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Abstract. This work is concerned with validation of cyber-physical sys-
tems (CPS) via sampling of input signal spaces. Such a space is infinite
and in general too difficult to treat symbolically, meaning that the only
reasonable option is to sample a finite number of input signals and sim-
ulate the corresponding system behaviours. It is important to choose a
sample so that it best “covers” the whole input signal space. We use
timed automata to model temporal constraints, in order to avoid spu-
rious bugs coming from unrealistic inputs and this can also reduce the
input space to explore. We propose a method for low-discrepancy gen-
eration of signals under temporal constraints recognised by timed au-
tomata. The discrepancy notion reflects how uniform the input signal
space is sampled and additionally allows deriving validation and perfor-
mance guarantees. To evaluate testing quality, we also show a measure of
uniformity of an arbitrary set of input signals. We describe a prototype
tool chain and demonstrate the proposed methods on a Kinetic Battery
Model (KiBaM) and a Σ∆ modulator.

1 Introduction

Cyber-physical systems (CPS) are integrations of computation with physical
processes, and have become a predominant component of modern engineering
systems. A major challenge in proving correct operations of industrial CPS is the
absence of rigorous mathematical models, and even when such models are avail-
able they are often intractable by exhaustive formal verification techniques, due
to computational complexity. Falsification methods, based on black-box testing,
are often used for industrial-size complex systems. These methods rely on a tester
that can execute/simulate the system under some input stimuli and observe the
corresponding outputs; their goal is to search for the worst case behaviours by
minimising robustness of satisfaction of some temporal logic formula (see for
example [18,15,2,29]). The most popular tools are S-Taliro [3] and Breach [16].
Generally, a challenge in this approach is the limitation of global optimisation
solvers which may converge to local optima. Also, most optimisers do not take
into account input constraints and may lead to trivial solutions that do not cor-
respond to realistic scenarios. Statistical model checking based on Monte Carlo
methods has also been applied to CPS [13,1,7]. The reader is referred to a sur-
vey on CPS validation approaches [8]. We defer a discussion on related work to
Section 6 after our approach is described in detail.



It is clear that the efficiency of such a validation process depends on the
class of input signals under consideration. On one hand, this class should be
sufficiently expressive to capture all feasible configurations of the environment.
On the other hand, such permissible classes can be very large; therefore, it is
desirable to consider only the input stimuli which are realistic or relevant w.r.t.
the operation context of the system. In this work, we are interested in classes
of signals which satisfy temporal constraints modelled as timed automata (TA).
Indeed, in a CPS, computation processes interact with physical processes via
devices (such as sampling, measurement, actuation) the timing imprecision of
which can be appropriately modelled using TA. We now formulate the problems
we want to solve in order to address the above issues.

1. Generate a set of input signals satisfying some temporal constraints. Using
these signals to simulate or execute the system, one expects to find a be-
haviour that falsifies the property. When no such behaviour is found, it is
important to provide guarantees, such as the portion of correct behaviours,
or the average robustness of property satisfaction.

2. Given an arbitrary set of input signals, determine its testing quality in terms
of property checking or performance evaluation.

To address the first problem, we extend the method for uniform random gen-
eration of runs of timed automata [6] to propose a new method based on low
discrepancy. The generated timed words are then mapped to input signals. To
address the second problem, we employ the well-known Kolmogorov-Smirnov
statistic [26] to measure the goodness of fit of a sample w.r.t. a given distribution.
Interestingly, this statistic can be interpreted in terms of the star discrepancy
[23] largely used in quasi-Monte Carlo methods.

The paper is organised as follows. Section 2 recalls important concepts,
namely the star discrepancy, timed automata and timed polytopes, and quan-
titative guarantees. The next three sections assume that a timed automaton
describing a class of input signals of interest is given, and focus on the prob-
lem of generation of timed words. Section 3 presents a transformation from the
unit box to a timed polytope (corresponding to the constraints on time delays
along a path). In the forward direction, by sampling over the unit box and then
applying the transformation we obtain a sampling over the timed polytope. In
Section 4, we describe a new method for low-discrepancy sampling which yields
a quasi-Monte Carlo method. Section 5 presents a measure of uniformity degree
of an arbitrary sample and discusses how this measure can be estimated, by
using again the above-described transformation but in the backward direction
(which is known as the Rosenblatt’s transformation [26]). Finally, based on these
results we propose in Section 6 a framework for testing CPS with guarantees.
We include here a comparison with related work to highlight the novelty of our
approach. We describe a tool chain which integrates an implementation of these
methods, and demonstrate the proposed methods on a Kinetic Battery Model
and a Σ∆ modulator.
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2 Preliminaries

Star Discrepancy. By the (n-dimensional) unit box we mean the set [0, 1]n.
Given a point b = (b1, . . . , bn) inside the unit box, we define the box [0, b] =
[0, b1]× · · · × [0, bn]. The star discrepancy of a finite set S of points in the unit
box is defined as:

D?(S) = sup
b∈[0,1]n

∣∣∣∣Vol([0, b])− |S ∩ [0, b]|
|S|

∣∣∣∣ .
Intuitively, the star discrepancy is a measure of how equi-distributed a set of
points is over the unit box, or how different its distribution is compared to the
uniform distribution. This notion is used in number theoretic and quasi-Monte
Carlo methods. The lower the discrepancy is, the better the space is “filled” with
points. Asymptotically a sequence of uniform random points will homogeneously
fill the space P that is sampled such that for every subset of P, the density of
points in this subset will be proportional to its volume. In this work we use
two well-known low-discrepancy sequences: Halton [19] and Kronecker [25]. The
star discrepancy is a way of quantifying how homogeneously a sample covers the
sampling space for finite sequences. Its link with the n-dimensional Kolmogorov-
Smirnov statistic is provided later (see Section 5.2).

Timed Automata and Timed Polytopes. Let X be a finite set of non-
negative real-valued variables called clocks, which are assumed bounded by a
constant M ∈ N. A clock constraint has the form x ∼ c or x − y ∼ c where
∼∈ {≤, <,=, >,≥} with x, y ∈ X, c ∈ N. A guard is a finite conjunction of
clock constraints. For a clock vector x ∈ [0,M ]X and a non-negative real t, we
denote by x + t the vector x + (t, . . . , t). A timed automaton (TA) A is a tuple
(Σ,X,Q, i0,F , ∆) where Σ is a finite set of events; X is a finite set of clocks;
Q is a finite set of locations; i0 is the initial location; F ⊆ Q is a set of final
locations; and ∆ is a finite set of transitions. A transition δ ∈ ∆ has an origin
δ− ∈ Q, a destination δ+ ∈ Q, a label aδ ∈ Σ, a guard gδ and a reset function rδ
determined by a subset of clocks B ⊆ X; this transition resets to 0 all the clocks
in B and does not modify the other clocks. A state s = (q,x) ∈ Q × [0,M ]X

is a pair of a location and a clock vector. The initial state of A is (i0,0). A
timed transition is a pair (t, δ) of a time delay t ∈ [0,M ] followed by a discrete
transition δ ∈ ∆. The delay t represents the time before firing the transition δ. A

run is an alternating sequence (q0,x0)
t1,δ1−−−→ (q1,x1) . . .

tn,δn−−−→ (qn,xn) of states
and timed transitions with the following updating rules: qi is the successors of
qi−1 by δi, the vector xi−1 + t must satisfy the guard gδ and xi = rδ(xi−1 + t).
This run is labelled by the timed word (t1, a1) · · · (tn, an) where for every i ≤ n,
ai is the label of δi. The set of timed words that label all the runs leading from
the initial state (i0,0) to a final state (qn ∈ F) is called the timed language of A.
Given a discrete path α = δ1 · · · δn of A the set of timed vectors t ∈ [0,M ]n such

that (i0,0)
t1,δ1−−−→ (q1, t1) . . .

tn,δn−−−→ (qn, tn) is called the timed polytope associated
to the path α.
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x1 ∈ (1, 6)
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x1 ∈ (0, 6)
x1 := 0

x2 ∈ (0, 6)
x2 := 0

x3 ∈ (0, 6)
x3 := 0

Fig. 1. A timed automaton for the running example.

Example 1 (Running example). We consider the TA in Fig. 1. This automaton
has the property that after entering the cycle the time between 4 consecutive
events is between 1 and 6. Intuitively, they are loosely periodic as transitions
cannot be taken too early or too late. This automaton is used to model a quasi-
periodic pattern of signals with uncertain period ranging between 1 and 6. Its
first three locations before the cycle model the uncertain phase of the signals. To
illustrate the timed polytope notion, we consider the path of length 2 starting
at location q0 and ending at q2. The timed polytope corresponding to this path
is the triangle {(t1, t2) | t1 + t2 < 6, t1 > 0, t2 > 0}. Its 2-dimensional volume
is 62/2 = 18. Uniform sampling in this polytope is depicted in Fig. 2 (b1).
More generally, the timed polytope associated to the (unique) path of length
n is defined by 0 < tk−3 + tk−2 + tk−1 + tk < 6, for k = 1, . . . , 3 with the
convention that tj = 0 for j < 1, and 1 < tk−3 + tk−2 + tk−1 + tk < 6, for
k = 4, . . . , n−3. The kth constraint is due to the guard xi ∈ (1, 6) (to be precise,
with i = (k mod 4)+1) because the clock xi contains the sum of the 4 last delays
before taking the kth transition. Computing the volume of such a timed polytope
requires dynamic programming algorithms (involving an integral operator per
transition) which can be found in [4,6].

Quantitative Guarantees and Sampling-Based Estimation. Quantita-
tive properties of CPS can be expressed by averaging some function f defined
on the set of input signals. For instance, such a function can be the indicator
function of the set of input stimuli that lead to incorrect behaviours, and the
average gives the probability that an input signal falls in this set. This is more
generally the problem of estimating a sub-language volume. In addition, given
a property expressed using temporal logics, f can be the (satisfaction) robust-
ness which is a function of the input. Such properties can thus be evaluated by
sampling in the input signal space, as in Monte Carlo and quasi-Monte Carlo
methods. To obtain accurate results, the sampling process should generate the
signals as uniformly as possible to cover well the input signal space with high
probability. In other words, the probability that a generated signal falls in a
set should be proportional to the volume of this set. To solve this problem for
timed automata we need a transformation from the unit box to a timed poly-
tope, which is explained in the next section. We also use this transformation for
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 2. First line, left to right. (a1): we first draw 450 points uniformly at random in
the unit box; (b1): we then apply the inverse sampling method with the CDF of the
uniform sampling (see Theorem 1) to get 450 timed vectors in the timed polytope;
(c1): we do the same as for (b1) but using the CDF of the isotropic sampling; (d1): the
sample in (c1) is mapped back to the unit box with the CDF of the uniform sampling
to check its star discrepancy. Second line, we do the same as for the first line, but
starting with a low-discrepancy sequence of 450 points in the unit box (a2).

a low-discrepancy generation method presented in Section 4. We further exploit
this transformation in Section 5 to estimate a measure of uniformity degree for
an arbitrary sample of timed words.

3 Tranformation from the Unit Box to a Timed Polytope

Defining Probability Distributions to Sample Timed Languages. We
first emphasise that we want to sample uniformly timed words of a given length
from the timed language of a given TA. This uniform sampling is such that every
timed word of the language has the “same chance” of being sampled. Note that
the sampled space is uncountably infinite since the delays are real numbers. This
uniform sampling should not be confused with an intuitive sampling method,
called isotropic, which at each discrete step makes a uniform choice among the
possible delays. This isotropic sampling method is used as a “default” sampling
in several work (see [10] and references therein). The difference between the two
sampling methods will be illustrated in Ex. 2.

For a given TA, our previous work [6] proposes a method for generating
uniformly timed words of a given length. Such a uniform sampling is done by
adding probability distributions on time delays along a run of the automaton.
In [9] we treat the case of generating infinite timed words, based on the notion of
maximal entropy. Let us now explain the essence of these ideas. The constraints
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on the delays along a discrete path define a timed polytope; sampling runs along
a discrete path thus reduces to sampling over a timed polytope. For simplicity
of presentation, we will explain only the generation of timed vectors in a timed
polytope, or in a sequence of timed polytopes along a single path. Discrete
branching can be handled similarly as in [6].

Given a discrete path α = δ1 · · · δn of the TA A, let P be the timed poly-
tope associated to this path. We want to evaluate

∫
P f(t)dt/Vol(P), the av-

erage over P of a function f : P → R (used to express a quantitative prop-
erty). Here the normalising constant Vol(P) =

∫
P 1dt is the n-dimensional

volume of P. More generally, we can give different weights to different timed
vectors of P by using a probability density function (PDF), namely a function
ω : P → R+ such that

∫
P ω(t)dt = 1. Then the integral we want to evaluate

becomes
∫
P f(t)ω(t)dt, which is also called the expectation E(f(T )) of the ran-

dom variable T = (T1, . . . , Tn) distributed according to the PDF ω (and that
takes values as timed vectors in P).

The uniform distribution assigns the density of probability ω(t) = 1/Vol(P)
to every timed vector t ∈ P. A sampled timed vector t thus falls in a given subset
A of the timed polytope P with probability Vol(A)/Vol(P). If we define f as
the indicator function 1B of a set B of “bad” behaviours, and if T is distributed
according to the uniform distribution, then the expectation E(1B(T )) measures
the portion of bad behaviours in P, formally E(1B(T )) = Vol(B)/Vol(P).

To define the random variables T , it suffices to give its n-dimensional cu-
mulative distribution function (CDF) F (t) = Prob(T ≤ t) where the partial
order ≤ is defined by (T1, . . . , Tn) ≤ (t1, . . . , tn) iff Ti ≤ ti for every i = 1 . . . n.
This CDF is usually given by the following sequence of conditional CDF: Fi(ti |
t1, . . . , ti−1) = Prob(Ti ≥ ti | T1 = t1, . . . , Ti−1 = ti−1). The following chain rule
gives the relation between the conditional CDF and the CDF of T :

F (t1, . . . , tn) = F1(t1)F2(t2 | t1) . . . Fn(tn | t1, . . . , tn−1).

In [6] and in some other work, the conditional CDF Fi(ti | t), used to sample
ti, depends only on the current state (qi−1,xi−1), that is Fi(ti | t) = Gi(ti |
(qi−1,xi−1)) for some conditional CDF Gi. For the uniform distribution on a
timed polytope, the conditional CDF are characterised in [6], via the definition
of the conditional PDF (which are the derivatives of the CDF). These conditional
CDF for uniform sampling play a particular role in our subsequent development,
and is denoted specifically by F = (F1, . . . ,Fn). Theorem 1 summarises the
characterisation of the CDF for the uniform sampling of timed words. These
CDF can be effectively computed and their computation was implemented in
the tool chain of [6].

Theorem 1 ([6]). Given a path in a TA one can compute the CDF Fi in poly-
nomial time w.r.t. the length of the path. These CDF can be written in the
following form Fi(ti | t1, . . . , ti−1) = πi(t1, . . . , ti−1)/γi(t1, . . . , ti)with πi and γi
polynomials of degree at most i.

Example 2 (Ex. 1 continued). To show the difference between the isotropic and
uniform methods, we consider again the path q0 q1 q2 of the automaton of Ex. 1.
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We sample timed vectors (t1, t2) in the 2-dimensional timed polytope associated
to this path (shown in the first line of Fig. 2). Using the isotropic sampling, t1
is chosen uniformly in (0, 6) and then t2 is chosen uniformly in (0, 6− t1). This
is why in Fig. 2-(c1) the set of points generated by the isotropic sampling gets
more and more dense along the t1-axis. In particular, with the isotropic sampling
the set {(t1, t2) | t1 ∈ (0, 1), t1 + t2 < 6} has the same probability as the small
triangle {(t1, t2) | t1 ∈ (5, 6), t1 + t2 < 6}, while the former is 11 times bigger
than the latter. This is in contrast with the uniform sampling where the chance
of falling in a set is proportional to its area. With the uniform sampling (see
Fig. 2-(b1)), t1 is chosen according to the probability density function (PDF)
t1 7→ (1 − t1)/18, and t2 according to t2 7→ 1/(1 − t1). The PDF of a timed
vector (t1, t2) is hence ((1− t1)/18)1/(1− t1) = 1/18 = 1/Vol(P), as expected.

Transformation from the Unit Box to a Timed Polytope. We observe
further that if we use the conditional CDF F = (Fi)i=1..n to transform a
timed vector t to a vector u as follows: u1 = F1(u1), and for i = 2, . . . , n
ui = Fi(ti|t1, . . . , ti−1), then u = (u1, . . . , un) is in [0, 1]n. The following theo-
rem allows going back and forth between a timed polytope and the unit box.

Theorem 2 (Rosenblatt’s tranformation [26]). Let F = (Fi)i=1..n be a
sequence of conditional CDF. Define the transformation U = F (T ) between the
random vectors U and T by U1 = F1(T1), Ui = Fi(Ti | T1, . . . , Ti−1) for every
i = 2 . . . n. Then T is distributed according to the CDF F iff U1, . . . , Un are i.i.d
uniformly distributed random variables on [0, 1].

This theorem allows us to make use of the transformation F−1 for generat-
ing timed words, similarly to random sampling according to CDF as in inverse
transform sampling. Once t1, . . . , ti−1 are sampled, the next delay ti is randomly
sampled as follows. A real number ui is drawn uniformly in [0, 1], and then
one finds the unique ti such that Fi(ti | t1, . . . , ti−1) = ui using for instance
the Newton’s method. Ultimately, from n i.i.d uniformly distributed random
numbers u1, . . . , un in the unit interval, we get a timed vector (t1, . . . , tn) =
F−1(u1, . . . , un). This transformation F−1 implicitly underlies the uniform sam-
pling method presented in [6]. We can now use it for the two problems stated in
the introduction:

– In a forward manner for low-discrepancy generation (see Section 4).
– In a backward manner to evaluate the generation quality (see Section 5.2).

4 Low-Discrepancy Generation and Quasi-Monte Carlo
Methods for Timed Polytopes

We exploit the forward use of F−1 (from the unit box to a timed polytope), to
generate points in a timed polytope with low discrepancy. To this end, it suffices
to start with a low-discrepancy set of points in the unit box and then apply
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to it the transformation F−1. To obtain a low discrepancy point set in the unit
box, in this work we use, as mentioned earlier, the well-known low-discrepancy
sequences Halton [19] and Kronecker [25].

The use of low-discrepancy generation is motivated by the fact that when
considering finite sequences, some (deterministic) low-discrepancy sequences be-
have better than uniform sequences in terms of homogeneous space-filling. Our
generation procedure indeed yields a quasi-Monte Carlo method [24] for esti-
mating or averaging integral functions which express quantitative properties of
interest. Note that using the uniform random generation, one can only provide
statistical guarantees, as Monte Carlo methods. This new generation method,
in contrast, allows characterising deterministic error bounds (that is, without
probabilistic uncertainty) in approximating the multi-dimensional integral of a
function by the average of the function values on a sample of points. A popular
characterisation is the Koksma-Hlawka (KH) inequality [20]. Formally, given a
function g : [0, 1]n → R and a sample S = (p(k))k=1..N , the Koksma-Hlawka
inequality is

∣∣∣∣∣ 1

N

N∑
n=1

g(p(n))−
∫
[0,1]n

g(r)dr

∣∣∣∣∣ ≤ V ∗(g)(D?(S))1/n (1)

where D?(S) is the star discrepancy of the set S, V ∗(g) is the variation in
the sense of Hardy and Krause, which does not depend on S, so it is constant
when we fix g. Using low-discrepancy sequences yields an upper-bound D?(S) ≤
Cn log(N)n/N where the constant Cn depends on the point dimension n and on
the type of the sequence but not on the number N of sampled points.

We now show how the above result can be applied to our testing context
where f is the function expressing the guarantee. Each timed word corresponds
to an input signal. To average f , we can use the quasi-Monte Carlo approach for
g = f ◦ F−1 (where F is the above-described CDF of the uniform generation in
a timed polytope P) as follows. We first generate a low-discrepancy sequence of
vectors in the unit box, next we apply F−1 and then f to the sequence, compute
the average to get an estimate of the expectation

∫
P f(t)dt/Vol(P). Another

application is to estimate the size (volume measure) of a subset E of the timed
polytope P (corresponding for instance to the set of input stimuli leading to
incorrect behaviours). To this end, it suffices to define g = χF(E) where χA is
the indicator function of a set A.

Providing different types of guarantees (statistical vs. deterministic), the uni-
form random and low-discrepancy generation methods are complementary. It is
important to emphasise that the low-discrepancy generation method does not
require estimating the star discrepancy, which is indeed computationally costly.
Only after the testing process is done, the star discrepancy or more generally the
Kolmogorov-Smirnov statistic (which will be introduced in the next section) are
estimated to evaluate the testing results. This information is useful for deciding
whether additional test cases are needed.
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5 Evaluating the Uniformity Degree

To evaluate the level of confidence in the testing results, we now address the
second problem stated in the introduction. In the sampling-based framework
described thus far, this problem can be formulated as evaluating the quality of
an arbitrary sample in estimating a quantitative guarantee. Since the approxi-
mation quality of both Monte Carlo and quasi-Monte Carlo methods depends
on the uniformity degree of the sampled point set (which indicates how close
the distribution of this set is to the uniform distribution), we are interested in
evaluating the uniformity degree of a given point set.

5.1 Visualising n-dimensional Uniformity Degree via Histograms

One practical way to evaluate the uniformity degree is visualisation. For 2-
dimensional samples, we have already visualised in Fig. 2, the difference in the
uniformity degree between the sets sampled using different methods. For clouds
of points in dimensions higher than 2, we propose the following visualisation
method based on histograms.

Example 3. We modify slightly the TA of Fig. 1 to ensure that every delay
is bounded by 2. To do so, it suffices to add a clock y that is reset at each
transition and must satisfy the condition y < 2 for the transition to be taken.
This ensures that the timed polytope associated to the discrete path of length n
is included in the box [0, 2]n. We draw timed words (using a sampling method)
and for each box

∏n
i=1[bi, bi+1] we count the number of times this box is hit

by a sampled timed word. Since each box has volume 1, every box that is fully
included in the language has probability to be hit equal to 1/Vol(Ln). The other
have a lower probability which is proportional to the volume of their intersection
with the language. To visualise the boxes, we number each box with a binary
representation given by the lower bounds of the box. Formally,

∏n
i=1[bi, bi+1] is

numbered by
∑n
i=1 bi2

n−i. For instance with n = 5, the number 25, the binary
representation of which is 11001, is assigned to the box [1, 2] × [1, 2] × [0, 1] ×
[0, 1] × [1, 2]. Fig. 3 shows the histograms of the hitting count for each box
included in [0, 2]5 after drawing 5, 000, 000 timed words. All the boxes intersect
the language, and the purple bars correspond to the boxes fully included in the
language that we call hereafter purple boxes. We can observe from the histograms
a great similarity between the uniform and low-discrepancy sampling methods.
As expected, when restricted to the purple bars, their histograms are flat because
the probability for each purple box to be hit is the same and equal to 1/Vol(L5).
We can see that the isotropic sampling is clearly not uniform on the purple boxes
and it over-samples the green boxes.

5.2 Measuring the Uniformity Degree

Another evaluation method is to characterise the uniformity degree using the
Kolmogorov-Smirnov (KS) test, which is a statistical test to measure how well a
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Fig. 3. Histograms for Ex. 3

sample S of points fits a distribution given by a known CDF F . We first point out
the relation between this test and the star discrepancy, which allows us to exploit
the backward use of F−1 (from a timed polytope to the unit box) to estimate
the KS statistic. The Kolmogorov-Smirnov statistic is defined by the following
value (which is a random variable when the sample is drawn at random):

KS(F, S) = sup
p∈Rn

|F (p)− F̃S(p)|

where F̃S is the empirical CDF associated with the sample S defined as F̃S(p) =
|{p′ ∈ S | p′ ≤ p}|/|S|, which is the ratio of the number of points in S that
falls in the box [−∞, p1] × . . . × [−∞, pn]. Let FU be the CDF associated to n
i.i.d. uniform random variables on [0, 1], then FU (p) is the volume of the box
[0,p], and the KS statistic KS(FU , S) is nothing else than D?(S), that is the
star discrepancy introduced in the preliminaries and used in the Koksma-Hlawka
inequality (1). This connection is known (see for example [21,23]). Theorem 2 is a
basis for the following observation. Given a sample S, one can translate KS(F, S)
into KS(FU , F (S)). The former is the multi-dimensional KS statistic of S w.r.t. a
CDF F , and the latter is the KS statistic of the transformed sample F (S) =
{F (p) | p ∈ P} w.r.t. the uniform distribution FU on the unit box. The latter is,
as mentioned before, the star discrepancy of F (S). Applying this observation to
the CDF F of the uniform distribution on a timed polytope, we have KS(F, S) =
D?(F(S)). Note that when S is obtained via uniform (resp. low-discrepancy)
sampling then S = F−1(S′) where S′ is a sample of uniform random vectors
(resp. a low-discrepancy sample). So in that case KS(F, S) = D?(F(F−1(S′))) =
D?(S

′) and the KS test that requires the KS statistic to be below a threshold
passes with high probability (resp. for sure).

Example 4. For the running example, we compute D?(F(S)) of a sample S of
timed words drawn using the three sampling methods. After mapping the gen-
erated timed vectors back to the unit box, we estimate the star discrepancy of
the resulting points. The estimation based on a grid provides a lower and an
upper bound on the star discrepancy value [28]. For the set generated by the
low-discrepancy method (Fig. 2-(b1)), the star discrepancy estimation interval is
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[0.009, 0.020], by the uniform method (Fig. 2-(a1)) [0.040, 0.047]; by the isotropic
method with a uniform random sequence (Fig. 2-(a4)) [0.256, 0.266], and by the
isotropic method with a low-discrepancy sequence (Fig. 2-(b4)) [0.250, 0.257].
From these results, regarding the KS statistics, we observe that the low-discrepancy
and uniform methods are clearly better than the isotropic method. It is worth
noting that although the points in the unit box generated by the isotropic method
from the low-discrepancy sequence look in the figure more “regular”, their dis-
crepancy is far larger.

6 Application to CPS Testing

6.1 CPS Testing

Our development thus far focuses on timed words, which can be thought of as
an abstraction of real-valued signals. In order to achieve a procedure for CPS
testing with guarantees, we show how to define real-valued signals from timed
words. We also discuss how timed automata can be used to specify temporal
constraints of input signals. Before continuing, let us sketch our procedure.

1. Specifying the temporal constraints on input signals by a timed automaton.
2. Generating a sample of timed words of the timed automaton, using either

the uniform method or the low-discrepancy method.
3. Mapping the generated timed words to input signals.
4. Simulating the model or executing the system under the input signals.
5. Determining the guarantees: the uniform method produces statistical guar-

antees (such as, probability of satisfaction) while the low-discrepancy method
produces deterministic ones (such as, error bound on the ratio of correct be-
haviours or on the satisfaction robustness).

If the testing process uses an arbitrary sample of timed words we can still evalu-
ate its generation quality by the step 5. The steps 2 and 5 have been discussed in
the previous sections. Before proceeding with the remaining steps, we point out
the novelty of our approach. The existing approaches, such as S-Taliro [3] and
Breach [16], use a parametrisation of input signals to reduce the involved infinite
dimensional optimisation problem to a finite dimensional one. Such a parametri-
sation (based on a fixed time discretisation producing to a fixed sequence of time
stamps) does not directly capture temporal constraints on input signals. This
may lead to a large number of non-realistic test scenarios that are explored by
the optimiser but then need to be discarded. With the ability of generating valid
signals satisfying temporal constraints, our approach can consider a larger va-
riety of time discretisations leading to better coverage. Also, our approach can
reduce the search space and aim at good coverage only over the valid signal
space. Furthermore, our generation methods can generate parametric signals;
for example, the signal values for the time intervals between the transitions need
not be fixed but are represented as parameters over which optimisation can be
used, as in the existing optimisation-based approaches. In terms of complexity,
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if we use the existing optimisation-based approaches, the number of the param-
eters (that is the number of the optimisation variables) corresponds to the path
length in our approach. Both of the generation methods (low-discrepancy and
uniform) require computing the CDF which, as mentioned earlier, can be done
in polynomial time w.r.t. the path length. In other words, compared to these
methods, our signal generation methods do not add much computation efforts
and enable more efficient search since all the generated signals are relevant.

Specifying temporal constraints on signals using timed automata. Timed au-
tomata are a popular tool for specifying temporal properties of various types of
systems [8]. In this section, we only illustrate the usefulness of timed automata
in specifying two common properties of signals arising in CPS applications. The
first is bounded variability, meaning that within any time period of duration Tp
there cannot be more than m events. Another definition is to state that for every
integer 1 ≤ k ≤ n−m the sum of delays tk + . . .+ tk+m−1 is always greater than
Tp. This can be measured by a clock that can be reused every m transitions,
so it suffices to have m clocks (one per congruence class modulo m). This is
illustrated in our running example: every sequence of m = 4 delays needs more
than Tp = 1 time units to occur.

The second property is a perturbed periodic pattern, which specifies that
some m events occur during a period of [Tp, Tp+∆p] time units and that during
this period the delays are in the prescribed intervals. This perturbed periodic
pattern is used in the sequel to create input signals to a model of Σ∆ modulator.

From timed words to signals. A mapping can be directly defined when the timed
words yield directly Boolean signals which switch between True or False values
after a time delay. As we will show later, such Boolean signals can model the
fact that a battery is turned on or off in the KiBaM model used in our exper-
imentation. Another straightforward mapping can be defined to obtain signals
that are piecewise constant taking values in a finite set. In the above-described
case of uncertain periodic pattern, during a period the signals take a predefined
sequence of values (this can model for instance a discretised sinus function) and
each change of value occurs after a time delay. A more general way of mapping
is to use retiming functions, motivated by sampled-data systems and more gen-
erally embedded control systems. A retiming function can specify perturbation
in terms of imprecision and delay in sampling and communication.

6.2 Experimentation

Our Tool Chain. We implemented our workflow using 4 tools: PRISM [22],
SageMath [27], Cosmos [5] and Simulink R©. The workflow is depicted in Fig. 4.
The first steps are similar to those in [6], their output is a stochastic process
generating timed words in the language of the automaton. Cosmos then simulates
the stochastic process using Monte Carlo or quasi-Monte Carlo sampling (box
“Signal Generation” in Fig. 4). The obtained timed traces are used to generate
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Fig. 4. Tool chain for black-box CPS validation with input temporal constraints.

real-valued signals which are then fed to the Simulink model we want to test.

Example 1 - KiBaM Model. We first illustrate our workflow on an example of
a micro-controller powered by a battery using a Kinetic Battery Model (KiBaM).
The goal is to show that if the micro-controller follows its specification in terms
of energy usage pattern then the battery will last a certain amount of time. The
KiBaM battery model is easily described by a system of ODE. The main feature
of this model is that it reflects well the ability of the battery to “self-recharge”
when idle. The controller oscillates between two states: the idle state where it
consumes a very small amount of power and the active state where it consumes
more. The energy usage pattern specification is that the controller may not stay
active for more than τ1 time units but needs to be active every τ3 time units and
when it is idle it waits at least τ2 time units until it becomes active again. During
the operation, the controller drains the battery if it stays active for too long, but
the battery restores itself when the controller is idle. Eventually the battery will
be completely drained. The property we want to check is that the battery lasts
more than T time units: always_[0,T] (BatteryCharge > 0). Fig. 6 depicts

Idle Active

a : x < τ3 ∧ y > τ2; x := 0

b : x < τ1; y := 0

1

s

Integrator

1

s

Integrator1

1.1111

Gain

10

Gain1

0.01

Gain2

0.05

Gain3

1

In

1

Bound

2

Available

Fig. 5. KiBaM model: Simulink diagram and 2-state controller. When the state of the
controller is Idle (resp. Active), the input port (In) receives the value 0 (resp. 1).

a simulation trace of the battery and the controller. One can observe that when
the controller is active, the available charge quickly drops, but as the controller
quickly returns to the idle state, the battery is able to self-recharge. This trace
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Fig. 6. Co-simulation of the automaton with uniform sampling and the KiBaM model.
The energy unit is a fraction of initial capacity.

was sampled with uniform sampling. We performed experiments with the three
sampling methods using 10, 000 trajectories. For T = 271, the property holds
on every trajectory for all methods. For T = 272, the estimated satisfaction
probability is in [0.948, 0.959] for the uniform sampling and [0.953, 0.963] for
the low-discrepancy sampling using Halton’s sequence. The confidence level is
0.99 and the total computation time is around 1 minute, where a dominating
part of 45 seconds was used for the CPS simulation, and 15 seconds for the
stochastic process simulation and signal generation. The CPS simulation requires
to numerically solve differential equations which is costly.

Example 2 - Σ∆ Modulator. Σ∆ analog-to-digital converters are widely used
for analog signals of a large range of frequencies. This is a typical mixed-signal
circuit comprising of an analog component (modulator) and a digital component
(digital signal processor for filter and decimation). The most basic architecture
of the modulator contains a 1-bit DAC (comparator), a 1-bit DAC (switch),
and one or more integrators. Σ∆ modulator stability analysis is a challenging
problem. When instability occurs, low frequency signal at the input port of the
quantizer alternates between the minimum and maximum magnitudes, which
causes the quantizer output to get saturated and the modulator can no longer
track the input signal. This constitutes a major non-linearity of the modulator.
In this work we apply our methods of signal generation to test if a saturation can
occur in a Σ∆ modulator. We use a behavioral model of a second-order mod-
ulator specified using Simulink R©, which takes into account most non-idealities
[11] (see Fig. 7), including sampling jitter, integrator noise, op-amp parame-
ters (finite gain, finite bandwidth, slew-rate and saturation voltages). In terms
of model complexity, this Simulink model is heterogeneous including embedded
Matlab code and mixing discrete-time and continuous-time components, which
goes beyond the applicability of the existing formal verification tools. We also
remark that formal verification has previously applied to check the saturation
occurrence for a much simpler discrete-time Σ∆ modulator model without non-
idealities, for which it is possible to derive its dynamics equations and thus opti-
mization can be formulated and solved [14]. This simple model was also treated
by a statistical model-checking approach which picks uniformly an input value at
random at each time step [12]. We consider a class of quasi-periodic signals with
the frequency spectrum satisfying the nominal range required for the correct
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Fig. 7. High-level view of the Σ∆ model with non-idealities [11]

operation of the modulator. The temporal pattern of the considered signals is
specified by a variant of the automaton in Figure 1. Each period ranges between
10 et 16, and the delay between two transitions between 1 and 3. The signal
value range is discretised into 4 integer values from 0 to 3. We generate a set of
100 timed words of length 300 with the uniform sampling and low-discrepancy
methods. The signals are constructed by linear interpolation between the values
at the time stamps and then fed to the Breach tool [16], which evaluates the
robustness of simulation traces. The STL specification [17] expressing the ab-
sence of saturation is always_[0, sim_time] (abs(OutSat1[t]) < 2). Note
that we focus on the first integrator since its non-idealities cannot be attenuated
by the noise shaping. To test different frequency range, we scale the time stamps
with different factors. For the scaling factors κ ≥ 0.8 × 10−7, the two methods
detected a saturation situation. With κ = 0.6×10−7 the low-discrepancy method
detected a saturation while the uniform method did not. For κ ≤ 0.5 × 10−7,
both methods did not detect a saturation, which can be explained by these
high frequencies getting closer to the oversampling frequency (Fs = 42MHz).
This experiment showed the interest of the low-discrepancy generation method.
The timed word and signal generation took about 30 seconds, while the average
Simulink simulation time was 58 seconds for simulating 100 trajectories.

7 Conclusion

We have extended the work on uniform random generation of runs of timed
automata, leading to two new contributions. The first one is a new method for
low-discrepancy generation, which is an alternative to the uniform random gen-
eration, providing deterministic guarantees. The second contribution is a method
for validation of complex CPS models which go beyond the scalability of formal
verification and are treated in our approach as black boxes. The ability to han-
dle temporal constraints on input signals is also a novelty in this context. This
work opens a number of directions for future work. First, the star discrepancy
calculation is a difficult problem. The grid-based estimation method used in this
work becomes expensive in high dimensions when a good estimate is needed. We
plan to explore methods based on the points in the sample to identify points
with jumps in the empirical CDF that affect the supremum result. Additionally,
we plan to combine the sampling-based approach with optimisation within the
signal value space.
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