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We develop a greedy algorithm that is fast and scalable in the detection of a nested partition
extracted from a dendrogram obtained from hierarchical clustering of a multivariate series. Our
algorithm provides a p-value for each clade observed in the hierarchical tree. The p-value is ob-
tained by computing a number of bootstrap replicas of the dissimilarity matrix and by performing
a statistical test on each difference between the dissimilarity associated with a given clade and the
dissimilarity of the clade of its parent node. We prove the efficacy of our algorithm with a set of
benchmarks generated by using a hierarchical factor model. We compare the results obtained by
our algorithm with those of Pvclust. Pvclust is a widely used algorithm developed with a global
approach originally motivated by phylogenetic studies. In our numerical experiments we focus on
the role of multiple hypothesis test correction and on the robustness of the algorithms to inaccuracy
and errors of datasets. We also apply our algorithm to a reference empirical dataset. We verify that
our algorithm is much faster than Pvclust algorithm and has a better scalability both in the number
of elements and in the number of records of the investigated multivariate set. Our algorithm pro-
vides a hierarchically nested partition in much shorter time than currently widely used algorithms
allowing to perform a statistically validated cluster analysis detection in very large systems.

INTRODUCTION

Hierarchical clustering (HC) is a popular data analy-
sis procedure grouping elements of a set into a hierarchy
of clusters [1]. It is widely used in many research fields.
Examples are computational biology [2], genomics [3],
neuroscience [4–6], psychology [7], finance [8, 9] and eco-
nomics [10]. Once a dissimilarity (or similarity) measure
between elements is defined and a clustering procedure is
selected the hierarchical clustering algorithm is fully de-
fined. The algorithm is deterministic and it is providing
as an output a hierarchical tree (also called dendrogram).
However, the detection of a dendrogram does not mean
that one also obtains a hierarchical nested partition as
an output of the HC. Historically, the simplest and most
popular way to obtain a partition from a hierarchical tree
was to cut the dendrogram at a fixed dissimilarity value.
With this simple approach, such a cut is defining the
composition of clusters. They are selected by consider-
ing the groups of elements linked in the tree at a dissim-
ilarity value smaller than the threshold value. Several
methods have been proposed to select an optimal dissim-
ilarity threshold, as the one discussed in Ref. [11]. Other
authors have proposed to determine the most appropriate
partition of elements by obtaining its number of clusters
with different approaches. Examples are methods based
on the gap statistics [12], squared error [13], connectiv-
ity [14], Dunn index [15], or silhouette width [16]. The
R package clValid allows to compute hard partitions (i.e.
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partitions where an element can belong only to a single
cluster) with most of the previously cited methods [17].
The dynamical cut tree method provides a different ap-
proach, which allows a cut of the dendrogram at different
distances levels [18].

Felsenstein focused on the problem of assessing the sta-
tistical significance of the clusters obtained by HC [19]
within phylogenetic studies. Specifically, he proposed to
associate a p-value to each clade of hierarchical tree. In
phylogeny such a p-value provides a direct information
on the evolutionary hypothesis associated with the for-
mation of the clade. The method used to estimate the
p-value was based on a bootstrapping procedure. Since
the introduction of the original statistical procedure, a
long debate has been ongoing in the statistical litera-
ture. Efron proposed a way to refine the test [20].
More recently, Shimodaira implemented the refinement
of Efron [20], developed the so-called approximately unbi-
ased (AU) test based on bootstrap [21, 22], and achieved
a higher accuracy with respect to the previous proposed
statistical tests. An R-package with the implementation
of this test (AU test), named Pvclust, was released in
Ref. [23] and it is currently widely used in phylogenetic
and genomic analyses.

It is worth noting that Felsenstein’s approach is a
global approach assessing the statistical reliability of the
presence of all clades (i.e. groups of elements differenti-
ating above a given value of dissimilarity) in bootstrap
replicas of the original data. For this reason, the method
is quite slow for large system. For some large systems
the time could be so long that its application is unfeasi-
ble. Another problem of applicability of Pvclust to large
set of data concerns the aspects of multiple hypothesis
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test correction [24]. In fact, by repeating many times a
statistical test to assess the statistical reliability of the
observation of each clade one needs multiple hypothesis
test correction. However, the currently available multiple
hypothesis test corrections, such as for example the con-
trol of the false discovery rate (FDR) [25], guarantee a
highly controlled number of false positive at the expenses
of a large number of false negative. Due to this limitation,
the above cited Pvclust algorithm is often used without
multiple hypothesis test correction opening the way to
the potential presence of a number of false positive.

In addition to the methods motivated by a phyloge-
netic approach, other methods have been proposed more
recently to associate a statistical significance to hierarchi-
cal partitions obtained by using hierarchical clustering.
The primary interest for estimating such p-values origi-
nates in microarray expression studies but the methods
proposed can be applied to any system investigated by hi-
erarchical clustering. Examples of these approaches are
the permutation test that quantifies the significance of
each division of a hierarchical tree as proposed in Ref.
[26] and the comparison of similarity measures with per-
mutation based distribution of similarity between ele-
ments obtained under the null hypothesis of no cluster
in the data [27].

In this work, we propose a greedy algorithm based on
bootstrap resampling that associates a p-value at each
clade of a hierarchical tree. Our algorithm gives good
results when applied to benchmarks mimicking the com-
plexity of hierarchically nested complex systems [8, 9].
We call our algorithm statistically validated hierarchi-
cal clustering (SVHC). Specifically, for each pair of par-
ent and children nodes in the hierarchical tree, we test
the difference between the proximity measure (in our ap-
proach a dissimilarity) associated with a clade h and the
dissimilarity measure associated with the clade defined
by its parent node in the genealogy of the dendrogram.
The statistical test we perform consider as a null hypoth-
esis that the dissimilarity of the parent node is larger
than the dissimilarity of the children node. Our tests are
performed by considering multiple hypothesis test correc-
tion. In fact, we always apply the control of FDR [25]. By
selecting those clades that reject our null hypothesis, we
identify a hierarchically nested partition involving a cer-
tain number of elements of the investigated systems. In
order to evaluate the performance of our method, we test
it with some benchmarks obtained by using a hierarchical
factor model [28]. In our tests, we compare our results
with the ones obtained with Pvclust with and without
a multiple comparison correction. Finally, we apply our
algorithm to an empirical dataset. This dataset was orig-
inally obtained in Ref. [29] and was used as an example
in the paper describing Pvclust [23].

Our algorithm is highly accurate when applied to
benchmarks obtained from hierarchical factor models and
is also highly informative in the analysis of empirical
datasets. Being our approach heuristic and local the algo-
rithm cannot guarantee detection of global optimal solu-

tions. This is of course a limitation of our algorithm. The
positive aspect of this limitation is that our algorithm is
very fast and highly scalable and therefore can be used for
large datasets that would otherwise need extremely long
computer time to provide results. With our algorithm
one can perform a screening of large data sets, analyze
results and then apply most demanding algorithms only
to those sets of data that provides interesting results with
a greedy approach.

METHODS

Statistically Validated Hierarchical Clustering

Let us assume that a clade originating from node h has
associated a dissimilarity measure ρpq. This is the dis-
similarity value where the p and q children clades join in
h. In the next step of the agglomerative algorithm, the
clade originating at h node joins the clade originating
at k node and form the clade l. The dissimilarity value
defining the clade l is ρhk. The agglomerative procedure
of the hierarchical clustering requires that the dissimilar-
ity ρpq must be lower than ρhk. This is the basic aspect
of the hierarchical clustering procedure that we put at
the core of our algorithm. In fact in our algorithm, for
each pair of parent children clades, we perform a statis-
tical test of the null hypothesis ρhk ≤ ρpq. When our
null hypothesis is rejected, we consider that clade h is
statistically distinct from clade l. The p-value associated
with each test can therefore be used to build up a nested
partition where elements of statistically validated clades
are elements of clusters of the partition. It should be
noted that such a partition is in general a hierarchically
nested partition where an element can be member of sev-
eral nested clusters. We will show below that this p-value
can be computed analytically for Gaussian multivariate
variables and numerically by computing bootstrap repli-
cas of the dissimilarity matrix of the original data.

We consider a multivariate dataset X of dimension
N ×M with N elements and M records or attributes.
We call R the N ×N Pearson’s correlation matrix of X
and we use it as a similarity measure. It is worth noting
that our choice is just a possible choice of a similarity
measure. In fact our procedure works for a generic def-
inition of similarity matrix. We label as σ(x) the set of
elements of clade defined by node x of the dendrogram
and Nx the number of elements that clade x contains.
Hierarchical clustering is performed by using a dissimi-
larity measure. In this work we quantify the dissimilarity
measure according to the definition

ρhk =

∑
i∈σ(h)

∑
j∈σ(k) 1−Rij

NhNk
(1)

where σ(h) and σ(k) are the sets of nodes of clade h and
of clade k in the hierarchical tree, respectively.
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Analytical Derivation of the p-value

We derive an analytical expression of the p-value πh as-
sociated with the null hypothesis Wh = ρhk−ρpq ≤ 0 un-
der the hypothesis that X is a set of multivariate normal
distributed random variables and M is a large number.
Our analytical results are obtained under the assump-
tion that the hierarchical clustering procedure is the av-
erage linkage. Our p-value is defined as the cumulative
distribution function in zero of the stochastic variable
W

(s)
h = ρ

(s)
hk − ρ

(s)
pq , where, ρ

(s)
pq is the sample mean of ρpq

defined as in Eq. (1). To obtain the analytical distri-
bution of Wh we notice that the distribution of a Pear-
son’s correlation coefficient can be well approximated by
a normal distribution for large values of M under the as-
sumption of normal variables. Under all the above cited
assumptions, Wh is the result of a weighted sum of nor-
mal random variables. Due to the central limit theorem,
the probability distribution of Wh converges in probabil-
ity to a normal distribution too. Since the elements of
a correlation matrix are not independent variables, such
sum will be a weighted sum of correlated normal random
variables. In particular, according to Ref. [30], the covari-
ance between two elements Rij and Rlm of a correlation
matrix is

Ξ(i,j),(lm) =
1

2M
{[(Ril −RijRlj) (Rjm −RjlRlm)] +

[(Rim −RilRlm) (Rjl −RjiRil)] +

[(Ril −RimRml) (Rjm −RjiRim)] +

[(Rim −RijRjm) (Rjl −RjmRml)]}
(2)

and therefore the variance of element Rij is

Ξ(ij),(ij) =
1

M

(
1−R2

ij

)2
. (3)

The expected value of the stochastic variable Wh is
E[Wh] = ρpq − ρhk. To estimate the variance of Wh we
must consider the covariance among the elements of the
correlation matrix. Let us notice that the elements of the
correlation matrix that are used to compute the average
distance ρpq are identified by the rectangular matrix of
Np and Nq elements of sets σ(p) and σ(q) respectively.
Similarly the elements needed to compute ρhk are identi-
fied by a rectangular matrix of elements of sets σ(h) and
σ(k) (NhNk elements). By considering the definition of
Wh, its variance is

S[Wh]2 =
1

(NpNq)
2

∑
i∈σ(p)

∑
j∈σ(q)

∑
l∈σ(p)

∑
m∈σ(q)

Ξ(ij),(lm) +

1

(NhNk)
2

∑
i∈σ(h)

∑
j∈σ(k)

∑
l∈σ(h)

∑
m∈σ(k)

Ξ(ij),(lm) +

− 1

NpNqNhNk

∑
i∈σ(p)

∑
j∈σ(q)

∑
l∈σ(h)

∑
m∈σ(k)

Ξ(ij),(lm)

(4)

Finally the p-value πh is given by the cumulative dis-
tribution of a normal distribution with expected value
E[Wh] and standard deviation S[Wh]

πh = P (Wh < 0) =
1

2

[
1 + erf

(
− E[Wh]

S[Wh]
√

2

)]
(5)

Numerical estimation of the p-value

Let us call X(s) a bootstrap copy of X obtained from
sampling with replacement of the columns of X matrix.
Let be R(s) the correlation matrix obtained from a boot-
strap replica. For each bootstrap replica it is possible to
compute for each group of elements a dissimilarity. For
example by considering the set of nodes σ(h) and σ(k) we

can compute the set of dissimilarity
{
ρ
(1)
hk , ρ

(2)
hk , . . . , ρ

(n)
hk

}
and by considering the set of nodes σ(p) and σ(q) we can

compute the dissimilarities
{
ρ
(1)
pq , ρ

(2)
pq , . . . , ρ

(n)
pq

}
where n

is the number of bootstrap replicas. It is worth noting
that such dissimilarities are evaluated according to the
composition of sets σ(x) by using Eq. (1) without com-
puting a hierarchical tree for each bootstrap replica. The
p-value associated to cluster h is defined as

πh =

∑n
i=1 δ(ρ

(i)
hk ≤ ρ

(i)
pq )

n
(6)

where the operator δ(·) is equal to 1 if the inequality
is true, otherwise the operator is equal to 0. In other
words, the p-value is the fraction of times the inequality

ρ
(i)
hk > ρ

(i)
pq is not satisfied in the bootstrap replicas.

Since we are computing a p-value for each node of the
hierarchical tree we face family wise error. In this work,
to perform a multiple hypothesis test correction we use
the procedure of the control of the FDR [25]. The con-
trol of the FDR procedure is implemented as follows: the
N − 2 clades are arranged in increasing order of p-value,
labeled as π(1), . . . , πN−2. We identify the largest integer
kmax such that π(k) ≤ kα/(N − 2) and the clades cor-
responding to the first kmax p-values are used to build
up a nested partition of the elements. The statistical
threshold α is the maximum proportion of false discov-
ery allowed in our statistical test. In this work we choose
α = 0.05.

It should be noticed that in our algorithm the most
computational demanding procedure is the computation
of bootstrap replicas. Since bootstrap replicas are inde-
pendent the one from the other, the algorithm can be
easily and efficiently parallelized.

To illustrate our procedure of numerical estimation of
the p-value, we show two examples of statistical vali-
dation of a clade in Fig. 1. Specifically, we consider
two slightly different sample hierarchical trees. They are
shown in Fig. 1(b) and Fig. 1(e) respectively. The test
aims to evaluate whether the elements from 0 to 59 (i.e.
the clade originating at the node of the dendrogram char-
acterized by the ρpq dissimilarity) are defining a group of
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FIG. 1. Panels (a) and (d) show correlation matrices of slightly similar hierachically nested benchmarks generated with
M = 200. The elements are sorted according to the hierarchical tree of the HC average algorithm. The black boxes indicate the
clusters of the all clades of the hierarchical tree. The green boxes highlight the correlation coefficients used to evaluate ρhk and
ρpq. The red box of panel (d) indicates that cluster of clade h is statistically validated. The elements [0, 29] belongs to the set
of elements σ(p), the elements [30, 59] belongs to the set of elements σ(q), the elements [60, 89] belongs to the set of elements
σ(k), and the elements [0, 59] belongs to the set of elements σ(h). In panels (b) and (e) we show dendrograms of average HC
of dissimilarity matrices associated with the multivariate datasets with correlation matrices of panels (a) and (d) respectively.

In panels (c) and (f) we show the density function of ρ
(s)
hk − ρ

(s)
pq to illustrate how the p-value of the null hypothesis Wh ≤ 0 is

estimated (in these examples we perform n = 100, 000 bootstrap replicas). In the example of panels (a), (b), and (c) the null
hypothesis Wh ≤ 0 is not rejected whereas in the example of panels (d), (e), and (f) the same null hypothesis is rejected

stocks statistically distinct from the set of all stocks. In
the top row of Fig. 1 we show three panels referring to
the case when the null hypothesis Wh ≤ 0 is not rejected
and therefore the clade of elements from 0 to 59 can-
not be considered as a group of elements hierarchically
distinct from all elements. According to the hierarchical
tree, the clade of elements σ(p) (elements [0, 29]) and the
clade of elements σ(q) [30, 59]) join together in the clade
σ(h), originating at ρpq = 0.95. Then the clade σ(h)
joins with clade σ(k) (composed by the element [60, 89])
at the node characterized by the dissimilarity ρhk = 0.96.
In the sample tree, the dissimilarity value ρpq = 0.95 is
smaller then ρhk = 0.96, as shown in Fig. 1(b). However,
in spite of this structure observed in the hierarchical tree
of the sample correlation matrix, the bootstrap analysis

of ρ
(s)
pq and ρ

(s)
hk shows that the null hypothesis Wh ≤ 0

has associated a p-value equal to πh = 0.333 and there-
fore cannot be rejected (see Fig. 1(c)). For this example,
we therefore conclude that the set of elements [0,59] can-
not be distinguished from the set of elements [0,99].

In the bottom row of Fig. 1 we show a slightly different
example. Specifically, in this case the dissimilarity val-
ues are ρpq = 0.88 and ρhk = 0.96, as shown in Fig. 1(e).
In other words, elements [0,59] are slightly more corre-

lated than in the previous case. For this set of data, our
approach concludes that the clade [0.59] is statistically
distinct from the complete set [0.99] since the inequality
Wh ≤ 0 is verified (Fig. 1(f)) only for 0.3% of our boot-
strap replicas. Therefore the null hypothesis Wh ≤ 0 has
associated a p-value πh = 0.003 and after performing the
FDR multiple hypothesis test correction we reject it.

Hierachically nested Benchmark

In our numerical experiments, We use benchmarks of
multivariate datasets obtained with a nested factor model
with r common factors [28]. Specifically, We simulate a
multivariate dataset X of N elements with M records by
using the equation

Xij =

r∑
k=1

Pik Akj + Ui εij (7)

where P is the factor loading matrix of dimension N × r
and A is a factor score matrix of dimension r ×M with
entries that are standardized independent Gaussian vari-
ables orthogonalized with a Gram-Schmidt algorithm.
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The vector Ui is called uniqueness and it is given by

Ui =
√

1−
∑r
j=1 P

2
ij . Finally, εij is also a standardized

Gaussian variable.
A nested factor model is able to generate a multivari-

ate set characterized by a correlation matrix showing hi-
erarchically nested blocks. For example, the multivari-
ate dataset X obtained from the factor loading matrix
P of Fig. 2(a) with N = 100 elements and 12 factors
together with a factor score matrix A with 12 factors
and M = 500 records has associated the correlation ma-
trix shown in Fig. 2(b). With this choice of P each

1 2 3 4 5 6 7 8 9 10 11 12
Factor

0

20

40

60

80

100

Ob
je

ct

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

P i
j

(a)

0 20 40 60 80 100
Object

0

20

40

60

80

100

Ob
je

ct

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Pe
ar

so
n 

co
rre

la
tio

n
(b)

FIG. 2. (a) Example of factor loading pattern matrix. (b) Per-
son’s correlation matrix obtained from a multivariate dataset
obtained by using the factor loading matrix of (a) with with
r = 12 and a factor score matrix r × M with r = 12 and
M = 500 standardized independent Gaussian variables.

factor corresponds to a block on the correlation matrix,
and an element i is a member of the block associated
with the r factor if Pir has a positive value. Specifi-
cally, the factor loading matrix of Fig.2(a) has all posi-
tive elements equal to 0.4, and it produces twelve blocks
of sizes {100, 50, 25, 25, 25, 10, 15, 15, 5, 10, 10, 5}. In
some numerical experiments we add noise to each record
to investigate the robustness of the algorithms to inaccu-
racy and errors of the datasets. This is done by comput-
ing

Xij = (1− λ)X ′ij + λεij

where X ′ij is the dataset without noise, ε is a standard-
ized Gaussian variable, and λ ∈ [0, 1] is the parameter
controlling the amount of noise inserted into the dataset.

In numerical experiments discussed in the Results sec-
tion, we are using the factor loading matrix of Fig. 2(a)
and a number of modifications of it. However, we have
tested the robustness of our results for many other factor
loading matrices.

Comparing partitions

The comparison metric used in this paper to assess
the similarity of two hierarchically nested partitions is
the overlapping normalized mutual information (ONMI)
[31]. ONMI is a variant of the normalized mutual in-
formation (NMI) [32]. NMI(x, y) measures the amount
of information obtained about a partition x through the

knowledge of another partition y, or vice-versa. NMI was
defined to compare hard partitions. It was generalized
to compare overlapping partitions in Ref. [33]. Later au-
thors of Ref. [31] proposed the modification of the ONMI
metric that we are adopting in this paper. It is worth
stressing that a hierarchical partition is a special case of
an overlapping partition, with overlapping groups con-
strained to be nested.

RESULTS

Comparison between the analytical and bootstrap
based p-value

We first report a numerical experiment comparing the

bootstrap based p-value π
(b)
h of our algorithm with the

analytic p-value π
(a)
h for Gaussian and Student’s t multi-

variate variables.

The Gaussian case

We numerically generate a set of multivariate uncorre-
lated Gaussian random variablesX. The set hasN = 100
elements with M = 1000 records each. Our numerical
experiment is done for different values of the number of
bootstrap replicas n. In Fig. 3(a), we show an example of
the bootstrap probability density function of the stochas-
tic variable Wh for a selected clade h compared with the
result of the analytical computation. In Fig. 3(b), we

also show a scatter plot between π
(a)
h and π

(b)
h of one

bootstrap realization for two values of n = (102, 105).
It is worth noting that the bootstrap p-values converge
to their analytical values for large values of n. In our
numerical experiments we do not detect any bias in the
numerical estimation of bootstrap p-values for Gaussian
multivariate data.

Student’s t-distribution case

In order to study the sensitivity of the analytic esti-
mation to the Gaussian hypothesis we compare analyti-
cal and bootstrap p-values in the case of a multivariate
dataset X of uncorrelated t-distributed random variables
of N = 100 elements with M = 1000 records each. The
probability density function of a t-distributed variable is

f(x) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

x2

ν

)− ν+1
2

. (8)

The parameter ν controls the finiteness of main mo-
ments. Specifically, for 1 < ν ≤ 2 the variance is not
defined, for 2 < ν ≤ 4 the variance is finite, but the
kurtosis is not defined and for ν > 4 both variance and
kurtosis are finite. It is worth recalling that a value of
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FIG. 3. Numerical experiments performed with uncorrelated
multivariate random variables. (a) Histogram of the prob-
ability density function of Wh for a selected clade obtained
by using n = 104 bootstrap replicas of Gaussian multivariate
random variables. The red line is the analytical probability
density function obtained under the hypothesis of Gaussian
variables.(b) Scatter plot of e p-values of analytic computation

π
(a)
h versus p-values obtained with bootstrap π

(b)
h for two val-

ues of n. Each point refers to the p-value of a clade (Gaussian
random variables). (c) Histogram of the probability density
function of Wh for a selected clade obtained by performing
n = 104 bootstrap replicas. The red line is the analytical
probability density function expected for Gaussian variables
for Student’s t multivariate random variables. (d) Scatter plot

of π
(a)
h versus π

(b)
h for different values of the parameter ν of

Student’s t random variables. Each point refers to the p-value
of a clade.

ν ≈ 3 has been observed in several financial studies [34].

In Fig. 3(c), we show an example of the bootstrap prob-
ability density function of the stochastic variable Wh for
a selected clade h compared with the analytic probabil-
ity density function expected for Gaussian variables. We
note that the analytical Gaussian p-value underestimates
the variance of the stochastic variable Wh. This conclu-
sion is confirmed by inspecting Fig. 3(d) where we show

a scatter plot between π
(a)
h and π

(b)
h for different values

of ν. It is worth noting that for large value of ν the
discrepancy between analytical and bootstrap p-values is
progressively reduced since the t-distribution converges
to the Gaussian when ν → ∞ [35]. We therefore con-
clude that numerical investigations are therefore essential
when the probability density function of the multivariate
dataset differs from a Gaussian multivariate.

Experiments on the Benchmark

Here we investigate the effectiveness of our algorithm
in retrieving the true hierarchical nested partition of a
representative benchmark. We also compare our results

with the outputs of the algorithm Pvclust [23]. We show
that the SVHC algorithm has a good scalability for large
systems. For this reason, by considering that our al-
gorithm is preferentially suggested to investigate large
systems a multiple hypothesis test correction is part of
the algorithm. On the other hand, the multiple hypoth-
esis test correction is an option in the Pvclust algorithm.
To take into account this important difference, we are
comparing the two algorithms by considering the SVHC
output and two outputs of Pvclust, the first obtained
without multiple hypothesis test correction (labeled in
our figures as ”single”) and the second obtained with the
control of the FDR (labeled as ”FDR”). Partitions inves-
tigated in this paper are by construction hierarchically
nested partitions. We therefore compare hierarchically
nested partitions.

Hierarchical partitions

In a second set of numerical experiments (see Fig. 4),
we explore the robustness of the two algorithms to dif-
ferent levels of noise in the detection of hierarchically
nested partitions of the benchmark. For low levels of
noise (λ ≤ 0.4) the SVHC algorithm has a very good
performance both in terms of ONMI with the true parti-
tion of the benchmark (see Fig. 4(a)) and in terms of the
number of clusters detected (see Fig. 4(b)). In the analy-
sis of the figure, it should be noted that the benchmark is
characterized by 12 nested clusters. Pvclust ”single” has
a similar performance for low values of λ but the quality
of the detected hierarchical partition is strongly affected
by the option about the multiple hypothesis test correc-
tion. In fact, in Fig. 4(a) we observe that the hierarchical
partition of Pvclust ”FDR” has lower performance than
the one of Pvclust ”single”.

For values of the noise parameter λ > 0.4 both the
SVHC and the Pvclust algorithms reduce their ability
to retrieve the true hierarchical partition and they have
similar performances concerning the ONMI metric. How-
ever, the outputs obtained by the two algorithms are
characterized by a different types of error. In fact, in
Fig. 4(b) we show that starting from noise parameter
λ ≈ 0.4 the output of the algorithm Pvclust ”single”
starts to be characterized by an increasing number of
clusters whereas the SVHC presents the opposite case.
As a result, in statistical terms the partition retrieved
from the SVHC algorithm is more precise than the one
obtained from Pvclust ”single” , although it lacks in the
recall (i.e. it has a large number of false negative).

In a third set of numerical experiments we investigate
the effectiveness of algorithms in retrieving the true hier-
archical partition as a function of the number of elements
N of the system. In these experiments we again use a
benchmark with twelve nested clusters. This is done by
using the same type of benchmark of Fig. 2 modified by
increasing the number of elements of each cluster and
the total number of elements proportionally. Moreover,
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FIG. 4. (a) Overlapping normalized mutual information
(ONMI) between the true hierarchical partition of the bench-
mark of Fig. 2 with N = 100 and M = 500 and the hierarchi-
cal partition obtained with SVHC, Pvclust ”single” or Pvclust
”FDR” as a function of the noise parameter λ. (b) Number
of statistically validated clusters detected by the algorithms
as a function of the noise parameter λ. Points are the median
computed in 100 independent realizations. The color band
highlights the interval between the 25 and the 75 percentile.
In our numerical experiments, we simulate 1000 bootstrap
replicas both for the SVHC and the Pvclust algorithm.

the number of records M of the time series is also in-
creased proportional to N according to M = 5N . We
perform numerical experiments for systems of sizes equal
to N = {56, 100, 178, 316, 562} where the different values
present a logarithmic spacing. In this set of experiments
noise is absent (λ = 0).

Also in this case hierarchical partitions obtained with
the SVHC algorithm describes quite well the true hier-
archical partition for systems with N ranging from 56
to 562 (see ONMI values in Fig. 5(a)). The algorithm
Pvclust has again a performance that is strongly depen-
dent on the multiple hypothesis test correction option.
In particular, for low values of N the results obtained by
Pvclust ”single” perform better then the results obtained
with Pvclust ”FDR”. The reverse is true for high values
of N .

An analysis of the number of clusters detected by the
algorithms is also highly informative (see Fig. 4(b)) .
Also for this indicator the performance of the SVHC al-
gorithm is very good for all values of N . Pvclust hierar-
chical partitions have different characteristics for low and
high values of N . For low values of N , Pvclust ”single”
detects a value that is very close to the true number of
clusters. However, as the size N increases the number
of detected clusters increases too. This bias of Pvclust
”single” is probably due to the absence of the multiple
hypothesis test correction. In fact, the number of sta-
tistical tests performed increases linearly with the size
of the system. The profile of the results obtained by Pv-
clust ”FDR” is different. For low values of N the number
of clusters detected is less than the true number. This is
probably due to the well known limitation of multiple hy-
pothesis test correction. In fact the correction fully con-
trols the amount of false positives but this is done at the
expenses of not controlling the number of false negatives.
For the large value of N this limitation is progressively
less important and the performance of the hierarchical
partition of the Pvclust ”FDR” algorithm becomes very

good for large values of N . In summary, the Pvclust algo-
rithm provides outputs recovering the true partition with
one of the two multiple hypothesis test options. Specif-
ically the ”single” option works well for small systems
whereas the FDR option is more appropriate for large
systems.

An important aspect of the two algorithms is compu-
tational time. In Fig. 5(c) we report the computational
time for the SVHC and the Pvclust algorithms (the two
multiple hypothesis test correction options of Pvclust do
not significantly affect the computational time of the al-
gorithm). From Fig. 5(c) it is evident that SVHC is much
faster than Pvclust, and the difference in computational
time increases when the size of the system increases. We
numerically estimate the time dependence of computa-
tional time Tc as a function of N by fitting TC with a
power law function Tc = c0 + c1N

γ in the whole inter-
val of N values and we obtain γ = 1.94 for the Pvclust
algorithm and γ = 1.70 for the SVHC algorithm. The
other fitting parameters are c0 = 22 and c1 = 3 × 10−2

for Pvclust and c0 = 2.4 and c1 = 3× 10−4 for SVHC. In
addition to the difference observed in the exponent γ, it
should be also noted that the coefficients c0 and c1 of Tc
for the SVHC algorithm are much smaller than the same
coefficients for Pvclust.

In the last set of numerical experiments, we investigate
the performance of the two algorithms as a function of
the number of records M of the elements of the multivari-
ate time series. Specifically, we fix N = 100, λ = 0 and
M = {20, 36, 63, 112, 200, 356, 632, 1125, 2000} (again
a set of values with logarithmic spacing). The results
summarized in Fig.5(d) show that SVHC outperforms
Pvclust in detecting the true hierarchical partition for
high values of M . On the contrary, for low values of
M Pvclust ”single” performs better than SVHC. More
details about the ability of the algorithms to detect the
true partition can be obtained by inspecting Fig. 5(e).
This figure plots the number of clusters detected by the
algorithms. For low values of M , the algorithm Pvclust
”single” has a low number of false negative but this per-
formance is obtained at the expenses of a large num-
ber of false positive, whereas both SVHC and Pvclust
FDR have a large number of false negative. Depending
whether the most important aspect is statistical precision
or statistical accuracy the most appropriate algorithm
turns out to be different.

It is again worth noting that computational time is
very different for the two algorithms and also the scalabil-
ity is different. Fig. 5(f) shows that computational time
needed for SVHC and Pvclust. We again fit the computa-
tional time with the functional form Tc(M) = c0 +c1M

γ

and obtain γ = 0.76 for the Pvclust algorithm and
γ = 5.5×10−4 for the SVHC algorithm. The other fitting
parameters are c0 = 123 and c1 = 1.01 for Pvclust and
c0 = 2.89 and c1 = 1.07 for SVHC. From the figure and
from the parameters of fitting it is quite evident that the
SVHC computational time has a very limited increase as
a function of M . In fact the fitting exponent γ for the
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FIG. 5. Numerical experiments with a benchmark of the type shown in Fig. 2 for different values of the size of the system N
and for different size of records M . (a) ONMI between the true hierarchical partition of the benchmark and the hierarchical
partition obtained with SVHC, Pvclust ”single” or Pvclust ”FDR” as a function of the system size N . (b) Number of statistically
validated clusters detected by the algorithms as a function of the system size N . (b) Computational time Tc of the algorithms
as a function of the system size N , In all simulations shown in panels (a), (b), and (c) M = 5N . (d) ONMI between the
true hierarchical partition of the benchmark and the hierarchical partition obtained with SVHC, Pvclust ”single” or Pvclust
”FDR” as a function of M . (e) Number of statistically validated clusters detected by the algorithms as a function of M . (f)
Computational time Tc of the algorithms as a function of M , In all simulations shown in panels (d), (e), and (f) N = 100.
Points are the median computed in 100 independent realizations. The color band highlights the interval between the 25 and the
75 percentile. In our numerical experiments, we simulate 1000 bootstrap replicas both for the SVHC and the Pvclust algorithm.

SVHC algorithm is very close to zero. On the contrary,
Pvclust computational time is characterized both by a
sizeable exponent and also by a large minimum constant
time (c0).

This set of numerical experiments confirms that SVHC
algorithm is much faster and presents better scalable
characteristics than Pvclust.

Applications to an empirical dataset

We now apply SVHC to a widely investigated empir-
ical dataset. As in previous numerical experiments, the
application of SVHC is done in parallel with the appli-
cation of Pvclust with the two options (i.e. the ”single”
and the ”FDR” option). The dataset we investigate is a
set of microarray data of lung cancer tissues. Specifically,
the dataset is the gene expression pattern of N = 73 tu-
mor tissues belonging to 56 different patients. The data
comprises information on M = 915 selected genes.

Adenocarcinoma of the lung data

The dataset was originally collected in Ref. [29], and
it was used to provide an illustrative example of Pvclust
performance in Ref.[23] to obtain p-values of the branch-
ing points of hierarchical tree of tissues. Here we inves-
tigate both the hierarchical tree of tissues (N = 73) and
the hierarchical tree of genes (N = 915) to provide both a
basic example (in the case of tissues) and a more demand-
ing example (in the case of genes) of application of the
algorithms to systems of size varying more than one order
of magnitude. In our investigation, both the SVHC and
the Pvclust algorithms perform 10, 000 bootstrap repli-
cas. In Fig. 6 we show the results of our investigation.
A square in the matrix highlights a cluster of elements
characterized by a p-value rejecting the statistical null
hypothesis.

To quantify the degree of similarity of partitions
obtained we compute the ONMI between all pairs of hi-
erarchical partitions obtained. For lung tissue the ONMI
between the SVHC partition and the Pvclust ”sin-
gle” partition is ONMI(SVHC,Pvclust ”S”)=0.527
whereas ONMI(SVHC,Pvclust ”FDR”)=0.368
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and ONMI(Pvclust ”S”,Pvclust ”FDR”)=0.768.
For lung genes we obtain ONMI(SVHC,Pvclust
”S”)=0.321, ONMI(SVHC,Pvclust ”FDR”)=0.638
and ONMI(Pvclust ”S”,Pvclust ”FDR”)=0.434. By
analyzing these values, we note that the hierarchical
partitions obtained with SVHC are not too different
from the ones obtained with Pvclust both for the small
set of elements (tissues) and for the large set of elements
(genes). However, in the two cases the highest degree of
similarity between partitions is observed for a different
option of Pvclust. Specifically, for the hierarchical
partition of lung tissues the highest similarity is between
the partition of SVHC and the partition of Pvclust
”single” whereas for the hierarchical partition of genes
the highest similarity is with Pvclust ”FDR”. This result
again suggests that hierarchical partition of Pvclust
”single” includes more false positives when the system
size increases. A comparison of the hierarchical partition
obtained with SVHC with the hierarchical partitions
obtained with Pvclust ”single” and Pvclust ”FDR” can
therefore provide indication about the option of Pvclust
more appropriate to the size of the system investigated.

As already noted in the investigation of the synthetic
benchmark, when the system size increases the computa-
tional time grows on. The same beahavior is observed in
the analysis of empirical data. In fact, the computational
time of the two algorithms for the two hierarchical trees
investigated (i.e. for the lung tissues and the lung genes)
is as follows: The computational time for lung tissues
(i.e. a 73x915 system) is 172 s for SVHC and 4,767 s for
Pvclust whereas for lung genes (i.e. a 915x73 system) is
1,434 s for SVHC and 109,660 s for Pvclust. For both in-
vestigates sets the computational time of Pvclust is much
longer then the computational time of SVHC (27.7 times
for lung tissues and 76.5 times for lung genes).

DISCUSSION

Hierarchical clustering is a powerful data analysis tool
widely used in many disciplines. The association of hard
or hierarchical partitions to hierarchical trees is still an

open problem. An approach widely used in genomics has
its roots in phylogenetic studies. In such studies boot-
strap replicas of each clade are computed and the obser-
vation of the number of times the sample composition of
the clade is detected in replicas provide a first estimation
of the p-value to be associated to a given clade. Over
the years this approach has been refined to minimize bi-
ases affecting the estimation of the p-value. Today the
widely used Pvclust package uses this approach. Pvclust
is therefore setting the standard for a statistical assess-
ment of a specific hierarchically nested partition obtained
from a given hierarchical tree. Pvclust has a great control
of the statistical hypothesis underlying its approach but
has also a few drawbacks. One drawback concerns the
presence or absence of a procedure of multiple hypothesis
test correction. From a statistical point of view, such cor-
rection should be present but the results obtained by the
algorithm in the presence of a multiple hypothesis test
correction are sometimes disappointing due to the fact
that such a correction can be too demanding for some
systems. The second and most important drawback is
the computational time needed to perform the hierarchi-
cal clustering estimation for all bootstrap replicas. This
time could be quite long for moderately large datasets
and therefore the Pvclust algorithm is of limited use for
big datasets.

In this paper we introduce a greedy algorithm that
is quite effective in the detection of the true hierarchi-
cally nested partition of a multivariate series. We prove
the efficacy of our algorithm by performing numerical ex-
periments on a set of benchmarks generated by using a
hierarchical factor model. The application of Pvclust to
the same benchmarks show the efficacy and limitations
of Pvclust with the two options of absence (i.e. Pvclust
”single”) and presence of multiple hypothesis test correc-
tion (i.e. Pvclust ”FDR”). Our algorithm is much faster
than the Pvclust algorithm and has a better scalability
both in the number of elements and in the number of
records of the investigated multivariate set. We there-
fore propose to use our algorithm in all cases when the
Pvclust algorithm is too slow to be used or when it pro-
duces outputs that are quite different in the presence or
absence of the multiple hypothesis test correction.
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FIG. 6. Hierarchical trees (average HC) and correlation matrices of lung tissues dataset (top panels) and lung genes dataset
(bottom panels) [29]. In the correlation matrices we highlight with boxes hierarchically nested clusters detected by different
algorithms. (a) SVHC on lung tissues, (b) Pvclust ”single” on lung tissues, (c) Pvclust ”FDR” on lung tissues. (d) SVHC on
lung genes, (e) Pvclust ”single” on lung genes, (f) Pvclust ”FDR” on lung genes.
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