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Abstract. We study from a theoretical point of view whispering gallery modes (WGM) in graded index micro-disk
resonators where the refractive optical index varies with the radial position. Using a quantum mechanical analogy, we
highlight three different behaviors for the WGM depending on the sign of a key parameter expressed as the ratio of
the refractive index value to its derivative at the cavity boundary. This results in three asymptotic expansions of the
resonances for large polar mode index providing first-approximations of WGM in a simple and quick way. Besides,
these expansions yield a theoretical fundation to considerations of Ilchenko et al. in J. Opt. Soc. Am. A 20, 157 (2003),
about three sorts of effective potentials for TE modes in a dielectric sphere.

PACS. 42.55.Sa Microcavity and microdisk lasers – 42.25.Bs Wave propagation, transmission and absorption –
02.30.Mv Approximations and expansions

1 Introduction

Optical micro-resonators are key devices for many applications
in photonics and they have been widely studied in the past two
decades [1,2]. Optical dielectric resonators supporting Whis-
pering Gallery Modes (WGM) have gained much interest thanks
to their capability to strongly confine the light in very compact
volumes with exceptional properties like a very narrow spectral
linewidth and high quality factor. WGM resonators are usually
formed of dielectric materials with a constant refractive index.
This results in a complex spectral pattern with unequal mode
spacing and a high spectral density that may potentially limit
their performance or the range of their applications. Optical
micro-resonators with spatially varying refractive index offer
new opportunities to improve or enlarge the field of applica-
tions of optical micro-resonators. This kind of optical micro-
cavities falls under the category of Graded index (GRIN) struc-
tures that are widely used in various fields in optics [3].

WGM in optical micro-resonators are specific resonances
of electromagnetic waves inside a convex micro-metric dielec-
tric cavity with smooth surface. They correspond to light-waves
circling around the cavity, almost perfectly guided round by
optical total internal reflection, that meet a resonance condi-
tion (after one round-trip they return to the same point with
the same phase and hence interfere constructively with them-
selves, forming standing waves). Use of graded index cavity
can result in a shift of the spatial location of WGM away from
the exterior surface of the resonator towards the interior of the
resonator. This can reduce the overall optical loss at the exterior
surface caused by adverse effects of surface contamination and
roughness. It may also produce optical spectra of WGM that

are different from the one produced by WGM resonators with
constant refractive indices, e.g. equally spaced resonances.

Among the graded index structures, a modified form of
“Maxwell’s fish eye” has been studied in [4,5]. The authors
investigated by numerical simulation the features of WGM in
a 2D graded index micro-disk (with radius R) where refractive
index varies according to the radial position r as

n(r) =
n0

1+ r2

R2

.

In [6] the authors consider a micro-cavity made by a quadratic-
index glass, doped with dye molecules, and the refractive index
is written as n(r) = n0− 1

2 n2r2, where n2 > 0. In [7] the au-
thors investigate graded index micro-spheres and they consider
the case of an refractive index varying according to the radial
position r as

n(r) =
√

n2
0 + ε ′(R− r)

where n0 > 1 and ε ′ > 0 has unit µm−1.
In this paper, we investigate from a mathematical point of

view WGM in a graded index micro-disk where the refractive
index n varies with the radial position r in a general way and
we highlight three different behaviors for the WGM depending
on the features of the refractive index at the cavity boundary.
Moreover, we characterize for each of these three cases the res-
onance wave-numbers and modes through asymptotic expan-
sions providing first-approximations of WGM wave-numbers
and modes and a first-insight into the expected behavior of
WGM in such optical devices.

We assume here a 2D setting for the micro-disk and there-
fore vertical effects such as mode confinement are neglected.
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We denote by Ω the bi-dimensional dielectric micro-disk cav-
ity and by R its radius. As well known [2] for such a bi-di-
mensional resonance problem, the mode corresponding to a
resonance is either a transverse electric (TE) field or a trans-
verse magnetic (TM) one and the resonance problem takes two
different forms according to whether one is interested in the
TE or TM modes, see Appendix A for details. Moreover, it is
well known that the resonance wave-numbers k are complex
numbers with a negative imaginary part under the e−iωt con-
vention for harmonic time dependence of the electromagnetic
field. The results presented here enter a more general mathe-
matical framework the details of which can be found in [8,9].

We denote by L2
loc(R2) the Lebesgue set of locally square

integrable functions in R2 and by H2(Ω) (resp. H2
loc({Ω) the

Sobolev space of square integrable (resp. locally square inte-
grable) functions in Ω (resp. {Ω ) with all derivatives up to
order 2 in L2(Ω) (resp. L2

loc({Ω)). We introduce the space of
functions

D(R2) = {u ∈ L2
loc(R2)

∣∣ u|Ω ∈ H2(Ω), u|{Ω
∈ H2

loc({Ω)}.

For a varying refractive index n, the resonance problems for TE
and TM modes in the cavity Ω can be gathered into a unique
form by introducing a mode selection index p such that p = 1
for TM modes and p =−1 for TE modes, see Appendix A for
details. This resonance problem reads: find (k,u) ∈ C×D(R2)
such that u 6= 0, ℑ(k)< 0 and

−div(np−1
∇u)− k2np+1 u = 0 in Ω and {Ω (1a)

[u] = 0 across Γ (1b)[
np−1 ∂u

∂ν

]
= 0 across Γ (1c)

where Γ denotes the boundary of Ω , ν the outward unit nor-
mal to Γ and the brackets indicate the jump across Γ of the
quantity inside the brackets. Note that throughout the paper, in
the exterior domain the refractive index n is assumed to be 1.
The out-going wave condition at infinity uses polar coordinates
(r,θ) centered at the center of the disk Ω and reads: ∀r > R
∀θ ∈ [0,2π] there exists (cm)m∈Z such that in the polar coordi-
nates system (r,θ)

u(r,θ) = ∑
m∈Z

cmH
(1)
m (kr)eimθ (1d)

where H
(1)
m denotes Hankel’s function of the first kind and or-

der m and (cm)m∈Z belongs to the space of complex valued
square-summable sequences `2(C). For a short and very un-
derstandable introduction to mathematical aspects of resonance
problems, we refer to [10].

For TE modes, in the cylindrical basis, the unknown u is the
component Hz of the magnetic field and the other two non-zero
components of the electromagnetic field are given by

Er(r,θ) =
i

ωε0n2
1
r

∂θ Hz(r,θ),

Eθ (r,θ) = −
i

ωε0n2 ∂rHz(r,θ).

For TM modes, in the cylindrical basis, the unknown u is the
component Ez of the magnetic field and the other two non-zero

components of the electromagnetic field are given by

Hr(r,θ) =
1

iωµ0

1
r

∂θ Ez(r,θ),

Hθ (r,θ) =− 1
iωµ0

∂rEz(r,θ).

The wave-numbers k are complex with negative imaginary parts
due to the leakage. The quantity 2π/ℜ(k) gives the resonance
wavelength, whereas the imaginary part of k corresponds to the
photon lifetime τ in the cavity through the relation τ =− 1

2cℑ(k) .
Moreover, the radiative quality factor of the mode is defined as
Q = ℜ(k)

2ℑ(k) . Note that the above problem setting is actually ap-
plicable to any shape for the 2D cavity and for any position
dependent refractive index n in the cavity.

The paper is organized as follows. In Section 2, we show
from the system of equations (1a)-(1d) how some of the fea-
tures of resonances in a micro-disk cavity with a radially vary-
ing refractive index can be obtained by using some semi-clas-
sical analysis techniques for Schrödinger operators associated
with some effective potentials. This study results in asymptotic
expansions for large polar mode index m providing first order
approximations for resonances and modes in three distinct and
well defined cases. Finally, in Section 3, we assess the accuracy
of our asymptotic formulas for WGM resonances in a micro-
disk by comparison with values obtained when solving prob-
lem (1) by a numerical method.

It is interesting to note that the splitting into three cases ac-
cording to the behavior of the minimum of an effective poten-
tial has been already highlighted in [7] in the case of a micro-
sphere. In fact, our formulas for TM modes in a disk apply di-
rectly to the case of TE modes in a graded index micro-sphere
investigated in [7] through an elementary change of polar mode
index. In Appendix C, we show how our analysis complements
and strengthens the considerations of [7] who gives a two-term
asymptotics only in the first one of the three cases.

2 Resonances in a disk cavity with a radially
varying refractive index

2.1 Schrödinger analogy

When considering a disk-shaped cavity with a radially varying
refractive index n, the Fourier approach can be used to solve
the resonance problem (1). The eigenfunction u for a solution
(k,u) to problem (1) is expanded in polar coordinates as

u(r,θ) = ∑
m∈Z

um(r)eimθ (2)

and solutions to problem (1) are obtained from the solutions
of the following family of 1D problems: Find (k,um) ∈ C×
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D(R+,rdr) such that ℑ(k)< 0, um 6= 0 and

u′′m(r)+
(

1
r +(p−1) n′(r)

n(r)

)
u′m(r) (3a)

+
(

k2n2− m2

r2

)
um(r) = 0 in ]0,R[ and ]R,+∞[

[um(R)] = 0 (3b)[
np−1(R)u′m(R)

]
= 0 (3c)

um(r) ∝ H
(1)
m (kr) as r→+∞ (3d)

where D(R+,rdr)= {u∈L2
loc(R+,rdr)

∣∣ u|]0,R] ∈H2(]0,R[,rdr),
u|[R,+∞[ ∈ H2

loc(]R,+∞[,rdr)} (the notation rdr refers to the
measure on the Lebesgue space). Actually, the formulation of
problem (3) holds for m 6= 0, whereas for m = 0 the additional
Neumann boundary condition u′m(0) = 0 must be added to have
a well-posed problem. A solution (km,um) to problem (3) is re-
ferred to as a mode of the micro-disk cavity with polar mode
index m. For a given mode index m, problem (3) has a sequence
of solutions, indexed by a second index j∈N, termed the radial
mode index. Moreover, one can see from problem (3) that in a
GRIN micro-disk resonator the resonances have multiplicity 2
since the two indexes ±m provide the same resonance wave-
number k, the modes being expressed as a linear combination
of um(r)eimθ and its complex conjugate um(r)e−imθ .

A qualitative study of the resonances, solutions to prob-
lem (3), can be achieved by using semi-classical analysis tech-
niques for the solution of some stationary Schrödinger equa-
tions. To this end, we set h = 1/m and γ = n2

0k2/m2 where

n0 = lim
r↗R

n(r)

is the value of the refractive index at the inner boundary of
the cavity (n0 > 1). With these notations, equation (3a) can be
reformulated as the following radial Schrödinger equation

−h2L um +Vum = γum (4)

where L denotes the elliptic linear differential operator

L =
n2

0
n2(r)

(
∂

2
rr +

1
r

∂r +(p−1)
n′(r)
n(r)

∂r

)
(5)

=
n2

0
rnp+1(r)

∂r
(
rnp−1(r)∂r

)
and the potential energy function V is defined by

V (r) =
n2

0
r2n(r)2 . (6)

The linear operator L is self-adjoint on the space L2
ρ(R+) of

square integrable functions for the measure ρ = np+1(r)r dr.

Moreover, since limr↗R V (r) = 1
R2 and limr↘R V (r) = n2

0
R2 >

1
R2 ,

we have a potential barrier at r = R.
As we are interested in WGM, the angular mode index m

is large and among the solutions (km,um) to problem (3) for
such a m, we are interested in solutions such that the mode
um is “concentrated” inside the cavity, in a vicinity of the disk

boundary. As a consequence, the parameter h is a small positive
parameter and our study falls under the semi-classical regime
for the Schrödinger equation. In this framework, we are inter-
ested in solutions to the Schrödinger equation that concentrate
around the local minimum in (0,R] of the potential V the clos-
est to R. Thus, we must consider the sign of V ′(R) = − 2

R2 κ

where
κ =

1
R
+

n1

n0
with n1 = lim

r↗R
n′(r). (7)

We have identified three typical behaviors depending on the
sign of κ , see Fig. 1.

Fig. 1. The three typical local behaviors of the potential V : From left
to right, half-triangular well (κ > 0), half-quadratic well (κ = 0) and
quadratic well (κ < 0).

a) Half-triangular potential well. If κ > 0 then V is decreas-
ing in a left neighborhood of R and has a local minimum at R.
The special case of a disk cavity with constant index enters this
heading. The quantum mechanism analogy is similar to the one
given in Appendix B for a disk cavity with constant index.

b) Half-quadratic potential well. If κ = 0, under the additional
condition µ > 0, where

µ =
2

R2 −
n2

n0
with n2 = lim

r↗R
n′′(r), (8)

the potential V has a local minimum at R. The modified form
of Maxwell’s fish eye GRIN structure investigated in [4] enters
this heading.

c) Internal quadratic potential well. If κ < 0, the effective po-
tential V has at least one local minimum R0 in (0,R) since
limr↘0 V (r) = +∞. Under the additional condition

µ = 2
R2

0
− n′′(R0)

n(R0)
> 0, the potential is quadratic in a neighbor-

hood of the minimum. The advantage of cavities with such re-
fractive index is that the modes are located slightly inside the
cavity and therefore the resonances are less sensitive to edge
defects of the cavity.

Note that the above list of cases is not exhaustive, but the
other cases impose strong conditions on the refractive index
function n which would be questionable in terms of technolog-
ical design. Note also that the potential V may have several lo-
cal minima in ]0,R], around which resonant modes may locate
themselves, but they are of less practical interest.

2.2 Principles of construction of asymptotic formulas
for resonances

In order to find approximate solutions to system (3), we con-
sider the Schrödinger equation (4) and perform a Taylor expan-
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sion of its coefficients at the point where the potential V has its
minimum. In cases a) and b) this point is r = R, and in case c)
it is r = R0. Let us explain the principles in cases a) and b)
before giving more details in the corresponding sections. We
perform the change of variables r 7→ ξ = r

R −1 sending R to 0
and write equation (4) with this coordinate: For L we obtain
the following expression

n2
0

R2n2(R+Rξ )

(
∂

2
ξ ξ

+ R
R+Rξ

∂ξ +(p−1)Rn′(R+Rξ )
n(R+Rξ )

∂ξ

)
whereas for the potential V we obtain n2

0
(R+Rξ )2n(R+Rξ )2 . Then,

considering a Taylor expansion at the order 0 in ξ = 0 of the
operator L coefficients, we find

L '


1

R2

(
∂ 2

ξ ξ
+∂ξ +(p−1)Rn1

n0
∂ξ

)
ξ < 0

n2
0

R2

(
∂ 2

ξ ξ
+∂ξ

)
ξ > 0

For the potential V , a Taylor expansion at the order 2 in ξ = 0
will be sufficient in any case:

V '


1

R2 − 2
R κ ξ +(3κ2−2κ +µ)ξ 2 ξ < 0

n2
0

R2 ξ > 0

where the quantities κ and µ were introduced in (7) and (8).
As for the “eigenvalue” γ in (4), we look for a quantity close to
the bottom of the potential well at ξ = 0, i.e.

γ =
1

R2

(
1+ γ̃

)
with lim

h→0
γ̃ = 0.

With these approximations, equation (4) outside the cavity, i.e.
for positive ξ , becomes

−h2n2
0
(
∂

2
ξ ξ

+∂ξ

)
ϕ +(n2

0−1)ϕ = γ̃ϕ

and, at the limit h = 0, we find n2
0−1
R2 ϕ = 0, i.e. ϕ = 0 for ξ > 0.

Hence the jump condition (3b) across r = R (ξ = 0) implies
that the approximate solution inside the cavity should satisfy
the Dirichlet condition ϕ(0) = 0.

From this point, the study of the three cases differentiates.

2.3 Asymptotic formulas for resonances in the
half-triangular potential well case

Let us consider first the case of a half-triangular potential well
where κ > 0. Neglecting here the term of order 2 in the Tay-
lor expansion of V , our approximate equation inside the cavity
(ξ < 0) can be written as

−h2(
∂

2
ξ ξ

+∂ξ +(p−1)Rn1
n0

∂ξ

)
ϕ−2Rκ ξ = γ̃ϕ (9)

with the Dirichlet condition ϕ(0) = 0. In order to homogenize
the principal terms −h2∂ 2

ξ ξ
and −κ ξ , we introduce the scaled

variable σ defined by [11] σ = h−
2
3 ξ and the new unknown

v(σ) =ϕ(σh
2
3 ). The approximate Schrödinger equation (9) for

ϕ gives rise to the following ODE for v (posed on (−∞,0) with
v(0) = 0):

−h
2
3

(
v′′(σ)+2Rκ σv(σ)

)
+h

4
3

(
1+(p−1)Rn1

n0

)
v′(σ) = γ̃v(σ). (10)

By considering a formal series expansion for v in the form

v(σ) = v0(σ)+h
1
3 v1(σ)+h

2
3 v2(σ)+ · · ·

and γ̃ = γ2h
2
3 +γ3h+γ4h

4
3 + · · · for the eigenvalue, and by plug-

ging these expressions into (10) and equating terms with the
same order in h, one obtains that v0 satisfies

−v′′0(σ)−2κ̆σv0(σ) = γ2v0(σ), with κ̆ = Rκ .

By making the substitution X =(2κ̆)
1
3 σ +(2κ̆)−

2
3 γ2, it is found

that V (X)≡ v0(σ) solves the reverse Airy equation

−V ′′+XV = 0

and we deduce that v0(σ) = A
(
(2κ̆)

1
3 σ +(2κ̆)−

2
3 γ2
)

where A
denotes the mirror symmetric Airy function A : X ∈R 7→Ai(−X).
The Dirichlet condition v0(0) = 0 implies that there exists an
integer j ≥ 0 such that

(2κ̆)−
2
3 γ2 = a j

where (a j) j≥0 denotes the increasing sequence of the zeros
of A. Hence v0(σ) = A

(
a j +(2κ̆)

1
3 σ
)
.

Finally, for the half-triangular potential well, the resonance
corresponding to the polar mode index m and radial mode index
j ≥ 0 is found to have an asymptotic expansion in the form

km, j =
m

Rn0

(
1+ 1

2 (2κ̆)
2
3 a jm−

2
3 +O(m−1)

)
(11)

and the corresponding mode inside the cavity (i.e. for r < R)
satisfies

um, j(r) = A
(
a j +(2κ̆)

1
3 m−

2
3 r−R

R

)
+O(m−

1
3 ).

We wish to draw attention to the fact that the so-called “ra-
dial mode index” j, introduced here as the index of the increas-
ing sequence of the zeros of the reverse Airy’s function A can
be interpreted as the number of sign changes (or nodal points)
of the real part of a mode inside the cavity as illustrated in Sec-
tion 3.

These formulas for the resonance km, j and the mode um, j
are coherent with the first term of the known asymptotic expan-
sion in a disk cavity with constant index, see e.g. [12]. It can
be noted that the approximation obtained for the resonances
and modes do not distinguish between TE and TM modes. The
asymptotic developments have to be continued at a higher order
to distinguish one from another. It can also be noted that one
would obtained the same 2-term asymptotic expansion (11) for
the Dirichlet problem in a disk as encountered e.g. in the closed
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billiard problem in a circular dielectric cavity [13]. The distinc-
tion between the Dirichlet problem in a disk and the transmis-
sion problem (3) for a disk arises with the next terms in the
asymptotic expansion. It is indeed possible, taking into account
higher order Taylor expansions of V and of the coefficients
of L , and including the jump relation (3c) on first derivatives
at r = R, to pursue the construction of approximate resonance
pairs (k,um) up to an arbitrary precision, see [8,9], but this goes
beyond the scope of this paper. In particular, we obtained the
following 4-term expansion:

km, j =
m

Rn0

(
1+ 1

2 (2κ̆)
2
3 a jm−

2
3 − κ̆np

0
1√

n2
0−1

m−1

+ 1
15 (2κ̆)

4
3 a2

j
( 17

8 −
3
κ̆
+ µ̆

κ̆2

)
m−

4
3 +O(m−

5
3 )
)

(12)

where µ̆ = R2µ . One can see that the third term differs whether
the resonance corresponds to a TE mode (p = −1) or to a TM
mode (p = 1). This term also differs from the one obtained for
the Dirichlet problem in a disk.

2.4 Asymptotic formulas for resonances in the
half-quadratic potential well case

Let us now consider the half-quadratic potential well. In this
case κ is zero and our approximate equation inside the cavity
(ξ < 0) can be written as

−h2(
∂

2
ξ ξ

+∂ξ +(p−1)Rn1
n0

∂ξ

)
ϕ +µ ξ

2 = γ̃ϕ (13)

with the Dirichlet condition ϕ(0) = 0. Now we have to homog-
enize the principal terms −h2∂ 2

ξ ξ
and µξ 2. We introduce the

scaled variable [11] σ = h−
1
2 ξ and the new unknown v(σ) =

ϕ(σh
1
2 ). The approximate Schrödinger equation (13) for ϕ gives

rise to the following ODE for v (posed on (−∞,0) with v(0) = 0):

h
(
− v′′(σ)+µ σ

2v(σ)
)

+h
3
2

(
1+(p−1)Rn1

n0

)
v′(σ) = γ̃v(σ). (14)

The adapted formal series expansions for v and γ̃ involve now
powers of h

1
2 : v(σ) = v0(σ) + h

1
2 v1(σ) + · · · and γ̃ = γ2h+

γ3h
3
2 + · · · . By plugging these expressions into (14) and equat-

ing terms with the same order in h, one obtains that v0 satisfies

−v′′0(σ)+ µ̆σ
2v0(σ) = γ2v0(σ)

where µ̆ = R2µ . By making the substitution X = µ̆
1
4 σ , it is

found that V (X) ≡ v0(σ) solves the harmonic oscillator equa-
tion −V ′′+X2V = µ̆−

1
2 γ2V on (−∞,0) with Dirichlet condi-

tion V (0) = 0. Its eigenfunctions are known as Hermite func-
tions ψ`(X) [14, Chp.22] with odd index because of the Dirich-
let condition. The associate eigenvalue is 2`+1. Hence v0(σ)=

ψ2 j+1(µ̆
1
4 σ) where j≥ 0. Finally, for the half-quadratic poten-

tial well, the resonance corresponding to the polar mode index
m and radial mode index j is found to satisfy

km, j =
m

Rn0

(
1+ 4 j+3

2 µ̆
1
2 m−1 +O(m−

3
2 )
)

(15)

and the mode inside the cavity (i.e. for r < R) satisfies

um, j(r) = ψ2 j+1(µ̆
1
4 m

1
2 r−R

R )+O(m−
1
2 ). (16)

One important feature of resonances in the half-quadratic
potential well case is that they are organized in an asymptotic
lattice with constant step: The gap between two resonances
with consecutive polar mode index m and m+ 1 and the same
radial mode index j is found to be

km+1, j− km, j =
1

Rn0
+O

(
m−

1
2
)

whereas when m is fixed and j is incremented by 1, the gap
between two resonances is found to be

km, j+1− km, j =
2µ̌

1
2

Rn0
+O

(
m−

1
2
)
.

2.5 Asymptotic formulas for resonances in the internal
quadratic potential well case

For the internal quadratic potential well, the reasoning is sim-
ilar to the case of the half-quadratic potential well with R re-
placed by R0 where R0 denotes the local minimum of V inside
the cavity the closest to R. The only difference comes from
the lack of boundary condition at R0 since the potential mini-
mum is not anymore on the boundary at R. The resonance cor-
responding to the polar mode index m and radial mode index j
is found to satisfy

km, j =
m

R0n(R0)

(
1+ 2 j+1

2 µ̆
1
2 m−1 +O(m−

3
2 )
)

(17)

where µ̆ = 2−R2
0n′′(R0)/n(R0), and the corresponding mode

inside the cavity (i.e. for r < R) satisfies

um, j(r) = ψ j(µ̆
1
4 m

1
2 r−R0

R0
)+O(m−

1
2 ). (18)

One can see that in the internal quadratic potential well too,
resonances are organized in an asymptotic lattice with constant
step. The main interest of designing optical cavities with a ra-
dially varying index n entering this heading is that the mode is
slightly shift inside the cavity reducing its sensitivity to edge
roughness (compare relations (16) and (18)).

3 Numerical investigations

We have written a program under MATLAB to compute WGM
in graded index optical micro-disks with radial varying refrac-
tive optical index. The program can be obtained from the cor-
responding author. The program solves the radial problem (3)
using the Finite Difference Method [15] where the first and sec-
ond order derivatives are approached by the following second-
order of accuracy central difference schemes (for a small step-
size δr > 0)

u′(r)≈ u(r+δr)−u(r−δr)

2δr

u′′(r)≈ u(r+δr)−2u(r)+u(r−δr)

δ 2
r
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The unbounded exterior domain is truncated at a finite dis-
tance of the dielectric cavity boundary by using the Perfectly
Matched Layer method (PML). Namely, we use the PML in-
vestigated in [16]. The Finite Difference scheme we have im-
plemented under MATLAB is second order accurate. Note that
we have chosen the Finite Difference Method for its simplic-
ity for such a one-dimensional problem but we could have also
used the Finite Element Method [17] as in [8,9].

3.1 Half-triangular potential well

First, to validate both our asymptotic formula (11) and our
MATLAB program, we consider the case of a disk with a con-
stant refractive index n0 = 1.45. The disk radius is R = 10 µm.
In the particular case of a constant refractive index, one can
solve problem (3) analytically. The resonances k are found to
be the zeros of the following non-linear equation referred to as
the modal equation [8,9]

fm(z) =
H
(1)
m−1(z)

H
(1)
m (z)

−np
0
Jm−1(n0z)
Jm(n0z)

+
m
z

(
1−np−1

0

)
= 0

where p = 1 for TM modes and p = −1 for TE modes and
z = kR = 2πR

λ
. Jm refers to Bessel’s function of the first kind.

Moreover, the mode um for a given resonance k is found to be

um(r) =


Jm(n0kr)
Jm(n0kR)

if r ≤ R

H
(1)
m (kr)

H
(1)
m (kR)

if r > R

We provide in Table 1 the first five resonance wavelengths
λ = 2π/k in µm for TE modes with polar mode index m =
60 computed by solving the modal equation fm(z) = 0. The
third column provides the residual, i.e. the absolute value of
the modal function at resonance | fm(2πR/λ )| as an indicator
of the accuracy of the zero finding method. We also provide
in Table 2 the first five resonance wavelengths λ computed by
our Finite Difference program with a step-size of 10−3 µm. The
third column indicates the relative error on the resonances com-
pared to the “exact” ones provided in Table 1. We observe that
four to five digits on the real part of the resonance are correct.
Finally, we provide in Table 3 the first five resonance wave-
lengths λ computed by the asymptotic formula (11). The third
column indicates the relative error on the resonances compared
to the “exact” ones provided in Table 1. We can observe that
the asymptotic formula (11) provides approximate values of the
resonances with an error around 1% for that value of m. This
can be considered as satisfactory for such a two-term asymp-
totic formula. It should be noted that the accuracy of the asymp-
totic formula (11) is strongly depend on the value of the mode
index m: The larger m is, the more accurate is the approxima-
tion. (The remainder is in O(m−1).) For instance, for the same
micro-disk, the average error on the first five resonance wave-
lengths for m = 200 is 0.23%. It should also be noted that the
accuracy of the results for a fixed value of m could be improved
by taking into account more terms in the asymptotic expansion
as it is the case with the four-term asymptotic formula (12) with

a remainder in O(m−5/3). For instance, the average error on the
first five resonance wavelengths falls to less than 0.75% when
using formula (12).

1 1.365519863852797+ i8.89905798060923710−9 1.8710−16

2 1.256150131337898+ i3.22852682724458810−6 7.8110−15

3 1.176783344038231+ i1.47289976386504710−4 1.3710−14

4 1.114014527345193+ i1.56737852010347410−3 2.2010−14

5 1.060466939160361+ i5.30803659211806810−3 2.4410−14

Table 1. First five exact resonance wavelengths λ in µm for TE modes
with polar mode index m = 60 for a micro-disk with constant refrac-
tive index n0 = 1.45 and radius R = 10 µm. The third column provides
the absolute value of the modal function at resonance | fm(2πR/λ )|.

1 1.365519834571472+ i8.62012080595506610−9 2.1410−8

2 1.256150084591846+ i3.11586538409649910−6 9.7110−8

3 1.176786476706345+ i1.48071918380906410−4 2.7410−6

4 1.113987662838273+ i1.56674648211171710−3 2.4110−5

5 1.060561414039830+ i5.27976234703186410−3 9.2910−5

Table 2. First five resonance wavelengths λ in µm for TE modes ob-
tained by our Finite Difference program. The third column indicates
the relative error on the resonances compared to the “exact” ones pro-
vided in Table 1.

1 1.3544358 8.1210−3

2 1.2531419 2.4010−3

3 1.1808407 3.4510−3

4 1.1235487 8.6710−3

5 1.0758336 1.5310−2

Table 3. First five resonance wavelengths λ in µm for TE modes ob-
tained by the asymptotic formula (11). The third column indicates the
relative error on the resonances compared to the “exact” ones provided
in Table 1.

We have depicted in Fig. 2 the variations in the radial di-
rection of the modulus of the mode um for the first resonance
provided in Table 2 (top) and the 2D representation of the real
part of um(r)eimθ (bottom). Computations were achieved using
our Finite Difference program under MATLAB.

3.2 Half-quadratic potential well

We now consider the case of a micro-disk with radius R =
10 µm and refractive index varying according to the radial posi-
tion r as n(r)= 2n0

1+r2/R2 where n0 = n(R)= 1.45. This refractive
index profile corresponds to the modified form of “Maxwell’s
fish eye” GRIN studied in [4]. We have n1 = n′(R) =−n0/R so
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Fig. 2. Variation in the radial direction of the modulus of the mode um
for the first resonance provided in Table 2 (top, blue line), potential
V (top, red line) and 2D representation of the real part of um(r)eimθ

(bottom). The black circle indicates the disk boundary. The PML area
is not represented.

that κ = 0 and this refractive index profile corresponds to the
half-quadratic potential well.

We provide in Table 4 the first five resonance wavelengths
λ in µm for TE modes with polar mode index m = 60 obtained
by the asymptotic formula (11) (second column) and computed
by our Finite Difference program (third column) with a step-
size of 10−3 µm. It can be noticed that compared to a dielectric
cavity with constant refractive index, the resonances are more
regularly spaced. This feature of resonances can be easily in-
ferred from the asymptotic formula (15) for the half-quadratic
potential well and it is not true for refractive index profile cor-
responding to half-triangular potential well, see (11).

We have depicted in Fig. 3 the variations in the radial di-
rection of the modulus of the mode um for the first resonance
provided in Table 4 (top) and the 2D representation of the real
part of um(r)eimθ (bottom).

We have also depicted in Fig. 4 the variations in the radial
direction of the modulus of the mode um for the fifth resonance
provided in Table 4 (top) and the 2D representation of the real
part of um(r)eimθ (bottom). It can be noted that the index j
labeling the resonances in formula (11) (in reference to the in-

1 1.4814014 1.4834423+ i3.409357910−13

2 1.4347431 1.4379203+ i2.719520010−12

3 1.3909342 1.3949026+ i4.210636810−10

4 1.3497213 1.3543145+ i4.718521810−09

5 1.3108804 1.3160060+ i4.263967010−08

Table 4. First five resonance wavelengths λ in µm for TE modes for
the half-quadratic potential well example. Values in the second col-
umn are obtained by the asymptotic formula (11) whereas values in
the third column are obtained by our Finite Difference program.
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Fig. 3. Variation in the radial direction of the modulus of the mode um
for the first resonance provided in Table 4 (top, blue line), potential
V (top, red line) and 2D representation of the real part of um(r)eimθ

(bottom, the black circle indicates the disk boundary, the PML area is
not represented).

creasing sequence of the zeros of the reverse Airy’s function)
and in Table 4 can be interpreted as the number of sign changes
(or nodal points) of the real part of a mode inside the cavity.

3.3 Quadratic potential well

Finally, we consider the case of a micro-disk with radius R =
10 µm and refractive index varying according to the radial po-
sition r as n(r) = n0 +

1
2 n2(R2− r2) where n0 = n(R) = 1.45
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Fig. 4. Variation in the radial direction of the modulus of the mode um
for the fifth resonance provided in Table 4 (top) and 2D representation
of the real part of um(r)eimθ (bottom; the black circle indicates the
disk boundary, the PML area is not represented).

and n2 = 0.031 µm−2. This refractive index profile is similar to
the quadratic-index glass doped with dye molecules studied in
[6]. We have κ = 1

R (1−
n2R2

n0
)< 0. This refractive index profile

falls into the quadratic potential well case. The potential V has

a unique minimum inside [0,R] located at R0 =
√

2n0+n2R2

3n2
.

We provide in Table 5 the first five resonance wavelengths
λ in µm for TE modes with polar mode index m = 60 obtained
by the asymptotic formula (17) (second column) and computed
by our Finite Difference program (third column) with a step-
size of 10−3 µm.

We have depicted in Fig. 5 the variations in the radial di-
rection of the modulus of the mode um for the first resonance
provided in Table 5 (top) and the 2D representation of the real
part of um(r)eimθ (bottom). This illustrates the possibility with
certain profiles of graded index to shift of the spatial location of
WGM away from the exterior surface of the resonator towards
the interior of the resonator reducing the overall optical losses.

1 1.6583228 1.6586734+ i6.252302710−15

2 1.6124380 1.6125508+ i5.899460910−14

3 1.5690241 1.5684167+ i2.696803410−13

4 1.5278866 1.5257651+ i7.020646810−13

5 1.4888512 1.4843304+ i5.219125510−13

Table 5. First five resonance wavelengths λ in µm for TE modes for
the quadratic potential well example. Values in the second column are
obtained by the asymptotic formula (17) whereas values in the third
column are obtained by our Finite Difference program.
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Fig. 5. Variation in the radial direction of the modulus of the mode
um for the first resonance provided in Table 5 (top, blue line), po-
tential V (top, red line) and 2D representation of the real part of
um(r)eimθ (bottom). The black circle indicates the disk boundary. The
PML area is not represented.

4 Conclusion

We have investigated WGM in a graded index micro-disk where
the refractive index n varies with the radial position r and we
have highlighted three different behaviors for the WGM de-
pending on the sign of a key parameter found to be κ = 1

R +
n1
n0

where n0 and n1 are respectively the values of the refrac-
tive index and its derivative at the cavity boundary. Moreover,
we have obtained asymptotic expansions of the resonances for
large polar mode index m aimed at providing first-approximation
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of WGM in a graded index micro-disk in a simple and quick
way.

Our approach has highlighted and quantified through our
asymptotic formulas two interesting features of WGM in radi-
ally varying index micro-disks. In the half-quadratic potential
well and in the quadratic potential well cases we have shown
that the resonances are organized in an asymptotic lattice with
constant steps along the modal index m and along the radial in-
dex j. We have also shown that in the quadratic potential well
case, modes are slightly shift inside the cavity reducing their
sensitivity to edge roughness.

Developing the approach whose first step is presented here,
it is actually possible to obtain more terms in the asymptotic ex-
pansion of the resonances, but the mathematical technicality in-
creases and formal calculus becomes necessary to make formu-
las explicit and usable, see [8,9]. Simple closed-form asymp-
totic formulas as the one derived in this paper already provide
valuable insights on the properties of GRIN micro-disks. For
instance, asymptotic formulas obtained in cases b and c show
that equidistant spectrum can be obtained for a wide range on
GRIN micro-disk with a step that has been made explicit. Such
asymptotic formulas are complementary to a pure numerical
simulation approach.

Finally, we would like to mention that the mathematical
approach presented here can be adapted to apply to dielectric
micro-spheres with a refractive index varying in the radial di-
rection. Actually, as shown in Appendix C, TE resonances in
the sphere can even be directly deduced from the asymptotics
of TM resonances in the disk. Only the case of TM resonances
in the sphere requires a specific study.

A TE and TM modes in a graded index
optical micro-disk

For a WGM, the electric field E and magnetic field H have a
sinusoidal variation in time represented in phasor notation as

E (x, t) = ℜ

(
E(x)e−iωt

)
H (x, t) = ℜ

(
H(x)e−iωt

)
where ω denotes the optical wave frequency. This frequency
is not imposed by sources but it is one of the unknown of the
resonance problem with E and H. In the sequel we denote by
Ω the domain occupied by the dielectric cavity which size typ-
ically varies from one to hundred micrometers and by Ωe the
exterior domain. The electric field E and magnetic field H are
complex valued solutions to the harmonic Maxwell’s equations
in R3:

curl E− iωµ0 H = 0 (19a)
div H = 0 (19b)

div(εr E) = 0 (19c)
curl H+ iωε0 εr E = 0 (19d)

where µ0 and ε0 denote respectively the magnetic permeability
and the dielectric permittivity of vacuum and εr denotes the
relative dielectric permittivity of the dielectric material in the

cavity. Equations (19) can be handled in R3 when E and H refer
to Schwartz’s distributions or as regular functions in Ω and Ωe
with the following conditions at the interface between the two
domains: [

H ·ννν
]
= 0

[
εrE ·ννν

]
= 0 (20a)[

H∧ννν
]
= 0

[
E∧ννν

]
= 0 (20b)

where ννν denotes the unit outward normal to the boundary of
Ω , and the brackets refer to the jump across the interface of
the quantity inside the brackets. We also need to specify some
condition at infinity for H and E.

By taking the curl of equation (19a) and combining it with
equation (19d) we obtain

curl curl E(x)− k2 n2(x)E(x) = 0

where k2 = ω2µ0ε0 and n is the refractive index function de-
fined by εr(x) = n2(x). From (19c) and the vector identity
div(εr E) = εr div E+E ·∇εr, we deduce that

div E =−∇n2

n2 ·E.

Then, using the vector identity curl curl E = −∆∆∆E+∇div E,
where ∆∆∆ refers to the vector Laplace operator, we finally obtain
the following propagation equation

∆∆∆E+∇

(
E · ∇n2

n2

)
+ k2 n2 E = 0. (21)

Similarly, by taking the curl of equation (19d) and by using the
vector identity

curl(εrE) = εr curl E+∇εr ∧E

and equation (19a), we obtain that

−curl curl H+
∇n2

n2 ∧ curl H+ k2 n2 H = 0.

Since H is divergence free, the propagation equation for H also
reads

∆∆∆H+
∇n2

n2 ∧ curl H+ k2 n2 H = 0. (22)

As the dielectric micro-cavity is a disk with a radial varying re-
fractive index n, it is quite natural to exploit this feature by in-
troducing the cylindrical coordinates basis (r,θ ,z). In the cylin-
drical vector basis (er,eθ ,ez), we have

∇n2

n2 =
2
n

∂rn(r)er = ∂r
(

ln(n2)
)

er.

Considering the expression of the vector Laplace operator in
cylindrical coordinates, component-wise the propagation equa-
tion (21) for E reads

∆Er−
2
r2 ∂θ Eθ −

1
r2 Er +∂rEr ∂r

(
ln(n2)

)
+Er∂

2
r ln(n2)+ k2n2Er = 0 (23a)

∆Eθ +
2
r2 ∂θ Er−

1
r2 Eθ +

1
r

∂θ Er∂r
(

ln(n2)
)

+k2n2Eθ = 0 (23b)
∆Ez +∂zEr∂r

(
ln(n2)

)
+ k2n2Ez = 0 (23c)
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where ∆ refers to the scalar Laplace operator.
Similarly, component-wise the propagation equation (22)

for H reads

∆Hr−
2
r2 ∂θ Hθ −

1
r2 Hr + k2n2Hr = 0 (24a)

∆Hθ +
2
r2 ∂θ Hr−

1
r2 Hθ −

1
r

∂r
(

ln(n2)
)
∂r(rHθ )

+
1
r

∂r
(

ln(n2)
)
∂θ Hr

)
+ k2n2Hθ = 0 (24b)

∆Hz +∂r
(

ln(n2)
)(

∂zHr−∂rHz
)

+k2n2Hz = 0 (24c)

The main assumption in the model is that the electromagnetic
field does not depend on the height variable z and the 3D ge-
ometrical problem setting can be reduced to a 2D one. This
assumption and the resulting 2D problem can be seen as an
approximation of the 3D one resulting from the use of the Ef-
fective Index Method [18].

Under the assumption that the magnetic field doesn’t de-
pend on the height variable z, the magnetic field component
satisfies the following equation deduced from (24c)

∆Hz−∂r
(

ln(n2)
)
∂rHz + k2n2Hz = 0

and this equation can be recast into

div
(

1
n2 ∇Hz

)
+ k2Hz = 0.

Once Hz is known, the components Er and Eθ of the electric
field can be deduced from Maxwell’s equation (19d). Namely,

Er(r,θ) =
i

ωε

1
r

∂θ Hz(r,θ), (25a)

Eθ (r,θ) = −
i

ωε
∂rHz(r,θ). (25b)

Moreover, we deduce from the boundary conditions (20b) com-
bined with (25b) that Hz satisfies the following interface condi-
tions across the cavity boundary

[Hz] = 0,
[

1
n2

∂Hz

∂ν

]
= 0.

Similarly, (23c) can be recast into

∆Ez + k2n2Ez = 0.

and, under the assumption that the electromagnetic field doesn’t
depend on the height variable z, the components Hr and Hθ of
the magnetic field can be deduced from Maxwell’s equation
(19a) as

Hr(r,θ) =
1

iωµ0

1
r

∂θ Ez(r,θ) (26a)

Hθ (r,θ ,z) = −
1

iωµ0
∂rEz(r,θ). (26b)

Moreover, we deduce from the boundary conditions (20b) com-
bined with (26b) that Ez satisfies the following interface condi-
tions across the cavity boundary

[Ez] = 0,
[

∂Ez

∂ν

]
= 0.

Thus, Maxwell’s equations in polar coordinates split into two
independent subsystems of equations. The first one involves
the electromagnetic field components Hz, Er and Eθ and it is
referred as the TE modes subsystem. The second one involves
the electromagnetic field components Ez, Hr and Hθ and it is
referred as the TM modes subsystem.

B Quantum mechanical analogy for a
micro-disk cavity with constant index

Fig. 6. Typical behavior of the potential function Veff for disk cavity
with constant index. The hatched area is the “classically forbidden”
region.

We present in this appendix the quantum mechanical anal-
ogy for resonances in a disk cavity with constant index, see also
[19,20]. For a disk cavity with constant index n0, Schrödinger
equation (4) can be recast for the purpose of the interpretation,
in the form of

−L um(r)+Veff(r)um(r) = E um(r) (27)

where linear differential operator L reads for n≡ cste

L = ∂
2
rr +

1
r

∂r,

the effective potential Veff is

Veff(r) = k2(1−n2(r))+
m2

r2

and the energy E is defined as k2, where k is assumed to be a
positive real number for the purpose of the analogy. The effec-
tive potential is the sum of the dielectric potential k2(1−n2(r))
and the repulsive centrifugal potential m2/r2. It has the form of
a half-triangular potential well as shown in Fig. 6.

By comparison to quantum mechanics, a noteworthy dif-
ference is that the effective potential function depends on the
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energy E = k2, whereas in quantum mechanics the potential is
usually a fixed function, independent of the energy. As a con-
sequence, the depth of the well gets deeper when k is raised
whereas in quantum mechanics the depth of the well remains
fixed as the energy of the particle changes.

By using the substitution ζ = ln(kr), equation (27) reads

u′′m(ζ )+q2
m(ζ )um(ζ ) = 0 (28)

where q2
m(r) = r2(E−Veff(r)) can be interpreted as an effective

wave-number. The effective wave number q2
m has two zeros, the

classical turning points, r1 ∈]0,R] and r2 ∈ [R,+∞[. They are
found to be r1 = m/(kn0) and r2 = m/k. They define two re-
gions: the classically forbidden one [0,r1[∪]R,r2[ where q2

m < 0
and the classically allowed one [r1,R]∪ [r2,+∞[ where q2

m > 0.
In the quantum mechanical analogy a particle can tunnel

through the classically forbidden region ]R,r2[ into the classi-
cally allowed one. For certain values of the energy (correspond-
ing to the resonances) the particle becomes temporally trapped
in the well, oscillating back and forth before finally tunneling
back through the classically forbidden region to the outside re-
gion. Note that the solutions to the Schrödinger equation (28)
are found to be a linear combination of Bessel’s functions in
the form um(r) = C1Jm(nkr) +C2Ym(nkr) (where n = n0 if
r < R and n = 1 if r > R) . It follows from the properties of
Bessel’s functions [14] that when nkr > m, i.e. when q2

m > 0,
the “classically allowed” solutions exhibit an oscillatory behav-
ior whereas when nkr < m, i.e. when q2

m < 0, the “classically
forbidden” solutions show an exponential decaying behavior.
Therefore, “classically allowed” solutions exist whenever k2

exceeds the effective potential Veff. This justifies the interpre-
tation of Veff as defining a well that separates the propagating
solutions inside and outside by a tunnel barrier.

As the energy E = k2 is reduced in value, the bottom of the
potential well will be reached and for some value kmin of k the
energy E will coincide with the bottom Veff(R−)= limr↗R Veff(r)
of the potential well. It is found that kmin = m/(n0R). There is
no solution below the bottom of the well. On the contrary, as k
is raised in value, the energy E = k2 will eventually coincide
with the top Veff(R+) = limr↘R Veff(r) of the well for some
value kmax of k found to be kmax = m/R. Solutions above the
top of the well are generally not considered to be resonances.
Thus, we have obtained that the real approximate values of the
resonances are asymptotically located in the range between m

n0R
and m

R . Note that the tunnel barrier gets higher with increasing
angular momentum m, which is a first indication that the whis-
pering gallery modes propagating close to the dielectric inter-
face have especially long lifetimes. If the refractive index n0
is changed, the barrier top Veff(R+) remains the same, but the
well bottom Veff(R−) grows deeper, so that the lowest allowed
k will give rise to a higher quality factor.

C TE modes in a graded index micro-sphere:
Ilchenko and al. [7] work revisited

Let S be a sphere of radius R filled by a dielectric material with
a radially varying refractive index n = n(r). Scattering reso-
nances in the TE mode case are considered in [7] under the

assumption that the relative electric permittivity ε = n2 follows
an affine law with r:

ε(r) = ε0 + ε
′ (R− r), with ε0 > 1, ε

′ > 0. (29)

The electric field E in the spherical basis reads E(r,θ ,ϕ) =
1
rΨ(r)Yνµ(θ ,ϕ) with Yνµ denoting vector spherical functions
[7]. The equations satisfied by the radial function Ψ are found
to be

Ψ
′′(r)+

(
k2n2− ν(ν+1)

r2

)
Ψ(r) = 0 (30a)

[Ψ(R)] = 0 (30b)
[Ψ ′(R)] = 0 (30c)

Ψ(r) ∝
√

rH(1)
ν+ 1

2
(kr) as r→+∞. (30d)

Note that eq. (30a) is set in [7] and that the radiation condition
(30d) is classical in Mie scattering.

Then if we set

p = 1, m = ν + 1
2 and um(r) = r−

1
2Ψ(r) (31)

we deduce from an elementary calculation that um solves the
system of equations (3) with the same resonance k. The con-
sequence of this fact is a straightforward translation of all our
TM asymptotic formulas to the TE resonances of the sphere.

The affine law (29) writes n(r) = (ε0 + ε ′(R− r))
1
2 . So our

quantities n0, n1 in (7), and n2 in (8) are given by

n0 =
√

ε0, n1 =− 1
2 ε
′n−1

0 , n2 =− 1
4 (ε

′)2n−3
0 . (32)

Now, our discriminant quantity κ introduced in (7) is given by

κ =
1
R
− ε ′

2ε0
. (33)

Hence, in accordance with [7], the three cases of potential well
a), b), or c) can occur depending if Rε ′/2ε0 is smaller, equal
or larger than 1, respectively. Our two-term asymptotics (11),
(15), and (17), then yield formulas for the TE resonances of the
sphere with polar mode index ν ∈ N, as follows.

a) Rε ′/2ε0 < 1. Recalling that κ̆ is defined as Rκ , we obtain:

kν ,q =
1

R
√

ε0

(
ν +2−

1
3

(
1− Rε ′

2ε0

) 2
3
aqν

1
3 +O(1)

)
(34)

which coincides with [7, eq. (13)].

b) Rε ′/2ε0 = 1. We have introduced µ in (8) and µ̆ = R2µ is
now given by

µ̆ = 2+
(Rε ′

2ε0

)2
= 3. (35)

Since this quantity is positive, formula (15) is valid and gives

kν ,q =
1

R
√

ε0

(
ν + 4q+3

2

√
3+ 1

2 +O(m−
1
2 )
)

(36)

c) Rε ′/2ε0 > 1. Recall that the potential V in the radial variable
r is the function

r 7−→
n2

0
r2n(r)2 =

ε0

r2(ε0 + ε ′(R− r))
.
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Its derivative is proportional to ε ′r− 2(ε0 + ε ′(R− r)) up to a
positive factor. It cancels at the value r = R0 given by

R0 =
2
3

(
R+

ε0

ε ′

)
.

It is easy to check that R0 ∈ ( 2
3 R,R) and that

µ̆ = 2+
( R0ε ′

2ε(R0)

)2
= 3.

Thus formula (17) is valid and gives

kν ,q =
1

R0
√

ε0

(
ν + 2q+1

2

√
3+ 1

2 +O(m−
1
2 )
)

(37)

We can see that, as announced in [7], in the half-harmonic and
harmonic cases b) and c), the resonances are distributed on an
approximate lattice.

In contrast with what precedes, asymptotic formulas for
TM resonances in the sphere cannot be directly deduced from
the asymptotics of TE resonances in the disk; A specific anal-
ysis, similar to the one detailed in the paper for a disk, must
be carried out. This observation can be seen already for a con-
stant refractive index n ≡ n0 by comparing our 4-term expan-
sion (12) with [21, eq. (1.1)]: While all factors coincide for TE
modes in the sphere when p = 1, the fourth ones are distinct
for TM modes in the sphere when p =−1.
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