A universal Hochschild-Kostant-Rosenberg theorem - Archive ouverte HAL
Article Dans Une Revue Geometry and Topology Année : 2022

A universal Hochschild-Kostant-Rosenberg theorem

Résumé

In this work we study the failure of the HKR theorem over rings of positive and mixed characteristic. For this we construct a filtered circle interpolating between the usual topological circle and a formal version of it. By mapping to schemes we produce this way a natural interpolation, realized in practice by the existence of a natural filtration, from Hochschild and cyclic homology to derived de Rham cohomology. The construction our filtered circle is based upon the theory of affine stacks and affinization introduced by the third author, together with some facts about schemes of Witt vectors.
Fichier principal
Vignette du fichier
1906.00118.pdf (973.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02157779 , version 1 (17-06-2019)
hal-02157779 , version 2 (30-11-2022)

Identifiants

Citer

Tasos Moulinos, Marco Robalo, Bertrand Toën. A universal Hochschild-Kostant-Rosenberg theorem. Geometry and Topology, 2022, 26, pp.777-874. ⟨10.2140/gt.2022.26.777⟩. ⟨hal-02157779v2⟩
155 Consultations
504 Téléchargements

Altmetric

Partager

More