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Abstract 

Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a 

toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumor, 

capacity to induce epidermal hyperplasia and aptitude to induce allergic and irritant skin contact 

dermatitis are well known. These toxic effects appear to be mediated through the activation to free 

radical species such as hydroxyl, alkoxyl and alkyl radicals characterized basically by electron 

paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitizer CumOOH 

needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the 

immunotoxic reaction. Cleavage of the O-O bond allows formation of unstable CumO•/CumOO• 

radicals rearranging to longer half-life specific carbon-centered radicals R• proposed to be at the origin 

of the antigen formation. Nevertheless, it is not still clear which R• are precisely formed in the 

epidermis and thus involved in the sensitization process. The aim of this work was to elucidate in 

conditions closer to real-life sensitization which specific R• are formed in a 3D reconstructed human 

epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of 

potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived 

from -scission of CumO• radicals occur in RHE through a one-electron reductive pathway suggesting 

that these could be involved in the antigen formation inducing skin sensitization. We also describe a 

coupling between nitroxide radicals and  position 13C atoms that could be of an added value to the 

very few examples existing for the coupling of radicals with 13C atoms.

Keywords: cumene hydroperoxide, skin sensitizers, 13C-substitution, EPR spin-trapping spectroscopy, 

reconstructed human epidermis
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Introduction

Cumene hydroperoxide (CumOOH) is produced mainly through the oxidation of cumene in the so-

called “cumene process”, an industrial procedure for synthesizing phenol and acetone from benzene 

and propylene based on the acid-catalyzed Hock rearrangement [1]. CumOOH is used as catalyst, 

curing agent, and initiator in the manufacture of polymers and fiber-reinforced plastics. Plus, it is a 

strong oxidizing agent making it an important intermediate in the fabrication of epoxy and polyester 

resin coatings. However, dermal exposure to CumOOH during manufacturing processes is an important 

toxicological issue for the industry, currently lacking of regulatory guidelines for occupational 

exposure limits [2]. CumOOH genotoxicity, mutagenic action and ability to promote skin tumor and 

induce epidermal hyperplasia have been described [3-5]. CumOOH is also known to cause allergic 

contact dermatitis (ACD) and has been reported as a significant sensitizer in guinea pigs, with positive 

specific responses reported in allergy cross-reactivity studies with allergenic cyclohexene 

hydroperoxides [6]. These toxic effects are believed to be mediated through the activation of the 

hydroperoxide to radical species such as hydroxyl (HO•), alkoxyl (CumO•) and alkyl (R•) radicals.

Electron paramagnetic resonance (EPR) together with spin-trapping (ST) is a powerful 

combination for the characterization of transient radicals in chemical and biological systems [7]. 

Basically, the formed radical (either too short-lived or of too low concentration to be directly detected) 

reacts with a diamagnetic reagent (spin-trap) to form a more persistent radical (spin-adduct), whose 

EPR signature can help the characterization of the trapped transient reactive species. EPR-ST has been 

used for dermatological purposes mainly for the detection of free radicals in UV-irradiated skin, 

melanoma investigation and in vivo EPR imaging directly in skin of human volunteers [8-10]. EPR-ST 

has also been used to characterize radicals in isolated mouse keratinocytes and in murine skin treated 

with CumOOH [11-13]. In addition, EPR-ST proved the formation of in vivo lipid-derived free radicals 

triggered by CumOOH when mouse skin was exposed causing severe oxidative stress [14,15]. To 

understand ACD mechanisms for risk assessment purposes, we have proved that EPR-ST is also a 
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powerful technique for the detection and identification of radical species derived from sensitizing 

hydroperoxides (ROOHs) present in consumer products [16-18]. To be skin sensitizers, ROOHs need 

to covalently bind via radical processes to skin proteins after having penetrated the epidermis, to form 

this way the antigenic entity trigger of the immunotoxic process. As for the CumOOH tumor promoting 

action, initial cleavage of the O-O bond forms unstable RO•/ROO• radicals that further rearrange to 

longer half-life carbon centered radicals R• proposed to be at the origin of the antigen formation 

[15,19,20]. Still, it is not still clear which R• are precisely formed in the epidermis and thus involved in 

the sensitization processes. 

We have recently reported an EPR-ST methodology allowing to investigate the formation of free 

radicals issued from skin allergens in a reconstructed human epidermis (RHE) 3D model, thus much 

closer to what may happen in vivo, by using CumOOH as proof of concept [21]. RHE are multi-layered 

keratinocyte cultures, major cell type in the epidermis playing a key role in skin inflammatory 

reactions. We disclosed that in the EpiSkinTM RHE model carbon radicals are mainly formed, both by 

incubating the assay medium and by topical application with CumOOH. Previous in vitro EPR-ST 

studies reported in keratinocytes cultures suggested these carbon radicals as being methyl radicals 

issued from -scission fragmentation of tertiary alkoxyl radicals (CumO•) formed through cleavage of 

the O-O bond (Scheme 1) [10]. Unlike keratinocytes cultures isolated from skin biopsies, EpiSkinTM 

RHE is an in vitro reconstructed human epidermis histologically similar to in vivo human epidermis. It 

is a complex 3D structure including a stratum corneum that allows assessing skin penetration concerns 

with phospholipids and ceramides content influencing the RHE barrier properties [22]. The aim of the 

present study was to elucidate, in the skin allergy context and in conditions closer to real-life 

sensitization, if methyl radicals are also formed in EpiSkinTM RHE by using 13C-substituted CumOOH 

derivatives 1 (13C-MeCumOOH) and 2 ((13C-Me)2CumOOH) (Figure 1), and thus be able to suggest 

their participation in the formation of the immunogenic complex inducing ACD.
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Materials and methods

Synthesis of 13C-substituted CumOOHs

13C-MeCumOOH 1 and (13C-Me)2CumOOH 2 were synthesized 13C-substituted at the methyl positions 

following the synthetic pathway shown in Scheme 2.

Chemicals and instrumentation

Starting materials were obtained from Sigma-Aldrich (Saint Quentin Fallavier, France) and used as 

received. 13C-Labeled reagents and deuterated solvents were purchased from Euriso-Top (Saint Aubin, 

France). Air-/moisture-sensitive reactions were conducted in flame-dried glassware under an 

atmosphere of dry argon. Solvents were dried on alumina, under argon, using a Glass Technology GTS 

100 device. Reactions were followed by thin layer chromatography (TLC) on 0.25 mm silica gel plates 

(60F254; Merck, Darmstadt, Germany). After migration, the plates were inspected under UV light (254 

nm) or sprayed with a solution containing phosphomolybdic acid (5 g), cerium (IV) sulfate (2 g) and 

sulfuric acid (12 mL) in water (188 mL), followed by heating. Column chromatography purifications 

were performed on silica gel 60 (Merck, Geduran®, 40–63 m). Neutralized silica was prepared by 

adding to a homogenous water solution of silica gel 60 a saturated solution of NaHCO3 until pH about 

8. After decantation the silica precipitate was washed with water to reach a pH of 7, filtered then dried 

in a oven for at least 24 h. 1H and 13C NMR spectra were recorded on a Bruker Avance 500 

spectrometer at 500 MHz and 125 MHz, respectively. Chemical shifts () are reported in ppm and are 

indirectly referenced to TMS via the solvent signal (CDCl3:  1H  7.26,  13C  77.16). Spectra 

multiplicities are denoted as d (doublet), dd (doublet of doublets), t (triplet) and m (multiplet).

Synthesis of 1-(13C)acetophenone (4)

To a suspension of aluminum chloride (2.07 g, 15.5 mmol, 1.4 eq) in anhydrous benzene (6 mL) at 

0°C, 2-(13C)acetyl chloride was added drop wise (0.8 mL, 11.07 mmol, 1 eq) under argon atmosphere. 
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Once the addition completed, the mixture was stirred for 17 h at room temperature. After that time, the 

mixture was placed into an ice bath and distilled water (6 mL) was added drop wise until it became 

white, followed by addition of HCl 2 M (12 mL). The two phases were separated, and the aqueous 

phase was extracted with diethyl ether (4 × 40 mL). The organic phases were combined, washed with 

brine, dried over MgSO4, filtered and concentrated to obtain 1-(13C)acetophenone (4) as a yellow oil 

(1.04 g, 8.58 mmol, 77 % yield). CAS Registry Number: [71777-36-1]. 1H NMR (CDCl3) δ 2.61 (d, 

3H, 1J H1-C1 = 127.6 Hz, H1), 7.44-7.50 (m, 2H, H5 and H7), 7.54-7.60 (m, 1H, H6), 7.95-7.99 (m, 2H, 

H4 and H8); 13C NMR (CDCl3) δ 26.8 (C1), 128.4 (2C, C5 and C7), 128.7 (2C, C4 and C8), 133.2 

(C6), 137.1 (d, 2JC3-C1 = 13.5 Hz, C3), 198.4 (d, 1J C2-C1 = 42.5 Hz, C2).

Synthesis of 1-(13C)2-phenylpropan-2-ol (5)

In a two-necked flask under argon 1-(13C)acetophenone (4) (450 mg, 3.71 mmol, 1 eq) was dissolved in 

6 mL of anhydrous tetrahydrofuran at -78 °C. Methyllithium (2.8 mL, 4.46 mmol, 1.6 M in Et2O, 1.2 

eq) was added drop by drop and the mixture was stirred at -78 °C for 21 h then at room temperature for 

5 h. Ammonium chloride was added (7 mL) and the solution was extracted with diethyl ether (4 × 20 

mL). Organic phases were combined, dried over MgSO4, filtered and concentrated under reduce 

pressure to give an orange oil. The crude product was purified by chromatography on silica gel 

(pentane/EtOAc 9/1 then 5/5) to afford 1-(13C)2-phenylpropan-2-ol (5) as a yellow oil (269.4 mg, 1.96 

mmol, 53 % yield). 1H NMR (CDCl3) δ 1.59 (d, 3H, 1J H1-C1 = 126.5 Hz, H1), 1.59 (d, 3H, 3J H3-C1 = 4.1 

Hz, H3), 7.24-7.27 (m, 1H, H7), 7.34-7.37 (m, 2H, H6 and H8), 7.49-7.51 (m, 2H, H5 and H9); 13C 

NMR (CDCl3) δ 31.9 (2C, C1 and C3), 72.7 (d, 1J C2-C1 = 39.3 Hz, C2), 124.5 (2C, C5 and C9), 126.8 

(C7), 128.4 (2C, C6 and C8), 149.2 (C-4).

Synthesis of 1-(13C)cumene hydroperoxide (1)

To an aqueous solution of hydrogen peroxide (30 %, 12.7 mL) at 0°C, one drop of concentrated 

sulfuric acid was added. After 30 min stirring, 1-(13C)2-phenylpropan-2-ol (5) (268.1 mg, 1.95 mmol, 1 
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eq) was added and the reaction mixture was vigorously stirred at 0°C during 4 h, followed by 

extraction with ethyl acetate (3 × 10 mL). The organic layers were combined, dried over MgSO4, 

filtered, and concentrated under reduce pressure. The crude product was purified by flash 

chromatography on neutralized silica gel (pentane/EtOAc 85/15 then 50/50) to obtain 1-(13C)cumene 

hydroperoxide (1) as an orange oil (136.0 mg, 0.88 mmol, 32 % yield). 1H NMR (CDCl3) δ 1.62 (d, 

3H, 3JH3-C1 = 4.4 Hz, H3), 1.62 (d, 3H, 1JH1-C1 = 127.7 Hz, H1), 7.29-7.34 (m, 2 × 1H, H6 and H8), 

7.38-7.41 (m, 1H, H7), 7.47-7.49 (m, 2 × 1H, H5 and H9); 13C NMR (CDCl3) δ 26.2 (2C, C1 and C3), 

84.1 (d, 1JC2-C1 = 39.9 Hz, C2), 125.5 (2C, C5 and C9), 127.6 (C7), 128.7 (2C, C6 and C8), 144.7 (C4).

Synthesis of 1,3-(13C)2-phenylpropan-2-ol (6)

Previous synthesis of (13C)methylmagnesium iodide: in a 50 mL two-necked flask under argon, 

magnesium (305 mg, 12.53 mmol, 1.2 eq) was flame-dried before to add a spatula tip of iodine and 

anhydrous diethyl ether (10 mL). (13C)Methyl iodide (0.65 mL, 10.44 mmol, 1 eq) was then added to 

the reaction mixture heated slightly with a hairdryer to initiate the reaction. Diethyl ether was added 

(10 mL) and the reaction heated again slightly. The reaction mixture was stirred at room temperature 

during 24 h. A solution of (13C)methylmagnesium iodide 0.5 M in diethyl ether was in this way 

obtained.

In a two-necked flask under argon, zinc chloride (79.1 mg, 0.58 mmol, 0.2 eq) was placed and 

dried under reduced pressure. Lithium chloride (295.0 mg, 6.94 mmol, 2.4 eq) was added and the flask 

was again dried under reduced pressure. To the mixture, (trimethylsilyl)methylmagnesium chloride 

(2.30 mL, 1.2 mmol, 0.4 eq) was added drop wise at room temperature and the reaction was stirred for 

15 min. (13C)Methylmagnesium iodide (10 mL, 4.9 mmol, 0.5 M in diethyl ether, 1.7 eq) was then 

added drop wise and the reaction stirred for 45 min and then cooled to 0°C. 1-(13C)Acetophenone (4) 

(350 mg, 2.89 mmol, 1 eq) was added during 1 h with the use of a syringe pump and the reaction was 

stirred for 3 h at 0°C. After this time, the reaction mixture was quenched with ammonium chloride (10 
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mL), extracted with ethyl acetate (3 × 10 mL) and washed with brine (10 mL). The organic phases were 

combined and dried over MgSO4, filtered and concentrated under reduced pressure to obtain an orange 

oil. The crude product was purified by chromatography on silica gel (pentane/EtOAc 92/8) and 1,3-

(13C)2-phenylpropan-2-ol (6) was obtained as a yellow oil (303.7 mg, 2.19 mmol, 76% yield). 1H NMR 

(CDCl3) δ 1.59 (dd, 3H, 1JH1/3-C1/3 = 121.3 Hz, 3JH1/3-C1/3 = 1.7 Hz, H1 or H3), 1.59 (d, 3H, 1JH1/3-C1/3 = 

130.7 Hz, H-1 or H-3), 7.25-7.28 (m, 1H, H7), 7.34-7.37 (m, 2H, H6 and H8), 7.50-7.51 (m, 2H, H5 

and H9); 13C NMR (CDCl3) δ 31.8 (2C, C1 and C3), 74.0 (t, 1JC2-C1/3 = 38.9 Hz, C2), 124.5 (2C, C5 and 

C9), 126.8 (C7), 128.3 (2C, C6 and C8), 149.2 (C4).

Synthesis of 1,3-(13C)cumene hydroperoxide (2)

To an aqueous solution of hydrogen peroxide (30 %, 7.5 mL) was added at 0°C one drop of 

concentrated sulfuric acid. After 30 min, 1,3-(13C)2-phenylpropan-2-ol (6) (155.9 mg, 1.13 mmol, 1 eq) 

was added and the reaction mixture was vigorously stirred at 0°C during 4 h, followed by extraction 

with ethyl acetate (3 × 10 mL). The organic layers were combined, dried over MgSO4, filtered, and 

concentrated under reduce pressure. The crude product was purified by flash chromatography on 

neutralized silica gel (pentane/EtOAc 5/1 and 1/1) to obtain 1,3-(13C)cumene hydroperoxide (2) as an 

orange oil (36.7 mg, 0.24 mmol, 21 % yield). 1H NMR (CDCl3) δ 1.62 (d, 3H, 1JH1/3-C1/3 = 123.8 Hz, 

H1 or H3), 1.62 (d, 3H, 1JH1/3-C1/3 = 132.1 Hz, H1 or H3), 7.29-7.32 (m, 1H, H7), 7.37-7.41 (m, 2H, H6 

and H8), 7.47-7.49 (m, 2H, H5 and H9); 13C NMR (CDCl3) δ 26.2 (2C, C1 and C3), 84.1 (t, 1JC2-C1/3 = 

39,9 Hz, C2), 125.5 (2C, C5 and C9), 127.6 (C7), 128.7 (2C, C6 and C8), 144.7 (C4).

EPR studies in solution

CumOOH was purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France) and used as received. 

DEPMPO was synthesized as reported in the literature [23]. HEPES (≥ 99.5 %), ferrous sulfate 

heptahydrate FeSO4.7H2O and acetonitrile CH3CN (99.8%) were acquired from Sigma-Aldrich (Saint-

Quentin Fallavier, France). Aqueous solutions were prepared with deionized water. HEPES buffer 
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solution (10 mM, pH 6.8) was prepared by dissolving 1.19 g HEPES in 400 mL deionized water, with 

additional 4 g NaCl and 0.1 g KCl. To attain pH 6.8 NaOH pellets were added. If the pH went too high, 

it was lowered back by carefully adding HCl (2 M) until pH remained stable to 6.8. Deionized water 

was added for a final volume of 500 mL. Stock solutions were prepared for CumOOH, 13C-

MeCumOOH and (13C-Me)2CumOOH (10 mM, HEPES/CH3CN 9/1), DEPMPO (100 mM in HEPES) 

and FeSO4.7H2O (10 mM in HEPES). 12.5 L of DEPMPO solution were mixed with FeSO4.7H2O 

(0.5 L for a final 0.1 mM concentration in the reaction mixture), 5 L of the hydroperoxide solution 

added and final volume completed to 50 L. This way, final concentrations in the reaction mixture 

were 25 mM spin-trap and 0.54 mM hydroperoxide. The reaction mixture was subjected to stirring and 

further introduced into the EPR quartz capillary tube.

EPR studies in reconstructed human epidermis

EpiSkinTM (Lyon, France; 0.38 cm2) is a RHE from normal human keratinocytes cultured for 13 days 

on a collagen matrix at the air-liquid interface. Immediately after arrival in the laboratory, the RHE 

were removed from the agarose-nutrient solution in the shipping multiwell plate under a sterile airflow. 

They were placed in a plate in which each well was previously filled with 2 mL EpiSkinTM 

maintenance or growth medium at room temperature. Samples were placed in the incubator at 37 °C, 

5% CO2 and saturated humidity, at least 24 h before incubation. EpiSkinTM (Lyon, France) furnished 

the assay medium used for incubations. RHE were topically treated first with DEPMPO (20 L, 250 

mM in HEPES) and post incubated (37 °C, 5% CO2) during 15 min. After the incubation time, the 

RHE were placed in the EPR tissue cell and the hydroperoxide (20 L, 50 mM in acetone) was applied 

to the epidermis taking care to ensure that the solution was only applied to it. EPR spectra were then 

recorded.

EPR instrumentation
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EPR spectra were recorded on an EPR X-band spectrometer (ESP300E, Bruker Biospin GmbH, 

Germany), equipped with a high sensitivity resonator (4119HS-W1, Bruker Biospin GmbH, Germany). 

The g calibration was performed using Bruker standard (strong pitch) with known isotropic g factor of 

2.0028. The principal experimental parameters values were: microwave power 5 mW, modulation 

amplitude 0.5-1 G, and conversion time of ca. 160 ms resulting sweep time of ca. 3 min s for a single 

scan. Spectra were recorded at room temperature (295K±1K). Regarding the investigations in solution, 

samples were introduced into glass capillaries (Hirschmann, 25 L), sealed at both ends and transferred 

into the EPR cavity for measurement as fast as possible after reagents mixing. RHE were placed in an 

EPR tissue cell equipped with a silica window (Willmad, #ER162TC-Q) and resulting EPR spectra 

recorded in situ right afterwards. Up to 10 scans were accumulated to improve the signal-to-noise ratio 

(S/N).

EPR simulations

All experimental spectra were analyzed by means of computer simulation using labmade scripts based 

on Easyspin toolbox under Matlab (Mathworks) environment [24]. Relevant 14N, 1H, 31P, 13C hyperfine 

coupling constants (hfccs) of detected spin-adducts are listed in Table 1. Coupling constants in RHE 

were calculated following the best simulation attempts for such S/N.

Results

EPR studies in solution

Analyses in solution were initially carried out to evaluate radicals formed from 13C-substitued 

CumOOHs in comparison with previous studies we achieved with non-substituted CumOOH [21]. 

DEPMPO was chosen as the spin-trap since we observed previously that it allowed a broad view of all 

sort of radicals deriving from CumOOH [21]. Radical initiation was triggered by a catalytic amount of 

Fe(II) (0.1 mM) inducing a Fenton-like reaction. DEPMPO was employed in an excess concentration 
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(25 mM) with respect to 13C-substitued hydroperoxides (0.54 mM). First studies were completed with 

mono-substituted 13C-MeCumOOH 1. Figure 2(c) shows the experimental EPR spectrum obtained. 

Computer simulation of the signal displayed a mixture of different spin-adducts formed by addition of 

transient short-lived radicals derived from 1 to the -carbon of DEPMPO nitronyl group. In agreement 

with our previous investigations on CumOOH [21], spin-adducts were identified through their 

hyperfine coupling constants (hfccs) [25, 26] as originating from HO• (Figure 2(e)), carbon centred 

radicals, probably methyl (Figure 2(f)), methoxy and/or possible peroxyl radicals (Figure 2(h)). But 

here, when compared to the non-substituted sample, an additional hyperfine splitting appeared (Figure 

2(g)), attributed to the presence of the paramagnetic probe of a 13C nucleus with nuclear spin I = ½. 

Analysis of the spectrum leaded to hfccs values of aN (G) = 15.5, aH (G) = 22.6, aP (G) = 48.3 and a 

new value a13C of 6.3 G (Table 1). As only half of methyl radicals were 13C-substituted, it was possible 

to observe two spin-adducts corresponding to two types of carbon radicals trapped with similar aN, aH 

and aP hfccs, being either non-substituted (Figure 2(f)) or 13C-substituted (Figure 2(g)). There are only 

few examples in the literature describing hfccs for 13C atoms, for example the description of p-benzyne 

radicals [27], -substituted ethyl radicals [28] or some vinyl and allyl radicals [29]. However, no 

reference was found on hfccs values for the coupling with 13C atoms on  position of a nitroxide 

radical. Thus, to corroborate that 13C-methyl radicals had been trapped by DEPMPO, studies were 

conducted with di-substituted (13C-Me)2CumOOH 2 having 13C-substituted methyl groups exclusively. 

Figure 3(c) shows the experimental EPR spectrum obtained. Here, computer simulation displayed a 

mixture of different spin-adducts formed again by trapping of HO• (Figure 3(e)), carbon centred 

(Figure 3(f)), methoxy and/or possible peroxyl radicals (Figure 3(g)). Yet, previously assigned 

DEPMPO-13CH3 spin-adduct was again detected in a relative higher proportion when compared to the 

studies performed with 13C-MeCumOOH 1 and having very comparable hfccs values of aN (G) = 15.4, 

aH (G) = 22.6, aP (G) = 48.3 and a13C (G) = 6.4.  Thus, the relative intensity of the DEPMPO-carbon 
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radical spin-adduct derived from CumOOH (Figure 4(a), star) was significantly reduced while 

introducing a single 13C-methyl group in the molecule of CumOOH (Figure 4(b)) and was suppressed 

in the case of doubly 13C substitution (Figure 4(c)), to the benefit of the spin-adduct corresponding to 

the 13C-methyl trapped (Figures 4(b)(c), black circle). These results supported that CumOOH derived 

carbon centred radicals were, in these experimental conditions, methyl radicals. 

EPR studies in reconstructed human epidermis

In order to carry out the experiments, the RHE tissue was loaded beforehand with the spin-trap. As 

described previously in studies with tumour promoting peroxides [12], radicals formed from CumOOH 

in the skin model being both short lived and potentially generated at low concentrations, it was 

desirable for the spin-trap to be as close as possible to the site of radical generation prior to the topical 

application of the hydroperoxides. If similar EPR fingerprints to those of the experiments in solution 

were obtained, it was noticeable that other features did not fully overlay with any of the solution 

studies. Such differences can be explained by the much more complex system formed by the RHE 

when compared to simplified in solution investigations. Figure 4 shows the spectra obtained in solution 

along and in comparison with the spectra obtained in RHE for the three hydroperoxides tested. If the 

appearance of the spin-adduct resulting from trapping the radical 13C-substituted in RHE was barely 

visible when using 13C-MeCumOOH 1 (Figure 4(f)), it became more evident with (13C-Me)2CumOOH 

2 (Figure 4(g)). Major peaks could be assigned to DEPMPO-OH, DEPMPO-CH3 and DEPMPO-13CH3 

spin-adducts by comparison with previous data in solution (Table 1) [21]. Again, the difference 

observed when comparing the hfccs values with those obtained in the EPR-ST solution studies could be 

explained by the distinct environment of the spin-adducts in solution compared to that of a complex 

heterogeneous tissue such as the RHE. Indeed, magnitudes of the hfccs pointing to the extent of 

delocalization of the unpaired electron over the molecule may be affected by the local spin 

environment and polarity. Moreover, control experiments were carried out for each compound by 
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simply incubating DEPMPO in the RHE and showed no EPR signal, corroborating that spin-adducts 

resulted from trapping radicals issued from the hydroperoxide. Also, after penetrating the RHE, 

CumOOH radical initiation has been induced by RHE matrix itself as no Fe(II) was supplemented, thus 

better mimicking real life exposure scenarios. These results suggested methyl radicals being formed in 

RHE after CumOOH exposure.

Discussion

In a recent work, we employed EPR-ST for the first time in the skin allergy field to study the potential 

of this methodology to investigate in situ the formation of free radicals from skin allergens in 3D RHE 

models [21]. CumOOH was used as proof of concept and we demonstrated the formation of carbon 

radicals in RHE. However, no evidence could be obtained concerning their specific nature. In the 

present work, this was investigated by using 13C-substitution as a tool to unravel which carbon radicals 

could be formed within the epidermis. As the major mechanism described for the formation of carbon 

radicals from CumOOH is -scission of cumyl oxyl radicals affording methyl radicals, we developed 

the synthesis of CumOOH containing either one (13C-MeCumOOH 1) or both ((13C-Me)2CumOOH 2) 

methyl groups 13C-substituted and we further studied the formation of free radicals in solution and in 

RHE.

Preliminary studies in solution allowed setting up the optimal experimental conditions providing a 

decent signal-to-noise ratio while keeping low CumOOHs concentrations, i.e. suitable with 

physiological conditions. DEPMPO was chosen as an accurate spin-trap based upon (i) the high 

persistency of its superoxide and alkylperoxyl spin-adducts when compared to other spin-traps (e.g. 

DMPO); (ii) the clear distinction between oxygen- and carbon-derived spin-adducts [25, 30]. Radical 

initiation was performed via a Fe(II) Fenton-like reaction. As for CumOOH, carbon centered, CumO• 

and HO• radicals were identified for 13C-MeCumOOH 1 and (13C-Me)2CumOOH 2. A new signal 
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appeared in the case of mono-substituted 1 with hfccs aN (G) = 15.5, aH (G) = 22.6, aP (G) = 48.3 and 

a13C (G) = 6.3, whose fingerprint significantly increased in the case of the double-substituted 

compound 2, fully replacing the signal of carbon centered radicals trapped from non-substituted 

CumOOH. Thus, when all methyl groups were 13C-substituted, only DEPMPO-13CH3 spin-adducts 

were detected confirming that methyl radicals were the carbon-centered trapped radicals. This 

information was of high relevance for further studies in RHE.

RHE EpiSkinTM shows reasonable similarities to native human tissue in terms if morphology, 

stratum corneum presence, lipid composition and biochemical markers [22]. It is today a useful tool for 

testing irritation and penetration features of chemicals in contact with the skin as replacement of in vivo 

testing [31]. For our studies on skin allergy the availability of EpiSkinTM RHE is a very good 

alternative to the use of human and animal tissues as the model amends important legal and ethical 

issues. Although considerably more permeable than human skin on average, the model appears to be 

more consistent in permeability and responsiveness than human skin which is highly variable. Similar 

EPR-ST results were observed in RHE when testing CumOOH, 13C-MeCumOOH 1 and (13C-

Me)2CumOOH 2. Though, new features in the RHE samples did not fully overlay with the reference 

spectra in solution and were ascribed to the complexity of the RHE system. Even if the S/N was 

significantly lower when compared to solution investigations and thus did not allow quantification of 

the spin-adducts, we can still suggest that methyl radicals issued from CumOOH decomposition can be 

formed in RHE EpiSkinTM. Indeed, spectrum of the RHE experiment with twice 13C-labeled CumOOH 

(Figure 4(g)) was rather convincing as an additional spin-adduct assigned to DEPMPO-13CH3 spin-

adduct (black circles) was detected. Moreover, control experiments with DEPMPO, in absence of 13C-

MeCumOOH 1 or (13C-Me)2CumOOH 2, did not exhibit any EPR signal (Figure 4(d)), suggesting that 

the trapped •CH3 radicals originate from the hydroperoxide. Initially formed alkoxyl radicals derived 

from the O-O bond cleavage and giving the •CH3 radicals by -scission could also react with 

biomolecules in the RHE before DEPMPO trapping occurred. However, these potential side-reactions 
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were not the purpose of the present study and will be part of future investigations. Worthy of note, no 

Fe(II) was used for radical initiation when probing RHE, to mimic real life skin allergy situation, 

whereas  we previously showed that Fe(II) was required to initiate the free radical generation when 

mixing CumOOH and DEPMPO in solution [21]. As it is shown in Figure 5(d), no EPR signal was 

observed in the absence of Fe(II), whereas 0.1 mM Fe(II) was enough to initiate the radical reaction 

with a Fe(II) concentration dependent answer on the amount of spin-adducts formed. We can then 

hypothesize that reaction of organic peroxides in the skin in the presence of one-electron donor agents 

(i.e. amino and thiol groups present in amino acids, metal complexes, enzymes) may initiate the 

electron transfer processes and further skin proteins haptenation [32-34]. Also, the potential presence in 

the skin of Fe(III) heme-containing enzymes could be responsible for the peroxide O-O bond cleavage 

and start radical processes. Reactions of model Fe(III) porphyrin complexes with oxidants, such as 

peroxyacids and hydroperoxides, have been extensively studied as models. The cleavage has been 

confirmed but a clear mechanistic consensus has not evolved on the homolytic or heterolytic nature of 

the O-O bond cleavage by these species, both kinds of mechanisms being possible [35-37].

While skin allergens (haptens) are unable to stimulate an adaptive immune response after 

penetration into the epidermis, the immunogenicity is reached by reaction with skin proteins, to form 

stable antigenic conjugates recognized and processed for presentation to the immune system [38]. 

Therefore, the hapten-protein interaction is the primary key step to induce sensitization and was shown 

to occur relatively quickly in RHE [39]. The resulting sequence of events leading epidermal cells to 

present the antigen so formed to the immune system and its activation take 10 to 15 days in humans. 

The fast trapping by DEPMPO allowed EPR-ST characterization of the generated methyl radicals but 

the reaction with epidermal proteins was not evidenced. Thus, if we cannot testify so far that these 

radicals are the reacting species for the antigen formation we can strongly suggest their involvement. 

Additional tests to decipher their reactivity towards amino acids in the skin could be isolation from 
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RHE of modified proteins (reactivity in the absence of spin-trap) by sonication followed by mass 

spectrometry analysis and will be addressed in a near future.

Conclusion

This work shows by using 13C-substituted compounds and EPR-ST that the production of methyl 

radicals from CumOOH previously reported in isolated keratinocytes and other model systems is also 

possible in reconstructed skin tissue through a one-electron reductive pathway, and suggest that these 

methyl radicals could be involved in the antigen formation responsible for skin sensitization to 

CumOOH.
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Table 1

Table 1. Hyperfine coupling constants (hfccs) of spin-adducts identified in solution (sol.) and in RHE*

Coupling constants AssignmentCpd.

aN (G) aH (G) aP(G)    a13C(G) g

CumOOH 
(sol.) [21]

1 (sol.)

2 (sol.)

CumOOH 
(RHE)

1 (RHE)

2 (RHE)

14.2
15.4
11.3

14.2
15.4
15.5
11.3

14.2
15.4
11.6

12.5
14.8

12.9
14.5
14.9

13.1
15.1

13.5
22.6
13.7

13.3
22.6
22.6
13.7

13.4
22.6
14.4

13.6
21.4

13.7
21.2
21.6

14.0
21.4

47.4
48.1
48.5

47.3
48.0
48.3          6.3
48.2

47.4
48.3          6.4
48.1

46.0
48.0

46.0
47.3
47.9          6.2

46.4
48.2          6.4

2.0055
2.0053
2.0055

2.0056
2.0053
2.0053
2.0055

2.0053
2.0051
2.0055

2.0064
2.0058

2.0064
2.0056
2.0056

2.0063
2.0059

DEPMPO-OH
DEPMPO-carbon R
DEPMPO-OCH3 and/or
DEPMPO-OOCum
DEPMPO-OH
DEPMPO-carbon R
DEPMPO-13CH3
DEPMPO-OCH3 and/or
DEPMPO-OOCum
DEPMPO-OH
DEPMPO-13CH3
DEPMPO-OCH3 and/or
DEPMPO-OOCum

DEPMPO-OH
DEPMPO-carbon R

DEPMPO-OH
DEPMPO-carbon R
DEPMPO-13CH3

DEPMPO-OH
DEPMPO-13CH3

* hfccs in RHE were calculated following the best simulation attempts considering the S/N
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Scheme 1
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Scheme 2
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Figure 1
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Figure 2
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Figure 3
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Figure 4Figure 4
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Figure 5
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Legends
Scheme 1. Radical process leading to the formation of methyl radicals from CumOOH.

Scheme 2. Synthetic pathway to obtain 13C-MeCumOOH 1 and (13C-Me)2CumOOH 2. 1-(13C)Acetophenone 4 

was the key starting material for both compounds.

Figure 1. Chemical structures of 13C-MeCumOOH 1 and (13C-Me)2CumOOH 2.

Figure 2. EPR spectra of 13C-MeCumOOH 1/DEPMPO/Fe(II) in solution. (a) Control with single DEPMPO (25 

mM); (b) Control with DEPMPO (25 mM) and Fe(II) (1 mM); (c) Experimental spectrum obtained with 13C-

MeCumOOH 1 (0.54 mM), DEPMPO (25 mM) and Fe(II) (0.1 mM); (d) Computer simulation of spectrum (c); 

(e-h) deconvolution of (d) with: (e) DEPMPO-OH spin-adduct (45%); (f) DEPMPO-carbon R spin-adduct 

(28%); (g) DEPMPO-13CH3 spin-adduct (23%); (h) DEPMPO-OCH3 and/or DEPMPO-OOCum spin-adduct 

(4%).

Figure 3. EPR spectra of (13C-Me)2CumOOH 2/DEPMPO/Fe(II) in solution. (a) Control with single DEPMPO 

(25 mM); (b) Control with DEPMPO (25 mM) and Fe(II) (1 mM); (c) Experimental spectrum obtained with 

(13C-Me)2CumOOH 2 (0.54 mM), DEPMPO (25 mM) and Fe(II) (0.1 mM); (d) Computer simulation of 

spectrum (c); (e-g) deconvolution of (d) with: (e) DEPMPO-OH spin-adduct (55%); (f) DEPMPO-13CH3 spin-

adduct (42%); (g) DEPMPO-OCH3 and/or DEPMPO-OOCum spin-adduct (3%).

Figure 4. Comparative experimental EPR spectra in solution (a-c) and in RHE (d-g): (a) CumOOH (0.54 

mM)/DEPMPO (25 mM)/Fe (II) (0.1 mM) [21]; (b) 13C-MeCumOOH 1 (0.54 mM)/DEPMPO (25 mM)/Fe (II) 

(0.1 mM); (c) (13C-Me)2CumOOH 2 (0.54 mM)/DEPMPO (25 mM)/Fe (II) (0.1 mM); (d) DEPMPO (250 

mM)/RHE; (e) CumOOH (10 mM)/DEPMPO (250 mM)/RHE; (f) 13C-MeCumOOH 1 (50 mM)/DEPMPO (250 

mM)/RHE; (g) (13C-Me)2CumOOH 2 (50 mM)/DEPMPO (250 mM)/RHE. Because of the low signal-to-noise 

ratio, DEPMPO-OCH3 and/or DEPMPO-OOCum spin-adducts are no indicated for clarification purposes. Spin-

adducts are indicated as follows: DEPMPO-OH white circle, DEPMPO-CH3 star and DEPMPO-13CH3 black 

circle. Dotted arrows indicate the formation of signals related to DEPMPO-13CH3 spin-adduct in RHE.

Figure 5. EPR experimental spectra in solution of CumOOH (0.54 mM)/DEPMPO (25 mM) with varying 

concentrations of Fe (II): (a) Fe(II) 1.0 mM; (b) Fe(II) 0.5 mM; (c) Fe(II) 0.1 mM; (d) in the absence of Fe(II).
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