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A UNIVERSAL HKR THEOREM

TASOS MOULINOS, MARCO ROBALO, AND BERTRAND TOËN

Abstract. In this work we study the failure of the HKR theorem over rings of positive
and mixed characteristic. For this we construct a filtered circle interpolating between the
usual topological circle and a formal version of it. By mapping to schemes we produce this
way a natural interpolation, realized in practice by the existence of a natural filtration, from
Hochschild and cyclic homology to derived de Rham cohomology. The construction our
filtered circle is based upon the theory of affine stacks and affinization introduced by the
third author, together with some facts about schemes of Witt vectors.
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1. Introduction

The purpose of the present paper is to investigate the failure of the Hochschild-Kostant-

Rosenberg in positive and mixed characteristic situations. For this, we construct a filtered circle

S1Fil, an object of algebro-homotopical nature, which interpolates between the usual homotopy

type of a topological circle and a degenerate version of it called the formal circle. Using

mapping spaces from S1Fil to schemes, in the sense of derived algebraic geometry, this provides

an interpolation between Hochschild and cyclic homology and derived de Rham cohomology.

The existence of such interpolations, realized concretely in terms of a filtration, is the main

content of this work.

1.1. Background. Over any commutative ring k, the HKR theorem [HKR62] identifies Ω∗
ddR

(X)

- the graded commutative algebra of differential forms on a smooth k-scheme X = Spec A,

with HH∗(A) - the graded algebra of Hochschild homology. When k is of characteristic zero,
1
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this lifts to the level of chain complexes, identifying de Rham complex of differential forms

with the Hochschild complex HH(A). The de Rham differential on forms emerges from the the

natural circle action on HH(A) given by the Connes category. A precise implementation of this

fact requires a further enhanced version of the HKR teorem, that combines the intervention

of the homotopical circle action and the multiplicative structure on the Hochschild complex

on one side, and the full derived de Rham algebra with its natural grading and de Rham

differential on the other. This enhanced version has been established in [TV11], where it is

stated as a multiplicative equivalence

HH(A) = A⊗k S
1 ≃ SymA(LA/k[1]) = DR(A) (1)

with the circle action on the left matching to the de Rham differential on the right. Geomet-

rically [BZN12], this can alse be interpreted as an identification of the derived stack of free

loops on an affine k-scheme X = Spec(A) with the shifted cotangent stack

LX := Map(S1,X) ≃ T∗X[−1] := Map(Spec(k ⊕ k[−1],X) (2)

Here k ⊕ k[−1] denotes the split square zero extension. Passing to global functions, this

recovers the isomorphism in (1).

The starting point for this paper is the observation that the equivalence (2) no longer holds

when we abandon the hypothesis of k being a field of characteristic zero; indeed, the proof

uses two essential facts about BGa k - the classifying stack of the group Ga k:

A) In any characteristic, the stack BGa k is equivalent to Spec∆(Symco∆
k (k[−1])) where Symco∆

k (k[−1])

is the free cosimplicial commutative k-algebra over one generator in degree 1 (see Notation 1.8

below). This can be checked at the level of the functor of points. But when k is a field

of characteristic zero, since the cohomology of the symmetric groups with coefficients in k

vanishes, we recover an equivalence of commutative differential graded algebras

Symco∆
k (k[−1]) ≃ k ⊕ k[−1]

where on the the r.h.s we have the split square zero extension. In particular, we have

Map(BGa ,k,X) ≃ Map(Spec(k ⊕ k[−1]),X) =: T∗X[−1]

B) Notice that for any ring k the complex of singular cochains C∗(S1, k) is given by k⊕k[−1].

The canonical map of groups Z→ Ga k produces a map of group stacks S1 := BZ→ BGa k.

As in A), because the cohomology of symmetric groups with coefficients in a field of

characteristic zero vanishes, the pullback map in cohomology C∗(BGa k,O) → C∗(S1, k) is

an equivalence. This fact exhibits the abelian group stack BGa k as the affinization of the

constant group stack S1 in the sense of [Toe06] (see also [Lur11], [BZN12, Lemma 3.13]

and our Review 4.3). It follows from the universal property of being an affinization that

Map(S1,X) ≃ Map(BGa k,X)
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The accident that allows A) and B) in characteristic zero also allows an interpretation of the

circle action as de Rham differential, since in this case the equivalences

Aff(S1) ≃︸︷︷︸
B)

BGa ≃︸︷︷︸
A)

Spec(k ⊕ k[−1])

are compatible with the group structures.

1.2. In this paper. Our main goal in this paper is to provide a generalization of the HKR

theorem removing the hypothesis of characteristic zero. The starting point is the remark that

the two copies of BGa ,k appearing in A) and B) play distinct roles. What we propose, working

over Z(p), is a construction that interpolates between the two. It is inspired by an idea of

[Toe06] of using the group scheme Wp∞ of p-typical Witt vectors as a natural extension of

the additive group Ga . The group Wp∞ is an abutment of infinitely many of copies of Ga and

comes canonically equipped with a Frobenius map Frobp. The abelian subgroup Fix of fixed

points of the Frobenius map has a natural filtration whose associated graded is the kernel of

the Frobenius, Ker. After base change from Z(p) to Q both Fix and Ker are isomorphic to Ga

(see the Remark 3.1 below ) but over Z(p) they are very different. Without further ado, our

first main theorem is the following:

Theorem 1.1. (i) The abelian group stack BFix is the affinization of S1 over Z(p). In

particular, for any derived scheme over Z(p) we have an equivalence of Z(p) derived

mapping stacks

Map(S1,X) ≃ Map(BFix,X)

(ii) The abelian group stack BKer has cohomology ring given the (cosimplicial) split square

zero extension (see Notation 4.25)

Z(p) ⊕ Z(p)[−1]

In particular, we have

Map(BKer,X) ≃ T∗X[−1]

(iii) The group stack BFix is equipped with a filtration, compatible with the group structure,

whose associated graded stack is BKer.

(iv) After base-change along Spec(Q)→ Spec(Z(p)), we have

BFix⊗ Q ≃ BGa ,Q

Moreover, the filtration splits and we have

(BFix)grQ ≃ BKer ⊗ Q ≃ BGa ,Q
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Definition 1.2. The group stack BFix, equipped with the filtration of Theorem 1.1 - (iii), will

be called the filtered circle and denoted as S1Fil.

In order to define filtrations on stacks, we will follow the point of view of C. Simpson [Sim91,

Lemma 19] and [Sim97a] which identifies filtered objects with objects over the stack A1/Gm .

The content of Theorem 1.1 and Definition 1.2 can then be reformulated as the construction

of an abelian group stack S1Fil over A1/Gm whose fiber at 0 has the property in A); at 1 has

the property in B); and whose pullback to Q is the constant family with values BGa ,Q. The

construction of S1Fil is the subject of Section 3, after reviewing the basics of Witt vectors in

Section 2. The proof that S1Fil satisfies (i) and (ii) will be discussed later in Section 4.3 and

Section 4.2. The proof of (iv) is explained in the Remark 3.1.

The following consequence of our main theorem follows from the well known interpretation

of cyclic homology in terms of derived loop spaces.

Theorem 1.3 (See Theorem 6.6). Let X = Spec(A) be a derived affine scheme over Z(p).

Then:

(i) The derived mapping stack Map(S1,X) admits a filtration compatible with the circle

action whose associated graded is T∗X[−1];

(ii) Passing to global functions, (i) produces a filtration on HH(A), compatible with the

circle action and the multiplicative structure, and whose associated graded is the de

Rham algebra DR(A).

(iii) Being compatible with the circle action, the filtration descends to fixed points and

makes

HC(A)− = HH(A)S
1

a filtered algebra, whose associated graded pieces are the truncated complete derived de

Rham complexes LD̂R
≥p

(A/k).

The proof of Theorem 1.3 will be discussed in Section 6 (see Theorem 6.6). The point (iii)

does not seem new, such filtrations have already been constructed by different methods by B.

Antieau in [Ant18] and Barghav-Morrow-Scholze in [BMS19]. We believe these two filtrations

to be the same but the comparison questions seems non-obvious.

In Section 7 we will discuss several applications of Theorem 1.1 and Theorem 1.3.
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Application 1.4 (Shifted Symplectic Structures in positive characteristic). In Section 7.1 we

discuss the extension of the notion of shifted symplectic structures of [PTVV13] to derived

stacks in positive characteristic. For this we use our HKR theorem in order to produce certain

classes in the second layer of the filtration induced on negative cyclic homology. This is

achieved by analyzing the Chern character map at the first two graded pieces of the HKR

filtration. We also suggest a possible definition of n-shifted symplectic structures and show

that the universal 2-shifted symplectic structure on BG exists essentially over any base ring

k. By the techniques developed in [PTVV13] we obtain this way extensions of the previously

known n-shifted symplectic structures over non-zero characteristic bases.

Application 1.5 (Generalized Cyclic Homology and Formal groups). The application dis-

cussed in Section 7.3 comes from the observation that the degeneration from Fix to Ker of

Theorem 1.1-(iii) is Cartier dual to the degeneration of the multiplicative formal group Ĝm

to the additive formal group Ĝa (see Proposition 7.7). In Section 7.3 we will discuss how to

generalize Theorem 1.1 and Theorem 1.3 replacing Ĝm by a more general formal group law E,

in particular, one associated to an elliptic curve. These ideas will be developed in detail in a

future work.

Application 1.6 (Topological and q-analogues). In Section 7.4 we briefly present topological

and q-deformed possible generalizations of our filtered circle. We investigate two related ideas,

a first one that predicts the existence of a topological version of S1Fil as an object over the ring

spectrum, at least as an object of non-commutative nature. A second one, along the same

spirit, predicting the existence of a q-deformed filtered circle S1Fil(q) related to q-deformed de

Rham complex (see for instance [Sch17]) in a similar fashion that S1Fil is related to de Rham

theory. Again, such a quantum circle can only exists if one admits non-commutative objects

in some sense.

Related and future works: The object S1Fil and the general constructions behind it, seem

related to several other subjects. First of all homotopy theory, as the underlying object of

S1Fil is the affinization of the topological circle over Z(p) in the sense of [Toe06]. We believe

that our construction is much more general and that for any finite CW homotopy type X the

affinization (X⊗Z) = Spec C∗(X,Z) comes equiped with canonical filtration whose associated

graded is Spec H∗(X,Z) (at least when X has torsion free cohomology groups). This is in a

way the canonical filtration that degenerates a homotopy type over Z to a formal homotopy

type. The object S1Fil is thus, in a way, part of A. Grothendieck’s pursuing stacks program, and

it is interesting to note that the schematization problem has already previously been related

to integer valued polynomials in [Eke02].
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In a different direction, while writing this paper, the authors have realized the strong in-

teraction between S1Fil and the theory of abelian formal groups. This is explained in more

details in our Section 7.3, but let us mention here that S1Fil is specifically related to the formal

multiplicative and additive groups, and that similar constructions continue to make sense for a

general formal group law E. This suggests the existence of a generalized Hochschild and cyclic

homology associated to any formal group law E, that might be thought as algebraic analogues

of the relations between formal groups and generalized homology theories in topology.

Finally, there are interactions with the world of quantum mathematics, and more partic-

ularly with quantum groups and Ringel-Hall algebras, as well as q-analogues of differential

calculus. This goes via the fact that formal Gm as well as formal Ga do possess quantum ana-

logue, incarnated for instance in q-deformed integer valued polynomial algebras (see [HH17])

or quantum divided power algebras (or Hall algebras of the punctual Quiver). This suggest

quantum versions of our filtered circle, and a notion of q-deformed Hochschild and cyclic ho-

mology, related by means of an HKR filtration to the q-differential equation and q-differential

calculus.
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Notation 1.8. Unless mentioned otherwise, all higher categorical notations are borrowed from

[Lur17b, Lur09]. Let k be a discrete commutative ring. Throughout the paper we will denote

by

a) Modk the∞-category of chain complexes of k-modules; Mod≥0
k , resp. Mod≤0

k the categories

of connective and coconnective complexes.

b) The notation CAlg will always be used to denote E⊗
∞-algebras. In particular CAlgk will

denote E⊗
∞-algebras Modk; CAlgcnk ≃ CAlg(Mod≥0

k ) the full subcategory of connective

algebras [Lur17b, 2.2.1.3, 2.2.1.8, 7.1.3.10] and CAlgccnk the category of E⊗
∞-algebras in
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Mod≤0
k for the symmetric monoidal structure induced from the fact τ≤0 is a monoidal

localization. In particular, as the inclusion Mod≤0
k ⊆ Modk is lax monoidal, we have an

induced map at the level of algebras CAlgccnk → CAlgk

c) SCRk the ∞-category of simplicial commutative rings over k. This is the sifted completion

of the discrete category of polynomial algebras. See [Lur17a, 25.1.1.5] and [Lur09, 5.5.9.3].

The universal property of sifted completion gives us the normalized Dold-Kan functor

θ : SCRk → CAlgcnk . By [Lur17a, 25.1.2.2, 25.1.2.4] this is both monadic and comonadic

and if k is of characteristic zero it is an equivalence. Given A ∈ SCRk, θ(A) will be called

the underlying E⊗
∞-algebra of A.

d) By Sym we will always mean the simplicial version Sym∆ as a monad in Mod≥0
k ;

e) coSCRk the ∞-category of cosimplicial commutative rings over k (see [Toe06, 2.1.2]). We

also denote by θ : coSCRk → CAlgk the conormalized Dold-Kan construction (see [Toe06,

§2.1]). This functor is conservative and can be identified with the totalization of cosimplicial

objects and therefore preserves limits. It can be factored by a functor θccn

coSCRk
θccn

// CAlgccnk ⊆ CAlgk

where θccn is the co-dual Dold-Kan construction of [K9̌3]. In particular, θccn commutes

with tensor produces and therefore with finite colimits.

f) By Symco∆ we will mean the free cosimplicial commutative algebra on Modccnk .

g) Stk the ∞-category of stacks over the site of discrete commutative k-algebras and dStk the

∞-category of derived stacks, ie, stacks over SCRk.

h) Spec∆ : coSCRop
k → Stk the ∞-functor sending an object A ∈ coSCRk to the (higher) stack

which sends a classical commutative ring B to the mapping space MapcoSCRk
(A,B). See

also Review 4.3

i) Gm k and A1
k will always denote the flat versions of the multiplicative group and affine line

over k.

j) QCoh will always denote the ∞-category of quasi-coherent sheaves.

2. Reminders on Witt Vectors.

In this section we review some classical materials concerning Witt vectors. We follow

[Hes08, HL13, KN, Mum66]. More standard references are [Bou06, Haz12, Ill79, DG70]
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2.1. Witt vectors. Let W : CRings→ AbGrp denote the abelian affine group scheme over Z,

of big Witt vectors. For a commutative ring A, W(A) is the submonoid of the ring of formal

power series A[[t]] spanned by invertible power series P with P (0) = 1. As an affine scheme,

W is isomorphic to an an infinite product
∏

i≥1 A1 by sending a power series to its list of

coefficients.

The group scheme W behaves like an abutement of copies of the additive algebraic group

scheme Ga , in two different senses. The first is the natural pro-group structure. Let m ≥ 1.

The abelian group of big Witt vectors of length m, denoted by Wm(A), is the quotient of W(A)

by the subgroup of all invertible power series of the form 1 + tm+1.g. In particular, elements

in Wm(A) can be written as polynomials of degree ≤ m and the maps forgetting the last

coefficient, Wm(A) → Wm−1(A), are compatible with the abelian group structure. Scheme-

theoretically these maps correspond to the canonical projection Wm−1(A)× A1 → Wm−1(A).

The collection of restriction maps provides a natural limit decomposition as a pro-group scheme

W ≃ limmWm.

The other sense under which W is built out of copies of Ga is implemented by the Ghost

map. Let f ∈ W(A). Then, as in [KN, B.5], there exists a unique decomposition of the form
(∗) Pf (t) =

∏
n≥1(1 − λnt

n)−1. In these coordinates (called Teichmüller coordinates) the sum

of two Witt vectors f and f ′ is given by the multiplication of the two power series Pf .Pf ′ .

We define the Ghost power series (not necessarily invertible) of Pf , denoted by Ghost(f), by

the formula Ghost(f)(t) := t. ddt log(Pf (t)). The n-th ghost component of f ∈ W(A) is the

n-th coefficient of the power series development Ghost(f)(t) =
∑

ωnt
n. A simple computation

shows that ωn =
∑

(d,i):d.i=n i.λ
d
i . The logarithmic definition implies that the map

Ghost : W(A) 7→
∏

i≥1

A sending Pf 7→ (ω1, ω2, ...)

is in fact a map of abelian groups, on the l.h.s with the multiplication of invertible power series

and on the r.h.s the levelwise addition. This construction is functorial in A and defines a map

of groups schemes over Spec(Z)

Ghost : W→
∏

i≥1

Ga

whose base-change to Spec(Q) is an isomorphism [KN, B.3(2)].

In terms of the Teichmuller coordinates, the groups Wm(A) can be recovered as the quotient

of W(A) by the ideal generated by the Witt vectors of the form
∏

i/∈{1,2,..,m}(1 − λit
i)−1. See

[Hes08, Example 16]. This description implies that the composition of the Ghost map with

the projection to the first m-coordinates

(∗) In fact we have four different choices of coordinates, corresponding to (1 ± t)±1. These choices serve
different purposes. For instance, the choice (−1)+1 is more naturally understood from the viewpoint of K-theory
of endomorphisms [Gra78, Alm78]: given a square matrix with coefficients in A, its characteristic polynomial
seen as a formal power series is a Witt-vector. The other choices are related with the theory of chern classes
(see [Ram14, Remark 1.1]) or with residues [Kal12]. See [Hes15, Remark 1.15] for a detailed discussion.
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Ghost : W→
∏

i≥1

Ga →

m∏

i=1

Ga (3)

factors through Wm(A).

Wm(A)→

m∏

i=1

Ga

Again, after base-change to Q, the induced Ghost map of finite length is an isomorphism

[KN, B.11].

2.2. Frobenius. The group scheme W comes naturally equipped with a collection of Frobenius

endomorphisms Frobn. These can first be defined at the level of the Ghost coefficients, by

the formula Fn : (ω1, ω2, ...) 7→ (ωn, ω2n, ...). The Frobenius operation on Witt-vectors Frobn :

W(A)→W(A) is defined by translating the rule Fn so that the diagram

W(A)
Frobn

//

Ghost
��

W(A)

Ghost
��∏

i≥1 A
Fn

//
∏

i≥1 A

(4)

commutes. Let d = gcd(n, k). It is an exercise using the additivity of the Ghost maps, to

check that the Frobenius on Witt-vectors as a map of abelian groups is uniquely determined

by the formula

Frobk((1− λ.tn)−1) := (1− λ
k
d .t

n
d )−d (5)

Moreover, we have canonical identifications Frobn.m = Frobn ◦Frobm. This follows directly

from the formula Fnm = Fn ◦ Fm on Ghost components.

The Frobenius maps are functorial in A and provide maps of abelian group schemes

Frobn : W→W

2.3. p-typical Witt vectors. For the applications in this paper instead of looking at all big

Witt-vectors, we will focus on the group of p-typical Witt vectors Wp∞(A) defined as the

quotient of W(A) by the subgroup of all Witt-vectors of the form
∏

i/∈{1,p,p2,p3,...}(1− λit
i)−1.

See [Hes08, Addendum 15] or [KN, B.9].

We also restrict our attention to Z(p)-algebras. Under this restriction, the abelian group

W(A) admits an idempotent decomposition as abelian groups W(A) ≃
∏

k: p∤k Wp∞(A) [Hes08,

Proposition 10] and the quotient map W(A)→Wp∞(A) admits a natural right inverse which
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identifies Wp∞(A) with the subgroup of W(A) spanned by all Witt vectors of the form
∏

i∈N(1−

λit
pi)−1. Using this fact, over Spec(Z(p)), the assignment

Wp∞ : CRingsZ(p)
→ AbGrp

can be presented as an abelian sub-group scheme of W. The restriction of the Ghost coordinates

to p-typical Witt vectors is well-defined as a map of Spec(Z(p))-group schemes

Ghostp : Wp∞(A)→
∏

pi: i≥0

A

by the rule ∏

n≥1

(1− λnt
pn)−1 7→ (ω1, ωp, ωp2 , ...)

and as before, the base-change of Ghostp to Spec(Q) is an isomorphism.

To conclude, let us mention that as Section 2.1, there is a version of p-typical Witt vectors

of finite length, W
(m)
p∞ , obtained from Wp∞ by taking the quotient with respect to the ideal

spanned by p-typical Witt vectors of the form
∏

i>m(1 − λit
pi)−1. The restriction maps

W
(m)
p∞ → W

(m−1)
p∞ have fiber isomorphic to A1 and Wp∞ can be exhibited as the limit of this

tower. As before, the restriction of Ghost coordinates to truncated Witt vectors induces an

equivalence rationally

W
(m)
p∞ ⊗ Q ≃

∏

{p0,p1,...,pm}

GaQ (6)

The p-Frobenius Frobp descends to Wp∞ as a map of group schemes. For a Z(p)-algebra

A, it is defined on Ghost coordinates by (ω1, ωp, ωp2 , ...) 7→ (ωp, ωp2 , ...) and in terms of the

pro-structure it decomposes as maps

Frobp : W
(m)
p∞ →W

(m−1)
p∞

Notation 2.1. We will denote by Fix the group scheme given by the kernel of the map

Frobp−id : Wp∞ →Wp∞ . We will write Ker for the kernel of Frobp : Wp∞ →Wp∞ .

3. Filtrations, Fixed Points and Kernel of Frobenius

To illustrate how Witt vectors will be used in our HKR theorem, let us start with the

following observation of what happens in characteristic zero:

Remark 3.1. Let A be a Q-algebra. Then the explicit formula for Frobp on Wp∞(A) in terms

of the Ghost coordinates tells us that the fixed points for the Frobenius are given by
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Fix(A) ≃ ∆ ⊆
∏

i≥0

Ga (A)

Another easy computation in Ghost coordinates, also tells us that the Kernel of the Frobenius

is given by

Ker(A) ≃ (Ga (A), 0, 0, 0, 0, ...) ⊆
∏

i≥0

Ga (A)

In other words, as group-schemes we obtain

Fix|Q ≃ Ga and Ker|Q ≃ Ga

The Remark 3.1 shows that for Q-algebras, the additive group scheme Ga can be defined

abstractly via Witt vectors, either as Frobenius fixed points or as the kernel. In this paper

we utilize this feature to understand the HKR theorem in positive characteristic. Outside Q-

algebras, the fixed points and the kernel of Frobp on Wp∞ do not agree. However, we shall see

that there is a natural degeneration from the first to the second, or more precisely, a filtration

on Fix whose associated graded is Ker. The delooping of this filtration will be, by definition,

our filtered circle. For this purpose we will need to explain what is a filtration on a stack.

Before addressing that question, let us be precise what are the linear versions of filtrations

and gradings used in this paper:

Construction 3.2. [Lur15] Let C be a cocomplete stable∞-category . The category of filtered

objects in C is the ∞-category of diagrams Fil(C) := Fun(N(Z)op,C), with N(Z) the nerve of

the category associated to the poset (Z,≤). The category of Z-graded objects in C is the ∞-

category of diagrams CZ−gr := Fun(Zdisc,C) where Zdisc is the Z seen as a discrete category.

Both categories are endowed with symmetric monoidal structures given by Day convolution.

Following [Lur15, §3.1 and 3.2], the construction of the associated graded object, respectively,

the underlying object, are implemented by symmetric monoidal functors

gr : Fil(C)→ CZ−gr and colim : Fil(C)→ C.

Definition 3.3. We define a graded category to be a stable presentable ∞-category endowed

with a structure of object in ModSpZ−gr,⊗(PrL). Similarly, a filtered category is an object in

ModFil(C)⊗(Pr
L).
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We will need to use the point of view on filtrations and gradings given by the Rees con-

struction of Simpson [Sim91, Lemma 19] where the following geometric objects play a central

role:

Construction 3.4. Let BGmS be the classifying stack of the flat multiplicative abelian group

scheme over the sphere spectrum and e : Spec(S)→ BGmS the canonical atlas. Consider also

the canonical action of GmS on the flat affine line A1
S and form the stacky quotient A1

S/GmS.

This lives canonically as a stack over BGmS via a map

π : A1
S/GmS → BGmS

The inclusion of the zero point 0 : Spec(S) → A1
S provides a section of the canonical

projection A1
S/GmS→ BGmS

0 : BGmS→ A1
S/GmS

The inclusion of GmS in A1
S also passes to the quotient and provides a map

A1
S/GmS ← GmS/GmS ≃ ∗ : 1

The Rees construction gives us a geometric interpretation of filtered objects and gradings

when C = Sp is the ∞-category of spectra, in terms of objects over A1
S/GmS and BGmS. The

proof of the following result will appear in [Tas]:

Theorem 3.5. There exists symmetric monoidal equivalences

SpZ−gr,⊗ ≃ QCoh(BGmS)
⊗ (7)

Rees : Fil(Sp)⊗ → QCoh(A1
S/GmS)

⊗ (8)

such that the following diagram commutes:

QCoh(BGmS)
⊗

∼
��

QCoh(A1
S/GmS)

⊗0∗
oo

∼

��

1∗
// QCoh(Spec(S))⊗ = Sp⊗

SpZ−gr,⊗ Fil(Sp)⊗
gr

oo
colim

// Sp⊗

Moreover, after base change along Spec(Z)→ Spec(S) we recover analogues of these compar-

isons for filtered and graded objects in ModZ the ∞-category derived category of abelian groups

and quasi-coherent sheaves on BGmZ and A1
Z/GmZ via the Rees construction (see for instance

[Sim97b]).

In view of the Theorem 3.5 the following definition becomes natural.
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Definition 3.6. We define a graded stack to be a stack over BGm and a filtered stack to be a

stack over A1/Gm . Let X → A1/Gm be a filtered stack. The associated graded of X, denoted

Xgr, is the base change of X along the map 0 : BGm → A1/Gm . By abuse of notation we

will also write Xgr to denote the further pullback along the atlas ∗ → BGm , endowed with its

canonical Gm -action.

The underlying stack, Xu, is the base-change along 1 : ∗ → A1/Gm .

Remark 3.7. Let X be a filtered (resp. graded) stack. Then QCoh(X) is a filtered (resp.

graded) category in the sense of Definition 3.3 via the symmetric monoidal pullback along the

structure map to A1/Gm (resp. BGm ).

Remark 3.8. Let π : X → A1/Gm be a filtered stack and consider the cartesian diagrams

Xgr

πgr

��

// X

π
��

Xu

πu

��

oo

BGm
0

// A1/Gm ∗
1

oo

Then taking fiber at 0 and 1 commute with push-forward of quasi-coherent sheaves. Indeed, for

what concerns the map 1 : ∗ ≃ Gm /Gm → A1/Gm , this follows directly from the characteriza-

tions of QCoh(A1/Gm ) and QCoh(BGm ) via descent along the canonical atlases A1 → A1/Gm

and Gm → Gm /Gm and the fact that pushforwards for QCoh are defined on atlases via descent

together with the observation that Gm → A1 is a Zariski open immersion. For what concerns

the map 0 : BGm → A1/Gm we can again test the statement by pulling back along the atlases

e : ∗ → BGm and A1 → A1/Gm . It is therefore enough to test that the induced commutative

diagram of pullbacks along the cartesian diagram

Xgr ×BGm ∗
//

��

X ×A1/Gm
A1

��

∗
0

// A1

is right-adjointable. But this follows because the inclusion 0 : ∗ → A1 is lci.

It follows that for a filtered stack π : X → A1/Gm , its derived global sections π∗(O) =

C∗(X,O) admit a structure of E⊗
∞-algebra in Fil(Sp) which can be interpreted as a filtration

on the E⊗
∞-algebra (πu)∗O = C∗(Xu,O), whose associated graded is (πgr)∗O = C∗(Xgr,O).

By the same mechanics, given a graded stack, Y → BGm , the E⊗
∞-algebra C∗(Y,O) carries a

grading compatible with the E⊗
∞-structure.
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Construction 3.9. Let X be a stack with a Gm -action and consider the stacky quotient

X/Gm which lives canonically over BGm . We defined the filtered stack associated to X with

the Gm -action to be the fiber product of stacks

XFil := X/Gm ×BGm A1/Gm

��

// X/Gm

��

A1/Gm
// BGm

We have cartesian squares

(XFil)gr = X/Gm
//

��

XFil

��

X =: (XFil)uoo

��

BGm
0

// A1/Gm ∗
1

oo

Moreover, the cartesian diagram

A1 h
//

p

��

∗

e

��

A1/Gm
π

// BGm

(9)

tells us that the pullback of XFil to A1 is isomorphic to A1×X and exhibits XFil as the quotient

(X × A1)/Gm for the product of the Gm -action on X and the canonial action of Gm on A1.

The filtered stacks obtained from Gm -equivariant stacks using the previous construction are

precisely the split filtered stacks.

We now turn back to Witt vectors and the interpolation between fixed points and kernel of

the Frobenius. The starting ingredient is the following natural grading:

Construction 3.10. The abelian group of Witt vectors W(A) carries an action of the under-

lying multiplicative monoid of A: for a given a ∈ A, we send the invertible power series f(t) to

f(a.t) which is again in W(A). The formula [a.f(t)].[a.g(t)] = [a.(f.g)(t)] implies that a acts

as a map of groups. This defines, when restricted to units in A, an action of the multiplicative

group scheme Gm on the group scheme W and makes it a graded group scheme. It follows from

this definitions that this action descends to Wp∞. We consider the quotient stack Wp∞/Gm

which lives canonically as an abelian group stack over BGm .
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Remark 3.11. The operations Frobn are compatible with the action of the multiplicative

monoid of A1 on W in the following sense: given a ∈ A and denoting by [a] : W(A) → W(A)

the action by a, we have

Frobn ◦[a] = [an] ◦ Frobn

Construction 3.12. We let WFil
p∞ be the output of the Construction 3.9 applied to the action

of Gm on Wp∞ of the Construction 3.10. As Wp∞/Gm is a group stack over BGm , it follows

that WFil
p∞ is a group stack over A1/Gm . Explicitly,

WFil
p∞ ≃ (Wp∞ × A1)/Gm

the quotient of trivial family Wp∞ × A1 by the diagonal action of Gm .

We will now explain how to use the trivial family of the Construction 3.12 to construct a

new family that interpolates between Frobenius fixed points and the kernel.

Construction 3.13. Consider the trivial group scheme Wp∞ × A1 over A1. For each A over

Z(p), consider the endomorphism of abelian groups

Gp : Wp∞(A)×A→Wp∞(A)×A given by (f, a) 7→ (Frobp(f)− [ap−1](f), a)

This is functorial in A and defines a morphism of abelian group schemes over A1

Gp : Wp∞ × A1 → Wp∞ × A1

Remark 3.14. The Remark 3.11 is equivalent to the statement that Gp is Gm -equivariant

with respect to the diagonal action of Gm on the source and the twist by (−)p : Gm → Gm on

the target. This implies that the inclusion

kerGp ⊆Wp∞ × A1

is Gm -equivariant. The fiber of kerGp over 0 is Ker (Notation 2.1) and is closed under the

Gm -action. The fiber over any λ ∈ A×, (kerGp)λ is isomorphic to (kerGp)1 ≃ Fix via the

isomorphism sending (P, λ) 7→ ([ 1λ ](P ), 1).
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Lemma 3.15. The morphism Gp : Wp∞ × A1 → Wp∞ × A1 is a cover for the fpqc topology.

In particular, it is fpqc-locally surjective and we have a short exact sequence of abelian group-

stacks over A1

0 // kerGp
// Wp∞ × A1

Gp
// Wp∞ × A1 // 0

Proof. As discussed in Section 2.3, the group scheme Wp∞ is the inverse limit of the system

W
(m)
p∞ of m-truncated p-typical Witt vectors and each restriction map W

(m)
p∞ → W

(m−1)
p∞ is

isomorphic to a projection W
(m−1)
p∞ × A1 → W

(m−1)
p∞ . Each restriction map is a flat surjection

between affine schemes, and therefore, an fpqc cover. In this case (see for instance [Sta19,

Lemma 05UU]), in order to show that Gp is an fpqc cover, it is enough to show that each

composition

Wp∞ × A1
Gp

// Wp∞ × A1 // W
(m)
p∞ × A1 (10)

is an fpqc cover.

As remarked in Section 2.3, the Frobenius map on m-truncated Witt vectors factors as

W
(m)
p∞ → W

(m−1)
p∞ . The Gm -action on the contrary is defined levelwise [x] : W

(m)
p∞ → W

(m)
p∞ . By

composing with the truncation maps [x] : W
(m)
p∞ → W

(m)
p∞ → W

(m−1)
p∞ we obtain a system of

maps that after passing to the inverse limit, it recovers the Gm -action on Wp∞ . In this case,

the composition (10) factors as

Wp∞ × A1

��

Gp
// Wp∞ × A1

��

W
(m+1)
p∞ × A1 // W

(m)
p∞ × A1

(11)

So that (as in [Sta19, Lemma 090N]) to show that each composition (10) is an fpqc cover,

it is enough to show that each truncated map is an fpqc cover

W
(m+1)
p∞ × A1 // W

(m)
p∞ × A1 (12)

This morphism is a map of smooth group schemes that commutes with the projections to

A1 := A1
Z(p)
≃ A1

Z×Spec(Z(p)) and therefore, as each is now of finite presentation, to check that

it is a flat cover, it is enough by a local criterion for flatness [Sta19, Lemma 039D] to check

that it is so after base change to any field valued point SpecK → A1
Z × Spec(Z(p)). As both

projections to A1
Z(p)

are compatible with the Gm -action, it is enough to test the statement for

the four different points

(0,Q), (1,Q), (0,Fp), (1,Fp)

ie, the four maps

https://stacks.math.columbia.edu/tag/05UU
https://stacks.math.columbia.edu/tag/090N
https://stacks.math.columbia.edu/tag/039D
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W
(m+1)
p∞ × Q

Frobp
// W

(m)
p∞ × Q W

(m+1)
p∞ × Q

Frobp −id
// W

(m)
p∞ × Q

W
(m+1)
p∞ × Fp

Frobp
// W

(m)
p∞ × Fp W

(m+1)
p∞ × Fp

Frobp −id
// W

(m)
p∞ × Fp

Using the Ghost components for truncated p-typical Witt vectors of (6), the first two maps

becomes isomorphic to, respectively, the projection away from the first coordinate and a linear

projection

∏m+1
i=0 GaQ

//
∏m

i=0 GaQ

∏m+1
i=0 GaQ

//
∏m

i=0 GaQ

both being clearly surjective and flat.

Remark that the Teichmuller coordinates provide an isomorphism as schemes W
(m)
p∞ ≃∏m

i=0 A1. After base-change to Fp, this identification exhibits Frobp as the standard power

p Frobenius on A1 and the morphisms over Fp become, respectively, the compositions

Frobp :

m+1∏

i=0

A1 →

m+1∏

i=0

A1 →

m∏

i=0

A1

(λ1, λp, .., λpm , λpm+1) 7→ (λp
1, λ

p
p.., λ

p
pm , λ

p
pm+1) 7→ (λp

1, .., λ
p
pm)

Frobp−id :
m+1∏

i=0

A1 →
m+1∏

i=0

A1 →
m∏

i=0

A1

(λ1, λp, ..., λpm , λpm+1) 7→ (λp
1 − λ1, .., λ

p
pm − λpm, λ

p
pm+1 − λpm+1) 7→ (λp

1 − λ1, .., λ
p
pm − λpm)

Both projections are fpqc covers. We conclude using the fact that the standard power p

Frobenius on A1, (−)p, is fpqc in our situation (see for instance [Liu02, Exercice 3.13]) and

each (−)p − id is the Artin-Schreier isogeny well known to be an étale cover in characteristic

p.

�

Definition 3.16. We define a filtered stack Hp∞ → A1/Gm to be stack over A1/Gm given by

the quotient

Hp∞ := (kerGp)/Gm → A1/Gm
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Remark 3.17. It follows from Remark 3.14 that the underlying stack Hu
p∞ is Fix and the

associated graded H
gr
p∞ is the quotient Ker/Gm under the Gm -action of the Construction 3.10

and Remark 3.14.

4. The Filtered Circle

4.1. Affinization and Cohomology of stacks. At this point, after the constructions in

the previous section, we have in fact proved Theorem 1.1-(iii). We absorb it in the following

definition:

Definition 4.1. The filtered circle (local at p) is the filtered stack given by the classifying

stack of the filtered abelian group stack Hp∞ :

S1Fil := BHp∞ → A1/Gm

Remark 4.2. The filtered stack S1Fil, being the classifying stack of a filtered abelian group

stack is again a filtered abelian group stack. In other words, it carries a canonical abelian

group structure compatible with the filtration. In particular, we can take its classifying stack

BS1Fil ≃ K(Hp∞ , 2).

One of the claims in Theorem 1.1-(i) is that our filtered circle S1Fil is related to the topological

circle S1 via the notion of affinization of [Toe06]. Affine stacks were introduced in [Toe06, Def.

2.2.4] (see also [Lur11] where these are called Coaffine). Informally, an (higher) stack X is

affine if it can be recovered from its cohomology of global sections RΓ(X,O). More precisely:

Review 4.3. See Notation 1.8. By [Toe06, 2.2.3] the∞-functorSpec∆ : coSCRZ(p)
→ StZ(p)

is

fully faithful and admits a left adjoint C∗
∆(−,O) that enhances the standard E⊗

∞-algebra struc-

ture of cohomology of global sections C∗(−,O) with a structure of cosimplicial commutative

algebra, namely, it provides a lifting

coSCRZ(p)

θ

��

StZ(p)

C∗
∆(−,O)

99
t
t
t
t
t
t
t
t
t

C∗(−,O)
// CAlgZ(p)

We say that X is affine if it lives in the essential image of Spec∆. Given X ∈ StZ(p)
, its

affinization is the stack Spec∆(C∗
∆(X,O)) [Toe06, 2.3.2].
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Proposition 4.4. Both S1Fil and BS1Fil are relatively affine stacks over A1/Gm in the sense of

[Toe06]. By stability of affine stacks under base-change (†) so are all the stacks (S1Fil)
u, (S1Fil)

gr,

B(S1Fil)
u and B(S1Fil)

gr.

Proof. Let us start by showing that S1Fil is relativitely affine over A1/Gm . Using the atlas

A1 → A1/Gm this is equivalent to show that B kerGp is an affine stack over A1 = Spec(Z(p)[T ])

. Applying B to the short exact sequence in the Lemma 3.15, we get a fiber sequence of fpqc

sheaves over A1

B kerGp
//

��

BWp∞ × A1

BGp×id

��

A1 // BWp∞ × A1

By [Toe06, 2.2.7] the class of affine stacks over any commutative ring is closed under limits.

Therefore, to conclude that B kerGp is affine it is enough to show that BWp∞×A1 is affine. But

the group scheme Wp∞ can be written as a limit limW
(m)
p∞ where each projection W

(m+1)
p∞ →

W
(m)
p∞ is a smooth epimorphism of affine groups with fiber Ga . We claim that this fact together

with the fact with the Witt schemes are truncated, implies that the limit decomposition of

Wp∞ induces a limit decomposition

BWp∞ ≃ limBW
(m)
p∞ . (13)

Indeed, the Milnor sequences (see for instance [GJ09, 2.2.9]) tell us that the obstructions

for the limit decomposition (13) are given by the groups lim1 πiMapfpqc(X,W
(m)
p∞ ) for i ≥ 0

and X affine classical. For i ≥ 1 these groups vanish because the mapping spaces are discrete.

For i ≥ 0 we have πiMapfpqc(X,W
(m)
p∞ ) ≃ Hi

fpqc(X,W
(m)
p∞ ), which vanishes for i > 0 because

X is affine.

In fact, more generally, we also have the same decomposition for the iterated construction

BjWp∞ ≃ limBjW
(m)
p∞ . (14)

This follows again because the mapping spaces are discrete and because of the vanishing of

the higher cohomology groups

π0Mapfpqc(X,BjW
(m)
p∞ ) = H

j
fpqc(X,W

(m)
p∞ ) = 0 j ≥ 1 (15)

for X affine classical. One can see this by induction using the long exact sequences extracted

from the fact W
(m)
p∞ is an extension of W

(m−1)
p∞ by Ga ,

0→ Ga → W
(m+1)
p∞ →W

(m)
p∞ → 0 (16)

(†)see [Toe06, 2.2.7, 2.2.9, Remarque p.49]
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The result is true for Ga and as W
(1)
p∞ = Ga , by induction, it is true all for m.

Finally, knowing (13), by [Toe06, 2.2.7] it becomes enough to show that each BW
(m)
p∞ is

affine. But now, each of the group extensions (16) is classified by a map of group stacks

W
(m)
p∞ → K(Ga , 1), which we can write as a map BW

(m)
p∞ → K(Ga , 2). By definition of this

map, we have a pullback square

BW
(m+1)
p∞

//

��

∗

��

BW
(m)
p∞

// K(Ga , 2)

Each K(Ga , n) is known to be affine [Toe06, 2.2.5]. An induction argument concludes the

proof.

To prove the claim for BS1Fil it is enough to show that B(B kerGp) is affine over A1. The

argument runs the same, using the iterated formula (14).

�

4.2. The Underlying Stack of S1Fil. As we now know, by the Proposition 4.4, the underlying

stack (S1Fil)
u is affine. We would like, in order to establish Theorem 1.1-(i), to identify it with

the affinization of S1 over Z(p).

Construction 4.5. Recall that S1Fil = BHp∞ (Definition 3.16). Let Z denote the constant

group scheme with value Z. There is a canonical morphism of group schemes Z→Wp∞ given

by 1 7→ (1 − t)−1 ∈ Wp∞(R). This Witt vector is fixed by the Frobenius so clearly the map

factors through Hu
p∞ = Fix. By passing to classifying stacks we obtain a morphism of stacks

S1 = BZ→ (S1Fil)
u = BFix (17)

with affine target.

The main result of this section is the following:

Proposition 4.6. The map (17) displays (S1Fil)
u = BFix as the affinization of S1 over SpecZ(p).

By [Toe06, Corollaire 2.3.3], this is equivalent to say that (17) induces an equivalence on

cochain algebras

C∗
∆(BFix,O) ≃ C∗

∆(S
1,Z(p)) (18)
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We will establish below in the Lemma 4.12 a local criterion for affinization: in order to

prove that the map (17) is the affinization of S1 over Z(p) it is enough to know that when

base-changed to Q and Fp, the maps

S1 → BFix|Q := BFix×Spec(Z(p)) Spec(Q) (19)

S1 → BFix|Fp := BFix×Spec(Z(p)) Spec(Fp) (20)

are affinizations of S1, respectively, over Q and Fp.

For the moment let us describe the targets of the maps (19) and (20). By the Remark 3.1,

we already know that BFix|Q ≃ BGaQ. It remains to work over Fp:

Lemma 4.7. There is an an equivalence (S1Fil)
u
|Fp
≃ BZp where BZp is the classifying stack of

the proconstant group scheme with values in the p-adic integers.

Proof. Using the formula (5) one sees that for an Fp-algebra A the map Frobp on Wp∞(A)

takes the form

Frobp(λ1, λp, ..λpk , ...) = (λp
1, λ

p
p, ...λ

p
pk
, ...)

so that levelwise it coincides with the standard Frobenius of A. Now, for each n we have

Artin-Schreier-Witt exact sequences [Ill79, Proposition 3.28]

0 // (Z/pnZ) // W
(m)
p∞

Frobp −id
// W

(m)
p∞

// 0 (21)

where we consider (Z/pnZ) as the constant-valued group scheme over Fp. By passing to the

limit over n we obtain exact sequences

0 // Zp
// Wp∞

Frobp −id
// Wp∞

// 0 (22)

from where we can conclude the identification Fix ≃ Zp. �

The following is a key computation:

Proposition 4.8. [Toe06, Corollaire 2.5.3] The affinization of S1 over Q is BGa and over Fp

is BZp .

Let us now work our local criterion for affinization over Z(p). We start with a simple remark:

Remark 4.9. Let M be an object in ModZ(p)
(Sp). Suppose that both base changes M⊗Z(p)

Q

and M ⊗Z(p)
Fp are zero. Then M ≃ 0. Indeed, as Q is obtained from Z(p) by inverting p,
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M ⊗Z(p)
Q is obtain via the filtered colimit of the diagram given by multiplication by p

...
.p

// M
.p

// M
.p

// M
.p

// ... (23)

At the same time, we know that Fp is obtained from Z(p) via an exact sequence

0 // Z(p)

.p
// Z(p)

// Fp
// 0

In particular, we have a cofiber-fiber sequence

M ≃M ⊗Z(p)
Z(p)

��

.p
// M ≃M ⊗Z(p)

Z(p)

��

0 // M ⊗Z(p)
Fp

It follows that M ⊗Z(p)
Fp ≃ 0 if and only if the multiplication by p is an equivalence of M .

In that case, the colimit of the diagram (23), meaning M ⊗Z(p)
Q, is equivalent to M . But the

assumption M ⊗Z(p)
Q ≃ 0 concludes that M ≃ 0.

In particular, given f : E → F a morphism of chain complexes over Z(p), if the two base

changes to Q and Fp are equivalences, then so is f .

Lemma 4.10. Consider the pullback diagrams:

BGaQ ≃ BFix|Q
J

//

fQ

��

BFix

f

��

BFix|Fp ≃ BZp
I

oo

fp

��

Spec(Q)
j

// Spec(Z(p)) Spec(Fp)
i

oo

Then we have equivalences of cosimplicial commutative k-algebras

C∗
∆(BFix,O)⊗Z(p)

Q ≃ C∗
∆(BFix|Q,O) and C∗

∆(BFix,O)⊗Z(p)
Fp ≃ C∗

∆(BFix|Fp ,O) (24)

Proof. The rational equivalence follows because the Beck-Chevalley transformation

j∗f∗ → fQJ
∗

for QCoh is an equivalence. This follows from the local definition of pushfowards defined dir-

ectly at the level of QCoh [Lur17a, §6.2, Chapter 6], in this case, through descent along Zariski

open immersions (j being a Zariski open). We obtain (24) by evaluating the Beck-Chevalley

transformation on the structure sheaf.
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Let us now show the equivalence over Fp. The Lemma 3.15 gives us a short exact sequence

of fpqc sheaves of groups

0 // Fix // Wp∞
Frobp −id

// Wp∞
// 0

where the map Frobp−id is flat. This implies that Fix is a flat group scheme over Spec(Z(p))

and that the square

Fix //

��

Wp∞

Frobp −id

��

Spec(Z(p))
0

// Wp∞

(25)

is actually a derived fiber product. The derived base change [Lur17a, Proposition 2.5.4.5]

formula tells us that

C∗(Fix,O)⊗Z(p)
Fp ≃ C∗(Fix|Fp ,O) (26)

where C∗(Fix,O) is the Hopf-algebra of functions on the affine group scheme Fix. To show that

formula (26) implies formula (24) over Fp we use the description of the classifying stack BFix

as the geometric realization of the simplicial object

· · · Fix× Fix
//

//

//

Fix //

//

Spec(Z(p))

which exhibits

C∗(BFix,O) ≃ lim[n]∈∆ C∗(Fix,O)⊗n (27)

Here, because Fix is affine, the Kunneth formulas for the cohomology of its cartesian powers

are automatic. The same argument also tells us that

C∗(BFix|Fp ,O) ≃ lim[n]∈∆ C∗(Fix|Fp ,O)
⊗n (28)

But now we know that, as in the Remark 4.9, C∗(BFix,O) ⊗Z(p)
Fp is the cofiber of multi-

plication by p

C∗(BFix,O)

��

.p
// C∗(BFix,O)

��

0 // C∗(BFix,O) ⊗Z(p)
Fp

(29)

As multiplication by p is actually happening levelwise in (27), we deduce that the square

(29) is obtained from the squares
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C∗(Fix,O)⊗n

��

.p
// C∗(Fix,O)⊗n

��

0 // C∗(Fix,O)⊗n ⊗Z(p)
Fp

(30)

by passing to the limit in ∆. The formula formula (24) over Fp follows from the comparison

(26) applied to each entry of the cartesian square (30), passing to the limit and using formula

(28).

�

Remark 4.11. For a fixed ring R, the E⊗
∞-algebra of singular cochains C∗(S1, R) can be defined

as the co-tensorisation RS1 in the ∞-category category CAlg(ModR) which can be explicitely

described as the limit of the constant diagram with value R, limS1 R. Because S1 has a finite

model as a simplicial set, this limit is finite. It follows that for any map of rings R→ R′, the

derived base change C∗(S1, R)⊗R R′ → C∗(S1, R′) is an equivalence of algebras. In particular,

we have equivalences

C∗(S1,Z(p))⊗Z(p)
Fp ≃ C∗(S1,Fp) and C∗(S1,Z(p))⊗Z(p)

Q ≃ C∗(S1,Q)

We are now ready to prove our local criterion for affinization:

Lemma 4.12. If the two maps (19) and (20) are affinizations of S1, respetively over Q and

Fp, then the map (17) is an affinization over Z(p).

Proof. The combination of the Remark 4.11 and the Lemma 4.10 with [Toe06, Corollaire 2.3.3]

tells us that the statement in the lemma is equivalent to the following: to deduce that the

map (18) is an equivalence, it is enough to check that both maps

C∗(BFix,O) ⊗Z(p)
Q→ C∗(S1,Q) and C∗(BFix,O)⊗Z(p)

Fp → C∗(S1,Fp) (31)

are equivalences. Formulated this way, the lemma is immediate from the Remark 4.9.

�

This concludes the proof of Proposition 4.6.

4.3. The associated graded of S1Fil. Our next order of business is to prove Theorem 1.1-(ii)

concerning the associated graded (S1Fil)
gr ≃ BKer. As in the previous section, we reduce the

problem to computations over Q and Fp.

Lemma 4.13. We have canonical equivalences of commutative cosimplicial k-algebras
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C∗
∆(BKer,O)⊗Z(p)

Q ≃ C∗
∆(BKer|Q,O) and C∗

∆(BKer,O)⊗Z(p)
Fp ≃ C∗

∆(BKer|Fp ,O) (32)

Proof. As in the proof of Lemma 4.10, we use base change together with the observation that

the exact sequence

0 // Ker // Wp∞
Frobp

// Wp∞
// 0

exhibits Ker as a flat group scheme over Z(p). From here the proof goes as in Lemma 4.10. �

Construction 4.14. Consider the composition

Ker ⊆Wp∞
Ghost

//
∏∞

i=0 Ga

proj0
// Ga (33)

and the induced map

u : BKer→ BGa (34)

By definition of BGa , the map u (34) corresponds to an element u ∈ H1(C∗(BKer,O)), u :

Z(p)[−1] → C∗(BKer,O). One can check using explicit formulas for the Ghost map that the

composition (33) is compatible with the Gm -actions, where on the l.h.s we have the action of the

Construction 3.10 and Remark 3.14 and on the r.h.s we have the standard Gm -action on Ga .

In particular, (34) is Gm -equivariant and the element u is defined in ModZ−gr
Z(p)

where Z(p)[−1]

is pure of weight 1. At the same time we consider the canonical element 1 : Z(p) → C∗(BKer,O)

in H0(C∗(BKer,O)). Because the structure map BKer → Spec(Z(p)) is Gm -equivariant for the

trivial action on the target, 1 also defines a graded map, with Z(p) sitting in weight 0.

The sum of the graded maps u and 1 give us a map

Z(p) ⊕ Z(p)[−1]→ C∗(BKer,O) in ModZ−gr
Z(p)

(35)

This map becomes an equivalence after base change to Q ( Remark 3.1).

Proposition 4.15. The map of graded complexes (35) is an equivalence after tensoring with

Fp. By the Lemma 4.13 and the Remark 4.9, it is also an equivalence over Z(p). In particular,

the grading on C∗(BKer,O) coincides with the cohomological grading.

We will establish the proof of Proposition 4.15 by computing the underlying complex of

global sections of the structure sheaf of BKer|Fp .
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Remark 4.16. Notice that Ker|Fp = Spec(C∗(Ker|Fp ,O)) is an affine group scheme over Fp.

Both BKer and Ker are graded and we have an equivalence of cosimplicial graded Hopf algebras

C∗
∆(BKer|Fp ,O) ≃ lim∆ C∗

∆(Ker|Fp ,O)
⊗n (36)

In order to understand the underlying complex of C∗
∆(Ker|Fp ,O) we will characterize its

category of representations as an Hopf algebra.

Remark 4.17. By descent for QCoh, the pullback along the atlas Spec(Fp)→ BKer|Fp makes

QCoh(BKer|Fp ) comonadic over ModFp and the Barr-Beck theorem provides an equivalence of

∞-categories

QCoh(BKer|Fp ) ≃ CoModC∗(Ker|Fp
,O)(ModFp)

Construction 4.18. The group scheme Ker|Fp has a natural pro-group structure induced from

the decompositon Wp∞ ≃ lim W
(m)
p∞ by defining Ker|Fp to be the kernel of the exact sequence

0 // Ker
(m)
|Fp

// (W
(m)
p∞ )|Fp

Frobp
// (W

(m)
p∞ )|Fp

// 0

We obtain Ker|Fp ≃ lim Ker
(m)
|Fp

and therefore a colimit of Hopf algebras

C∗(Ker|Fp ,O) ≃ colimm C∗(Ker
(m)
|Fp

,O) (37)

Definition 4.19. Let us denote by αpm the affine scheme over Fp given by Spec(Fp[T ]/(T
pm)).

Its functor of points is given by R 7→ {r ∈ R : rp
m

= 0} classifying pm-roots of zero. This is

an abelian affine group scheme under the additive law over Fp.

Lemma 4.20. For each m ≥ 1, the Cartier dual of the group scheme αpm is the algebraic

group Ker
(m)
|Fp

. In particular, it follows from Cartier duality that we have an equivalence of

∞-categories

CoMod
C∗(Ker

(m)
|Fp

,O)
≃ ModFp[T ]/(T pm) (38)

Proof. This is [Oor66, II.10.3, Remark](‡) (see also [Dem86, III §4]). See also [Sul78] for the

equivalence of module categories. �

(‡)Formula LD
m,n = Ln,m
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Remark 4.21. If we forget the group structures, the affine scheme αpm is isomorphic to the

underlying scheme of µpm = Spec(Fp[U ]/(Upm − 1)) of pm-roots of unity under the change of

coordinates T 7→ (U − 1). This induces an equivalence of categories

ModFp[U ]/(Upm−1) ≃ ModFp[T ]/(T pm ) (39)

Furthermore, we know that µpm is Cartier dual to the group scheme Z/pmZ [Oor66, I.2.12,

Lemma 2.15] and this gives us an equivalence

ModFp[T ]/(T pm) ≃ CoModC∗(Z/pmZ,O) (40)

Notice moreover that the isomorphisms of schemes µpm ≃ αpm are compatible for different

m’s.

Proof of Proposition 4.15. Composing the equivalences (38), (39) and (40), the Barr-Beck

theorem gives us an equivalence of coalgebras

C∗(Ker
(m)
|Fp

,O) ≃ C∗(Z/pmZ,O) (41)

Because Cartier duality is functorial, these equivalences are compatible under the restriction

maps and therefore, the equivalence extends to the limit

C∗(Ker|Fp ,O) ≃ limm C∗(Ker
(m)
|Fp

,O) ≃ limm C∗(Z/pmZ,O) (42)

But now the r.h.s is by definition the coalgebra of the group scheme Zp, and we get an

equivalence of coalgebras

C∗(Ker|Fp ,O) ≃ C∗(Zp,O) (43)

Finally, using the formula (36), we find

C∗(BKer|Fp ,O) ≃ lim∆ C∗(Ker|Fp ,O)
⊗n ≃ lim∆ C∗(Zp,O)

⊗n =: C∗(BZp,O) (44)

Finally, from the Proposition 4.8 we deduce an equivalence of Fp-modules

C∗(BKer|Fp ,O) ≃ Fp ⊕ Fp[−1] (45)

�

We now discuss the algebra structure on C∗(BKer,O). We start by the E⊗
∞-structure:

Lemma 4.22. Let M := Z(p)⊕Z(p)[−1] ∈ ModZ−gr
Z(p)

denote the graded complex of the Construction 4.14.

Then, the space of E⊗
∞-algebra structures on M compatible with the grading is equivalent to the

set of classical commutative graded algebra structures on its cohomology H∗(M). In particular,

it is homotopically discrete.
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Proof. The data of an E⊗
∞-algebra structure on a given object M ∈ ModZ(p)

is the data of a

map of ∞-operads from E⊗
∞ to the ∞-operad of endomorphisms of M, for which we shall write

End(M)⊗. In our case, the object M := Z(p)⊕Z(p)[−1] is endowed with a structure of object in

ModZ−gr
Z(p)

of the Construction 4.14, so in fact, we are interested in the∞-operad of endomorph-

isms of M in this∞-categoryEndgr(M)⊗. Its space of n-ary operations is given by the mapping

space Map
ModZ−gr

Z(p)

(M⊗n ,M) where the powers M⊗n are taken with respect to the graded tensor

product. It follows from the formula for the Day convolution (see Construction 3.2 and the

references to [Lur15]) that for every n ≥ 1 the piece of weight 0 in M⊗n is Z(p) and the piece

in weight 1 is given by
⊕n

i=1 Z(p)[−1]. In particular, we get

Endgr(M)⊗(n) ≃ MapModZ(p)
(Z(p),Z(p))×MapModZ(p)

(

n⊕

i=1

Z(p)[−1],Z(p)[−1]) ≃

n⊕

i=0

Z(p)

which is a discrete space. This implies that the space of maps of ∞-operads

MapOp∞
(E⊗

∞,Endgr(M))⊗

is discrete. But more is true: consider the cohomology H∗(M) as a (classical) graded Z(p)-

vector space and Endgr,cl(H
∗(M))⊗) its classical operad of (graded) endomorphisms. As H∗ is

lax monoidal, we get a map

MapOp∞
(E⊗

∞,Endgr(M)⊗)→ MapOp∞
(E⊗

∞,Endgr,cl(H
∗(M))⊗)

The computation above applied to the classical graded version shows that this map is

actually an equivalence of spaces.

�

Remark 4.23. The argument in the proof of the Lemma 4.22 also shows that there exists

a unique commutative E⊗
∞-algebra structure on the object M := Z(p) ⊕ Z(p)[−1] seen as an

object of Mod≤0,gr
Z(p)

with the symmetric monoidal structure of Notation 1.8.

We now discuss the co-simplicial multiplicative structure.

Notation 4.24. Let us consider graded versions coSCRgr
Z(p)

and CAlgccn,grZ(p)
:= CAlg(Mod≤0,gr

Z(p)
)

of respectively, cosimplicial and E⊗
∞-algebras and θccn : coSCRgr

Z(p)
→ CAlgccn,grZ(p)

denote the

graded version of the dual Dold-Kan construction (see Notation 1.8).
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Notation 4.25. We denote by Z(p)[ǫ−1] the trivial square zero extension structure on the

complex Z(p) ⊕ Z(p)[−1] as an object in coSCRZ(p)
. We will use the same notation for its

underlying E⊗
∞-algebra under the functor θ of Notation 1.8.

Corollary 4.26 (of Lemma 4.22 and Remark 4.23). The map (35) extends as an equivalence

of graded E⊗
∞-algebras in Mod≤0

Z(p)
compatible with the augmentations to Z(p):

Z(p)[ǫ−1]→ C∗(BKer,O) (46)

We now claim that (46) actually lifts to an equivalence of graded cosimplicial commutative

algebras. In order to prove this we use the limit formula (36) to reduce to an argument about

the discrete graded group scheme Ker. We will need some preliminaries:

Construction 4.27. Let C be a presentable∞-category endowed with the cartesian symmetric

monoidal structure. We denote by Gr(C) := Mon
gp

E⊗
1

(C) the category of group objects in C.

Following [Lur17b, 5.2.6.6, 4.1.2.11, 2.4.2.5.], an explicit model is given by category of diagrams

Fun(∆op,C) satisfying the Segal conditions. The colimit functor

B : Gr(C)→ C∗ (47)

lands in the category of pointed objects in C and admits a right adjoint, sending a pointed

object ∗ → X to its nerve.

Construction 4.28. We apply a dual version of the Construction 4.27 to the categories C =

coSCRgr and C = CAlgccn,gr. Namely, instead of considering group objects with consider

cogroup-objects with the limit functor:

coGr(coSCRgr
Z(p)

)
lim∆

//

(coSCRgr
Z(p)

)./Z(p)
CoNerve
oo coGr(CAlgccn,grZ(p)

)
lim∆

//

(CAlgccn,grZ(p)
)./Z(p)

CoNerve
oo (48)

Both adjunctions commute with θccn : coSCRgr
Z(p)
→ CAlgcnn,grZ(p)

(Notation 1.8):

coGr(coSCRgr
Z(p)

)

θccn

��

lim∆
//

(coSCRgr
Z(p)

)./Z(p)
CoNerve
oo

θccn

��

coGr(CAlgccn,grZ(p)
)

lim∆
//

(CAlgccn,grZ(p)
)./Z(p)

CoNerve
oo

(49)
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Our main computation is the following:

Theorem 4.29. The equivalence of graded E⊗
∞-algebras of the Corollary 4.26 can be promoted

to an equivalence of graded commutative cosimplicial algebras

Z(p)[ǫ−1] ≃ C∗
∆(BKer,O) (50)

In particular, as BKer is an affine stack (Proposition 4.4) we can write

BKer ≃ Spec∆(Z(p)[ǫ−1])

Proof. By construction, the cosimplicial object C∗
∆(Ker,O)

• in the formula (36) defines an

object in coGr(coSCRgr) and in the terminology of the Construction 4.28 the equivalence (36)

reads as an equivalence in coSCR
gr
./Z(p)

:

C∗
∆(BKer,O) ≃ lim∆[C

∗
∆(Ker,O)

•]

Because the stack BKer is affine (Proposition 4.4) we know that BKer ≃ Spec∆(C∗
∆(BKer,O)).

Now, using the fact Spec∆ is a right adjoint, we deduce an equivalence in coGr(coSCRgr)

C∗
∆(Ker,O)

• ≃ coNerve[C∗
∆(BKer,O)]

where we see C∗
∆(BKer,O) augmented over Z(p) via the atlas. We deduce that

C∗
∆(BKer,O) ≃ lim∆ ◦ coNerve [C∗

∆(BKer,O)]

in coSCR
gr
./Z(p)

.

The commutativity of the diagram (49) tells us that a similar formula holds for the graded

coconnective E⊗
∞-version. Therefore, the equivalence of the Corollary 4.26 tells us that a

similar formula holds for the graded coconnective E⊗
∞-version of Z(p)[ǫ−1], ie, an equivalence

in CAlgccn,gr./Z(p)

θccn(Z(p)[ǫ−1]) ≃ lim∆ ◦ coNerve [θccn(Z(p)[ǫ−1])]

In particular, we have an equivalence in coGr(CAlgccn,gr)

coNerve [θccn((Z(p)[ǫ−1])] ≃ coNerve [θccn((C∗
∆(BKer,O))] ≃ θccn((C∗(Ker,O)•) (51)

Finally, we remark that Ker is a classical affine scheme, so that its global sections are discrete

in the co-simplicial direction. In particular, as the functor θccn : coSCR
gr
Z(p)
→ CAlgccn,grZ(p)

induces an equivalence on discrete algebras, the equivalence (51) lifts to an equivalence in

coGr(coSCRgr)

coNerve [Z(p)[ǫ−1]] ≃ coNerve [C∗
∆(BKer,O)] (52)

and therefore an equivalence in coSCR
gr
./Z(p)
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Z(p)[ǫ−1] ≃ lim∆ ◦ coNerve [Z(p)[ǫ−1]] ≃ lim∆ ◦ coNerve [C∗
∆(BKer,O)] ≃ C∗

∆(BKer,O) (53)

�

5. Representations of the Filtered Circle

We now turn our attention to the classifying stack BS1Fil; note that by Proposition 4.4 this

is an affine stack relatively to A1/Gm . Moreover, by the Remark 3.8, the cohomology ring

C∗(BS1Fil,O) admits a natural structure as a filtered E⊗
∞-algebra.

As we shall see, the ∞-category of S1Fil-representations will coincide with a notion of mixed

complex; but this identification will not preserve the relevant symmetric monoidal structures.

Our first evidence of this is the following

Proposition 5.1. There is an equivalence of filtered E⊗
1 -algebras

C∗(BS1Fil,O) ≃ Z(p)[u]

where u sits in degree 2 and has a split filtration induced by the canonical grading for which u

is of weight −1.

Proof. We construct a map of filtered E⊗
1 -algebras Z(p)[u] → C∗(BS1Fil,O) which realizes this

equivalence. For this we first define a class corresponding to the image of the generator u.

Algebraically, this corresponds to a certain morphism in the∞-category of filtered complexes.

Geometrically, this will correspond to a morphism of stacks BS1Fil → B2Ga (1) where Ga (1)

denotes the filtered group scheme with filtration induced by the pure weight one action of Gm

on Ga . By delooping, this corresponds to a map of filtered groups

Hp∞ → Ga (1)

We take the map given by the composition of the inclusion Hp∞ → Wp∞ with projection on

the weight one factor

π1 : Wp∞ ≃
∏

i≥0

Ga → Ga .

The result is a class u ∈ H2(BS1Fil,O(1)) where O(1) is the line bundle of weight 1 over A1/Gm

(this is the pullback along the structure map A1/Gm → BGm of the line bundle on BGm cor-

responding to the graded Z(p)-module concentrated in weight 1). This map has an incarnation

as a map O(1)[−2] → C∗(BS1Fil,O) in the ∞-category QCoh(A1/Gm ). As C∗(BS1Fil,O) may be

viewed as a filtered E⊗
∞-algebra, and in particular a filtered E⊗

1 -algebra, there is a morphism

of filtered E⊗
1 -algebras induced by the universal property
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Z(p)[u]→ C∗(BS1Fil,O) in AlgE⊗
1
(QCoh(A1

Z(p)
/GmZ(p)

)) (54)

where Z(p)[u] is the free E1-algebra on O(1). We now show that (54) is an equivalence. As in

the Lemma 3.15, it will be enough to show that (54) is an equivalence after evaluating at the

stalks corresponding to the field-value points

(0,Q), (1,Q), (0,Fp), (1,Fp) in A1
Z(p)

/GmZ(p)

As explained in the Remark 3.8, the fiber of (54) at 0 gives

(Z(p)[u])
ass−gr → C∗(B2Ker,O) in AlgE⊗

1
(QCoh(BGmZ(p)

)) (55)

and the fiber at 1

(Z(p)[u])
u → C∗(B2Fix,O) in Alg

E⊗
1
(ModZ(p)

) (56)

One now observes that the proofs of Lemma 4.10 and Lemma 4.13 also work for B2. In this

case, after passing to rational coefficients, the Remark 3.1 and the [Toe06, Cor 2.5.3] tell us

that the maps (55) and (56) become, respectively:

(Q[u])ass−gr → C∗(B2GaQ,O) ≃ C∗(K(Z, 2),Q) (57)

and

(Q[u])u → C∗(B2GaQ,O) ≃ C∗(K(Z, 2),Q) (58)

These maps are equivalences since after passing to cohomology groups we get in both cases

the isomorphism of commutative graded algebras Q[u]→ H∗(K(Z, 2),Q).

Concerning the base change to Fp, we get:

(Fp[u])
u → C∗(B2Fix|Fp ,O) ≃ C∗(K(Zp, 2),O) ≃︸︷︷︸

(18)

C∗(K(Z, 2),Fp) (59)

and because of (43), we know that C∗(Ker|Fp ,O) and C∗(Zp,O) are equivalent as coalgebras.

But then using limit formula similar to (36) we deduce that that C∗(BKer|Fp ,O) and C∗(BZp,O)

are equivalent as coalgebras. In particular, their categories of representations are equivalent,

ie,. QCoh(B2(Ker|Fp ) and QCoh(B2(Z(p))) are equivalent. But then, their cohomology of

global sections are necessarily equivalent

C∗(K(Ker|Fp , 2),O) ≃ C∗(K(Zp, 2),O)

Finally, we get
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(Fp[u])
ass−gr → C∗(K(Ker|Fp , 2),O) ≃ C∗(K(Zp, 2),O) ≃︸︷︷︸

(18)

C∗(K(Z, 2),Fp) (60)

It is clear that both (60) and (59) produce the same isomorphism after passing to cohomology

Fp[u] ≃ H∗(K(Z, 2),Fp)

�

Before we proceed with the ramifications of Proposition 5.1, we recall in a bit more detail

the notion of mixed complexes.

Definition 5.2. Let Λ := Z(p)[ǫ] = H∗(S
1,Z(p)) be the graded associative algebra freely

generated with ǫ in degree −1 with ǫ2 = 0. The dga Λ is graded, with ǫ sitting in weight 1.

By giving it the split filtration corresponding to this grading, we may consider Λ as a filtered

E1-algebra.

We let ModΛ denote the ∞-category of Λ-modules; note that, as a category of modules

over a filtered algebra it acquires the structure of a filtered ∞-category, equivalently a sheaf

of E⊗
∞-categories over A1/Gm .

Proposition 5.3. (i) The pullback along the map (17) : S1 −→ (S1Fil)
u induces a sym-

metric monoidal equivalence

QCoh(B(S1Fil)
u) ≃ QCoh(BS1)

(ii) There exist a natural symmetric monoidal equivalence

ModΛ ≃ QCoh(B(S1Fil)
gr)

compatible with the graduations on both sides.

Proof. (1) The fact that the pullback along (17) is equivalence is a consequence of proposition

Proposition 5.1. Indeed, both of these categories are generated by the (non-compact) gen-

erator which is the unit. In particular the above functor is essentially surjective. Moreover,

Proposition 5.1 implies that the above functor is also fully faithful.

(2) The proof is essentially the same as for (1), except that we have to produce a symmetric

monoidal ∞-functor

ModΛ −→ QCoh(BKer).

Such a functor is obtained as follows. We can consider Λ′ = H∗(Ker,O) as a strict commutative

dg-Hopf algebra. It then has a strict symmetric monoidal category of comodules ComodstrictΛ′ ,

which can be localized along quasi-isomorphism to produce a symmetric monoidal∞-category
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equivalent to ModΛ. On the other hand, the symmetric monoidal ∞-category QCoh(BKer) is

obtained as a limit (by descent from ∗ to BKer)

QCoh(BKer) ≃ limn∈∆QCoh((Λ′)⊗n).

Note that ComodstrictΛ′ is itself also the limit of Modstrict(Λ′)⊗n by now as strict symmetric monoidal

1-categories. After inverting the quasi-isomorphism inside this limit we get a naturally defined

symmetric monoidal ∞-functor

(limn∈∆Mod(Λ′)⊗n)[q − iso−1] −→ limn∈∆QCoh((Λ′)⊗n).

We get this the desired symmetric monoidal ∞-functor

ModΛ −→ QCoh(BKer).

The fact that this is an equivalence on the underlying categories is a similar argument based

again on the fact that the unit generates these categories and Proposition 5.1. By construction

this equivalence is clearly compatible with the action of Gm on both sides.

�

6. The HKR Theorem

We are now ready to state and prove the HKR theorem and Theorem 1.3 for a general

simplicial commutative k-algebra A ∈ SCRk (and more generally for derived schemes or stacks

by gluing) where k is a fixed commutative Z(p)-algebra.

The filtered circle S1Fil sits over Z(p) and we pull-it back over Spec k to make it a filtered

group stack over k. We will continue to denote it by S1Fil.

Construction 6.1. Recall that any A ∈ SCRk possesses a derived de Rham algebra DR(A/k).

For us this is a graded mixed E⊗
∞-algebra constructed as follows. When A is smooth over k,

DR(A/k) simply is the strictly commutative dg-algebra SymA(Ω
1
A/k) endowed with its de Rham

differential. This is a strictly commutative monoid inside the strict category of graded mixed

complexes, and thus can be considered as a E⊗
∞-algebra object inside QCoh(B(S1Fil)

gr), the

symmetric monoidal ∞-category of graded mixed complexes (here over k).

This produces an ∞-functor from smooth algebras over k, and thus from polynomial k-

algebras, to graded mixed E⊗
∞-algebras. By left Kan extension we get the de Rham functor

DR : SCRk −→ CAlg(QCoh(B(S1Fil)
gr)).

Remark 6.2. We will see below that the functor DR as defined above with values in E⊗
∞-

algebras in QCoh(B(S1Fil)
gr) can be refined to take in values "simplicial commutative mixed
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graded algebras". More precisely, what this means is that we can exhibit it as a functor with

values in derived affine schemes over (S1Fil)
gr, which contains slightly more information.

Construction 6.3. The functor of global sections produces a symmetric lax-monoidal ∞-

functor

QCoh(B(S1Fil)
gr) −→ QCoh(BGm ).

which formally corresponds to taking homotopy fixed points with respect to the action of the

graded group stack (S1Fil)
gr. We will denote it by (−)h(S

1
Fil
)gr . The composition

SCRk
DR

// QCoh(B(S1Fil)
gr) // QCoh(BGm )

sends A to the the derived de Rham complex of A

LD̂R(A/k) := DR(A/k)h(S
1
Fil
)gr ∈ CAlg(QCoh(BGm )).

This is a graded E⊗
∞-algebra whose piece of weight i will be denoted by LD̂R

≥i
(A/k). Note

that the weight i pieces vanish when i < 0, and morally speaking LD̂R
≥i
(A/k) should be un-

derstood as the complex
∏

q≥i(∧
qLA/k[−q]) endowed with the total differential d+ ddR, where

d is the cohomological differential induced from A and ddR is the de Rham differential.

Definition 6.4. Let X = Spec A be an affine derived scheme over k. The filtered loop space

of X (over k) is defined by

LFilX := Map/A1/Gm
(S1Fil,X × A1/Gm ).

This is a derived scheme over A1/Gm equipped with a canonical action of the group stack S1Fil.

Construction 6.5. Let π : Y → A1/Gm be a (derived) stack over A1/Gm . We use the notation

Ofil(Y ) := π∗OY

for the push-forward of the structure sheaf; this is an object of the∞-category QCoh(A1/Gm )

of filtered k-modules. For Y = LFilX as above, Ofil(LFilX) will carry a canonical action of S1Fil
as the structure map

π : LFilX → A1/Gm

is S1Fil-equivariant. Hence we view Ofil(LFilX) as an object in QCoh(BS1Fil); by Proposition 5.3-

(i) its underlying object can be identified with an S1-equivariant E⊗
∞-algebra, and by Proposition 5.3-

(ii) its associated graded with a graded mixed E⊗
∞-algebra. See also Remark 3.8.
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We are now ready to prove our HKR theorem:

Theorem 6.6. Let X = Spec A be an affine derived scheme over k and LFilX its filtered loop

space.

(1) The derived stack LFilX is representable by an affine derived scheme relative to A1/Gm .

(2) The composition with the natural map (17) : S1 −→ (S1Fil)
u
k = BFixk. induces an isomorph-

ism of derived schemes:

Mapk((S
1
Fil)

u
k,X) −→ Mapk(S

1,X) (61)

(3) There is a natural equivalence of graded derived schemes

Mapk((S
1
Fil)

gr
k ,X) ≃ Spec SymA(LA/k[1]). (62)

(4) The cohomology E⊗
∞-algebra O(LFilX) endowed with its natural S1Fil-action is such that

(a) Its underlying object is naturally equivalent to HH(A/k), the Hochschild homology of

A over k, together with its natural S1-action.

(b) Its associated graded is naturally equivalent to DR(A/k) as a graded mixed E⊗
∞-algebra.

(c) Being compatible with the circle action, the filtration descends to fixed points and

makes

HC(A)− = HH(A)S
1

a filtered algebra, whose associated graded pieces are the truncated complete derived

de Rham complexes LD̂R
≥p

(A/k).

Proof. We start by the fact (1) that LFilX is relatively affine. For this we first notice that its

truncation is simply the truncation of X, and thus that it is an affine scheme. In order to

prove that LFilX is affine it just remains to check that LFilX has a global cotangent complex,

admits an obstruction theory and is nil-complete (see [TV08] Appendix C). But this follows

easily from the fact that it is a mapping derived stack from BHp∞, the classifying stack of a

filtered group scheme.

We now analyse the statement (2). The map (61) is obviusly an isomorphism on the

truncations, as these will just be truncations of X. We claim that it also an equivalence of

derived schemes. Indeed, we check that it induces an equivalence on cotangent complexes,

because, thanks to the Proposition 5.3-(i), S1 and (S1Fil)
u
k have the same quasi-coherent co-

homologies . In more detail, we let B be an arbitrary simplicial commutative k-algebra,
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and let u : Spec(B) × BFixk → X be a B-point of the mapping stack Map((S1Fil)
u,X). The

cotangent complex of Mapk(B(S
1
Fil)

u,X) at u is given by

LMapk(B(S
1
Fil
)u,X),u ≃ p!u

∗LX ,

where p! : QCoh(SpecB×BFixk)→ ModB is the left adjoint of the pullback functor along the

canonical projection to SpecB. The existence of this left-adjoint is specific to our situation: as

S1 is a finite CW-complex, the base change (17)B := (17)×SpecB exibits SpecB×BFixk as the

affinization of S1B. It then follows from an argument similar to the one of the Proposition 5.3-

(i) that the the pullback along (17)B induces a monoidal equivalence of categories

QCoh(SpecB × BFixk)
∼

// QCoh(S1B) ≃ Fun(S1,ModB) (63)

In particular, the pullback along (17)B preserves all limits, and commutes with the pullback

along the projections to SpecB. This pullback p∗ assigns to a object in ModB the trivial S1-

action. In particular, it commutes with all limits and therefore admits a left adjoint p!. It

follows that these left adjoints coincide on the l.h.s and r.h.s of (63). In particular, in the r.h.s

it takes on the role of the "homology" push-forward functor of local systems of B-modules on

S1

colimS1 : Fun(S1,ModB)→ ModB

Finally, this implies that (61) is an isomorphism of derived schemes. The statement about

the Hochschild complex follows.

We now arrive at the statement (3), which is the true content of the theorem. We start by

noticing the existence of commutative square of graded affine stacks

Spec k[ǫ] //

��

Spec k

��

Spec k // (S1Fil)
gr
k .

Such a commutative square of stacks is given by an element of Ker(k[ǫ]) interpreted as a map

Speck[ǫ]→ Ker ≃ Ω (S1Fil)
gr

which simply is the Witt vector (1 − ǫ.t)−1. This is in the kernel of the Frobenius because

ǫp = 0.

This square induces a commutative diagram of graded derived affine schemes, obtained by

mapping to X

SymA(LA) Xoo

X

OO

Mapk((S
1
Fil)

gr
k ,X).

OO

oo
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This in turn produces a natural morphism of derived stacks

Mapk((S
1
Fil)

gr
k ,X) −→ X ×Spec SymA(LA) X ≃ Spec SymA(LA[1]).

To check its an equivalence we proceed as usual, we prove its is isomorphism on truncations

as well as on cotangent complexes. This second assertion is a consequence of the fact that the

cohomology of BKerk is the split square zero extension Z(p)[ǫ−1] (see Theorem 4.29).

To finish the proof of the theorem, we have to compare the two ∞-functors

SCRk −→ CAlg(QCoh(B(S1Fil)
gr
k ))

The first one given by DR(−/k), the second given by

A 7→ O(Mapk((S
1
Fil)

gr
k ,Spec A))

. For this, we first notice that if we forget the action of the group (S1Fil)
gr (i.e. the mixed

structure), then these two ∞-functors are equivalent and given by A 7→ SymA(LA[1]). As the

functor A 7→ LA is obtained by left Kan extension from polynomial rings (see Notation 1.8),

this shows that the same is true for the two functors to be shown to be equivalent. In other

words, we can restrict these to the category of polynomial k-algebras.

We then observe that for any polynomial k-algebra A the space of graded mixed structures

on the graded E⊗
∞-algebra SymA(Ω

1
A/k[1]) is a discrete space. Indeed, this follows from the

fact that the space of graded E⊗
∞-endomorphisms is itself discrete, because the weight grading

coincide with the cohomological grading (as in the proof of Lemma 4.22). As a consequence,

in order to show that the two above ∞-functors are equivalent it is enough to show that for a

fixed polynomial k-algebra A, the natural isomorphism of graded algebras

DR(A/k) ≃ O(LFil(X))

intertwine the two graded mixed structures. We can even be more precise, the compatible

graded mixed structures on the graded E⊗
∞-algebra DR(A/k) form a discrete space which

embeds into the set of k-linear derivations A −→ Ω1
A.

As a result, we are reduced to prove that, by the above identification, the differential obtain

from the (S1Fil)
gr-action on the right hand side

d : π0(O(LFil(X)) ≃ A −→ π1(O(LFil(X))) ≃ Ω1
A/k

is indeed equal to the standard de Rham differential. For this, we can of course assume that

k = Z(p), as the general case would be obtained by base change. But in this case all complexes

involved are torsion free; one may then simply base change to Q to check the the mixed

structure above is the de Rham differential. But the result is well known in characteristic zero

(see [TV11]). �
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7. Applications and complements

7.1. Towards shifted symplectic structures in non-zero characteristics. Let k be a

commutative Z(p)-algebra. We assume that p 6= 2.

For a commutative simplicial k-algebra A, Theorem 6.6 provides a filtration F ∗ on the

negative cyclic homology complex HC−(A/k) and tells us that the graded pieces are canonically

given by

GriFHC
−(A/k) ≃ LD̂R

≥i
(A/k).

The∞-functorsA 7→ HC−(A/k) and A 7→ LD̂R
≥i
(A/k) are extended by descent to all derived

stacks Y:

HC−(Y/k) = limSpec A→Y HC−(A/k)

and this comes equiped with a canonical filtration whose graded pieces are LD̂R
≥i
(Y/k), also

defined by left Kan extension. The natural generalization of the notion of shifted symplectic

structures of [PTVV13] is the following definition.

Definition 7.1. (i) For a derived stackY over k, we define the complex of closed q-forms

on Y to be

Acl,q(Y/k) := GrqFHC
−(Y/k)[−q] ≃ LD̂R

≥q
(Y/k).

(ii) A closed 2-form ω of degree n on a derived stack Y is non-degenerate if the underlying

element in Hn(Y,∧2LY/k) is non-degenerate in the sense of [PTVV13].

The above definition is a rather naive notion, we believe that there exists more subtle

versions. For instance, it is very natural to ask for a shifted symplectic structure to lift to

an element in F 2HC−(Y/k). In characteristic zero, the HKR theorem implies that there is

always a canonical lift, but outside of this case lifts might not even exists (and if they do might

not be canonical). The data of such lifting seems of some importance to us, in particular for

questions concerning quantization.

This will be investigate in a further work, and as a first example of existence of such lifting

we show below that most shifted symplectic structures constructed in nature do possesses such

a lifting, by means of the Chern character construction.

Recall the existence of a Chern character Ch : Kc(A) −→ HC−(A/k), which is here con-

sidered as a map of spectra (see for instance [TV15]). Note also that Kc stands here for the

space of connective K-theory of A. This map can be enhanced into a morphism of stacks of

spaces on the site of derived affine schemes over k

Ch : Kc −→ HC−
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(Kc is the stack associated to A 7→ Kc(A), note that A 7→ HC−(A/k) is itself already a stack

because HH itselt is a stack in the étale topology [WG91]).

There is a graded determinant map

detgr : Kc −→ Z× BGm

sending a perfect complex E to (rank(E), det(E)), where rank(E) ∈ Z is the Euler characteristic

of E and det(E) is its determinant line bundle.

Proposition 7.2. The composition Ch≤2

Kc Ch
// HC−(A/k) // HC−(A/k)/F 2

factors naturally through the graded determinant map

Kc detgr
// Z× BGm −→ HC−(A/k)/F 2.

Proof. As explained in [Gil81] the chern character map is completely determined by a morph-

ism of underived stacks of spaces

Z× BGl∞ −→ HC−,

or equivalently by a series of morphisms

Z× BGln −→ HC−

together with compatibility data for the standard inclusions Gln ⊂ Gln+1. This essentially

reduces the proposition to a statement about the Chern character of the universal bundle on

Z × BGln as a class in π0(HC
−(Z × BGln)/F

2). We can use the HKR filtration to see that

HH(BGln) ≃ H∗(Gln, A), where A is the ring of formal functions on Gln near the identity,

and H∗(Gln, A) is the cohomology of the group scheme Gln acting on A by conjugation. In

particular, HH(BGln) is positively graded. The associated graded of HH(BGln) can be identified

with H∗(Gln,Symk(gl
∗
n)), where gln is the lie algebra of Gln. In particular, we have that the

graded circle BKer acts trivially on H∗(Gln,Symk(gl
∗
n)) in such a manner that we have

π0(Gr0F (HC
−(BGln))) ≃ k πi(Gr0F (HC

−(BGln))) ≃ 0 ∀i > 0.

In the same manner, we have that

π0(Gr1F (HC
−(BGln))) ≃ (gl∗n)

Gln ≃ k πi(Gr1F (HC
−(BGln))) ≃ 0 ∀i > 0.

From this we deduce that there is a short exact sequence

0 //
∏

Z k // π0(HC
−(Z× BGln)/F

2) //
∏

Z k // 0.

Consider now the determinant morphism Z×BGln −→ Z×Gm . This morphism clearly induces

an isomorphism of invariants covectors on lie algebras

k ≃ gl∗1 ≃ (gl∗n)
Gln .
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As a result, using the short exact sequence above we see that the determinant map induces

an isomorphism

π0(HC
−(Z × BGln)/F

2)) ≃ π0(HC
−(Z× BGm )/F 2).

It can be checked that this identification matches the image of the chern character of the

universal bundle on Z× BGln with the one on BGm . The results follows. �

As a consequence of the proposition we can consider the fiber of the graded determinant

map

Kc,0 −→ Kc −→ Z× BGm ,

in order to obtained a reduced chern character

Ch≥2 : K
c,0 −→ F 2HC−.

Moreover, there is a canonical section of the graded determinant map Z×BGm −→ Kc which

simply sends a pair (n,L), of an integer and a line bundle, to the perfect complex L[n]. This

section defines a canonical retraction

r : Kc −→ Kc,0

which morally sends a vector bundle V on V − rank(V )− det(V ). Note that as the section is

a not a map of spectra the retraction r is merely a morphism of stacks of spaces which is not

additive in any sense.

As a result we have defined a reduced chern character map

Ch≥2 : K
c −→ F 2HC−.

For example, we can apply this reduced chern character on the stack BSln for the univer-

sal vector bundle. The resulting chern character is an element in π0(F
2HC−(BSln)) whose

projection in π0(Gr2FHC
−(BSln)) ≃ (Sym2(sl∗n))

Sln is the trace quadratic form, and thus is

non-degenerate.

Similarly, we can consider the derived stack Perf0 of perfect complexes with fixed de-

terminant. The reduced chern character of the universal object will produce an element in

F 2HC−(Perf0 /k) which is a natural lift of the closed 2-form defining the 2-shifted symplectic

structure on Perf0.

7.2. Filtration on Hochschild cohomology. As a second example of possible applications

of the filtered circle, we explain here how it can also provide interesting filtrations on Hoch-

schild cohomology. For this, we will have to consider S1Fil not as a group anymore but as a

cogroup object inside filtered stacks. It is even more, as it carries a E⊗
2 -cogroupoid structure

over A1/Gm which can be exploited to get a filtration on Hochschild cohomology compatible

with its natural E2-structure. Moreover, all the constructions in this part make sense over the

sphere spectrum, and so provide filtrations on topological Hochschild cohomology as well.
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As a start we consider the natural closed embedding of stacks

0 : BGm →֒ A1/Gm .

The direct image of the structure sheaf defines a commutative cosimplicial algebra over A1/Gm .

Let us denote it by E, and let O −→ E be the unit map. The nerve of this map produces

a groupoid object inside commutative cosimplicial algebras over A1/Gm , which is denoted by

E(1). In the same manner, we can consider the nerve of O −→ E(1) to get an E⊗
2 -groupoid

object (that is a groupoid object inside groupoid objects) E(2) and so on and so forth.

We define this way an E⊗
n -groupoid object E(n) inside the ∞-category of commutative

cosimplicial algebras over A1/Gm .

Definition 7.3. The filtered n-sphere is defined to be Spec∆E(n+1). It is an E⊗
n+1-cogroupoid

object in affine stacks over A1/Gm . It is denoted by SnFil.

Note that SnFil possesses an underlying object of (1, ..., 1)-morphisms. Explicitly, this is given

by Spec H∗(Sn,Z(p)), and is called the formal or graded sphere. When n = 1 we recover our

filtered circle S1Fil as a filtered affine stack, but now it comes equiped with an E⊗
2 -cogroupoid

structure rather than a group structure.

We now consider L
(n)
F ilX = Map(SnFil,X), for a derived affine scheme X = Spec A. The

cogroupoid structure on SnFil endows L
(n)
F ilX with an E⊗

n+1-groupoid structure acting on X.

Passing to functions and taking linear dual we get a filtered E⊗
n+1-algebra over Zp whose un-

derlying object is HH∗
E⊗
n
(A), the n-the iterated Hochschild cohomology of A, and the associated

graded is SymA(LA[n])
∨, the dual of shifted differential forms, which can be defined as shifted

polyvector fields over X. In summary, we expect the following proposition:

Proposition 7.4. Let k be a commutative Zp-algebra, and A a commutative simplicial k-

algebra. The iterated Hochschild cohomology HH∗
E⊗
n+1

(A/k), carries a canonical filtration com-

patible with its E⊗
n+1-multiplicative structure, whose associated graded is the E⊗

∞-algebra of

n-shifted polyvectors on X.

The last proposition can be used, for instance, in order to define singular supports of

coherent sheaves, or of sheaves of linear categories, over any base scheme. For instance, in the

context of bounded coherent sheaves, this will allow us to extend the notion and construction

of [AG15].

7.3. Generalized cyclic homology and formal groups. The filtered circle S1Fil we have

constructed in this paper is part of a much more general framework that associates a circle

S1E to any reasonable abelian formal group E. To be more precise:
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Construction 7.5. We can start by an abelian formal group E over some base commutative

ring k, and assume that E is formally smooth and of relative dimension 1 over k. The Cartier

dual GE of E is a flat abelian group scheme over Spec k, obtained as Spec O(E)∨, where

O(E)∨ is the commutative and cocommutative Hopf algebra of distributions on E. Because

E is smooth and of relative dimension 1, O(E)∨ is a flat commutative k-coalgebra which is

locally for the Zariski topology on k isomorphic to k[X] with the standard comultiplication

∆(Xn) =
∑

i+j=n

(n
i

)
Xi ⊗Xj . The E-circle is defined as the group stack over k defined by

S1E := BGE.

Under reasonable assumptions on E the stack S1E is an affine stack over k. Moreover, its

∞-category of representations, QCoh(BS1E) is naturally equivalent to the∞-category of mixed

complexes over k, at least locally on Spec k. To be more precise, if we denote by ωE the

line bundle of relative 1-forms on GE , the∞-categoryQCoh(BS1E) is equivalent to ωE-twisted

mixed complexes, namely comodules over the k-coalgebra k⊕ωE [−1]. However, the symmetric

monoidal structure on QCoh(BS1E) corresponds to a non-standard monoidal structure on mixed

complexes that depends on the formal group structure on E.

The filtration on (S1Fil)
u whose associated graded is (S1Fil)

gr seems to also exists in some

interesting examples of formal group laws. We will address this in future works.

We recover the results in this paper when E is either the additive or the multiplivative

formal group Ĝa , resp. Ĝm :

Construction 7.6. Let k be a commutative ring. There exists a filtered group deforming

Gm k to Ga k. Namely, given λ ∈ k take Gλ
m k =: Spec(k[T, 1

1+λT ]). This is a group scheme

under the multiplicative rule T 7→ 1⊗ T + T ⊗ 1 + λ.T ⊗ T and unit T 7→ 0. When λ = 0 we

get Ga k and for λ = 1 we get Gm k. Taking formal completions this deforms Ĝm k to Ĝa k.

Proposition 7.7. Let k = Z(p). Then

S1
Ĝa

:= BG
Ĝa
≃ (S1Fil)

gr and S1
Ĝm

:= BG
Ĝm
≃ (S1Fil)

u

Moreover, the filtration on Fix is Cartier dual to the filtration on Ĝm k of Construction 7.6.

Proof. The proposition is equivalent to the claims that:

(i) Fix is Cartier dual to Ĝm ;

(ii) Ker is Cartier dual to Ĝa ;

(iii) the filtrations are Cartier dual

This is precisely the content of [SS01, Theorem]. �

Let E be an abelian formal group over k as before and S1E the corresponding E-circle. For

any derived affine k-scheme X we define the E-loop space LEX := Map(S1E ,X), that comes
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equiped with an S1E-action. The E-Hochschild homology of X over k is by definition the com-

plex of functions O(LEX). It is denoted by HH(X,E). The S1E-action on HHE(X) induces a

mixed structure on HH(X,E) whose total complex computes the S1E-equivariant cohomology

and is called by definition the negative cyclic E-homology HC−(X,E). When a filtration exists

on E, then there is an HKR-type filtration on HC−(X,E) whose associated graded is again

derived de Rham cohomology.

Of course, the results of this work are recovered when E is taken to be the multiplicative

formal group law and we recover an isomorphism of filtered group schemes Hp∞ = GET
. See

[SS01].

An example of particular interest is when E comes, by completion, from an elliptic curve.

The corresponding Hochscild and cyclic homology can be called elliptic Hochschild and cyclic

homology and its features will be studied in future works.

7.4. Topological and q-analogues. The filtered circle S1Fil constructed in this work pos-

sesses at least two extensions, both of quantum /non-commutative nature: one as a non-

commutative group stack over the sphere spectrum and a second extension as filtered group

stack over Z[q, q−1].

7.4.1. q-analogue. As a start, working around the prime p can be relaxed and definitions can

be done over Z. A first possibility is simply to use big Witt vectors and define the filtered

group scheme H as the intersection of all kernels of the endomorphisms Gp for all primes p.

There is however a second possible description, which has the merit of showing the natural

q-deformed version, which we now describe.

We start by the filtered formal group G, interpolating between the formal multiplicative

and the formal additive group over Z. The corresponding formal group over A1 is given by

X + Y + λXY where λ is the coordinate on the affine line. The underlying formal group is

Ĝm whereas the associated graded is Ĝa together with its natural graduation given the natural

action of Gm. The algebra of distributions of the filtered formal scheme G defines a filtered

commutative and cocommutative Hopf algebra R. This algebra can be described explicitely

as being the algebra of integer valued polynomials, that is the subring of Q[X] formed by

all polynomials P such that P (Z) ⊂ Z. The filtration is then induced the the degree of

polynomials.

The associated graded to this filtration is the ring GrR of divided powers over Z. This is

the subring of Q[X] generated by the Xn

n! .

An integral version of the filtered group scheme Hp∞ , and of the filtered circle S1Fil, can then

be defined as HZ := Spec(Rees(R)), where Rees(R) is the Rees construction associated to
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the filtered Hopf algebra R. The integral version of the filtered circle is then defined to be

S1Fil,Z := BHZ.

It is a pleasant exercise to show that when restricted over Spec Zp this recovers our filtered

circle S1Fil. We believe that all the statement proved in this work can be extended over Z, but

some of the strategies of proof we use do not obviously extend to the situation where we deal

with an infinite number of primes.

One advantage of the above presentation using integer valued polynomial algebras is the

striking fact that these admits natural q-deformed versions. The q-deformed version Rq of the

ring R is introduced and studied in [HH17], and is essentially the Cartan part U0(sl2) of the

divided power quantum group of Lusztig (see [HH17] end of section 4). In particular, we think

that the filtered Hopf algebra R possesses a q-deformed version Rq, which is a commutative

and cocommutative filtered Hopf algebra over Z[q, q−1], recovering R when q = 1. The

spectrum of this provides a q-deformed version of HZ that we denote by HZ,q. Its classifying

stack is by definition the q-deformed filtered circle.

Definition 7.8. The q-deformed filtered circle is the filtered stack S1Fil,Z(q) := BHZ,q. It is a

stack over A1/Gm × Spec Z[q, q−1].

As in Theorem 6.6, by considering the derived mapping stack Map(S1Fil,Z(q),X), it is then

possible to define q-analogues of Hochschild and cyclic homology of a scheme X, together

with a filtration whose associated graded should gives back the notion of q-deformed derived

de Rham cohomology of [Sch17].

However, to make the above definition precise requires some extra work. For instance, it

seems to us that the associated graded of S1Fil,Z(q) can not truly exist as a naive commutative

object and requires to work over some braided monoidal base category associated to Z[q, q−1],

as this is done for instance in the theory of Ringel-Hall algebras, see for instance [LZ00]. In

fact, we expect the associated graded of S1Fil,Z(q) to be of the form BK(q), where K(q) is the

spectrum of the Ringel-Hall algebra over the one point Quiver. This particular point together

with the precise meaning of the q-deformed filtered circle, will be investigated in a future work.

7.4.2. Topological Analogue. Let us mention yet another extension of the filtered circle,

now over the sphere spectrum. We do not believe that the filtered stack S1Fil can exist as a

spectral stack in any sense, as the associated graded (S1Fil)
gr probably cant exist over the sphere

spectrum. However, it is possible to construct a non-commutative version of this object, using

the 2-periodic sphere spectrum of [Lur15]. As shown in [Lur15] there exists a filtered E⊗
2 -

algebra whose underlying object is SK(Z,2) (so is E⊗
∞) but its associated graded is a 2-periodic

version of the sphere spectrum S[β, β−1]. This 2-periodic sphere spectrum is known not to
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exist as an E⊗
∞-ring. However, we can consider the natural augmentation

SK(Z,2) −→ S

and consider the spectrum

A := S⊗SK(Z,2) S

As a mere spectrum, this is equivalent to the group ring over the circle A ≃ S[K(Z, 1)].

However, the E2-filtration on SK(Z,2) induces a structure of a filtered bialgebra on A, which

should be considered as a non-commutative analogue of the filtered circle.

More precisely, we would like to consider the dual filtered bialgebra B = A∗ and consider

SpecB in some sense to produce a topological version of the filtered circle. We however do

not know how to exploit the existence of B.
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