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On the complexity of Minimum colored Maximum Matching

Johanne Cohen, Yannis Manoussakis, Jonas Sénizergues

June 17, 2019

Abstract

We deal with three aspects of the complexity of the problem of finding a maximum
matching that minimizes the number of colors in a vertex-colored graph. We first prove
that it is W[2]-hard, next that it is hard to approximate in a similar way as the Set Cover
problem, and finally that it is fixed-parameter tractable for a suitable (yet meaningful)
choice of parameter.

1 Introduction

Graphs are a powerful modelisation tool, whose uses are widespread. But when dealing with
complex systems, we often want to use additional information along with the structure they
offer. There are many works that deal with label graphs, such as edge-weighted graphs, that
add a such new layer of informations on the edges of the graph.

Another natural path would be to add information would be to put it in the edges, and
we will focus on that one, by studying graphs where the additional layer of information is
given by a coloration of the vertices. This formalism can be used, for example, to modelize
the Web, where we complete the underlying graph with a coloration on each vertex to capture
the type of content it holds. By choosing a constraint on colors, many new interesting objects
and problems emerge.

This work, that focus on the variation of the Maximum Matching problem while mini-
mizing the number of colors, follows a previous study on another variation of that problem
where the maximum matching was said to be tropical [2], a notion first introduced in [4].

A vertex-colored graph is a couple Gc = (G, c) where G = (V,E) is a simple undirected
graph and c a coloring on V (i.e. a function giving a color to each vertex in V ). Observe that
it doesn’t need to be a proper coloration : Two adjacent vertices can be of the same color.

Hc′ is said to be a (vertex-colored) subgraph of Gc a vertex-colored graph when H is a
subgraph of G and c′ is c restricted to V (H).

Given the definition, Hc′ can be alternatively written Hc or H, when it’s clearly stated
that it is a subgraph of Gc.

We’ll also use the following notations concerning vertex-sets and edge-sets when it’s con-
venient :

• For G a graph, V (G) denotes its vertex-set, E(G) its edge-set
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• For M a set of edges from G, V (M) denotes the vertex-set of the subgraph induced by
M

• Given x and y two vertices, xy denotes the edge, if any, between x and y in G.

While, in a graph Gc where G = (V,E), for x a vertex in V , c(x) is already well-defined,
we’ll also use the following notations :

• For A a set of vertices, subset of V , c(A) denotes direct image of A by c (the set of the
colors of A)

• For H a subgraph of Gc, c(H) denotes the direct image by c of its vertex-set

• For M a set of edges, subset of V , c(M) denotes the direct image by c of the vertex-set
of the subgraph of G induced by M

In a vertex-colored graph (V,E)c, a set of vertices A ⊂ V is said to be tropical when the
set of colors used on A is exactly the one used on the whole coloration of the graph (ie when
c(A) = c(V )). By extension, a set of edges M is said to be tropical when the vertex-set of its
induced subgraph is tropical (ie when c(M) = c(V )).

The problem of finding a maximum matching is a classical one, but let’s define that
properly so we can extend it to the colored case.

A matching M is a subset of edges of E(Gc) such that any two edges of the matching have
no common incident vertex. The vertices incident to an edge of M are said to be matched or
covered by M . A maximal matching is a matching that is maximal (under inclusion), while
a maximum matching is a matching with highest cardinality among all possible matchings
(which is trivially always a maximal matching).

The decision problem associated to this optimisation problem is known to be polyno-
mial [6], but what happens when we add some constraint on the colors to the problem ? For
example one could think about the tropical version of the problem :

Tropical maximum matching

Input: A vertex-colored graph Gc

Output: A tropical maximum matching M of Gc if any

We can observe that a perfect matching is always tropical, consequently the above question
is interesting for maximum (not perfect) matchings. In [3], the authors handle this case,
giving a polynomial-time algorithm. Using their Theorem 2.2, an immediate corollary is that
we still have a polynomial time algorithm when we replace tropical with maximum colored :

Maximum (vertex-)colored maximum matching

Input: A vertex-colored graph Gc

Output: A maximum matching M in Gc with maximum number of colors

An other natural variation is to consider the minimization of the number of colors instead
of maximizing it :

Minimum (vertex-)colored maximum matching (MCMM)
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Input: A vertex-colored graph Gc

Output: A maximum matching M in Gc with minimum number of colors

That problem, however, is not as easy to solve, as we will prove. The corresponding deci-
sion problem, is indeed NP-hard. More than that, one cannot expect to solve easily instances
of MCMM whose solution has few colors, since as we will show, it is, when parametrized by the
number of colors of the solution, at least as hard as Minimum Dominating Set parametrized
by the size of the solution, as we will prove in Section 2.

For approximate solution to Minimum edge-colored Maximum Matching, since finding a
regular maximum matching is easy, one could spontaneously think of using the number of
colors of such matching as weight to evaluate the quality of a maximum matching as an
approximation. As we will prove in Section 3, our problem, parametrized in such fashion, is
nearly as hard as the Set Cover problem regarding approximation.

However, as hard as the problem can be with the most natural parameter, there is an
other sensible one -the size of a maximum matching- with which the problem becomes FPT
(Fixed-Parameter Tractable), as we prove in Section 4.

2 W[2]-hardness of MCMM

In this section we prove the following hardness result.

Theorem 2.1. Minimum colored maximum matching (MCMM) is W [2]-hard on trees con-
sidering the total number of colors of the input as parameter.

The proof of this theorem is based on a reduction from the Dominating Set problem and
uses the construction and lemmas below. In particular it will be an immediate consequence
of Lemma 2.7.

Given a connected graph G = (V,E), let us define from G a vertex-colored tree T c as
follows :

• V (T ) = {xu|u ∈ V } ∪ {xu,v|v ∈ N(u)} ∪ {x′0, x0}

• E(T ) = {x0xu|u ∈ V } ∪ {xuxu,v|v ∈ N(u)} ∪ {x′0x0} ?

Then, we color the vertices of T with n+ 1 colors so that :

• c(x′0) = c(x0) = 0

• For every u ∈ V , c(xu) = 0

• For each (u, v) ∈ V ×N(u), c(xu,v) = v

Notice that |V (T )| = |V |+ 2|E|+ 2, and |E(T )| = |V |+ 2|E|+ 1, and that we can build
T c in polynomial time from G. Notice also that there are |V |+ 2 internal vertices.

In order to facilitate discussions, in the sequel, we let R denote the function that given G
as an input returns T c. The following series of lemmas explores the properties of R.
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Lemma 2.1. {x′0x0} ∪ {xuxu,u|u ∈ V } is a maximum matching of R(G)

Proof. One can easily see that {x′0x0} ∪ {xuxu,u|u ∈ V } is a matching, and that there is no
augmenting path, since all paths that go from an unmatched vertex to another are of length 4.
Thus, it is a maximum matching.

An immediate consequence of the previous lemma is that the size of any maximum match-
ing of R(G) is |V |+ 1.

Lemma 2.2. If M is a matching of R(G) and M ∩ {x0xu|u ∈ V } 6= ∅, then M is not a
maximum one.

Proof. Let M be a matching of R(G).

Assume that x0xu ∈ M for some u ∈ V . Then since M is a matching, x′0x0 and xuxu,u
are not in M , so x′0, x0, xu, xu,u is an augmenting path and M is not maximum.

Lemma 2.3. Let v be a vertex in G. Any maximum matching of R(G) uses exactly one edge
in {xvxv,v, xvxv,u : (v, u) ∈ E}, and contains edge x′0x0.

Proof. We prove this lemma by contraction. Assume that a maximum matching M of R(G)
has no edge in {xvxv,v, xvxv,u : (v, u) ∈ E}. Since x0xu 6∈ M , by Lemma 2.2, M ∪ {xuxu,u}
is a matching greater than M , a contradiction to the maximality of M .

By the same argument, x′0x0 must be in M , which concludes the proof.

LetM be a maximum matching ofR(G). We then define g by g(M) = {v|∃u ∈ V, xuxu,v ∈M}.

Lemma 2.4. If M is a maximum matching of R(G), then g(M) is a dominating set of G.

Proof. Let u be a vertex of G. As M is a maximum matching of R(G), by Lemma 2.3, M
has one edge in {xuxu,u, xuxu,v : vu ∈ E}, say xuxu,v.

By the definition of g(M), v ∈ g(M), which ensures that u is dominated by v and also by
g(M).

Lemma 2.5. If M is a k+1-colored maximum matching of R(G), then g(M) is a dominating
set of G of size k.

Proof. Let M be a maximum matching of R(G) with k + 1 colors.

By Lemma 2.3, Color 0 is always covered by a maximum matching of R(G), and M covers
k other colors in V . If M contains color v ∈ V , then by construction of R(G), there is some u
such that xuxu,v ∈M . The definition of function g implies that v ∈ g(M). Thus |g(M)| ≥ k.

Conversely, if M does not contain color v ∈ V , by construction of R(G), there is no vertex
u such that xuxu,v ∈M . Moreover v 6∈ g(M) (by definition of g). Thus |g(M)| ≤ k

We conclude that |g(M)| = k, and since g(M) is a dominating set of G by Lemma 2.4,
g(M) is then a dominating set of G of size k.

Lemma 2.6. Graph G admits a dominating set of size k if and only if R(G) admits a
maximum matching with k + 1 colors.

4



Proof. By Lemma 2.5, if R(G) admits a maximum matching with k + 1 colors, G admits a
dominating set of size k.

Conversely, Assume that S is a dominating set of size k in G.

Let α be an arbitrary injective valuation on V . For each u ∈ V we define ϕ by

ϕ(u) =

{
u, if u ∈ NG(u) ∩ S
minα(NG(u) ∩ S), otherwise

Since S is a dominating set of G, for each u ∈ V,NG(u) ∩ S is not empty, and ϕ is then
well-defined.

Then we define a matching M = {x′0x0} ∪ {xuxu,v|v = ϕ(u)}, which is maximum since it
is of size |V |+1. Furthermore any vertex covered by M is of color either 0 or u ∈ S, and each
of those k + 1 colors appears at least once (if u ∈ S then by construction xuxu,u ∈ M and
xu,u has u as a color). Consequently M is then k+ 1-colored, which concludes the proof.

Lemma 2.7. R is a FPT-reduction from the Dominating Set problem with parameter size of
the optimal solution to the MCMM problem on trees with parameter number of colors of the
optimal solution.

Proof. Immediate, from Lemma 2.6 and the fact that R uses polynomial time in the size of
the input (and thus, is a FPT -reduction regarding any parameter).

Thus, Theorem 2.1 holds as an immediate corollary of Lemma 2.7.

3 Hardness of approximating MCMM

We consider as candidates for approximating MCMM any maximum matching, with weight
function being the number of colors used. For that definition, we prove the following inap-
proximability result.

Theorem 3.1. Minimum colored maximum matching cannot be approximated with approx-
imation ratio better than log(n + 1)(1 − o(1)) (where n is the number of internal vertices)
unless P = NP .

The proof of this theorem is based on a reduction from the Set Cover problem, which is
known to be non-approximable with approximation ratio better than log(n)(1− o(1)) [5].

Minimum Set Cover

Input: A finite set U , and F ⊂ P(U) of subsets of U , such that U =
⋃
F∈F

F

Output: Ξ ⊂ F such that U =
⋃
F∈F

F with minimum cardinality

As it is more convenient for us, we will use the equivalent following form of the problem :

Minimum Set Cover (bipartite graph)

Input: A bipartite graph G = (U, V,E) such that no u ∈ U is isolated and no two

5



v, v′ vertices of V have the same neighbours in U

Output: Ξ ⊂ V such that U =
⋃
v∈Ξ

N(v) \ {v} with minimum cardinality

The proof of Theorem 3.1 uses the construction and lemmas below.

Given an instance of Set Cover G = (U, V,E), we define a vertex-colored tree T c defined
as follows :

• V (T ) = {x′0, x0} ∪ {xu|u ∈ U} ∪ {xu,v|u ∈ U, uv ∈ E}

• E(T ) = {xuxu,v|u ∈ U, uv ∈ E} ∪ {xux0|u ∈ U} ∪ {x′0x0}

Then we color the vertices of T with n+ 1 colors so that :

• c(x′0) = 0, c(x0) = 0, and for each u ∈ U , c(xu) = 0

• For each uv ∈ E, c(xu,v) = v

Notice that |V (T )| = |U |+ |E|+ 2, |E(T )| = |U |+ |E|+ 1, and that we can obtain T c in
polynomial time from G.

In order to facilitate discussions, in the sequel, we let Q denote the function that given G
as an input returns T c. The folowing lemmas explore the properties of Q.

Lemma 3.1. {x′0x0} ∪ {xuxu,v|u ∈ U, uv ∈ E} is a maximum matching of G

Proof. One can easily see that there is no augmenting path, since all paths that go from an
unmatched vertex to another are of length 4.

Moreover, no maximum matching can use an edge that doesn’t cover a leaf, since this
would create an augmenting path.

Lemma 3.2. If M is a matching of Q(G) and M ∩ {x0xu|u ∈ U} 6= ∅, then M is not a
maximum matching.

Proof. Let M be a matching of Q(G).

Let’s suppose that x0xu ∈M for some u ∈ U . Since there is no isolated vertex in G, there
exists v ∈ V such that uv ∈ E. Then since M is a matching, x′0x0 and xuxu,v are not in M ,
so x′0x0xuxu,v is an augmenting chain and M is not maximal therefore not maximum.

Lemma 3.3. Let u be a element in U . Any maximum matching of Q(G) uses exactly one
edge in {xuxu,v|uv ∈ E}, and contains the edge x′0x0.

Proof. Let M be a maximum matching of Q(G). Let’s suppose that there exists u ∈ U such
that M ∩ {xuxu,v|uv ∈ E} = ∅. Since x0xu 6∈M by Lemma 3.2, M ∪ {xuxu,v} would be also
a matching of greater size than M , a contraction to the maximality property of M .

By the same argument, x′0x0 must be in M , which concludes the proof.

Given a maximum matchingM ofQ(G), we then define g by g(M) = {v ∈ V |∃u, xuxu,v ∈M}.
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Lemma 3.4. If M is a maximum matching of Q(G), then g(M) ∪ {0} = c(M) and g(M) =
c(M) \ 0

Proof. Let M be a maximum matching of Q(G).

For v ∈ g(M), by definition of g(M) there exists u ∈ U such that xuxu,v ∈ M , thus
v ∈ c(M). Since we have also 0 ∈ c(M) (by Lemma 3.3, x′0x0 ∈M), g(M) ∪ {0} ⊂ c(M).

Conversely, for v ∈ c(M) \ {0}, there must exist u ∈ U such that xuxu,v ∈ M (since
only those edges can touch colors different from 0). By definition of g(M), v ∈ g(M). Thus,
c(M) ⊂ g(M) ∪ {0}.

Therefore, we have g(M)∪{0} = c(M), and the second equality follows immediately, since
0 /∈ g(M) by definition.

Lemma 3.5. If M a maximum matching of Q(G), then g(M) is a set cover of G.

Proof. Let M be a maximum matching of Q(G) and u be a vertex from U . As M is a
maximum matching of Q(G), by Lemma 3.3 there exists v such that xuxu,v is in M , which
ensures that u is covered by g(M).

Lemma 3.6. If M is a k + 1-colored maximum matching of Q(G), then g(M) is a set cover
of G of size k.

Proof. Let M be a maximum matching of Q(G).

By Lemma 3.5, g(M) = c(M) \ 0, so we have |g(M)| = |c(M)| − 1 = k (since 0 ∈ c(M)
by direct corollary of Lemma 3.3). By Lemma 3.5, g(M) is also a set cover, which conclude
the proof.

Lemma 3.7. G admits a minimal set cover of size k if and only if Q(G) admits a minimaly
colored maximum matching (ie a matching whose set of colors is minimal, but could not be
minimum) with k + 1 colors.

Proof. Let α be a choice function on V .

By Lemma 3.6, if Q(G) admits a minimally-colored maximum matching M with k + 1
colors, then G admits a set cover g(M) of size k.Assume that g(M) was not minimal, i.e.
that there exists v0 ∈ g(M) such that g(M) \ {v0} is a set cover of size k − 1. For u ∈ U , let
us denote ϕ(u) = α({v|uv ∈ E, v ∈ g(M) \ {v0}}) (which is well-defined since g(M) \ {v0} is
a set cover of G). We can then define M ′ =

{
xuxu,ϕ(u)|u ∈ U

}
∪ {x0x

′
0}. Notice that M ′ is a

maximum matching since it’s a matching of size |U |+ 1, and by construction its color set is
included in (g(y) ∪ {0}) \ {v0}, contradiction with the minimality of the color set of M .

Conversely, let S be a minimal set cover of G of size k. For u ∈ U , let us denote
ψ(u) = α({v|uv ∈ E, v ∈ S}) (which is well-defined since S is a set cover of G). Then we
define M = {x′0x0} ∪

{
xuxu,ψ(u)|u ∈ U

}
. This matching M is of the same size as the one

presented in Lemma 3.1. Thus it is a maximum matching with at most k+ 1 colors, since all
colors used are in S. It remains to prove that M has k+ 1 colors and is minimally-colored. If
it was false, that would mean either that it is not minimally-colored, or that M has not k+ 1
colors. IfM was not minimally-colored, there would be a maximum matchingM ′ ofQ(G) such
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that c(M ′) ( c(M) ⊂ S∪{0}. If M had not k+1 colors, then we would have c(M) ( S∪{0}.
Therefore, in both case, there exists a matching M◦ such that c(M◦) ( S ∪ {0} which is
equivalent to g(M◦) ( S. But g(M◦) is a set cover of G of size at most k−1 (by Lemma 3.7),
a contradiction to the minimality of S.

Proof of Theorem 3.1

From every not minimal set cover one can extract in polynomial time a minimal set cover that
is smaller than the previous one. Then, without loss of generality, we only consider minimal
set covers as approximation candidates for the Minimum Set Cover problem.

Let’s suppose that MCMM is approximable on trees, with ratio γ(m) where m is the
number of internal vertices of the MCMM instance. Given an instance G of the Set Cover
problem, then we use Q in order to compute in polynomial time an instance of MCMM of
size less than m. By the above hypothesis we can compute a γ(|V |)-approximation of that
instance of MCMM. Then we can use g to compute in polynomial time a set cover which
is, by Lemma 3.7, of same size as the approximate solution to MCMM, that is, at most a
γ(|V |)-approximation of the solution of the Minimum Set Cover on |G|.

Then, if γ(n) was asymptotically better than log(n + 1)(1 − o(1)), the corresponding
approximation ratio for Set Cover would be better than log(n)(1−o(1)), contradiction unless
P=NP [5].

Thus, Theorem 3.1 holds.

4 MCMM is FTP when parametrized by the maximum size
of a matching in the input graph

In this section, we prove the following result :

Theorem 4.1. Minimum colored maximum matching is FPT with the size of a maximum
matching in the input as parameter.

To show this, we will construct an exploration tree in a much similar way as in [8].

Let Gc be a vertex-colored graph with maximum matching size k.

We consider an arbitrary maximum matching M0 of G obtained in polynomial time.

Notation. I0 = V (G) \ V (M0), and G[M0] be the subgraph induced by V (M0) in G.

If we consider a minimum-colored maximum matching M∗, we can assert that each edge
of M∗ has at least one commun vertex extremity with M0 (otherwise M0 is not a maximum
matching). Thus we can split edges of M∗ into two parts, the one included in G[M0] and the
remaining ones.

We are going to use that property to decompose the search for an optimal solution.

In similar way, we are going to use other ”natural” splits to decompose the configuration
space we want to explore. For the first splits, we will remain exhaustive (as, for those, it
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doesn’t cost much), and then we will only follow arbitrarily some paths when we are sure that
thoses choices will produce an optimal solution if there is any in that part of the configuration
space.

Then, we will build the exploration tree as follows :

From the root ω0, we branch, for every possible selection (M,S) where M ⊂ E(G[M0]) is
a matching, S ⊂ V (G[M0]) \ V (M), and |M | + |S| = k, on ωM,S labelled (M,S,C) with C
being the set of colors that are represented in M or in S.

At that point, we have created at most Tk
(

2k
k

)
new leaves, where Ti is the i-th

telephon number.
This enumeration can be done in time O(k× T (k)22k) (O(k) by distinct choice).

Then, for every leaf ω labelled (M,S,C) we branch for every partition Σ of S on ωΣ

labelled (M,Σ, C).

For each previous leaf, we created the B|S| ≤ Bk possible partitions of S which
can be enumerated in time O(kBk) (O(k) by distinct partition).

Then, for every leaf ω labelled (M,Σ, C), we branch for every possible choice of partial
injective coloration of nonempty parts of Σ by C, Ξ, on ωΞ labelled (M,Σ,Ξ). We formally
define Ξ as a function Ξ : Σ→ C ] {0} injective on Σ \ Ξ−1(0).

For each leaf of the previous step, we created at most

min(|C|,|Σ|)∑
i=0

i!

(
|C|
i

)
≤ min(|C|, |Σ|)!× 2|C| ≤ k!× 2k

possible partial injective coloration of Σ (and that much new leaves), which can
be enumerated in time O(k × k!× 2k) (O(k) by distinct coloration).

For every leaf produced at the previous step, labelled (M,Σ,Ξ), we compute monochro-
matic matchings for every part of the partition s ∈ Σ :

• If Ξ(s) 6= 0, we compute, if any, µ a matching between s and vertices of I0 of color Ξ(s),
and we write Γ(s) = {µ}. If no such matching exists, Γ(s) = ∅.

• If Ξ(s) = 0 then for every color c0 ∈ c(V ), we compute, if any, µ a matching between s
and vertices of I0 of color c0, and denote by Γ(s) the set of those matchings truncated
at k+ 1 (if we have more than k+ 1, we only keep the k+ 1 first matchings computed).

We relabel that leaf (Γ,Σ,Ξ)

For each current leaf, for every color, we computed at most a maximum matching,
each one being computed in O(k5/2) [1].

Then, for each leaf labelled ω labelled (Γ,Σ,Ξ), we compute a maximum matching γ on
the bipartite graph

(Σ, c(
⋃

(s,µ)∈Σ×Γ(s)

V (µ) ∩ I0), {sc(µ)|s ∈ Σ, µ ∈ Γ(s)})

, where c(µ) denote the only color in c(V (µ) ∩ I0)
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Then, we add a child ωγ to ω. If |γ| = |Σ|, we define M∞ =
⋃
sc(µ)∈γ µ and label ωγ with

(γ, |c(M∞)|), else we label it with ⊥.

For a previous leaf, the computation of the auxilliary matching can be done in
O(k5/2) [1], the following computation of a matching of G takes O(k2), and
finally the computation of its number of colors |c(M∞)| in O(k). It is then a
O(k5/2).

Lemma 4.1. The exploration tree described above can be computed in time O(k4TkBkk!23k|V |)
from a given maximum matching on G.

Proof. From the analysis boxed between steps of the tree construction we have that the tree
can be computed in

O(k1/222kTk × (k +Bk(k + k!× 2k(k + k × |im(c)| × k5/2 + k5/2))

Which is then O(k4TkBkk!2k|V |), (by taking |im(c)| = O(|V |)).

Remark. For any ε > 0, the above is O((ke )(3/2+ε)k|V |).

Lemma 4.2. There exists a leaf in the research tree which is labelled by a maximum matching
whose number of colors is minimal.

Proof. Let Mopt be a minimum colored maximum matching. Let us decompose it relatively
to M0 into Mopt = Min ]Mout where :

• Min = Mopt ∩ E(G[V (M0)])

• Mout = Mopt\Min ⊂ V (M0)×I0 (the inclusion come from the fact that there cannot exist
an edge between two vertices outside V (M0) since it would contradict the maximality
of M0)

We define Sout = V (Mout)∩V (M0) and go in the exploration tree to ω, the vertex labelled
(Min, SMopt , c(Min) ∪ c(SMopt)). Which exists since we branched exhaustively.

We compute the following partition of Sout :

Σ = {{u ∈ Sout|uv ∈Mout, c(v) = c0} |c0 ∈ c(V (Mout) ∩ I0}
and search among the children of ω for the child ω′ labelled with Σ, which exists since we

branched on all the partitions.

Then we define Ξ(s) as the only color in c(V ({uv|u ∈ s, uv ∈Mout}) ∩ (c(Min ∪ c(Sout))
if it is nonempty (there cannot be more than one color in that set from the construction of
Σ), and as 0 otherwise. From the construction of P, Ξ is injective on Σ \ Ξ−1(0). We search
for ω′′ the child of ω′ having Ξ in his labelling, which exists since we branched on all possible
partial permutations of already chosen colors on the parts of the partition.

Considering the maximum matching computed at that point in the construction of the
exploration tree of the following bipartite graph

Ω = (Σ, c(
⋃

(s,m)∈Σ×Ξ(s)

V (m) ∩ I0), {sc(m)|s ∈ Σ,m ∈ Γ(s)})
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, where c(m) denote the only color in c(V (m) ∩ I0)

We know that the computed maximum matching is of size |Σ|, since we can construct the
following matching :

• For all s ∈ Σ that have k or less edges in Ω, we take the edge corresponding to the color
attributed to s in MOPT (that is the only color in c({u|uv ∈MOPT , v ∈ s})). That color
appears in Ω since we exhaustively enumerated possible colors for s ∈ Σ that had less
than k possible color to match to. Let us denote by nmatched the number of s ∈ Σ in
this situation.

• Then, there are at most k−nmatched parts of Σ that still needs to be matched. For every
one of those s, Γ(s) contains k + 1 matchings of different colors on the I0) side, that is
for every one of those s, it has edges to k + 1 colors in Ω, at least k + 1− |nmatched| >
k−|nmatched| of them not being already matched. We can then choose greedily a different
color to match every remaining s ∈ Σ.

The described matching is of size |Σ|, so the maximum matching computed when con-
structing the exploration tree must have size |Σ|. Then, by construction of the exploration
tree, the only child of ω′′ can’t be labelled ⊥, and is labelled with a maximum matching M∞.
In that matching, the parts of Σ that are matched to colors already in Min or in Sout are
the same as in MOPT (since there is only one edge from those in Ω). Every other parts of
Σ is matched in M∞ to a different new color (a color not appearing in Min or Sout) as it is
the case in MOPT by construction of Σ. Thus M∞ has the same number of colors as MOPT ,
which conclude the proof of Lemma 4.2.

Proof of Theorem 4.1

Since we supposed that G admits a maximum matching of size k, by Lemma 4.2, the size of the
exploration tree, and its construction time, we conclude that we can compute a Minimum-
colored Maximum Matching in O(|E|

√
|V |) + O(k4TkBkk!2k|V |) (the O(|E|

√
|V |) coming

from the construction of the arbitrary maximum matching M0 [9]) and thus Theorem 4.1
holds.
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