical or quantum

2 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

counterparts. On the other hand, we still do not know too much regarding the
computational limitations of AfAs. Towards this direction, we present two new
results. First, we show that the computation of bounded-error rational-values
affine automata is simulated in logarithmic space, and so we answer positively
one of the open problems in [5]. Second, we give an impossibility result for
algebraic-valued AfAs, and, as a result, we identify some unary languages (in
logarithmic space) that are not recognized by algebraic-valued AfAs with cut-
points.

2 Preliminaries

For a given word w, wi represents its i-th letter. For any given class C, CQ and
CA denotes the classes defined by the machines restricted to have rational-valued
and algebraic-valued components, respectively. The logarithmic and polynomial
space classes are denoted as L and PSPACE, respectively. We assume that the
reader is familiar with the basics of automata theory.

2.1 Models

As a probability distribution (also known as a stochastic vector) we understand a
(column) vector with nonnegative entries summing up to one, and a stochastic
matrix (also known as a Markov matrix) here stands for a square matrix whose
all columns are probability distributions.

Definition 1 (PFA). A k-state probabilistic finite automaton (PFA) P over
alphabet Σ is a triplet

P = (x, {Mi | i ∈ Σ}, y)

where x ∈ Rk is a stochastic vector called initial distribution, each Mi ∈ Rk×k

is a stochastic matrix, and y ∈ {0, 1}k is the final vector (each 1 in y represents
an accepting state).

For any input word w ∈ Σ∗ with length n, P has a probability distribution of
states as follows: Mwx = Mwn

· · · Mw1x. The accepting probability corresponds
to the probability of P being in an accepting state after reading w, which is
given by

fP (w) = yT MwRx. (1)

Affine finite automaton (AfA) is a generalization of PFA allowing negative
transition values. Only allowing negative values in the transition matrices does
not add any power (generalized PFAs are equivalent to PFAs, see [19]), but
affine automata introduce also a non-linear behaviour. The automaton acts like
a generalized probabilistic automaton until the last operation, which is a non-
linear operation called a weighting operation.

Computational Limitations of Affine Automata 3

Definition 2. A vector v ∈ Rk is an affine vector if and only if its coordinates
sums up to 1. A matrix M is an affine matrix if and only if all its columns are
affine vectors.

The following property is straightforward to verify, and it will ensure that affine
automata are well defined.

Property 1 If M and N are affine matrices, then MN is also an affine matrix.
In particular, if v is an affine vector, then Mv is also an affine vector.

Definition 3 (AfA). A k-state AfA A over alphabet Σ is a triplet

A = (x, {Mi | i ∈ Σ}, F)

where x is an initial affine vector, each Mi is an affine transition matrix, and
F = diag(δ1, . . . , δn) is the final projection matrix, where each δi ∈ {0, 1} for
1 ≤ i ≤ n.

The value computed by an affine automaton can be most conveniently be
defined via the following notion:

Definition 4. Notation |v| =
∑

i |vi| stands for the usual L1 norm.

Now, the final value of the affine automaton A of Definition 3 is

fA(w) = |FMwv0|
|Mwv0|

. (2)

Clearly fA(w) ∈ [0, 1] for any input word w ∈ Σ∗.

Remark 1. Notice that the final value for PFAs (1) is defined as matrix product
vf 7→ yT vf , which is a linear operation on vf . On the other hand, computing

final value from vf as in (2) involves nonlinear operations vf 7→ |Fvf |
|vf |

such as

L1-norm and normalization (division).

2.2 Cutpoint languages

Given a function f : Σ∗ → [0, 1] computed by an automaton (stochastic or
affine), there are different ways of defining the language of recognized by this
automaton.

Definition 5 (Cutpoint languages). A language L ⊆ Σ∗ is recognized by an
automaton A with cutpoint λ ∈ [0, 1) if and only if

L = {w ∈ Σ∗ | fA(w) > λ}.

These languages are called cutpoint languages. In the case of probabilistic (resp.,
affine automata), the set of cut-point languages are called stochastic languages
(resp., affine languages) and denoted by SL (resp., AfL).

4 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

We remark that fixing the cutpoint in the interval (0, 1) does not change the
classes SL and AfL [5, 14].

Definition 6 (Exclusive cutpoint languages). A language L ⊆ Σ∗ is rec-
ognized by an automaton A with exclusive cutpoint λ ∈ [0, 1] if and only if

L = {w ∈ Σ∗ | fA(w) ̸= λ}.

These languages are called exclusive cutpoint languages. In the case of probabilis-
tic (resp., affine automata), the set of exclusive cut-point languages are called
exclusive stochastic languages (resp., exclusive affine languages) and denoted by
SL ̸= (resp., AfL ̸=). The complement of SL ̸= (resp., AfL ̸=) is SL= (resp., AfL=).

Again, we remark that fixing the cutpoint in the interval (0, 1) does not change
the classes SL ̸=, SL=, AfL̸=, and AfL= [5, 13,14].

A stronger condition is to impose that accepted and rejected words are sep-
arated by a gap: the cutpoint is said to be isolated.

Definition 7 (Isolated cutpoint or bounded error). A language L is rec-
ognized by an automaton A with isolated cutpoint λ if and only if there exist
δ > 0 such that ∀w ∈ L, fA(w) ≥ λ + δ, and ∀w /∈ L, fA(w) ≤ λ − δ. The set of
languages recognized with bounded error (or isolated cutpoint) affine automata
is denoted by BAfL.

A classical result by Rabin [15] shows that isolated cutpoint stochastic lan-
guages are regular. Rabin’s proof essentially relies on two facts: 1) the function
mapping the final vector into [0, 1] is a contraction, and 2) the state vector set is
bounded. By modifying Rabin’s proof, it is possible to show that also many quan-
tum variants of stochastic automata obey the same principle [3]: bounded-error
property implies the regularity of the accepted languages. In fact, E. Jeandel gen-
eralized Rabin’s proof by demonstrating that the compactness of the state vector
set together with the continuity of the final function are sufficient to guarantee
the regularity of the accepted language if the cutpoint is isolated [10].

3 Logarithmic simulation

Macarie [12] proved that SL=
Q ⊆ L and SLQ ⊆ L. That is, the computation of any

rational-valued probabilistic automaton can be simulated by an algorithm using
only logarithmic space. However, this logarithmic simulation cannot be directly
generalized for rational-valued affine automata due to the non-linearity of their
last operation. In order to understand why, we will first reproduce the proof.

Before that, let us introduce the most important space-saving technique:

Definition 8. Notation (b mod c) stands for the least nonnegative integer a
satisfying a ≡ b (mod c). If x = (x1, . . . , xr) and n = (n1, . . . , nr) ∈ Zr, we de-
fine x (mod n) = ((x1 mod n1), . . . , (xr mod nr)). Analogously, for any matrix
A ∈ Zk×k, we define (A (mod n))ij = (Aij mod n).

Computational Limitations of Affine Automata 5

The problem of recovering x from the residue representation ((x mod n1), . . . ,
(x mod nr)) is practically resolved by the following well-known theorem.

Theorem 2 (The Chinese Remainder Theorem). Let n1, . . . , nr be pair-
wise coprime integers, a1, . . . , ar be arbitrary integers, and N = n1 · · · nr. Then
there exists an integer x such that

x ≡ a1 (mod n1), . . . , x ≡ ar (mod nr), (3)

and any two integers x1 and x2 satisfying (3) satisfy also x1 ≡ x2 (mod N).

Remark 2. The above remarks and the Chinese Remainder Theorem imply that
the integer ring operations (+, ·) can be implemented using the residue represen-
tation, and that the integers can be uncovered from the residue representations
provided that 1) n = (n1, . . . , nr) consists of pairwise coprime integers and 2)
the integers stay in interval of length N − 1, where N = n1 · · · nr.

Remark 3. In order to ensure that n = (n1, . . . , nr) consists of pairwise coprime
integers, we select numbers ni from the set of prime numbers. For the reasons
that will become obvious later, we will however omit the first prime 2.

Definition 9. pr is an r-tuple pr = (3, 5, 7, . . . , pr) consisting of r first primes
by excluding 2. For this selection, a consequence of the prime number theorem is
that, asymptotically, Pr = 3 · 5 · 7 · · · · · pr = 1

2 e(1+o(1))r ln r.

Theorem 3 (Macarie [12]). SL=
Q ⊆ L

Proof. For a given alphabet Σ, let L ∈ Σ∗ be a language in SL=
Q and P =

(x, {Mi | i ∈ Σ}, y) be a k-state rational-valued PFA over Σ such that

L =
{

w ∈ Σ∗ | fP (w) = 1
2

}
.

We remind that, for any input word w = w1 · · · wn ∈ Σ∗, we have

fP (w) = yT Mwn
· · · Mw1x. (4)

Since each Mi ∈ Qk×k, there exists a number D ∈ N providing that each
matrix M ′

i = DMi ∈ Zk×k, and (4) can be rewritten as

fP (w) = 1
Dn

yT M ′
wn

. . . M ′
w1

x︸ ︷︷ ︸
fP ′ (w)

,

and the language L can be characterized as

L = {w ∈ Σ∗ | 2fP ′(w) = Dn}. (5)

Since the original matrices Mi are stochastic, meaning that their entries are
in [0, 1], it follows that each matrix M ′

i = DMi has integer entries in [0, D].
Moreover, fP (w) ∈ [0, 1] implies that fP ′(w) ∈ [0, Dn] for every input word
w ∈ Σn. As now fP ′(w) can be computed by multiplying k × k integer matrices,
the residue representation will serve as a space-saving technique.

6 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

We will fix r later, but the description of the algorithm is as follows: For each
entry p of pr = (3, 5, 7, . . . , pr), we let M

(p)
i = M ′

i mod p, and compute

(2fP ′(w) mod p) = yT M (p)
wn

· · · M (p)
w1

x (6)

as all the products are computed modulo p, k2 log p bits are needed to compute
(6). Likewise, (Dn mod p) can be computed in space O(log p) for each coordinate
p of pr. The comparison 2fP ′(w) ≡ Dn (mod p) can hence done in O(log p)
space.

Reusing the space, the comparison can be made sequentially for each coor-
dinate of pr, and if any comparison gives a negative outcome, we can conclude
that 2P ′(w) ̸= Dn.

To conclude the proof, it remains to fix r so that both 2fP ′(w) and Dn are
smaller than Pr = 3 · 5 · 7 · · · · · pr. If no congruence test is negative, then
the Chinese Remainder Theorem ensures that 2fP ′(w) = Dn. Since 2fP ′(w) ≤
Dn, we need to select r so that 1

2 e(1+o(1))r ln r > 2Dn, which is equivalent to
log 1

2 + (1 + o(1))r ln r > log 2 + n log D. This inequality is clearly satisfied with
r = n for large enough n, and for each n ≥ 1 by choosing r = c · n, where c is a
positive constant (depending on D).

As a final remark let us note that p⌊cn⌋, the ⌊cn⌋-th prime, can be generated
in logarithmic space and the prime number theorem implies that O(log n) bits
are enough to present p⌊cn⌋, since c is a constant. ⊓⊔

To extend the above theorem to cover SLQ as well, auxiliary results are used.

Lemma 1 (Macarie [12]). If N is an odd integer and x, y ∈ [0, N − 1] are
also integers, then x ≥ y iff x − y has the same parity as ((x − y) mod N).

Proof. As x, y ∈ [0, N − 1], it follows that

(x − y mod N) =
{

x − y if x ≥ y
N + x − y if x < y,

which shows that the parity changes in the latter case since N is odd. ⊓⊔

The problem of using the above lemma is that, in modular computing, num-
bers x and y are usually known only by their residue representations Respr

(x)
and Respr

(y), and it is not straightforward to compute the parity from the mod-
ular representation in logarithmic space. Macarie solved this problem not only
for parity but also for a more general modulus (not necessarily equal to 2).

Lemma 2 (Claim modified from [12]). For any integer x and modulus
pr = (3, 5, 7, . . . , pr), there is a deterministic algorithm that given Respr

(x) and
M ∈ Z as input, produces the output x (mod M) in space O(log pr + log M)

As a corollary of the previous lemma, Macarie presented a conclusion which
implies the logarithmic space simulation of rational stochastic automata.

Lemma 3 (Claim modified from [12]). Let pr = (3, 5, 7, . . . , pr) and Pr =
3 · 5 · 7 · · · · · pr. Given the residue representations of integers x, y ∈ [0, Pr − 1],
the decisions x > y, x = y or x < y can be made in O(log pr) space.

Computational Limitations of Affine Automata 7

Proof. The equality test can be done as in the proof Theorem 3, testing the
congruence sequentially for each prime. Testing x ≥ y is possible by lemmata 1
and 2: First compute Respr (z) = Respr (x) − Respr (y) (mod pr), then compute
the parities of x, y, z using Lemma 2 with M = 2. ⊓⊔

The following theorem is a straightforward corollary from the above:

Theorem 4. SLQ ⊆ L.

When attempting to prove an analogous result to affine automata, there is
at least one obstacle: computing the final value includes the absolute values, but
the absolute value is not even a well-defined operation in the modular arithmetic.
For example, 2 ≡ −3 (mod 5), but |2| ̸≡ |−3| (mod 5). This is actually another
way to point out that, in the finite fields, there is no order relation compatible
with the algebraic structure.

Hence for affine automata with matrix entries of both signs, another approach
must be adopted. One obvious approach is to present an integer n as a pair
(|n| , sgn(n)), and apply modular arithmetic to |n|. The signum function and the
absolute value indeed behave smoothly with respect to the product, but not with
the sum, which is a major problem with this approach, since to decide the sign
of the sum requires a comparison of the absolute values, which seems impossible
without having the whole residue representation. The latter, in its turn seems
to cost too much space resources to fit the simulation in logarithmic space.

Hence the logspace simulation for automata with matrices having both posi-
tive and negative entries seems to need another approach. It turns out that we
can use the procedure introduced by Turakainen already in 1969 [17,19].

Theorem 5. AfLQ ⊆ L.

Proof. For a given alphabet Σ, let L ∈ Σ∗ be a language in AfLQ and A =
(x, {Mi | i ∈ Σ}, F) be a k-state rational-valued AfA over Σ such that

L =
{

w ∈ Σ∗ | fA(w) >
1
2

}
.

For each Mi ∈ Qk×k, we define a new matrix as Bi =

 0 0T 0
ci Mi 0
ei dT

i 0

 , where ci, di,

and ei are chosen so that the column and row sums of Bi are zero. We define

x′ =

 0
x
0

 as the new initial state. For the projection matrix F , we define an

extension F ′ =

0 0 0
0 F 0
0 0 0

 . It is straightforward to see that |Bwv′
0| = |Mwv0| as

well as |F ′Bwv′
0| = |FMwv0|.

For the next step, we introduce a (k + 2) × (k + 2) matrix E, whose each
element is 1. It is then clear that En = (k + 2)n−1E and BiE = EBi = 0. Now

8 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

we define

Ci = Bi + mE,

where m ∈ Z is selected large enough to ensure the nonnegativity of the matrix
entries of each Ci. It follows that

Cw = Bw + m|w|(k + 2)|w|−1E,

and

Cwx′ = Bwx′ + m|w|(k + 2)|w|−1Ex′.

Similarly,

F ′Cwx′ = F ′Bwx′ + m|w|(k + 2)|w|−1F ′Ex′.

Now
|FMwv0|
|Mwv0|

= |F ′Bwv0|
|Bwv0|

=
∣∣F ′Cwv′

0 − m|w|(k + 2)|w|−1F ′Ex′
∣∣∣∣Cwx′ − m|w|(k + 2)|w|−1Ex′

∣∣
which can further be modified by expanding the denominators away: For an
integer g large enough all matrices Di = gCi will be integer matrices and the
former equation becomes

|FMwx|
|Mwx|

= |F ′Bwx|
|Bwx|

=
∣∣F ′Dwx′ − m|w|(k + 2)|w|−1g|w|+1F ′Ex′

∣∣∣∣Dwx′ − m|w|(k + 2)|w|−1g|w|+1Ex′
∣∣ . (7)

Hence the inequality
|FMwx|
|Mwx|

≥ 1
2

is equivalent to

2
∣∣∣F ′Dwx′ − m|w|(k + 2)|w|−1g|w|+1F ′Ex′

∣∣∣
≥

∣∣∣Dwx′ − m|w|(k + 2)|w|−1g|w|+1Ex′
∣∣∣ . (8)

In order to verify inequality (8) in logarithmic space, it sufficient to demonstrate
that the residue representations of both sides can be obtained in logarithmic
space.

For that end, the residue representation of vector a = F ′Dwx′ ∈ Rk+2 can
be obtained in logarithmic space as in the proof of Theorem 3.

Trivially, the residue representation of b = m|w|(k + 2)|w|−1g|w|+1F ′Ex′ ∈
Rk+2 can be found in logarithmic space, as well. In order to compute the residue
representation of

|a − b| = |a1 − b1| + · · · + |ak − bk|

it is sufficient to decide whether ai ≥ bi holds. As the residue representations for
each ai and bi is known, all the decisions can be made in logspace, according to
Lemma 3. The same conclusion can be made for the right hand side of (8). ⊓⊔

Computational Limitations of Affine Automata 9

4 A Non-affine Language

As we saw in the previous section, AfLQ ⊆ L, and hence languages beyond L,
are good candidates for non-affine languages.4 In this section, we will however
demonstrate that the border of non-affinity may lie considerably lower: There
are languages in L which are not affine.

In an earlier work [8], we applied the method of Turakainen [20] to show that
there are languages in L which however are not contained in BAfL. Here we will
extend the previous result to show that those languages are not contained even
in AfLA. (We leave open whether a similar technique can be applied for AfL.)

Definition 10 (Lower density).
Let L ⊆ a∗ be a unary language. We call lower density of L the limit

dens(L) = lim inf
n→∞

∣∣{ak ∈ L | k ≤ n}
∣∣

n + 1
.

Definition 11 (Uniformly distributed sequence). Let (xn) be a sequence
of vectors in Rk and I = [a1, b1) × · · · × [ak, bk) be an interval in Rk. We define
C(I, n) as C(I, n) = |{xi mod 1 ∈ I | 1 ≤ i ≤ n}|.

We say that (xn) is uniformly distributed mod 1 if and only if for any
I of such type,

lim
n→∞

C(I, n)
n

= (b1 − a1) · · · (bk − ak).

Theorem 6. If L ⊆ a∗ satisfies the following conditions:

1. dens(L) = 0.
2. For all N ∈ N, there exists r ∈ N and an ascending sequence (mi) ∈

N such that ar+miN ⊆ L and for any irrational number α, the sequence
((r + miN)α) is uniformly distributed mod 1.

Then L is not in AfLA.

Proof. Let’s assume for contradiction that L ∈ AfLA. Then there exists an AfA
A with s states, matrix M and initial vector v such that the acceptance value
of A is

fA(an) = |PMnv|
|Mnv|

. (9)

Without loss of generality, we can assume that the cutpoint equals to 1
2 , and

hence w ∈ L ⇔ fA(w) > 1
2 .

Using the Jordan decomposition M = PJP −1, one has Mn = PJnP −1. So
the coordinates of Mnv have the form

(Mnv)j =
s∑

k=1

pjk(n)λn
k , (10)

4 It is known that L ⊊ PSPACE, so it is plausible that PSPACE-complete languages
are not in AfLQ.

10 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

where λk are the eigenvalues of M and pjk are polynomials of degree less than
the degree of the corresponding eigenvalue. For short, we denote F (n) = fA(an),
and let λk = |λk| e2iπθk .

When studying expression (9), we can assume without loss of generality, that
all numbers θk are irrational. In fact, replacing matrix M with αM , where α ̸= 0
does not change (9), since

|P (αM)nv|
|(αM)nv|

= |αnPMnv|
|αnMnv|

= |PMnv|
|Mnv|

.

Selecting now α = e2πiθ (where θ ∈ R) implies that the eigenvalues of M are
λke2iπ(θk+θ). The field extension Q(θ1, . . . , θs) is finite, and hence there is always
an irrational number θ /∈ Q(θ1, . . . , θs). It follows directly that all numbers θk +θ
are irrational. Hence we can assume that all the numbers θk are irrational in the
first place.5

By restricting to an arithmetic progression n = r + mN (m ∈ N) we can
also assume that no λi/λj is a root of unity for i ̸= j. In fact, selecting N =
lcm{ord(λi/λj) | i ̸= j and λi/λj is a root of unity} (10) becomes

(Mr+mN v)j =
s∑

k=1

pjk(r + mN)λr
k(λk)Nm =

s′∑
k=1

qjk(m)µm
k , (11)

where {µ1, . . . , µs′} are the distinct elements of set {λN
1 , . . . , λN

s } Now for i ̸= j
µi/µj cannot be a root of unity, since (µi/µj)t = 1 would imply (λi′/λj′)Nt = 1,
which in turn implies (λi′/λj′)N = 1 and hence µi = λN

i′ = λN
j′ = µj , which

contradicts the assumption µi ̸= µj .
We can now write the acceptance condition fA(an) > 1

2 equivalently as

fA(an) >
1
2

⇔ 2 |PMnv| > |Mnv|

⇔ 2
∑

j∈Ea

|(Mnv)j | >
∑
j∈E

|(Mnv)j | ⇔
∑

j∈Ea

|(Mnv)j | −
∑

j∈Ea

|(Mnv)j |

︸ ︷︷ ︸
g(n)

> 0,

Where E is the set of states of A, Ea ⊆ E its set of accepting states,
and Ea the complement of Ea. According to (10), g(n) :=

∑
j∈Ea

|(Mnv)j | −∑
j∈Ea

|(Mnv)j | consists of combinations of absolute values of linear combina-
tion of functions of type ndλn.

We say that nd1λn
1 is of larger order than nd2λn

2 , if |λ1| > |λ2|; and in the
case |λ1| = |λ2|, if d1 > d2. If |λ1| = |λ2|, we say that ndλn

1 and ndλn
2 and of

the same order. It is clear that if term t1(n) is of larger order than t2(n), then

lim
n→∞

t2(n)
t1(n)

= 0.

5 Note that the new matrix obtained may not be affine, so it would be wrong to
assume that all AfAs have to admit an equivalent one with only irrational eigenvalues.
However, this does not affect this proof, since we do not require the new matrix to
be affine, we only study the values that the fraction |P (αM)nv|

|(αM)nv| = |P Mnv|
|Mnv| take.

Computational Limitations of Affine Automata 11

We can organize the terms in expression (10) as

(Mnv)j =
s∑

k=1

pjk(n)λn
k = Λ

(N)
j (n) + Λ

(N−1)
j (n) + · · · + Λ

(0)
j (n), (12)

where each Λ
(m)
j (n) consists of terms with equal order multiplier:

Λ
(m)
j (n) =

mj∑
k=1

cmkndmλmk
n = ndmλn

m

mj∑
k=1

cmke2πinθmk (13)

(for notational simplicity, we mostly omit the dependency on j in the right hand
side of (13)). Here λm ∈ R+ is the common absolute value of all eigenvalues
λmk = λme2πiθmk , and expression (12) is organized in descending order: Λ

(N)
j is

the sum of terms of the highest order multiplier, Λ
(N−1)
j contains the terms of

the second highest order multiplier, etc. We say that Λ
(k2)
j is lower than Λ

(k1)
j if

k2 < k1
We will then fix a representation

g(n) =
∑

j∈Ea

∣∣∣∣∣
s∑

k=1

pjk(n)λn
k

∣∣∣∣∣ −
∑

j∈Ea

∣∣∣∣∣
s∑

k=1

pjk(n)λn
k

∣∣∣∣∣
=

∑
j∈Ea

|Aj(n) + Bj(n) + Cj(n)| −
∑

j∈Ea

|Aj(n) + Bj(n) + Cj(n)| , (14)

where Aj(n) + Bj(n) + Cj(n) is a grouping of all Λ-terms in (12) defined as
follows:

1. Aj(n) =
m∑

k=0

Λ
(N−k)
j (n), where m ∈ [−1, N] ∩ Z is chosen as the maximal

number so that

A =
∑

j∈Ea

|Aj(n)| −
∑

j∈Ea

|Aj(n)| (15)

is a constant function N → R. Such an m exists, since for m = −1, the sum
is regarded empty and Aj(n) = 0, but for m = N , all Λ-terms are included,
and then (15) becomes fA(an), which is not constant (otherwise condition 1
or 2 of the theorem would be false).

2. Bj(n) consists a single Λ-term immediately lower than those in Aj(n)4, and
3. Cj(n) contains the rest of the Λ-terms, lower than Bj(n)

Lemma 4. If A ̸= 0, then ∀z ∈ C, |A + z| = |A| + Re |A|
A

z + O(z2

A
).

Proof. Denote z = x + iy. Because |Re z| ≤ |z|, we have

|1 + z| = |1 + x + iy| =
√

(1 + x)2 + y2 =
√

1 + 2 Re z + |z|2

= 1 + Re z + O(z2).

12 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

Now

|A + z| = |A|
∣∣∣1 + z

A

∣∣∣ = |A|
(
1 + Re z

A
+ O(

(z

A

)2)
)

= |A| + Re |A|
A

z + O(z2

A
).

⊓⊔

We choose λ ∈ R+ and d so that the highest Λ-term in B(n) is of order ndλn

and define A′
j(n) = n−dλ−nAj(n), B′

j(n) = n−dλ−nBj(n), g′(n) = g(n)n−dλ−n.
Then clearly g′(n) > 0 if and only if g(n) > 0 and each Bj(n) remains bounded as
n → ∞. To simplify the notations, we omit the primes and recycle the notations
to have a new version of g(n) of (14) where Aj-terms may tend to infinity but
Bj-terms remain bounded.

Recall that we may assume (by restricting to a arithmetic progression) that
no λi/λj is a root of unity. By Skolem-Mahler-Lech theorem [7], this implies that
functions Aj can have only a finite number of zeros, and in the continuation we
assume that n is chosen so large that no function Aj becomes zero. Furthermore,
by the main theorem of [6], then |Aj(n)| = Ω(ndλn−ϵ) for each ϵ > 0.6 As each
Bj remains bounded, we find that B2

j /Aj tend to zero as n → ∞, and hence by
Lemma 4, defining

g1(n) =∑
j∈Ea

(
|Aj(n)| + Re(|Aj(n)|

Aj(n)
Bj(n))

)
−

∑
j∈Ea

(
|Aj(n)| + Re(|Aj(n)|

Aj(n)
Bj(n))

)
=

∑
j∈Ea

|Aj(n)| −
∑

j∈Ea

|Aj(n)|

︸ ︷︷ ︸
h(n)

+
∑

j∈Ea

Re(|Aj(n)|
Aj(n)

Bj(n)) +
∑

j∈Ea

Re(|Aj(n)|
Aj(n)

Bj(n))

we have a function g1(n) with the property g1(n) − g(n) → 0 (C-terms are lower
than B-terms, so they can be dropped without violating this property), when
n → ∞. Also by the construction it is clear that h(n) = C · ndλn, where C is a
constant, and by the conditions of the theorem, this is possible only if C = 0.

Notice tat g1(n) is not a constant function by construction. Also, each Bj

is a linear combination of functions of form e2πiθkn, each θk can be assumed
irrational, and ||Aj(n)| Aj(n) = 1|, so we can conclude that g1(n) is a continuous
function formed of terms of form ceiθkn and of ratios |Aj | /Aj . In these terms,
however the behaviour is asymptotically determined by the highest Λ-terms, so
the conclusion remains even if we drop the lower terms.

By assumption, for all k, the sequence (r + mN)θk is uniformly distributed
modulo 1. It follows that the values e2iπ(r+mN)θk are dense in the unit circle. If
for some m, g1(r + mN) < 0, then g1(r + Nm) ≤ −ε for some ϵ > 0. Then,
because of the density argument, there are arbitrarily large values of i for which
g1(r+miN) ≤ 0 contradicting condition 2 of the statement. Hence g1(r+mN) ≥
0 for each m large enough. As g1 is not a constant, there must be some m0 so
that g1(m0) ≥ ϵ > 0.
6 This is the only point we need the assumption that the matrix entries are algebraic.

Computational Limitations of Affine Automata 13

Next, let R(x1, . . . , xs) be a function obtained from g1 by replacing each
occurrence of eiθkn by a variable xk, hence each xk will assume its value in the
unit circle. Moreover, by the assumptions of the theorem, the values of xk will
be uniformly distributed in the unit circle.

Note that g1(n) = R((e2iπ(r+miN)θk)k∈A). Then, because the sequences ((r +
miN)θk)i are uniformly distributed modulo 1, it follows that any value obtained
by the function R((e2iπyk)k∈A) can be approximated by some g1(r + miM) with
arbitrary precision. The function R is continuous, therefore there exists an in-
terval I = (x1, y1, ...) = ((xk, yk))k∈A on which R((xk)) > ε

2 . So, if mi is large
enough and satisfies

((r + miN)θ1 mod 1, . . .) = ((r + miM)θk mod 1)k∈A ∈ I,

then g1(r + miN) > ε
2 , which implies fA(r + miN) > 0 and hence ar+miN ∈ L.

Now we just have to prove that the sequence (r + miN) is "dense enough" to
have dens(L) > 0, contradicting again condition 1.
Then, because of uniform distribution imposed by condition 2, one has

d = lim
i→∞

C(I, r + mN)
r + mN

=
∏
k∈A

(yk − xk)

And so for i large enough, C(I,r+miN)
r+miN ≥ d

2 , with ah+niQ ∈ L, implying dens(L) >
0, a contradiction. ⊓⊔

Corollary 1. Let P be any polynomial with nonnegative coefficients and deg(P) > 2.
The language {aP (n) | n ∈ N} is not in AfLA.

Corollary 2. The language {ap | p prime} is not in AfLA.

Proof (Proof of Corollary 1 and Corollary 2.). Turakainen proved that these
two languages satisfies the two conditions of Theorem 6 [20]. Therefore, these
two languages not in AfLA. ⊓⊔

Acknowledgments

Yakaryılmaz was partially supported by Akadēmiskā personāla atjaunotne un
kompetenču pilnveide Latvijas Universitātē l̄ıg Nr. 8.2.2.0/18/A/010 LU re ‘gistrācijas
Nr. ESS2018/289 and ERC Advanced Grant MQC. Hirvensalo was partially
supported by the Väisälä Foundation and Moutot by ANR project CoCoGro
(ANR-16-CE40-0005).

References

1. Andris Ambainis and John Watrous. Two-way finite automata with quantum and
classical states. Theoretical Computer Science, 287(1):299–311, sep 2002.

2. A. Ambainis, M. Beaudry, M. Golovkins, A. K, ikusts, M. Mercer, and D. Thérien.
Algebraic results on quantum automata. Theory of Computing Systems, 39(1):165-
188, 2006.

14 M. Hirvensalo, E. Moutot, and A, Yakaryılmaz

3. Andris Ambainis and Abuzer Yakaryılmaz. Automata and Quantum Computing.
CoRR, abs/1507.0:1–32, 2015.

4. Aleksandrs Belovs, Juan Andrés Montoya, and Abuzer Yakaryılmaz. Can one
quantum bit separate any pair of words with zero-error? Tech. Rep., 1602.07967,
arXiv, 2016.

5. Alejandro Díaz-Caro and Abuzer Yakaryılmaz. Affine computation and affine au-
tomaton. In Computer Science - Theory and Applications - 11th International
Computer Science Symposium in Russia, CSR 2016, St. Petersburg, Russia, June
9-13, 2016, Proceedings, pages 146–160, 2016.

6. J.-H. Evertse. On sums of S-units and linear recurrences. Compositio Math.,
53(2):225–244,1984.

7. Georges Hansel. A simple proof of the skolem-mahler-lech theorem. Theoretical
Computer Science, 43(1):91–98, 1986.

8. Mika Hirvensalo, Etienne Moutot, and Abuzer Yakaryılmaz: On the computational
power of affine automata. Lecture Notes in Computer Science 10168 (Proceedings
of LATA 2017), pp. 405–417, 2017.

9. Rishat Ibrahimov, Kamil Khadiev, Krišjānis Prūsis, Abuzer Yakaryılmaz: Error-
Free Affine, Unitary, and Probabilistic OBDDs International Conference on De-
scriptional Complexity of Formal Systems, pp. 175–187, 2018

10. Emmanuel Jeandel. Topological automata. Theory of Computing Systems,
40(4):397–407, 2007.

11. Attila Kondacs and John Watrous. On the power of quantum finite state automata
In FOCS, pages 66-75. IEEE, 1997

12. Ioan I Macarie. Space-Efficient Deterministic Simulation of Probabilistic Automata.
SIAM Journal on Computing, 27(2):448–465, 1998.

13. Abuzer Yakaryılmaz and A. C. Cem Say. Languages recognized by nondetermin-
istic quantum finite automata. Quantum Information & Computation, 10(9&10):
747-770, 2010

14. Azaria Paz. Introduction to Probabilistic Automata (Computer Science and Applied
Mathematics). Academic Press, Inc., Orlando, FL, USA, 1971.

15. M. O. Rabin. Probabilistic automata. Information and Control, 6:230-243, 1963.
16. Michael Sipser. Introduction to the Theory of Computation. International Thomson

Publishing, 1st edition, 1996.
17. Paavo Turakainen: On Probabilistic Automata and their Generalizations. Annales

Academiae Scientiarum Fennicae. Series A 429 (1969).
18. Paavo Turakainen: On Languages Representable in Rational Probabilistic Au-

tomata. Annales Academiae Scientiarum Fennicae. Series A 439 (1969).
19. Paavo Turakainen. Generalized Automata and Stochastic Languages. Proceedings

of the American Mathematical Society, 21(2):303–309, 1969.
20. Paavo Turakainen. On nonstochastic languages and homomorphic images of

stochastic languages. Information Sciences, 24(3):229–253, aug 1981.
21. Marcos Villagra and Abuzer Yakaryilmaz. Language Recognition Power and Suc-

cinctness of Affine Automata, pages 116–129. Springer International Publishing,
Cham, 2016.

	Computational Limitations of Affine Automata

